JP2014063575A - Solar cell, solar cell module, manufacturing method of solar cell and manufacturing method of solar cell module - Google Patents

Solar cell, solar cell module, manufacturing method of solar cell and manufacturing method of solar cell module Download PDF

Info

Publication number
JP2014063575A
JP2014063575A JP2012206502A JP2012206502A JP2014063575A JP 2014063575 A JP2014063575 A JP 2014063575A JP 2012206502 A JP2012206502 A JP 2012206502A JP 2012206502 A JP2012206502 A JP 2012206502A JP 2014063575 A JP2014063575 A JP 2014063575A
Authority
JP
Japan
Prior art keywords
solar cell
power generation
electrode
connectable
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012206502A
Other languages
Japanese (ja)
Inventor
Setsuo Nakajima
節男 中嶋
Toshihiro Otsuka
智弘 大塚
Shunsuke Kunugi
俊介 功刀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012206502A priority Critical patent/JP2014063575A/en
Publication of JP2014063575A publication Critical patent/JP2014063575A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell in which a plurality of solar cell power generation parts, manufactured continuously, can be easily connected in series or parallel in an arbitrary pattern.SOLUTION: A plurality of solar cell power generation parts, each including a first electrode and a second electrode, are arranged in one row or in matrix, so that the series connectable part forming position of the first electrode on one side of adjoining solar cell power generation parts overlaps the series connectable part forming position of the second electrode on the other side of adjoining solar cell power generation parts. A first substrate and a second substrate are bonded so that the parallel connectable part forming position of the first electrode of one side power generation part is located at a position not facing the other second electrode, and the parallel connectable part forming position of the second electrode of the other side power generation part is located at a position not facing the one first electrode. Electrolyte is injected into the internal space where the first and second electrodes are facing, and the series connectable part and parallel connectable part are provided, respectively, at the series connectable part forming position and parallel connectable part forming position.

Description

本発明は、太陽電池、太陽電池モジュール、太陽電池の製造方法及び太陽電池モジュールの製造方法に関する。   The present invention relates to a solar cell, a solar cell module, a method for manufacturing a solar cell, and a method for manufacturing a solar cell module.

太陽電池は、光エネルギーを直接かつ即時に電力に変換することができ、二酸化炭素等の汚染物質を排出しないクリーンな発電源として注目されている。その中でも、色素増感型太陽電池は、高い変換効率を有し、比較的簡易な方法により製造され、かつ原材料単価が安価であるため、次世代太陽電池として期待されている。   Solar cells are attracting attention as a clean power source that can directly and immediately convert light energy into electric power and does not discharge pollutants such as carbon dioxide. Among them, the dye-sensitized solar cell is expected as a next-generation solar cell because it has high conversion efficiency, is manufactured by a relatively simple method, and the raw material unit price is low.

色素増感型太陽電池は、基板上に成膜された透明導電膜と、透明導電膜の表面に積層された半導体層とを備えた第1電極板と、対向導電膜が成膜された第2電極板と、半導体層と対向導電膜との間に注入される電解液と、半導体層を囲繞し電解液を密閉するように第1電極板と第2電極板との間に設けられた封止層と、から構成されている。   The dye-sensitized solar cell includes a first electrode plate including a transparent conductive film formed on a substrate, a semiconductor layer stacked on the surface of the transparent conductive film, and a first conductive film formed with a counter conductive film. A two-electrode plate, an electrolyte injected between the semiconductor layer and the opposing conductive film, and provided between the first electrode plate and the second electrode plate so as to surround the semiconductor layer and seal the electrolyte And a sealing layer.

ところが、色素増感型太陽電池は、シリコン系太陽電池に比べると光電変換率が低いことから、設置場所や面積に応じてモジュール化することにより光電変換効率を向上させる等の検討がなされている。このような色素増感型太陽電池を用いたモジュール(以下、単に「太陽電池モジュール」という)では、シート状の基材に複数の発電部を任意の形状及び配置で形成し、それらの発電部を予め設計された接続パターン通りに直列あるいは並列に接続することで、任意の出力電流・電圧が得られる。   However, since the dye-sensitized solar cell has a lower photoelectric conversion rate than a silicon-based solar cell, studies have been made to improve the photoelectric conversion efficiency by modularizing depending on the installation location and area. . In a module using such a dye-sensitized solar cell (hereinafter simply referred to as “solar cell module”), a plurality of power generation units are formed in a sheet-like base material in an arbitrary shape and arrangement, and these power generation units Are connected in series or in parallel according to a connection pattern designed in advance, so that an arbitrary output current / voltage can be obtained.

例えば、特許文献1には、同一の絶縁基板上に、直列接続方向に延在する複数の溝を挟んで直列接続方向と直交する方向にストリングが複数並列して配置され、且つ複数のストリングが並列接続されてなる集積型薄膜太陽電池が開示されている。   For example, Patent Document 1 discloses that a plurality of strings are arranged in parallel in a direction orthogonal to the series connection direction on the same insulating substrate with a plurality of grooves extending in the series connection direction interposed therebetween. An integrated thin film solar cell connected in parallel is disclosed.

国際公開第2010/032713号公報International Publication No. 2010/032713

最近では、色素増感型太陽電池の実用化に向けて、ロール・ツー・ロール方式を導入した連続生産が進められている。しかしながら、一方向に搬送される大面積の基材上に複数の発電部を作製する途中で、モジュール化するための電極の形成工程、導通工程及び絶縁工程を行うと、発電部の接続パターンの種類が増える、あるいは複雑になる程、設計に時間がかかり、製造プロセスが煩雑になるという課題があった。即ち、ロール・ツー・ロール方式による色素増感型太陽電池の連続生産では、生産性の点から複数の太陽電池発電部の直列・並列パターンの設計自由度が狭くなるため、太陽電池モジュールの多種少量生産が困難になるという課題があった。   Recently, continuous production using a roll-to-roll method has been promoted for practical application of dye-sensitized solar cells. However, in the middle of producing a plurality of power generation units on a large-area substrate transported in one direction, if the electrode forming process, modularization process and insulation process for modularization are performed, the connection pattern of the power generation unit As the types increase or become more complicated, the design takes time and the manufacturing process becomes complicated. In other words, in the continuous production of dye-sensitized solar cells by the roll-to-roll method, the design freedom of series / parallel patterns of a plurality of solar cell power generation units is narrow from the viewpoint of productivity. There was a problem that small volume production became difficult.

本発明は、上記課題を解決するために、連続的に作製される複数の太陽電池発電部を任意のパターンで容易に直列・並列に接続可能な太陽電池とその製造方法、及び、所望の接続パターンで直列接続・並列接続されてなる太陽電池モジュールとその製造方法の提供を課題とする。   In order to solve the above-described problems, the present invention provides a solar cell capable of easily connecting a plurality of continuously produced solar cell power generation units in series / parallel in an arbitrary pattern, a manufacturing method thereof, and a desired connection. It is an object of the present invention to provide a solar cell module connected in series / parallel with a pattern and a method for manufacturing the same.

本発明の太陽電池は、それぞれに第1電極と第2電極が設けられてなる複数の太陽電池発電部が一列またはマトリックス状に配置されてなり、隣接する前記太陽電池発電部のうち一方側の発電部の前記第1電極の直列接続可能部形成箇所と、他方側の発電部の第2電極の直列接続可能部形成箇所とが相互に重なるように配置され、且つ、前記一方側の発電部の第1電極の並列接続可能部形成箇所が前記他方の第2電極と対向しない位置に配置され、且つ、前記他方側の発電部の第2電極の並列接続可能部形成箇所が前記一方の第1電極と対向しない位置に配置されるように前記第1基板と前記第2基板とが間隔をあけて貼り合わされ、前記第1電極と前記第2電極とが対向してなる内部空間に電解液が注入されており、前記直列接続可能部形成箇所及び前記並列接続可能部形成箇所にそれぞれ、直列接続可能部と並列接続可能部が設けられてなることを特徴とする。
また、本発明の太陽電池は、前記第1及び第2の電極の直列接続可能部と、前記第1及び第2の電極の並列接続可能部に、レーザ照射により溶融可能な金属層が備えられていることが好ましく、前記金属層が銀、ニッケルのうちの何れか1種または2種以上の合金からなることがより好ましい。
更に、本発明の太陽電池モジュールは、上記太陽電池から2つ以上の太陽電池発電部を含むように分割されてなり、前記2つ以上の太陽電池発電部が所望のパターンで接続されるように、分割された前記太陽電池の各太陽電池発電部の前記直列接続可能部及び前記並列接続可能部が選択的に接続されてなることを特徴とする。
In the solar cell of the present invention, a plurality of solar cell power generation units each provided with a first electrode and a second electrode are arranged in a line or a matrix, and one of the adjacent solar cell power generation units is arranged on one side. The first electrode of the power generation unit is arranged so that the part where the first electrode can be connected in series and the part of the second power generation unit where the second electrode can be connected in series are overlapped with each other. The portion where the first electrode can be connected in parallel is disposed at a position not facing the other second electrode, and the portion where the second electrode of the power generation unit on the other side can be connected in parallel is the first first electrode. The first substrate and the second substrate are bonded to each other so as not to be opposed to one electrode, and an electrolyte solution is formed in an internal space formed by the first electrode and the second electrode facing each other. Is injected and the serially connectable part shape Location and each of said parallel connectable portion forming portion, parallel connectable portions connected in series can section, characterized in that the thus provided.
Moreover, the solar cell of this invention is equipped with the metal layer which can be melt | dissolved by laser irradiation in the serially connectable part of the said 1st and 2nd electrode, and the parallel connectable part of the said 1st and 2nd electrode. Preferably, the metal layer is made of one or more alloys of silver and nickel.
Furthermore, the solar cell module of the present invention is divided from the solar cell so as to include two or more solar cell power generation units, and the two or more solar cell power generation units are connected in a desired pattern. The serially connectable portion and the parallel connectable portion of each solar cell power generation unit of the divided solar cell are selectively connected.

本発明の太陽電池の製造方法は、それぞれ第1電極と第2電極とを備えた複数の太陽電池発電部を一列またはマトリックス状に配設する発電部形成工程と、隣接する前記太陽電池発電部のうち一方側の発電部の第1電極と他方側の発電部の第2電極の重なる部分を直列接続可能部形成箇所とし、前記他方の第2電極と対向しない前記一方側の発電部の第1電極と、前記一方の第1電極と対向しない前記他方側の発電部の第2電極とを並列接続可能部形成箇所として、前記直列接続可能部形成箇所及び前記並列接続可能部形成箇所にそれぞれ、直列接続可能部と並列接続可能部を形成する接続可能部形成工程と、を有することを特徴とする。
また、本発明の太陽電池の製造方法では、前記発電部形成工程は、第1基板上に、前記第1電極として複数の透明導電膜を一列またはマトリックス状に形成する工程と、前記複数の透明導電膜の上にそれぞれ半導体層を形成する工程と、第2基板上に、前記第2電極として複数の対向導電膜を一列またはマトリックス状に形成する工程と、前記第1基板と前記第2基板とを間隔をあけて貼り合わせる工程と、前記第1基板と前記第2基板とが対向してなる内部空間に電解液を注液した後に封止する工程と、を有することが好ましい。
また、本発明の太陽電池の製造方法では、前記接続可能部形成工程は、前記第1基板及び前記第2基板のそれぞれの前記直列接続可能部形成箇所及び前記並列接続可能部形成箇所に、レーザ照射により溶融可能な金属を配設する工程を有することが好ましく、前記金属として銀、ニッケルのうち何れか1種または2種以上の合金を用いることがより好ましい。
更に、本発明の太陽電池モジュールの製造方法は、前記太陽電池の製造方法により製造された太陽電池から2つ以上の太陽電池発電部を含むように太陽電池を分割する太陽電池分割工程と、前記2つ以上の太陽電池発電部が所望のパターンで接続されるように、分割した前記太陽電池の各太陽電池発電部の前記直列接続可能部及び前記並列接続可能部を選択的に接続する接続工程と、を有することを特徴とする。
また、本発明の太陽電池モジュールの製造方法は、上記太陽電池の製造方法により製造された太陽電池から2つ以上の太陽電池発電部を含むように太陽電池を分割する太陽電池分割工程と、前記2つ以上の太陽電池発電部が所望のパターンで接続されるように、分割した前記太陽電池の各太陽電池発電部の前記直列接続可能部及び前記並列接続可能部に選択的にレーザ照射を行う接続工程と、を有することが好ましい。
The solar cell manufacturing method of the present invention includes a power generation unit forming step in which a plurality of solar cell power generation units each having a first electrode and a second electrode are arranged in a line or matrix, and the adjacent solar cell power generation units The first electrode of the power generation unit on one side and the second electrode of the power generation unit on the other side overlap with each other as a serially connectable part forming portion, and the first power generation unit of the one side not facing the other second electrode One electrode and the second electrode of the other power generation unit that does not face the one first electrode as parallel connectable portion forming locations, respectively, in the serial connectable portion forming location and the parallel connectable portion forming location, respectively. And a connectable part forming step of forming a serially connectable part and a parallel connectable part.
In the method for manufacturing a solar cell according to the present invention, the power generation unit forming step includes a step of forming a plurality of transparent conductive films as a first electrode on the first substrate in a line or a matrix, and the plurality of transparent portions. Forming a semiconductor layer on each of the conductive films; forming a plurality of opposing conductive films as a second electrode on the second substrate in a line or matrix; and the first substrate and the second substrate. It is preferable to include a step of pasting the first substrate and the second substrate, and a step of sealing after injecting an electrolytic solution into an internal space where the first substrate and the second substrate face each other.
In the method for manufacturing a solar cell according to the present invention, the connectable part forming step includes a step of forming a laser on the serially connectable part forming part and the parallel connectable part forming part of the first substrate and the second substrate. It is preferable to have a step of disposing a metal that can be melted by irradiation, and it is more preferable to use one or more alloys of silver and nickel as the metal.
Furthermore, the manufacturing method of the solar cell module of the present invention includes a solar cell dividing step of dividing the solar cell so as to include two or more solar cell power generation units from the solar cell manufactured by the solar cell manufacturing method, A connecting step of selectively connecting the series connectable portion and the parallel connectable portion of each solar cell power generation unit of the divided solar cells so that two or more solar cell power generation units are connected in a desired pattern. It is characterized by having.
Moreover, the manufacturing method of the solar cell module of the present invention includes a solar cell dividing step of dividing a solar cell so as to include two or more solar cell power generation units from the solar cell manufactured by the solar cell manufacturing method, Laser irradiation is selectively performed on the serially connectable portion and the parallel connectable portion of each solar cell power generation unit of the divided solar cells so that two or more solar cell power generation units are connected in a desired pattern. And a connecting step.

本発明の太陽電池及び太陽電池の製造方法によれば、一列またはマトリックス状に配置された複数の太陽電池発電部を有し、且つ、各太陽電池発電部に、隣接する太陽電池発電部との間を直列接続可能とする直列接続可能部と並列接続可能とする並列接続可能部との双方を備えた太陽電池が提供される。即ち、複数の太陽電池発電部を任意のパターンで直列・並列に接続可能な太陽電池モジュールの前駆体が得られる。
また、本発明の太陽電池モジュール及び太陽電池モジュールの製造方法によれば、隣接する太陽電池発電部においてモジュール化実施前に予め設けられた直列接続可能部あるいは並列接続可能部を選択的に接続することにより、連続的に供給される複数の太陽電池発電部を所望の接続パターンで容易に直列接続または並列接続することができる。
According to the solar cell and the solar cell manufacturing method of the present invention, the solar cell power generation unit includes a plurality of solar cell power generation units arranged in a line or matrix, and each solar cell power generation unit is adjacent to the solar cell power generation unit. There is provided a solar cell including both a serially connectable portion that enables serial connection between them and a parallel connectable portion that enables parallel connection. That is, a solar cell module precursor capable of connecting a plurality of solar cell power generation units in series or parallel in an arbitrary pattern is obtained.
In addition, according to the solar cell module and the solar cell module manufacturing method of the present invention, the serially connectable portion or the parallel connectable portion previously provided before the modularization is selectively connected in the adjacent solar cell power generation portion. Thereby, the several solar cell power generation part supplied continuously can be easily connected in series or in parallel with a desired connection pattern.

本発明の第1実施形態である太陽電池を示す平面図である。It is a top view which shows the solar cell which is 1st Embodiment of this invention. 本発明の第1実施形態である太陽電池を示す図であって、(a)は図1におけるW−W線で矢視した場合に対応する断面図であり、(b)は図1におけるX−X線で矢視した場合に対応する断面図であり、(c)は図1におけるY−Y線で矢視した場合に対応する断面図であり、(d)は図1におけるZ−Z線で矢視した場合に対応する断面図である。It is a figure which shows the solar cell which is 1st Embodiment of this invention, Comprising: (a) is sectional drawing corresponding to the case where an arrow is seen by the WW line in FIG. 1, (b) is X in FIG. FIG. 4 is a cross-sectional view corresponding to the case of viewing with an arrow X-ray, (c) is a cross-sectional view corresponding to the view of line Y-Y in FIG. 1, and FIG. It is sectional drawing corresponding to the case where an arrow is seen by a line. 本発明の第1実施形態である太陽電池の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solar cell which is 1st Embodiment of this invention. 本発明の第1実施形態である太陽電池の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solar cell which is 1st Embodiment of this invention. 本発明の第1実施形態である太陽電池の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the solar cell which is 1st Embodiment of this invention. 本発明の第1実施形態である太陽電池の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the solar cell which is 1st Embodiment of this invention. 本発明の第2実施形態である太陽電池モジュールを示す図であって、(a)は平面図であり、(b)は(a)におけるE−E線で矢視した場合に対応する断面図である。It is a figure which shows the solar cell module which is 2nd Embodiment of this invention, Comprising: (a) is a top view, (b) is sectional drawing corresponding to the case where an arrow is taken in the EE line in (a). It is. 本発明の第2実施形態である太陽電池モジュールの製造方法を示す図であって、(a)は太陽電池の直列接続可能部にレーザ照射する工程を説明するための断面図であり、(b)は太陽電池において直列接続部が形成される工程を説明するための断面図である。It is a figure which shows the manufacturing method of the solar cell module which is 2nd Embodiment of this invention, Comprising: (a) is sectional drawing for demonstrating the process of laser-irradiating the serially connectable part of a solar cell, (b ) Is a cross-sectional view for explaining a process of forming a series connection portion in a solar cell. 本発明の第3実施形態である太陽電池モジュールを示す図であって、(a)は平面図であり、(b)は(a)におけるG−G線で矢視した場合に対応する断面図であり、(c)は(a)におけるH−H線で矢視した場合に対応する断面図である。It is a figure which shows the solar cell module which is 3rd Embodiment of this invention, Comprising: (a) is a top view, (b) is sectional drawing corresponding to the case where an arrow is taken by the GG line in (a). (C) is a cross-sectional view corresponding to the case of viewing along the line HH in (a). 本発明の第3実施形態である太陽電池モジュールの製造方法を示す図であって、(a)は太陽電池の並列接続可能部にレーザ照射する工程を説明するための断面図であり、(b)は太陽電池において並列接続部が形成される工程を説明するための断面図である。It is a figure which shows the manufacturing method of the solar cell module which is 3rd Embodiment of this invention, Comprising: (a) is sectional drawing for demonstrating the process of laser-irradiating the parallel connection possible part of a solar cell, (b ) Is a cross-sectional view for explaining a process in which a parallel connection portion is formed in a solar cell. 本発明の第4実施形態である太陽電池モジュールを示す平面図である。It is a top view which shows the solar cell module which is 4th Embodiment of this invention. 本発明の第4実施形態である太陽電池モジュールを示す図であって、(a)は図11におけるG−G線で矢視した場合に対応する断面図であり、(b)は図11におけるH−H線で矢視した場合に対応する断面図であり、(c)は図11におけるI−I線で矢視した場合に対応する断面図である。It is a figure which shows the solar cell module which is 4th Embodiment of this invention, Comprising: (a) is sectional drawing corresponding to the case where it views on the GG line in FIG. 11, (b) is in FIG. It is sectional drawing corresponding to the case where an arrow is seen by a HH line, (c) is sectional drawing corresponding to the case where an arrow is seen by the II line in FIG. 本発明の第5実施形態である太陽電池を示す図であって、(a)は平面図であり、(b)は(a)におけるJ−J線で矢視した場合に対応する断面図である。It is a figure which shows the solar cell which is 5th Embodiment of this invention, Comprising: (a) is a top view, (b) is sectional drawing corresponding to the case where it sees by the JJ line in (a). is there.

以下、本発明の実施形態である太陽電池、太陽電池モジュール及びそれらの製造方法について、図面を参照して説明する。尚、以下の説明で用いる図面は模式的なものであり、長さ、幅、及び厚みの比率等は実際のものと同一とは限らず、適宜変更できる。   Hereinafter, a solar cell, a solar cell module, and a manufacturing method thereof according to embodiments of the present invention will be described with reference to the drawings. The drawings used in the following description are schematic, and the length, width, thickness ratio, and the like are not necessarily the same as the actual ones, and can be changed as appropriate.

(第1実施形態)
図1及び図2に示すように、本発明の第1実施形態の太陽電池10は、基板として樹脂素材を用いたフィルム型の色素増感型太陽電池であって、第1基板21と複数の透明導電膜22及び半導体層23とを備えた半導体電極24と、半導体電極24に対向配置され、複数の対向導電膜25と第2基板26とを備えた対極27と、半導体電極24と対極27との間を封止する封止材29と、電解液30と、直列接続可能部41と、並列接続可能部42,43と、を備えている。
(First embodiment)
As shown in FIGS. 1 and 2, the solar cell 10 according to the first embodiment of the present invention is a film-type dye-sensitized solar cell using a resin material as a substrate, and includes a first substrate 21 and a plurality of dye-sensitized solar cells. A semiconductor electrode 24 including a transparent conductive film 22 and a semiconductor layer 23, a counter electrode 27 disposed opposite to the semiconductor electrode 24 and including a plurality of counter conductive films 25 and a second substrate 26, and the semiconductor electrode 24 and the counter electrode 27. The sealing material 29 which seals between, the electrolyte solution 30, the serially connectable part 41, and the parallel connectable parts 42 and 43 are provided.

尚、本実施形態では連続生産可能な太陽電池としてフィルム型の色素増感型太陽電池を例示して説明するが、太陽電池10は複数の太陽電池発電部Cが一列またはマトリックス状に配置されてなる太陽電池であれば、特に限定されない。   In the present embodiment, a film-type dye-sensitized solar cell will be described as an example of a solar cell that can be continuously produced. The solar cell 10 includes a plurality of solar cell power generation units C arranged in a row or in a matrix. The solar cell is not particularly limited.

第1基板21は、半導体電極24の基台となる部材であり、ロール・ツー・ロール方式等での太陽電池の連続生産に適用できる適度な柔軟性を有し、大面積フィルム状に形成可能な材質であれば特に限定されない。このような材質としては、例えば、ポリエチレンテレフタレート(PET)、アクリル、ポリカーボネート、ポリエチレンナフタレート(PEN)、ポリイミド等の透明の樹脂材料が挙げられる。   The first substrate 21 is a member serving as a base for the semiconductor electrode 24, and has an appropriate flexibility applicable to continuous production of solar cells by a roll-to-roll method or the like, and can be formed in a large area film shape. There is no particular limitation as long as it is a simple material. Examples of such a material include transparent resin materials such as polyethylene terephthalate (PET), acrylic, polycarbonate, polyethylene naphthalate (PEN), and polyimide.

透明導電膜22は、太陽電池10の第1電極を構成し、スパッタリング法や印刷法により、第1基板21に一列またはマトリックス状に成膜されている。平面視における複数の透明導電膜22の大きさ及び形状は、互いに重ならず、個々に後述する直列接続可能部形成箇所33及び並列接続可能部形成箇所35を備えていれば、揃っていてもよく、揃っていなくてもよい。透明導電膜22には、酸化スズ(ITO)、酸化亜鉛等が用いられる。   The transparent conductive film 22 constitutes a first electrode of the solar cell 10 and is formed in a line or a matrix on the first substrate 21 by a sputtering method or a printing method. The sizes and shapes of the plurality of transparent conductive films 22 in plan view may be aligned as long as they do not overlap each other and are provided with serially connectable portion forming locations 33 and parallel connectable portion forming locations 35 described later. Well, it does not have to be complete. For the transparent conductive film 22, tin oxide (ITO), zinc oxide, or the like is used.

半導体層23は、太陽電池発電部Cをなす透明導電膜22の上に積層されており、透明導電膜22とともに太陽電池10の第1電極を構成する。また、半導体層23は、例えば、増感色素から電子を受け取り輸送する機能を有する金属酸化物からなる。このような金属酸化物としては、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、等が挙げられる。 The semiconductor layer 23 is laminated on the transparent conductive film 22 forming the solar cell power generation unit C, and constitutes the first electrode of the solar cell 10 together with the transparent conductive film 22. The semiconductor layer 23 is made of, for example, a metal oxide having a function of receiving and transporting electrons from a sensitizing dye. Examples of such metal oxides include titanium oxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ).

半導体層23には、増感色素が担持されていることが好ましい。増感色素は、有機色素または金属錯体色素で構成されている。有機色素として、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系、等の各種有機色素を用いることができる。金属錯体色素としては、例えば、ルテニウム錯体等、が好適に用いられる。   The semiconductor layer 23 preferably carries a sensitizing dye. The sensitizing dye is composed of an organic dye or a metal complex dye. As the organic dye, for example, various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene can be used. For example, a ruthenium complex is preferably used as the metal complex dye.

第2基板26は、対極27の基板となる部材であり、第1基板21と同様に透明の樹脂材料等から構成されている。   The second substrate 26 is a member that becomes a substrate of the counter electrode 27, and is made of a transparent resin material or the like, like the first substrate 21.

対向導電膜25は、太陽電池10の第2電極であり、スパッタリング法や印刷法により、第2基板26に一列またはマトリックス状に成膜されている。対向導電膜25は、図2(a)に示すように、厚み方向において、半導体電極24と間隙を隔てて透明導電膜22と部分的に対向するように配置されている。平面視における複数の対向導電膜25の大きさ及び形状は、互いに重ならず、それぞれに対応する透明導電膜22と太陽電池発電部Cを形成可能であって、個々に後述する直列接続可能部形成箇所34及び並列接続可能部形成箇所36を備えていれば、揃っていてもよく、揃っていなくてもよい。対向導電膜25には、例えば、ITO、プラチナ、ポリアニリン、ポリエチレンジオキシチオフェン(PEDOT)、カーボン等が用いられる。   The counter conductive film 25 is a second electrode of the solar cell 10 and is formed in a line or matrix on the second substrate 26 by a sputtering method or a printing method. As shown in FIG. 2A, the opposing conductive film 25 is disposed so as to partially face the transparent conductive film 22 with a gap from the semiconductor electrode 24 in the thickness direction. The sizes and shapes of the plurality of opposing conductive films 25 in plan view do not overlap each other, can form the transparent conductive film 22 and the solar cell power generation unit C corresponding to each, and can be connected in series, which will be described later individually As long as the formation location 34 and the parallel connection possible portion formation location 36 are provided, they may or may not be aligned. For the counter conductive film 25, for example, ITO, platinum, polyaniline, polyethylenedioxythiophene (PEDOT), carbon, or the like is used.

透明導電膜22と対向導電膜25との間には、透明導電膜22と対向導電膜25とが接触しないように分離させる厚みを有するセパレータ28が設けられていてもよい。セパレータ28には、封止材29及び電解液30を保持するための孔を有する不織布等のシート材が用いられる。尚、図1及び図2においては、セパレータ28の図示を省略する。   Between the transparent conductive film 22 and the counter conductive film 25, a separator 28 having a thickness that allows the transparent conductive film 22 and the counter conductive film 25 to be separated from each other may be provided. For the separator 28, a sheet material such as a nonwoven fabric having holes for holding the sealing material 29 and the electrolytic solution 30 is used. 1 and 2, the illustration of the separator 28 is omitted.

封止材29は、半導体層23を囲繞して、透明導電膜22と半導体層23と対向導電膜25と後述する電解液30からなる太陽電池発電部Cを形成するために設けられている。即ち、封止材29は、透明導電膜22及び半導体層23と対向導電膜25との間に間隙を形成するとともに、太陽電池発電部Cを密閉して内部空間Sを形成している。封止材29の材料には、例えば、紫外線硬化性樹脂、熱硬化性樹脂、紫外線硬化性樹脂及び熱硬化性樹脂を含んだ樹脂等、一時的に流動性を有し、適当な処理により固化される樹脂材料等が用いられる。   The sealing material 29 is provided to surround the semiconductor layer 23 and form a solar cell power generation unit C including the transparent conductive film 22, the semiconductor layer 23, the counter conductive film 25, and an electrolytic solution 30 described later. That is, the sealing material 29 forms a gap between the transparent conductive film 22 and the semiconductor layer 23 and the counter conductive film 25, and also seals the solar cell power generation unit C to form the internal space S. The material of the sealing material 29 is temporarily fluidized, for example, an ultraviolet curable resin, a thermosetting resin, a resin containing an ultraviolet curable resin and a thermosetting resin, and is solidified by an appropriate treatment. A resin material or the like to be used is used.

電解液30は内部空間Sに充填されており、例えば、アセトニトリル、ヨウ化ジメチルプロピルイミダゾリウムまたはヨウ化ブチルメチルイミダゾリウム等のイオン液体などの液体成分に、ヨウ化リチウム等の支持電解質とヨウ素とが混合された溶液(プロピオニトリル等の非水系溶剤)等の液体が挙げられる。また、電解液30は、逆電子移動反応を防止するt−ブチルピリジンを含むものであってもよい。   The electrolytic solution 30 is filled in the internal space S. For example, a liquid component such as acetonitrile, dimethylpropylimidazolium iodide, or butylmethylimidazolium iodide is added to a liquid component such as lithium iodide and iodine. And a liquid such as a solution (non-aqueous solvent such as propionitrile) in which is mixed. Moreover, the electrolyte solution 30 may contain t-butylpyridine which prevents a reverse electron transfer reaction.

本実施形態の太陽電池10においては、図1及び図2(b)に示すように、個々の透明導電膜22が、隣接する太陽電池発電部Cのいずれか1つの太陽電池発電部Cの対向導電膜25の一部と、平面視において重なるように配置されている。具体的には、透明導電膜22は、平面視において隣接する太陽電池発電部Cのいずれか1つの太陽電池発電部Cの対向導電膜25の一部と重なるように、太陽電池10の長手方向に部分的に延在して設けられている。このように透明導電膜22と隣接する太陽電池発電部Cの対向導電膜25とが相互に重なる部分の透明導電膜22は直列接続可能部形成箇所33をなし、同じく重なる部分の対向導電膜25は直列接続可能部形成箇所34をなしている。   In the solar cell 10 of this embodiment, as shown in FIG.1 and FIG.2 (b), each transparent conductive film 22 is the opposition of any one solar cell power generation part C of the adjacent solar cell power generation part C. FIG. It arrange | positions so that it may overlap with a part of electrically conductive film 25 in planar view. Specifically, the longitudinal direction of the solar cell 10 is such that the transparent conductive film 22 overlaps a part of the counter conductive film 25 of any one of the solar cell power generation units C adjacent in a plan view. Are provided to extend partially. Thus, the transparent conductive film 22 in the portion where the transparent conductive film 22 and the opposing conductive film 25 of the adjacent solar cell power generation unit C overlap each other forms a serially connectable portion forming portion 33, and the overlapping conductive film 25 in the same overlapping portion. Constitutes a serially connectable portion forming portion 34.

また、図1及び図2(c)に示すように、個々の透明導電膜22はいずれの対向導電膜25とも対向しない部分を有するように配置されている。具体的には、透明導電膜22は、平面視において対向導電膜25よりも、太陽電池10の幅方向に延在して設けられている。 対向導電膜25と対向しない部分の透明導電膜22は、並列接続可能部形成箇所35をなしている。   Moreover, as shown in FIG.1 and FIG.2 (c), each transparent conductive film 22 is arrange | positioned so that it may have a part which does not oppose any counter conductive film 25. FIG. Specifically, the transparent conductive film 22 is provided so as to extend in the width direction of the solar cell 10 more than the counter conductive film 25 in a plan view. The portion of the transparent conductive film 22 that does not face the counter conductive film 25 forms a portion 35 where a parallel connection is possible.

更に、図1及び図2(d)に示すように、個々の対向導電膜25はいずれの透明導電膜22とも対向しない部分を有するように配置されている。具体的には、対向導電膜25は、平面視において透明導電膜22よりも、太陽電池発電部Cを基準として並列接続可能部形成箇所35とは反対側の太陽電池10の幅方向に延在して設けられている。透明導電膜22と対向しない部分の対向導電膜25は、並列接続可能部形成箇所36をなしている。   Further, as shown in FIGS. 1 and 2D, each opposing conductive film 25 is disposed so as to have a portion that does not face any transparent conductive film 22. Specifically, the opposing conductive film 25 extends in the width direction of the solar cell 10 on the opposite side to the parallel connectable part forming portion 35 with respect to the solar battery power generation part C as compared to the transparent conductive film 22 in plan view. Is provided. The portion of the counter conductive film 25 that does not oppose the transparent conductive film 22 forms a parallel connectable portion forming portion 36.

直列接続可能部41は、透明導電膜22の直列接続可能部形成箇所33と、隣接する太陽電池発電部Cの対向導電膜25の直列接続可能部形成箇所34とを接続可能にするために配置されている。即ち、直列接続可能部41は、複数の太陽電池発電部Cが形成された後に、隣接する太陽電池発電部Cを直列接続可能とする太陽電池モジュール用の直列接続用電極として機能する。図1,図2,図5,図7,図8,図11,図12には、上部41A(金属層)と下部41B(金属層)により構成される直列接続可能部41を例示しているが、太陽電池発電部Cの形成後に直列接続可能部形成箇所33と直列接続可能部形成箇所34とを接続可能であれば、直列接続可能部41の構成及び形状は特に限定されない。直列接続可能部41は、例えば平面視で矩形、円形、多角形のいずれか一形状としてもよい。   The serially connectable part 41 is arranged so that the serially connectable part forming part 33 of the transparent conductive film 22 and the serially connectable part forming part 34 of the opposing conductive film 25 of the adjacent solar cell power generation part C can be connected. Has been. That is, the serially connectable portion 41 functions as a series connection electrode for a solar cell module that allows the adjacent solar cell power generation portions C to be connected in series after the plurality of solar cell power generation portions C are formed. 1, 2, 5, 7, 8, 11, and 12 exemplify a serially connectable portion 41 including an upper portion 41 </ b> A (metal layer) and a lower portion 41 </ b> B (metal layer). However, the configuration and shape of the serially connectable part 41 are not particularly limited as long as the serially connectable part forming part 33 and the serially connectable part forming part 34 can be connected after the solar cell power generation part C is formed. For example, the serially connectable portion 41 may have any one of a rectangular shape, a circular shape, and a polygonal shape in plan view.

図2(b)に示すように、直列接続可能部41の上部41Aは、平面視において対向導電膜25の直列接続可能部形成箇所34と重なり、且つ、直列接続可能部形成箇所34が形成されている面とは反対側の第2基板26の面に配置されている。上部41Aの材質は、溶融等の処理が施されることにより、対応する下部41Bと接合可能な導電物質であれば、特に限定されない。   As shown in FIG. 2B, the upper part 41A of the serially connectable part 41 overlaps with the serially connectable part forming part 34 of the opposing conductive film 25 in plan view, and the serially connectable part forming part 34 is formed. It is arranged on the surface of the second substrate 26 opposite to the surface on which it is located. The material of the upper portion 41A is not particularly limited as long as it is a conductive material that can be bonded to the corresponding lower portion 41B by being subjected to a treatment such as melting.

直列接続可能部41の下部41Bは、平面視において上部41Aと重なり、且つ、直列接続可能部形成箇所33の透明導電膜22の表面上に配置されている。下部41Bの材質は、対応する上部41Aと接合可能な導電物質であれば、特に限定されない。   The lower portion 41B of the serially connectable portion 41 overlaps the upper portion 41A in plan view, and is disposed on the surface of the transparent conductive film 22 at the serially connectable portion forming portion 33. The material of the lower portion 41B is not particularly limited as long as it is a conductive material that can be joined to the corresponding upper portion 41A.

並列接続可能部42(金属層)は、隣接する透明導電膜22の並列接続可能部形成箇所35との間を接続可能にするために配置されている。また、並列接続可能部43(金属層)は、隣接する対向導電膜25の並列接続可能部形成箇所36との間を接続可能にするために配置されている。即ち、並列接続可能部42,43は、複数の太陽電池発電部Cが形成された後に、隣接する太陽電池発電部Cを並列接続可能とする太陽電池モジュール用の並列接続用電極として機能する。このように、太陽電池発電部Cの形成後に、隣接する太陽電池発電部Cの直列接続可能部形成箇所33と直列接続可能部形成箇所34とが接続可能であれば、並列接続可能部42,43の構成及び形状はそれぞれ、特に限定されない。並列接続可能部42,43は、例えば平面視で矩形、円形、多角形のいずれか一形状としてもよい。   The parallel connectable portion 42 (metal layer) is arranged to enable connection between the parallel connectable portion forming portions 35 of the adjacent transparent conductive films 22. Further, the parallel connectable portion 43 (metal layer) is arranged to enable connection between the parallel connectable portion forming portion 36 of the adjacent opposing conductive film 25. In other words, the parallel connectable portions 42 and 43 function as parallel connection electrodes for solar cell modules that allow adjacent solar cell power generation portions C to be connected in parallel after a plurality of solar cell power generation portions C are formed. In this way, after the solar cell power generation unit C is formed, if the serially connectable unit formation point 33 and the serially connectable unit formation point 34 of the adjacent solar cell power generation unit C can be connected, the parallel connection unit 42, The configuration and shape of 43 are not particularly limited. The parallel connectable portions 42 and 43 may be any one of a rectangle, a circle, and a polygon, for example, in plan view.

図2(c)に示すように、並列接続可能部42は、平面視において隣接する太陽電池発電部Cの透明導電膜22の並列接続可能部形成箇所35を跨ぐように、第2基板26の対向導電膜25が形成されていない面に配置されている。   As shown in FIG. 2C, the parallel connectable portion 42 of the second substrate 26 extends across the parallel connectable portion forming portion 35 of the transparent conductive film 22 of the adjacent solar cell power generation portion C in plan view. The counter conductive film 25 is disposed on the surface where it is not formed.

図2(d)に示すように、並列接続可能部43は、平面視において隣接する太陽電池発電部Cの対向導電膜25の並列接続可能部形成箇所36を跨ぐように、第2基板26の対向導電膜25が形成されていない面に配置されている。   As shown in FIG. 2D, the parallel connectable portion 43 of the second substrate 26 extends across the parallel connectable portion forming portion 36 of the opposing conductive film 25 of the adjacent solar cell power generation portion C in plan view. The counter conductive film 25 is disposed on the surface where it is not formed.

尚、並列接続可能部42は、平面視において図2(c)に示す位置と重なる位置で、第1基板21の透明導電膜22が形成されている面とは反対側の面に配置されていてもよいが、図2(b)〜(d)に示すように、直列接続可能部41の上部41A、並列接続可能部42,43は、太陽電池10の同一面、即ち第1基板21の露出面か第2基板26の露出面のいずれか一方に全て配置されていることが好ましい。これにより、直列接続可能部41の上部41Aと下部41Bとの接続、及び、並列接続可能部42による隣接する並列接続可能部形成箇所35間の接続、及び、並列接続可能部43による隣接する並列接続可能部形成箇所36間の接続を太陽電池10に対して一方向から実施できることから、太陽電池10の連続生産の効率が高まる。   The parallel connectable portion 42 is disposed on the surface opposite to the surface on which the transparent conductive film 22 is formed of the first substrate 21 at a position overlapping the position shown in FIG. However, as shown in FIGS. 2B to 2D, the upper portion 41 </ b> A of the serially connectable portion 41 and the parallel connectable portions 42 and 43 are formed on the same surface of the solar cell 10, i.e., on the first substrate 21. It is preferable that all of them are arranged on either the exposed surface or the exposed surface of the second substrate 26. Thereby, the connection between the upper part 41A and the lower part 41B of the serially connectable part 41, the connection between the adjacent parallel connectable part forming places 35 by the parallel connectable part 42, and the adjacent parallel by the parallel connectable part 43 Since the connection between the connectable part forming locations 36 can be performed with respect to the solar cell 10 from one direction, the efficiency of continuous production of the solar cell 10 is increased.

直列接続可能部41の上部41Aと下部41B、及び、並列接続可能部42,43がそれぞれ、太陽電池発電部Cの形成後にレーザ照射によって導通される場合は、上部41A及び下部41B、及び、並列接続可能部42,43の材質として、レーザ照射により溶融可能な金属が用いられる。金属としては、例えば銀、ニッケル等が用いられる。   When the upper part 41A and the lower part 41B of the series connectable part 41 and the parallel connectable parts 42 and 43 are made conductive by laser irradiation after the formation of the solar cell power generation part C, respectively, the upper part 41A and the lower part 41B As the material of the connectable portions 42 and 43, a metal that can be melted by laser irradiation is used. As the metal, for example, silver, nickel or the like is used.

次いで、本実施形態の太陽電池10の製造方法について説明する。
太陽電池10の製造方法は、発電部形成工程と、接続可能部形成工程とを少なくとも備えて構成されている。以下、各工程について説明する。尚、以下で説明する手順や使用する材質等は本実施形態の色素増感太陽電池の製造工程の一例であり、この例に限定されるものではなく、連続生産可能な太陽電池を作製できればよい。
Next, a method for manufacturing the solar cell 10 of the present embodiment will be described.
The manufacturing method of the solar cell 10 includes at least a power generation part forming step and a connectable part forming step. Hereinafter, each step will be described. The procedure described below, the materials used, and the like are examples of the manufacturing process of the dye-sensitized solar cell of the present embodiment, and are not limited to this example, as long as a solar cell capable of continuous production can be manufactured. .

<半導体電極作製工程(発電部形成工程)>
先ず、図3に示すように、PENフィルム、PETフィルム等からなり、ロール等で連続的に供給されるシート状の第1基板21の上面に、ITOやFTO等をスパッタリングすることにより複数の透明導電膜22を成膜する。この際、透明導電膜22は、平面視において、後に形成する対向導電膜25と互いに一部で対向し、且つ、直列接続可能部形成箇所33及び並列接続可能部形成箇所35を区画可能なパターンで一列またはマトリックス状に配置されるように形成する。
<Semiconductor electrode manufacturing process (power generation part forming process)>
First, as shown in FIG. 3, a plurality of transparent layers are formed by sputtering ITO, FTO, or the like on the upper surface of a sheet-like first substrate 21 that is made of a PEN film, a PET film, or the like and is continuously supplied by a roll or the like. A conductive film 22 is formed. At this time, the transparent conductive film 22 has a pattern in which the counter conductive film 25 to be formed later is partly opposed to each other in a plan view and the series connectable portion forming portion 33 and the parallel connectable portion forming portion 35 can be partitioned. And are arranged in a single row or matrix.

次に、直列接続可能部形成箇所33及び並列接続可能部形成箇所35以外の透明導電膜22の表面上にそれぞれ、半導体層23を形成する。半導体層23は、例えば低温焼成法またはエアロゾルデポジション法(以下、AD法という)によって形成することができる。低温焼成法は、焼成が可能なTiO等の含有ペーストをマスクや印刷法により透明導電膜22上に塗布し、TiO含有ペーストの溶媒が揮発する温度で加熱処理を行う方法である。AD法は、半導体層23の材料を粒体状にしてから音速で透明導電膜22に噴射する成膜方法である。AD法では、例えば、異なる粒径の半導体材料が透明導電膜22に噴射されるため、高品質な多孔質膜が形成される。半導体層23の形成工程においては、半導体層23の材料や厚み等を勘案して、適宜条件を設定すればよい。 Next, the semiconductor layer 23 is formed on the surface of the transparent conductive film 22 other than the serially connectable portion forming portion 33 and the parallel connectable portion forming portion 35. The semiconductor layer 23 can be formed by, for example, a low temperature baking method or an aerosol deposition method (hereinafter referred to as an AD method). The low-temperature firing method is a method in which a paste containing TiO 2 or the like that can be fired is applied on the transparent conductive film 22 by a mask or a printing method, and heat treatment is performed at a temperature at which the solvent of the TiO 2 -containing paste volatilizes. The AD method is a film forming method in which the material of the semiconductor layer 23 is formed into particles and then sprayed onto the transparent conductive film 22 at the speed of sound. In the AD method, for example, since semiconductor materials having different particle diameters are injected onto the transparent conductive film 22, a high-quality porous film is formed. In the process of forming the semiconductor layer 23, conditions may be set as appropriate in consideration of the material, thickness, and the like of the semiconductor layer 23.

半導体層23を形成した後、増感色素を溶剤に溶かした増感色素溶液に半導体層23を浸漬し、半導体層23に増感色素を担持させる。半導体層23に増感色素を担持させる方法は特に限定されないが、太陽電池10の製造方法では、増感色素溶液中に半導体層23を移動させながら連続的に投入・浸漬・引き上げを行う方法を用いることが好ましい。   After the semiconductor layer 23 is formed, the semiconductor layer 23 is immersed in a sensitizing dye solution in which a sensitizing dye is dissolved in a solvent, and the sensitizing dye is supported on the semiconductor layer 23. The method for supporting the sensitizing dye on the semiconductor layer 23 is not particularly limited. However, in the method for manufacturing the solar cell 10, a method in which the semiconductor layer 23 is continuously charged, immersed, and pulled up while the semiconductor layer 23 is moved into the sensitizing dye solution. It is preferable to use it.

<直列接続可能部形成第1工程(接続可能部形成工程)>
次に、透明導電膜22の直列接続可能部形成箇所33に、直列接続可能部41の下部41Bを形成する。下部41Bには、溶融等の処理により、後に形成する直列接続可能部41の上部41Aと接合され、透明導電膜22の直列接続可能部形成箇所33と、この透明導電膜22を含む太陽電池発電部Cに隣接する太陽電池発電部Cのうちいずれか1つの対向導電膜25の直列接続可能部形成箇所34と導通可能とする材質を用いる。太陽電池10の製造方法では、後の太陽電池10のモジュール化でレーザ照射により上部41Aと下部41Bとを導通させることを想定して、下部41Bにレーザ照射により溶融可能な金属を用いることとする。このような金属としては、高い導電率・比較的低い融点を有する観点から、例えば銀、ニッケル等、あるいはこれらの合金を用いることが好ましい。レーザ照射に使用するレーザは、COレーザ、YAGレーザ、YVOレーザ等であればよいが、特に限定されない。尚、下部41Bは、直列接続可能部形成箇所33の全体に形成してもよく、その一部の領域に形成してもよい。また、下部41Bの形状は、上部41Aと接合可能であれば、特に限定されない。
<First process for forming serially connectable part (process for forming connectable part)>
Next, the lower part 41 </ b> B of the serially connectable part 41 is formed at the serially connectable part forming portion 33 of the transparent conductive film 22. The lower part 41B is joined to the upper part 41A of the serially connectable part 41 to be formed later by a process such as melting, and the solar cell power generation including the serially connectable part forming part 33 of the transparent conductive film 22 and the transparent conductive film 22 The material which can conduct | electrically_connect with the serially connectable part formation location 34 of any one opposing electrically conductive film 25 among the solar cell electric power generation parts C adjacent to the part C is used. In the manufacturing method of the solar cell 10, assuming that the upper part 41 </ b> A and the lower part 41 </ b> B are electrically connected by laser irradiation in later modularization of the solar cell 10, a metal that can be melted by laser irradiation is used for the lower part 41 </ b> B. . As such a metal, it is preferable to use, for example, silver, nickel, or an alloy thereof from the viewpoint of having a high conductivity and a relatively low melting point. The laser used for laser irradiation may be a CO 2 laser, a YAG laser, a YVO 4 laser, or the like, but is not particularly limited. In addition, the lower part 41B may be formed in the whole serial connection part formation location 33, and may be formed in the one part area | region. The shape of the lower portion 41B is not particularly limited as long as it can be joined to the upper portion 41A.

以上の工程により、第1基板21に複数の透明導電膜22と、半導体層23と、直列接続可能部41の下部41Bが積層されてなるシート状の半導体電極24が得られる。   Through the above steps, a sheet-like semiconductor electrode 24 is obtained in which a plurality of transparent conductive films 22, a semiconductor layer 23, and a lower portion 41B of the serially connectable portion 41 are laminated on the first substrate 21.

<対極作製工程(発電部形成工程)>
次に、図4に示すように、PENフィルム、PETフィルム等からなり、ロール等で連続的に供給されるシート状の第2基板26の上面に、ITOやFTO等をスパッタリングすることにより複数の対向導電膜25を成膜する。この際、対向導電膜25は、平面視において、透明導電膜22と互いに一部で対向し、且つ、直列接続可能部形成箇所34及び並列接続可能部形成箇所36を区画可能なパターンで一列またはマトリックス状に配置されるように形成する。
<Counter electrode manufacturing process (power generation part forming process)>
Next, as shown in FIG. 4, a plurality of layers are formed by sputtering ITO, FTO, or the like on the upper surface of the sheet-like second substrate 26 that is made of a PEN film, a PET film, and the like and is continuously supplied by a roll or the like. A counter conductive film 25 is formed. At this time, the opposing conductive film 25 is partially aligned with the transparent conductive film 22 in a plan view, and is arranged in a row or in a pattern that can partition the serially connectable portion forming portion 34 and the parallel connectable portion forming portion 36. It is formed so as to be arranged in a matrix.

上記工程により、第2基板26に複数の対向導電膜25が設けられてなるシート状の対極27が得られる。尚、対極作製工程は、半導体電極作製工程及び直列接続可能部形成第1工程と並行して実施してもよい。これにより、太陽電池10の製造時間を短縮でき、生産性を向上できる。   Through the above process, a sheet-like counter electrode 27 in which a plurality of opposing conductive films 25 are provided on the second substrate 26 is obtained. In addition, you may implement a counter electrode manufacturing process in parallel with a semiconductor electrode manufacturing process and a serial connection possible part formation 1st process. Thereby, the manufacturing time of the solar cell 10 can be shortened, and productivity can be improved.

<太陽電池発電部作製工程(発電部形成工程)>
次に、透明導電膜22の外周に沿って半導体層23を囲繞するように第1基板21の透明導電膜22上に封止材29を設けるとともに、対向導電膜25の外周に沿って第2基板26の対向導電膜25上に封止材29を設ける。本工程では、透明導電膜22と対向導電膜25を次工程で貼り合わせる際に、透明導電膜22と対向導電膜25との間に所定の間隔を有し、各太陽電池発電部Cの透明導電膜22と対向導電膜25とが対向してなる内部空間Sが形成されるように適度な厚みのセパレータ28を配置する。セパレータ28は封止樹脂にスペーサーを混合してもよく、図6に図示の通り膜状のものを配置してもよい。また、後の工程で内部空間Sに電解液30を注入するため、内部空間Sと第1基板21及び第2基板26の周囲とを連通させる注液部(図示略)を設ける。
<Solar cell power generation part production process (power generation part formation process)>
Next, a sealing material 29 is provided on the transparent conductive film 22 of the first substrate 21 so as to surround the semiconductor layer 23 along the outer periphery of the transparent conductive film 22, and the second along the outer periphery of the counter conductive film 25. A sealing material 29 is provided on the counter conductive film 25 of the substrate 26. In this step, when the transparent conductive film 22 and the counter conductive film 25 are bonded together in the next step, there is a predetermined gap between the transparent conductive film 22 and the counter conductive film 25, and the transparent power generation unit C is transparent. A separator 28 having an appropriate thickness is disposed so that an internal space S is formed in which the conductive film 22 and the counter conductive film 25 face each other. The separator 28 may be a mixture of a sealing resin and a spacer, or a film-like material may be disposed as shown in FIG. In addition, in order to inject the electrolytic solution 30 into the internal space S in a later step, a liquid injection part (not shown) that connects the internal space S and the periphery of the first substrate 21 and the second substrate 26 is provided.

次に、透明導電膜22と対向導電膜25との間にセパレータ28を配し、半導体電極24と対極27との位置合わせを行う。この位置合わせとは、図5に示すように、隣接する太陽電池発電部Cのうち一方側の太陽電池発電部Cを構成する透明導電膜22の直列接続可能部形成箇所33と、他方側の太陽電池発電部Cを構成する対向導電膜25の直列接続可能部形成箇所34が、平面視において重なるとともに、透明導電膜22の並列接続可能部形成箇所35がいずれの対向導電膜25とも対向せず、且つ、対向導電膜25の並列接続可能部形成箇所36がいずれの透明導電膜22とも対向しないように、透明導電膜22と対向導電膜25の平面視での相対位置をずらすことをいう。尚、セパレータ28には、溶融した状態の封止材29や電解液30を通すための多数の孔部を有する材質を用いる。また、図5においては、セパレータ28及び封止材29の図示を省略する。   Next, a separator 28 is disposed between the transparent conductive film 22 and the counter conductive film 25 to align the semiconductor electrode 24 and the counter electrode 27. As shown in FIG. 5, this alignment refers to the serially connectable portion forming portion 33 of the transparent conductive film 22 constituting the solar cell power generation portion C on one side of the adjacent solar cell power generation portions C, and the other side. The serially connectable portion forming portion 34 of the counter conductive film 25 constituting the solar cell power generation unit C overlaps in plan view, and the parallel connectable portion forming portion 35 of the transparent conductive film 22 faces any counter conductive film 25. In addition, the relative positions of the transparent conductive film 22 and the counter conductive film 25 in a plan view are shifted so that the parallel-connectable portion forming portion 36 of the counter conductive film 25 does not oppose any transparent conductive film 22. . The separator 28 is made of a material having a large number of holes for allowing the molten sealing material 29 and the electrolyte 30 to pass therethrough. In FIG. 5, the illustration of the separator 28 and the sealing material 29 is omitted.

次に、図6に示すように、半導体電極24に設けられた封止材29と対極27に設けられた封止材29とによってセパレータ28を挟み込み、熱プレスを行う。この熱プレスによって、封止材29を溶融して封止材29をセパレータ28の孔内に浸透させるとともに、封止材29及びセパレータ28を融着させてセパレータ28を固定する。   Next, as shown in FIG. 6, the separator 28 is sandwiched between the sealing material 29 provided on the semiconductor electrode 24 and the sealing material 29 provided on the counter electrode 27, and hot pressing is performed. By this hot press, the sealing material 29 is melted to infiltrate the sealing material 29 into the holes of the separator 28, and the sealing material 29 and the separator 28 are fused to fix the separator 28.

続いて、予め形成しておいた注液部から内部空間Sに電解液30を注入し、注入口を封止する。これにより、半導体電極24と対極27が設けられてなる複数の太陽電池発電部Cが一列またはマトリックス状に配置された構造体が得られる。   Subsequently, the electrolytic solution 30 is injected into the internal space S from a previously formed liquid injection part, and the injection port is sealed. As a result, a structure is obtained in which a plurality of solar cell power generation units C each including the semiconductor electrode 24 and the counter electrode 27 are arranged in a line or matrix.

<直列接続可能部形成第2工程(接続可能部形成工程)>
次に、第2基板26の対向導電膜25が形成されている面とは反対側の面で、対向導電膜25の直列接続可能部形成箇所34と平面視で重なる位置に、直列接続可能部41の上部41Aを形成する。下部41Bと同様に、上部41Aには、溶融等の処理により、下部41Bと接合させ、対向導電膜25の直列接続可能部形成箇所34と、この対向導電膜25を含む太陽電池発電部Cに隣接する太陽電池発電部Cのうちいずれか1つの透明導電膜22の直列接続可能部形成箇所33と導通可能とする材質を用いる。
<Second step for forming serially connectable portion (process for forming connectable portion)>
Next, on the surface of the second substrate 26 opposite to the surface on which the opposing conductive film 25 is formed, the serially connectable portion is overlapped with the serially connectable portion forming portion 34 of the opposing conductive film 25 in a plan view. An upper portion 41A of 41 is formed. Similar to the lower part 41B, the upper part 41A is joined to the lower part 41B by a process such as melting, and the series connection possible part forming part 34 of the opposing conductive film 25 and the solar cell power generation part C including the opposing conductive film 25 are connected. The material which can conduct | electrically_connect with the serially connectable part formation location 33 of any one transparent conductive film 22 among the adjacent solar cell power generation parts C is used.

<並列接続可能部形成工程(接続可能部形成工程)>
次に、第2基板26の露出面上であって、平面視において隣接する太陽電池発電部Cの透明導電膜22の並列接続可能部形成箇所35間を跨ぐ位置に、並列接続可能部42を形成する。同じく、第2基板26の露出面上であって、平面視において隣接する太陽電池発電部Cの対向導電膜25の並列接続可能部形成箇所36間を跨ぐ位置に、並列接続可能部43を形成する。並列接続可能部42,43には、溶融等の処理により、隣接する太陽電池発電部Cの並列接続可能部形成箇所35間、並列接続可能部形成箇所36間をそれぞれ導通可能とする材質を用いる。
<Parallel connectable part forming process (connectable part forming process)>
Next, the parallel connectable portion 42 is located on the exposed surface of the second substrate 26 at a position straddling between the parallel connectable portion forming locations 35 of the transparent conductive film 22 of the adjacent solar cell power generation portion C in plan view. Form. Similarly, the parallel connectable portion 43 is formed on the exposed surface of the second substrate 26 at a position across the parallel connectable portion forming locations 36 of the opposing conductive film 25 of the adjacent solar cell power generation portion C in plan view. To do. For the parallel connectable portions 42 and 43, a material that enables conduction between the parallel connectable portion forming locations 35 and between the parallel connectable portion forming locations 36 of adjacent solar cell power generation units C by a process such as melting is used. .

太陽電池10の製造方法では、後の太陽電池10のモジュール化においてレーザ照射により直列接続可能部41の上部41Aと下部41B、隣接する並列接続可能部形成箇所35間、及び、隣接する並列接続可能部形成箇所36間とを導通させることを想定して、上部41A,下部41B,並列接続可能部42,43にレーザ照射により溶融可能な金属を用いることとする。尚、上部41A,下部41B,並列接続可能部42,43は、平面視において、各接続可能部形成箇所全体に形成してもよく、その一部に形成してもよい。また、これらの形状は、上部41Aと下部41B、隣接する並列接続可能部形成箇所35間、及び、隣接する並列接続可能部形成箇所36間を接続可能であれば、特に限定されない。   In the manufacturing method of the solar cell 10, the upper part 41 </ b> A and the lower part 41 </ b> B of the serially connectable part 41, the adjacent parallel connectable part forming points 35, and the adjacent parallel connection are possible by laser irradiation in the modularization of the solar battery 10 later Assuming that the portion forming portions 36 are electrically connected to each other, a metal that can be melted by laser irradiation is used for the upper portion 41A, the lower portion 41B, and the parallel connectable portions 42 and 43. Note that the upper portion 41A, the lower portion 41B, and the parallel connectable portions 42 and 43 may be formed on the entire connectable portion forming portion in a plan view, or may be formed on a part thereof. Further, these shapes are not particularly limited as long as the upper part 41A and the lower part 41B, the adjacent parallel connectable part forming places 35, and the adjacent parallel connectable part forming places 36 can be connected.

上記のようにレーザ照射により直列接続可能部41の上部41Aと下部41Bとを導通させる場合は、半導体電極24と対極27との間隔を勘案して、上部41Aは下部41Bよりも厚く、あるいは、広い面積で形成することが好ましい。これにより、上部41Aをレーザ照射により溶融させて、溶融した上部41Aの材質が下部41Bに接合するように流れ出しても第2基板26状の上部41Aが欠損する虞がない。   When the upper part 41A and the lower part 41B of the serially connectable part 41 are made conductive by laser irradiation as described above, the upper part 41A is thicker than the lower part 41B in consideration of the distance between the semiconductor electrode 24 and the counter electrode 27, or It is preferable to form with a wide area. Thereby, even if the upper part 41A is melted by laser irradiation and the melted material of the upper part 41A flows out so as to be joined to the lower part 41B, there is no possibility that the upper part 41A of the second substrate 26 shape is lost.

以上の工程により、半導体電極24と、対極27と、封止材29と、電解液30と、直列接続可能部41と、並列接続可能部42,43とを備えた太陽電池10が完成する。尚、上記説明した各工程は、太陽電池10の連続生産の効率向上のために必要に応じて順序を入れ替えて実施してもよい。   Through the above steps, the solar cell 10 including the semiconductor electrode 24, the counter electrode 27, the sealing material 29, the electrolytic solution 30, the serially connectable portion 41, and the parallel connectable portions 42 and 43 is completed. In addition, you may implement each process demonstrated above, changing order as needed for the efficiency improvement of the continuous production of the solar cell 10 as needed.

上述のように、本実施形態の太陽電池10は、一列またはマトリックス状に配置された複数の太陽電池発電部Cを有し、且つ、各太陽電池発電部Cに、隣接する太陽電池発電部Cとの間を直列接続可能とする直列接続可能部41と並列接続可能とする並列接続可能部42,43との双方を備えている。即ち、本実施形態の太陽電池10によれば、複数の太陽電池発電部Cを形成した後に、これらの太陽電池発電部Cを任意のパターンで直列・並列に接続可能な太陽電池モジュールの前駆体が提供される。   As described above, the solar cell 10 of the present embodiment has a plurality of solar cell power generation units C arranged in a row or matrix, and is adjacent to each solar cell power generation unit C. Are provided with both a serially connectable portion 41 that enables serial connection and parallel connectable portions 42 and 43 that allow parallel connection. That is, according to the solar cell 10 of this embodiment, after forming a plurality of solar cell power generation units C, a precursor of a solar cell module that can connect these solar cell power generation units C in series / parallel in an arbitrary pattern Is provided.

また、本実施形態の太陽電池10の製造方法によれば、大面積の太陽電池10をロール・ツー・ロール方式等で容易に連続生産することができる。また、太陽電池発電部Cの形成前または形成中に、複数の太陽電池発電部Cの直列・並列パターンを決めておく必要がないので、連続的に生産される太陽電池のモジュール化における直列・並列パターンの設計自由度が格段に拡がり、太陽電池モジュール用の太陽電池の連続的多種少量生産が容易になる。   Moreover, according to the manufacturing method of the solar cell 10 of this embodiment, the large-area solar cell 10 can be easily and continuously produced by a roll-to-roll method or the like. In addition, since it is not necessary to determine the series / parallel pattern of the plurality of solar cell power generation units C before or during the formation of the solar cell power generation unit C, the series / The design flexibility of the parallel pattern is greatly expanded, and continuous and small-scale production of solar cells for solar cell modules is facilitated.

(第2実施形態)
次いで、本発明の第2実施形態の太陽電池モジュールについて説明する。尚、図7に示す本実施形態の太陽電池モジュール11の構成要素において、図1〜6に示す第1実施形態の太陽電池10の構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
(Second Embodiment)
Next, the solar cell module according to the second embodiment of the present invention will be described. In addition, in the component of the solar cell module 11 of this embodiment shown in FIG. 7, the same code | symbol is attached | subjected about the component same as the component of the solar cell 10 of 1st Embodiment shown in FIGS. The description is omitted.

図7(a)に示すように、太陽電池モジュール11は、太陽電池10の構成要素のうち、直列接続可能部41を直列接続部51に置き換えてなるものである。即ち、太陽電池モジュール11は、太陽電池10の個々の直列接続可能部41における上部41Aと下部41Bとを接合することにより得られる太陽電池発電部Cの接続体である。   As shown in FIG. 7A, the solar cell module 11 is obtained by replacing the serially connectable portion 41 among the constituent elements of the solar cell 10 with a serial connection portion 51. That is, the solar cell module 11 is a connection body of the solar cell power generation unit C obtained by joining the upper portion 41A and the lower portion 41B in each serially connectable portion 41 of the solar cell 10.

直列接続部51は、図7(b)に示すように、複数の太陽電池発電部Cのうちの1つの太陽電池発電部Cの直列接続可能部41の下部41Bと、隣接する太陽電池発電部Cのいずれかの直列接続可能部41の上部41Aとを導電材料等を介して導通させたものである。これにより、個々の太陽電池発電部Cの透明導電膜22と、それぞれの太陽電池発電部Cに隣接する太陽電池発電部Cのうちいずれか1つの対向導電膜25とが直列接続されている。   As shown in FIG. 7 (b), the series connection unit 51 includes a lower part 41B of the series connectable unit 41 of one of the solar cell power generation units C and an adjacent solar cell power generation unit. The upper part 41A of any serially connectable part 41 of C is made conductive through a conductive material or the like. Thereby, the transparent conductive film 22 of each solar cell power generation part C and any one opposing conductive film 25 among the solar cell power generation parts C adjacent to each solar cell power generation part C are connected in series.

本実施形態の太陽電池モジュール11においては、直列接続可能部41における上部41Aと下部41Bとがレーザ照射により接合されている。即ち、直列接続部51は、直列接続可能部41の上部41Aにレーザが照射され、上部41Aのレーザ照射部分が溶融されて、溶融した上部41Aが第2基板26、対向導電膜25、封止材29を貫通して下部41Bに接合して一体化されたものである。   In the solar cell module 11 of this embodiment, the upper part 41A and the lower part 41B in the serially connectable part 41 are joined by laser irradiation. That is, in the serial connection unit 51, the upper part 41A of the serially connectable part 41 is irradiated with laser, the laser irradiation part of the upper part 41A is melted, and the molten upper part 41A is sealed with the second substrate 26, the counter conductive film 25, and the sealing. The material 29 is penetrated and joined to the lower portion 41B so as to be integrated.

続いて、本実施形態の太陽電池モジュール11の製造方法について説明する。
太陽電池モジュール11の製造方法は、太陽電池分割工程と、接続工程とを備えて構成されている。以下、各工程について説明する。
Then, the manufacturing method of the solar cell module 11 of this embodiment is demonstrated.
The manufacturing method of the solar cell module 11 includes a solar cell dividing step and a connecting step. Hereinafter, each step will be described.

<太陽電池分割工程>
先ず、太陽電池10を用意し、太陽電池モジュール11の面積を勘案し、必要に応じて2つ以上の太陽電池発電部を含むように太陽電池10を分割する。本実施形態では、ロール・ツー・ロール方式等により連続的に供給される太陽電池10を、搬送しながら任意の形状の太陽電池に分割する。尚、シート状の太陽電池10を分割することなくモジュール化する場合は、本工程を省略できる。
<Solar cell splitting process>
First, the solar cell 10 is prepared, the area of the solar cell module 11 is taken into consideration, and the solar cell 10 is divided so as to include two or more solar cell power generation units as necessary. In the present embodiment, the solar cell 10 continuously supplied by a roll-to-roll method or the like is divided into solar cells having an arbitrary shape while being conveyed. Note that this step can be omitted when the sheet-like solar cell 10 is modularized without being divided.

<接続工程>
次に、分割した太陽電池または太陽電池10における直列接続可能部41の上部41Aと対応する下部41Bとを接合する。太陽電池モジュール11の製造方法では、図8(a)に示すように、各直列接続可能部41の上部41Aの中央にレーザ照射を行う。これにより、上部41Aの中央部分が溶融する。図8(b)に示すように、溶融した上部41Cは、第2基板26、対向導電膜25、封止材29を貫通して下部41Bに接合する。本工程により、上部41A,41C及び下部41Bが一体化した直列接続部51が形成される。上部41Aへのレーザ照射の条件は、上部41A及び下部41Bの材質や太陽電池10の厚み等を勘案して、適宜設定すればよい。
<Connection process>
Next, the upper portion 41A of the serially connectable portion 41 in the divided solar cell or solar cell 10 and the corresponding lower portion 41B are joined. In the manufacturing method of the solar cell module 11, as shown in FIG. 8A, laser irradiation is performed on the center of the upper portion 41 </ b> A of each serially connectable portion 41. Thereby, the central portion of the upper portion 41A is melted. As shown in FIG. 8B, the melted upper portion 41C penetrates the second substrate 26, the opposing conductive film 25, and the sealing material 29 and is joined to the lower portion 41B. By this step, the series connection portion 51 in which the upper portions 41A and 41C and the lower portion 41B are integrated is formed. Conditions for laser irradiation to the upper portion 41A may be set as appropriate in consideration of the material of the upper portion 41A and the lower portion 41B, the thickness of the solar cell 10, and the like.

以上の工程により、複数の太陽電池発電部Cが直列接続された太陽電池モジュール11が完成する。尚、図7には、太陽電池10の長手方向に一列に形成された太陽電池発電部Cが直列接続されてなる太陽電池モジュール11の一部を例示しているが、直列接続する太陽電池発電部Cの数や配置は、特に限定されない。   Through the above steps, the solar cell module 11 in which a plurality of solar cell power generation units C are connected in series is completed. FIG. 7 illustrates a part of the solar cell module 11 in which the solar cell power generation units C formed in a line in the longitudinal direction of the solar cell 10 are connected in series. The number and arrangement of the parts C are not particularly limited.

上述のように、本実施形態の太陽電池モジュール11及びその製造方法によれば、レーザ照射等の連続生産に適した方法により、モジュール化前に予め形成されている太陽電池10の直列接続可能部41を接続して、複数の太陽電池発電部Cが直列接続されてなる太陽電池モジュール11を容易に実現できる。   As described above, according to the solar cell module 11 of the present embodiment and the manufacturing method thereof, the serially connectable portions of the solar cells 10 formed in advance before modularization by a method suitable for continuous production such as laser irradiation. 41 is connected, and the solar cell module 11 in which a plurality of solar cell power generation units C are connected in series can be easily realized.

(第3実施形態)
次いで、本発明の第3実施形態の太陽電池モジュールについて説明する。尚、図9に示す本実施形態の太陽電池モジュール12の構成要素において、図1〜6に示す第1実施形態の太陽電池10の構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
(Third embodiment)
Next, a solar cell module according to a third embodiment of the present invention will be described. In addition, in the component of the solar cell module 12 of this embodiment shown in FIG. 9, the same code | symbol is attached | subjected about the component same as the component of the solar cell 10 of 1st Embodiment shown in FIGS. The description is omitted.

図9(a)に示すように、太陽電池モジュール12は、太陽電池10の構成要素のうち、並列接続可能部42,43をそれぞれ、並列接続部52,53に置き換えてなるものである。即ち、太陽電池モジュール12は、太陽電池10の個々の並列接続可能部42,43において、平面視で重なる並列接続可能部形成箇所35の透明導電膜22,並列接続可能部形成箇所36の対向導電膜25をそれぞれ接合することにより得られる太陽電池発電部Cの接続体である。   As shown in FIG. 9A, the solar cell module 12 is obtained by replacing the parallel connectable portions 42 and 43 among the constituent elements of the solar cell 10 with parallel connection portions 52 and 53, respectively. That is, in the solar cell module 12, in the individual parallel connectable portions 42 and 43 of the solar cell 10, the transparent conductive film 22 of the parallel connectable portion forming portion 35 and the opposite conductive property of the parallel connectable portion forming portion 36 that overlap in plan view. It is the connection body of the solar cell power generation part C obtained by joining the film | membrane 25, respectively.

並列接続部52は、図9(b)に示すように、複数の太陽電池発電部Cの並列接続可能部42と、各並列接続可能部42と平面視で重なっている複数の並列接続可能部形成箇所35の透明導電膜22とを導電材料等を介して導通させたものである。これにより、個々の太陽電池発電部Cの透明導電膜22と、隣接する太陽電池発電部Cの透明導電膜22とが並列接続されている。   As shown in FIG. 9B, the parallel connection portion 52 includes a plurality of solar cell power generation units C that can be connected in parallel 42 and a plurality of parallel connection possible portions that overlap the respective parallel connection possible portions 42 in plan view. The transparent conductive film 22 of the formation location 35 is made conductive through a conductive material or the like. Thereby, the transparent conductive film 22 of each solar cell power generation part C and the transparent conductive film 22 of the adjacent solar cell power generation part C are connected in parallel.

並列接続部53は、図9(c)に示すように、複数の太陽電池発電部Cの並列接続可能部43と、各並列接続可能部43と平面視で重なっている複数の並列接続可能部形成箇所36の対向導電膜25とを導電材料等を介して導通させたものである。これにより、個々の太陽電池発電部Cの対向導電膜25と、隣接する太陽電池発電部Cの対向導電膜25とが並列接続されている。   As shown in FIG. 9C, the parallel connection portion 53 includes a plurality of parallel connectable portions 43 of the plurality of solar cell power generation units C and a plurality of parallel connectable portions overlapping each parallel connectable portion 43 in plan view. The opposite conductive film 25 at the formation location 36 is made conductive through a conductive material or the like. Thereby, the opposing conductive film 25 of each solar cell power generation part C and the opposing conductive film 25 of the adjacent solar cell power generation part C are connected in parallel.

本実施形態の太陽電池モジュール12において、並列接続部52は、平面視で並列接続可能部42と隣接する太陽電池発電部Cのうちの一方の並列接続可能部形成箇所35の透明導電膜22が重なる部分、及び、同じ並列接続可能部42と他方の並列接続可能部形成箇所35の透明導電膜22が重なる部分に個別にレーザが照射され、並列接続可能部42のレーザ照射部分が溶融されて、第2基板26、封止材29を貫通して各透明導電膜22に接合して一体化されたものである。また、並列接続部53は、並列接続部52の上記説明において、並列接続可能部形成箇所35及び透明導電膜22をそれぞれ、並列接続可能部形成箇所36及び対向導電膜25に置き換えたものである。   In the solar cell module 12 of the present embodiment, the parallel connection portion 52 includes the transparent conductive film 22 in one parallel connectable portion forming portion 35 of the solar cell power generation portions C adjacent to the parallel connectable portion 42 in plan view. The overlapping portion and the portion where the transparent conductive film 22 of the same parallel connectable portion 42 and the other parallel connectable portion forming portion 35 overlap are individually irradiated with laser, and the laser irradiated portion of the parallel connectable portion 42 is melted. The second substrate 26 and the sealing material 29 are penetrated and joined to each transparent conductive film 22 to be integrated. The parallel connection portion 53 is obtained by replacing the parallel connectable portion forming portion 35 and the transparent conductive film 22 with the parallel connectable portion forming portion 36 and the counter conductive film 25 in the above description of the parallel connection portion 52. .

続いて、本実施形態の太陽電池モジュール12の製造方法について説明する。
太陽電池モジュール12の製造方法は、太陽電池モジュール11の製造方法と同様に、太陽電池分割工程と、接続工程とを備えて構成されている。以下、各工程について説明する。
Then, the manufacturing method of the solar cell module 12 of this embodiment is demonstrated.
Similar to the method for manufacturing the solar cell module 11, the method for manufacturing the solar cell module 12 includes a solar cell dividing step and a connecting step. Hereinafter, each step will be described.

太陽電池モジュール12の製造方法における太陽電池分割工程は、太陽電池モジュール11の製造方法の太陽電池分割工程と同様であるため、その説明を省略する。   Since the solar cell dividing step in the method for manufacturing the solar cell module 12 is the same as the solar cell dividing step in the method for manufacturing the solar cell module 11, the description thereof is omitted.

<接続工程>
次に、分割した太陽電池または太陽電池10における個々の並列接続可能部42と同一の並列接続可能部42と平面視で重なり、且つ隣接する太陽電池発電部Cの透明導電膜22の並列接続可能部形成箇所35とを接合する。また、個々の並列接続可能部43と同一の並列接続可能部43と平面視で重なり、且つ隣接する太陽電池発電部Cの対向導電膜25の並列接続可能部形成箇所35とを接合する。
<Connection process>
Next, it is possible to connect the transparent conductive film 22 of the adjacent solar cell power generation unit C in parallel with the parallel connectable unit 42 which is the same as each parallel connectable unit 42 in the divided solar cell or solar cell 10 in plan view. The part formation location 35 is joined. Moreover, the parallel connection possible part 43 which overlaps with the parallel connection possible part 43 same as each parallel connection possible part 43 by planar view, and the parallel connection possible part formation location 35 of the opposing electrically conductive film 25 of the adjacent solar cell power generation part C is joined.

太陽電池モジュール12の製造方法では、図10(a)に示すように、各並列接続可能部42において、平面視で個々の並列接続可能部42と重なり、且つ、隣接する透明導電膜22の並列接続可能部形成箇所35に対応する少なくとも2箇所にレーザ照射を行う。これにより、並列接続可能部42のレーザ照射部分が溶融する。図10(b)に示すように、2箇所の溶融部42Cは、第2基板26、封止材29を貫通し、隣接する透明導電膜22の並列接続可能部形成箇所35にそれぞれ接合する。本工程により、並列接続部52が形成される。並列接続可能部42へのレーザ照射の条件は、並列接続可能部42の材質や太陽電池10の厚み等を勘案して適宜設定すればよい。   In the method for manufacturing the solar cell module 12, as shown in FIG. 10A, each parallel connectable portion 42 overlaps with each parallel connectable portion 42 in a plan view, and adjacent transparent conductive films 22 are parallel. Laser irradiation is performed on at least two locations corresponding to the connectable portion forming locations 35. Thereby, the laser irradiation part of the parallel connectable part 42 is melted. As shown in FIG. 10B, the two melting portions 42 </ b> C penetrate the second substrate 26 and the sealing material 29, and are respectively joined to the parallel connectable portion forming locations 35 of the adjacent transparent conductive films 22. By this step, the parallel connection portion 52 is formed. The conditions for laser irradiation on the parallel connectable portion 42 may be set as appropriate in consideration of the material of the parallel connectable portion 42, the thickness of the solar cell 10, and the like.

同様にして、各並列接続可能部43において、平面視で個々の並列接続可能部43と重なり、且つ、隣接する対向導電膜25の並列接続可能部形成箇所36に対応する少なくとも2箇所にレーザ照射を行う。これにより、並列接続可能部43のレーザ照射部分が溶融する。レーザ照射された2箇所の溶融部43C(図示略)は、第2基板26を貫通し、隣接する対向導電膜25の並列接続可能部形成箇所36にそれぞれ接合する。本工程により、並列接続部53が形成される。並列接続可能部43へのレーザ照射の条件は、並列接続可能部43の材質や太陽電池10の厚み等を勘案して適宜設定すればよく、太陽電池の厚み方向におけるレーザの照射領域は並列接続部52の形成時よりも浅くてよい。   Similarly, in each parallel connectable portion 43, laser irradiation is performed on at least two locations corresponding to the parallel connectable portion forming locations 36 of the adjacent conductive film 25 that overlap each parallel connectable portion 43 in plan view. I do. As a result, the laser irradiated portion of the parallel connectable portion 43 is melted. The two melted portions 43 </ b> C (not shown) irradiated with the laser penetrate the second substrate 26 and are respectively joined to the parallel connectable portion forming locations 36 of the adjacent conductive film 25. The parallel connection part 53 is formed by this process. Conditions for laser irradiation to the parallel connectable portion 43 may be appropriately set in consideration of the material of the parallel connectable portion 43, the thickness of the solar cell 10 and the like, and the laser irradiation region in the thickness direction of the solar cell is connected in parallel. It may be shallower than when the portion 52 is formed.

以上の工程により、複数の太陽電池発電部Cが並列接続された太陽電池モジュール12が完成する。尚、図9には、太陽電池10の長手方向に一列に形成された太陽電池発電部Cが並列接続されてなる太陽電池モジュール12の一部を例示しているが、並列接続する太陽電池発電部Cの数や配置は、特に限定されない。   Through the above steps, the solar cell module 12 in which a plurality of solar cell power generation units C are connected in parallel is completed. FIG. 9 illustrates a part of the solar cell module 12 in which the solar cell power generation units C formed in a row in the longitudinal direction of the solar cell 10 are connected in parallel. The number and arrangement of the parts C are not particularly limited.

上述のように、本実施形態の太陽電池モジュール12及びその製造方法によれば、レーザ照射等の連続生産に適した方法により、モジュール化前に予め形成されている太陽電池10の並列接続可能部42,43を接続して、複数の太陽電池発電部Cが並列接続されてなる太陽電池モジュール12を容易に実現できる。   As described above, according to the solar cell module 12 and the manufacturing method thereof of the present embodiment, the parallel connectable portion of the solar cell 10 formed in advance before modularization by a method suitable for continuous production such as laser irradiation. 42 and 43 can be connected and the solar cell module 12 by which the several solar cell power generation part C is connected in parallel is easily realizable.

(第4実施形態)
次いで、本発明の第4実施形態の太陽電池モジュールについて説明する。尚、図11及び図12に示す本実施形態の太陽電池モジュール13の構成要素において、図1〜6に示す第1実施形態の太陽電池10の構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
(Fourth embodiment)
Next, a solar cell module according to a fourth embodiment of the present invention will be described. In addition, in the component of the solar cell module 13 of this embodiment shown in FIG.11 and FIG.12, about the component same as the component of the solar cell 10 of 1st Embodiment shown in FIGS. The description is omitted.

図11に示すように、太陽電池モジュール13は、太陽電池10または太陽電池10の複数の太陽電池発電部Cのうち2つ以上の太陽電池発電部Cを含むように分割された太陽電池において、2つ以上の太陽電池発電部Cを選択的に直列接続あるいは並列接続してなるものである。図11及び図12には、4つの太陽電池発電部C〜Cのうち、太陽電池発電部Cと太陽電池発電部C、及び、太陽電池発電部Cと太陽電池発電部Cがそれぞれ並列接続されるとともに、太陽電池発電部Cと太陽電池発電部Cが直列接続されてなる、2直列×2並列の太陽電池モジュールを例示している。尚、太陽電池モジュール13において、直列接続される太陽電池発電部Cの数、及び、並列接続される太陽電池発電部Cの数は、特に限定されない。 As shown in FIG. 11, the solar cell module 13 is a solar cell divided so as to include two or more solar cell power generation units C among the solar cells 10 or a plurality of solar cell power generation units C of the solar cell 10. Two or more solar cell power generation units C are selectively connected in series or in parallel. 11 and 12, among the four solar cell power generation units C 1 to C 4 , the solar cell power generation unit C 1 and the solar cell power generation unit C 2 , and the solar cell power generation unit C 3 and the solar cell power generation unit C. 4 illustrates a 2 series × 2 parallel solar cell module in which 4 is connected in parallel, and a solar cell power generation unit C 2 and a solar cell power generation unit C 3 are connected in series. In the solar cell module 13, the number of solar cell power generation units C connected in series and the number of solar cell power generation units C connected in parallel are not particularly limited.

太陽電池モジュール13において、太陽電池発電部Cと太陽電池発電部Cとの間、及び、太陽電池発電部Cと太陽電池発電部Cとの間をそれぞれ並列接続する並列接続部52,53の構成は、第3実施形態の太陽電池モジュール12の並列接続部52,53と同一であるため、その説明を省略する。また、太陽電池発電部Cと太陽電池発電部Cとの間を直列接続する直列接続部51の構成は、第2実施形態の太陽電池モジュール11の直列接続部51と同一であるため、その説明を省略する。 In the solar cell module 13, between the solar cell power generation portion C 1 and the solar cell power generation portion C 2, and a parallel connection unit connected in parallel respectively between the solar cell power generation portion C 3 and the solar cell power generation portion C 4 52 , 53 are the same as the parallel connection parts 52, 53 of the solar cell module 12 of the third embodiment, and thus the description thereof is omitted. Further, since the space between the solar cell power generation portion C 2 and the solar cell power generation portion C 3 configuration of the series-connected portion 51 to be connected in series is the same as the series connection unit 51 of the solar cell module 11 of the second embodiment, The description is omitted.

続いて、本実施形態の太陽電池モジュール13の製造方法について説明する。
太陽電池モジュール13の製造方法は、太陽電池モジュール11,12の製造方法と同様に、太陽電池分割工程と、接続工程とを備えて構成されている。以下、各工程について説明する。
Then, the manufacturing method of the solar cell module 13 of this embodiment is demonstrated.
The manufacturing method of the solar cell module 13 includes a solar cell dividing step and a connecting step, similarly to the manufacturing method of the solar cell modules 11 and 12. Hereinafter, each step will be described.

太陽電池モジュール13の製造方法における太陽電池分割工程は、太陽電池モジュール11,12の製造方法の太陽電池分割工程と同様であるため、その説明を省略する。   Since the solar cell dividing step in the method for manufacturing the solar cell module 13 is the same as the solar cell dividing step in the method for manufacturing the solar cell modules 11 and 12, the description thereof is omitted.

<接続工程>
次に、分割した太陽電池または太陽電池10において、2直列×2並列の接続パターンで4つの太陽電池発電部C〜Cが接続されるように、太陽電池発電部Cと太陽電池発電部Cとの間の並列接続可能部42,43、及び、太陽電池発電部Cと太陽電池発電部Cとの間の並列接続可能部42,43をそれぞれ、レーザ照射により導通させる。これらの並列接続可能部42,43の接続工程は、第3実施形態の太陽電池モジュール12の製造方法における接続工程と同一であるため、その説明を省略する。
<Connection process>
Next, in the divided solar cell or solar cell 10, the solar cell power generation unit C 1 and the solar cell power generation are connected so that the four solar cell power generation units C 1 to C 4 are connected in a 2 series × 2 parallel connection pattern. parallel connectable portions 42, 43 between the parts C 2 and, respectively, parallel connectable portions 42, 43 between the solar cell power generation portion C 3 and the solar cell power generation portion C 4, thereby turning the laser irradiation. Since the connection process of these parallel connection possible parts 42 and 43 is the same as the connection process in the manufacturing method of the solar cell module 12 of 3rd Embodiment, the description is abbreviate | omitted.

続いて、太陽電池発電部Cと太陽電池発電部Cとの間の直列接続可能部41を導通させる。この直列接続可能部41の接続工程は、第2実施形態の太陽電池モジュール11の製造方法における接続工程と同一であるため、その説明を省略する。尚、本工程は上記の太陽電池発電部Cと太陽電池発電部Cとの間の並列接続可能部42,43、及び、太陽電池発電部Cと太陽電池発電部Cとの間の並列接続可能部42,43の接続と並行して行ってもよい。 Subsequently, to conduct a series connectable portion 41 between the solar cell power generation portion C 2 and the solar cell power generation portion C 3. Since the connection process of this serial connection possible part 41 is the same as the connection process in the manufacturing method of the solar cell module 11 of 2nd Embodiment, the description is abbreviate | omitted. Incidentally, during the present process is a parallel connectable portions 42, 43, and, a solar cell power generation portion C 3 and the solar cell power generation portion C 4 between the solar cell power generation portion C 1 and the solar cell power generation portion C 2 of the You may carry out in parallel with the connection of the parallel connection possible parts 42 and 43.

以上の工程により、複数の太陽電池発電部Cが直列・並列接続された太陽電池モジュール13が完成する。
上述のように、本実施形態の太陽電池モジュール13及びその製造方法によれば、レーザ照射等の連続生産に適した方法により、2つ以上の太陽電池発電部Cが所望のパターンで接続されるように、モジュール化前に予め形成されている太陽電池10の直列接続可能部41、及び、並列接続可能部42,43に選択的にレーザ照射を行い、直列接続可能部41、及び、並列接続可能部42,43を導通させることができる。従って、連続的に供給される複数の太陽電池発電部Cを、それらの太陽電池発電部Cの形成後に所望のパターンで容易に直列接続または並列接続できる。
Through the above steps, the solar cell module 13 in which a plurality of solar cell power generation units C are connected in series and in parallel is completed.
As described above, according to the solar cell module 13 and the manufacturing method thereof of the present embodiment, two or more solar cell power generation units C are connected in a desired pattern by a method suitable for continuous production such as laser irradiation. As described above, laser irradiation is selectively performed on the serially connectable portion 41 and the parallel connectable portions 42 and 43 of the solar cell 10 formed in advance before modularization, and the serially connectable portion 41 and the parallel connection are performed. The possible parts 42 and 43 can be made conductive. Therefore, a plurality of continuously supplied solar cell power generation units C can be easily connected in series or in parallel with a desired pattern after the solar cell power generation units C are formed.

(第5実施形態)
次いで、本発明の第5実施形態の太陽電池について説明する。尚、図13に示す本実施形態の太陽電池14の構成要素において、図1〜6に示す第1実施形態の太陽電池10の構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
(Fifth embodiment)
Next, a solar cell according to a fifth embodiment of the present invention will be described. In addition, in the component of the solar cell 14 of this embodiment shown in FIG. 13, about the component same as the component of the solar cell 10 of 1st Embodiment shown in FIGS. 1-6, the same code | symbol is attached | subjected, The description is omitted.

図13に示すように、太陽電池14は、太陽電池10の構成要素のうち、直列接続可能部41を直列接続可能部45に置き換えてなるものであって、直列接続可能部41以外は、太陽電池10の構成要素と同一の構成要素を備えている。即ち、太陽電池14は、太陽電池10において、平面視での直列接続可能部41の形状及び配置を変更したものである。また、直列接続可能部41の配置の変更に伴い、透明導電膜22及び対向導電膜25の平面視形状が変更されている。   As shown in FIG. 13, the solar cell 14 is obtained by replacing the serially connectable portion 41 among the constituent elements of the solar cell 10 with a serially connectable portion 45. The same components as those of the battery 10 are provided. That is, the solar cell 14 is obtained by changing the shape and arrangement of the serially connectable portion 41 in a plan view in the solar cell 10. Further, the plan view shapes of the transparent conductive film 22 and the counter conductive film 25 are changed with the change in the arrangement of the serially connectable portions 41.

図13(b)に示すように、太陽電池14において、透明導電膜22の直列接続可能部形成箇所33、及び、対向導電膜25の直列接続可能部形成箇所34は、隣接する太陽電池14の各太陽電池発電部Cに挟まれる領域に配置されている。また、直列接続可能部45は、平面視において、太陽電池14の長手方向に直交する方向に細長いパターンで設けられている。図13(a)の各太陽電池発電部Cから直列接続可能部45に向かう方向に図示されている矢印は、発電時の電流の流れを示しており、直列接続可能部45の面積が大きくなる程、太陽電池発電部Cにおける抵抗損失が小さくなる。   As shown in FIG. 13 (b), in the solar cell 14, the serially connectable portion forming portion 33 of the transparent conductive film 22 and the serially connectable portion forming portion 34 of the opposing conductive film 25 are adjacent to the adjacent solar cell 14. It arrange | positions in the area | region pinched | interposed into each solar cell power generation part C. FIG. Further, the serially connectable portion 45 is provided in an elongated pattern in a direction orthogonal to the longitudinal direction of the solar cell 14 in plan view. The arrows shown in the direction from each solar cell power generation unit C to the series connectable unit 45 in FIG. 13A indicate the flow of current during power generation, and the area of the series connectable unit 45 increases. As a result, the resistance loss in the solar cell power generation section C becomes smaller.

太陽電池14の製造方法は、太陽電池10の製造方法と同様であるため、その詳しい説明を省略する。尚、太陽電池14の製造方法における半導体電極作製工程では、直列接続可能部45の平面視形状及び配置に合わせた平面視形状及び配置で複数の透明導電膜22を形成し、対極作製工程では、直列接続可能部45の平面視形状及び配置に合わせた平面視形状及び配置で対向導電膜25を形成する。また、太陽電池発電部作製工程では、直列接続可能部45、透明導電膜22の直列接続可能部形成箇所33、及び、対向導電膜25の直列接続可能部形成箇所34の平面視形状及び配置に合わせた位置合わせを行う。   Since the manufacturing method of the solar cell 14 is the same as the manufacturing method of the solar cell 10, the detailed description is abbreviate | omitted. In addition, in the semiconductor electrode manufacturing process in the manufacturing method of the solar cell 14, the plurality of transparent conductive films 22 are formed in a planar view shape and arrangement that match the planar view shape and arrangement of the series connectable portion 45, and in the counter electrode manufacturing process, The opposing conductive film 25 is formed in a planar shape and arrangement that matches the planar shape and arrangement of the serially connectable portion 45. Further, in the solar cell power generation part manufacturing step, the shape and arrangement in plan view of the serially connectable part 45, the serially connectable part forming part 33 of the transparent conductive film 22, and the serially connectable part forming part 34 of the opposing conductive film 25 are used. Perform alignment.

上述のように、本実施形態の太陽電池14及びその製造方法によれば、直列接続可能部45の平面視における面積を大きくすることにより、太陽電池発電部Cの抵抗損失を縮小できる。これにより、低照度向けの太陽電池10に比べ、高照度向けの太陽電池を提供できる。   As described above, according to the solar cell 14 and the manufacturing method thereof of the present embodiment, the resistance loss of the solar cell power generation unit C can be reduced by increasing the area of the serially connectable portion 45 in plan view. Thereby, compared with the solar cell 10 for low illuminance, a solar cell for high illuminance can be provided.

また、本発明によれば、直列接続可能部及び並列接続可能部の形状や配置を変えることにより、太陽電池及び太陽電池モジュールの特性を容易に調整できる。   Moreover, according to this invention, the characteristic of a solar cell and a solar cell module can be easily adjusted by changing the shape and arrangement | positioning of a serially connectable part and a parallel connectable part.

以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications are possible within the scope of the gist of the present invention described in the claims. Deformation / change is possible.

尚、上記説明した本発明の太陽電池の作製と、それにより得られる太陽電池を用いた太陽電池モジュールの作製は、連続して行ってもよく、断続して行ってもよい。断続して行う場合には、例えば作製したシート状の太陽電池を巻き取り、一時的に保管しておき、必要に応じてシート状の太陽電池を分割してモジュール化できる。   The production of the solar cell of the present invention described above and the production of a solar cell module using the solar cell obtained thereby may be performed continuously or intermittently. When performing intermittently, for example, the produced sheet-like solar cell is wound up and temporarily stored, and the sheet-like solar cell can be divided into modules as necessary.

本発明は、太陽電池の分野で利用可能である。   The present invention can be used in the field of solar cells.

10,14…太陽電池、22…透明導電膜(第1電極)、23…半導体膜(第1電極)、25…対向導電膜(第2電極)、41…直列接続可能部、42,43…並列接続可能部、C…太陽電池発電部   DESCRIPTION OF SYMBOLS 10,14 ... Solar cell, 22 ... Transparent conductive film (1st electrode), 23 ... Semiconductor film (1st electrode), 25 ... Opposite conductive film (2nd electrode), 41 ... Series connection possible part, 42, 43 ... Parallel connectable part, C ... Solar power generation part

Claims (10)

それぞれに第1電極と第2電極が設けられてなる複数の太陽電池発電部が一列またはマトリックス状に配置されてなり、
隣接する前記太陽電池発電部のうち一方側の発電部の前記第1電極の直列接続可能部形成箇所と、他方側の発電部の第2電極の直列接続可能部形成箇所とが相互に重なるように配置され、且つ、前記一方側の発電部の第1電極の並列接続可能部形成箇所が前記他方の第2電極と対向しない位置に配置され、且つ、前記他方側の発電部の第2電極の並列接続可能部形成箇所が前記一方の第1電極と対向しない位置に配置されるように前記第1基板と前記第2基板とが間隔をあけて貼り合わされ、
前記第1電極と前記第2電極とが対向してなる内部空間に電解液が注入されており、
前記直列接続可能部形成箇所及び前記並列接続可能部形成箇所にそれぞれ、直列接続可能部と並列接続可能部が設けられてなる太陽電池。
A plurality of solar cell power generation units each provided with a first electrode and a second electrode are arranged in a row or matrix,
Of the adjacent solar cell power generation units, the portion where the first electrode of the power generation unit on one side can be connected in series with the portion where the second electrode of the power generation unit on the other side can be connected in series overlaps with each other. And the second electrode of the power generation unit on the other side is disposed at a position where the portion where the first electrode of the power generation unit on the one side can be connected in parallel is not opposed to the other second electrode. The first substrate and the second substrate are bonded to each other so that the parallel-connectable portion forming portion is disposed at a position not facing the one first electrode,
An electrolyte is injected into an internal space formed by the first electrode and the second electrode facing each other.
A solar cell in which a serially connectable part and a parallel connectable part are provided in the serially connectable part forming part and the parallel connectable part forming part, respectively.
前記第1及び第2の電極の前記直列接続可能部と、前記第1及び第2の電極の前記並列接続可能部に、レーザ照射により溶融可能な金属層が備えられている請求項1に記載の太陽電池。   The metal layer which can be melt | dissolved by laser irradiation is provided in the said serially connectable part of the said 1st and 2nd electrode, and the said parallel connectable part of the said 1st and 2nd electrode. Solar cells. 前記金属層が銀、ニッケルのうちの何れか1種または2種以上の合金からなる請求項1または請求項2に記載の太陽電池。   The solar cell according to claim 1, wherein the metal layer is made of one or more alloys of silver and nickel. 請求項1〜3のうち何れか1項の太陽電池から2つ以上の太陽電池発電部を含むように分割されてなり、
前記2つ以上の太陽電池発電部が所望のパターンで接続されるように、分割された前記太陽電池の各太陽電池発電部の前記直列接続可能部及び前記並列接続可能部が選択的に接続されてなる太陽電池モジュール。
It is divided | segmented so that two or more solar cell power generation parts may be included from the solar cell of any one of Claims 1-3,
The series connectable part and the parallel connectable part of each solar battery power generation part of the divided solar battery are selectively connected so that the two or more solar battery power generation parts are connected in a desired pattern. Solar cell module.
それぞれ第1電極と第2電極とを備えた複数の太陽電池発電部を一列またはマトリックス状に配設する発電部形成工程と、
隣接する前記太陽電池発電部のうち一方側の発電部の第1電極と他方側の発電部の第2電極の重なる部分を直列接続可能部形成箇所とし、
前記他方の第2電極と対向しない前記一方側の発電部の第1電極と、前記一方の第1電極と対向しない前記他方側の発電部の第2電極とを並列接続可能部形成箇所として、
前記直列接続可能部形成箇所及び前記並列接続可能部形成箇所にそれぞれ、直列接続可能部と並列接続可能部を形成する接続可能部形成工程と、
を有する太陽電池の製造方法。
A power generation unit forming step of arranging a plurality of solar cell power generation units each having a first electrode and a second electrode in a row or matrix;
Among the adjacent solar cell power generation units, the overlapping part of the first electrode of the power generation unit on one side and the second electrode of the power generation unit on the other side is set as a serially connectable part formation location,
The first electrode of the one power generation unit that does not face the other second electrode and the second electrode of the other power generation unit that does not face the one first electrode, can be connected in parallel.
A connectable part forming step of forming a serially connectable part and a parallel connectable part in the serially connectable part forming part and the parallel connectable part forming part,
The manufacturing method of the solar cell which has this.
前記発電部形成工程は、
第1基板上に、前記第1電極として複数の透明導電膜を一列またはマトリックス状に形成する工程と、
前記複数の透明導電膜の上にそれぞれ半導体層を形成する工程と、
第2基板上に、前記第2電極として複数の対向導電膜を一列またはマトリックス状に形成する工程と、
前記第1基板と前記第2基板とを間隔をあけて貼り合わせる工程と、
前記第1基板と前記第2基板とが対向してなる内部空間に電解液を注液した後に封止する工程と、
を有する請求項5に記載の太陽電池の製造方法。
The power generation part forming step includes:
Forming a plurality of transparent conductive films as a first electrode on the first substrate in a row or matrix;
Forming a semiconductor layer on each of the plurality of transparent conductive films;
Forming a plurality of opposing conductive films as a second electrode on the second substrate in a line or matrix;
Bonding the first substrate and the second substrate at an interval;
Sealing after injecting an electrolyte into an internal space formed by the first substrate and the second substrate facing each other;
The manufacturing method of the solar cell of Claim 5 which has these.
前記接続可能部形成工程は、
前記第1基板及び前記第2基板のそれぞれの前記直列接続可能部形成箇所及び前記並列接続可能部形成箇所に、レーザ照射により溶融可能な金属を配設する工程を有する請求項5または請求項6に記載の太陽電池の製造方法。
The connectable part forming step includes
7. The method according to claim 5, further comprising disposing a metal that can be melted by laser irradiation at each of the first substrate connection portion and the second substrate connection portion formation portion and the parallel connection portion formation portion. The manufacturing method of the solar cell of description.
前記金属として銀、ニッケルのうち何れか1種または2種以上の合金を用いる請求項7に記載の太陽電池の製造方法。  The method for manufacturing a solar cell according to claim 7, wherein one or more alloys of silver and nickel are used as the metal. 請求項5,6のうち何れか1項の太陽電池の製造方法により製造された太陽電池から2つ以上の太陽電池発電部を含むように太陽電池を分割する太陽電池分割工程と、
前記2つ以上の太陽電池発電部が所望のパターンで接続されるように、分割した前記太陽電池の各太陽電池発電部の前記直列接続可能部及び前記並列接続可能部を選択的に接続する接続工程と、
を有する太陽電池モジュールの製造方法。
A solar cell dividing step of dividing the solar cell so as to include two or more solar cell power generation units from the solar cell manufactured by the solar cell manufacturing method according to any one of claims 5 and 6;
Connection for selectively connecting the series connectable portion and the parallel connectable portion of each of the solar cell power generation units of the divided solar cells so that the two or more solar cell power generation units are connected in a desired pattern Process,
The manufacturing method of the solar cell module which has.
請求項7,8のうち何れか1項の太陽電池の製造方法により製造された太陽電池から2つ以上の太陽電池発電部を含むように太陽電池を分割する太陽電池分割工程と、
前記2つ以上の太陽電池発電部が所望のパターンで接続されるように、分割した前記太陽電池の各太陽電池発電部の前記直列接続可能部及び前記並列接続可能部に選択的にレーザ照射を行う接続工程と、
を有する太陽電池モジュールの製造方法。
A solar cell dividing step of dividing the solar cell so as to include two or more solar cell power generation units from the solar cell manufactured by the solar cell manufacturing method according to any one of claims 7 and 8,
Laser irradiation is selectively performed on the serially connectable portion and the parallel connectable portion of each of the solar cell power generation units of the divided solar cells so that the two or more solar cell power generation units are connected in a desired pattern. A connection process to be performed;
The manufacturing method of the solar cell module which has.
JP2012206502A 2012-09-20 2012-09-20 Solar cell, solar cell module, manufacturing method of solar cell and manufacturing method of solar cell module Pending JP2014063575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012206502A JP2014063575A (en) 2012-09-20 2012-09-20 Solar cell, solar cell module, manufacturing method of solar cell and manufacturing method of solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012206502A JP2014063575A (en) 2012-09-20 2012-09-20 Solar cell, solar cell module, manufacturing method of solar cell and manufacturing method of solar cell module

Publications (1)

Publication Number Publication Date
JP2014063575A true JP2014063575A (en) 2014-04-10

Family

ID=50618655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012206502A Pending JP2014063575A (en) 2012-09-20 2012-09-20 Solar cell, solar cell module, manufacturing method of solar cell and manufacturing method of solar cell module

Country Status (1)

Country Link
JP (1) JP2014063575A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243556A (en) * 2010-12-14 2011-12-01 Dainippon Printing Co Ltd Dye-sensitized-type solar cell device module
JP2012028314A (en) * 2010-07-19 2012-02-09 Samsung Sdi Co Ltd Photoelectric conversion module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028314A (en) * 2010-07-19 2012-02-09 Samsung Sdi Co Ltd Photoelectric conversion module
JP2011243556A (en) * 2010-12-14 2011-12-01 Dainippon Printing Co Ltd Dye-sensitized-type solar cell device module

Similar Documents

Publication Publication Date Title
JP5702897B2 (en) Electric module manufacturing method and electric module
TWI583009B (en) Electrical module
US20120180850A1 (en) Photoelectric conversion module and method of manufacturing the same
TW201618141A (en) Method for producing solar cell
JP6286110B2 (en) Electric module manufacturing method and electric module manufacturing apparatus
KR20160045621A (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP6918521B2 (en) Electric module and manufacturing method of electric module
JP2003331935A (en) Photoelectric conversion element
JP2014063575A (en) Solar cell, solar cell module, manufacturing method of solar cell and manufacturing method of solar cell module
JP5530372B2 (en) Manufacturing method of electric module
WO2017099217A1 (en) Electrical module and method for manufacturing same
JP5668040B2 (en) Dye-sensitized solar cell
JP6043166B2 (en) Electric module manufacturing method and electric module
JP5846984B2 (en) Electric module and method of manufacturing electric module
EP2359406B1 (en) Photovoltaic devices
JP5688344B2 (en) Electric module and method of manufacturing electric module
JP6166752B2 (en) Electric module manufacturing components
US20140076393A1 (en) Flexible solar cell and manufacturing method thereof
JP2013182737A (en) Method for manufacturing electric module
JP2012252842A (en) Method for manufacturing electric module, and electric module
JP2014072404A (en) Wiring board for solar cell, solar cell with wiring board using the same and method for manufacturing the same
JP2013073856A (en) Manufacturing method of electric module and electric module
KR101284808B1 (en) Manufacturing method for flexible solar cell
JP2013214373A (en) Electric module
JP2014072403A (en) Wiring board for solar cell, solar cell with wiring board using the same and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161129