WO2020050239A1 - Solar cell module and solar cell module with protective layer - Google Patents

Solar cell module and solar cell module with protective layer Download PDF

Info

Publication number
WO2020050239A1
WO2020050239A1 PCT/JP2019/034524 JP2019034524W WO2020050239A1 WO 2020050239 A1 WO2020050239 A1 WO 2020050239A1 JP 2019034524 W JP2019034524 W JP 2019034524W WO 2020050239 A1 WO2020050239 A1 WO 2020050239A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectrode
solar cell
electrode
counter electrode
electrode film
Prior art date
Application number
PCT/JP2019/034524
Other languages
French (fr)
Japanese (ja)
Inventor
壮一郎 鈴木
翔 辻村
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020541219A priority Critical patent/JPWO2020050239A1/en
Publication of WO2020050239A1 publication Critical patent/WO2020050239A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a solar cell module and a solar cell module with a protective layer.
  • Priority is claimed on Japanese Patent Application No. 2018-164576, filed Sep. 3, 2018, the content of which is incorporated herein by reference.
  • This solar cell module includes a first electrode, a second electrode, an electrolytic solution, a sealing material, a conductive material, and an insulating line.
  • a transparent conductive film is formed on the surface of the first substrate of the first electrode.
  • On the surface of the transparent conductive film a plurality of band-like semiconductor layers in which a dye extending in the first direction is adsorbed are formed.
  • An opposing conductive film is formed on the surface of the second base material so as to oppose the first electrode.
  • the electrolyte is sealed between the semiconductor layer of the first electrode and the second electrode.
  • the sealing material seals the electrolytic solution.
  • the sealing material arranges a plurality of cells divided in a second direction orthogonal to the first direction in plan view.
  • the conductive material is provided in a state covered by the sealing material.
  • the insulation line extends along the second direction with respect to the first electrode and the second electrode.
  • the plurality of cells arranged in the second direction are electrically connected by a series wiring.
  • a conductive material is disposed between the first insulating portion of the first base material disposed between the cells adjacent in the second direction and the second insulating portion of the second base material. Thereby, the first electrode and the second electrode of adjacent cells are electrically connected to each other. Thus, adjacent cells are connected.
  • the present invention has been made in view of the above circumstances, and has as its object to improve the amount of power generated per unit area.
  • the solar cell module according to one embodiment of the present invention, a photoelectrode and a counter electrode whose surfaces face each other at an interval, an electrolyte filled between the photoelectrode and the counter electrode, and the photoelectrode
  • a sealing material that seals the electrolytic solution between the counter electrode and forms a power generation unit
  • an extraction electrode unit provided on the photoelectrode or the counter electrode and electrically connected to the power generation unit
  • An extended electrode film that is electrically connected to the extraction electrode portion, is extended from the extraction electrode portion, and is disposed so as to cover at least a part of the back surface (the surface opposite to the photoelectrode) of the counter electrode.
  • electrically connected means that two or more members are physically connected to each other via a conductive member.
  • the extension electrode film includes an extraction electrode portion provided on the photoelectrode (hereinafter, may be referred to as a “photoelectrode-side extraction electrode portion”) and an extraction electrode portion provided on the counter electrode (hereinafter, referred to as “the extraction electrode portion”). May be referred to as “a counter electrode side extraction electrode portion”.), But it is more preferable to provide both of the electrode portions. However, when the extension electrode films are provided on both the photoelectrode-side extraction electrode portion and the counter electrode-side extraction electrode portion, the extension electrode films are prevented from contacting each other.
  • the extension electrode film extends from the extraction electrode portion to the back surface of the counter electrode instead of the back surface of the photoelectrode. Therefore, for example, even if a large area of the extension electrode film is secured, there is no influence when light enters from the back surface of the photoelectrode. Therefore, a large area of the extension electrode film can be secured without lowering the power generation amount. Thereby, even if the area occupied by the extraction electrode portion in the photoelectrode and the counter electrode is small, the power generated by the power generation unit can be reliably extracted through the extension electrode film.
  • the extraction electrode unit itself does not contribute to the power generation itself by the power generation unit, and the smaller the area of the extraction electrode unit, the higher the amount of power generation per unit area of the solar cell module. Therefore, by providing the extension electrode film and reducing the area of the extraction electrode portion as described above, the amount of power generation per unit area of the solar cell module can be improved.
  • the extension electrode film can be firmly adhered to the back surface of the counter electrode.
  • the electrical connection between the extraction electrode portion and the extension electrode film can be stabilized, and the performance reliability of the solar cell module can be improved.
  • the back surface of the counter electrode can be protected by the extension electrode film. Therefore, for example, the durability of the solar cell module can be improved.
  • the photoelectrode includes a transparent electrode film and a semiconductor layer in which a dye is adsorbed and stacked on the transparent electrode film, and in a plan view of the photoelectrode, the extension electrode film is at least one of the semiconductor layers. It may be partially overlapped.
  • the extension electrode film overlaps at least a part of the semiconductor layer. Therefore, when the photoelectrode is viewed from the back surface, the extension electrode film is disposed behind the semiconductor layer.
  • the extension electrode film is formed of a metal foil and the extension electrode film has a metallic luster, it is difficult to visually recognize scratches and uneven color of the semiconductor layer based on light reflected from the extension electrode film. Can be.
  • the extension electrode film does not have a metallic luster, for example, when the extension electrode film has a light-shielding property such as black, or when the extension electrode film has the same color as the dye of the semiconductor layer, etc. Can similarly make it difficult to visually recognize scratches and uneven color on the semiconductor layer.
  • the extension electrode film is commonly located behind the extraction electrode portion and the semiconductor layer, the background of the extraction electrode portion and the semiconductor layer can be set to a common background. it can. As a result, for example, the appearance (aesthetics) of the solar cell module can be improved.
  • the plurality of semiconductor layers are arranged at intervals in a first direction, the sealing material is arranged between the semiconductor layers adjacent in the first direction, and the power generation unit is arranged in the first direction.
  • the power generation units adjacent in the first direction are electrically connected to each other (that is, adjacent cells are electrically connected to each other), and the extraction electrode unit is It may be provided at an end of the photoelectrode or the counter electrode in the first direction.
  • the extension electrode film is provided on both the photoelectrode-side extraction electrode portion and the counter electrode-side extraction electrode portion, the photoelectrode-side extraction electrode portion and the counter electrode-side extraction electrode portion are respectively connected in the first direction.
  • it is provided at an end on a different side.
  • the photoelectrode and the counter electrode each include a base material and a transparent electrode film laminated on the surface of the base material, and the extraction electrode portion includes a transparent electrode film of the photo electrode or a counter electrode of the counter electrode.
  • the extension electrode film may be provided on the transparent electrode film and may extend from the extraction electrode portion to the back surface of the base material of the counter electrode.
  • a solar cell module with a protective layer includes the solar cell module and a protective layer that protects the solar cell module.
  • the semiconductor device may further include a lead-out line electrically connected to the extension electrode film through an opening formed in the protective layer.
  • the extraction wiring is connected to the extension electrode film.
  • the extraction wiring is connected to the extension electrode film by, for example, solder or the like, heat is applied to the extension electrode film.
  • the area of the extension electrode film is small, the amount of heat to be borne per unit area of the extension electrode film increases, and the heat may damage (dissolve) the extension electrode film, the counter electrode, and the photoelectrode.
  • the solar cell module with a protective layer a large area of the extended electrode film can be secured by extending the extended electrode film to the back surface of the counter electrode as described above.
  • the extraction wiring is connected to the extension electrode film by solder, the amount of heat to be borne per unit area of the extension electrode film can be suppressed.
  • damage to the extension electrode film and the like can be suppressed.
  • the extraction wiring is connected to the extension electrode film through the opening formed in the protective layer.
  • the area of the extension electrode film is small, it is necessary to combine the protective layer with the solar cell module in a state where the opening is accurately positioned with respect to the extension electrode film. That is, in this case, when the protective layer is combined with the solar cell module, even if the protective layer is slightly displaced with respect to the solar cell module, the opening is arranged on a member different from the extension electrode film, resulting in a defective product, and Yield may decrease.
  • the opening can be located on the extension electrode film even if the position of the opening is slightly shifted from the target position. As a result, the yield of products can be improved.
  • the amount of power generation per unit area can be improved.
  • FIG. 1 is a plan view of a dye-sensitized solar cell with a protective layer according to one embodiment of the present invention, as viewed from the counter electrode side, and is a diagram showing a state where the dye-sensitized solar cell has passed through a moisture-proof layer.
  • FIG. 2 is a schematic cross-sectional view corresponding to the cross-sectional view taken along the line II-II shown in FIG. 1 and is a side view of the dye-sensitized solar cell.
  • FIG. 2 is a plan view of a dye-sensitized solar cell constituting the dye-sensitized solar cell with a protective layer shown in FIG.
  • FIG. 4 is a sectional view taken along the line IV-IV shown in FIG. 3.
  • FIG. 2 is an enlarged plan view of a main part of the dye-sensitized solar cell with a protective layer shown in FIG. 1. It is a dye-sensitized solar cell with a protective layer according to a first modification of one embodiment of the present invention, and is an enlarged plan view of a main part corresponding to FIG. It is a dye-sensitized solar cell with a protective layer according to a second modified example of one embodiment of the present invention, and is an enlarged plan view of a main part corresponding to FIG.
  • the solar cell module to which the present invention is applied is not limited to a dye-sensitized solar cell.
  • the present invention includes all solar cell modules other than the dye-sensitized solar cell as long as the two electrodes subjected to the insulation treatment are bonded together with a sealing material interposed therebetween.
  • the solar cell module according to the present invention is manufactured using the above-described roll-to-roll method, that is, continuously manufactured while transporting the base material in a predetermined direction. It is not limited to what is done.
  • the present invention also includes, for example, one in which a cell structure is formed for each base material that has been cut in advance.
  • a dye-sensitized solar cell with a protective layer (a solar cell module with a protective layer) 1 of the present embodiment to which the present invention is applied is a dye-sensitized solar cell (a solar cell module) 10, a protective layer 2 for protecting the dye-sensitized solar cell 10, and a lead-out wiring 3 electrically connected to an extension electrode film 72 described later through an opening 2a formed in the protective layer 2.
  • a set of extension electrode films 72 is provided, one of which is extended from the photoelectrode-side extraction electrode portion, and the other is extended from the counter electrode-side extraction electrode portion.
  • Both of them may be extended from the extraction electrode 71 on the photoelectrode 41 side or the extraction electrode 71 on the counter electrode 42 side, or one may be extended from the extraction electrode 71 on the photoelectrode 41 side, and the other may be extended from the extraction electrode 71 on the photoelectrode 41 side. It may be extended from the extraction electrode section 71 on the counter electrode 42 side.
  • the dye-sensitized solar cell 10 includes a photoelectrode 41, a counter electrode 42, a power generation unit 44, a sealing material 46, And a material 48.
  • the surfaces of the photoelectrode 41 and the counter electrode 42 face each other with an interval.
  • the direction in which the photoelectrode 41 and the counter electrode 42 face each other is referred to as a stacking direction D3 (third direction).
  • the photoelectrode 41 includes a photoelectrode support 21 (base material), a photoelectrode conductive layer 31 (transparent electrode film) provided on the surface 21a of the photoelectrode support 21, and a photoelectrode conductive layer 31 on which a dye is adsorbed. And a plurality of inorganic semiconductor layers 12 (semiconductor layers) intermittently stacked.
  • the photoelectrode support 21 is a member that serves as a base for the photoelectrode conductive layer 31, the inorganic semiconductor layer 12, the sealing material 46, and the conductive material 48.
  • the material of the photoelectrode support 21 is flexible enough to be applicable to continuous production of solar cells using a roll-to-roll method, and can be formed into a large-area film shape. If so, there is no particular limitation.
  • Examples of the material of the photoelectrode support 21 include transparent resin materials such as polyethylene terephthalate (PET), acrylic, polycarbonate, polyethylene naphthalate (PEN), and polyimide.
  • the photoelectrode support 21 is formed in a rectangular shape.
  • the directions in which the sides of the photoelectrode support 21 extend in the plan view are referred to as a D1 direction (first direction) and a D2 direction (second direction).
  • the direction D1 and the direction D2 are orthogonal to each other.
  • the photoelectrode conductive layer 31 is formed over the entire surface 21a of the photoelectrode support 21 (that is, the surface of the photoelectrode support 21 on the side of the counter electrode 42) in the D1 direction.
  • the photoelectrode conductive layer 31 is laminated on the entire surface of the surface 21 a of the photoelectrode support 21.
  • Examples of the material of the photoelectrode conductive layer 31 include tin oxide (ITO) and zinc oxide.
  • ITO tin oxide
  • the photoelectrode support 21 and the photoelectrode conductive layer 31 are both transparent, and transmit light incident from the back surface of the photoelectrode support 21.
  • the inorganic semiconductor layer 12 is formed on the surface of the photoelectrode conductive layer 31 (that is, the surface of the photoelectrode conductive layer 31 on the side of the counter electrode 42). In other words, a plurality of inorganic semiconductor layers 12 are arranged at intervals in the D1 direction. Each inorganic semiconductor layer 12 is formed in a band shape extending in the direction D2.
  • the inorganic semiconductor layer 12 is, for example, a porous layer dyed by carrying a sensitizing dye on a metal oxide or the like, and has a function of receiving and transporting electrons from the sensitizing dye.
  • a metal oxide examples include titanium oxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ).
  • the above-mentioned sensitizing dye is composed of an organic dye or a metal complex dye.
  • the organic dye include various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene.
  • the metal complex dye include a ruthenium complex and the like.
  • the counter electrode 42 is provided on the counter electrode support 22 (base material) facing the photoelectrode support 21 and on the surface 22a of the counter electrode support 22 (the surface of the counter electrode support 22 on the photoelectrode 41 side). And a counter electrode conductive layer 32 (transparent electrode film).
  • the counter electrode support 22 is a member serving as a base of the counter electrode conductive layer 32.
  • the material of the counter electrode support 22 is flexible enough to be applicable to continuous production of solar cells using a roll-to-roll method, The material is not particularly limited as long as it can be formed into a large-area film.
  • Examples of the material of the counter electrode support 22 include the same resin material as that of the photoelectrode support 21.
  • the counter electrode conductive layer 32 is formed over the entire surface 22a of the counter electrode support 22 in the direction D1.
  • the counter electrode conductive layer 32 is stacked on the surface 22 a of the counter electrode support 22.
  • Examples of the material of the counter electrode conductive layer 32 include the same compounds as those of the photoelectrode conductive layer 31.
  • the power generation unit 44 is sandwiched between the photoelectrode 41 and the counter electrode 42 in the thickness direction (stacking direction D3) of the photoelectrode 41 and the counter electrode 42, and is in the plane direction of the photoelectrode 41 and the counter electrode 42 (in FIG. Are provided at intervals along the direction D1 shown in FIG.
  • the power generation unit 44 includes the above-described inorganic semiconductor layer 12 and the charge transfer body (electrolyte solution, electrolyte) 14.
  • the charge carrier 14 is filled between the photoelectrode 41 and the counter electrode 42.
  • the charge carrier 14 is filled so as to be in contact with the inorganic semiconductor layer 12.
  • a solution in which a supporting component such as lithium iodide and a supporting electrolyte such as lithium iodide are mixed with a liquid component such as an ionic liquid such as acetonitrile, dimethylpropyl imidazolium iodide or butyl methyl imidazolium iodide Specific examples include non-aqueous solvents such as propionitrile).
  • the sealing material 46 seals the charge moving body 14 between the photoelectrode 41 and the counter electrode 42 to form the power generation unit 44.
  • the sealing member 46 seals the power generation section 44 including the charge moving body 14 together with the seal section 60 shown in FIG.
  • the sealing members 46 are provided on both sides of the power generation unit 44 along the direction D1 shown in FIGS.
  • the sealing material 46 is provided adjacent to the power generation unit 44 in the direction D1.
  • the sealing material 46 is arranged between the inorganic semiconductor layers 12 adjacent in the D1 direction.
  • the sealing member 46 has a plurality of power generation sections 44 formed along the direction D1. Note that a pair of sealing materials 46 are arranged between the power generation units 44 adjacent in the D1 direction.
  • the sealing material 46 further includes a resin or the like for bonding the photoelectrode 41 and the counter electrode 42 and bonding them together.
  • the material of the sealing material 46 include a resin material containing at least one of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin.
  • a conducting member 48 is provided between a pair of sealing members 46 arranged between the power generation units 44 adjacent to each other in the D1 direction.
  • the conductive material 48 electrically connects the power generating units 44 including the inorganic semiconductor layer 12 and the charge transfer body 14 (that is, adjacent cells) to conduct.
  • the material of the conductive member 48 is not particularly limited as long as it is a conductive material. Examples of the material include a known conductive material, conductive paste, or a mixture of conductive fine particles and an adhesive. In the illustrated example, as an example of the conductive material 48, a conductive paste obtained by mixing an appropriate amount of the conductive particles 36 with an adhesive 38 such as an epoxy resin or a phenol resin is employed. This configuration is preferable because the conductive material 48 can be easily cut when the dye-sensitized solar cell 10 is cut out in a desired pattern.
  • a binder made of the same material as the sealing material 46 may be used for the conductive material 48.
  • the photoelectrode conductive layer 31 and the counter electrode conductive layer 32 are provided with a first insulating portion 50A and a second insulating portion 50B, respectively.
  • the first insulating portion 50A and the second insulating portion 50B are provided at portions overlapping the sealing material 46 of the photoelectrode conductive layer 31 and the counter electrode conductive layer 32 in a cross section orthogonal to the direction D1 shown in FIG. I have.
  • the first insulating part 50A and the second insulating part 50B may be hollow, and a part of the sealing material 46 may flow into the first insulating part 50A and the second insulating part 50B.
  • the first insulating portion 50A and the second insulating portion 50B are provided in a belt shape long in the direction D2 in plan view.
  • the photoelectrode conductive layer 31 of the photoelectrode 41 is provided with a first insulating portion 50A.
  • the counter electrode conductive layer 32 of the counter electrode 42 is provided with a second insulating portion 50B.
  • the first insulating portion 50A and the second insulating portion 50B penetrate the photoelectrode conductive layer 31 or the counter electrode conductive layer 32 in the thickness direction.
  • the first insulating portion 50A divides (electrically blocks) the photoelectrode conductive layer 31 in the direction D1.
  • the second insulating portion 50B divides (electrically cuts off) the counter electrode conductive layer 32 in the direction D1.
  • the conductive material 48 electrically connects the photoelectrode 41 in one cell and the counter electrode 42 in a cell adjacent to the cell in the stacking direction D3.
  • the first insulating part 50A and the second insulating part 50B locally insulate the photoelectrode 41 and the counter electrode 42 in the direction D1.
  • the power generation units 44 adjacent in the D1 direction are electrically connected to each other in series (that is, cells adjacent to each other are electrically connected in series).
  • the dye-sensitized solar cell 10 is provided with a seal portion 60 (fused portion, ultrasonic fused portion).
  • the seal portion 60 is provided at a predetermined position in the direction D2 of the dye-sensitized solar cell 10.
  • the photoelectrode 41 and the counter electrode 42 are bonded to each other over the entire length of the dye-sensitized solar cell 10 in the D1 direction.
  • the seal portion 60 is a portion that is electrically insulated by pressing the photoelectrode support 21 and the counter electrode support 22 together.
  • the photoelectrode support 21 and the counter electrode support 22 are, for example, from the outside in the thickness direction (stacking direction D3) of the photoelectrode 41 and the counter electrode 42 (that is, from above and below the dye-sensitized solar cell 10).
  • the photoelectrode conductive layer 31, the counter electrode conductive layer 32, the inorganic semiconductor layer 12, and the charge transfer body 14 are interposed between the pressed electrode support 21 and the counter electrode support 22 with a small thickness. You may have. However, since these layers are substantially separated from each other in the seal portion 60, the power generation portions 44 adjacent to the seal portion 60 are not electrically connected to each other.
  • the photoelectrode 41 is provided with an extraction electrode portion 71.
  • the extraction electrode unit 71 is electrically connected to the power generation unit 44.
  • the extraction electrode unit 71 extracts the electric power generated by the power generation unit 44.
  • the extraction electrode unit 71 is provided at an end of the photoelectrode 41 in the D1 direction.
  • the extraction electrode portion 71 is formed by exposing the photoelectrode conductive layer 31 to the counter electrode 42 side along the stacking direction D3.
  • the photoelectrode 41 is larger in the D1 direction than the counter electrode 42, and the end of the photoelectrode 41 projects in the D1 direction with respect to the counter electrode 42.
  • the photoelectrode conductive layer 31 forms the extraction electrode portion 71.
  • the extraction electrode portion 71 is longer in the direction D2 than in the direction D1.
  • the extension electrode film 72 is electrically connected to the extraction electrode portion 71.
  • the extension electrode film 72 is formed of, for example, a metal foil (for example, a copper tape having an adhesive layer formed on a surface of a copper foil). As shown in FIG. 4, the extension electrode film 72 extends from the extraction electrode portion 71 to the back surface of the counter electrode 42 (the back surface 22b of the counter electrode support 22). The extension electrode film 72 is adhered to the back surface 22 b of the counter electrode support 22.
  • the extension electrode film 72 overlaps at least a part of the plurality of inorganic semiconductor layers 12.
  • the extension electrode film 72 overlaps only the inorganic semiconductor layer 12 located at the end in the D1 direction among the plurality of inorganic semiconductor layers 12 arranged in the D1 direction.
  • the pair of extension electrode films 72 are symmetrically arranged in the direction D1.
  • the length L in the D1 direction of the one extension electrode film 72 on the back surface of the counter electrode 42 (in other words, the portion of the counter electrode 42 covered by the one extension electrode film 72 in the D1 direction)
  • the length L) is, for example, not less than 3 mm and not more than 300 mm.
  • the ratio L / L0 of the length L to the length L0 in the D1 direction of the entire counter electrode 42 is, for example, 0.5% or more and 49.8% or less.
  • the length L1 in the direction D2 of the one extension electrode film 72 on the back surface of the counter electrode 42 (in other words, the portion of the counter electrode 42 covered by the one extension electrode film 72 in the direction D2).
  • the length L1) is preferably equal to the length L3 of the counter electrode 42 in the direction D2, but is not limited thereto.
  • the ratio L1 / L3 of the length L1 to the length L3 in the D2 direction of the counter electrode 42 is preferably, for example, 5% or more and 100% or less, and more preferably 15% or more and 100% or less.
  • the ratio of the area covered by the extension electrode film 72 to the total area of the back surface of the counter electrode 42 is preferably 3% or more, It is more preferably at least 15%, particularly preferably at least 50%.
  • the ratio of the area is equal to or more than the lower limit, the power generation amount per unit area of the dye-sensitized solar cell can be more remarkably improved. Further, the performance reliability and aesthetic appearance of the dye-sensitized solar cell can be improved.
  • the upper limit of the area ratio is not particularly limited as long as the extension electrode films 72 can be prevented from contacting (short circuiting) with each other, and may be less than 100%, but is preferably 95% or less. In the present invention, the area occupied by the extraction electrode portion 71 in the photoelectrode and the counter electrode can be reduced.
  • the area of the surface facing the opposing electrode of each of the extraction electrode portions 71 is 0.6 cm 2 or less. It is preferably 40 cm 2 , more preferably 0.6 cm 2 to 15 cm 2 , even more preferably 0.6 cm 2 to 2 cm 2 .
  • the protective layer 2 seals the dye-sensitized solar cell 10.
  • the protective layer 2 includes a photoelectrode-side moisture-proof film 81 and a counter electrode-side moisture-proof film 82 that sandwich the dye-sensitized solar cell 10 in the stacking direction D3.
  • the photoelectrode-side moisture-proof film 81 has high translucency.
  • the photoelectrode-side moisture-proof film 81 includes a photoelectrode-side barrier layer 83 and a photoelectrode-side adhesive layer 84.
  • the photoelectrode-side barrier layer 83 may be, for example, a film in which a resin substrate is provided with a barrier property.
  • the opposing electrode side moisture-proof film 82 includes an opposing electrode side barrier layer 85 and an opposing electrode side adhesive layer 86.
  • the counter electrode side barrier layer 85 may be a metal foil such as aluminum or a composite film of aluminum and polyethylene terephthalate.
  • the counter electrode side moisture-proof film 82 has an opening 2a for exposing the extension electrode film 72 to the outside.
  • the opening 2a has a rectangular shape extending in the directions D1 and D2 in plan view.
  • the opening 2 a is disposed in the opposing electrode-side moisture-proof film 82 at a position overlapping the extension electrode film 72 in plan view.
  • the opening 2a penetrates the opposing electrode side moisture-proof film 82 in the laminating direction D3.
  • the extraction wiring 3 is connected to the extension electrode film 72 from the outside through the opening 2a.
  • the extraction wiring 3 includes a covering portion 3a.
  • a connection portion 3b from which the covering portion 3a has been peeled off is formed at the leading end of the extraction wiring 3.
  • the connection portion 3b is connected to the extension electrode film 72 by, for example, soldering.
  • the extraction wiring 3 extends from the opening 2a in the direction D2, but the present invention is not limited to this.
  • the extraction wiring 3 may extend in the direction D2 from the opening 2a.
  • the power generation unit 44 extends from the back surface of the photoelectrode 41 (the back surface 21b of the photoelectrode support 21) as shown in FIG. Light is incident on the power generation unit 44, and the power generation unit 44 generates power. The power generated by the power generation unit 44 is extracted through the extraction electrode unit 71 and the extension electrode film 72.
  • the extension electrode film 72 extends from the extraction electrode portion 71 to the back surface of the counter electrode 42 instead of the back surface of the photoelectrode 41. Therefore, for example, even if a large area of the extension electrode film 72 is secured, no influence occurs when light enters from the back surface of the photoelectrode 41. Therefore, a large area of the extension electrode film 72 can be secured without reducing the power generation amount. Thereby, even if the occupied area of the extraction electrode 71 in the photoelectrode 41 and the counter electrode 42 is small, the electric power generated by the power generation unit 44 can be reliably extracted through the extension electrode film 72.
  • the extraction electrode unit 71 itself does not contribute to the power generation itself by the power generation unit 44, and the smaller the area of the extraction electrode unit 71, the more the power generation per unit area of the dye-sensitized solar cell 10 can be improved. Therefore, by providing the extension electrode film 72 and reducing the area of the extraction electrode portion 71 as described above, the amount of power generation per unit area of the dye-sensitized solar cell 10 can be improved.
  • the extension electrode film 72 can be firmly adhered to the back surface of the counter electrode 42. Thereby, for example, the electrical connection between the extraction electrode unit 71 and the extension electrode film 72 can be stabilized, and the performance reliability of the dye-sensitized solar cell 10 can be improved.
  • the back surface of the counter electrode 42 can be protected by the extension electrode film 72. Thereby, for example, the durability of the dye-sensitized solar cell 10 can be improved.
  • the extension electrode film 72 overlaps at least a part of the plurality of inorganic semiconductor layers 12. Therefore, when the photoelectrode 41 is viewed from the back surface, the extension electrode film 72 is disposed behind the inorganic semiconductor layer 12.
  • the inorganic semiconductor layer is formed based on light reflected from the extension electrode film 72 and the like. Twelve scratches and uneven color can be made hard to visually recognize.
  • the extension electrode film 72 does not have metallic luster, for example, the extension electrode film 72 is black or the like and has a light-shielding property, or the extension electrode film 72 has the same color as the dye of the inorganic semiconductor layer 12. In such a case, it is also possible to make it difficult to visually recognize the scratches and uneven color of the inorganic semiconductor layer 12.
  • the extension electrode film 72 is located in common behind the extraction electrode portion 71 and the inorganic semiconductor layer 12.
  • the appearance (aesthetics) of the dye-sensitized solar cell 10 can be improved.
  • the extraction wiring 3 is connected to the extension electrode film 72.
  • the extraction wiring 3 is connected to the extension electrode film 72 by, for example, solder or the like, heat is applied to the extension electrode film 72.
  • the area of the extension electrode film 72 is small, the amount of heat to be borne per unit area of the extension electrode film 72 increases, and the heat may damage (dissolve) the extension electrode film 72, the counter electrode 42, and the photoelectrode 41. is there.
  • the extension electrode film 72 is extended to the back surface of the counter electrode 42 as described above, so that a large area of the extension electrode film 72 can be secured. Accordingly, even when the extraction wiring 3 is connected to the extension electrode film 72 by solder, the amount of heat to be borne per unit area of the extension electrode film 72 can be suppressed. As a result, damage to the extension electrode film 72 and the like can be suppressed.
  • the extraction wiring 3 is connected to the extension electrode film 72 through the opening 2a formed in the protective layer 2.
  • the area of the extension electrode film 72 is small, it is necessary to combine the protective layer 2 with the dye-sensitized solar cell 10 in a state where the opening 2a is accurately positioned with respect to the extension electrode film 72. That is, in this case, when the protective layer 2 is combined with the dye-sensitized solar cell 10 and the protective layer 2 is slightly displaced with respect to the dye-sensitized solar cell 10, the opening 2 a is There is a possibility that a defective product is placed on a different member and the product yield is reduced.
  • the extension electrode film 72 is extended to the back surface of the counter electrode 42 as described above, so that a large area of the extension electrode film 72 can be secured. Therefore, when the protective layer 2 is combined with the dye-sensitized solar cell 10, even if the position of the opening 2a is slightly shifted from the target position, the opening 2a can be positioned on the extension electrode film 72. As a result, the yield of products can be improved.
  • the opening 2a may be formed in a circular shape (a perfect circular shape) in plan view.
  • the extraction wiring 3 may extend from the opening 2a in any of the D1 direction and the D2 direction.
  • the extended electrode film 72 may be arranged over the plurality of inorganic semiconductor layers 12 as in the dye-sensitized solar cell with a protective layer 1C of the third modification shown in FIG. In the dye-sensitized solar cell with a protective layer 1C shown in FIG. 8, the extension electrode film 72 covers all the inorganic semiconductor layers 12 in the stacking direction D3.
  • the extraction electrode 71 may be provided on the counter electrode 42.
  • the extension electrode film 72 is folded in the stacking direction D3, and sandwiches the counter electrode 42 in the stacking direction D3.
  • the extraction electrode portion 71 is formed by exposing the counter electrode conductive layer 32 to the photoelectrode 41 side along the stacking direction D3.
  • the extension electrode film 72 extends from the extraction electrode portion 71 to the back surface of the counter electrode 42 (the back surface 22b of the counter electrode support 22).
  • the extension electrode film 72 is adhered to the back surface 22 b of the counter electrode support 22.
  • one of the pair of extraction electrode portions 71 may be provided on the photoelectrode 41, and the other may be provided on the counter electrode 42. Further, both of the pair of extraction electrode portions 71 may be provided on the counter electrode 42.
  • the power generation units 44 adjacent to each other in the D1 direction may be electrically connected in parallel to each other (that is, adjacent to each other). May be electrically connected in parallel.)
  • the power generating units 44 adjacent in the D1 direction are electrically connected in parallel to each other.
  • the dye-sensitized solar cell 10 may have a configuration including only one power generation unit 44 (a so-called single cell type). Further, the dye-sensitized solar cell 10 may not have the protective layer 2 and the lead-out wiring 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar cell module (10) according to the present invention is provided with: a photoelectrode (41) and a counter electrode (42), the surfaces of which face each other at a distance; an electrolyte solution (14) which is filled into the space between the photoelectrode (41) and the counter electrode (42); a sealing material (46) which forms a power generation part (44) by sealing the electrolyte solution (14) between the photoelectrode (41) and the counter electrode (42); an extraction electrode part (71) which is provided in the photoelectrode (41) or the counter electrode (42), while being electrically connected to the power generation part (44); and an extended electrode film (72) which is electrically connected to the extraction electrode part (71) and is extended from the extraction electrode part (71) so as to cover at least a part of the back surface of the counter electrode (42).

Description

太陽電池モジュールおよび保護層付き太陽電池モジュールSolar cell module and solar cell module with protective layer
 本発明は、太陽電池モジュールおよび保護層付き太陽電池モジュールに関する。
 本願は、2018年9月3日に、日本に出願された特願2018-164576号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a solar cell module and a solar cell module with a protective layer.
Priority is claimed on Japanese Patent Application No. 2018-164576, filed Sep. 3, 2018, the content of which is incorporated herein by reference.
 従来から、下記特許文献1に記載の太陽電池モジュールが知られている。この太陽電池モジュールは、第一電極と、第二電極と、電解液と、封止材と、導通材と、絶縁ラインと、を備えている。第一電極の第一基材の表面には、透明導電膜が成膜されている。透明導電膜の表面には、第一の方向に延在する色素が吸着した帯状の半導体層が複数形成されている。第二基材の表面には、第一電極に対向するように対向導電膜が成膜されている。電解液は、第一電極の半導体層と第二電極との間に封止されている。封止材は、電解液を封止する。封止材は、平面視で第一の方向に直交する第二の方向に分割された複数のセルを配列する。導通材は、封止材に覆われた状態で設けられている。絶縁ラインは、第一電極及び第二電極に対して第二の方向に沿って延在する。第二の方向に配列される複数のセルは、直列配線により電気的に接続されている。第二の方向に隣り合うセル同士の間に配置された第一基材の第一絶縁部と、第二基材の第二絶縁部と、の間には、導通材が配置されていることにより、隣り合うセル同士の第一電極と第二電極とが電気的に接続される。これにより、隣り合うセル同士が接続されている。 (2) Conventionally, a solar cell module described in Patent Document 1 below has been known. This solar cell module includes a first electrode, a second electrode, an electrolytic solution, a sealing material, a conductive material, and an insulating line. A transparent conductive film is formed on the surface of the first substrate of the first electrode. On the surface of the transparent conductive film, a plurality of band-like semiconductor layers in which a dye extending in the first direction is adsorbed are formed. An opposing conductive film is formed on the surface of the second base material so as to oppose the first electrode. The electrolyte is sealed between the semiconductor layer of the first electrode and the second electrode. The sealing material seals the electrolytic solution. The sealing material arranges a plurality of cells divided in a second direction orthogonal to the first direction in plan view. The conductive material is provided in a state covered by the sealing material. The insulation line extends along the second direction with respect to the first electrode and the second electrode. The plurality of cells arranged in the second direction are electrically connected by a series wiring. Between the first insulating portion of the first base material disposed between the cells adjacent in the second direction and the second insulating portion of the second base material, a conductive material is disposed. Thereby, the first electrode and the second electrode of adjacent cells are electrically connected to each other. Thus, adjacent cells are connected.
特開2018-82137号公報JP, 2018-82137, A
 前記従来の太陽電池モジュールでは、単位面積当たりの発電量を向上させることについて改善の余地がある。 で は In the conventional solar cell module, there is room for improvement in improving the amount of power generation per unit area.
 本発明は、前述した事情に鑑みてなされたものであって、単位面積当たりの発電量を向上させることを目的とする。 The present invention has been made in view of the above circumstances, and has as its object to improve the amount of power generated per unit area.
 前記課題を解決するために、本発明は以下の手段を提案している。
 本発明の一態様に係る太陽電池モジュールは、表面同士が間隔をあけて対向する光電極および対向電極と、前記光電極と前記対向電極との間に充填される電解液と、前記光電極と前記対向電極との間に前記電解液を封止して発電部を形成する封止材と、前記光電極または前記対向電極に設けられ前記発電部に電気的に接続された取り出し電極部と、前記取り出し電極部に電気的に接続され、前記取り出し電極部から延長され前記対向電極の裏面(光電極と反対側の面)の少なくとも1部を覆うように配置された延長電極膜と、を備えている。
 なお、本明細書において、「電気的に接続」するとは、導電性部材を介して2以上の部材を互いに物理的に接続することをいう。
In order to solve the above problems, the present invention proposes the following means.
The solar cell module according to one embodiment of the present invention, a photoelectrode and a counter electrode whose surfaces face each other at an interval, an electrolyte filled between the photoelectrode and the counter electrode, and the photoelectrode A sealing material that seals the electrolytic solution between the counter electrode and forms a power generation unit, and an extraction electrode unit provided on the photoelectrode or the counter electrode and electrically connected to the power generation unit, An extended electrode film that is electrically connected to the extraction electrode portion, is extended from the extraction electrode portion, and is disposed so as to cover at least a part of the back surface (the surface opposite to the photoelectrode) of the counter electrode. ing.
In this specification, “electrically connected” means that two or more members are physically connected to each other via a conductive member.
 光電極の裏面(対向電極と反対側の面)から発電部に光が入射し、発電部が発電する。発電部が発電した電力は、取り出し電極部および延長電極膜を通して取り出される。
 なお、延長電極膜は、前記光電極に設けられた取り出し電極部(以下、「光電極側取り出し電極部」と称することがある。)および前記対向電極に設けられた取り出し電極部(以下、「対向極側取り出し電極部」と称することがある。)のいずれか一方に設けても良いが、前記電極部の両方に設けることがより好ましい。ただし、光電極側取り出し電極部および対向極側取り出し電極部の両方に延長電極膜を設ける場合は、延長電極膜同士が接触しないようにする。
Light enters the power generation unit from the back surface of the photoelectrode (the surface opposite to the counter electrode), and the power generation unit generates power. The power generated by the power generation unit is extracted through the extraction electrode unit and the extension electrode film.
The extension electrode film includes an extraction electrode portion provided on the photoelectrode (hereinafter, may be referred to as a “photoelectrode-side extraction electrode portion”) and an extraction electrode portion provided on the counter electrode (hereinafter, referred to as “the extraction electrode portion”). May be referred to as “a counter electrode side extraction electrode portion”.), But it is more preferable to provide both of the electrode portions. However, when the extension electrode films are provided on both the photoelectrode-side extraction electrode portion and the counter electrode-side extraction electrode portion, the extension electrode films are prevented from contacting each other.
 延長電極膜が、取り出し電極部から、光電極の裏面ではなく対向電極の裏面に延長されている。したがって、例えば、延長電極膜の面積を大きく確保しても、光が光電極の裏面から入射するときに影響が生じることがない。よって、発電量を低下させることなく、延長電極膜の面積を大きく確保することができる。これにより、光電極や対向電極における取り出し電極部の占有面積が小さくても、発電部が発電した電力を、延長電極膜を通して確実に取り出すことができる。取り出し電極部そのものは、発電部による発電自体には寄与せず、取り出し電極部の面積が小さいほど、太陽電池モジュールの単位面積当たりの発電量を向上させることができる。よって、前述のように延長電極膜を設けて取り出し電極部の面積を小さくすることで、太陽電池モジュールの単位面積当たりの発電量を向上させることができる。 The extension electrode film extends from the extraction electrode portion to the back surface of the counter electrode instead of the back surface of the photoelectrode. Therefore, for example, even if a large area of the extension electrode film is secured, there is no influence when light enters from the back surface of the photoelectrode. Therefore, a large area of the extension electrode film can be secured without lowering the power generation amount. Thereby, even if the area occupied by the extraction electrode portion in the photoelectrode and the counter electrode is small, the power generated by the power generation unit can be reliably extracted through the extension electrode film. The extraction electrode unit itself does not contribute to the power generation itself by the power generation unit, and the smaller the area of the extraction electrode unit, the higher the amount of power generation per unit area of the solar cell module. Therefore, by providing the extension electrode film and reducing the area of the extraction electrode portion as described above, the amount of power generation per unit area of the solar cell module can be improved.
 しかも、延長電極膜の面積を大きく確保することで、例えば、延長電極膜を対向電極の裏面に強固に接着させること等ができる。これにより、例えば、取り出し電極部と延長電極膜との電気的な接続を安定させ、太陽電池モジュールの性能信頼性を向上させることができる。 In addition, by ensuring a large area of the extension electrode film, for example, the extension electrode film can be firmly adhered to the back surface of the counter electrode. Thereby, for example, the electrical connection between the extraction electrode portion and the extension electrode film can be stabilized, and the performance reliability of the solar cell module can be improved.
 さらに、延長電極膜の面積を大きく確保することで、対向電極の裏面を延長電極膜によって保護することができる。これにより、例えば、太陽電池モジュールの耐久性を向上させることもできる。 Furthermore, by ensuring a large area of the extension electrode film, the back surface of the counter electrode can be protected by the extension electrode film. Thereby, for example, the durability of the solar cell module can be improved.
 前記光電極は、透明電極膜と、色素が吸着され前記透明電極膜に積層された半導体層と、を備え、前記光電極の平面視において、前記延長電極膜は、前記半導体層のうちの少なくとも一部に重なっていてもよい。 The photoelectrode includes a transparent electrode film and a semiconductor layer in which a dye is adsorbed and stacked on the transparent electrode film, and in a plan view of the photoelectrode, the extension electrode film is at least one of the semiconductor layers. It may be partially overlapped.
 光電極の平面視において、延長電極膜が、半導体層のうちの少なくとも一部に重なっている。したがって、光電極を裏面から見たときに、半導体層の後側に延長電極膜が配置される。例えば、延長電極膜が金属箔により形成され、延長電極膜が金属光沢性を有する場合には、延長電極膜からの反射光などに基づいて、半導体層の傷や色むらを視認させ難くすることができる。なお、延長電極膜が金属光沢性を有さないものの、例えば、延長電極膜が黒色などで遮光性を有していたり、延長電極膜が半導体層の色素と同色系であったりする場合などには、半導体層の傷や色むらを同様に視認させ難くすることができる。 (4) In a plan view of the photoelectrode, the extension electrode film overlaps at least a part of the semiconductor layer. Therefore, when the photoelectrode is viewed from the back surface, the extension electrode film is disposed behind the semiconductor layer. For example, when the extension electrode film is formed of a metal foil and the extension electrode film has a metallic luster, it is difficult to visually recognize scratches and uneven color of the semiconductor layer based on light reflected from the extension electrode film. Can be. Although the extension electrode film does not have a metallic luster, for example, when the extension electrode film has a light-shielding property such as black, or when the extension electrode film has the same color as the dye of the semiconductor layer, etc. Can similarly make it difficult to visually recognize scratches and uneven color on the semiconductor layer.
 また、光電極を裏面から見たときに、取り出し電極部および半導体層の後側に共通して延長電極膜が位置することから、取り出し電極部および半導体層の背景を共通の背景にすることができる。その結果、例えば、太陽電池モジュールの外観性(美観性)を向上させることもできる。 Further, when the photoelectrode is viewed from the back surface, since the extension electrode film is commonly located behind the extraction electrode portion and the semiconductor layer, the background of the extraction electrode portion and the semiconductor layer can be set to a common background. it can. As a result, for example, the appearance (aesthetics) of the solar cell module can be improved.
 前記半導体層は、第1の方向に間隔をあけて複数配置され、前記封止材は、前記第1の方向に隣り合う前記半導体層の間に配置され、前記発電部を前記第1の方向に沿って複数形成し、前記第1の方向に隣り合う前記発電部は、互いに電気的に接続され(即ち、隣接するセル同士が、互いに電気的に接続され)、前記取り出し電極部は、前記光電極または前記対向電極における前記第1の方向の端部に設けられていてもよい。
 この場合、光電極側取り出し電極部と対向極側取り出し電極部の両方に延長電極膜を設ける場合は、光電極側取り出し電極部と対向極側取り出し電極部とを、それぞれ前記第1の方向の異なる側の端部に設けることが好ましい。
The plurality of semiconductor layers are arranged at intervals in a first direction, the sealing material is arranged between the semiconductor layers adjacent in the first direction, and the power generation unit is arranged in the first direction. And the power generation units adjacent in the first direction are electrically connected to each other (that is, adjacent cells are electrically connected to each other), and the extraction electrode unit is It may be provided at an end of the photoelectrode or the counter electrode in the first direction.
In this case, when the extension electrode film is provided on both the photoelectrode-side extraction electrode portion and the counter electrode-side extraction electrode portion, the photoelectrode-side extraction electrode portion and the counter electrode-side extraction electrode portion are respectively connected in the first direction. Preferably, it is provided at an end on a different side.
 前記光電極および前記対向電極はそれぞれ、基材と、前記基材の表面に積層された透明電極膜と、を備え、前記取り出し電極部は、前記光電極の前記透明電極膜または前記対向電極の前記透明電極膜に設けられ、前記延長電極膜は、前記取り出し電極部から前記対向電極の前記基材の裏面に延長されていてもよい。 The photoelectrode and the counter electrode each include a base material and a transparent electrode film laminated on the surface of the base material, and the extraction electrode portion includes a transparent electrode film of the photo electrode or a counter electrode of the counter electrode. The extension electrode film may be provided on the transparent electrode film and may extend from the extraction electrode portion to the back surface of the base material of the counter electrode.
 本発明の一態様に係る保護層付き太陽電池モジュールは、前記太陽電池モジュールと、前記太陽電池モジュールを保護する保護層と、を備えている。 太陽 A solar cell module with a protective layer according to one embodiment of the present invention includes the solar cell module and a protective layer that protects the solar cell module.
 前記保護層に形成された開口を通して前記延長電極膜に電気的に接続された取り出し配線を更に備えていてもよい。 (4) The semiconductor device may further include a lead-out line electrically connected to the extension electrode film through an opening formed in the protective layer.
 取り出し配線が延長電極膜に接続されている。取り出し配線を、例えば、はんだ等によって延長電極膜に接続する場合、延長電極膜に熱が加えられる。延長電極膜の面積が小さい場合、延長電極膜の単位面積あたりで負担すべき熱量が多くなり、前記熱によって延長電極膜や対向電極、光電極が損傷(溶解)するおそれがある。 (4) The extraction wiring is connected to the extension electrode film. When the extraction wiring is connected to the extension electrode film by, for example, solder or the like, heat is applied to the extension electrode film. When the area of the extension electrode film is small, the amount of heat to be borne per unit area of the extension electrode film increases, and the heat may damage (dissolve) the extension electrode film, the counter electrode, and the photoelectrode.
 しかしながら、この保護層付き太陽電池モジュールでは、前述のように延長電極膜が対向電極の裏面に延長されることにより、延長電極膜の面積を大きく確保することができる。これにより、取り出し配線をはんだによって延長電極膜に接続する場合であっても、延長電極膜の単位面積あたりで負担すべき熱量を低く抑えることができる。その結果、延長電極膜などの損傷を抑制することができる。 However, in the solar cell module with a protective layer, a large area of the extended electrode film can be secured by extending the extended electrode film to the back surface of the counter electrode as described above. Thus, even when the extraction wiring is connected to the extension electrode film by solder, the amount of heat to be borne per unit area of the extension electrode film can be suppressed. As a result, damage to the extension electrode film and the like can be suppressed.
 取り出し配線が、保護層に形成された開口を通して延長電極膜に接続されている。延長電極膜の面積が小さい場合、開口を延長電極膜に対して精度よく位置合わせした状態で、保護層を太陽電池モジュールに組み合わせる必要が生じる。すなわちこの場合、保護層を太陽電池モジュールに組み合わせるときに、保護層が太陽電池モジュールに対してわずかでも位置ずれすると、開口が延長電極膜とは異なる部材上に配置されて不良品となり、製品の歩留まりが低下するおそれがある。 (4) The extraction wiring is connected to the extension electrode film through the opening formed in the protective layer. When the area of the extension electrode film is small, it is necessary to combine the protective layer with the solar cell module in a state where the opening is accurately positioned with respect to the extension electrode film. That is, in this case, when the protective layer is combined with the solar cell module, even if the protective layer is slightly displaced with respect to the solar cell module, the opening is arranged on a member different from the extension electrode film, resulting in a defective product, and Yield may decrease.
 しかしながら、この保護層付き太陽電池モジュールでは、前述のように延長電極膜が対向電極の裏面に延長されることにより、延長電極膜の面積を大きく確保することができる。したがって、保護層を太陽電池モジュールに組み合わせるときに、開口の位置が狙いの位置に対して多少ずれたとしても、開口を延長電極膜上に位置させることができる。これにより、製品の歩留まりを向上させることができる。 However, in the solar cell module with a protective layer, a large area of the extended electrode film can be secured by extending the extended electrode film to the back surface of the counter electrode as described above. Therefore, when the protective layer is combined with the solar cell module, the opening can be located on the extension electrode film even if the position of the opening is slightly shifted from the target position. As a result, the yield of products can be improved.
 本発明によれば、単位面積当たりの発電量を向上させることができる。 According to the present invention, the amount of power generation per unit area can be improved.
本発明の一実施形態に係る保護層付き色素増感型太陽電池を対向電極側から見た平面図であって、防湿層を透過した状態を示す図である。1 is a plan view of a dye-sensitized solar cell with a protective layer according to one embodiment of the present invention, as viewed from the counter electrode side, and is a diagram showing a state where the dye-sensitized solar cell has passed through a moisture-proof layer. 図1に示すII-II矢視断面図に相当する模式的な断面図であって、色素増感型太陽電池を側面視した図である。FIG. 2 is a schematic cross-sectional view corresponding to the cross-sectional view taken along the line II-II shown in FIG. 1 and is a side view of the dye-sensitized solar cell. 図1に示す保護層付き色素増感型太陽電池を構成する色素増感型太陽電池を対向電極側から見た平面図であって、延長電極膜を透過した状態を示す図である。FIG. 2 is a plan view of a dye-sensitized solar cell constituting the dye-sensitized solar cell with a protective layer shown in FIG. 1, as viewed from a counter electrode side, showing a state where the dye-sensitized solar cell is transmitted through an extension electrode film. 図3に示すIV-IV矢視断面図である。FIG. 4 is a sectional view taken along the line IV-IV shown in FIG. 3. 図1に示す保護層付き色素増感型太陽電池の要部を拡大した平面図である。FIG. 2 is an enlarged plan view of a main part of the dye-sensitized solar cell with a protective layer shown in FIG. 1. 本発明の一実施形態の第1変形例に係る保護層付き色素増感型太陽電池であって、図5に相当する要部を拡大した平面図である。It is a dye-sensitized solar cell with a protective layer according to a first modification of one embodiment of the present invention, and is an enlarged plan view of a main part corresponding to FIG. 本発明の一実施形態の第2変形例に係る保護層付き色素増感型太陽電池であって、図5に相当する要部を拡大した平面図である。It is a dye-sensitized solar cell with a protective layer according to a second modified example of one embodiment of the present invention, and is an enlarged plan view of a main part corresponding to FIG. 本発明の一実施形態の第3変形例に係る保護層付き色素増感型太陽電池であって、図1に相当する平面図である。It is a dye-sensitized solar cell with a protective layer according to a third modification of one embodiment of the present invention, and is a plan view corresponding to FIG. 本発明の一実施形態の第4変形例に係る保護層付き色素増感型太陽電池を構成する色素増感型太陽電池であって、図4に相当する断面図である。It is a dye-sensitized solar cell which comprises the dye-sensitized solar cell with a protective layer which concerns on the 4th modification of one Embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG. 本発明の一実施形態の第5変形例に係る保護層付き色素増感型太陽電池を構成する色素増感型太陽電池であって、図4に相当する断面図である。It is a dye-sensitized solar cell which comprises the dye-sensitized solar cell with a protective layer which concerns on the 5th modification of one Embodiment of this invention, Comprising: It is sectional drawing corresponding to FIG.
 以下、図面を参照して本発明に係る太陽電池モジュールの実施の形態について、図1~図5を適宜参照しながら、その構成を詳細に説明する。なお、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, with reference to the drawings, embodiments of a solar cell module according to the present invention will be described in detail with reference to FIGS. 1 to 5 as appropriate. It should be noted that the materials, dimensions, and the like exemplified in the following description are merely examples, and the present invention is not limited thereto, and can be implemented with appropriate changes within a scope that does not change the gist of the present invention.
 なお、以下の説明においては、本発明に係る太陽電池モジュールの一例として、ロール・ツー・ロール(roll-to-roll)方式を用いて製造されるフィルム型の色素増感型太陽電池を挙げて説明する。ここで、本発明を適用した太陽電池モジュールは、色素増感型太陽電池に限定されない。本発明は、絶縁処理が施された二枚の電極同士を、封止材を介在させて貼り合わせた構成であれば、色素増感型太陽電池以外の太陽電池モジュールも全て含む。また、本発明に係る太陽電池モジュールは、上記のロール・ツー・ロール(roll-to-roll)方式を用いて製造される構成、即ち、基材を所定の方向に搬送しつつ連続的に製造されるものには限定されない。本発明は、例えば、予め切り分けられた基材毎にセル構造が形成されているものも含む。 In the following description, a film-type dye-sensitized solar cell manufactured using a roll-to-roll method will be described as an example of the solar cell module according to the present invention. explain. Here, the solar cell module to which the present invention is applied is not limited to a dye-sensitized solar cell. The present invention includes all solar cell modules other than the dye-sensitized solar cell as long as the two electrodes subjected to the insulation treatment are bonded together with a sealing material interposed therebetween. The solar cell module according to the present invention is manufactured using the above-described roll-to-roll method, that is, continuously manufactured while transporting the base material in a predetermined direction. It is not limited to what is done. The present invention also includes, for example, one in which a cell structure is formed for each base material that has been cut in advance.
[保護層付き太陽電池モジュール(保護層付き色素増感型太陽電池)の構成]
 図1及び図2に示すように、本発明を適用した本実施形態の保護層付き色素増感型太陽電池(保護層付き太陽電池モジュール)1は、色素増感型太陽電池(太陽電池モジュール)10と、色素増感型太陽電池10を保護する保護層2と、保護層2に形成された開口2aを通して後述する延長電極膜72に電気的に接続された取り出し配線3と、を備えている。
 この例においては、一組の延長電極膜72が設けられており、そのうちの一方が光電極側取り出し電極部から延長されており、他方が対向極側取り出し電極部から延長されている。そのうち両方が光電極41側の取り出し電極部71または対向極42側の取り出し電極部71から延長されていてもよいし、一方が光電極41側の取り出し電極部71から延長されており、他方が対向極42側の取り出し電極部71から延長されていてもよい。
[Configuration of solar cell module with protective layer (dye-sensitized solar cell with protective layer)]
As shown in FIGS. 1 and 2, a dye-sensitized solar cell with a protective layer (a solar cell module with a protective layer) 1 of the present embodiment to which the present invention is applied is a dye-sensitized solar cell (a solar cell module) 10, a protective layer 2 for protecting the dye-sensitized solar cell 10, and a lead-out wiring 3 electrically connected to an extension electrode film 72 described later through an opening 2a formed in the protective layer 2. .
In this example, a set of extension electrode films 72 is provided, one of which is extended from the photoelectrode-side extraction electrode portion, and the other is extended from the counter electrode-side extraction electrode portion. Both of them may be extended from the extraction electrode 71 on the photoelectrode 41 side or the extraction electrode 71 on the counter electrode 42 side, or one may be extended from the extraction electrode 71 on the photoelectrode 41 side, and the other may be extended from the extraction electrode 71 on the photoelectrode 41 side. It may be extended from the extraction electrode section 71 on the counter electrode 42 side.
[太陽電池モジュール(色素増感型太陽電池)の構成]
 図3及び図4に示すように、本発明を適用した本実施形態の色素増感型太陽電池10は、光電極41と、対向電極42と、発電部44と、封止材46と、導通材48と、備えている。
 図4に示すように、光電極41および対向電極42の表面(互いに対向する表面)同士は、間隔をあけて対向している。以下では、光電極41および対向電極42が対向する方向を積層方向D3(第3の方向)という。
[Configuration of solar cell module (dye-sensitized solar cell)]
As shown in FIGS. 3 and 4, the dye-sensitized solar cell 10 according to the present embodiment to which the present invention is applied includes a photoelectrode 41, a counter electrode 42, a power generation unit 44, a sealing material 46, And a material 48.
As shown in FIG. 4, the surfaces of the photoelectrode 41 and the counter electrode 42 (the surfaces facing each other) face each other with an interval. Hereinafter, the direction in which the photoelectrode 41 and the counter electrode 42 face each other is referred to as a stacking direction D3 (third direction).
 光電極41は、光電極支持体21(基材)と、この光電極支持体21の表面21aに設けられた光電極導電層31(透明電極膜)と、色素が吸着され光電極導電層31に間欠的に積層された複数の無機半導体層12(半導体層)と、を有する。 The photoelectrode 41 includes a photoelectrode support 21 (base material), a photoelectrode conductive layer 31 (transparent electrode film) provided on the surface 21a of the photoelectrode support 21, and a photoelectrode conductive layer 31 on which a dye is adsorbed. And a plurality of inorganic semiconductor layers 12 (semiconductor layers) intermittently stacked.
 光電極支持体21は、光電極導電層31、無機半導体層12や封止材46、及び導通材48の基台となる部材である。光電極支持体21の材質は、ロール・ツー・ロール(roll-to-roll)方式を用いた太陽電池の連続生産に適用できる程度に柔軟性を有し、大面積フィルム状に形成可能な材質であれば、特に限定されない。このような光電極支持体21の材質としては、例えば、ポリエチレンテレフタレート(PET)、アクリル、ポリカーボネート、ポリエチレンナフタレート(PEN)、又はポリイミド等の透明の樹脂材料が挙げられる。 The photoelectrode support 21 is a member that serves as a base for the photoelectrode conductive layer 31, the inorganic semiconductor layer 12, the sealing material 46, and the conductive material 48. The material of the photoelectrode support 21 is flexible enough to be applicable to continuous production of solar cells using a roll-to-roll method, and can be formed into a large-area film shape. If so, there is no particular limitation. Examples of the material of the photoelectrode support 21 include transparent resin materials such as polyethylene terephthalate (PET), acrylic, polycarbonate, polyethylene naphthalate (PEN), and polyimide.
 なお、図3に示すような光電極支持体21の平面視において、光電極支持体21は矩形状に形成されている。以下では、前記平面視において光電極支持体21の各辺が延びる方向をD1方向(第1の方向)およびD2方向(第2の方向)という。D1方向およびD2方向は、互いに直交する。 In the plan view of the photoelectrode support 21 as shown in FIG. 3, the photoelectrode support 21 is formed in a rectangular shape. Hereinafter, the directions in which the sides of the photoelectrode support 21 extend in the plan view are referred to as a D1 direction (first direction) and a D2 direction (second direction). The direction D1 and the direction D2 are orthogonal to each other.
 図4に示すように、光電極導電層31は、光電極支持体21の表面21a(即ち、光電極支持体21における対向電極42側の面)のD1方向全体にわたって成膜されている。
 光電極導電層31は、光電極支持体21の表面21aに全域にわたって積層されている。
As shown in FIG. 4, the photoelectrode conductive layer 31 is formed over the entire surface 21a of the photoelectrode support 21 (that is, the surface of the photoelectrode support 21 on the side of the counter electrode 42) in the D1 direction.
The photoelectrode conductive layer 31 is laminated on the entire surface of the surface 21 a of the photoelectrode support 21.
 光電極導電層31の材質としては、例えば、酸化スズ(ITO)、酸化亜鉛等が挙げられる。
 光電極支持体21および光電極導電層31は、いずれも透明であり、光電極支持体21の裏面から入射する光を透過させる。
Examples of the material of the photoelectrode conductive layer 31 include tin oxide (ITO) and zinc oxide.
The photoelectrode support 21 and the photoelectrode conductive layer 31 are both transparent, and transmit light incident from the back surface of the photoelectrode support 21.
 無機半導体層12は、光電極導電層31の表面(即ち、光電極導電層31における対向電極42側の面)に形成されている。言い換えると、無機半導体層12は、D1方向に間隔をあけて複数配置されている。各無機半導体層12は、D2方向に長く延びる帯状に形成されている。 The inorganic semiconductor layer 12 is formed on the surface of the photoelectrode conductive layer 31 (that is, the surface of the photoelectrode conductive layer 31 on the side of the counter electrode 42). In other words, a plurality of inorganic semiconductor layers 12 are arranged at intervals in the D1 direction. Each inorganic semiconductor layer 12 is formed in a band shape extending in the direction D2.
 無機半導体層12は、例えば、金属酸化物等に増感色素が担持されることによって染色された多孔質層であり、増感色素から電子を受け取って輸送する機能を有する。このような金属酸化物としては、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、又は酸化スズ(SnO)等が挙げられる。 The inorganic semiconductor layer 12 is, for example, a porous layer dyed by carrying a sensitizing dye on a metal oxide or the like, and has a function of receiving and transporting electrons from the sensitizing dye. Examples of such a metal oxide include titanium oxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ).
 上述の増感色素は、有機色素又は金属錯体色素から構成される。有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、又はチオフェン系等の各種有機色素等が挙げられる。金属錯体色素としては、例えば、ルテニウム錯体等が挙げられる。 The above-mentioned sensitizing dye is composed of an organic dye or a metal complex dye. Examples of the organic dye include various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene. Examples of the metal complex dye include a ruthenium complex and the like.
 対向電極42は、光電極支持体21に対向する対向電極支持体22(基材)と、対向電極支持体22の表面22a(対向電極支持体22における光電極41側の面)に設けられた対向電極導電層32(透明電極膜)とを有する。 The counter electrode 42 is provided on the counter electrode support 22 (base material) facing the photoelectrode support 21 and on the surface 22a of the counter electrode support 22 (the surface of the counter electrode support 22 on the photoelectrode 41 side). And a counter electrode conductive layer 32 (transparent electrode film).
 対向電極支持体22は、対向電極導電層32の基台となる部材である。対向電極支持体22の材質は、光電極支持体21と同様に、ロール・ツー・ロール(roll-to-roll)方式を用いた太陽電池の連続生産に適用できる程度に柔軟性を有し、大面積フィルム状に形成可能な材質であれば、特に限定されない。対向電極支持体22の材質としては、例えば、光電極支持体21と同様の樹脂材料が挙げられる。 The counter electrode support 22 is a member serving as a base of the counter electrode conductive layer 32. Like the photoelectrode support 21, the material of the counter electrode support 22 is flexible enough to be applicable to continuous production of solar cells using a roll-to-roll method, The material is not particularly limited as long as it can be formed into a large-area film. Examples of the material of the counter electrode support 22 include the same resin material as that of the photoelectrode support 21.
 対向電極導電層32は、対向電極支持体22の表面22aのD1方向全体にわたって成膜されている。対向電極導電層32は、対向電極支持体22の表面22aに積層されている。対向電極導電層32の材質としては、例えば、光電極導電層31と同様の化合物等が挙げられる。 The counter electrode conductive layer 32 is formed over the entire surface 22a of the counter electrode support 22 in the direction D1. The counter electrode conductive layer 32 is stacked on the surface 22 a of the counter electrode support 22. Examples of the material of the counter electrode conductive layer 32 include the same compounds as those of the photoelectrode conductive layer 31.
 発電部44は、光電極41及び対向電極42の厚み方向(積層方向D3)において、光電極41と対向電極42との間に挟まれ、光電極41及び対向電極42の面方向(図4中に示すD1方向)に沿って間隔をおいて複数設けられている。発電部44は、前述した無機半導体層12と、電荷移動体(電解液、電解質)14と、を含む。 The power generation unit 44 is sandwiched between the photoelectrode 41 and the counter electrode 42 in the thickness direction (stacking direction D3) of the photoelectrode 41 and the counter electrode 42, and is in the plane direction of the photoelectrode 41 and the counter electrode 42 (in FIG. Are provided at intervals along the direction D1 shown in FIG. The power generation unit 44 includes the above-described inorganic semiconductor layer 12 and the charge transfer body (electrolyte solution, electrolyte) 14.
 電荷移動体14は、光電極41と対向電極42との間に充填される。電荷移動体14は、無機半導体層12に接触するように充填されている。電荷移動体14としては、例えば、アセトニトリル、ヨウ化ジメチルプロピルイミダゾリウム又はヨウ化ブチルメチルイミダゾリウム等のイオン液体等の液体成分に、ヨウ化リチウム等の支持電解質とヨウ素とが混合された溶液(具体的には、プロピオニトリル等の非水系溶剤)等が挙げられる。 (4) The charge carrier 14 is filled between the photoelectrode 41 and the counter electrode 42. The charge carrier 14 is filled so as to be in contact with the inorganic semiconductor layer 12. As the charge transfer body 14, for example, a solution in which a supporting component such as lithium iodide and a supporting electrolyte such as lithium iodide are mixed with a liquid component such as an ionic liquid such as acetonitrile, dimethylpropyl imidazolium iodide or butyl methyl imidazolium iodide ( Specific examples include non-aqueous solvents such as propionitrile).
 封止材46は、光電極41と対向電極42との間に電荷移動体14を封止して発電部44を形成する。封止材46は、図3中に示すシール部60とともに、電荷移動体14を含む発電部44を封止する。封止材46は、図3及び図4中に示すD1方向に沿って発電部44の両側に設けられている。封止材46は、D1方向において発電部44と隣接して設けられている。封止材46は、D1方向に隣り合う無機半導体層12の間に配置されている。封止材46は、発電部44をD1方向に沿って複数形成している。なお、封止材46は、D1方向に隣り合う発電部44の間に一対配置されている。 (4) The sealing material 46 seals the charge moving body 14 between the photoelectrode 41 and the counter electrode 42 to form the power generation unit 44. The sealing member 46 seals the power generation section 44 including the charge moving body 14 together with the seal section 60 shown in FIG. The sealing members 46 are provided on both sides of the power generation unit 44 along the direction D1 shown in FIGS. The sealing material 46 is provided adjacent to the power generation unit 44 in the direction D1. The sealing material 46 is arranged between the inorganic semiconductor layers 12 adjacent in the D1 direction. The sealing member 46 has a plurality of power generation sections 44 formed along the direction D1. Note that a pair of sealing materials 46 are arranged between the power generation units 44 adjacent in the D1 direction.
 封止材46は、さらに、光電極41と対向電極42とを貼り合わせて互いを接着するための樹脂等を含む。このような封止材46の材質としては、例えば、熱可塑性樹脂、熱硬化性樹脂、又は紫外線硬化性樹脂のうち少なくとも一種を含む樹脂材料が挙げられる。 (4) The sealing material 46 further includes a resin or the like for bonding the photoelectrode 41 and the counter electrode 42 and bonding them together. Examples of the material of the sealing material 46 include a resin material containing at least one of a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin.
 D1方向に隣り合う発電部44の間に配置された一対の封止材46同士の間には、導通材48が設けられている。導通材48は、無機半導体層12、電荷移動体14を含む発電部44同士を(即ち、隣接するセル同士を)電気的に接続し、導通させる。導通材48の材質としては、導通可能な素材であれば特に限定されない。前記材質としては、例えば、公知の導電材、導電ペースト、又は導電性微粒子と接着剤の混合物等が挙げられる。なお、図示の例では、導通材48の一例として、エポキシ樹脂やフェノール樹脂等の接着剤38に適量の導電粒子36を混合した導通ペーストを採用している。この構成は、色素増感型太陽電池10を所望のパターンで切り出す際に、導通材48を容易に切断できる構成であるため好ましい。導通材48には、封止材46と同様の材料からなるバインダーを用いてもよい。 導 通 A conducting member 48 is provided between a pair of sealing members 46 arranged between the power generation units 44 adjacent to each other in the D1 direction. The conductive material 48 electrically connects the power generating units 44 including the inorganic semiconductor layer 12 and the charge transfer body 14 (that is, adjacent cells) to conduct. The material of the conductive member 48 is not particularly limited as long as it is a conductive material. Examples of the material include a known conductive material, conductive paste, or a mixture of conductive fine particles and an adhesive. In the illustrated example, as an example of the conductive material 48, a conductive paste obtained by mixing an appropriate amount of the conductive particles 36 with an adhesive 38 such as an epoxy resin or a phenol resin is employed. This configuration is preferable because the conductive material 48 can be easily cut when the dye-sensitized solar cell 10 is cut out in a desired pattern. A binder made of the same material as the sealing material 46 may be used for the conductive material 48.
 光電極導電層31及び対向電極導電層32には、第一絶縁部50A及び第二絶縁部50Bがそれぞれ設けられている。第一絶縁部50A及び第二絶縁部50Bは、図4中に示したD1方向に直交する断面において、光電極導電層31及び対向電極導電層32の封止材46と重なる部分に設けられている。第一絶縁部50A及び第二絶縁部50Bは、中空であってもよく、第一絶縁部50A及び第二絶縁部50Bに、封止材46の一部が流れ込んでいてもよい。第一絶縁部50A及び第二絶縁部50Bは、平面視においてD2方向に長い帯状に設けられている。 The photoelectrode conductive layer 31 and the counter electrode conductive layer 32 are provided with a first insulating portion 50A and a second insulating portion 50B, respectively. The first insulating portion 50A and the second insulating portion 50B are provided at portions overlapping the sealing material 46 of the photoelectrode conductive layer 31 and the counter electrode conductive layer 32 in a cross section orthogonal to the direction D1 shown in FIG. I have. The first insulating part 50A and the second insulating part 50B may be hollow, and a part of the sealing material 46 may flow into the first insulating part 50A and the second insulating part 50B. The first insulating portion 50A and the second insulating portion 50B are provided in a belt shape long in the direction D2 in plan view.
 光電極41の光電極導電層31には第一絶縁部50Aが設けられている。対向電極42の対向電極導電層32には第二絶縁部50Bが設けられている。図4に示す例においては、第一絶縁部50A及び第二絶縁部50Bは、光電極導電層31又は対向電極導電層32を厚み方向で貫通している。換言すると、第一絶縁部50Aは、光電極導電層31をD1方向に分断(電気的に遮断)している。第二絶縁部50Bは、対向電極導電層32をD1方向に分断(電気的に遮断)している。 第一 The photoelectrode conductive layer 31 of the photoelectrode 41 is provided with a first insulating portion 50A. The counter electrode conductive layer 32 of the counter electrode 42 is provided with a second insulating portion 50B. In the example shown in FIG. 4, the first insulating portion 50A and the second insulating portion 50B penetrate the photoelectrode conductive layer 31 or the counter electrode conductive layer 32 in the thickness direction. In other words, the first insulating portion 50A divides (electrically blocks) the photoelectrode conductive layer 31 in the direction D1. The second insulating portion 50B divides (electrically cuts off) the counter electrode conductive layer 32 in the direction D1.
 以上のように、導通材48が、一のセルにおける光電極41と前記セルに隣接するセルにおける対向電極42とを積層方向D3に電気的に接続している。かつ、第一絶縁部50A及び第二絶縁部50Bが、光電極41および対向電極42をD1方向に局所的に絶縁している。これにより、D1方向に隣り合う発電部44は、互いに電気的に直列に接続される(即ち、互いに隣接するセル同士が電気的に直列に接続される)。 As described above, the conductive material 48 electrically connects the photoelectrode 41 in one cell and the counter electrode 42 in a cell adjacent to the cell in the stacking direction D3. The first insulating part 50A and the second insulating part 50B locally insulate the photoelectrode 41 and the counter electrode 42 in the direction D1. Thereby, the power generation units 44 adjacent in the D1 direction are electrically connected to each other in series (that is, cells adjacent to each other are electrically connected in series).
 図3に示すように、色素増感型太陽電池10には、シール部60(融着部、超音波融着部)が設けられている。シール部60は、色素増感型太陽電池10のD2方向における所定の位置に設けられている。シール部60では、色素増感型太陽電池10におけるD1方向の全長にわたって光電極41と対向電極42とが貼り合わされている。 色素 As shown in FIG. 3, the dye-sensitized solar cell 10 is provided with a seal portion 60 (fused portion, ultrasonic fused portion). The seal portion 60 is provided at a predetermined position in the direction D2 of the dye-sensitized solar cell 10. In the seal portion 60, the photoelectrode 41 and the counter electrode 42 are bonded to each other over the entire length of the dye-sensitized solar cell 10 in the D1 direction.
 シール部60は、光電極支持体21と対向電極支持体22とが圧着されることで、電気的に絶縁された部分である。光電極支持体21と対向電極支持体22とは、光電極41及び対向電極42の厚み方向(積層方向D3)の外方(即ち、色素増感型太陽電池10の上方及び下方)から、例えば、超音波融着等の方法を用いて光電極41及び対向電極42に力を加えるか、又は押圧することによって、圧着することができる。なお、圧着された光電極支持体21と対向電極支持体22との間には、僅かな厚みで、光電極導電層31、対向電極導電層32、無機半導体層12及び電荷移動体14が介在している場合がある。しかしながら、これらの各層は、シール部60においてほぼ分断された状態なので、シール部60に隣接する発電部44同士を電気的に接続しない。 The seal portion 60 is a portion that is electrically insulated by pressing the photoelectrode support 21 and the counter electrode support 22 together. The photoelectrode support 21 and the counter electrode support 22 are, for example, from the outside in the thickness direction (stacking direction D3) of the photoelectrode 41 and the counter electrode 42 (that is, from above and below the dye-sensitized solar cell 10). By applying or pressing a force to the photoelectrode 41 and the counter electrode 42 by using a method such as ultrasonic fusion or the like, pressure bonding can be performed. The photoelectrode conductive layer 31, the counter electrode conductive layer 32, the inorganic semiconductor layer 12, and the charge transfer body 14 are interposed between the pressed electrode support 21 and the counter electrode support 22 with a small thickness. You may have. However, since these layers are substantially separated from each other in the seal portion 60, the power generation portions 44 adjacent to the seal portion 60 are not electrically connected to each other.
 図4に示すように、光電極41には、取り出し電極部71が設けられている。取り出し電極部71は、発電部44に電気的に接続されている。取り出し電極部71は、発電部44が発電した電力を取り出す。本実施形態では、取り出し電極部71は、光電極41におけるD1方向の端部に設けられている。取り出し電極部71は、光電極導電層31が、積層方向D3に沿う対向電極42側に露出されることで形成されている。図示の例では、光電極41が対向電極42よりもD1方向に大きく、光電極41の端部が対向電極42に対してD1方向に張り出している。その結果、光電極導電層31が、取り出し電極部71を形成している。取り出し電極部71は、D1方向よりもD2方向に長い。 (4) As shown in FIG. 4, the photoelectrode 41 is provided with an extraction electrode portion 71. The extraction electrode unit 71 is electrically connected to the power generation unit 44. The extraction electrode unit 71 extracts the electric power generated by the power generation unit 44. In the present embodiment, the extraction electrode unit 71 is provided at an end of the photoelectrode 41 in the D1 direction. The extraction electrode portion 71 is formed by exposing the photoelectrode conductive layer 31 to the counter electrode 42 side along the stacking direction D3. In the illustrated example, the photoelectrode 41 is larger in the D1 direction than the counter electrode 42, and the end of the photoelectrode 41 projects in the D1 direction with respect to the counter electrode 42. As a result, the photoelectrode conductive layer 31 forms the extraction electrode portion 71. The extraction electrode portion 71 is longer in the direction D2 than in the direction D1.
 取り出し電極部71には、延長電極膜72が電気的に接続されている。延長電極膜72は、例えば、金属箔(一例としては、銅箔の表面に接着層が形成された銅テープ)により形成されている。図4に示すように、延長電極膜72は、取り出し電極部71から対向電極42の裏面(対向電極支持体22の裏面22b)に延長されている。延長電極膜72は、対向電極支持体22の裏面22bに接着されている。 (4) The extension electrode film 72 is electrically connected to the extraction electrode portion 71. The extension electrode film 72 is formed of, for example, a metal foil (for example, a copper tape having an adhesive layer formed on a surface of a copper foil). As shown in FIG. 4, the extension electrode film 72 extends from the extraction electrode portion 71 to the back surface of the counter electrode 42 (the back surface 22b of the counter electrode support 22). The extension electrode film 72 is adhered to the back surface 22 b of the counter electrode support 22.
 図3に示すような光電極41の平面視において、延長電極膜72は、複数の無機半導体層12のうちの少なくとも一部に重なっている。図示の例では、延長電極膜72は、D1方向に並ぶ複数の無機半導体層12のうち、最もD1方向の端に位置する無機半導体層12のみに重なっている。延長電極膜72は、D1方向に対称に一対配置されている。 延長 In a plan view of the photoelectrode 41 as shown in FIG. 3, the extension electrode film 72 overlaps at least a part of the plurality of inorganic semiconductor layers 12. In the illustrated example, the extension electrode film 72 overlaps only the inorganic semiconductor layer 12 located at the end in the D1 direction among the plurality of inorganic semiconductor layers 12 arranged in the D1 direction. The pair of extension electrode films 72 are symmetrically arranged in the direction D1.
 なお、1つの延長電極膜72についての対向電極42の裏面上でのD1方向の長さL(言い換えると、対向電極42のうち、1つの延長電極膜72により覆われている部分のD1方向の長さL)は、例えば、3mm以上300mm以下である。対向電極42全体のD1方向の長さL0に対する前記長さLの比L/L0は、例えば、0.5%以上49.8%以下である。
 また、1つの延長電極膜72についての対向電極42の裏面上でのD2方向の長さL1(言い換えると、対向電極42のうち、1つの延長電極膜72により覆われている部分のD2方向の長さL1)は、対向電極42のD2方向の長さL3と等しいことが好ましいが、これに制限されない。例えば、対向電極42のD2方向の長さL3に対する前記長さL1の比L1/L3は、例えば、5%以上100%以下であることが好ましく、15%以上100%以下であることがより好ましい。
 また、図3に示すように一組の延長電極膜72が設ける場合、対向電極42の裏面の全面積のうち延長電極膜72で覆われる面積の割合が、3%以上であることが好ましく、15%以上であることがより好ましく、50%以上であることが特に好ましい。上記面積の割合が上記下限値以上であることにより、色素増感型太陽電池の単位面積当たりの発電量をより顕著に向上させることができる。また、色素増感型太陽電池の性能信頼性および美観を向上することができる。また、上記面積の割合の上限値については延長電極膜72同士が接触(短絡)することを防止できる限り特に制限はなく、100%未満であればよいが、95%以下であることが好ましい。
 本発明においては、光電極および対向電極における取り出し電極部71の占有面積小さくすることができる。具体的には、各取り出し電極部71(光電極導電層31または対向電極導電層32からD1方向に突出している箇所)のそれぞれについて、対向する電極に面する表面の面積が0.6cm~40cmであることが好ましく、0.6cm~15cmであることがより好ましく、0.6cm~2cmであることがさらに好ましい。
In addition, the length L in the D1 direction of the one extension electrode film 72 on the back surface of the counter electrode 42 (in other words, the portion of the counter electrode 42 covered by the one extension electrode film 72 in the D1 direction) The length L) is, for example, not less than 3 mm and not more than 300 mm. The ratio L / L0 of the length L to the length L0 in the D1 direction of the entire counter electrode 42 is, for example, 0.5% or more and 49.8% or less.
Further, the length L1 in the direction D2 of the one extension electrode film 72 on the back surface of the counter electrode 42 (in other words, the portion of the counter electrode 42 covered by the one extension electrode film 72 in the direction D2). The length L1) is preferably equal to the length L3 of the counter electrode 42 in the direction D2, but is not limited thereto. For example, the ratio L1 / L3 of the length L1 to the length L3 in the D2 direction of the counter electrode 42 is preferably, for example, 5% or more and 100% or less, and more preferably 15% or more and 100% or less. .
When a pair of extension electrode films 72 is provided as shown in FIG. 3, the ratio of the area covered by the extension electrode film 72 to the total area of the back surface of the counter electrode 42 is preferably 3% or more, It is more preferably at least 15%, particularly preferably at least 50%. When the ratio of the area is equal to or more than the lower limit, the power generation amount per unit area of the dye-sensitized solar cell can be more remarkably improved. Further, the performance reliability and aesthetic appearance of the dye-sensitized solar cell can be improved. The upper limit of the area ratio is not particularly limited as long as the extension electrode films 72 can be prevented from contacting (short circuiting) with each other, and may be less than 100%, but is preferably 95% or less.
In the present invention, the area occupied by the extraction electrode portion 71 in the photoelectrode and the counter electrode can be reduced. Specifically, the area of the surface facing the opposing electrode of each of the extraction electrode portions 71 (the portion protruding from the photoelectrode conductive layer 31 or the counter electrode conductive layer 32 in the D1 direction) is 0.6 cm 2 or less. It is preferably 40 cm 2 , more preferably 0.6 cm 2 to 15 cm 2 , even more preferably 0.6 cm 2 to 2 cm 2 .
[保護層2の構成]
 図1および図2に示すように、保護層2は、色素増感型太陽電池10を封止する。図2に示すように、保護層2は、色素増感型太陽電池10を積層方向D3に挟み込む光電極側防湿フィルム81および対向極側防湿フィルム82を備えている。
[Configuration of Protective Layer 2]
As shown in FIGS. 1 and 2, the protective layer 2 seals the dye-sensitized solar cell 10. As shown in FIG. 2, the protective layer 2 includes a photoelectrode-side moisture-proof film 81 and a counter electrode-side moisture-proof film 82 that sandwich the dye-sensitized solar cell 10 in the stacking direction D3.
 光電極側防湿フィルム81は、透光性が高いことが好ましい。光電極側防湿フィルム81は、光電極側バリア層83と、光電極側接着層84と、を備えている。光電極側バリア層83は、例えば、樹脂基板にバリア性が付与されたフィルムであってもよい。 (4) It is preferable that the photoelectrode-side moisture-proof film 81 has high translucency. The photoelectrode-side moisture-proof film 81 includes a photoelectrode-side barrier layer 83 and a photoelectrode-side adhesive layer 84. The photoelectrode-side barrier layer 83 may be, for example, a film in which a resin substrate is provided with a barrier property.
 対向極側防湿フィルム82は、対向電極側バリア層85と、対向電極側接着層86と、を備えている。対向電極側バリア層85は、アルミニウム等の金属箔や、アルミニウムとポリエチレンテレフタレートとの複合フィルム等であってもよい。 The opposing electrode side moisture-proof film 82 includes an opposing electrode side barrier layer 85 and an opposing electrode side adhesive layer 86. The counter electrode side barrier layer 85 may be a metal foil such as aluminum or a composite film of aluminum and polyethylene terephthalate.
 図5に示すように、対向極側防湿フィルム82には、外部に向けて延長電極膜72を露出する開口2aが形成されている。開口2aは平面視でD1方向およびD2方向に延びる矩形状をなしている。開口2aは、対向極側防湿フィルム82のうち、平面視で延長電極膜72と重なる位置に配置されている。開口2aは、対向極側防湿フィルム82を積層方向D3に貫いている。 開口 As shown in FIG. 5, the counter electrode side moisture-proof film 82 has an opening 2a for exposing the extension electrode film 72 to the outside. The opening 2a has a rectangular shape extending in the directions D1 and D2 in plan view. The opening 2 a is disposed in the opposing electrode-side moisture-proof film 82 at a position overlapping the extension electrode film 72 in plan view. The opening 2a penetrates the opposing electrode side moisture-proof film 82 in the laminating direction D3.
[取り出し配線の構成]
 取り出し配線3は、外部から開口2aを通して延長電極膜72に接続されている。取り出し配線3は、被覆部3aを備えている。取り出し配線3における先端部には、被覆部3aが剥離された接続部3bが形成されている。接続部3bは、延長電極膜72に、例えば、はんだ付けなどにより接続されている。
[Structure of extraction wiring]
The extraction wiring 3 is connected to the extension electrode film 72 from the outside through the opening 2a. The extraction wiring 3 includes a covering portion 3a. A connection portion 3b from which the covering portion 3a has been peeled off is formed at the leading end of the extraction wiring 3. The connection portion 3b is connected to the extension electrode film 72 by, for example, soldering.
 なお、図5に示すように、本実施形態では、取り出し配線3が、開口2aからD2方向に延びているが、本発明はこれに限られない。例えば、図6に示す第1変形例の保護層付き色素増感型太陽電池1Aのように、取り出し配線3が、開口2aからD2方向に延びていてもよい。 In addition, as shown in FIG. 5, in the present embodiment, the extraction wiring 3 extends from the opening 2a in the direction D2, but the present invention is not limited to this. For example, as in a dye-sensitized solar cell 1A with a protective layer according to a first modification shown in FIG. 6, the extraction wiring 3 may extend in the direction D2 from the opening 2a.
 以上説明したように、本実施形態に係る保護層付き色素増感型太陽電池1によれば、図4に示すような光電極41の裏面(光電極支持体21の裏面21b)から発電部44に光が入射し、発電部44が発電する。
 発電部44が発電した電力は、取り出し電極部71および延長電極膜72を通して取り出される。
As described above, according to the dye-sensitized solar cell 1 with a protective layer according to the present embodiment, the power generation unit 44 extends from the back surface of the photoelectrode 41 (the back surface 21b of the photoelectrode support 21) as shown in FIG. Light is incident on the power generation unit 44, and the power generation unit 44 generates power.
The power generated by the power generation unit 44 is extracted through the extraction electrode unit 71 and the extension electrode film 72.
 延長電極膜72が、取り出し電極部71から、光電極41の裏面ではなく対向電極42の裏面に延長されている。したがって、例えば、延長電極膜72の面積を大きく確保しても、光が光電極41の裏面から入射するときに影響が生じることがない。よって、発電量を低下させることなく、延長電極膜72の面積を大きく確保することができる。これにより、光電極41や対向電極42における取り出し電極部71の専有面積が小さくても、発電部44が発電した電力を、延長電極膜72を通して確実に取り出すことができる。取り出し電極部71そのものは、発電部44による発電自体には寄与せず、取り出し電極部71の面積が小さいほど、色素増感型太陽電池10の単位面積当たりの発電量を向上させることができる。よって、前述のように延長電極膜72を設けて取り出し電極部71の面積を小さくすることで、色素増感型太陽電池10の単位面積当たりの発電量を向上させることができる。 (4) The extension electrode film 72 extends from the extraction electrode portion 71 to the back surface of the counter electrode 42 instead of the back surface of the photoelectrode 41. Therefore, for example, even if a large area of the extension electrode film 72 is secured, no influence occurs when light enters from the back surface of the photoelectrode 41. Therefore, a large area of the extension electrode film 72 can be secured without reducing the power generation amount. Thereby, even if the occupied area of the extraction electrode 71 in the photoelectrode 41 and the counter electrode 42 is small, the electric power generated by the power generation unit 44 can be reliably extracted through the extension electrode film 72. The extraction electrode unit 71 itself does not contribute to the power generation itself by the power generation unit 44, and the smaller the area of the extraction electrode unit 71, the more the power generation per unit area of the dye-sensitized solar cell 10 can be improved. Therefore, by providing the extension electrode film 72 and reducing the area of the extraction electrode portion 71 as described above, the amount of power generation per unit area of the dye-sensitized solar cell 10 can be improved.
 しかも、延長電極膜72の面積を大きく確保することで、例えば、延長電極膜72を対向電極42の裏面に強固に接着させること等ができる。これにより、例えば、取り出し電極部71と延長電極膜72との電気的な接続を安定させ、色素増感型太陽電池10の性能信頼性を向上させることができる。 In addition, by ensuring a large area of the extension electrode film 72, for example, the extension electrode film 72 can be firmly adhered to the back surface of the counter electrode 42. Thereby, for example, the electrical connection between the extraction electrode unit 71 and the extension electrode film 72 can be stabilized, and the performance reliability of the dye-sensitized solar cell 10 can be improved.
 さらに、延長電極膜72の面積を大きく確保することで、対向電極42の裏面を延長電極膜72によって保護することができる。これにより、例えば、色素増感型太陽電池10の耐久性を向上させることもできる。 (4) Further, by ensuring a large area of the extension electrode film 72, the back surface of the counter electrode 42 can be protected by the extension electrode film 72. Thereby, for example, the durability of the dye-sensitized solar cell 10 can be improved.
 光電極41の平面視において、延長電極膜72が、複数の無機半導体層12のうちの少なくとも一部に重なっている。したがって、光電極41を裏面から見たときに、無機半導体層12の後側に延長電極膜72が配置される。例えば、本実施形態のように、延長電極膜72が金属箔により形成され、延長電極膜72が金属光沢性を有する場合には、延長電極膜72からの反射光などに基づいて、無機半導体層12の傷や色むらを視認させ難くすることができる。なお、延長電極膜72が金属光沢性を有さないものの、例えば、延長電極膜72が黒色などで遮光性を有していたり、延長電極膜72が無機半導体層12の色素と同色系であったりする場合などには、無機半導体層12の傷や色むらを同様に視認させ難くすることができる。 (4) In a plan view of the photoelectrode 41, the extension electrode film 72 overlaps at least a part of the plurality of inorganic semiconductor layers 12. Therefore, when the photoelectrode 41 is viewed from the back surface, the extension electrode film 72 is disposed behind the inorganic semiconductor layer 12. For example, as in the present embodiment, when the extension electrode film 72 is formed of a metal foil and the extension electrode film 72 has a metallic luster, the inorganic semiconductor layer is formed based on light reflected from the extension electrode film 72 and the like. Twelve scratches and uneven color can be made hard to visually recognize. Although the extension electrode film 72 does not have metallic luster, for example, the extension electrode film 72 is black or the like and has a light-shielding property, or the extension electrode film 72 has the same color as the dye of the inorganic semiconductor layer 12. In such a case, it is also possible to make it difficult to visually recognize the scratches and uneven color of the inorganic semiconductor layer 12.
 また、光電極41を裏面から見たときに、取り出し電極部71および無機半導体層12の後側に共通して延長電極膜72が位置することから、取り出し電極部71および無機半導体層12の背景を共通の背景にすることができる。その結果、例えば、色素増感型太陽電池10の外観性(美観性)を向上させることもできる。 In addition, when the photoelectrode 41 is viewed from the back surface, the extension electrode film 72 is located in common behind the extraction electrode portion 71 and the inorganic semiconductor layer 12. Can be a common background. As a result, for example, the appearance (aesthetics) of the dye-sensitized solar cell 10 can be improved.
 図1に示すように、取り出し配線3が延長電極膜72に接続されている。取り出し配線3を、例えば、はんだ等によって延長電極膜72に接続する場合、延長電極膜72に熱が加えられる。延長電極膜72の面積が小さい場合、延長電極膜72の単位面積あたりで負担すべき熱量が多くなり、前記熱によって延長電極膜72や対向電極42、光電極41が損傷(溶解)するおそれがある。 (4) As shown in FIG. 1, the extraction wiring 3 is connected to the extension electrode film 72. When the extraction wiring 3 is connected to the extension electrode film 72 by, for example, solder or the like, heat is applied to the extension electrode film 72. When the area of the extension electrode film 72 is small, the amount of heat to be borne per unit area of the extension electrode film 72 increases, and the heat may damage (dissolve) the extension electrode film 72, the counter electrode 42, and the photoelectrode 41. is there.
 しかしながら、この保護層付き色素増感型太陽電池1では、前述のように延長電極膜72が対向電極42の裏面に延長されることにより、延長電極膜72の面積を大きく確保することができる。これにより、取り出し配線3をはんだによって延長電極膜72に接続する場合であっても、延長電極膜72の単位面積あたりで負担すべき熱量を低く抑えることができる。その結果、延長電極膜72などの損傷を抑制することができる。 However, in the dye-sensitized solar cell 1 with the protective layer, the extension electrode film 72 is extended to the back surface of the counter electrode 42 as described above, so that a large area of the extension electrode film 72 can be secured. Accordingly, even when the extraction wiring 3 is connected to the extension electrode film 72 by solder, the amount of heat to be borne per unit area of the extension electrode film 72 can be suppressed. As a result, damage to the extension electrode film 72 and the like can be suppressed.
 取り出し配線3が、保護層2に形成された開口2aを通して延長電極膜72に接続されている。延長電極膜72の面積が小さい場合、開口2aを延長電極膜72に対して精度よく位置合わせした状態で、保護層2を色素増感型太陽電池10に組み合わせる必要が生じる。すなわち、この場合、保護層2を色素増感型太陽電池10に組み合わせるときに、保護層2が色素増感型太陽電池10に対してわずかでも位置ずれすると、開口2aが延長電極膜72とは異なる部材上に配置されて不良品となり、製品の歩留まりが低下するおそれがある。 (4) The extraction wiring 3 is connected to the extension electrode film 72 through the opening 2a formed in the protective layer 2. When the area of the extension electrode film 72 is small, it is necessary to combine the protective layer 2 with the dye-sensitized solar cell 10 in a state where the opening 2a is accurately positioned with respect to the extension electrode film 72. That is, in this case, when the protective layer 2 is combined with the dye-sensitized solar cell 10 and the protective layer 2 is slightly displaced with respect to the dye-sensitized solar cell 10, the opening 2 a is There is a possibility that a defective product is placed on a different member and the product yield is reduced.
 しかしながら、この保護層付き色素増感型太陽電池1では、前述のように延長電極膜72が対向電極42の裏面に延長されることにより、延長電極膜72の面積を大きく確保することができる。したがって、保護層2を色素増感型太陽電池10に組み合わせるときに、開口2aの位置が狙いの位置に対して多少ずれたとしても、開口2aを延長電極膜72上に位置させることができる。これにより、製品の歩留まりを向上させることができる。 However, in the dye-sensitized solar cell 1 with the protective layer, the extension electrode film 72 is extended to the back surface of the counter electrode 42 as described above, so that a large area of the extension electrode film 72 can be secured. Therefore, when the protective layer 2 is combined with the dye-sensitized solar cell 10, even if the position of the opening 2a is slightly shifted from the target position, the opening 2a can be positioned on the extension electrode film 72. As a result, the yield of products can be improved.
 なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention.
 例えば、図7に示す第2変形例の保護層付き色素増感型太陽電池1Bのように、開口2aが平面視円形状(真円形状)に形成されていてもよい。この場合、取り出し配線3が、開口2aからD1方向やD2方向のいずれの方向に延びていてもよい。 開口 For example, as in the dye-sensitized solar cell 1B with a protective layer of the second modification shown in FIG. 7, the opening 2a may be formed in a circular shape (a perfect circular shape) in plan view. In this case, the extraction wiring 3 may extend from the opening 2a in any of the D1 direction and the D2 direction.
 図8に示す第3変形例の保護層付き色素増感型太陽電池1Cのように、延長電極膜72が複数の無機半導体層12にわたって配置されていてもよい。図8に示す保護層付き色素増感型太陽電池1Cでは、延長電極膜72が、全ての無機半導体層12を積層方向D3に覆っている。 延長 The extended electrode film 72 may be arranged over the plurality of inorganic semiconductor layers 12 as in the dye-sensitized solar cell with a protective layer 1C of the third modification shown in FIG. In the dye-sensitized solar cell with a protective layer 1C shown in FIG. 8, the extension electrode film 72 covers all the inorganic semiconductor layers 12 in the stacking direction D3.
 図9に示す第4変形例の保護層付き色素増感型太陽電池1Dのように、取り出し電極部71が、対向電極42に設けられていてもよい。この場合、延長電極膜72が、積層方向D3に折り返され、対向電極42を積層方向D3に挟んでいる。取り出し電極部71は、対向電極導電層32が、積層方向D3に沿う光電極41側に露出されることで形成されている。延長電極膜72は、取り出し電極部71から対向電極42の裏面(対向電極支持体22の裏面22b)に延長されている。延長電極膜72は、対向電極支持体22の裏面22bに接着されている。なお、この場合、一対の取り出し電極部71のうちの1つが光電極41に設けられ、残りの1つが対向電極42に設けられていてもよい。さらに、一対の取り出し電極部71の両方が、対向電極42に設けられていてもよい。 As in the dye-sensitized solar cell 1D with a protective layer according to the fourth modification shown in FIG. 9, the extraction electrode 71 may be provided on the counter electrode 42. In this case, the extension electrode film 72 is folded in the stacking direction D3, and sandwiches the counter electrode 42 in the stacking direction D3. The extraction electrode portion 71 is formed by exposing the counter electrode conductive layer 32 to the photoelectrode 41 side along the stacking direction D3. The extension electrode film 72 extends from the extraction electrode portion 71 to the back surface of the counter electrode 42 (the back surface 22b of the counter electrode support 22). The extension electrode film 72 is adhered to the back surface 22 b of the counter electrode support 22. In this case, one of the pair of extraction electrode portions 71 may be provided on the photoelectrode 41, and the other may be provided on the counter electrode 42. Further, both of the pair of extraction electrode portions 71 may be provided on the counter electrode 42.
 図10に示す第5変形例の保護層付き色素増感型太陽電池1Eのように、D1方向に隣り合う発電部44が、互いに電気的に並列に接続されていてもよい(即ち、互いに隣接するセル同士が電気的に並列に接続されていてもよい)。保護層付き色素増感型太陽電池1Eでは、絶縁部50A、50Bが設けられていないため、D1方向に隣り合う発電部44が、互いに電気的に並列に接続される。 As in the dye-sensitized solar cell with a protective layer 1E of the fifth modified example shown in FIG. 10, the power generation units 44 adjacent to each other in the D1 direction may be electrically connected in parallel to each other (that is, adjacent to each other). May be electrically connected in parallel.) In the dye-sensitized solar cell 1E with the protective layer, since the insulating units 50A and 50B are not provided, the power generating units 44 adjacent in the D1 direction are electrically connected in parallel to each other.
 なお、色素増感型太陽電池10は、発電部44を1つのみ備えている構成(いわゆる単セルタイプ)であってもよい。また、色素増感型太陽電池10は、保護層2、取り出し配線3がなくてもよい。 The dye-sensitized solar cell 10 may have a configuration including only one power generation unit 44 (a so-called single cell type). Further, the dye-sensitized solar cell 10 may not have the protective layer 2 and the lead-out wiring 3.
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the components in the embodiment with known components without departing from the spirit of the present invention, and the above-described modifications may be appropriately combined.
1、1A、1B、1C、1D、1E 保護層付き色素増感型太陽電池(保護層付き太陽電池モジュール)
2 保護層
2a 開口
3 配線
10 色素増感型太陽電池(太陽電池モジュール)
12 無機半導体層(半導体層)
14 電荷移動体(電解液)
21 光電極支持体(基材)
22 対向電極支持体(基材)
31 光電極導電層(透明電極膜)
32 対向電極導電層(透明電極膜)
41 光電極
42 対向電極
44 発電部
46 封止材
71 取り出し電極部
72 延長電極膜
1, 1A, 1B, 1C, 1D, 1E Dye-sensitized solar cell with protective layer (solar cell module with protective layer)
2 Protective layer 2a Opening 3 Wiring 10 Dye-sensitized solar cell (solar cell module)
12 inorganic semiconductor layer (semiconductor layer)
14 Charge transfer body (electrolyte)
21 Photoelectrode support (substrate)
22 Counter electrode support (substrate)
31 Photoelectrode conductive layer (transparent electrode film)
32 Counter electrode conductive layer (transparent electrode film)
41 Photoelectrode 42 Counter electrode 44 Power generation part 46 Sealant 71 Extraction electrode part 72 Extension electrode film

Claims (6)

  1.  表面同士が間隔をあけて対向する光電極および対向電極と、
     前記光電極と前記対向電極との間に充填される電解液と、
     前記光電極と前記対向電極との間に前記電解液を封止して発電部を形成する封止材と、
     前記光電極または前記対向電極に設けられ前記発電部に電気的に接続された取り出し電極部と、
     前記取り出し電極部に電気的に接続され、前記取り出し電極部から延長されて前記対向電極の裏面の少なくとも1部を覆うように配置された延長電極膜と、を備えている太陽電池モジュール。
    A photoelectrode and a counter electrode whose surfaces face each other at an interval,
    An electrolyte filled between the photoelectrode and the counter electrode,
    A sealing material that seals the electrolytic solution between the photoelectrode and the counter electrode to form a power generation unit,
    An extraction electrode unit provided on the photoelectrode or the counter electrode and electrically connected to the power generation unit,
    An extended electrode film that is electrically connected to the extraction electrode portion, is extended from the extraction electrode portion, and is disposed so as to cover at least a part of the back surface of the counter electrode.
  2.  前記光電極は、透明電極膜と、色素が吸着され前記透明電極膜に積層された半導体層と、を備え、
     前記光電極の平面視において、前記延長電極膜は、前記半導体層のうちの少なくとも一部に重なっている請求項1に記載の太陽電池モジュール。
    The photoelectrode includes a transparent electrode film, and a semiconductor layer in which a dye is adsorbed and stacked on the transparent electrode film,
    2. The solar cell module according to claim 1, wherein the extension electrode film overlaps at least a part of the semiconductor layer in a plan view of the photoelectrode. 3.
  3.  前記半導体層は、第1の方向に間隔をあけて複数配置され、
     前記封止材は、前記第1の方向に隣り合う前記半導体層の間に配置され、前記発電部を前記第1の方向に沿って複数形成し、
     前記第1の方向に隣り合う前記発電部は、互いに電気的に接続され、
     前記取り出し電極部は、前記光電極または前記対向電極における前記第1の方向の端部に設けられている請求項2に記載の太陽電池モジュール。
    A plurality of the semiconductor layers are arranged at intervals in a first direction;
    The sealing material is disposed between the semiconductor layers adjacent to each other in the first direction, and a plurality of the power generation units are formed along the first direction.
    The power generation units adjacent in the first direction are electrically connected to each other,
    The solar cell module according to claim 2, wherein the extraction electrode portion is provided at an end of the photoelectrode or the counter electrode in the first direction.
  4.  前記光電極および前記対向電極はそれぞれ、基材と、前記基材の表面に積層された透明電極膜と、を備え、
     前記取り出し電極部は、前記光電極の前記透明電極膜または前記対向電極の前記透明電極膜に設けられ、
     前記延長電極膜は、前記取り出し電極部から延長されて前記対向電極の前記基材の裏面の少なくとも1部を覆うように配置されている請求項1に記載の太陽電池モジュール。
    The photoelectrode and the counter electrode each include a substrate, and a transparent electrode film laminated on the surface of the substrate,
    The extraction electrode portion is provided on the transparent electrode film of the photoelectrode or the transparent electrode film of the counter electrode,
    2. The solar cell module according to claim 1, wherein the extension electrode film is arranged so as to extend from the extraction electrode portion and cover at least a part of a back surface of the base of the counter electrode. 3.
  5.  請求項1から4のいずれか1項に記載の太陽電池モジュールと、
     前記太陽電池モジュールを保護する保護層と、を備えている保護層付き太陽電池モジュール。
    A solar cell module according to any one of claims 1 to 4,
    And a protective layer for protecting the solar cell module.
  6.  前記保護層に形成された開口を通して前記延長電極膜に電気的に接続された取り出し配線を更に備えている請求項5に記載の保護層付き太陽電池モジュール。 6. The solar cell module with a protective layer according to claim 5, further comprising a lead-out line electrically connected to the extension electrode film through an opening formed in the protective layer. 7.
PCT/JP2019/034524 2018-09-03 2019-09-03 Solar cell module and solar cell module with protective layer WO2020050239A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020541219A JPWO2020050239A1 (en) 2018-09-03 2019-09-03 Solar cell module and solar cell module with protective layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-164576 2018-09-03
JP2018164576 2018-09-03

Publications (1)

Publication Number Publication Date
WO2020050239A1 true WO2020050239A1 (en) 2020-03-12

Family

ID=69722301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034524 WO2020050239A1 (en) 2018-09-03 2019-09-03 Solar cell module and solar cell module with protective layer

Country Status (3)

Country Link
JP (1) JPWO2020050239A1 (en)
TW (1) TW202021145A (en)
WO (1) WO2020050239A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037002A (en) * 2013-08-09 2015-02-23 株式会社フジクラ Electrode, and dye-sensitized solar cell element having the same
WO2018025823A1 (en) * 2016-08-02 2018-02-08 日本ゼオン株式会社 Solar cell module
WO2018025822A1 (en) * 2016-08-02 2018-02-08 日本ゼオン株式会社 Solar cell module
JP2018082137A (en) * 2016-11-07 2018-05-24 積水化学工業株式会社 Solar battery module, and method for manufacturing solar battery module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037002A (en) * 2013-08-09 2015-02-23 株式会社フジクラ Electrode, and dye-sensitized solar cell element having the same
WO2018025823A1 (en) * 2016-08-02 2018-02-08 日本ゼオン株式会社 Solar cell module
WO2018025822A1 (en) * 2016-08-02 2018-02-08 日本ゼオン株式会社 Solar cell module
JP2018082137A (en) * 2016-11-07 2018-05-24 積水化学工業株式会社 Solar battery module, and method for manufacturing solar battery module

Also Published As

Publication number Publication date
TW202021145A (en) 2020-06-01
JPWO2020050239A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
EP2683020B1 (en) Dye-sensitized solar cell module
EP2109150A1 (en) Solar cell module, wiring member for solar cell, and method for manufacturing solar cell module
TWI665694B (en) Method for producing solar cell
JP5759634B2 (en) Electrical module
TWI650785B (en) Electrical module and method of manufacturing the same
WO2020050239A1 (en) Solar cell module and solar cell module with protective layer
JP6918521B2 (en) Electric module and manufacturing method of electric module
WO2018116643A1 (en) Solar cell module and method for manufacturing solar cell module
JP7164362B2 (en) electrical module
JP4606754B2 (en) Photoelectric conversion element
JP5312284B2 (en) Solar cell module and manufacturing method thereof
JPWO2019065430A1 (en) Solar cell module and manufacturing method of solar cell module
JP7107788B2 (en) Electric module and method of manufacturing an electric module
WO2017099217A1 (en) Electrical module and method for manufacturing same
JP5688344B2 (en) Electric module and method of manufacturing electric module
JP2020155551A (en) Dye-sensitized solar cell with protective layer
JP2020047827A (en) Dye-sensitized solar cell with protective layer
WO2019146684A1 (en) Electric module and method for manufacturing electric module
TW202027293A (en) Photovoltaic module and method of manufacturing the same
JP2020150223A (en) Electric module and manufacturing method of electric module
TWI535046B (en) Solar cell module and method for connecting the same
WO2019044580A1 (en) Solar cell device and solar cell array
JP2013073856A (en) Manufacturing method of electric module and electric module
JP2015041694A (en) Joint material assembly for solar battery, solar battery module, and manufacturing method of solar battery module
KR20140045015A (en) Dye-sensitized solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856922

Country of ref document: EP

Kind code of ref document: A1