WO2017099016A1 - Layered film - Google Patents

Layered film Download PDF

Info

Publication number
WO2017099016A1
WO2017099016A1 PCT/JP2016/085904 JP2016085904W WO2017099016A1 WO 2017099016 A1 WO2017099016 A1 WO 2017099016A1 JP 2016085904 W JP2016085904 W JP 2016085904W WO 2017099016 A1 WO2017099016 A1 WO 2017099016A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated film
wavelength
film
layer
laminated
Prior art date
Application number
PCT/JP2016/085904
Other languages
French (fr)
Japanese (ja)
Inventor
松居久登
合田亘
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017503037A priority Critical patent/JP6780636B2/en
Priority to KR1020187005748A priority patent/KR102655116B1/en
Priority to CN201680057914.9A priority patent/CN108136745B/en
Publication of WO2017099016A1 publication Critical patent/WO2017099016A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a laminated film excellent in ultraviolet cut property and visible light transmittance.
  • Thermoplastic resin films especially biaxially stretched polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. Are widely used as substrate films.
  • substrate films In recent years, in the flat panel display, touch panel field, and in-vehicle panel display applications, the trend toward cost reduction and thinning / miniaturization / flexibility of displays is rapidly progressing, and the demand for various thin film optical films is increasing. .
  • Examples of the optical film mounted on the display include a polarizer protective film, a transparent conductive film, and a retardation film for use in liquid crystal displays. Films used for these applications are required to have UV-cutting properties in order to prevent deterioration of liquid crystal molecules and polarizers (PVA) in the polarizing plate due to UV rays entering from the outside and UV rays contained in backlight light.
  • PVA liquid crystal molecules and polarizers
  • the mechanism for preventing the precipitation of the absorbent becomes insufficient, and the problem of deterioration in the reliability test becomes remarkable. Since the additive concentration of the absorbent can be reduced by increasing the thickness, the above problem can be solved, but the problem arises that the thickness of the image display device increases against the demand for downsizing and thinning of the market. .
  • Patent Documents 2 to 4 there is a method using a fluorescent brightening agent as an absorbent as an object of preventing coloring when a light beam having a wavelength longer than 430 nm is cut.
  • a fluorescent brightening agent as an absorbent as an object of preventing coloring when a light beam having a wavelength longer than 430 nm is cut.
  • ultraviolet rays are irradiated. In this case, the film itself emits blue fluorescence, which causes a problem that the quality of display is significantly impaired.
  • the film mounted on the display is required to maintain not only the optical quality such as hue but also the mechanical properties such as thickness in the reliability test.
  • the film shrinks due to heat treatment and causes an increase in thickness the absorption performance of ultraviolet absorbers and pigments increases, causing a problem that undesired coloring occurs.
  • the above-mentioned drawbacks are eliminated, and there is no bleed out during film formation, and it is possible to maintain optical performance such as hue and white turbidity (haze) even in a long-term reliability test. It aims at providing the highly transparent laminated film excellent in the rate.
  • the present invention has the following configuration. That is, It is a film in which five or more layers alternately composed of a layer mainly composed of a thermoplastic resin A (A layer) and a layer mainly composed of a thermoplastic resin B different from the thermoplastic resin A (B layer),
  • the laminated film is characterized in that the light transmittance at a wavelength of 410 nm is 60% or less and the light transmittance at a wavelength of 440 nm is 80% or more.
  • the laminated film of the present invention maintains a color tone for a long period of time when it is mounted on an image display device without bleeding out various additives including an ultraviolet absorber during film formation by using a laminated structure. There is an effect that an image can be displayed with high quality.
  • the laminated film of the present invention has five or more layers alternately composed of a layer mainly composed of the thermoplastic resin A (A layer) and a layer mainly composed of the thermoplastic resin B different from the thermoplastic resin A (B layer). It is a laminated film, and it is necessary that the light transmittance at a wavelength of 410 nm is 60% or less and the light transmittance at a wavelength of 440 nm is 80% or more.
  • thermoplastic resin in the present invention examples include polyethylene, polypropylene, poly (1-butene), poly (4-methylpentene), polyisobutylene, polyisoprene, polybutadiene, polyvinylcyclohexane, polystyrene, and poly ( ⁇ -methylstyrene).
  • vinyl monomer copolymer resins such as vinyl chlor
  • Acrylic resins typified by polyethylene, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyester resins typified by polyethylene-2,6-naphthalate, etc.
  • polyethers typified by polyethylene oxide, polypropylene oxide, polyacrylene glycol Resin, diacetylcellulose, triacetylcellulose, propionylcellulose, butyrylcellulose, Cetylpropionyl cellulose, cellulose ester resin typified by nitrocellulose, biodegradable polymer typified by polylactic acid, polybutyl succinate, etc., polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl butyral, polyacetal, Polyglycolic acid, polycarbonate, polyketone, polyethersulfone, polyetheretherketone, modified polyphenylene ether, polyphenylene sulfide, polyetherimide, polyimide, polysiloxane,
  • thermoplastic resin used in the present invention is preferably a synthetic polymer, and more preferably polyolefin, acrylic, polyester, cellulose ester, polyvinyl butyral, polycarbonate, and polyethersulfone.
  • polyethylene, polypropylene, polymethyl methacrylate, polyester, and triacetyl cellulose are particularly preferable. These may be used singly or as two or more polymer blends or polymer alloys.
  • the thermoplastic resin B is not the same thermoplastic resin as the thermoplastic resin A but a resin having a different refractive index.
  • the wavelength of the light beam to be reflected is determined as one based on the layer thickness of the laminated resin and the refractive index difference between two different thermoplastic resins. For this reason, when the same refractive index is used, light reflection at the thermoplastic resin interface does not occur.
  • two types of parameters that is, the resin layer thickness and the refractive index difference should be controlled.
  • the difference in refractive index between the plastic resin A and the thermoplastic resin B is preferably 0.01 or more, more preferably 0.03 or more, and still more preferably 0.05 or more.
  • these different thermoplastic resins A and B have different thermal properties in addition to different refractive indexes. Different thermal properties refer to those showing different melting points and glass transition temperatures in differential scanning calorimetry (DSC). When the melting point and the glass transition temperature are different, the orientation state of each layer can be highly controlled in the step of stretching and heat treating the laminated film.
  • the glass transition temperature and the melting point that affect the orientation state of the resin in the stretching step are preferably different by 0.1 ° C. or more between the thermoplastic resin A and the thermoplastic resin B.
  • the thermoplastic resins described above it is preferable that at least one of the thermoplastic resin A and the thermoplastic resin B is made of a polyester resin from the viewpoint of strength, heat resistance, transparency, and versatility. Furthermore, it is most preferable that both the thermoplastic resin A and the thermoplastic resin B are polyester resins from the viewpoints of adhesion and lamination. Below, the aspect of the polyester-type resin which is a preferable film base material is described.
  • the polyester in the present invention is a condensation polymer obtained by polymerization from a monomer mainly composed of an aromatic dicarboxylic acid or an aliphatic dicarboxylic acid and a diol.
  • a monomer mainly composed of an aromatic dicarboxylic acid or an aliphatic dicarboxylic acid and a diol As an industrial production method of polyester, as is well known, transesterification (transesterification) or direct esterification (direct polymerization) is used.
  • aromatic dicarboxylic acid for example, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′- Examples thereof include diphenyl dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, and 4,4′-diphenyl sulfone dicarboxylic acid.
  • aliphatic dicarboxylic acid examples include adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, 1,4-cyclohexanedicarboxylic acid and ester derivatives thereof.
  • terephthalic acid and 2,6-naphthalenedicarboxylic acid exhibiting a high refractive index are preferably used.
  • One of these dicarboxylic acid components may be used, or two or more dicarboxylic acid components may be used in combination.
  • diol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis (4- Hydroxyethoxyphenyl) propane, isosorbate, spiroglycol and the like. Of these, ethylene glycol is preferably used. These diol components may be used alone or in combination of two or more.
  • the polyester resin includes, for example, polyethylene terephthalate and its copolymer, polyethylene naphthalate and its copolymer, polybutylene terephthalate and its copolymer, polybutylene naphthalate and its copolymer, and polyhexamethylene. It is also possible to use terephthalate and its copolymer, polyhexamethylene naphthalate and its copolymer, and the like.
  • the copolymerization component it is preferable that at least one of the dicarboxylic acid component and the diol component is copolymerized.
  • alternately laminating means that the A layers mainly composed of the thermoplastic resin A and the B layers mainly composed of the thermoplastic resin B are laminated in a regular arrangement in the thickness direction.
  • a (BA) n (n is a natural number) refers to a state in which a resin is laminated according to a regular arrangement.
  • a plurality of resins of thermoplastic resin A and thermoplastic resin B are sent out from different flow paths using two or more extruders.
  • a multi-manifold type feed block, a static mixer, or the like that is a laminating apparatus can be used.
  • a method using a feed block having fine slits is preferable for realizing highly accurate lamination.
  • the thickness and distribution of each layer can be achieved by changing the length and width of the slit to incline the pressure loss.
  • the length of the slit refers to the length of the comb-tooth portion that forms a flow path for alternately flowing the A layer and the B layer in the slit plate.
  • the thermoplastic resin A in the present invention is preferably a thermoplastic resin exhibiting crystallinity from the point of being located in the outermost layer of the laminated film as described above.
  • a laminated film can be obtained in the same manner as the film forming step of a single film made of a thermoplastic resin exhibiting crystallinity.
  • the thermoplastic resin A is made of an amorphous resin, for example, when a biaxially stretched film is obtained in the same manner as a general sequential biaxially stretched film described later, it is manufactured by adhesion to a production facility such as a roll or a clip. Problems such as film defects and deterioration of surface properties may occur.
  • thermoplastic resin A polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene naphthalate, which are crystalline polyesters, as the thermoplastic resin A.
  • the thermoplastic resin B is preferably a polyester-based resin including the same basic skeleton as the thermoplastic resin A from the viewpoint of adhesion and lamination with the thermoplastic resin A.
  • the basic skeleton is a repeating unit constituting the resin.
  • polyethylene terephthalate In the case of polyethylene terephthalate, ethylene terephthalate is used, and in the case of polyethylene naphthalate, ethylene naphthalate is the basic skeleton. By having the same skeleton, the lamination accuracy is high, and delamination at the lamination interface is less likely to occur. In contrast to polyethylene terephthalate, polyethylene naphthalate tends to cause polymer delamination in the plane direction, but more easily causes delamination. Therefore, it is more preferable to use polyethylene terephthalate as a basic skeleton from the viewpoint of a laminated film.
  • the thermoplastic resin B different from the thermoplastic resin A includes a copolymer component that has a polyethylene terephthalate skeleton and does not constitute the basic skeleton so as not to be a main component. It is preferably designed or designed so that the amount of copolymerization component is different from the amount of copolymerization component contained in the thermoplastic resin A.
  • Suitable copolymer components when polyethylene terephthalate is used as a basic skeleton include cyclohexanedimethanol, bisphenol A ethylene oxide, spiroglycol, isophthalic acid, cyclohexanedicarboxylic acid, naphthalenedicarboxylic acid, polyethylene glycol 2000, m-polyethylene glycol 1000, Examples thereof include m-polyethylene glycol 2000, m-polyethylene glycol 4000, m-polypropylene glycol 2000, bisphenylethylene glycol fluorene (BPEF), fumaric acid, acetoxybenzoic acid and the like.
  • BPEF bisphenylethylene glycol fluorene
  • spiroglycol, isophthalic acid, and 2,6-naphthalenedicarboxylic acid are preferably copolymerized.
  • spiroglycol is copolymerized, the glass transition temperature difference from polyethylene terephthalate is small, so that overstretching is difficult during molding and delamination does not occur easily.
  • isophthalic acid can greatly reduce crystallinity because the position of the functional group in the benzene ring is not linear, while it can exhibit a high refractive index as a whole because of its high planarity.
  • the number of layers in the laminated film of the present invention should be 5 or more.
  • an ultraviolet absorber and / or a dye having a maximum wavelength that is the maximum in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm By setting it as a laminated structure, precipitation to the surface of an additive can be suppressed.
  • the thermoplastic resin is crystalline
  • the crystalline layer forms a densely packed layer by folding the molecular structure, so that it can serve as a lid that suppresses the precipitation of various additives present inside. It is preferable because it plays a role.
  • Retardation is generally calculated from the product of the maximum value of the refractive index difference between two orthogonal directions in the plane of the film and the film thickness. Since the refractive index cannot be measured, the retardation value calculated by an indirect method is used as retardation. Specifically, the value measured by the phase difference measuring device KOBRA series that measures retardation using an optical method of Oji Scientific Instruments Co., Ltd. is used. For example, consider the case where the optical film used for a display is used for a display equipped with a linearly polarized polarizing plate. When the retardation value is high and the orientation of the resin is not uniform within the laminated film surface, the polarization state varies in the surface due to the retardation, so interference color and rainbow unevenness when mounted on a liquid crystal display.
  • the present invention when a crystalline thermoplastic resin that exhibits orientation by stretching or crystallization is included, it is preferable to reduce the film thickness as much as possible in order to reduce retardation. On the other hand, it is also preferable to design the orientation angle of the laminated film to be low by stretching it in a specific direction. Even when the retardation is relatively high by attaching the laminated film so that the optical axis of the transmitted light from the inside of the display and the orientation direction of the laminated film are the same or orthogonal when mounting the display. Since there is no variation in, there will be no problem of reduced visibility such as rainbow unevenness.
  • the orientation angle in the width direction of the laminated film is preferably 10 ° or less, more preferably 7 ° or less, and further preferably 5 ° or less.
  • the orientation angle in the width direction of the laminated film exceeds 10 °, depending on the size of the display to be bonded, rainbow unevenness due to the orientation angle changing in the display surface is observed, and the polarization performance is It is not preferable because it is damaged.
  • the orientation angle here is 0 ° in the film width direction.
  • the laminated film of the present invention is required to have a light transmittance of 60% or less at a wavelength of 410 nm. If the light transmittance of the laminated film is not 60% or less at 410 nm, when the laminated film of the present invention is used as a display application, the liquid crystal display may deteriorate the internal liquid crystal layer and the polarizer, and the organic EL display. In the display having the light emitting element, it is impossible to effectively prevent the light emitting layer from being altered or deteriorated.
  • the light transmittance at a wavelength of 410 nm is preferably 40% or less, more preferably 30% or less, and still more preferably 20% or less.
  • the light transmittance at a wavelength of 410 nm is reduced to 40% or less, more preferably to 20% or less. Thus, it is possible to prevent it for a longer period.
  • the light transmittance at a wavelength of 410 nm is more than 20% and not more than 60%, in addition to being able to protect the deterioration of the contents of the display compared to the conventional case, when light cut is achieved using reflection Therefore, it is possible to suppress the reflected hue caused by the light beam reflected on the viewer side, so that the black color when the display is not displayed can be made clearer.
  • the laminated film of the present invention has a light transmittance of 20% or less in a wavelength range of 380 to 395 nm which is a visible light short wavelength region. Even if the light transmittance at a wavelength of 410 nm is low, if light in the wavelength range having energy stronger than that at a wavelength of 410 nm cannot be cut, there is a high possibility that light deterioration will be promoted. More preferably, it is 15% or less, and more preferably 10%.
  • the maximum value of light transmittance in the ultraviolet region with a wavelength of 300 nm to 380 nm is 10% or less.
  • the UV region with a wavelength of 300 nm to 380 nm is a wavelength region that has a strong light energy and greatly contributes to the degradation of important parts of the image display such as the polarizer, liquid crystal, and light emitting element inside the display. It is desirable.
  • a polarizer used in a liquid crystal image display device has a function of transmitting light having only a specific vibration direction, and is a polyvinyl alcohol (PVA) film dyed with iodine or a dichroic dye. Is the most used.
  • PVA polyvinyl alcohol
  • This polarizer is made of an organic material, and particularly deteriorates when it receives ultraviolet rays having a high energy in the wavelength range of 280 to 380 nm. Therefore, the ultraviolet rays in this region are shielded before reaching the polarizers. It is possible to prevent the deterioration of the polarizer or the deterioration of the liquid crystal molecules. From this, the maximum value of the light transmittance at a wavelength of 300 nm to 380 nm is 5% or less, more preferably 2% or less.
  • the laminated film of the present invention is required to have a light transmittance of 80% or more at a wavelength of 440 nm.
  • the light transmittance at a wavelength of 440 nm is less than 80%, the light in the visible light short wavelength region is cut, so that the laminated film itself exhibits a strong yellow color and cannot exhibit excellent transparency.
  • the light ray derived from a blue light emitting element will be cut, and it will lead to the color tone deterioration in the case of an image display.
  • the light transmittance at a wavelength of 440 nm is preferably 85% or more, more preferably 90% or more.
  • the laminated film of the present invention preferably has an average light reflectance at a wavelength of 380 to 410 nm of 20% or more. It is possible to reflect light of a specific wavelength according to the thicknesses of the alternately laminated resin layers and the refractive index difference between two different types of resins. Also, by changing the thickness distribution of the laminated layer, the reflected wavelength band can be expanded and contracted, the light reflectance can be improved, and the thickness can be freely shifted by changing the thickness while keeping the lamination ratio constant. Can do. At this time, it is possible to design the cut edge of the reflection band sharply or gently by controlling the thickness distribution of the laminated layer.
  • the cut edge of the reflection band When designing the cut edge of the reflection band to be sharp, it can achieve a sharp cut that is superior to the addition of general UV absorbers, dyes and pigments, and prevents unwanted light cuts. It can be preferably used for materials that require selective wavelength cut.
  • the average light reflectance is more preferably 25% or more, and further preferably 30% or more.
  • the reflection wavelength depends on the layer thickness, it is affected by a slight change in film thickness in units of 0.1 ⁇ m and varies sensitively. Therefore, when it is designed so that the long wavelength end of the reflection band is located in the vicinity of 440 nm, there is a possibility that the wavelength region which is not originally desired is cut due to a slight increase in thickness.
  • the reflection wavelength range is designed to be not less than 300 nm and not more than 410 nm, and light in the wavelength range of 380 to 430 nm is maximized in the visible light short wavelength range of 430 nm to 430 nm, which will be described later. It is a more preferable embodiment to cut in combination with absorption by a dye having a maximum wavelength.
  • the layer thickness distribution that increases or decreases from one side of the film to the opposite side, or the layer thickness distribution that decreases after the layer thickness increases from one side of the film to the center of the film also preferred is a layer thickness distribution that increases after the layer thickness decreases from one side of the film toward the center of the film.
  • the method of changing the layer thickness distribution there are continuous, linear, equiratio, difference number series, and 10 to 50 layers have almost the same layer thickness, and the layer thickness changes stepwise. Those that do are preferred.
  • the laminated film of the present invention it is preferable to contain an ultraviolet absorber and / or a dye having a maximum wavelength that is the maximum in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm.
  • the ultraviolet absorber in the present invention refers to an additive having a maximum wavelength that is maximum in the ultraviolet region having a wavelength of 300 to 380 nm.
  • the maximum wavelength in the present invention refers to a peak wavelength having the maximum absorbance when having a plurality of maximum peaks.
  • the ultraviolet absorber and the dye having the maximum wavelength that is maximum in the visible light short wavelength region of more than 380 nm and not more than 430 nm may have the ability to absorb a part of each other region.
  • the additive when the maximum of 375 nm is maximum, the additive is an ultraviolet absorber, and when the maximum of 390 nm is maximum, it exceeds 380 nm in the visible light short wavelength region of 430 nm or less. It is defined as a dye having the maximum maximum wavelength.
  • the ultraviolet absorber or the dye having the maximum wavelength in the short wavelength range of visible light exceeding 380 nm and not exceeding 430 nm may be contained singly or in combination with one or more kinds of ultraviolet rays. You may contain simultaneously the absorber and the pigment
  • the ultraviolet absorber and / or the dye having the maximum wavelength that is the maximum in the visible light short wavelength region of more than 380 nm and not more than 430 nm may be contained only in the A layer or only in the B layer. You may make it contain in a layer.
  • the B layer located in the inner layer of the laminated film it is contained only in the B layer located in the inner layer of the laminated film, or compared with the A layer where the B layer located in the inner layer of the laminated film is located in the outermost layer. It is preferable to increase the content concentration.
  • the A layer including the outermost layer contains an ultraviolet absorber and a dye having a maximum wavelength exceeding 380 nm and a visible light short wavelength region of 430 nm or less
  • the contained ultraviolet absorber is precipitated on the film surface. (Bleed-out phenomenon) and the phenomenon that it sublimates and volatilizes near the base easily occur, and this causes the film-forming machine to be contaminated, and the deposits have adverse effects such as defects in the film-forming process. May affect.
  • Ultraviolet absorbers are generally specialized in the ability to absorb ultraviolet rays in a wavelength region of 380 nm or less, near the boundary between the ultraviolet region and the visible light region (near 380 to 400 nm), or in the short wavelength region of visible light (400 nm to 400 nm).
  • the ability to absorb 430 nm) light is not excellent. Therefore, in order to cut light rays in the vicinity of the boundary between the ultraviolet region and the visible light region (near 380 to 400 nm) and in the short wavelength region of visible light (400 to 430 nm) only by containing the ultraviolet absorber, one described later Except for the long wavelength ultraviolet absorption of the part, it is necessary to make it contain in high concentration.
  • examples of the ultraviolet absorber that can be achieved by a single ultraviolet absorber include 2- (5-chloro-2H-benzotriazole). -2-yl) -6-tert-butyl-4-methylphenol and 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine Can be mentioned.
  • a dye having a maximum wavelength that exceeds the wavelength range of 380 nm to 430 nm or less is generally excellent in cutting performance in the visible light short wavelength region, but has poor ability to cut in the ultraviolet region. Therefore, in order to cut only the maximum wavelength in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm and cutting the light ray in the ultraviolet region, it exceeds 380 nm, which will be described later, to 430 nm. Except for the dye having the maximum wavelength that is maximum in the visible light short wavelength region below, it is necessary to contain it at a high concentration. Moreover, when it contains in high concentration, since it absorbs the visible light area
  • the ultraviolet absorber and the dye having the maximum wavelength that is the maximum in the visible light short wavelength region of more than 380 nm and less than or equal to 430 nm since each region has strengths, the bleedout due to the addition of high concentration, it is more effective to combine one or more kinds of ultraviolet absorbers and one or more kinds of dyes having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm. preferable.
  • one or more kinds of ultraviolet absorbers and one or more kinds of dyes having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm are combined, and the light transmittance described above is combined.
  • other ultraviolet absorbers that can be used when achieving the above include benzotriazole, benzophenone, benzoate, triazine, benzoxazinone, salicylic acid, and the like
  • Various kinds of skeleton UV absorbers can be used.
  • the same ultraviolet absorbers may be combined with each other, or different types of ultraviolet absorbers may be combined.
  • the ultraviolet absorber in the present invention is preferably an ultraviolet absorber having a maximum absorption wavelength between 320 and 380 nm.
  • the maximum wavelength is smaller than 320 nm, it is difficult to sufficiently cut the ultraviolet region on the long wavelength side, and a combination with a dye having a maximum wavelength in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm is used. Even when it is performed, an insufficiently cut region that exhibits a light transmittance of 10% or more in the region at a wavelength of 300 to 380 nm is often generated. Therefore, in order to make the maximum value of the light transmittance in the ultraviolet region with a wavelength of 300 to 380 nm 10% or less, it is preferable to use an ultraviolet absorber marked with (*).
  • the benzotriazole-based UV absorber is not particularly limited, and examples thereof include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (*) and 2- (2′-hydroxy-3 ′, 5′- Di-tert-butylphenyl) benzotriazole (*), 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) -5-chlorobenzotriazole (*), 2- (2′-hydroxy- 3′-tert-butyl-5′-methylphenyl) benzotriazole (*), 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole (*), 2- (2′-hydroxy-3 ′, 5′-ditertiaryamylphenyl) -5-chlorobenzotriazole (*), 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′) , 6 " Tetrahydrophthalimidomethyl)
  • the benzophenone-based ultraviolet absorber is not particularly limited.
  • the benzoate-based ultraviolet absorber is not particularly limited, and examples thereof include resorcinol monobenzoate, 2,4-ditertiarybutylphenyl-3,5-ditertiarybutyl-4-hydroxybenzoate, and 2,4-ditertiary acid.
  • the triazine-based ultraviolet absorber is not particularly limited, but 2- (2-hydroxy-4-hexyloxyphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-propoxy-5- Methylphenyl) -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- (2-hydroxy-4-hexyloxyphenyl) -4,6-dibiphenyl-s-triazine, 2,4 -Diphenyl-6- (2-hydroxy-4-methoxyphenyl) -s-triazine, 2,4-diphenyl-6- (2-hydroxy-4-ethoxyphenyl) -s-triazine, 2,4-diphenyl-6 -(2-hydroxy-4-propoxyphenyl) -s-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl)- -Triazine, 2,4-bis (2-hydroxy-4-
  • UV absorbers examples include salicylic acid-based compounds such as phenyl salicylate, t-butylphenyl salicylate, p-octylphenyl salicylate, and others, and other natural products (for example, oryzanol, shea butter, baicalin). Etc.), biological systems (for example, keratinocytes, melanin, urocanin, etc.) can also be used.
  • Inorganic ultraviolet absorbers are not compatible with the base resin, leading to an increase in haze and worsening the visibility when displaying an image. Therefore, it is not preferable to use them in laminated films for display applications.
  • the ultraviolet absorber used in the present invention may be the same as the above-described ultraviolet absorber, in which the oxygen atom is replaced with a sulfur atom in the same family. Specifically, an ether group converted into a thioether group, a hydroxyl group into a mercapto group, and an alkoxy group into a thio group may be used.
  • an ultraviolet absorber containing a substituent having a sulfur atom thermal decomposition of the ultraviolet absorber can be suppressed when heated and kneaded into the resin.
  • sulfur atoms and selecting an appropriate alkyl chain the intermolecular force between the UV absorbers can be suppressed and the melting point can be lowered, so compatibility with thermoplastic resins is improved. Can be raised. By increasing the compatibility, it is possible to maintain transparency, which is an important factor of the optical film, even when a high concentration is added.
  • the ultraviolet absorber used in the present invention preferably has a long alkyl chain of the functional group constituting the ultraviolet absorber in addition to having a maximum absorption wavelength in the wavelength range of 320 to 380 nm.
  • the length of the alkyl group contained in the functional group is preferably 18 or less, more preferably 4 or more and 10 or less, and still more preferably 6 or more and 8 or less.
  • the ultraviolet absorber may be kneaded as an additive with the thermoplastic resin, or may be copolymerized by reacting with a terminal group or side chain of the thermoplastic resin.
  • copolymerizing and fixing with the thermoplastic resin that composes the film it is possible to suppress bleed-out due to molecular thermal motion during heating, so that UV-cutting performance can be maintained for a long time while maintaining transparency. Is possible.
  • one or more kinds of ultraviolet absorbers and one or more kinds of dyes having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm are combined, and the light transmittance described above is combined.
  • a dye having a maximum wavelength that is maximum in the visible light short wavelength region exceeding 430 nm and 430 nm or less which can be used in achieving the above
  • the above-described dye having a maximum wavelength in the visible light short wavelength region exceeding 380 nm and 430 nm or less is used.
  • Other dyes having the maximum maximum wavelength can also be used.
  • the dye having the maximum wavelength that is the maximum in the visible light short wavelength region of 380 nm or more and 430 nm or less can be dissolved in a solvent for the purpose of addition to a hard coat layer or an adhesive layer described later, and chroma.
  • Dyes excellent in heat resistance may be used, and pigments that are more excellent in heat resistance, moist heat resistance, and light resistance than dyes may be used.
  • Pigments can be broadly classified into organic pigments, inorganic pigments, and classical pigments, but it is preferable to use organic pigments from the viewpoint of compatibility with the thermoplastic resin to be added.
  • the dye having the maximum wavelength that is the maximum in the visible light short wavelength region of more than 380 nm and not more than 430 nm has the maximum wavelength of 390 to 420 nm.
  • the light transmittance at 440 nm is less than 80% unless a dye having a very narrow band cutting ability is selected.
  • the dye having a maximum wavelength in the wavelength band of 390 nm to 420 nm azomethine, indole, quinone, triazine, naphthalimide, phthalocyanine, and benzylidine can be preferably used.
  • the ultraviolet absorber used in the present invention and / or the dye having a maximum wavelength in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm preferably has a triazine skeleton. Since triazine-based absorbents generally have a high thermal decomposition temperature and excellent heat resistance, they are less likely to cause deterioration even when kneaded into a resin and exposed to heat for a long time in an extruder. Moreover, since the volatilization and surface precipitation of the absorbent itself hardly occur and the effect of making it difficult to deposit oligomers and other highly sublimable additives, it can be preferably used. In addition, since the absorption coefficient is high, the concentration required for achieving the desired cutability is low, and it is less likely to contaminate the film-forming process even when discharged from the die in the form of a sheet. It is.
  • the laminated film of the present invention contains a UV absorber and / or a dye having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm
  • ultraviolet rays contained in a specific layer of the laminated film The sum of the contents of the absorber and / or the pigment having the maximum wavelength that is the maximum in the visible light short wavelength region of 430 nm or more and exceeding 380 nm is Mn [wt%], and the layer thickness of the added layer is Tn [ ⁇ m]
  • ⁇ (Mn ⁇ Tn) obtained by adding the product of the sum of the contents and the layer thickness for all layers of the laminated film is 50 [wt% ⁇ ⁇ m] or less.
  • the light transmittance is lowered and the white turbidity (haze value) of the film is increased, which causes a problem of deterioration in visibility when mounted on a liquid crystal image display device or the like. It may not be preferable.
  • the total content is changed with the film thickness and the light absorption ability of various additives, no lower limit is provided, but as described above, required for an optical film used in an image display device, a polarizer or An amount of addition sufficient to have sufficient UV-cutting performance for protecting liquid crystal molecules, light emitting layers and the like is required.
  • thermoplastic resin of the present invention there are various additives other than ultraviolet absorbers and pigments having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm, such as antioxidants, heat-resistant stability Agents, weathering stabilizers, organic lubricants, organic or inorganic fine particles, fillers, antistatic agents, nucleating agents and the like may be added to such an extent that the film properties that should be originally satisfied are not deteriorated.
  • additives other than ultraviolet absorbers and pigments having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm, such as antioxidants, heat-resistant stability Agents, weathering stabilizers, organic lubricants, organic or inorganic fine particles, fillers, antistatic agents, nucleating agents and the like may be added to such an extent that the film properties that should be originally satisfied are not deteriorated.
  • the bright color In the case of using a dye having, there is a tendency that the absorption performance is lost by receiving ultraviolet rays having strong energy as compared with ultraviolet absorbers and pigments. Therefore, it is preferable to use a compound having a role of converting the energy held by ultraviolet rays into vibrational energy within the molecule, converting the converted vibrational energy into heat energy, etc., and releasing it to the outside. It is also preferable to use an additive such as an antioxidant or a singlet oxygen quencher that suppresses photo-oxidative deterioration through energy conversion.
  • an additive such as an antioxidant or a singlet oxygen quencher that suppresses photo-oxidative deterioration through energy conversion.
  • the light stabilizer is added mainly for capturing radicals generated by photooxidation, and is 0.01% by weight or more and 1% by weight with respect to the total film weight of the laminated film of the present invention. It is preferable to contain below.
  • a hindered amine compound having a 2,2,6,6-tetramethyl-piperidine ring is preferable, and the 1-position of piperidine is hydrogen, an alkyl group, an alkoxy group, a hydroxy group, an oxy radical group (—O ⁇ ), an acyloxy group.
  • a group or an acyl group is preferable, and the 4-position is more preferably a hydrogen atom, a hydroxy group, an acyloxy group, an amino group which may have a substituent, an alkoxy group or an aryloxy group. Also preferred are those having a plurality of 2,2,6,6-tetramethyl-piperidine rings in one molecule. Examples of such compounds include TINUVIN770DF, TINUVIN 152, and TINUVIN123 manufactured by BASF (formerly Ciba Specialty Chemicals), Adeka Stub LA-72, and Adeka Stub LA-81 manufactured by Adeka.
  • the light stability can be further improved by using an antioxidant and / or a singlet oxygen quencher in addition to the hindered amine light stabilizer.
  • Photodegradation of the dye is caused by an oxidation reaction. Oxygen molecules function as an oxidant, so that auto-oxidation with radical generation occurs, and the excitation energy of the dye propagates to the oxygen molecules, so that oxygen becomes a singlet oxidation state. Examples include oxygen oxidation and oxidation with superoxide ions.
  • an antioxidant a quencher for releasing excitation energy, etc., these oxidation reactions can be further suppressed.
  • the antioxidant to be used in combination with the light stabilizer is not particularly limited as long as it is a commonly used antioxidant, but a phosphorus-based antioxidant and a phenol-based antioxidant can be preferably used. .
  • the combined use of a phosphorus-based antioxidant and a phenol-based antioxidant allows the efficacy of the antioxidant to be maintained for a long time, and therefore it is preferable to appropriately use a combined system.
  • the addition concentration of the antioxidant is preferably 0.01% by weight or more and 1% by weight or less, and more preferably 0.05% by weight or more and 0.3% by weight or less. When it is 0.01% by weight or less, the effect as an antioxidant is reduced, and when it is 1% by weight or more, there is a possibility that the antioxidant is volatilized due to excessive addition.
  • a singlet oxygen quencher to be used in combination with a light stabilizer is a compound that can deactivate singlet oxygen by energy transfer from oxygen in a singlet oxidation state, for example, an ethylene-based compound such as tetramethylethylene and cyclopentene, Amines such as diethylamine, triethylamine, N-ethylimidazole, condensed polycyclic aromatic compounds such as substituted naphthalene, dimethylnaphthalene, dimethoxyanthracene, anthracene, diphenylanthracene, 1,3-diphenylisobenzofuran, 1,2,
  • aromatic compounds such as 3,4-tetraphenyl-1,3-cyclopentadiene and pentaphenylcyclopentadiene, metal complexes having a ligand can also be exemplified.
  • the metal complex compounds include transition metal coordination complexes such as nickel complexes, cobalt complexes, copper complexes, manganese complexes, and platinum complexes having a ligand such as bisdithio- ⁇ -diketone, bisphenyldithiol, and thiobisphenol.
  • a compound can be mentioned.
  • the singlet oxygen quencher is preferably added in an amount of 0.5 wt% or more and 10 wt% or less, more preferably 1 wt% or more and 8 wt% or less based on the amount of the absorbent to be oxidized and deteriorated. It is.
  • thermoplastic resin A and the thermoplastic resin B are alternately laminated.
  • the thermoplastic resin A and the thermoplastic resin B are alternately laminated.
  • the multiple interference reflection effect between the layers occurs for the light beam having the wavelength in the interference reflection region, the light beam travels through the optical path length equal to or greater than the film thickness.
  • the amount of absorption is increased, and ultraviolet rays are compared with a normal laminated film having no interference reflection effect. It becomes possible to suppress the addition amount of the absorbent.
  • the amount of various additives added can be suppressed to a small amount by targeting the ultraviolet region and / or the short-wavelength visible light region, and is an object of the present invention. Bleed-out suppression during film formation and quality after long-term reliability tests are well maintained.
  • the number of laminated films of the present invention is more preferably 200 layers or more, and still more preferably 400 layers or more.
  • the above-described interference reflection effect is more preferable as the number of layers is increased because the higher the number of layers, the higher the reflectance can be achieved with respect to light in the target wavelength band.
  • the number of layers is large, it is expected that each resin is uniformly distributed and stable film forming properties and mechanical properties are obtained.
  • the manufacturing cost increases with an increase in the size of the manufacturing apparatus and the handling property deteriorates due to the increase in film thickness.
  • the laminated film of the present invention it is preferable flexural rigidity per unit length is 1.0 ⁇ 10 -7 [N ⁇ m 2] or less.
  • Bending rigidity is an index representing strength against bending, and the higher the value, the harder the film becomes and the more easily creased during bending.
  • the bending rigidity is calculated for each of the longitudinal direction and the width direction of the laminated film, and the higher numerical value is 1.0 ⁇ 10 ⁇ 7 [N ⁇ m 2 ] is required to satisfy the following.
  • the bending rigidity is preferably 3.0 ⁇ 10 ⁇ 8 [N ⁇ m 2 ] or less, and more preferably 1.0 ⁇ 10 ⁇ 8 [N ⁇ m 2 ] or less.
  • the laminated film of the present invention preferably has a ⁇ haze of 2.0 or less when treated at 85 ° C. and 85% RH for 250 hours.
  • the 85 ° C. and 85% RH conditions are accelerated humidity and heat resistance reliability test conditions for display applications.
  • the UV absorber added inside and / or visible light exceeding 380 nm and below 430 nm. Dyes having a maximum wavelength in the short wavelength region, oligomers derived from resins, and the like are easily deposited on the film surface by thermal motion.
  • the haze value is not less than 2.0 under these conditions, the diffused light becomes strong, so that the optical film itself appears white and turbid, and the light transmittance at the time of mounting deteriorates, causing a problem in visibility. More preferably, it is 1.5 or less as a haze value after an accelerated heat test, More preferably, it is 1.0 or less.
  • the laminated film of the present invention cuts light rays not only in the ultraviolet region but also in the vicinity of the boundary between the ultraviolet region and the visible light region (around 410 nm) and has a high light transmittance in the visible light region.
  • a display application film for example, in the case of a liquid crystal image display device, a polarizer protective film or retardation film constituting a polarizing plate, various surface treatment films located on the front surface of the display having anti-glare or clear hard coat, and a position immediately before the backlight. Brightness enhancement films, antireflection films, transparent conductive films, and the like.
  • a ⁇ / 4 retardation film or a polarizer protective film constituting a circularly polarizing plate located in front of the light emitting layer, and an optical built-in for the purpose of protecting contents from external light A film etc. are mentioned.
  • a polarizer protective film located on the most visible side of the polarizing plate, or a cover glass on the viewing side of the polarizing plate and on the outermost surface of the display It is most preferable that it is disposed in a portion located inside the window film and the window film in order to take advantage of the properties of protecting the display contents from ultraviolet rays and maintaining the polarization state.
  • the laminated film of the present invention is not limited to display applications, but in fields that require light cut in the visible light short wavelength region of wavelength 410 nm or less, such as window films for building materials and automotive applications, signs for industrial material applications, etc. Steel plate laminating film, and for electronic device applications, photolithographic material process / release film, other food, medical, and ink fields, etc. It is possible.
  • thermoplastic resin in the form of pellets.
  • the pellets are dried in hot air or under vacuum as necessary, and then supplied to a separate extruder.
  • the resin melted by heating to a temperature higher than the melting point is made uniform in the amount of resin extruded by a gear pump or the like, and foreign matter or denatured resin is removed through a filter or the like.
  • These resins are formed into a desired shape by a die and then discharged. And the film laminated
  • dye is extruded on cooling bodies, such as a casting drum, and is cooled and solidified, and a casting film is obtained.
  • a wire-like, tape-like, needle-like, or knife-like electrode to be brought into close contact with a cooling body such as a casting drum by an electrostatic force and rapidly solidify.
  • a plurality of resins of thermoplastic resin A and thermoplastic resin B are sent out from different flow paths using two or more extruders, and are sent into a multilayer laminating apparatus.
  • a multilayer laminating apparatus a multi-manifold die, a feed block, a static mixer, or the like can be used.
  • a feed block having a fine slit it is preferable to use a feed block having a fine slit.
  • the apparatus does not become extremely large, so that the amount of foreign matter generated due to thermal degradation is small, and even when the number of stacks is extremely large, highly accurate stacking is possible. Also, the stacking accuracy in the width direction is significantly improved as compared with the prior art.
  • this apparatus since the thickness of each layer can be adjusted with the shape (length, width) of a slit, it becomes possible to achieve arbitrary layer thickness.
  • the casting film thus obtained is preferably biaxially stretched in the longitudinal direction and the width direction.
  • the stretching may be biaxial stretching sequentially or simultaneously biaxial stretching. Further, re-stretching may be performed in the longitudinal direction and / or the width direction.
  • stretching in the longitudinal direction refers to stretching for imparting molecular orientation in the longitudinal direction to the film, and is usually performed by a difference in peripheral speed of the roll, and this stretching may be performed in one step. Alternatively, a plurality of roll pairs may be used in multiple stages.
  • the stretching ratio varies depending on the type of resin, but usually 2 to 15 times is preferable, and 2 to 7 times is particularly preferable when polyethylene terephthalate is used as one of the resins constituting the laminated film.
  • the stretching temperature is preferably set within the range of the glass transition temperature of the resin constituting the laminated film to the glass transition temperature + 100 ° C.
  • the uniaxially stretched film thus obtained is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then functions such as slipperiness, easy adhesion, and antistatic properties are provided. It may be applied by in-line coating.
  • stretching in the width direction refers to stretching for imparting a width direction orientation to the film.
  • the film is stretched in the width direction by using a tenter while conveying the both ends of the film with clips.
  • the stretching ratio varies depending on the type of resin, but usually 2 to 15 times is preferable, and when polyethylene terephthalate is used as one of the resins constituting the film, 2 to 7 times is particularly preferable.
  • the stretching temperature is preferably from the glass transition temperature of the resin constituting the laminated film to the glass transition temperature + 120 ° C.
  • the film thus biaxially stretched is subjected to a heat treatment at a temperature not lower than the stretching temperature and not higher than the melting point in the tenter, uniformly cooled slowly, cooled to room temperature, and wound. Further, if necessary, a relaxation treatment or the like may be used in the longitudinal direction and / or the width direction during the slow cooling from the heat treatment in order to impart a low orientation angle and thermal dimensional stability of the film.
  • the resulting cast film is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then, such as slipperiness, easy adhesion, antistatic properties, etc.
  • surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then, such as slipperiness, easy adhesion, antistatic properties, etc.
  • the function may be imparted by in-line coating.
  • the simultaneous biaxial stretching machine includes a pantograph method, screw method, drive motor method, and linear motor method.
  • a linear motor system is preferred.
  • the stretching ratio varies depending on the type of resin, it is usually preferably 6 to 50 times as the area ratio.
  • the area ratio is 8 to 30 times. Is particularly preferably used.
  • the stretching temperature is preferably from the glass transition temperature of the resin constituting the laminated film to the glass transition temperature + 120 ° C.
  • the film thus biaxially stretched is preferably subsequently subjected to a heat treatment not less than the stretching temperature and not more than the melting point in the tenter in order to impart flatness and dimensional stability.
  • a heat treatment in order to suppress the distribution of the main orientation axis in the width direction, it is preferable to perform relaxation treatment in the longitudinal direction instantaneously immediately before and / or immediately after entering the heat treatment zone. After being heat-treated in this way, it is gradually cooled down uniformly, then cooled to room temperature and wound up.
  • a relaxation treatment is performed in the longitudinal direction.
  • the laminated film obtained as described above is trimmed to a required width via a winding device, and wound in a roll state so as not to be wound.
  • the thickness of the laminated film of the present invention is not particularly limited, but is preferably 1 to 500 ⁇ m. In accordance with the recent trend toward thin film for display applications, it is preferably 40 ⁇ m or less, more preferably 20 ⁇ m, and even more preferably 15 ⁇ m or less. Although there is no lower limit, an ultraviolet absorber and / or a dye having a maximum wavelength in the visible light short wavelength region of more than 380 nm and not more than 430 nm is added to provide a thin film with sufficient cut ability in the ultraviolet and visible light short wavelength region In order to impart to the film, it is necessary to have a certain thickness, and it is preferable that the thickness is practically 10 ⁇ m or more. When the thickness is less than 10 ⁇ m, the desired optical performance cannot be imparted, and when a hard coat layer described later is provided, the laminated film may be curled along with the curing treatment.
  • the laminated film of the present invention is preferably provided with a hard coat layer (C layer) composed mainly of the curable resin C in order to add functions such as scratch resistance and dimensional stability to the uppermost layer. .
  • C layer a hard coat layer
  • the film properties do not change.
  • the film size may change due to thermal shrinkage.
  • the thickness of the film is caused by thermal shrinkage.
  • a hard coat layer contributing to dimensional stability to at least one surface of the laminated film in order to maintain the properties of the film.
  • the hard coat layer may be coated directly on the laminated film, and is coated on an in-line water-based coating layer that can impart functions such as slipperiness and easy adhesion as described in the manufacturing method above. May be.
  • the above-mentioned coating layer not only provides functions such as slipperiness and easy adhesion, but also improves the adhesion with the laminated film when laminating a hard coat layer mainly composed of the curable resin C. It is preferable to apply to achieve the above.
  • the former has a refractive index of about 1.65 and the latter has a refractive index of about 1.50. Increases the adhesion, which causes deterioration of adhesion. Therefore, the refractive index of the coating layer preferably has a value of 1.50 to 1.60, more preferably 1.55 to 1.58.
  • the hard coat layer mainly composed of the curable resin C may be provided on one side.
  • precipitation of oligomers and additives generally occurs from both sides of the film, and in addition, the hard coat layer is laminated only on one side.
  • the shrinkage stress due to curing acts strongly on the surface side, and there is a possibility that the laminated sheet itself curls remarkably depending on the laminated thickness of the hard coat layer. Therefore, it is more preferable that the hard coat layer is applied to both surfaces of the laminated film.
  • the curable resin C used in the laminated film of the present invention is preferably highly transparent and durable.
  • an acrylic resin, a urethane resin, a fluorine resin, a silicon resin, a polycarbonate resin, or a vinyl chloride resin is used alone or Can be used as a mixture.
  • the curable resin C is preferably made of an active energy ray curable resin such as an acrylic resin typified by a polyacrylate resin.
  • the curable resin C consists of a thermosetting urethane resin.
  • the active energy ray-curable resin used as a constituent component of the hard coat layer includes, for example, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, as monomer components constituting the active energy ray-curable resin, Dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate, bis (methacryloylthio) Phenyl) sulfide, 2,4-dibromophenyl (meth) acrylate, 2,3,5-tribromophenyl (meth) acrylate, 2,2-bis (4- (meth) acryloyloxy) Eny
  • styrene In addition to these polyfunctional (meth) acrylic compounds, styrene, chlorostyrene, dichlorostyrene, bromostyrene, dibromostyrene, divinyl are used to control the hardness, transparency, strength, refractive index, etc. of active energy ray-curable resins.
  • Benzene vinyl toluene, 1-vinyl naphthalene, 2-vinyl naphthalene, N-vinyl pyrrolidone, phenyl (meth) acrylate, benzyl (meth) acrylate, biphenyl (meth) acrylate, diallyl phthalate, dimethallyl phthalate, diallyl biphenylate, or A reaction product of a metal such as barium, lead, antimony, titanium, tin, or zinc and (meth) acrylic acid can be used. These may be used alone or in combination of two or more.
  • a method of curing the active energy ray-curable resin for example, a method of irradiating with ultraviolet rays can be used. In this case, about 0.01 to 10 parts by weight of a photopolymerization initiator is added to the compound. It is desirable to add.
  • the active energy ray-curable resin used in the present invention isopropyl alcohol, ethyl acetate, methyl ethyl ketone, for the purpose of improving the workability during coating and controlling the coating film thickness, without impairing the effects of the present invention,
  • An organic solvent such as toluene can be blended.
  • the active energy ray means an electromagnetic wave that polymerizes an acrylic vinyl group such as an ultraviolet ray, an electron beam, and radiation ( ⁇ ray, ⁇ ray, ⁇ ray, etc.).
  • an ultraviolet ray source an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, a carbon arc lamp, or the like can be used.
  • the electron beam method is advantageous in that the apparatus is expensive and requires operation under an inert gas, but it does not need to contain a photopolymerization initiator or a photosensitizer.
  • the thickness of the hard coat layer should be appropriately adjusted depending on the method of use, but it is usually preferably 1 to 6 ⁇ m, more preferably from the viewpoint of compatibility between the thin film tendency for display applications and the hard coat performance. Is from 1 to 3 ⁇ m, more preferably from 1 to 1.5 ⁇ m.
  • the laminated film may lose the curing shrinkage force of the hard coat layer when the coating substrate is cured, and the curling of the laminated sheet may occur strongly.
  • thermosetting urethane resin used as a component of the hard coat layer mainly composed of the curable resin C for adding scratch resistance includes a polycaprolactone segment and a polysiloxane segment and / or a polydimethylsiloxane segment.
  • a resin obtained by cross-linking a copolymer resin having an isocyanate group with a compound having a thermal reaction is preferable.
  • the polycaprolactone segment constituting the thermosetting urethane resin exhibits an effect of elastic recovery, and radically polymerizable polycaprolactone such as polycaprolactone diol, polycaprolactone triol, and lactone-modified hydroxyethyl acrylate can be used.
  • the polysiloxane and / or polydimethylsiloxane segment constituting the thermosetting urethane resin has the effect of improving the lubricity of the surface and reducing the frictional resistance due to the surface coordination of these components.
  • the resin having a polysiloxane segment tetraalkoxysilane, methyltrialkoxysilane, dimethyldialkoxysilane, ⁇ -glycidoxypropyltrialkoxysilane, ⁇ -methacryloxypropyltrialkoxysilane, and the like can be used.
  • a resin having a polydimethylsiloxane segment various vinyl monomers such as methyl acrylate, isobutyl acrylate, methyl methacrylate, n-butyl methacrylate, styrene, ⁇ -methyl styrene, acrylonitrile, vinyl acetate,
  • a copolymer obtained by copolymerizing vinyl chloride, vinyl fluoride, acrylamide, methacrylamide, N, N-dimethylacrylamide, or the like can be preferably used.
  • a hard coat layer made of a thermosetting urethane resin is formed by linking and reacting resins and compounds at an arbitrary temperature to volatilize the solvent in the layer and at the same time thermally crosslink.
  • the temperature in the heating step is preferably 150 ° C. or higher, more preferably 160 ° C. or higher.
  • the heating temperature is preferably high, but it is preferable to perform heat treatment at 170 ° C. or lower in consideration of generation of shrinkage wrinkles due to thermal shrinkage of the substrate.
  • the heating time is 1 minute or longer, preferably 2 minutes or longer, and the upper limit is not particularly defined, but is preferably within 5 minutes from the viewpoint of dimensional stability and transparency of the laminated film.
  • the laminated sheet that has been heat-treated at a high temperature for a short time is subjected to an aging treatment at a temperature of 20 ° C. to 80 ° C. for 3 days or more, more preferably 7 days or more. It is preferable in terms of improving the degree.
  • curable resin C used for adding adhesiveness / adhesiveness when used as an optical film for display, particularly as a laminate with a polarizer, there is a good effect in adhesion with PVA, It is preferable to use a photocurable resin composed of four types of combinations of a compound having an alicyclic epoxy group, a polyol polyacrylate, an oxetane compound, and a polymer having an alkyl acrylate as a monomer unit.
  • 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane Examples include carboxylate.
  • polyacrylate of the polyol those having about 2 to 10 carbon atoms are preferable because the adhesion to the polarizer is improved while lowering the viscosity, and neopentyl glycol dimethacrylate, 1,6-hexanediol dimethacrylate, Examples include 3-methyl-1,5-pentanediol dimethacrylate.
  • the adhesion development rate after light irradiation can be improved, and adhesion can be developed even in an environment where the relative humidity varies.
  • 3-ethane-3-oxetanemethanol, 3,3 ′-(oxybismethylene) bis (3-ethyloxetane), and the like can be preferably used.
  • acrylic acrylate As a polymer using acrylic acrylate as a monomer, it has an effect of improving the adhesive strength after the accelerated moist heat resistance test, and includes methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, isobutyl methacrylate. It is preferable to use an alkyl methacrylate having 1 to 10 carbon atoms such as the above, and it is most preferable to use an acrylic methacrylate having 1 to 4 carbon atoms.
  • a cationic photopolymerization initiator an aromatic diazonium salt such as benzenediazonium, an aromatic sulfonium salt such as triphenylsulfonium, an aromatic iodonium salt such as diphenyldiiodonium, or a combination of two or more of these may be used. I can do it. It is also possible to use a radical photopolymerization initiator in order to exhibit sufficient crosslinking reactivity with a small amount of light irradiation.
  • the hard coat layer may contain the various ultraviolet absorbers described above and / or a dye having a maximum wavelength that is the maximum in the visible light short wavelength region of more than 380 nm and not more than 430 nm. By adding it separately from the hard coat layer, it is possible to reduce the addition amount of the UV absorber added in the resin and the dye having the maximum wavelength that exceeds 380 nm and reaches the maximum in the visible light short wavelength region of 430 nm or less. The bleed-out phenomenon that occurs during resin extrusion can be suppressed, which is preferable.
  • the blue reflection hue from the laminated film to the viewing side is reduced by absorption of the dye. This is preferable because clear whiteness and blackness when an image is displayed can be expressed.
  • the addition concentration of the ultraviolet absorber added to the hard coat layer and / or the dye having the maximum wavelength in the visible light short wavelength region exceeding 380 nm and below 430 nm is based on the entire resin composition constituting the hard coat layer. It is preferably 10 wt% or less, and more preferably 5 wt% or less.
  • the additive concentration should be adjusted as appropriate in order to achieve the target cut performance in view of the thickness of the hard coat layer involved in the absorption performance and cut performance of the additive. During the accelerated reliability test, there is a possibility of surface precipitation of various additives, and the adhesion between the laminated film and the hard coat layer may deteriorate.
  • ⁇ (Mn ⁇ Tn) obtained by adding the product of Tn [ ⁇ m] to the total thickness of the layer of the additive layer is 50 [wt% ⁇ ⁇ m] or less.
  • a functional layer such as an impact absorbing layer or an antireflection (AR) layer can be further provided on the hard coat layer containing the curable resin C as a main component, if necessary.
  • the AR layer is preferably laminated as a functional layer because it has an effect of improving visibility in image display applications.
  • the pressure-sensitive adhesive layer may be positioned on the viewing side, on the display inner side, or on both sides of the laminated film of the present invention.
  • the dye is used as a pigment having a maximum wavelength that is the maximum in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm.
  • the laminated film contains an ultraviolet absorber
  • the adhesive layer contains an ultraviolet absorber and / or a pigment having a maximum wavelength in the short wavelength region of visible light shorter than 430 nm but not more than 430 nm. Since the deterioration of the pigment can be sufficiently prevented by the reflection and absorption performance of the laminated film, it is a preferable embodiment.
  • the pressure-sensitive adhesive layer may be applied directly to the laminated film substrate, then dried to form a pressure-sensitive adhesive layer, and further bonded to the release sheet to obtain a pressure-sensitive adhesive sheet.
  • the pressure-sensitive adhesive applied to the release sheet is laminated.
  • a method of transferring onto a film substrate may also be used.
  • Various coating methods such as a roll coater, a die coater, a bar coater, a lip coater, a gravure coater, and a blade coater can be used as the coating method.
  • the thickness of the adhesive layer is preferably 5 ⁇ m or more and 150 ⁇ m or less, and more preferably 10 ⁇ m or more and 80 ⁇ m or less.
  • the pressure-sensitive adhesive layer thickness is less than 5 ⁇ m, the pressure-sensitive adhesive performance may be insufficient, and when it exceeds 150 ⁇ m, the cost of the pressure-sensitive adhesive sheet itself increases, which is not desirable.
  • the type of the pressure-sensitive adhesive is not particularly limited, but is described as a curable resin used for adding the above-described adhesion and adhesion improvement, acrylic optical pressure-sensitive adhesive (OCA), It is most preferable to use a liquid acrylic optical adhesive (LOCA) because of excellent transparency and durability.
  • the characteristic measuring method and the effect evaluating method in the present invention are as follows.
  • the layer structure of the film was determined by observation with a transmission electron microscope (TEM) for a sample obtained by cutting a cross section using a microtome. That is, using a transmission electron microscope H-7100FA type (manufactured by Hitachi, Ltd.), the cross section of the film was observed under the condition of an acceleration voltage of 75 kV, a cross-sectional photograph was taken, and the layer structure and each layer thickness were measured. In some cases, in order to obtain high contrast, a staining technique using RuO 4 or OsO 4 was used.
  • the thin film layer thickness is 50 nm or more and 500 nm.
  • observation was carried out at a magnification of 10,000 times, and the layer thickness, the number of layers, and the layered structure were specified.
  • Hard coat application (Examples 22 to 32) A hard coat layer comprising an ultraviolet absorber described in Examples 22 to 32, which will be described later, and a dye having a maximum wavelength exceeding 380 nm and a maximum wavelength in the visible light short wavelength region of 430 nm or less.
  • Active energy ray-curable urethane acrylic resin (purple light UV-1700B [refractive index: 1.50 to 1.51] manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) is uniformly applied on the outermost surface of the laminated film using a bar coater It was applied to.
  • the integrated irradiation intensity was 180 mJ / cm with a concentrating high-pressure mercury lamp (H04-L41 manufactured by Eye Graphics Co., Ltd.) having an irradiation intensity of 120 W / cm 2 set at a height of 13 cm from the surface of the hard coat layer.
  • Ultraviolet rays were irradiated so as to be 2 and cured to obtain a laminated sheet in which a hard coat layer was laminated on the laminated film.
  • an industrial UV checker UVR-N1 manufactured by Nippon Battery Co., Ltd. was used for measuring the cumulative irradiation intensity of ultraviolet rays.
  • Haze value fluctuation amount is less than 1.0% ⁇ : Haze value fluctuation amount is 1.0% or more and less than 1.5% ⁇ : Haze value fluctuation amount is 1.5% or more and less than 2.0% ⁇ : Haze value The fluctuation amount is 2.0% or more.
  • the maximum value of the elastic modulus of the sample was determined by measuring in the same manner by changing the direction every 10 ° from ⁇ 90 ° to 90 ° with respect to the film plane, with the film longitudinal direction being 0 °.
  • the thickness of the measured sample was measured using a contact-type thickness meter (Digi Microhead MH-15M manufactured by Nikon Corporation), and the bending stiffness value was calculated by applying the thickness to the above-described bending stiffness equation.
  • Flexural resistance test A sample with a width of 5 cm and a length of 9 cm is cut out with respect to the longitudinal direction and the width direction of the laminated film, respectively, and a planar body-unloaded U-shaped extension tester manufactured by Yuasa Equipment Systems Co., Ltd. Used to conduct a flex resistance test. In a measurement atmosphere at a room temperature of 23 ° C. and a relative humidity of 65%, a bending rate was set to 50 times / minute, a bending radius was set to 1 mm, and a bendability test of 1 million times was performed. The number of samples was 3, and the presence or absence of scratches or creases was visually confirmed as compared with the laminated film before the test. In all three samples, when there was no scratch or crease, good bending resistance ( ⁇ ), and when even one sample was scratched or creased, poor flex resistance ( ⁇ ).
  • thermoplastic resin A polyethylene terephthalate (PET) having a melting point of 258 ° C. was used.
  • thermoplastic resin B polyethylene terephthalate (PE / SPG15T / CHDC20) copolymerized with 20 mol% of cyclohexanedimethanol which is an amorphous resin having no melting point and 15 mol% of spiroglycol was used.
  • a triazine-based ultraviolet absorber (2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -s-triazine
  • the resin composition which comprises B layer which has the plastic resin B as a main component The prepared thermoplastic resin A and thermoplastic resin B were respectively put into two single-screw extruders, and the former was melted at 280 ° C. and the latter was 260 ° C. and kneaded.
  • 5 sheets of FSS type leaf disk filters are passed through each, 5 layers are stacked alternately in the thickness direction with a stacking ratio of 0.5 while being combined with a feed block with 5 slits while measuring with a gear pump. It was set as the laminated body made.
  • the slit length was designed to be stepped, and the intervals were all constant.
  • the obtained laminate was composed of three thermoplastic resin A layers and two thermoplastic resin B layers, which were alternately laminated in the thickness direction. After feeding the laminate to a T-die and forming it into a sheet, it was rapidly cooled and solidified on a casting drum whose surface temperature was maintained at 25 ° C. while applying an electrostatic applied voltage of 8 kV with a wire, and an unstretched laminate A cast film was obtained.
  • the film After heating the obtained laminated cast film with a roll group set at 100 ° C., the film was stretched 3.3 times in the longitudinal direction of the film while rapidly heating from both sides of the film with a radiation heater between 100 mm in the stretching section length. Then it was once cooled. Subsequently, corona discharge treatment was applied to both surfaces of this laminated uniaxially stretched film in the air, the wetting tension of the base film was set to 55 mN / m, and the treated surfaces on both surfaces of the film (# 4 metabar became an easy slipping layer).
  • a water-based coating containing vinyl acetate / acrylic resin containing 3 wt% of colloidal silica with a particle size of 100 nm is coated (hereinafter, “coating” means the above-mentioned content)), transparent, easy slipping, easy An adhesive layer was formed.
  • the laminated uniaxially stretched film was guided to a tenter, preheated with hot air of 90 ° C., and stretched 3.3 times in the film width direction at a temperature of 140 ° C.
  • the stretching speed and temperature were constant.
  • the stretched biaxially stretched film is directly heat treated in a tenter with hot air of 220 ° C., then subjected to a 2% relaxation treatment in the width direction under the same temperature conditions, and then wound to obtain a laminated film. It was.
  • the obtained laminated film exhibited physical properties as shown in Table 1.
  • the thickness of the laminated film was 30 ⁇ m, and the light transmittance at wavelengths of 410 nm and 440 nm satisfied the target values of 18% and 88%, respectively, due to the absorption effect of the added ultraviolet absorber.
  • the thickness was slightly thick and the UV absorber content was 10 wt%, the haze was slightly high, but the visibility was good when mounted on a display.
  • the haze value fluctuation amount in the 85 ° C. and 85% RH accelerated moist heat resistance test was 1.7%, which was a relatively high value, it was not a fluctuation amount that deteriorated the visibility when the display was mounted.
  • Example 1 a film was prepared in the same manner without adding an ultraviolet absorber to the B layer mainly composed of the thermoplastic resin B. Although a colorless and transparent laminated film was obtained, since it did not have the ability to cut light in the ultraviolet region, ultraviolet rays were transmitted when mounted on a display, and deterioration of contents such as a polarizer was remarkably confirmed. The film was not suitable as a display member for the purpose of protecting the contents from external ultraviolet rays.
  • Example 1 is the same as Example 1 except that two different thermoplastic resins are laminated in a feed block with three slits, and a laminated film in which three layers are laminated alternately with a lamination ratio of 0.5. Thus, a laminated film was obtained.
  • the obtained laminated film achieved the light transmittance at wavelengths of 410 nm and 440 nm because the absorption performance by the ultraviolet absorber was equivalent to that of Example 1.
  • the haze value variation in the accelerated moist heat resistance test was very high, and the whitening of the laminated film was confirmed by visual observation, which was not suitable for display applications requiring high transparency.
  • Example 2 An acrylic resin having a melting point of 230 ° C. is added as the thermoplastic resin A, and the triazine-based ultraviolet absorber described in Example 1 is added as the thermoplastic resin B so as to be 10 wt% with respect to the entire resin composition constituting the laminated film.
  • Acrylic resin B having a melting point of 210 ° C. mixed with acrylic elastic particles was used.
  • the prepared thermoplastic resin A and thermoplastic resin B were respectively fed into two single-screw extruders, and the former was melted at 270 ° C. and the latter at 250 ° C. It was set as the laminated body by which five layers were laminated
  • the laminate was cooled so that both surfaces were completely adhered to a stainless steel polishing roll (70 ° C.) to obtain an acrylic resin film having a film thickness of 30 ⁇ m. From the point that the obtained laminated film is an amorphous resin, the UV absorber added in the accelerated heat resistance test is likely to precipitate on the surface, and although it looks somewhat whitish compared to Example 1, it is suitable for display applications. It had usable optical performance.
  • Example 3 In Example 1, a thermoplastic resin was laminated with a feed block having 501 slits, and a laminated film having a thickness of 30 ⁇ m was obtained by alternately stacking 501 layers in the thickness direction with a lamination ratio of 1.0.
  • the obtained laminated film has 251 layers of A layers and 250 layers of B layers, which are alternately laminated in the thickness direction, and shows that the laminated layer thickness distribution has two inclined structures. This was confirmed by observation.
  • the inclined structure had a layer thickness distribution that linearly decreased from the center toward the opposite side of the film after the layer thickness increased linearly from one side of the film toward the center of the film.
  • the ultraviolet absorber added to the thermoplastic resin B uses the same triazine-based ultraviolet absorber as in Example 1, and the concentration of addition is relative to the resin composition constituting the B layer mainly composed of the thermoplastic resin B. It was 10 wt%.
  • the stretching conditions of the film were performed by the method described in Example 1.
  • the obtained laminated film had reflection performance associated with the laminated structure, but because the thickness was a little thin, the long wavelength end of the reflection wavelength range was up to about 390 nm, and the cut of wavelength 410 nm was added with an ultraviolet absorber. It was an embodiment depending on the concentration. Since a laminated structure is used, no volatilization of the UV absorber from the die was confirmed, and an increase in ⁇ haze in the accelerated moist heat resistance test was suppressed, and the performance usable for display applications was obtained.
  • Example 4 In Example 3, a laminated film was obtained in the same manner as in Example 3 except that the laminated film had a thickness of 31 ⁇ m and the addition concentration of the ultraviolet absorber added to the thermoplastic resin B was 3 wt%. By increasing the thickness by 1 ⁇ m, the long wavelength end of the reflection wavelength range is shifted to about 405 nm, the light transmittance at a wavelength of 410 nm shows 6%, and even if the additive concentration of the UV absorber is reduced, the target is achieved. Was made. Although a slightly purple color due to reflection was strongly confirmed, the visibility of the display was not significantly deteriorated, and the performance was suitably usable.
  • Example 3 a laminated film was obtained in the same manner as in Example 3 except that the addition concentration of the ultraviolet absorber added to the thermoplastic resin B was 3 wt%. Due to poor ultraviolet absorption performance, the light transmittance at a wavelength of 410 nm was 62%. This laminated film was mounted on a display and tested for content protection by UV irradiation. However, since the content was confirmed to be deteriorated, it was not suitable for the purpose of protecting the content of the display. It was.
  • Example 5 a laminated film was obtained in the same manner as in Example 4 except that the thickness was 30.5 ⁇ m.
  • the long wavelength end of the reflection wavelength range was shifted to about 397 nm, and the light transmittance at a wavelength of 410 nm was 48%. Although it was inferior in cutability at a wavelength of 410 nm as compared with Example 4, it was sufficiently effective in protecting the deterioration of contents due to being incorporated in the display.
  • the reflection wavelength range was shifted by a short wavelength, the reflection hue was considerably suppressed, and almost no purple reflection was observed when the display was mounted.
  • Example 6 In Example 1, a resin was laminated with a feed block having 251 slits, and a laminated film having a thickness of 12 ⁇ m was obtained by alternately laminating 251 layers in the thickness direction with a lamination ratio of 0.5.
  • the obtained laminated film is composed of 126 layers of A and 125 layers of B, which are alternately laminated in the thickness direction, and that the laminated layer thickness distribution has two inclined structures. This was confirmed by observation.
  • the addition prescription of the ultraviolet absorber and the stretching conditions of the film were performed by the method described in Example 1.
  • the obtained laminated film has a long wavelength end of the reflection wavelength range of about 395 nm, the average light reflectance at a wavelength of 380 to 410 nm is as low as about 12%, and the wavelength of 410 nm is increased by increasing the concentration of the ultraviolet absorber. As a result, the cutting performance was satisfied. Since it has a multilayer structure, the result that the bleed-out phenomenon from a nozzle
  • Example 6 (Comparative Example 4)
  • a laminated film was obtained in the same manner as described above, and the haze value fluctuation amount after the accelerated moist heat resistance test was remarkable, and whitening was strongly confirmed by visual observation, and the laminated film was not suitable for display applications.
  • Example 7 a laminated film was obtained in the same manner as in Example 6 except that the thickness was 12.3 ⁇ m. By slightly increasing the thickness, the long wavelength end of the reflection wavelength range shifted to around 405 nm, and it was confirmed that sufficient cutability was obtained by reflection even when the concentration of the UV absorber was lowered. The other performance was the same as in Example 6 and was a film suitable for display applications.
  • Example 6 As an additive formulation of the ultraviolet absorber, the triazine-based ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 was added so as to be 9.0 wt% with respect to the thermoplastic resin B.
  • the film stretching conditions were the same as those described in Example 6. Since the effect of multiple interference reflection was obtained because the number of laminated layers was 251, it was confirmed that even when the addition concentration was suppressed, the ultraviolet cut performance could be achieved as intended. It was confirmed that the amount of fluctuation in the haze value in the accelerated moist heat resistance test was also reduced as compared with Example 2 because the additive concentration was reduced.
  • Example 9 In Example 6, as a UV absorber to be added, a triazine-based UV absorber having a molecular weight of 510 g / mol (2- (4,6-diphenyl-s-triazin-2-yl) -5- (2- (2- (2- Ethylhexanoyloxy) ethoxy) phenol) is 2.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B, and a triazine type having a molecular weight of 700 g / mol described in Example 1 A laminated film was obtained in the same manner except that the ultraviolet absorber was added to 7.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B.
  • the former triazine-based ultraviolet absorber has a maximum wavelength at 285 nm, and the light-cutting performance in the ultraviolet region is increased, so that it is possible to cut ultraviolet rays more strongly. It was suitable as an optical film for display for protecting contents from the above.
  • Example 10 In Example 6, as an ultraviolet absorber to be added, a benzotriazole ultraviolet absorber (2,2′-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6-) having a molecular weight of 650 g / mol. (2H-benzotriazol-2-yl) phenol) is 2.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B, and the molecular weight described in Example 1 is 700 g / mol.
  • a laminated film was obtained in the same manner as in Example 6 except that the triazine-based ultraviolet absorber was 7.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B.
  • the former benzotriazole-based UV absorber has a maximum wavelength at 346 nm, and as in Example 9, the light transmittance in the UV region is lower than that in Examples 6 and 7, and UV blocking is achieved.
  • the haze fluctuation amount in the accelerated moisture and heat resistance test tended to be slightly higher, but it had sufficient performance as an optical film for displays. .
  • Example 11 In Example 10, the thickness of the laminated film was 12.3 ⁇ m, and among the UV absorbers added to the thermoplastic resin B, the addition concentration of benzotriazole UV absorber was 0.7 wt%, and the triazine UV absorber A laminated film was obtained in the same manner as in Example 10 except that the addition concentration of was changed to 2.3 wt%.
  • Example 12 In Example 6, as the UV absorber to be added, a benzotriazole UV absorber (2- (5-chloro-2H-benzotriazol-2-yl) -6-tert-butyl-4-ylate having a molecular weight of 315 g / mol) was added. Methylphenol) is 4.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B, and a triazine ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 is heated. A laminated film was formed in the same manner as in Example 6 except that 4.0 wt% was added to the resin composition constituting the B layer containing the plastic resin B as a main component.
  • the benzotriazole-based UV absorber used in this example was excellent in UV-cutting ability on the long wavelength side, and reached the target even when the concentration of the triazine-based UV absorber was reduced.
  • Example 6 the loss of transmittance in the ultraviolet region on the low wavelength side occurred, and the haze value in the reliability test slightly increased.
  • the visibility when mounted on a display was good, and it was a highly transparent laminated film suitable for an optical film for display.
  • Example 13 In Example 6, as an ultraviolet absorber to be added, an azomethine ultraviolet absorber having a molecular weight of 250 g / mol and a maximum absorption wavelength of 378 nm is used for the resin composition constituting the B layer mainly composed of the thermoplastic resin B. 1.0 wt% of the triazine-based ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 is added to the resin composition constituting the B layer mainly composed of the thermoplastic resin B. A laminated film was obtained in the same manner as in Example 6 except that. The former azomethine compound mainly absorbs visible light in the short wavelength region, and the latter triazine ultraviolet absorber absorbs in the ultraviolet region. It was. The optical performance was as shown in Table 1, and it was a highly transparent laminated film suitable for display applications.
  • Example 14 polyethylene terephthalate is used as the thermoplastic resin A, and the triazine-based ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 is used for the resin composition containing the thermoplastic resin A as a main component.
  • a laminated film was obtained in the same manner as in Example 6 except that it was added so as to be 6.0 wt% and that the lamination ratio was designed to be 1.0.
  • Example 15 an indole system having a maximum wavelength of 393 nm as a dye having a maximum wavelength in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm in the thermoplastic resin B without adding an ultraviolet absorber.
  • the dye was added so as to be 4.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B, and the lamination ratio was 1.0.
  • a laminated film was obtained in the same manner as in Example 6. Although the ultraviolet cut in the wavelength region of 300 to 380 nm is weakened as compared with the previous examples, the target cut performance was shown by utilizing the reflection effect because the ultraviolet absorber was not added. Even when mounted as a display application, it was confirmed that the liquid crystal and the light emitting layer were not significantly deteriorated and could be suitably used.
  • Example 16 a naphthalimide dye having a maximum wavelength of 382 nm as a dye having the maximum wavelength in the visible light short wavelength region of more than 380 nm and not more than 430 nm is used as a main component of the thermoplastic resin B.
  • a laminated film was obtained in the same manner as in Example 15 except that it was added so as to be 3.5 wt% with respect to the resin composition constituting the layer.
  • the naphthalimide-based dye is very excellent in sharp cutability at a wavelength of 410 nm, and exhibits very good cutability except that there is some loss of transmittance at 300 to 380 nm.
  • thermoplastic resin B has the maximum of the triazine-based ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 as the ultraviolet absorber in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm.
  • a laminated film was obtained in the same manner as in Example 15 except that the indole dye used in Example 15 as a dye having a wavelength was added to 2.0 wt% and 1.0 wt%, respectively.
  • Example 18 As an ultraviolet absorber to be added to the thermoplastic resin B, a triazine ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 and a benzotriazole ultraviolet having a molecular weight of 650 g / mol described in Example 7 were used. In the same manner except that the absorbent is mixed and added to 1.4 wt% and 0.6 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B, respectively. A laminated film was obtained. Although the obtained laminated film had a slightly high haze value fluctuation amount in the long-term reliability test as compared with Example 17, it had sufficient performance suitable as a film for display applications.
  • Example 19 In Example 18, a laminated film was obtained in the same manner as in Example 18 except that the thickness of the laminated film was 12.2 ⁇ m and the addition concentration of the indole dye added to the thermoplastic resin B was reduced to 0.5 wt%. It was. Since the obtained laminated film has the long wavelength end of the reflection wavelength range in the vicinity of 400 nm, it was possible to effectively achieve the intended UV-cutting property by combining the absorption of the dye and the reflection by the laminated structure.
  • Example 20 In Example 17, the same procedure was used except that the addition concentration of the triazine-based ultraviolet absorber added to the thermoplastic resin B was reduced to 1.0 wt% and the addition concentration of the indole dye was increased to 2.0 wt%. A laminated film was obtained. Although the light transmittance in the ultraviolet region was higher than that in the above-described Examples, it was a laminated film that sufficiently achieved the target cut property.
  • Example 21 the addition concentration of the triazine-based ultraviolet absorber is 5.0 wt%, and further has a maximum wavelength at a wavelength of 420 nm as a dye having a maximum wavelength in the visible light short wavelength region of more than 380 nm and not more than 430 nm.
  • a laminated film was obtained in the same manner as in Example 17 using a phthalocyanine dye.
  • the phthalocyanine colorant can sharply cut light only in the vicinity of a wavelength of 400 to 440 nm, and the light transmittance at a wavelength of 440 nm was barely satisfied with the target value of 80%.
  • Example 22 By applying a hard coat agent added with an indole dye having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not more than 430 nm on the laminated film prepared in Example 17, hard A laminated sheet having a coat layer laminated thereon was obtained. After the indole dye is dissolved in methyl ethyl ketone, it is added to the hard coat main agent so as to be 4.0 wt% with respect to the resin composition constituting the hard coat layer, and finally the total solid content concentration is 30%. A hard coat agent was prepared by adding a methyl ethyl ketone solvent. The hard coat was applied to one side of the laminated film so as to have a thickness of 2 ⁇ m.
  • the film was dried in an oven at 80 ° C. for 1 to 2 minutes to volatilize the methyl ethyl ketone solvent, and then irradiated with ultraviolet rays so that the cumulative amount of ultraviolet rays was 180 mJ / cm 2 to obtain the desired laminated sheet.
  • the resulting laminated sheet has a highly crosslinkable hard coat layer located on the outermost surface, so that precipitation of oligomers and additives in the laminated film is reduced, which is faster than in Example 17 where no hard coat is applied. Fluctuation in haze value during the wet heat resistance test was reduced. Moreover, the dimensional stability was also good, and it was suitable for display applications.
  • Example 23 an anthraquinone dye having a maximum absorption wavelength of 406 nm as a dye having a maximum wavelength that exceeds 380 nm and is 430 nm or less added to the hard coat agent is used as a hard coat layer.
  • a laminated sheet was obtained in the same manner as in Example 17 except that it was added so as to be 10 wt% with respect to the resin composition to be constituted.
  • the anthraquinone dye is slightly poor in absorption performance and there is concern about surface precipitation due to the addition of a high concentration, no significant whitening after the long-term reliability test has been confirmed, and it has long-term stability and is suitable for display applications I was able to judge that
  • Example 24 In Example 22, in addition to a dye having a maximum wavelength that is maximum in the visible light short wavelength region of more than 380 nm and less than or equal to 430 nm, hard coat agent, LA-72 manufactured by Adeka as a hindered amine light stabilizer, A laminated sheet was obtained in the same manner as in Example 22 except that 0.5 wt% was added to the resin composition constituting the hard coat layer. By adding the light stabilizer, it was possible to prevent deterioration of the contents at the time of display mounting longer than in Example 22.
  • Example 25 In Example 24, in addition to the light stabilizer, a phosphorus / phenolic mixed antioxidant A-612 made by Adeka as an antioxidant, and a nickel quencher SEESORB 612NH made by Cypro Kasei as a singlet oxygen quencher, It added so that it might become 0.3 wt% and 4 wt% with respect to the resin composition which comprises a hard-coat layer, respectively. Further, a laminated sheet was obtained in the same manner as in Example 24 except that toluene was used instead of methyl ethyl ketone as a solvent and drying was performed in a hot air oven at 110 ° C. for 3 minutes after applying the hard coating agent.
  • Example 24 By using a light stabilizer, an antioxidant, and a singlet oxygen quencher in combination, the long-term stability of the indole dye with respect to light irradiation is improved from that in Example 24.
  • the laminate sheet had the longest light resistance.
  • the basic optical performance was equivalent to that in Example 24.
  • Example 26 In Example 24, as the ultraviolet absorber added to the thermoplastic resin B, the benzotriazole ultraviolet absorber having a molecular weight of 650 g / mol and the triazine ultraviolet absorber having a molecular weight of 700 g / mol used in Example 18 were respectively thermoplastic.
  • the laminated sheet was formed in the same manner except that 0.6 wt% and 1.4 wt% were added to the resin composition constituting the B layer containing resin B as the main component and the thickness of the laminated film was 12.2 ⁇ m. Obtained.
  • the haze fluctuation amount after a long-term reliability test has been confirmed to be slightly higher due to the highly precipitateable benzotriazole-based UV absorber, it does not deteriorate visibility during display mounting and can be used as a display application. It was a laminated sheet.
  • Example 27 In Example 22, a laminated film having a thickness of 12.2 ⁇ m was prepared, and the maximum wavelength used in Example 22 was as a pigment having a maximum wavelength exceeding 380 nm and in the visible light short wavelength region of 430 nm or less. Except for adding 393 nm indole dye and anthraquinone dye having a maximum wavelength of 406 nm used in Example 23 to the resin composition constituting the hard coat layer, 3.0 wt% and 6.0 wt%, respectively. In the same manner as in Example 17, a laminated sheet was obtained. The combination of the dyes improved the cut property at 410 nm and the light transmittance at 440 nm, and achieved the most preferable sharp cut property among the examples so far. Moreover, the amount of haze fluctuation after the reliability test was small, and it was suitable as a film for display applications.
  • Example 28 In Example 4, a laminated film was prepared with an addition concentration of the triazine-based ultraviolet absorber being 1.0 wt%. An indole dye-added hard coat layer containing a light stabilizer was provided on one side of the surface of the obtained laminated film in the same manner as in Example 24 to form a laminated sheet. Reflection of the wavelength in the ultraviolet region can be further strengthened, the result of improved cut performance in the ultraviolet region, and a laminated sheet having the performance that can withstand long-term ultraviolet irradiation.
  • the precipitation of the UV absorber and / or the dye having the maximum maximum wavelength in the visible light short wavelength region exceeding 380 nm and 430 nm or less is considerably small, and the amount of fluctuation in haze is large. The result was suppressed.
  • Example 29 In Example 5, the addition concentration of the triazine-based ultraviolet absorber was 1.4 wt%, and the benzotriazole-based ultraviolet absorber having a molecular weight of 650 g / mol used in Example 10 was further mixed with the thermoplastic resin B as a main component. 0.6 wt% was added to the resin composition constituting the layer to obtain a laminated film. On the obtained laminated film, a hard coat agent added with a benzylidine-based dye having a maximum wavelength of 381 nm as a dye having a maximum wavelength in a short wavelength region of visible light shorter than 430 nm and exceeding 380 nm is applied on the film.
  • a hard coat agent added with a benzylidine-based dye having a maximum wavelength of 381 nm as a dye having a maximum wavelength in a short wavelength region of visible light shorter than 430 nm and exceeding 380 nm is applied on the film.
  • the laminated sheet on which the hard coat layer was laminated was obtained by applying to. Specifically, after dissolving the benzylidine dye in methyl ethyl ketone, it was added to 1.0 wt% with respect to the resin composition constituting the hard coat layer, and the hindered amine light stability used in Example 24 was further added.
  • a hard coat agent was prepared by adding 0.5 wt% of the agent, and finally adding a methyl ethyl ketone solvent so that the total solid concentration was 30%.
  • the hard coat layer was applied to one side of the laminated film so as to have a thickness of 5 ⁇ m.
  • UV irradiation integrated amount is then cured by UV irradiation so that 180 mJ / cm 2, the desired laminated sheet It was.
  • the obtained laminated sheet was suppressed in the reflected hue, and also satisfied the target light transmittance, and was able to prevent deterioration of the contents for a long time even when mounted on a display.
  • the hard coat thickness was large, and the ⁇ haze in the accelerated moisture and heat resistance test could be greatly suppressed to 0.5, so that it had a property that it could be sufficiently used as an optical film for display applications.
  • Example 30 In Example 26, 4.0 wt% of the indole dye used in Example 17 was added as a dye having the maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not more than 430 nm, and was implemented as an antioxidant.
  • a laminated sheet was obtained in the same manner as in Example 26, except that 0.3 wt% of the phosphorus / phenol mixed antioxidant A-612 used in Example 25 was added. While the basic performance of the laminated sheet was the same as that of Example 26, the content protection by ultraviolet irradiation lasted longer.
  • Example 31 In Example 30, the addition concentration of the indole dye was 2.0 wt%, the addition concentrations of the light stabilizer and the antioxidant were 0.25 wt% and 0.15 wt%, respectively, and the hard coat layer was applied to both sides of the laminated film.
  • a laminated sheet was obtained in the same manner as in Example 30 except that. By laminating the hard coat layers on both sides, almost no haze-up in the accelerated moist heat resistance test was confirmed, and it became suitable as a film used for displays for a longer period.
  • Example 32 In Example 30, a pigment-free hard coat layer was provided on one side of the laminated film so as to have a thickness of 2 ⁇ m. Further, an acrylic optical adhesive to which 0.4 wt% of indole dye was added was applied to the opposite surface of the hard coat layer of the laminated film so as to have a thickness of 20 ⁇ m by bar coating. After the adhesive was applied, it was dried in an oven at 100 ° C. for 2 to 3 minutes, and further subjected to an aging treatment in a hot air oven at 40 ° C. for 2 days to obtain a laminated sheet with an adhesive. The optical performance of the laminated sheet with pressure-sensitive adhesive was the same as in Example 30.
  • the dye When it was bonded to the display, the dye was positioned in the adhesive layer inside the display from the laminated film, so that the light stability of the dye was further increased by receiving the UV-cutting performance of the laminated sheet. From the viewpoint of protecting the display contents over a long period of time, it became the most preferable among all the examples.
  • the laminated film of the present invention is excellent in ultraviolet cut ability and visible light transmittance for sharply cutting light having a wavelength of 410 nm or less, visibility can be improved and deterioration due to ultraviolet rays can be prevented. Therefore, the laminated film of the present invention can be suitably used as a film incorporated in an image display device such as a liquid crystal display.
  • UV protection is required, for example, window films for building materials and automotive applications, steel film laminating films for signboards for industrial materials, and photolithographic process / release films for electronic devices. It can be suitably used for films for food, medicine and agriculture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The present invention provides a high-transparency layered thin film in which UV-ray-precipitated degradation is suppressed, and the quality and color tone of a display are stably demonstrated over prolonged periods of time, without any incidence of bleed-out when the thin film is produced. A film in which a layer principally comprising a thermoplastic resin A (layer A) and a layer principally comprising a thermoplastic resin B that is different from the thermoplastic resin A (layer B) are layered in five or more layers, wherein the light transmittance at a wavelength of 410 nm is 60% or less, and the light transmittance at a wavelength of 440 nm is 80% or more.

Description

積層フィルムLaminated film
 本発明は、紫外線カット性と可視光透過率に優れた積層フィルムに関する。 The present invention relates to a laminated film excellent in ultraviolet cut property and visible light transmittance.
 熱可塑性樹脂フィルム、中でも二軸延伸ポリエステルフィルムは、機械的性質、電気的性質、寸法安定性、透明性、耐薬品性などに優れた性質を有することから、磁気記録材料や包装材料などの多くの用途において、基材フィルムとして広く使用されている。特に近年、フラットパネルディスプレイやタッチパネル分野、車載パネルディスプレイ用途において、低コスト化やディスプレイの薄型化・小型化・フレキシビリティの流れが急速に進行しており、各種薄膜光学フィルムの需要が高まっている。 Thermoplastic resin films, especially biaxially stretched polyester films, have excellent properties such as mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. Are widely used as substrate films. In recent years, in the flat panel display, touch panel field, and in-vehicle panel display applications, the trend toward cost reduction and thinning / miniaturization / flexibility of displays is rapidly progressing, and the demand for various thin film optical films is increasing. .
 ディスプレイに搭載する光学フィルムは、たとえば液晶ディスプレイ用途では、偏光子保護フィルムや透明導電フィルム、位相差フィルムなどが挙げられる。これらの用途に用いるフィルムでは、外部から侵入する紫外線やバックライト光に含まれる紫外線による、液晶分子や偏光板内の偏光子(PVA)の劣化を防止するために、紫外線カット性が求められる。紫外線カット性をフィルムに付与するため、一般的には紫外線吸収剤を添加する手法が利用されている(特許文献1)。しかしながら、紫外線吸収剤を添加する方法により紫外線カットを達成する場合、紫外線吸収剤の種類や添加量に応じて、フィルム製膜時に口金付近や真空ベント口でブリードアウト現象が発生する。そのため、製膜工程の汚染が発生してフィルムに欠点が生じる、実質上の紫外線吸収剤添加濃度が低下してカット性能が弱まるといった、フィルム自体の品位を損なう問題が発生する。特に、薄膜光学フィルムとして現行の光学フィルムと同様の性能を発揮する場合、吸収性能はフィルムの厚みと添加濃度の積で表されることから、紫外線吸収剤の高濃度添加を避けることが出来ず、製膜装置の汚染、および過酷な信頼性試験後でのフィルム表面への吸収剤析出による品位低下が顕著になる。 Examples of the optical film mounted on the display include a polarizer protective film, a transparent conductive film, and a retardation film for use in liquid crystal displays. Films used for these applications are required to have UV-cutting properties in order to prevent deterioration of liquid crystal molecules and polarizers (PVA) in the polarizing plate due to UV rays entering from the outside and UV rays contained in backlight light. In general, a technique of adding an ultraviolet absorber is used to impart ultraviolet cut property to a film (Patent Document 1). However, when the ultraviolet cut is achieved by the method of adding an ultraviolet absorber, a bleed-out phenomenon occurs in the vicinity of the die or in the vacuum vent at the time of film formation depending on the type and amount of the ultraviolet absorber. For this reason, there arises a problem of deteriorating the quality of the film itself, such as contamination of the film forming process, resulting in a defect in the film, and a substantial decrease in the UV absorber addition concentration resulting in a decrease in cutting performance. In particular, when the same performance as the current optical film is demonstrated as a thin film optical film, the absorption performance is expressed by the product of the film thickness and the addition concentration, so it is impossible to avoid the addition of a high concentration of UV absorber. Contamination of the film forming apparatus, and deterioration of the quality due to the deposition of the absorbent on the film surface after a severe reliability test become remarkable.
 また、車載ディスプレイ用途やデジタルサイネージなど屋外で表示するディスプレイの場合、300nm~380nmの波長範囲での紫外線をより強くカットすることが要求される。380nm以下の波長帯域のカット性能に特化している一般的な紫外線吸収剤を利用する場合、紫外線吸収剤の得意としない波長380nm近傍の光線を強くカットするため、紫外線吸収剤の添加量を過剰に添加する方法が用いられるが、薄膜フィルムの場合、吸収剤添加過多による白化現象や、過酷な信頼性試験後でのフィルム表面への吸収剤析出による品位低下の問題点が発生する。特に、単膜フィルム構成や低積層数の場合、吸収剤析出を防止する機構が不十分となり、信頼性試験における品位低下の問題が顕著となる。厚みを増加させることで吸収剤の添加濃度を減少できるため、前記問題点は解決可能であるが、市場の小型化・薄膜化の要求に反し、画像表示装置の厚みが増加する問題点を生じる。 In addition, in the case of a display that is displayed outdoors such as in-vehicle display applications or digital signage, it is required to more strongly cut ultraviolet rays in the wavelength range of 300 nm to 380 nm. When using a general UV absorber specializing in cutting performance in a wavelength band of 380 nm or less, excessive addition of the UV absorber is excessive in order to strongly cut light in the vicinity of a wavelength of 380 nm, which is not good at UV absorbers. However, in the case of a thin film, problems such as whitening due to excessive addition of the absorbent and deterioration of the quality due to precipitation of the absorbent on the film surface after a severe reliability test occur. In particular, in the case of a single film configuration or a low number of layers, the mechanism for preventing the precipitation of the absorbent becomes insufficient, and the problem of deterioration in the reliability test becomes remarkable. Since the additive concentration of the absorbent can be reduced by increasing the thickness, the above problem can be solved, but the problem arises that the thickness of the image display device increases against the demand for downsizing and thinning of the market. .
 波長380nm近傍の光線をカットするために、380nmより長波長側に極大吸収波長を有する色素を用いる方法が挙げられる。ただし、色素は種類に応じて可視光領域を広く吸収してフィルム自体に望まない着色を生じるため、ディスプレイに搭載した場合に視認性を悪化させることから、410nm以下の波長を強くカットし、410nm~430nmまでの波長範囲において光線をシャープカットすることが必要となる(特許文献2~4)。430nmより長波長の光線をカットした場合の着色防止目的として、特許文献4に記載のように、蛍光増白剤を吸収剤として用いる手法が存在するが、ディスプレイ用途として用いる場合、紫外線が照射された場合にフィルム自体が青色蛍光を発するため、表示の品位を著しく損なう問題点を生じる。 In order to cut a light beam having a wavelength in the vicinity of 380 nm, a method using a dye having a maximum absorption wavelength on the longer wavelength side than 380 nm can be mentioned. However, since the dye absorbs a wide range of visible light depending on the type and causes undesired coloration on the film itself, it deteriorates the visibility when mounted on a display. It is necessary to sharply cut the light beam in the wavelength range up to 430 nm (Patent Documents 2 to 4). As described in Patent Document 4, there is a method using a fluorescent brightening agent as an absorbent as an object of preventing coloring when a light beam having a wavelength longer than 430 nm is cut. However, when used as a display, ultraviolet rays are irradiated. In this case, the film itself emits blue fluorescence, which causes a problem that the quality of display is significantly impaired.
 また、ディスプレイに搭載するフィルムは、信頼性試験において、色相などの光学品位を維持するだけでなく、厚みなどの力学特性も維持する必要がある。フィルムが熱処理により収縮して厚みの増大を招いた場合、紫外線吸収剤や色素などの吸収性能が増加し、望まない着色が生じる問題点を生じる。 In addition, the film mounted on the display is required to maintain not only the optical quality such as hue but also the mechanical properties such as thickness in the reliability test. When the film shrinks due to heat treatment and causes an increase in thickness, the absorption performance of ultraviolet absorbers and pigments increases, causing a problem that undesired coloring occurs.
特開2013―210598号公報JP 2013-210598 A 特開2010-132846号公報JP 2010-132848 A 特開2014-115524号公報JP 2014-115524 A 特開2008-238586号公報JP 2008-238586 A
 そこで、本発明では上記の欠点を解消し、製膜時のブリードアウトなく、長期信頼試験においても色相や白濁度(ヘイズ)をはじめとする光学性能を維持可能な、紫外線カット性と可視光透過率に優れた高透明な積層フィルムを提供することを目的とする。 Therefore, in the present invention, the above-mentioned drawbacks are eliminated, and there is no bleed out during film formation, and it is possible to maintain optical performance such as hue and white turbidity (haze) even in a long-term reliability test. It aims at providing the highly transparent laminated film excellent in the rate.
 本発明は次の構成からなる。すなわち、
 熱可塑性樹脂Aを主成分とする層(A層)と、前記熱可塑性樹脂Aと異なる熱可塑性樹脂Bを主成分とする層(B層)を交互に5層以上積層したフィルムであって、波長410nmにおける光線透過率が60%以下、波長440nmにおける光線透過率が80%以上であることを特徴とする、積層フィルムである。
The present invention has the following configuration. That is,
It is a film in which five or more layers alternately composed of a layer mainly composed of a thermoplastic resin A (A layer) and a layer mainly composed of a thermoplastic resin B different from the thermoplastic resin A (B layer), The laminated film is characterized in that the light transmittance at a wavelength of 410 nm is 60% or less and the light transmittance at a wavelength of 440 nm is 80% or more.
 本発明の積層フィルムは、積層構造を用いることで製膜時に紫外線吸収剤をはじめとする各種添加剤がブリードアウトすることなく、画像表示装置に搭載した際にも、長期にわたり色調を維持し、高品位で画像表示することができる効果を奏する。 The laminated film of the present invention maintains a color tone for a long period of time when it is mounted on an image display device without bleeding out various additives including an ultraviolet absorber during film formation by using a laminated structure. There is an effect that an image can be displayed with high quality.
 以下、本発明の積層フィルムについて詳細に説明する。 Hereinafter, the laminated film of the present invention will be described in detail.
 本発明の積層フィルムは、熱可塑性樹脂Aを主成分とする層(A層)と、前記熱可塑性樹脂Aと異なる熱可塑性樹脂Bを主成分とする層(B層)を交互に5層以上積層したフィルムであって、波長410nmにおける光線透過率が60%以下、波長440nmにおける光線透過率が80%以上であることが必要である。 The laminated film of the present invention has five or more layers alternately composed of a layer mainly composed of the thermoplastic resin A (A layer) and a layer mainly composed of the thermoplastic resin B different from the thermoplastic resin A (B layer). It is a laminated film, and it is necessary that the light transmittance at a wavelength of 410 nm is 60% or less and the light transmittance at a wavelength of 440 nm is 80% or more.
 本発明における熱可塑性樹脂とは、たとえば、ポリエチレン,ポリプロピレン,ポリ(1-ブテン),ポリ(4-メチルペンテン),ポリイソブチレン,ポリイソプレン,ポリブタジエン,ポリビニルシクロヘキサン,ポリスチレン,ポリ(α-メチルスチレン),ポリ(p-メチルスチレン),ポリノルボルネン,ポリシクロペンテンなどに代表されるポリオレフィン系樹脂、ナイロン6,ナイロン11,ナイロン12,ナイロン66などに代表されるポリアミド系樹脂、エチレン/プロピレンコポリマー,エチレン/ビニルシクロヘキサンコポリマー,エチレン/ビニルシクロヘキセンコポリマー,エチレン/アルキルアクリレートコポリマー,エチレン/アクリルメタクリレートコポリマー,エチレン/ノルボルネンコポリマー,エチレン/酢酸ビニルコポリマー,プロピレン/ブタジエンコポリマー,イソブチレン/イソプレンコポリマー,塩化ビニル/酢酸ビニルコポリマーなどに代表されるビニルモノマーのコポリマー系樹脂、ポリアクリレート,ポリメタクリレート,ポリメチルメタクリレート,ポリアクリルアミド,ポリアクリロニトリルなどに代表されるアクリル系樹脂、ポリエチレンテレフタレート,ポリプロピレンテレフタレート,ポリブチレンテレフタレート,ポリエチレン-2,6-ナフタレートなどに代表されるポリエステル系樹脂、ポリエチレンオキシド,ポリプロピレンオキシド,ポリアクリレングリコールに代表されるポリエーテル系樹脂、ジアセチルセルロース,トリアセチルセルロース,プロピオニルセルロース,ブチリルセルロース,アセチルプロピオニルセルロース,ニトロセルロースに代表されるセルロースエステル系樹脂、ポリ乳酸,ポリブチルサクシネートなどに代表される生分解性ポリマー、その他、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルブチラール、ポリアセタール、ポリグルコール酸、ポリカーボネート、ポリケトン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、変性ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリエーテルイミド、ポリイミド、ポリシロキサン、4フッ化エチレン樹脂、3フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、4フッ化エチレン-6フッ化プロピレン共重合体、ポリフッ化ビニリデンなどを用いることができる。 Examples of the thermoplastic resin in the present invention include polyethylene, polypropylene, poly (1-butene), poly (4-methylpentene), polyisobutylene, polyisoprene, polybutadiene, polyvinylcyclohexane, polystyrene, and poly (α-methylstyrene). , Polyolefin resins represented by poly (p-methylstyrene), polynorbornene, polycyclopentene, etc., polyamide resins represented by nylon 6, nylon 11, nylon 12, nylon 66, etc., ethylene / propylene copolymer, ethylene / Vinylcyclohexane copolymer, ethylene / vinylcyclohexene copolymer, ethylene / alkyl acrylate copolymer, ethylene / acryl methacrylate copolymer, ethylene / norbornene copolymer, Resin / vinyl acetate copolymer, propylene / butadiene copolymer, isobutylene / isoprene copolymer, vinyl monomer copolymer resins such as vinyl chloride / vinyl acetate copolymer, polyacrylate, polymethacrylate, polymethyl methacrylate, polyacrylamide, polyacrylonitrile, etc. Acrylic resins typified by polyethylene, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyester resins typified by polyethylene-2,6-naphthalate, etc., polyethers typified by polyethylene oxide, polypropylene oxide, polyacrylene glycol Resin, diacetylcellulose, triacetylcellulose, propionylcellulose, butyrylcellulose, Cetylpropionyl cellulose, cellulose ester resin typified by nitrocellulose, biodegradable polymer typified by polylactic acid, polybutyl succinate, etc., polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl butyral, polyacetal, Polyglycolic acid, polycarbonate, polyketone, polyethersulfone, polyetheretherketone, modified polyphenylene ether, polyphenylene sulfide, polyetherimide, polyimide, polysiloxane, tetrafluoroethylene resin, trifluorinated ethylene resin, trifluorinated ethylene chloride Resin, tetrafluoroethylene-6-propylene copolymer, polyvinylidene fluoride, and the like can be used.
 本発明に用いられる熱可塑性樹脂としては、合成ポリマーであることが好ましく、ポリオレフィン系、アクリル系、ポリエステル系、セルロースエステル系、ポリビニルブチラール、ポリカーボネート、ポリエーテルスルフォンがより好ましい。中でも、ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル、ポリエステル系、トリアセチルセルロースが特に好ましい。また、これらは1種類単独で利用しても、2種類以上のポリマーブレンドあるいはポリマーアロイとして利用してもよい。 The thermoplastic resin used in the present invention is preferably a synthetic polymer, and more preferably polyolefin, acrylic, polyester, cellulose ester, polyvinyl butyral, polycarbonate, and polyethersulfone. Among these, polyethylene, polypropylene, polymethyl methacrylate, polyester, and triacetyl cellulose are particularly preferable. These may be used singly or as two or more polymer blends or polymer alloys.
 熱可塑性樹脂Bは、熱可塑性樹脂Aと同一の熱可塑性樹脂ではなく、屈折率の異なる樹脂であることが必要となる。後述する、反射による光線カットを利用する場合、積層した樹脂の層厚み、および、2つの異なる熱可塑性樹脂の屈折率差に基づいて反射される光線の波長が1つに決定される。そのため、同一の屈折率を利用する場合は、熱可塑性樹脂界面での光線反射が発生しなくなる。特定の波長の光を反射するために、樹脂の層厚みと屈折率差の2種類のパラメータが制御されるべきであるため、屈折率差のみを一概に決定することは困難であるが、熱可塑性樹脂Aと熱可塑性樹脂Bの屈折率の差は0.01以上であることが好ましく、より好ましくは0.03以上、さらに好ましくは0.05以上である。また、これら異なる熱可塑性樹脂A、熱可塑性樹脂Bは、屈折率が異なることに加えて、熱特性も異なることが好ましい。熱特性が異なるとは、示差走査熱量測定(DSC)において、異なる融点やガラス転移温度を示すものを指す。融点やガラス転移温度が異なることで、積層フィルムを延伸・熱処理する工程において、各々の層の配向状態を高度に制御することが可能となる。配向状態を高度に制御できることにより、各熱可塑性樹脂の層の面内および面直方向の屈折率を制御し、反射する光線波長を制御することが可能となる。特に、延伸工程での樹脂の配向状態に影響を与える、ガラス転移温度や融点は、熱可塑性樹脂Aと熱可塑性樹脂Bとで0.1℃以上異なることが好ましい。前述した熱可塑性樹脂の中では、強度や耐熱性、透明性および汎用性の観点から、熱可塑性樹脂A、熱可塑性樹脂Bの少なくとも一方が、ポリエステル系樹脂からなることが好ましい。さらに、密着性・積層性の観点から、熱可塑性樹脂A及び熱可塑性樹脂Bは双方ともポリエステル系樹脂を選択することが最も好ましい。以下に、好ましいフィルム基材であるポリエステル系樹脂の態様について記述する。 The thermoplastic resin B is not the same thermoplastic resin as the thermoplastic resin A but a resin having a different refractive index. In the case of using a light beam cut by reflection, which will be described later, the wavelength of the light beam to be reflected is determined as one based on the layer thickness of the laminated resin and the refractive index difference between two different thermoplastic resins. For this reason, when the same refractive index is used, light reflection at the thermoplastic resin interface does not occur. In order to reflect light of a specific wavelength, two types of parameters, that is, the resin layer thickness and the refractive index difference should be controlled. Therefore, it is difficult to determine only the refractive index difference, The difference in refractive index between the plastic resin A and the thermoplastic resin B is preferably 0.01 or more, more preferably 0.03 or more, and still more preferably 0.05 or more. Moreover, it is preferable that these different thermoplastic resins A and B have different thermal properties in addition to different refractive indexes. Different thermal properties refer to those showing different melting points and glass transition temperatures in differential scanning calorimetry (DSC). When the melting point and the glass transition temperature are different, the orientation state of each layer can be highly controlled in the step of stretching and heat treating the laminated film. Since the orientation state can be controlled to a high degree, it becomes possible to control the refractive index in the in-plane and perpendicular directions of each thermoplastic resin layer and to control the wavelength of the reflected light. In particular, the glass transition temperature and the melting point that affect the orientation state of the resin in the stretching step are preferably different by 0.1 ° C. or more between the thermoplastic resin A and the thermoplastic resin B. Among the thermoplastic resins described above, it is preferable that at least one of the thermoplastic resin A and the thermoplastic resin B is made of a polyester resin from the viewpoint of strength, heat resistance, transparency, and versatility. Furthermore, it is most preferable that both the thermoplastic resin A and the thermoplastic resin B are polyester resins from the viewpoints of adhesion and lamination. Below, the aspect of the polyester-type resin which is a preferable film base material is described.
 本発明におけるポリエステルとは、芳香族ジカルボン酸または脂肪族ジカルボン酸とジオールとを主たる構成成分とする単量体からの重合により得られる縮重合体のことである。ポリエステルの工業的製造方法としては、公知の如く、エステル交換反応(エステル交換法)や直接エステル化反応(直接重合法)が用いられる。ここで、芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4′-ジフェニルジカルボン酸、4,4´-ジフェニルエーテルジカルボン酸、4,4´-ジフェニルスルホンジカルボン酸などを挙げることができる。脂肪族ジカルボン酸としては、例えば、アジピン酸、スベリン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、1,4-シクロヘキサンジカルボン酸とそれらのエステル誘導体などが挙げられる。中でも高い屈折率を発現するテレフタル酸と2,6-ナフタレンジカルボン酸が好ましく用いられる。ジカルボン酸成分はこれらのうち1種類を用いても良く、2種以上を併用して用いても良い。 The polyester in the present invention is a condensation polymer obtained by polymerization from a monomer mainly composed of an aromatic dicarboxylic acid or an aliphatic dicarboxylic acid and a diol. As an industrial production method of polyester, as is well known, transesterification (transesterification) or direct esterification (direct polymerization) is used. Here, as the aromatic dicarboxylic acid, for example, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′- Examples thereof include diphenyl dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, and 4,4′-diphenyl sulfone dicarboxylic acid. Examples of the aliphatic dicarboxylic acid include adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, 1,4-cyclohexanedicarboxylic acid and ester derivatives thereof. Of these, terephthalic acid and 2,6-naphthalenedicarboxylic acid exhibiting a high refractive index are preferably used. One of these dicarboxylic acid components may be used, or two or more dicarboxylic acid components may be used in combination.
 また、ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、イソソルベート、スピログリコールなどを挙げることができる。中でもエチレングリコールが好ましく用いられる。これらのジオール成分は1種類のみ用いてもよく、2種以上併用してもよい。 Examples of the diol component include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis (4- Hydroxyethoxyphenyl) propane, isosorbate, spiroglycol and the like. Of these, ethylene glycol is preferably used. These diol components may be used alone or in combination of two or more.
 さらに、ポリエステル系樹脂は、例えば、ポリエチレンテレフタレートおよびその共重合体、ポリエチレンナフタレートおよびその共重合体、ポリブチレンテレフタレートおよびその共重合体、ポリブチレンナフタレートおよびその共重合体、さらにはポリヘキサメチレンテレフタレートおよびその共重合体、ポリヘキサメチレンナフタレートおよびその共重合体などを用いることも出来る。このとき、共重合成分としては、前記のジカルボン酸成分およびジオール成分が、それぞれ1種類以上、共重合されていることが好ましい。    Further, the polyester resin includes, for example, polyethylene terephthalate and its copolymer, polyethylene naphthalate and its copolymer, polybutylene terephthalate and its copolymer, polybutylene naphthalate and its copolymer, and polyhexamethylene. It is also possible to use terephthalate and its copolymer, polyhexamethylene naphthalate and its copolymer, and the like. At this time, as the copolymerization component, it is preferable that at least one of the dicarboxylic acid component and the diol component is copolymerized. *
 本発明における、交互に積層するとは、熱可塑性樹脂Aを主成分とするA層と熱可塑性樹脂Bを主成分とするB層とが厚み方向に規則的な配列で積層されていることをいい、A(BA)n(nは自然数)の規則的な配列に従って樹脂が積層された状態を指す。A(BA)n(nは自然数)の積層フィルムを製膜する場合、熱可塑性樹脂Aと熱可塑性樹脂Bの複数の樹脂を2台以上の押出機を用いて異なる流路から送り出し、公知の積層装置であるマルチマニホールドタイプのフィードブロックやスタティックミキサー等を用いることができる。特に、本発明の構成を効率よく得るためには、微細スリットを有するフィードブロックを用いる方法が高精度な積層を実現する上で好ましい。スリットタイプのフィードブロックを用いて積層体を形成する場合、各層の厚みおよびその分布は、スリットの長さや幅を変化させて圧力損失を傾斜させることにより達成可能となる。スリットの長さとは、スリット板内でA層とB層を交互に流すための流路を形成する櫛歯部の長さのことである。 In the present invention, alternately laminating means that the A layers mainly composed of the thermoplastic resin A and the B layers mainly composed of the thermoplastic resin B are laminated in a regular arrangement in the thickness direction. , A (BA) n (n is a natural number) refers to a state in which a resin is laminated according to a regular arrangement. When forming a laminated film of A (BA) n (n is a natural number), a plurality of resins of thermoplastic resin A and thermoplastic resin B are sent out from different flow paths using two or more extruders. A multi-manifold type feed block, a static mixer, or the like that is a laminating apparatus can be used. In particular, in order to efficiently obtain the configuration of the present invention, a method using a feed block having fine slits is preferable for realizing highly accurate lamination. When forming a laminated body using a slit-type feed block, the thickness and distribution of each layer can be achieved by changing the length and width of the slit to incline the pressure loss. The length of the slit refers to the length of the comb-tooth portion that forms a flow path for alternately flowing the A layer and the B layer in the slit plate.
 本発明における熱可塑性樹脂Aは、上述構成のように積層フィルムの最外層に位置する点から、結晶性を示す熱可塑性樹脂であることが好ましい。この場合、結晶性を示す熱可塑性樹脂からなる単膜フィルムの製膜工程と同様の要領で積層フィルムを得ることが可能となるため好ましい。熱可塑性樹脂Aがたとえば非結晶性の樹脂からなる場合、後述の一般的な逐次二軸延伸フィルムと同様にして二軸延伸フィルムを得るときに、ロールやクリップなどの製造設備への粘着による製膜不良や、表面性の悪化などの問題が生じる場合がある。 The thermoplastic resin A in the present invention is preferably a thermoplastic resin exhibiting crystallinity from the point of being located in the outermost layer of the laminated film as described above. In this case, it is preferable because a laminated film can be obtained in the same manner as the film forming step of a single film made of a thermoplastic resin exhibiting crystallinity. When the thermoplastic resin A is made of an amorphous resin, for example, when a biaxially stretched film is obtained in the same manner as a general sequential biaxially stretched film described later, it is manufactured by adhesion to a production facility such as a roll or a clip. Problems such as film defects and deterioration of surface properties may occur.
 以上から、熱可塑性樹脂Aは、結晶性を有するポリエステル系である、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレートを用いることが好ましい。中でも、延伸過程においても高精度に積層構造が実現しやすい観点から、ポリエチレンテレフタレートまたはポリエチレンナフタレートを用いることが好ましい。一方で、熱可塑性樹脂Bは、熱可塑性樹脂Aとの密着性・積層性の観点からも、熱可塑性樹脂Aと同一の基本骨格を含むポリエステル系樹脂であることが好ましい。ここで、基本骨格とは、樹脂を構成する繰り返し単位のことであり、ポリエチレンテレフタレートの場合はエチレンテレフタレート、ポリエチレンナフタレートの場合はエチレンナフタレートが基本骨格となる。同一の骨格を有することで、積層精度が高く、積層界面での層間剥離(デラミネーション)が生じにくくなるものである。ポリエチレンテレフタレートに対して、ポリエチレンナフタレートは面方向にポリマーが配向しやすい反面、層間剥離をより起こしやすいことから、積層フィルムという観点ではポリエチレンテレフタレートを基本骨格とすることがより好ましい。 From the above, it is preferable to use polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene naphthalate, which are crystalline polyesters, as the thermoplastic resin A. Among them, it is preferable to use polyethylene terephthalate or polyethylene naphthalate from the viewpoint of easily realizing a laminated structure with high accuracy in the stretching process. On the other hand, the thermoplastic resin B is preferably a polyester-based resin including the same basic skeleton as the thermoplastic resin A from the viewpoint of adhesion and lamination with the thermoplastic resin A. Here, the basic skeleton is a repeating unit constituting the resin. In the case of polyethylene terephthalate, ethylene terephthalate is used, and in the case of polyethylene naphthalate, ethylene naphthalate is the basic skeleton. By having the same skeleton, the lamination accuracy is high, and delamination at the lamination interface is less likely to occur. In contrast to polyethylene terephthalate, polyethylene naphthalate tends to cause polymer delamination in the plane direction, but more easily causes delamination. Therefore, it is more preferable to use polyethylene terephthalate as a basic skeleton from the viewpoint of a laminated film.
 ポリエチレンテレフタレートを基本骨格とする場合、熱可塑性樹脂Aと異なる熱可塑性樹脂Bは、ポリエチレンテレフタレート骨格を有し、かつ、基本骨格を構成していない共重合成分が、主成分とならない程度に含むよう設計されている、もしくは、共重合成分量が熱可塑性樹脂A内に含まれる共重合成分量と異なるように設計されていることが好ましい。ポリエチレンテレフタレートを基本骨格とする場合に好適な共重合成分としては、シクロヘキサンジメタノール、ビスフェノールAエチレンオキサイド、スピログリコール、イソフタル酸、シクロヘキサンジカルボン酸、ナフタレンジカルボン酸、ポリエチレングリコール2000、m-ポリエチレングリコール1000、m-ポリエチレングリコール2000、m-ポリエチレングリコール4000、m-ポリプロピレングリコール2000、ビスフェニルエチレングリコールフルオレン(BPEF)、フマル酸、アセトキシ安息香酸などが挙げられる。中でも、スピログリコールやイソフタル酸、2,6-ナフタレンジカルボン酸を共重合していることが好ましい。スピログリコールを共重合した場合、ポリエチレンテレフタレートとのガラス転移温度差が小さいため、成形時に過延伸になりにくく、かつ層間剥離も起こりにくい。さらに、イソフタル酸はベンゼン環内の官能基の位置が直線的でないため結晶性を大きく低下させることができる一方で、平面性が高いため全体的に高い屈折率を示すことが可能である。 When polyethylene terephthalate is used as the basic skeleton, the thermoplastic resin B different from the thermoplastic resin A includes a copolymer component that has a polyethylene terephthalate skeleton and does not constitute the basic skeleton so as not to be a main component. It is preferably designed or designed so that the amount of copolymerization component is different from the amount of copolymerization component contained in the thermoplastic resin A. Suitable copolymer components when polyethylene terephthalate is used as a basic skeleton include cyclohexanedimethanol, bisphenol A ethylene oxide, spiroglycol, isophthalic acid, cyclohexanedicarboxylic acid, naphthalenedicarboxylic acid, polyethylene glycol 2000, m-polyethylene glycol 1000, Examples thereof include m-polyethylene glycol 2000, m-polyethylene glycol 4000, m-polypropylene glycol 2000, bisphenylethylene glycol fluorene (BPEF), fumaric acid, acetoxybenzoic acid and the like. Of these, spiroglycol, isophthalic acid, and 2,6-naphthalenedicarboxylic acid are preferably copolymerized. When spiroglycol is copolymerized, the glass transition temperature difference from polyethylene terephthalate is small, so that overstretching is difficult during molding and delamination does not occur easily. Furthermore, isophthalic acid can greatly reduce crystallinity because the position of the functional group in the benzene ring is not linear, while it can exhibit a high refractive index as a whole because of its high planarity.
 本発明の積層フィルムにおける積層数は5層以上が必要である。後述の通り、本発明では特定波長カット達成のために、紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を添加することが好ましいが、積層構造にすることで、添加剤の表面への析出を抑制することが出来る。特に、熱可塑性樹脂が結晶性である場合、結晶性の層は分子構造の折りたたみにより高密度にパッキングされた層を形成することから、内部に存在する各種添加剤の析出を抑制するフタとしての役割を果たすため好ましい。層数に上限はないが、層数が増えるに従い、製造装置の大型化に伴う製造コストの増加や、フィルム厚みが厚くなることによるハンドリング性の悪化を招く。特に、フィルム厚みが厚くなることは、リタデーションを増加させることとなり、ディスプレイ材料に用いると干渉色や虹むらなどのフィルムの色付きを引き起こすため好ましくなく、現実的には1000層以下が適している。 The number of layers in the laminated film of the present invention should be 5 or more. As will be described later, in order to achieve a specific wavelength cut in the present invention, it is preferable to add an ultraviolet absorber and / or a dye having a maximum wavelength that is the maximum in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm, By setting it as a laminated structure, precipitation to the surface of an additive can be suppressed. In particular, when the thermoplastic resin is crystalline, the crystalline layer forms a densely packed layer by folding the molecular structure, so that it can serve as a lid that suppresses the precipitation of various additives present inside. It is preferable because it plays a role. There is no upper limit to the number of layers, but as the number of layers increases, the manufacturing cost increases with the increase in the size of the manufacturing apparatus, and the handling properties deteriorate due to the increase in film thickness. In particular, increasing the thickness of the film increases retardation and is not preferable when used for display materials because it causes coloring of the film such as interference colors and rainbow spots. In reality, 1000 layers or less are suitable.
 リタデーションとは、一般的に、フィルムの面内における直交する2方向の屈折率差の最大値とフィルム厚みの積から算出されるものであるが、本発明のような積層フィルムにおいては容易にフィルムとしての屈折率を測定できないため、間接的な手法で算出されたリタデーションの値をもってリタデーションとする。具体的には、王子計測機器株式会社の光学的な手法をもってリタデーションを測定する、位相差測定装置KOBRAシリーズにて計測された値を用いるものとする。たとえば、ディスプレイに用いる光学フィルムとして、直線偏光の偏光板を搭載するディスプレイに用いる場合を考える。リタデーションの値が高く、積層フィルム面内で樹脂の配向が均一となっていない場合、リタデーションの影響で偏光状態が面内でばらばらに変化するため、液晶ディスプレイに実装した際に干渉色や虹むらを生じ、視認性が低下する問題点を生じる。そのため、本発明においては、延伸や結晶により配向を発現する結晶性の熱可塑性樹脂を含む場合に、フィルム厚みを出来る限り薄くしておくことが、リタデーションを低減するために好ましい。一方で、特定の方向に強く延伸することで積層フィルムの配向角を低く設計することも好ましい。ディスプレイ実装時に、ディスプレイ内部からの透過光の光軸と積層フィルムの配向方向が同じ向き、もしくは直交関係となるように積層フィルムを貼り合せることで、リタデーションが比較的高い場合においても、フィルム面内でのばらつきがないため、虹むらなどの視認性低下の問題を生じなくなる。積層フィルムの配向角を低くする場合、積層フィルムの幅方向での配向角が10°以下であることが好ましく、より好ましくは7°以下、さらに好ましくは5°以下ある。積層フィルムの幅方向での配向角が10°を超える場合、貼り合せるディスプレイのサイズにもよるが、ディスプレイ面内で配向角が変化していることによる虹むらが観察されるほか、偏光性能が損なわれるため好ましくない。なお、ここでの配向角は、フィルム幅方向を0°とする。 Retardation is generally calculated from the product of the maximum value of the refractive index difference between two orthogonal directions in the plane of the film and the film thickness. Since the refractive index cannot be measured, the retardation value calculated by an indirect method is used as retardation. Specifically, the value measured by the phase difference measuring device KOBRA series that measures retardation using an optical method of Oji Scientific Instruments Co., Ltd. is used. For example, consider the case where the optical film used for a display is used for a display equipped with a linearly polarized polarizing plate. When the retardation value is high and the orientation of the resin is not uniform within the laminated film surface, the polarization state varies in the surface due to the retardation, so interference color and rainbow unevenness when mounted on a liquid crystal display. This causes a problem that visibility is lowered. Therefore, in the present invention, when a crystalline thermoplastic resin that exhibits orientation by stretching or crystallization is included, it is preferable to reduce the film thickness as much as possible in order to reduce retardation. On the other hand, it is also preferable to design the orientation angle of the laminated film to be low by stretching it in a specific direction. Even when the retardation is relatively high by attaching the laminated film so that the optical axis of the transmitted light from the inside of the display and the orientation direction of the laminated film are the same or orthogonal when mounting the display. Since there is no variation in, there will be no problem of reduced visibility such as rainbow unevenness. When the orientation angle of the laminated film is lowered, the orientation angle in the width direction of the laminated film is preferably 10 ° or less, more preferably 7 ° or less, and further preferably 5 ° or less. When the orientation angle in the width direction of the laminated film exceeds 10 °, depending on the size of the display to be bonded, rainbow unevenness due to the orientation angle changing in the display surface is observed, and the polarization performance is It is not preferable because it is damaged. The orientation angle here is 0 ° in the film width direction.
 本発明の積層フィルムは、波長410nmにおける光線透過率が60%以下であることが必要である。積層フィルムの光線透過率が410nmにおいて60%以下でなければ、本発明の積層フィルムをディスプレイ用途として利用した場合に、液晶ディスプレイでは内部の液晶層や偏光子の劣化を、また、有機ELディスプレイなどの発光素子を有するディスプレイでは発光層の変質や劣化を効果的に防止することが出来ない。波長410nmにおける光線透過率は、好ましくは40%以下、より好ましくは30%以下、さらに好ましくは20%以下である。波長410nmにおける光線透過率を60%以下にすることで、紫外線からのディスプレイ内容物の保護を実現可能であるが、波長410nmの光線透過率を40%以下、より好ましくは20%以下まで低下させることで、より長期にわたり防止することが可能となる。一方で、波長410nmにおける光線透過率を、20%を超えて60%以下とする場合、従来と比べてディスプレイの内容物の劣化を保護できることに加え、反射を利用して光線カットを達成する場合に生じる、視認側に反射される光線による反射色相を抑えることが出来るため、ディスプレイ非表示時における黒色をより鮮明なものにすることが可能となる。 The laminated film of the present invention is required to have a light transmittance of 60% or less at a wavelength of 410 nm. If the light transmittance of the laminated film is not 60% or less at 410 nm, when the laminated film of the present invention is used as a display application, the liquid crystal display may deteriorate the internal liquid crystal layer and the polarizer, and the organic EL display. In the display having the light emitting element, it is impossible to effectively prevent the light emitting layer from being altered or deteriorated. The light transmittance at a wavelength of 410 nm is preferably 40% or less, more preferably 30% or less, and still more preferably 20% or less. Although it is possible to protect the display contents from ultraviolet rays by setting the light transmittance at a wavelength of 410 nm to 60% or less, the light transmittance at a wavelength of 410 nm is reduced to 40% or less, more preferably to 20% or less. Thus, it is possible to prevent it for a longer period. On the other hand, when the light transmittance at a wavelength of 410 nm is more than 20% and not more than 60%, in addition to being able to protect the deterioration of the contents of the display compared to the conventional case, when light cut is achieved using reflection Therefore, it is possible to suppress the reflected hue caused by the light beam reflected on the viewer side, so that the black color when the display is not displayed can be made clearer.
 
 本発明の積層フィルムは、可視光短波長領域である波長380~395nmの領域において、光線透過率が20%以下を示していることが、より好ましい。波長410nmにおける光線透過率が低くても、波長410nmの光線よりも強いエネルギーを有する当該波長範囲の光線をカットできていない場合、光劣化が促進されてしまう可能性が高い。より好ましくは、15%以下であり、さらに好ましくは10%である。

It is more preferable that the laminated film of the present invention has a light transmittance of 20% or less in a wavelength range of 380 to 395 nm which is a visible light short wavelength region. Even if the light transmittance at a wavelength of 410 nm is low, if light in the wavelength range having energy stronger than that at a wavelength of 410 nm cannot be cut, there is a high possibility that light deterioration will be promoted. More preferably, it is 15% or less, and more preferably 10%.
 本発明の積層フィルムは、波長300nm~380nmの紫外線領域における光線透過率の最大値が、10%以下を示すことがより好ましい。波長300nm~380nmの紫外線領域に関しては、光エネルギーが強く、ディスプレイ内部の偏光子や液晶、発光素子など画像表示の重要な部分の劣化に大きく関与する波長領域であるため、十分に光線カットされることが望ましい。たとえば、液晶画像表示装置に利用されている偏光子は、特定の振動方向のみを有する光を透過させる機能を有するものであり、ヨウ素や二色性染料などで染色したポリビニルアルコール(PVA)系フィルムが最も多く使用されている。この偏光子は、有機材料により構成されており、特に、280~380nmの波長範囲のエネルギーの強い紫外線を受けることで劣化が起こるため、この領域における紫外線を偏光子に届く手前で遮蔽することにより、偏光子の劣化、あるいは液晶分子の劣化を防止することが可能となる。このことから、波長300nm~380nmにおける光線透過率は、最大値が5%以下、より好ましくは2%以下である。 In the laminated film of the present invention, it is more preferable that the maximum value of light transmittance in the ultraviolet region with a wavelength of 300 nm to 380 nm is 10% or less. The UV region with a wavelength of 300 nm to 380 nm is a wavelength region that has a strong light energy and greatly contributes to the degradation of important parts of the image display such as the polarizer, liquid crystal, and light emitting element inside the display. It is desirable. For example, a polarizer used in a liquid crystal image display device has a function of transmitting light having only a specific vibration direction, and is a polyvinyl alcohol (PVA) film dyed with iodine or a dichroic dye. Is the most used. This polarizer is made of an organic material, and particularly deteriorates when it receives ultraviolet rays having a high energy in the wavelength range of 280 to 380 nm. Therefore, the ultraviolet rays in this region are shielded before reaching the polarizers. It is possible to prevent the deterioration of the polarizer or the deterioration of the liquid crystal molecules. From this, the maximum value of the light transmittance at a wavelength of 300 nm to 380 nm is 5% or less, more preferably 2% or less.
 本発明の積層フィルムは、波長440nmにおける光線透過率が80%以上であることが必要である。波長440nmにおける光線透過率が80%を下回る場合は、可視光短波長領域の光線がカットされることにより、積層フィルム自体が強く黄色を呈し、優れた透明性を発現することができない。また、青色発光素子を利用するディスプレイ用途では、青色発光素子由来の光線をカットすることとなり、画像表示の際の色調悪化に繋がる。波長440nmにおける光線透過率は、好ましくは85%以上であり、より好ましくは90%以上である。 The laminated film of the present invention is required to have a light transmittance of 80% or more at a wavelength of 440 nm. When the light transmittance at a wavelength of 440 nm is less than 80%, the light in the visible light short wavelength region is cut, so that the laminated film itself exhibits a strong yellow color and cannot exhibit excellent transparency. Moreover, in the display use using a blue light emitting element, the light ray derived from a blue light emitting element will be cut, and it will lead to the color tone deterioration in the case of an image display. The light transmittance at a wavelength of 440 nm is preferably 85% or more, more preferably 90% or more.
 本発明の積層フィルムは、波長380~410nmにおける平均光線反射率が20%以上であることが好ましい。交互に積層された樹脂層の各層厚み、および2種類の異なる樹脂間の屈折率差に応じて、特定の波長の光を反射することが可能である。また、積層層厚み分布を変化させることで、反射する波長帯域を拡張・収縮したり、光線反射率を向上させることができるほか、積層比一定のまま厚みを変化させることで自由にシフトさせることができる。このとき、積層層厚み分布を制御することで、反射帯域のカット端をシャープに設計したり、なだらかに設計することも可能となる。反射帯域のカット端をシャープになるように設計する場合、一般的な紫外線吸収剤や色素・顔料を添加した場合と比べても優れたシャープカットを実現でき、望まない光線カットを防止できるため、選択的な波長カットが求められる材料に好ましく利用することができる。平均光線反射率は、より好ましくは25%以上、さらに好ましくは30%以上である。 The laminated film of the present invention preferably has an average light reflectance at a wavelength of 380 to 410 nm of 20% or more. It is possible to reflect light of a specific wavelength according to the thicknesses of the alternately laminated resin layers and the refractive index difference between two different types of resins. Also, by changing the thickness distribution of the laminated layer, the reflected wavelength band can be expanded and contracted, the light reflectance can be improved, and the thickness can be freely shifted by changing the thickness while keeping the lamination ratio constant. Can do. At this time, it is possible to design the cut edge of the reflection band sharply or gently by controlling the thickness distribution of the laminated layer. When designing the cut edge of the reflection band to be sharp, it can achieve a sharp cut that is superior to the addition of general UV absorbers, dyes and pigments, and prevents unwanted light cuts. It can be preferably used for materials that require selective wavelength cut. The average light reflectance is more preferably 25% or more, and further preferably 30% or more.
 反射波長は層厚みに依存することから、0.1μm単位のわずかなフィルム厚み変化の影響を受け、敏感に変動してしまう。そのため、反射帯域の長波長端が440nm付近に位置するように設計した場合、厚みが微量に増大することで、本来望まない波長領域をカットする可能性がある。反射波長範囲の変動に対するリスクを鑑みて、反射波長範囲を300nm以上410nm程度以下に設計し、380~430nmの波長領域の光線を、後述の380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素による吸収と併用してカットすることが、より好ましい態様である。 Since the reflection wavelength depends on the layer thickness, it is affected by a slight change in film thickness in units of 0.1 μm and varies sensitively. Therefore, when it is designed so that the long wavelength end of the reflection band is located in the vicinity of 440 nm, there is a possibility that the wavelength region which is not originally desired is cut due to a slight increase in thickness. In consideration of the risk of fluctuations in the reflection wavelength range, the reflection wavelength range is designed to be not less than 300 nm and not more than 410 nm, and light in the wavelength range of 380 to 430 nm is maximized in the visible light short wavelength range of 430 nm to 430 nm, which will be described later. It is a more preferable embodiment to cut in combination with absorption by a dye having a maximum wavelength.
 積層層厚みの分布としては、フィルムの片面側から反対側の面へ向かって増加または減少する層厚み分布や、フィルムの片面側からフィルム中心へ向かって層厚みが増加した後減少する層厚み分布や、フィルムの片面側からフィルム中心へ向かって層厚みが減少した後増加する層厚み分布等が好ましい。層厚み分布の変化の方法としては、線形、等比、階差数列といった連続に変化するものや、10層から50層程度の層がほぼ同じ層厚みを持ち、その層厚みがステップ状に変化するものが好ましい。 As the distribution of the laminated layer thickness, the layer thickness distribution that increases or decreases from one side of the film to the opposite side, or the layer thickness distribution that decreases after the layer thickness increases from one side of the film to the center of the film Also preferred is a layer thickness distribution that increases after the layer thickness decreases from one side of the film toward the center of the film. As the method of changing the layer thickness distribution, there are continuous, linear, equiratio, difference number series, and 10 to 50 layers have almost the same layer thickness, and the layer thickness changes stepwise. Those that do are preferred.
 本発明の積層フィルム中に、紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を含有させることが好ましい。本発明における紫外線吸収剤とは、波長300~380nmの紫外線領域に最大となる極大波長を有する添加剤を指す。本発明における極大波長とは、複数の極大ピークを有する場合、最大の吸光度を有するピーク波長を指す。紫外線吸収剤および380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素は、互いの領域の一部を吸収する性能を有してもよい。例えば、375nmと390nmに極大を有する添加剤において、375nmの極大が最大である場合は紫外線吸収剤であり、390nmの極大が最大である場合は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素と定義される。 In the laminated film of the present invention, it is preferable to contain an ultraviolet absorber and / or a dye having a maximum wavelength that is the maximum in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm. The ultraviolet absorber in the present invention refers to an additive having a maximum wavelength that is maximum in the ultraviolet region having a wavelength of 300 to 380 nm. The maximum wavelength in the present invention refers to a peak wavelength having the maximum absorbance when having a plurality of maximum peaks. The ultraviolet absorber and the dye having the maximum wavelength that is maximum in the visible light short wavelength region of more than 380 nm and not more than 430 nm may have the ability to absorb a part of each other region. For example, in an additive having maximums at 375 nm and 390 nm, when the maximum of 375 nm is maximum, the additive is an ultraviolet absorber, and when the maximum of 390 nm is maximum, it exceeds 380 nm in the visible light short wavelength region of 430 nm or less. It is defined as a dye having the maximum maximum wavelength.
 本発明において、紫外線吸収剤、又は、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素は、各々1種類以上単独で含有させてもよく、1種類以上の紫外線吸収剤と1種類以上の380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を同時に含有させてもよい。紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素は、A層のみ、B層のみに含有させても良く、A層およびB層の両層に含有させても良い。特に、多層構造による表面析出抑制の観点から鑑みて、積層フィルムの内層に位置するB層のみに含有させる、あるいは、積層フィルムの内層に位置するB層が最外層に位置するA層に比べて含有濃度が多くなるようにすることが好ましい。最外層を含むA層のみに紫外線吸収剤および380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を含有させる場合、含有する紫外線吸収剤がフィルム表面に析出する現象(ブリードアウト現象)、および、それが口金付近で昇華・揮散する現象が発生しやすくなり、これによってフィルム製膜機が汚染され、析出物がフィルムの製膜工程において、欠点発生などの悪影響を及ぼす場合がある。 In the present invention, the ultraviolet absorber or the dye having the maximum wavelength in the short wavelength range of visible light exceeding 380 nm and not exceeding 430 nm may be contained singly or in combination with one or more kinds of ultraviolet rays. You may contain simultaneously the absorber and the pigment | dye which has the maximum wavelength which becomes the maximum in the visible light short wavelength area | region of 430 nm or less exceeding 380 nm. The ultraviolet absorber and / or the dye having the maximum wavelength that is the maximum in the visible light short wavelength region of more than 380 nm and not more than 430 nm may be contained only in the A layer or only in the B layer. You may make it contain in a layer. In particular, from the viewpoint of suppressing surface precipitation due to the multilayer structure, it is contained only in the B layer located in the inner layer of the laminated film, or compared with the A layer where the B layer located in the inner layer of the laminated film is located in the outermost layer. It is preferable to increase the content concentration. When only the A layer including the outermost layer contains an ultraviolet absorber and a dye having a maximum wavelength exceeding 380 nm and a visible light short wavelength region of 430 nm or less, the contained ultraviolet absorber is precipitated on the film surface. (Bleed-out phenomenon) and the phenomenon that it sublimates and volatilizes near the base easily occur, and this causes the film-forming machine to be contaminated, and the deposits have adverse effects such as defects in the film-forming process. May affect.
 紫外線吸収剤は、一般的に380nm以下の波長領域の紫外線を吸収する能力に特化しており、紫外線領域と可視光領域の境界近傍(380~400nm付近)や、可視光短波長領域(400nm~430nm)の光線を吸収する能力は優れていない。そのため、紫外線吸収剤を含有させることのみで、紫外線領域と可視光領域の境界近傍(380~400nm付近)や可視光短波長領域(400~430nm)の光線をカットするためには、後述する一部の長波長紫外線吸収を除いて、高濃度に含有させる必要がある。紫外線領域、および、可視光短波長領域(380nm~430nm)の波長カットの場合、単独の紫外線吸収剤により達成可能な紫外線吸収剤としては、例として、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノールや、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-1,3,5-トリアジンなどが挙げられる。 Ultraviolet absorbers are generally specialized in the ability to absorb ultraviolet rays in a wavelength region of 380 nm or less, near the boundary between the ultraviolet region and the visible light region (near 380 to 400 nm), or in the short wavelength region of visible light (400 nm to 400 nm). The ability to absorb 430 nm) light is not excellent. Therefore, in order to cut light rays in the vicinity of the boundary between the ultraviolet region and the visible light region (near 380 to 400 nm) and in the short wavelength region of visible light (400 to 430 nm) only by containing the ultraviolet absorber, one described later Except for the long wavelength ultraviolet absorption of the part, it is necessary to make it contain in high concentration. In the case of wavelength cut in the ultraviolet region and the visible light short wavelength region (380 nm to 430 nm), examples of the ultraviolet absorber that can be achieved by a single ultraviolet absorber include 2- (5-chloro-2H-benzotriazole). -2-yl) -6-tert-butyl-4-methylphenol and 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine Can be mentioned.
 一方、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素は、一般に、可視光短波長領域のカット性能に優れるが、紫外線領域のカット能力に乏しい。そのため、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素のみを含有させて、紫外線領域の光線をカットするためには、後述する一部の380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を除いて、高濃度に含有させる必要がある。また、高濃度に含有させる場合、目的とする波長領域よりもさらに長波長側の可視光領域を吸収するため、優れた透明性を実現できない。紫外線領域、および、可視光短波長領域(380nm~430nm)の波長カットを、単独で達成可能な380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素としては、たとえば、BASF(株)製の「LumogenF Violet570」などが挙げられる。紫外線吸収剤、ならびに、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素には、それぞれ得意とする領域が存在していることから、高濃度添加によるブリードアウト、それに伴う工程汚染を防ぐためには、1種類以上の紫外線吸収剤と1種類以上の380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を効果的に組み合わせることがより好ましい。 On the other hand, a dye having a maximum wavelength that exceeds the wavelength range of 380 nm to 430 nm or less is generally excellent in cutting performance in the visible light short wavelength region, but has poor ability to cut in the ultraviolet region. Therefore, in order to cut only the maximum wavelength in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm and cutting the light ray in the ultraviolet region, it exceeds 380 nm, which will be described later, to 430 nm. Except for the dye having the maximum wavelength that is maximum in the visible light short wavelength region below, it is necessary to contain it at a high concentration. Moreover, when it contains in high concentration, since it absorbs the visible light area | region longer than the target wavelength area | region, the outstanding transparency cannot be implement | achieved. Examples of the dye having a maximum wavelength that is the maximum in the visible light short wavelength region of 430 nm or less, exceeding 380 nm, which can be achieved independently, in the ultraviolet wavelength region and the visible light short wavelength region (380 nm to 430 nm), for example, And “LumogenF Violet 570” manufactured by BASF Corporation. In the ultraviolet absorber and the dye having the maximum wavelength that is the maximum in the visible light short wavelength region of more than 380 nm and less than or equal to 430 nm, since each region has strengths, the bleedout due to the addition of high concentration, In order to prevent process contamination associated therewith, it is more effective to combine one or more kinds of ultraviolet absorbers and one or more kinds of dyes having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm. preferable.
 本発明の積層フィルムにおいて、1種類以上の紫外線吸収剤と、1種類以上の380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を組み合わせて、上述の光線透過率を達成する場合において利用可能な紫外線吸収剤としては、前述の2種類の紫外線吸収剤以外にも、ベンゾトリアゾール系、ベンゾフェノン系、ベンゾエート系、トリアジン系、ベンゾオキサジノン系、サリチル酸系、をはじめとする、多種の骨格の紫外線吸収剤を利用することが出来る。2種以上の紫外線吸収剤を併用する場合は、互いに同系の紫外線吸収剤を組み合わせてもよく、異なる系の紫外線吸収剤を組み合わせてもよい。以下に具体例を例示するが、極大波長が320nm~380nmの波長領域に存するものに対しては化合物名の後に(※)を付している。本発明における紫外線吸収剤は、320~380nmの間に極大吸収波長を有する紫外線吸収剤であることが好ましい。極大波長が320nmより小さい場合、長波長側の紫外線領域を十分にカットすることは難しく、また、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素との組み合わせを行った場合であっても、波長300~380nmにおける領域において10%以上の光線透過率を示す、カット不十分な領域を発生してしまうことが多い。そのため、波長300~380nmの紫外線領域における光線透過率の最大値を10%以下とするためには(※)を付した紫外線吸収剤を利用することが好ましい。 In the laminated film of the present invention, one or more kinds of ultraviolet absorbers and one or more kinds of dyes having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm are combined, and the light transmittance described above is combined. In addition to the above-mentioned two types of ultraviolet absorbers, other ultraviolet absorbers that can be used when achieving the above include benzotriazole, benzophenone, benzoate, triazine, benzoxazinone, salicylic acid, and the like Various kinds of skeleton UV absorbers can be used. When two or more kinds of ultraviolet absorbers are used in combination, the same ultraviolet absorbers may be combined with each other, or different types of ultraviolet absorbers may be combined. Specific examples are illustrated below, but (*) is added after the compound name for compounds having a maximum wavelength in the wavelength region of 320 nm to 380 nm. The ultraviolet absorber in the present invention is preferably an ultraviolet absorber having a maximum absorption wavelength between 320 and 380 nm. When the maximum wavelength is smaller than 320 nm, it is difficult to sufficiently cut the ultraviolet region on the long wavelength side, and a combination with a dye having a maximum wavelength in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm is used. Even when it is performed, an insufficiently cut region that exhibits a light transmittance of 10% or more in the region at a wavelength of 300 to 380 nm is often generated. Therefore, in order to make the maximum value of the light transmittance in the ultraviolet region with a wavelength of 300 to 380 nm 10% or less, it is preferable to use an ultraviolet absorber marked with (*).
 ベンゾトリアゾール系紫外線吸収剤としては、特に限定されないが、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール(※)、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)ベンゾトリアゾール(※)、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾール(※)、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)ベンゾトリアゾール(※)、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール(※)、2-(2’-ヒドロキシ-3’,5’-ジ第三アミルフェニル)-5-クロロベンゾトリアゾール(※)、2-(2’-ヒドロキシ-3’-(3”,4”,5”,6”-テトラヒドロフタルイミドメチル)-5’-メチルフェニル)-ベンゾトリアゾール(※)、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノール(※)、2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール(※)、2-(2’-ヒドロキシ-3’,5’-ジ第三ペンチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-第三オクチル-6-ベンゾトリアゾリル)フェノール(※)、2-(5-ブチルオキシ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノール(※)、2-(5-へキシルオキシ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノール(※)、2-(5-オクチルオキシ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノール(※)、2-(5-ドデシルオキシ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノール(※)、2-(5-オクタデシルオキシ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノール(※)、2-(5-シクロヘキシルオキシ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノール(※)、2-(5-プロペンオキシ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノール(※)、2-(5-(4-メチルフェニル)オキシ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノール(※)、2-(5-ベンジルオキシ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノール(※)、2-(5-へキシルオキシ-2H-ベンゾトリアゾール-2-イル)-4,6-ジ第三ブチルフェノール(※)、2-(5-オクチルオキシ-2H-ベンゾトリアゾール-2-イル)-4,6-ジ第三ブチルフェノール(※)、2-(5-ドデシルオキシ-2H-ベンゾトリアゾール-2-イル)-4,6-ジ第三ブチルフェノール(※)、2-(5-第二ブチルオキシ-2H-ベンゾトリアゾール-2-イル)-4,6-ジ第三ブチルフェノール(※)などが挙げられる。  The benzotriazole-based UV absorber is not particularly limited, and examples thereof include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (*) and 2- (2′-hydroxy-3 ′, 5′- Di-tert-butylphenyl) benzotriazole (*), 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) -5-chlorobenzotriazole (*), 2- (2′-hydroxy- 3′-tert-butyl-5′-methylphenyl) benzotriazole (*), 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole (*), 2- (2′-hydroxy-3 ′, 5′-ditertiaryamylphenyl) -5-chlorobenzotriazole (*), 2- (2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″) , 6 " Tetrahydrophthalimidomethyl) -5'-methylphenyl) -benzotriazole (*), 2- (5-chloro-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol (*), 2 , 2'-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol (*), 2- (2'-hydroxy-3 ', 5′-ditertiarypentylphenyl) benzotriazole, 2- (2′-hydroxy-5′-tertiary octylphenyl) benzotriazole, 2,2′-methylenebis (4-tertiaryoctyl-6-benzotriazolyl) ) Phenol (*), 2- (5-Butyloxy-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol (*), 2- (5- Xyloxy-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol (*), 2- (5-octyloxy-2H-benzotriazol-2-yl) -6-tert-butyl- 4-methylphenol (*), 2- (5-dodecyloxy-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol (*), 2- (5-octadecyloxy-2H- Benzotriazol-2-yl) -6-tert-butyl-4-methylphenol (*), 2- (5-cyclohexyloxy-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol (*), 2- (5-propenoxy-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol (*), 2- (5- (4-methyl) Ruphenyl) oxy-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol (*), 2- (5-benzyloxy-2H-benzotriazol-2-yl) -6-tert- Butyl-4-methylphenol (*), 2- (5-hexyloxy-2H-benzotriazol-2-yl) -4,6-ditert-butylphenol (*), 2- (5-octyloxy-2H- Benzotriazol-2-yl) -4,6-ditert-butylphenol (*), 2- (5-dodecyloxy-2H-benzotriazol-2-yl) -4,6-ditert-butylphenol (*), And 2- (5-secondarybutyloxy-2H-benzotriazol-2-yl) -4,6-ditertiarybutylphenol (*).
 ベンゾフェノン系紫外線吸収剤としては、特に限定されないが、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシ-ベンゾフェノン(※)、2,2’-ジヒドロキシ-4,4’-ジメトキシ-ベンゾフェノン、2,2’,4,4’-テトラヒドロキシ-ベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)、などが挙げられる。  The benzophenone-based ultraviolet absorber is not particularly limited. For example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2′-dihydroxy-4- Methoxy-benzophenone (*), 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetrahydroxy-benzophenone, 5,5'-methylenebis (2-hydroxy-4 -Methoxybenzophenone), and the like.
 ベンゾエート系紫外線吸収剤としては、特に限定されないが、例えば、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ第三アミルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、2,6-ジ第三ブチルフェニル-3’,5’-ジ第三ブチル-4’-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、オクタデシル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエートなどが挙げられる。 The benzoate-based ultraviolet absorber is not particularly limited, and examples thereof include resorcinol monobenzoate, 2,4-ditertiarybutylphenyl-3,5-ditertiarybutyl-4-hydroxybenzoate, and 2,4-ditertiary acid. Amylphenyl-3,5-ditert-butyl-4-hydroxybenzoate, 2,6-ditert-butylphenyl-3 ′, 5′-ditert-butyl-4′-hydroxybenzoate, hexadecyl-3,5- Examples thereof include di-tert-butyl-4-hydroxybenzoate and octadecyl-3,5-di-tert-butyl-4-hydroxybenzoate.
 トリアジン系紫外線吸収剤としては、特に限定されないが、2-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-4,6-ジビフェニル-s-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-s-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-s-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-プロポキシフェニル)-s-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-s-トリアジン、2,4-ビス(2-ヒドロキシ-4-オクトキシフェニル)-6-(2,4-ジメチルフェニル)-s-トリアジン、2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-s-トリアジン(※)、2,4,6-トリス(2-ヒドロキシ-4-オクトキシフェニル)-s-トリアジン(※)、2-(4-イソオクチルオキシカルボニルエトキシフェニル)-4,6-ジフェニル-s-トリアジン(※)、2-(4,6-ジフェニル-s-トリアジン-2-イル)-5-(2-(2-エチルヘキサノイルオキシ)エトキシ)フェノールなどが挙げられる。 The triazine-based ultraviolet absorber is not particularly limited, but 2- (2-hydroxy-4-hexyloxyphenyl) -4,6-diphenyl-s-triazine, 2- (2-hydroxy-4-propoxy-5- Methylphenyl) -4,6-bis (2,4-dimethylphenyl) -s-triazine, 2- (2-hydroxy-4-hexyloxyphenyl) -4,6-dibiphenyl-s-triazine, 2,4 -Diphenyl-6- (2-hydroxy-4-methoxyphenyl) -s-triazine, 2,4-diphenyl-6- (2-hydroxy-4-ethoxyphenyl) -s-triazine, 2,4-diphenyl-6 -(2-hydroxy-4-propoxyphenyl) -s-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl)- -Triazine, 2,4-bis (2-hydroxy-4-octoxyphenyl) -6- (2,4-dimethylphenyl) -s-triazine, 2,4,6-tris (2-hydroxy-4-hexyl) Oxy-3-methylphenyl) -s-triazine (*), 2,4,6-tris (2-hydroxy-4-octoxyphenyl) -s-triazine (*), 2- (4-isooctyloxycarbonyl) Ethoxyphenyl) -4,6-diphenyl-s-triazine (*), 2- (4,6-diphenyl-s-triazin-2-yl) -5- (2- (2-ethylhexanoyloxy) ethoxy) Examples include phenol.
 ベンゾオキサジノン系紫外線吸収剤としては、特に限定されないが、2,2’-p-フェニレンビス(4H-3,1-ベンゾオキサジン-4-オン)(※)、2,2’-p-フェニレンビス(6-メチル-4H-3,1-ベンゾオキサジン-4-オン)、2,2’-p-フェニレンビス(6-クロロ-4H-3,1-ベンゾオキサジン-4-オン)(※)、2,2’-p-フェニレンビス(6-メトキシ-4H-3,1-ベンゾオキサジン-4-オン)、2,2’-p-フェニレンビス(6-ヒドロキシ-4H-3,1-ベンゾオキサジン-4-オン)、2,2’-(ナフタレン-2,6-ジイル)ビス(4H-3,1-ベンゾオキサジン-4-オン)(※)、2,2’-(ナフタレン-1,4-ジイル)ビス(4H-3,1-ベンゾオキサジン-4-オン)(※)、2,2’-(チオフェン-2,5-ジイル)ビス(4H-3,1-ベンゾオキサジン-4-オン)(※)などを挙げることができる。 Although it does not specifically limit as a benzoxazinone type ultraviolet absorber, 2,2'-p-phenylenebis (4H-3,1-benzoxazin-4-one) (*), 2,2'-p-phenylene Bis (6-methyl-4H-3,1-benzoxazin-4-one), 2,2'-p-phenylenebis (6-chloro-4H-3,1-benzoxazin-4-one) (*) 2,2′-p-phenylenebis (6-methoxy-4H-3,1-benzoxazin-4-one), 2,2′-p-phenylenebis (6-hydroxy-4H-3,1-benzo) Oxazin-4-one), 2,2 ′-(naphthalene-2,6-diyl) bis (4H-3,1-benzoxazin-4-one) (*), 2,2 ′-(naphthalene-1, 4-Diyl) bis (4H-3,1-benzooxy) Jin-4-one) (※), 2,2 '- (thiophene-2,5-diyl) bis (4H-3,1-benzoxazin-4-one) (※) and the like.
 その他の紫外線吸収剤として、サリチル酸系では、たとえば、フェニルサリチレート、t-ブチルフェニルサリチレート、p-オクチルフェニルサリチレート等、その他では、天然物系(たとえば、オリザノール、シアバター、バイカリン等)、生体系(たとえば、角質細胞、メラニン、ウロカニン等)なども利用することが出来る。無機系の紫外線吸収剤はベースとなる樹脂と相溶せず、ヘイズの上昇につながり、画像表示した際の視認性を悪化させるため、ディスプレイ用途の積層フィルムにおいて利用することは好ましくない。 Examples of other ultraviolet absorbers include salicylic acid-based compounds such as phenyl salicylate, t-butylphenyl salicylate, p-octylphenyl salicylate, and others, and other natural products (for example, oryzanol, shea butter, baicalin). Etc.), biological systems (for example, keratinocytes, melanin, urocanin, etc.) can also be used. Inorganic ultraviolet absorbers are not compatible with the base resin, leading to an increase in haze and worsening the visibility when displaying an image. Therefore, it is not preferable to use them in laminated films for display applications.
 本発明に用いる紫外線吸収剤は、上記した紫外線吸収剤と基本化学構造を同じくして、酸素原子を同族の硫黄原子に置換したものを用いても良い。具体的には、エーテル基をチオエーテル基、ヒドロキシル基をメルカプト基、アルコシキ基をチオ基に変換したものを用いてもよい。硫黄原子を有する置換基を含む紫外線吸収剤を用いることで、加熱して樹脂に練り混む際に紫外線吸収剤の熱分解を抑制することが出来る。また、硫黄原子の利用、ならびに、適切なアルキル鎖を選択することにより、紫外線吸収剤間の分子間力を抑えて、融点を低下させることが可能となるため、熱可塑性樹脂との相溶性を高めることが出来る。相溶性を高めることにより、高濃度添加した場合にも、光学フィルムの重要なファクターである透明性を維持することが可能となる。 The ultraviolet absorber used in the present invention may be the same as the above-described ultraviolet absorber, in which the oxygen atom is replaced with a sulfur atom in the same family. Specifically, an ether group converted into a thioether group, a hydroxyl group into a mercapto group, and an alkoxy group into a thio group may be used. By using an ultraviolet absorber containing a substituent having a sulfur atom, thermal decomposition of the ultraviolet absorber can be suppressed when heated and kneaded into the resin. In addition, by using sulfur atoms and selecting an appropriate alkyl chain, the intermolecular force between the UV absorbers can be suppressed and the melting point can be lowered, so compatibility with thermoplastic resins is improved. Can be raised. By increasing the compatibility, it is possible to maintain transparency, which is an important factor of the optical film, even when a high concentration is added.
 さらに、本発明で用いる紫外線吸収剤は、波長320~380nmの波長範囲に極大吸収波長を有することに加え、紫外線吸収剤を構成する官能基のアルキル鎖が長いものが好ましい。アルキル鎖が長くなることで、分子間相互作用が抑えられて環構造のパッキングが起こりにくくなるため、フィルムを熱処理した際に、紫外線吸収剤同士が結晶構造を形成しにくくなり、フィルムの白化を抑制することに繋がる。官能基に含まれるアルキル基の長さは、18以下が好ましく、より好ましくは4以上10以下、さらに好ましくは6以上8以下である。アルキル鎖の長さが必要以上に長い場合は、反応点が分子内に埋もれて紫外線吸収剤の収率低下を招くため、現実的ではない。 Further, the ultraviolet absorber used in the present invention preferably has a long alkyl chain of the functional group constituting the ultraviolet absorber in addition to having a maximum absorption wavelength in the wavelength range of 320 to 380 nm. As the alkyl chain becomes longer, the intermolecular interaction is suppressed and packing of the ring structure is less likely to occur.Therefore, when the film is heat-treated, it becomes difficult for the UV absorbers to form a crystal structure, and the film is whitened. It leads to suppression. The length of the alkyl group contained in the functional group is preferably 18 or less, more preferably 4 or more and 10 or less, and still more preferably 6 or more and 8 or less. When the length of the alkyl chain is longer than necessary, the reactive site is buried in the molecule and the yield of the UV absorber is reduced, which is not realistic.
 紫外線吸収剤は、熱可塑性樹脂に添加剤として混練しても良く、熱可塑性樹脂の末端基や側鎖と反応させ、共重合しても良い。フィルムを構成する熱可塑性樹脂と共重合し固定することで、加熱時の分子熱運動に伴うブリードアウトを抑制することが出来るため、透明性を維持したまま、紫外線カット性能を長期にわたり保持することが可能となる。 The ultraviolet absorber may be kneaded as an additive with the thermoplastic resin, or may be copolymerized by reacting with a terminal group or side chain of the thermoplastic resin. By copolymerizing and fixing with the thermoplastic resin that composes the film, it is possible to suppress bleed-out due to molecular thermal motion during heating, so that UV-cutting performance can be maintained for a long time while maintaining transparency. Is possible.
 本発明の積層フィルムにおいて、1種類以上の紫外線吸収剤と、1種類以上の380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を組み合わせて、上述の光線透過率を達成する場合において利用可能な、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素としては、先に述べた380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素以外も利用可能である。本発明における380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素としては、後述のハードコート層、又は、粘着層への添加目的として、溶剤に溶解可能で彩度に優れた染料を利用しても良く、染料よりも耐熱性や耐湿熱性、耐光性に優れている顔料を用いてもよい。顔料は、有機顔料、無機顔料、クラシカル顔料に大別することが出来るが、添加対象である熱可塑性樹脂との相溶性の観点から鑑みて、有機顔料を利用することが好ましい。380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素の構造としては、特に限定されないが、βナフトール系,ナフトールAS系,アセト酢酸アリールアミド系,アセト酢酸アリールアミド系,ピラゾロン系,βオキシナフトエ酸系などのアゾ系、銅フタロシアニン,ハロゲン化銅フタロシアニン,無金属フタロシアニン,銅フタロシアニンレーキなどのフタロシアニン系、その他、アゾメチン系、アニリン系、アリザリン系、アントラキノン系、イソインドリノン系、イソインドリン系、イソキノリン系、インダン系、インドール系、キナクリドン系、キノフタロン系、クマリン系、ジオキサジン系、チオインジゴ系、ナフタルイミド系、ニトロン系、ペリノン系、ペリレン系、ベンジルイジン系、天然有機色素が挙げられる。 In the laminated film of the present invention, one or more kinds of ultraviolet absorbers and one or more kinds of dyes having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm are combined, and the light transmittance described above is combined. As a dye having a maximum wavelength that is maximum in the visible light short wavelength region exceeding 430 nm and 430 nm or less, which can be used in achieving the above, the above-described dye having a maximum wavelength in the visible light short wavelength region exceeding 380 nm and 430 nm or less is used. Other dyes having the maximum maximum wavelength can also be used. In the present invention, the dye having the maximum wavelength that is the maximum in the visible light short wavelength region of 380 nm or more and 430 nm or less can be dissolved in a solvent for the purpose of addition to a hard coat layer or an adhesive layer described later, and chroma. Dyes excellent in heat resistance may be used, and pigments that are more excellent in heat resistance, moist heat resistance, and light resistance than dyes may be used. Pigments can be broadly classified into organic pigments, inorganic pigments, and classical pigments, but it is preferable to use organic pigments from the viewpoint of compatibility with the thermoplastic resin to be added. Although it does not specifically limit as a structure of the pigment | dye which has the maximum wavelength which becomes the visible light short wavelength area | region beyond 380 nm below 430 nm, (beta) naphthol type | system | group, naphthol AS type | system | group, acetoacetic acid arylamide type, acetoacetic acid arylamide type Azo, pyrazolone, β-oxynaphthoic acid, phthalocyanine, copper phthalocyanine, halogenated copper phthalocyanine, metal-free phthalocyanine, copper phthalocyanine lake, azomethine, aniline, alizarin, anthraquinone, isoindo Linone, isoindoline, isoquinoline, indane, indole, quinacridone, quinophthalone, coumarin, dioxazine, thioindigo, naphthalimide, nitrone, perinone, perylene, benzylidine, natural Organic dyes can be mentioned.
 前述のとおり、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素は、390nm以上420nm以下に極大波長を有することがより好ましい。430nmより長波長領域に極大波長を有するものを選択した場合、非常に狭帯域のカット能力を有する色素を選択しない限り、440nmにおける光線透過率が80%を下回るため、好ましくない。390nm以上420nm以下の波長帯域に極大波長を有する色素としては、アゾメチン系、インドール系,キノン系、トリアジン系、ナフタルイミド系,フタロシアニン系、ベンジルイジン系を好ましく用いることが出来る。 As described above, it is more preferable that the dye having the maximum wavelength that is the maximum in the visible light short wavelength region of more than 380 nm and not more than 430 nm has the maximum wavelength of 390 to 420 nm. When a material having a maximum wavelength in a wavelength region longer than 430 nm is selected, the light transmittance at 440 nm is less than 80% unless a dye having a very narrow band cutting ability is selected. As the dye having a maximum wavelength in the wavelength band of 390 nm to 420 nm, azomethine, indole, quinone, triazine, naphthalimide, phthalocyanine, and benzylidine can be preferably used.
  本発明に用いる、紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素としては、トリアジン骨格を有することが好ましい。トリアジン系の吸収剤は、一般に熱分解温度が高く耐熱性に優れていることから、樹脂に練り混み押出機内で長時間にわたって熱に曝された場合でも劣化を引き起こしにくい。また、吸収剤自身の揮散や表面析出が起こりにくく、オリゴマーやその他昇華性の高い添加剤などを析出させにくくする効果を奏することから、好ましく利用することができる。また、吸収係数が高いため、目的のカット性を実現するための添加濃度も少なくて済み、口金からシートの状態で吐出した場合にも製膜工程を汚染する可能性が低くなることから、有用である。 The ultraviolet absorber used in the present invention and / or the dye having a maximum wavelength in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm preferably has a triazine skeleton. Since triazine-based absorbents generally have a high thermal decomposition temperature and excellent heat resistance, they are less likely to cause deterioration even when kneaded into a resin and exposed to heat for a long time in an extruder. Moreover, since the volatilization and surface precipitation of the absorbent itself hardly occur and the effect of making it difficult to deposit oligomers and other highly sublimable additives, it can be preferably used. In addition, since the absorption coefficient is high, the concentration required for achieving the desired cutability is low, and it is less likely to contaminate the film-forming process even when discharged from the die in the form of a sheet. It is.
 本発明の積層フィルムに、紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を含有させる場合は、積層フィルムの特定の層に含有する紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素の含有量の和をMn[重量%]、添加した層の層厚みをTn[μm]としたとき、前記含有量の和と層厚みの積を積層フィルム全層について足し合わせたΣ(Mn×Tn)が50[重量%・μm]以下であることが好ましい。50[重量%・μm]よりも大きい場合、光線透過率が低下しフィルムの白濁度(ヘイズ値)が高くなり、液晶画像表示装置などに実装した場合に、視認性悪化の問題点を生じるため好ましくない場合がある。含有量の合計は、フィルム厚みや各種添加剤の光線吸収能に伴い変化させるものであるために下限は設けないものの、先述の通り、画像表示装置に用いる光学フィルムに要求される、偏光子や液晶分子、発光層などを保護するための紫外線カット性能を十分に有するだけの添加量が求められる。 When the laminated film of the present invention contains a UV absorber and / or a dye having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm, ultraviolet rays contained in a specific layer of the laminated film The sum of the contents of the absorber and / or the pigment having the maximum wavelength that is the maximum in the visible light short wavelength region of 430 nm or more and exceeding 380 nm is Mn [wt%], and the layer thickness of the added layer is Tn [μm] In this case, it is preferable that Σ (Mn × Tn) obtained by adding the product of the sum of the contents and the layer thickness for all layers of the laminated film is 50 [wt% · μm] or less. If it is larger than 50 [wt% · μm], the light transmittance is lowered and the white turbidity (haze value) of the film is increased, which causes a problem of deterioration in visibility when mounted on a liquid crystal image display device or the like. It may not be preferable. Although the total content is changed with the film thickness and the light absorption ability of various additives, no lower limit is provided, but as described above, required for an optical film used in an image display device, a polarizer or An amount of addition sufficient to have sufficient UV-cutting performance for protecting liquid crystal molecules, light emitting layers and the like is required.
 本発明における熱可塑性樹脂中には、紫外線吸収剤や380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素以外のその他各種添加剤、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、有機系易滑剤、有機又は無機の微粒子、充填剤、帯電防止剤、核剤などが、本来満たすべきフィルム特性を悪化させない程度に添加されていてもよい。特に、長時間光照射した場合でも光学性能が維持されることが求められる用途において、先述の380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素のうち、鮮色を有する染料を用いる場合、紫外線吸収剤や顔料と比較して、エネルギーの強い紫外線を受けることで吸収性能を失う傾向がある。そのため、紫外線の保有するエネルギーを分子内で振動エネルギーに変換し、その変換された振動エネルギーを熱エネルギー等に変換し外部に放出する役割を有する化合物を用いることが好ましい。また、酸化防止剤あるいは一重項酸素クエンチャーなどの、光酸化劣化をエネルギー変換を介して抑制する、添加剤等を利用することも好ましい。 In the thermoplastic resin of the present invention, there are various additives other than ultraviolet absorbers and pigments having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm, such as antioxidants, heat-resistant stability Agents, weathering stabilizers, organic lubricants, organic or inorganic fine particles, fillers, antistatic agents, nucleating agents and the like may be added to such an extent that the film properties that should be originally satisfied are not deteriorated. In particular, in applications where optical performance is required to be maintained even when light is irradiated for a long time, among the dyes having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not exceeding 430 nm, the bright color In the case of using a dye having, there is a tendency that the absorption performance is lost by receiving ultraviolet rays having strong energy as compared with ultraviolet absorbers and pigments. Therefore, it is preferable to use a compound having a role of converting the energy held by ultraviolet rays into vibrational energy within the molecule, converting the converted vibrational energy into heat energy, etc., and releasing it to the outside. It is also preferable to use an additive such as an antioxidant or a singlet oxygen quencher that suppresses photo-oxidative deterioration through energy conversion.
 光安定剤は、主に光酸化で生成するラジカルを捕捉するために添加するものであり、本発明の積層フィルムに対しても、フィルム全重量に対して、0.01重量%以上1重量%以下含有することが好ましい。特に、2,2,6,6-テトラメチル-ピペリジン環を有するヒンダードアミン系化合物が好ましく、ピペリジンの1位が、水素、アルキル基、アルコキシ基、ヒドロキシ基、オキシラジカル基(-O・)、アシルオキシ基、アシル基であるものが好ましく、4位は水素原子、ヒドロキシ基、アシルオキシ基、置換基を有してもよいアミノ基、アルコキシ基、アリールオキシ基であるものがより好ましい。また1つの分子中に複数個の2,2,6,6-テトラメチル-ピペリジン環を有するものも好ましい。このような化合物としては、例えば、BASF社(旧チバ・スペシャルティ・ケミカルズ株式会社)製のTINUVIN770DF,TINUVIN 152,TINUVIN123や、株式会社Adeka社製のアデカスタブLA-72、アデカスタブLA-81が挙げられる。   The light stabilizer is added mainly for capturing radicals generated by photooxidation, and is 0.01% by weight or more and 1% by weight with respect to the total film weight of the laminated film of the present invention. It is preferable to contain below. In particular, a hindered amine compound having a 2,2,6,6-tetramethyl-piperidine ring is preferable, and the 1-position of piperidine is hydrogen, an alkyl group, an alkoxy group, a hydroxy group, an oxy radical group (—O ·), an acyloxy group. A group or an acyl group is preferable, and the 4-position is more preferably a hydrogen atom, a hydroxy group, an acyloxy group, an amino group which may have a substituent, an alkoxy group or an aryloxy group. Also preferred are those having a plurality of 2,2,6,6-tetramethyl-piperidine rings in one molecule. Examples of such compounds include TINUVIN770DF, TINUVIN 152, and TINUVIN123 manufactured by BASF (formerly Ciba Specialty Chemicals), Adeka Stub LA-72, and Adeka Stub LA-81 manufactured by Adeka.
 本発明の積層フィルムにおいては、ヒンダードアミン系光安定剤に加えて、酸化防止剤及び/又は一重項酸素クエンチャーを併用することで、より光安定性を高めることが出来る。色素の光劣化は酸化反応により発生するが、酸素分子が酸化剤として機能することによりラジカル発生を伴う自動酸化、色素の励起エネルギーが酸素分子に伝播したことで酸素が一重項酸化状態となる一重項酸素酸化、さらにスーパーオキシドイオンによる酸化などが挙げられる。酸化防止剤や、励起エネルギーを逃がすためのクエンチャーなどを併用することで、これらの酸化反応をより抑制することが可能となる。 In the laminated film of the present invention, the light stability can be further improved by using an antioxidant and / or a singlet oxygen quencher in addition to the hindered amine light stabilizer. Photodegradation of the dye is caused by an oxidation reaction. Oxygen molecules function as an oxidant, so that auto-oxidation with radical generation occurs, and the excitation energy of the dye propagates to the oxygen molecules, so that oxygen becomes a singlet oxidation state. Examples include oxygen oxidation and oxidation with superoxide ions. By using an antioxidant, a quencher for releasing excitation energy, etc., these oxidation reactions can be further suppressed.
 光安定剤と併用するべき酸化防止剤は、一般的に利用される酸化防止剤であれば、特に限定されないが、リン系の酸化防止剤ならびにフェノール系の酸化防止剤を好ましく利用することが出来る。また、リン系酸化防止剤とフェノール系酸化防止剤を併用することにより、酸化防止剤の効力を長時間持続させることが出来ることから、適宜併用系を適用することが好ましい。酸化防止剤の添加濃度は、0.01重量%以上1重量%以下添加することが好ましく、より好ましくは0.05重量%以上0.3重量%以下である。0.01重量%以下の場合は酸化防止剤としての効果が薄くなり、1重量%以上の場合は、添加過多による酸化防止剤の揮散が発生する可能性がある。 The antioxidant to be used in combination with the light stabilizer is not particularly limited as long as it is a commonly used antioxidant, but a phosphorus-based antioxidant and a phenol-based antioxidant can be preferably used. . In addition, the combined use of a phosphorus-based antioxidant and a phenol-based antioxidant allows the efficacy of the antioxidant to be maintained for a long time, and therefore it is preferable to appropriately use a combined system. The addition concentration of the antioxidant is preferably 0.01% by weight or more and 1% by weight or less, and more preferably 0.05% by weight or more and 0.3% by weight or less. When it is 0.01% by weight or less, the effect as an antioxidant is reduced, and when it is 1% by weight or more, there is a possibility that the antioxidant is volatilized due to excessive addition.
 光安定剤と併用するべき一重項酸素クエンチャーは、一重項酸化状態の酸素からのエネルギー移動により一重項酸素を失活させ得る化合物であり、例えば、テトラメチルエチレン、シクロペンテン等のエチレン系化合物、ジエチルアミン、トリエチルアミン、N-エチルイミダゾール等のアミン類、置換基を有するナフタレン、ジメチルナフタレン、ジメトキシアントラセン、アントラセン、ジフェニルアントラセン等の縮合多環芳香族化合物、1,3-ジフェニルイソベンゾフラン、1,2,3,4-テトラフェニル-1,3-シクロペンタジエン、ペンタフェニルシクロペンタジエン等の芳香族化合物のほか、配位子とする金属錯体も挙げることができる。金属錯体化合物としては、ビスジチオ-α-ジケトン、ビスフェニルジチオール、およびチオビスフェノールなどの構造を配位子とする、ニッケル錯体、コバルト錯体、銅錯体、マンガン錯体、白金錯体等の遷移金属配位錯体化合物を挙げることができる。当該一重項酸素クエンチャーは、酸化劣化の対象となる吸収剤の添加量に対して、0.5重量%以上10重量%以下添加することが好ましく、より好ましくは1重量%以上8重量%以下である。また、光安定剤は、酸化防止剤および一重項酸素クエンチャーと、3種類併用して使用することが、ラジカルによる酸化劣化を効果的に防止することができるため、最も好ましい。 A singlet oxygen quencher to be used in combination with a light stabilizer is a compound that can deactivate singlet oxygen by energy transfer from oxygen in a singlet oxidation state, for example, an ethylene-based compound such as tetramethylethylene and cyclopentene, Amines such as diethylamine, triethylamine, N-ethylimidazole, condensed polycyclic aromatic compounds such as substituted naphthalene, dimethylnaphthalene, dimethoxyanthracene, anthracene, diphenylanthracene, 1,3-diphenylisobenzofuran, 1,2, In addition to aromatic compounds such as 3,4-tetraphenyl-1,3-cyclopentadiene and pentaphenylcyclopentadiene, metal complexes having a ligand can also be exemplified. Examples of the metal complex compounds include transition metal coordination complexes such as nickel complexes, cobalt complexes, copper complexes, manganese complexes, and platinum complexes having a ligand such as bisdithio-α-diketone, bisphenyldithiol, and thiobisphenol. A compound can be mentioned. The singlet oxygen quencher is preferably added in an amount of 0.5 wt% or more and 10 wt% or less, more preferably 1 wt% or more and 8 wt% or less based on the amount of the absorbent to be oxidized and deteriorated. It is. In addition, it is most preferable to use the light stabilizer in combination with an antioxidant and a singlet oxygen quencher because the oxidation deterioration due to radicals can be effectively prevented.
 本発明の積層フィルムは、熱可塑性樹脂Aと熱可塑性樹脂Bとが交互に51層以上積層されていることが好ましい。先述の通り、光学的性質の異なる樹脂が交互に積層されることにより、各層の屈折率の差と層厚みとの関係より特定の波長の光を反射させることが出来る、干渉反射を発現させることが可能となる。また、干渉反射領域内の波長の光線に対しては、層間での多重干渉反射効果が発生しているため、フィルム厚み以上の光路長を光線が進行することになるため、紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素などが添加されている場合は吸収量の増大となり、干渉反射効果のない通常の積層フィルムと比較して紫外線吸収剤の添加量を抑えることが可能となる。このように、多重干渉反射の効果を利用すれば、紫外線領域及び/又は短波長可視光領域を標的化することで各種添加剤の添加量を少量に抑えることができ、本発明の目的とする製膜時のブリードアウト抑制や、長期信頼性試験後の品質がよく維持される。本発明の積層フィルムの積層数は、より好ましくは200層以上、さらに好ましくは400層以上である。前述の干渉反射効果は、層数が増えるほど目的の波長帯域の光に対してより高い反射率を達成できるため、積層数は多いほど好ましい。また、積層数が多い場合、均質に各々の樹脂が配分され、安定した製膜性や機械物性を得ることが期待される。層数が増えるに従い、製造装置の大型化に伴う製造コストの増加や、フィルム厚みが厚くなることによるハンドリング性の悪化を招くため、現実的には1000層以下が適している。 In the laminated film of the present invention, it is preferable that 51 or more layers of the thermoplastic resin A and the thermoplastic resin B are alternately laminated. As described above, by alternately laminating resins with different optical properties, it is possible to reflect light of a specific wavelength from the relationship between the difference in refractive index of each layer and the layer thickness, and to express interference reflection. Is possible. In addition, since the multiple interference reflection effect between the layers occurs for the light beam having the wavelength in the interference reflection region, the light beam travels through the optical path length equal to or greater than the film thickness. Or, when a pigment having a maximum wavelength in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm is added, the amount of absorption is increased, and ultraviolet rays are compared with a normal laminated film having no interference reflection effect. It becomes possible to suppress the addition amount of the absorbent. Thus, if the effect of multiple interference reflection is utilized, the amount of various additives added can be suppressed to a small amount by targeting the ultraviolet region and / or the short-wavelength visible light region, and is an object of the present invention. Bleed-out suppression during film formation and quality after long-term reliability tests are well maintained. The number of laminated films of the present invention is more preferably 200 layers or more, and still more preferably 400 layers or more. The above-described interference reflection effect is more preferable as the number of layers is increased because the higher the number of layers, the higher the reflectance can be achieved with respect to light in the target wavelength band. In addition, when the number of layers is large, it is expected that each resin is uniformly distributed and stable film forming properties and mechanical properties are obtained. As the number of layers increases, the manufacturing cost increases with an increase in the size of the manufacturing apparatus and the handling property deteriorates due to the increase in film thickness.
 本発明の積層フィルムは、単位長さ当たりの曲げ剛性が1.0×10-7[N・m]以下であることが好ましい。曲げ剛性とは、屈曲に対する強さを表す指標であり、高い値を示すほどフィルムは硬く、屈曲時に折れ皺が付きやすくなる。単位長さあたりの曲げ剛性は、E×Iで表され、Eは光学機能フィルムの屈曲方向の弾性率[N/m]、Iは単位長さ当たりの断面二次モーメントを示し、I=b×h/12(b:単位長さ[m]:、h:フィルム厚み[m])である。本パラメータは、特にフィルム厚みhの影響を強く受けるため、薄膜のフィルムであるほど屈曲に強いことを示している。本積層フィルムを後述の二軸延伸工程で作成する場合、曲げ剛性は、積層フィルムの長手方向および幅方向のそれぞれに対して算出し、高い方の数値が1.0×10-7[N・m]以下を満足することが求められる。曲げ剛性は、よリ好ましくは3.0×10-8[N・m]以下であり、さらに好ましくは1.0×10-8[N・m]以下である。 The laminated film of the present invention, it is preferable flexural rigidity per unit length is 1.0 × 10 -7 [N · m 2] or less. Bending rigidity is an index representing strength against bending, and the higher the value, the harder the film becomes and the more easily creased during bending. The bending rigidity per unit length is expressed by E × I, where E is the elastic modulus [N / m 2 ] in the bending direction of the optical functional film, I is the cross-sectional secondary moment per unit length, and I = b × h 3/12 (b : unit length [m] :, h: film thickness [m]) it is. Since this parameter is particularly strongly affected by the film thickness h, it indicates that the thinner the film, the stronger the bending. When the present laminated film is produced by the biaxial stretching process described later, the bending rigidity is calculated for each of the longitudinal direction and the width direction of the laminated film, and the higher numerical value is 1.0 × 10 −7 [N · m 2 ] is required to satisfy the following. The bending rigidity is preferably 3.0 × 10 −8 [N · m 2 ] or less, and more preferably 1.0 × 10 −8 [N · m 2 ] or less.
 本発明の積層フィルムは、85℃85%RH条件で250時間処理した際のΔヘイズが2.0以下であることが好ましい。85℃85%RH条件はディスプレイ用途での促進耐湿熱信頼試験条件であるが、高温でかつ湿度も高いため、内部に添加している紫外線吸収剤および/または380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素、樹脂由来のオリゴマーなどが熱運動によりフィルム表面に析出しやすくなる。この条件にてヘイズ値が2.0以下でないと、拡散光が強くなるために光学フィルム自体が白く濁って見え、実装した際の光線透過性が悪化するため視認性に問題を生じる。促進耐熱試験後のヘイズ値としてより好ましくは1.5以下であり、さらに好ましくは1.0以下である。 The laminated film of the present invention preferably has a Δhaze of 2.0 or less when treated at 85 ° C. and 85% RH for 250 hours. The 85 ° C. and 85% RH conditions are accelerated humidity and heat resistance reliability test conditions for display applications. However, since the temperature and humidity are high, the UV absorber added inside and / or visible light exceeding 380 nm and below 430 nm. Dyes having a maximum wavelength in the short wavelength region, oligomers derived from resins, and the like are easily deposited on the film surface by thermal motion. If the haze value is not less than 2.0 under these conditions, the diffused light becomes strong, so that the optical film itself appears white and turbid, and the light transmittance at the time of mounting deteriorates, causing a problem in visibility. More preferably, it is 1.5 or less as a haze value after an accelerated heat test, More preferably, it is 1.0 or less.
 本発明の積層フィルムは、紫外線領域だけでなく、紫外線領域と可視光領域の境界近傍(410nm付近)の光線をカットし、かつ、可視光領域に高い光線透過率を有するため、ディスプレイ用途フィルムに好適に用いられる。ディスプレイ用途フィルムとしては、たとえば、液晶画像表示装置の場合、偏光板を構成する偏光子保護フィルムや位相差フィルム、アンチグレアやクリアハードコート有するディスプレイ前面に位置する各種表面処理フィルム、バックライト直前に位置する輝度向上フィルム、反射防止フィルム、透明導電性フィルムなどが挙げられる。また、有機EL画像表示装置の場合は、発光層の前面に位置する円偏光板を構成するλ/4位相差フィルムや偏光子保護フィルム、外光からの内容物保護の目的で内蔵される光学フィルムなどが挙げられる。特に、耐光性能の向上、および配向角均一などの条件が達成される場合、偏光板の最も視認側に位置する偏光子保護フィルムや、偏光板より視認側で、かつ、ディスプレイ最表面のカバーガラスやウィンドウフィルムよりも内部に位置する部分に配置されることが、紫外線からのディスプレイ内容物保護と偏光状態保持の特性を生かす点において最も好ましい。ただし、本発明の積層フィルムは、ディスプレイ用途に限らず、波長410nm以下の可視光短波長領域の光線カットを必要とする分野、たとえば、建材や自動車用途ではウィンドウフィルム、工業材料用途では、看板などへの鋼板ラミネート用フィルム、また、電子デバイス用途ではフォトリソ材料の工程・離型フィルム、その他食品、医療、インクなどの分野においても、内容物の光劣化抑制などを目的としたフィルム用途として利用することが可能である。 The laminated film of the present invention cuts light rays not only in the ultraviolet region but also in the vicinity of the boundary between the ultraviolet region and the visible light region (around 410 nm) and has a high light transmittance in the visible light region. Preferably used. As a display application film, for example, in the case of a liquid crystal image display device, a polarizer protective film or retardation film constituting a polarizing plate, various surface treatment films located on the front surface of the display having anti-glare or clear hard coat, and a position immediately before the backlight. Brightness enhancement films, antireflection films, transparent conductive films, and the like. In the case of an organic EL image display device, a λ / 4 retardation film or a polarizer protective film constituting a circularly polarizing plate located in front of the light emitting layer, and an optical built-in for the purpose of protecting contents from external light A film etc. are mentioned. In particular, when conditions such as improved light resistance and uniform orientation angle are achieved, a polarizer protective film located on the most visible side of the polarizing plate, or a cover glass on the viewing side of the polarizing plate and on the outermost surface of the display It is most preferable that it is disposed in a portion located inside the window film and the window film in order to take advantage of the properties of protecting the display contents from ultraviolet rays and maintaining the polarization state. However, the laminated film of the present invention is not limited to display applications, but in fields that require light cut in the visible light short wavelength region of wavelength 410 nm or less, such as window films for building materials and automotive applications, signs for industrial material applications, etc. Steel plate laminating film, and for electronic device applications, photolithographic material process / release film, other food, medical, and ink fields, etc. It is possible.
 次に、本発明の積層フィルムの好ましい製造方法を以下に説明する。もちろん本発明は係る例に限定して解釈されるものではない。 Next, a preferred method for producing the laminated film of the present invention will be described below. Of course, the present invention should not be construed as being limited to such examples.
 熱可塑性樹脂をペレットなどの形態で用意する。ペレットは、必要に応じて、熱風中あるいは真空下で乾燥された後、別々の押出機に供給される。押出機内において、融点以上に加熱溶融された樹脂は、ギアポンプ等で樹脂の押出量を均一化され、フィルター等を介して異物や変性した樹脂などが取り除かれる。これらの樹脂はダイにて目的の形状に成形された後、吐出される。そして、ダイから吐出された多層に積層されたフィルムは、キャスティングドラム等の冷却体上に押し出され、冷却固化され、キャスティングフィルムが得られる。この際、ワイヤー状、テープ状、針状あるいはナイフ状等の電極を用いて、静電気力によりキャスティングドラム等の冷却体に密着させ急冷固化させることが好ましい。また、スリット状、スポット状、面状の装置からエアーを吹き出してキャスティングドラム等の冷却体に密着させ急冷固化させたり、ニップロールにて冷却体に密着させ急冷固化させたりする方法も好ましい。 Prepare thermoplastic resin in the form of pellets. The pellets are dried in hot air or under vacuum as necessary, and then supplied to a separate extruder. In the extruder, the resin melted by heating to a temperature higher than the melting point is made uniform in the amount of resin extruded by a gear pump or the like, and foreign matter or denatured resin is removed through a filter or the like. These resins are formed into a desired shape by a die and then discharged. And the film laminated | stacked in the multilayer discharged | emitted from die | dye is extruded on cooling bodies, such as a casting drum, and is cooled and solidified, and a casting film is obtained. At this time, it is preferable to use a wire-like, tape-like, needle-like, or knife-like electrode to be brought into close contact with a cooling body such as a casting drum by an electrostatic force and rapidly solidify. Also preferred is a method in which air is blown out from a slit-like, spot-like, or planar device to be brought into close contact with a cooling body such as a casting drum and rapidly cooled and solidified, or brought into close contact with a cooling body with a nip roll and rapidly cooled and solidified.
 また、熱可塑性樹脂Aと熱可塑性樹脂Bの複数の樹脂を2台以上の押出機を用いて異なる流路から送り出し、多層積層装置に送り込まれる。多層積層装置としては、マルチマニホールドダイやフィードブロックやスタティックミキサー等を用いることができるが、特に、本発明の構成を効率よく得るためには、微細スリットを有するフィードブロックを用いることが好ましい。このようなフィードブロックを用いると、装置が極端に大型化することがないため、熱劣化による異物発生量が少なく、積層数が極端に多い場合でも、高精度な積層が可能となる。また、幅方向の積層精度も従来技術に比較して格段に向上する。また、この装置では、各層の厚みをスリットの形状(長さ、幅)で調整できるため、任意の層厚みを達成することが可能となったものである。 Further, a plurality of resins of thermoplastic resin A and thermoplastic resin B are sent out from different flow paths using two or more extruders, and are sent into a multilayer laminating apparatus. As the multilayer laminating apparatus, a multi-manifold die, a feed block, a static mixer, or the like can be used. In particular, in order to efficiently obtain the configuration of the present invention, it is preferable to use a feed block having a fine slit. When such a feed block is used, the apparatus does not become extremely large, so that the amount of foreign matter generated due to thermal degradation is small, and even when the number of stacks is extremely large, highly accurate stacking is possible. Also, the stacking accuracy in the width direction is significantly improved as compared with the prior art. Moreover, in this apparatus, since the thickness of each layer can be adjusted with the shape (length, width) of a slit, it becomes possible to achieve arbitrary layer thickness.
 このようにして所望の層構成に形成した溶融多層積層体をダイへと導き、上述の通りキャスティングフィルムが得られる。 In this way, the molten multilayer laminate formed in a desired layer configuration is guided to a die, and a casting film is obtained as described above.
 このようにして得られたキャスティングフィルムは、つづいて長手方向および幅方向に二軸延伸されることが好ましい。延伸は、逐次に二軸延伸しても良いし、同時に二軸延伸してもよい。また、さらに長手方向および/または幅方向に再延伸を行ってもよい。 The casting film thus obtained is preferably biaxially stretched in the longitudinal direction and the width direction. The stretching may be biaxial stretching sequentially or simultaneously biaxial stretching. Further, re-stretching may be performed in the longitudinal direction and / or the width direction.
 逐次二軸延伸の場合についてまず説明する。ここで、長手方向への延伸とは、フィルムに長手方向の分子配向を与えるための延伸を言い、通常は、ロールの周速差により施され、この延伸は1段階で行ってもよく、また、複数本のロール対を使用して多段階に行っても良い。延伸の倍率としては樹脂の種類により異なるが、通常、2~15倍が好ましく、積層フィルムを構成する樹脂のいずれかにポリエチレンテレフタレートを用いた場合には、2~7倍が特に好ましく用いられる。また、延伸温度としては積層フィルムを構成する樹脂のガラス転移温度~ガラス転移温度+100℃の範囲内に設定することが好ましい。 First, the case of sequential biaxial stretching will be described. Here, stretching in the longitudinal direction refers to stretching for imparting molecular orientation in the longitudinal direction to the film, and is usually performed by a difference in peripheral speed of the roll, and this stretching may be performed in one step. Alternatively, a plurality of roll pairs may be used in multiple stages. The stretching ratio varies depending on the type of resin, but usually 2 to 15 times is preferable, and 2 to 7 times is particularly preferable when polyethylene terephthalate is used as one of the resins constituting the laminated film. The stretching temperature is preferably set within the range of the glass transition temperature of the resin constituting the laminated film to the glass transition temperature + 100 ° C.
 このようにして得られた一軸延伸されたフィルムに、必要に応じてコロナ処理やフレーム処理、プラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能をインラインコーティングにより付与してもよい。 The uniaxially stretched film thus obtained is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then functions such as slipperiness, easy adhesion, and antistatic properties are provided. It may be applied by in-line coating.
 つづいて幅方向の延伸とは、フィルムに幅方向の配向を与えるための延伸をいい、通常は、テンターを用いて、フィルムの両端をクリップで把持しながら搬送して、幅方向に延伸する。延伸の倍率としては樹脂の種類により異なるが、通常、2~15倍が好ましく、フィルムを構成する樹脂のいずれかにポリエチレンテレフタレートを用いた場合には、2~7倍が特に好ましく用いられる。また、延伸温度としては積層フィルムを構成する樹脂のガラス転移温度~ガラス転移温度+120℃が好ましい。 Subsequently, stretching in the width direction refers to stretching for imparting a width direction orientation to the film. Usually, the film is stretched in the width direction by using a tenter while conveying the both ends of the film with clips. The stretching ratio varies depending on the type of resin, but usually 2 to 15 times is preferable, and when polyethylene terephthalate is used as one of the resins constituting the film, 2 to 7 times is particularly preferable. The stretching temperature is preferably from the glass transition temperature of the resin constituting the laminated film to the glass transition temperature + 120 ° C.
 こうして二軸延伸されたフィルムは、テンター内で延伸温度以上融点以下の熱処理を行い、均一に徐冷後、室温まで冷やして巻き取られる。また、必要に応じて、低配向角およびフィルムの熱寸法安定性を付与するために熱処理から徐冷の際に長手方向および/あるいは幅方向に弛緩処理などを併用してもよい。 The film thus biaxially stretched is subjected to a heat treatment at a temperature not lower than the stretching temperature and not higher than the melting point in the tenter, uniformly cooled slowly, cooled to room temperature, and wound. Further, if necessary, a relaxation treatment or the like may be used in the longitudinal direction and / or the width direction during the slow cooling from the heat treatment in order to impart a low orientation angle and thermal dimensional stability of the film.
 同時二軸延伸の場合について次に説明する。同時二軸延伸の場合には、得られたキャストフィルムに、必要に応じてコロナ処理やフレーム処理、プラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能をインラインコーティングにより付与してもよい。 Next, the case of simultaneous biaxial stretching will be described. In the case of simultaneous biaxial stretching, the resulting cast film is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then, such as slipperiness, easy adhesion, antistatic properties, etc. The function may be imparted by in-line coating.
 次に、キャストフィルムを、同時二軸テンターへ導き、フィルムの両端をクリップで把持しながら搬送して、長手方向と幅方向に同時および/または段階的に延伸する。同時二軸延伸機としては、パンタグラフ方式、スクリュー方式、駆動モーター方式、リニアモーター方式があるが、任意に延伸倍率を変更可能であり、任意の場所で弛緩処理を行うことができる駆動モーター方式もしくはリニアモーター方式が好ましい。延伸の倍率としては樹脂の種類により異なるが、通常、面積倍率として6~50倍が好ましく、積層フィルムを構成する樹脂のいずれかにポリエチレンテレフタレートを用いた場合には、面積倍率として8~30倍が特に好ましく用いられる。特に同時二軸延伸の場合には、面内の配向差を抑制するために、長手方向と幅方向の延伸倍率を同一とするとともに、延伸速度もほぼ等しくなるようにすることが好ましい。また、延伸温度としては積層フィルムを構成する樹脂のガラス転移温度~ガラス転移温度+120℃が好ましい。 Next, the cast film is guided to a simultaneous biaxial tenter, conveyed while holding both ends of the film with clips, and stretched in the longitudinal direction and the width direction simultaneously and / or stepwise. The simultaneous biaxial stretching machine includes a pantograph method, screw method, drive motor method, and linear motor method. A linear motor system is preferred. Although the stretching ratio varies depending on the type of resin, it is usually preferably 6 to 50 times as the area ratio. When polyethylene terephthalate is used as one of the resins constituting the laminated film, the area ratio is 8 to 30 times. Is particularly preferably used. In particular, in the case of simultaneous biaxial stretching, it is preferable to make the stretching ratios in the longitudinal direction and the width direction the same and to make the stretching speeds substantially equal in order to suppress the in-plane orientation difference. The stretching temperature is preferably from the glass transition temperature of the resin constituting the laminated film to the glass transition temperature + 120 ° C.
 こうして二軸延伸されたフィルムは、平面性、寸法安定性を付与するために、引き続きテンター内で延伸温度以上融点以下の熱処理を行うのが好ましい。この熱処理の際に、幅方向での主配向軸の分布を抑制するため、熱処理ゾーンに入る直前および/または直後に瞬時に長手方向に弛緩処理することが好ましい。このようにして熱処理された後、均一に徐冷後、室温まで冷やして巻き取られる。また、必要に応じて、熱処理から徐冷の際に長手方向および/あるいは幅方向に弛緩処理を行っても良い。熱処理ゾーンに入る直前および/あるいは直後に瞬時に長手方向に弛緩処理する。 The film thus biaxially stretched is preferably subsequently subjected to a heat treatment not less than the stretching temperature and not more than the melting point in the tenter in order to impart flatness and dimensional stability. In this heat treatment, in order to suppress the distribution of the main orientation axis in the width direction, it is preferable to perform relaxation treatment in the longitudinal direction instantaneously immediately before and / or immediately after entering the heat treatment zone. After being heat-treated in this way, it is gradually cooled down uniformly, then cooled to room temperature and wound up. Moreover, you may perform a relaxation | loosening process in a longitudinal direction and / or the width direction at the time of annealing from heat processing as needed. Immediately before and / or immediately after entering the heat treatment zone, a relaxation treatment is performed in the longitudinal direction.
 以上のようにして得られた積層フィルムは、巻き取り装置を介して必要な幅にトリミングされ、巻き取り皺が付かないようにロールの状態で巻き取られる。なお、巻き取り時に巻姿改善のためにフィルム両端部にエンボス処理を施しても良い。 The laminated film obtained as described above is trimmed to a required width via a winding device, and wound in a roll state so as not to be wound. In addition, you may give an embossing process to both ends of a film for winding-up improvement at the time of winding.
 本発明の積層フィルムの厚みは、特に限定されるものではないが、1~500μmであることが好ましい。ディスプレイ用途フィルムの近年の薄膜化傾向に則ると、40μm以下であることが好ましく、より好ましくは20μmであり、さらに好ましくは15μm以下である。下限はないものの、紫外線吸収剤および/または380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を添加して紫外線および可視光短波長領域の十分なカット性を薄膜に付与するためには、ある程度の厚みを有する必要があり、現実的には10μm以上の厚みであることが好ましい。10μmより薄い場合、目的の光学性能を付与できないほか、後述のハードコート層を設けた際に、硬化処理に伴い積層フィルムがカールを生じる場合がある。 The thickness of the laminated film of the present invention is not particularly limited, but is preferably 1 to 500 μm. In accordance with the recent trend toward thin film for display applications, it is preferably 40 μm or less, more preferably 20 μm, and even more preferably 15 μm or less. Although there is no lower limit, an ultraviolet absorber and / or a dye having a maximum wavelength in the visible light short wavelength region of more than 380 nm and not more than 430 nm is added to provide a thin film with sufficient cut ability in the ultraviolet and visible light short wavelength region In order to impart to the film, it is necessary to have a certain thickness, and it is preferable that the thickness is practically 10 μm or more. When the thickness is less than 10 μm, the desired optical performance cannot be imparted, and when a hard coat layer described later is provided, the laminated film may be curled along with the curing treatment.
 次に、本発明の積層フィルムに硬化性樹脂Cを主成分とするハードコート層を設けた積層シートについて記述する。 Next, a laminated sheet in which a hard coat layer mainly composed of the curable resin C is provided on the laminated film of the present invention will be described.
 本発明の積層フィルムは、最表層の上部に耐擦傷や寸法安定性などの機能を付加するために、硬化性樹脂Cを主成分とするハードコート層(C層)を設けてなることが好ましい。ディスプレイ用途フィルムの場合、前述の85℃85%RHの促進耐湿熱試験条件を含め、100℃近傍から氷点下まで温度を幾度にわたり上下させるヒートショック試験などの、過酷な条件の長期信頼性試験において、フィルムの性状が変化しないことが要求される。延伸により配向結晶化した積層フィルムの場合、長期信頼試験を行うと、熱収縮によりフィルムの寸法が変化する可能性があるが、本発明の積層フィルムの場合、熱収縮が起こることでフィルムの厚みが増加するため、各種吸収剤の吸収性能が必要以上に向上することで、望まない可視光線領域の吸収を示したり、反射帯域がシフトしてより長波長側の可視光線をカットするなどの問題点が生じるため好ましくない。そのため、寸法安定性に寄与するハードコート層を積層フィルムの少なくとも片面に塗布することが、フィルムの性状を保つために好ましい。加えて、架橋性の高いハードコート層を積層することで、積層フィルム内部に含まれているオリゴマーや添加剤などの析出を抑制することが出来る。ハードコート層は、積層フィルムの上に直接コーティングされてもよく、前述の製造方法に記載の通り、易滑性や易接着性などの機能を付与できるインライン水系コーティング層を設けた上にコーティングされてもよい。 The laminated film of the present invention is preferably provided with a hard coat layer (C layer) composed mainly of the curable resin C in order to add functions such as scratch resistance and dimensional stability to the uppermost layer. . In the case of a display application film, in the long-term reliability test under severe conditions such as the heat shock test in which the temperature is raised and lowered from around 100 ° C. to below the freezing point, including the above-mentioned 85 ° C. and 85% RH accelerated heat resistance test It is required that the film properties do not change. In the case of a laminated film crystallized by stretching, if the long-term reliability test is performed, the film size may change due to thermal shrinkage. In the case of the laminated film of the present invention, the thickness of the film is caused by thermal shrinkage. As the absorption performance of various absorbents is improved more than necessary, problems such as undesired absorption in the visible light region and a shift in the reflection band to cut visible light on the longer wavelength side are caused. Since a point arises, it is not preferable. Therefore, it is preferable to apply a hard coat layer contributing to dimensional stability to at least one surface of the laminated film in order to maintain the properties of the film. In addition, by laminating a hard coat layer with high crosslinkability, precipitation of oligomers and additives contained in the laminated film can be suppressed. The hard coat layer may be coated directly on the laminated film, and is coated on an in-line water-based coating layer that can impart functions such as slipperiness and easy adhesion as described in the manufacturing method above. May be.
 上述のコーティング層は、易滑性や易接着性などの機能を付与できるだけでなく、硬化性樹脂Cを主成分とするハードコート層を積層する際に、積層フィルムとの密着性を向上させる効果を奏するため塗布することが好ましい。特に、後述の実施例のように、樹脂Aとしてポリエチレンテレフタレート、硬化性樹脂Bとしてアクリル樹脂を用いる場合、前者は屈折率が1.65程度、後者は屈折率が1.50程度と屈折率差が大きくなることから、密着性の悪化を引き起こす。そのため、該コーティング層の屈折率は1.50~1.60の値を有することが好ましく、より好ましくは1.55~1.58の屈折率である。 The above-mentioned coating layer not only provides functions such as slipperiness and easy adhesion, but also improves the adhesion with the laminated film when laminating a hard coat layer mainly composed of the curable resin C. It is preferable to apply to achieve the above. In particular, when polyethylene terephthalate is used as the resin A and acrylic resin is used as the curable resin B as in the examples described later, the former has a refractive index of about 1.65 and the latter has a refractive index of about 1.50. Increases the adhesion, which causes deterioration of adhesion. Therefore, the refractive index of the coating layer preferably has a value of 1.50 to 1.60, more preferably 1.55 to 1.58.
 硬化性樹脂Cを主成分とするハードコート層は片面に設けてもよいが、オリゴマーや添加剤などの析出は一般にフィルムの両面より発生し、さらに片面のみにハードコート層を積層する場合は積層面側に硬化による収縮応力が強く働き、ハードコート層の積層厚みに応じて積層シート自身が著しくカールする恐れがある。そのため、ハードコート層を、積層フィルムの両面に塗布してなることがより好ましい。 The hard coat layer mainly composed of the curable resin C may be provided on one side. However, precipitation of oligomers and additives generally occurs from both sides of the film, and in addition, the hard coat layer is laminated only on one side. The shrinkage stress due to curing acts strongly on the surface side, and there is a possibility that the laminated sheet itself curls remarkably depending on the laminated thickness of the hard coat layer. Therefore, it is more preferable that the hard coat layer is applied to both surfaces of the laminated film.
 本発明の積層フィルムに用いる硬化性樹脂Cは、高透明で耐久性があるものが好ましく、例えば、アクリル樹脂、ウレタン樹脂、フッソ系樹脂、シリコン樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂を単独または混合して使用できる。硬化性や可撓性、生産性の点において、硬化性樹脂Cはポリアクリレート樹脂に代表されるアクリル樹脂などの活性エネルギー線硬化型樹脂からなることが好ましい。また、フレキシブルディスプレイ用フィルムとして適用する場合に求められる、折り曲げ時の耐擦傷性を付加する場合、硬化性樹脂Cは熱硬化性のウレタン樹脂からなることが好ましい。 The curable resin C used in the laminated film of the present invention is preferably highly transparent and durable. For example, an acrylic resin, a urethane resin, a fluorine resin, a silicon resin, a polycarbonate resin, or a vinyl chloride resin is used alone or Can be used as a mixture. In view of curability, flexibility, and productivity, the curable resin C is preferably made of an active energy ray curable resin such as an acrylic resin typified by a polyacrylate resin. Moreover, when adding the abrasion resistance at the time of a bending | flexion required when applying as a film for flexible displays, it is preferable that the curable resin C consists of a thermosetting urethane resin.
 ハードコート層の構成成分として用いられる活性エネルギー線硬化型樹脂は、該活性エネルギー線硬化型樹脂を構成するモノマー成分としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ビス(メタクロイルチオフェニル)スルフィド、2,4-ジブロモフェニル(メタ)アクリレート、2,3,5-トリブロモフェニル(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロイルオキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルペンタエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシエトキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシジエトキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシペンタエトキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシエトキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシエトキシ-3-フェニルフェニル)プロパン、ビス(4- (メタ)アクリロイルオキシフェニル)スルホン、ビス(4-(メタ)アクリロイルオキシエトキシフェニル)スルホン、ビス(4-(メタ)アクリロイルオキシペンタエトキシフェニル)スルホン、ビス(4-(メタ)アクリロイルオキシエトキシ-3-フェニルフェニル)スルホン、ビス(4-(メタ)アクリロイルオキシエトキシ-3,5-ジメチルフェニル)スルホン、ビス(4-(メタ)アクリロイルオキシフェニル)スルフィド、ビス(4-(メタ)アクリロイルオキシエトキシフェニル)スルフィド、ビス(4-(メタ)アクリロイルオキシペンタエトキシフェニル)スルフィド、ビス(4-(メタ)アクリロイルオキシエトキシ-3-フェニルフェニル)スルフィド、ビス(4-(メタ)アクリロイルオキシエトキシ-3,5-ジメチルフェニル)スルフィド、ジ((メタ)アクリロイルオキシエトキシ)フォスフェート、トリ((メタ)アクリロイルオキシエトキシ)フォスフェートなどの多官能(メタ)アクリル系化合物を用いることができ、これらは1種もしくは2種以上を用いることが出来る。 The active energy ray-curable resin used as a constituent component of the hard coat layer includes, for example, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, as monomer components constituting the active energy ray-curable resin, Dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate, bis (methacryloylthio) Phenyl) sulfide, 2,4-dibromophenyl (meth) acrylate, 2,3,5-tribromophenyl (meth) acrylate, 2,2-bis (4- (meth) acryloyloxy) Enyl) propane, 2,2-bis (4- (meth) acryloyloxyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloyloxydiethoxyphenyl) propane, 2,2-bis (4- ( (Meth) acryloylpentaethoxyphenyl) propane, 2,2-bis (4- (meth) acryloyloxyethoxy-3,5-dibromophenyl) propane, 2,2-bis (4- (meth) acryloyloxydiethoxy-3) , 5-Dibromophenyl) propane, 2,2-bis (4- (meth) acryloyloxypentaethoxy-3,5-dibromophenyl) propane, 2,2-bis (4- (meth) acryloyloxyethoxy-3, 5-dimethylphenyl) propane, 2,2-bis (4- (meth) acryloyloxyethoxy-3-fur Nylphenyl) propane, bis (4- (meth) acryloyloxyphenyl) sulfone, bis (4- (meth) acryloyloxyethoxyphenyl) sulfone, bis (4- (meth) acryloyloxypentaethoxyphenyl) sulfone, bis (4- (Meth) acryloyloxyethoxy-3-phenylphenyl) sulfone, bis (4- (meth) acryloyloxyethoxy-3,5-dimethylphenyl) sulfone, bis (4- (meth) acryloyloxyphenyl) sulfide, bis (4 -(Meth) acryloyloxyethoxyphenyl) sulfide, bis (4- (meth) acryloyloxypentaethoxyphenyl) sulfide, bis (4- (meth) acryloyloxyethoxy-3-phenylphenyl) sulfide, bis (4- (me Use polyfunctional (meth) acrylic compounds such as) acryloyloxyethoxy-3,5-dimethylphenyl) sulfide, di ((meth) acryloyloxyethoxy) phosphate, tri ((meth) acryloyloxyethoxy) phosphate These can be used alone or in combination of two or more.
 また、これら多官能(メタ)アクリル系化合物とともに、活性エネルギー線硬化型樹脂の硬度、透明性、強度、屈折率などをコントロールするため、スチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ジブロモスチレン、ジビニルベンゼン、ビニルトルエン、1-ビニルナフタレン、2-ビニルナフタレン、N-ビニルピロリドン、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、ビフェニル(メタ)アクリレート、ジアリルフタレート、ジメタリルフタレート、ジアリルビフェニレート、あるいはバリウム、鉛、アンチモン、チタン、錫、亜鉛などの金属と(メタ)アクリル酸との反応物などを用いることができる。これらは1種もしくは2種以上を用いてもよい。 In addition to these polyfunctional (meth) acrylic compounds, styrene, chlorostyrene, dichlorostyrene, bromostyrene, dibromostyrene, divinyl are used to control the hardness, transparency, strength, refractive index, etc. of active energy ray-curable resins. Benzene, vinyl toluene, 1-vinyl naphthalene, 2-vinyl naphthalene, N-vinyl pyrrolidone, phenyl (meth) acrylate, benzyl (meth) acrylate, biphenyl (meth) acrylate, diallyl phthalate, dimethallyl phthalate, diallyl biphenylate, or A reaction product of a metal such as barium, lead, antimony, titanium, tin, or zinc and (meth) acrylic acid can be used. These may be used alone or in combination of two or more.
 活性エネルギー線硬化型樹脂を硬化させる方法として、例えば、紫外線を照射する方法を用いることができるが、この場合には、前記化合物に対し、0.01~10重量部程度の光重合開始剤を加えることが望ましい。 As a method of curing the active energy ray-curable resin, for example, a method of irradiating with ultraviolet rays can be used. In this case, about 0.01 to 10 parts by weight of a photopolymerization initiator is added to the compound. It is desirable to add.
 本発明に用いる活性エネルギー線硬化型樹脂には、塗工時の作業性の向上、塗工膜厚のコントロールを目的として、本発明の効果を損なわない範囲において、イソプロピルアルコール、酢酸エチル、メチルエチルケトン、トルエンなどの有機溶剤を配合することができる。 In the active energy ray-curable resin used in the present invention, isopropyl alcohol, ethyl acetate, methyl ethyl ketone, for the purpose of improving the workability during coating and controlling the coating film thickness, without impairing the effects of the present invention, An organic solvent such as toluene can be blended.
 本発明において活性エネルギー線とは、紫外線、電子線、放射線(α線、β線、γ線など)などアクリル系のビニル基を重合させる電磁波を意味し、実用的には、紫外線が簡便であり好ましい。紫外線源としては、紫外線蛍光灯、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、炭素アーク灯などを用いることができる。また、電子線方式は、装置が高価で不活性気体下での操作が必要ではあるが、光重合開始剤や光増感剤などを含有させなくてもよい点から有利である。 In the present invention, the active energy ray means an electromagnetic wave that polymerizes an acrylic vinyl group such as an ultraviolet ray, an electron beam, and radiation (α ray, β ray, γ ray, etc.). preferable. As the ultraviolet ray source, an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, a carbon arc lamp, or the like can be used. The electron beam method is advantageous in that the apparatus is expensive and requires operation under an inert gas, but it does not need to contain a photopolymerization initiator or a photosensitizer.
 ハードコート層の厚みは、使用方法により適切に調整されるべきであるが、ディスプレイ用途の薄膜傾向およびハードコート性能の両立の観点から鑑みると、通常は1~6μmであることが好ましく、より好ましくは1~3μmであり、さらに好ましくは1~1.5μmの範囲である。ハードコート層の厚みが6μmより厚い場合、コーティング基材を硬化させる際に積層フィルムがハードコート層の硬化収縮力に負けて、積層シートのカールが強く発生する場合がある。 The thickness of the hard coat layer should be appropriately adjusted depending on the method of use, but it is usually preferably 1 to 6 μm, more preferably from the viewpoint of compatibility between the thin film tendency for display applications and the hard coat performance. Is from 1 to 3 μm, more preferably from 1 to 1.5 μm. When the thickness of the hard coat layer is thicker than 6 μm, the laminated film may lose the curing shrinkage force of the hard coat layer when the coating substrate is cured, and the curling of the laminated sheet may occur strongly.
 耐擦傷性を付加するための、硬化性樹脂Cを主成分とするハードコート層の構成成分として用いられる熱硬化性ウレタン樹脂としては、ポリカプロラクトンセグメントならびにポリシロキサンセグメントおよび/またはポリジメチルシロキサンセグメントを有する共重合体樹脂を、イソシアネート基を有する化合物と熱反応により架橋させた樹脂が好ましい。熱硬化性ウレタン樹脂を適用することで、ハードコート層を強靭にすると同時に弾性回復性を助長することが可能となり、耐擦傷性を積層フィルムに付加することが可能となる。 The thermosetting urethane resin used as a component of the hard coat layer mainly composed of the curable resin C for adding scratch resistance includes a polycaprolactone segment and a polysiloxane segment and / or a polydimethylsiloxane segment. A resin obtained by cross-linking a copolymer resin having an isocyanate group with a compound having a thermal reaction is preferable. By applying the thermosetting urethane resin, it becomes possible to strengthen the hard coat layer and at the same time promote the elastic recovery and to add scratch resistance to the laminated film.
 熱硬化性ウレタン樹脂を構成するポリカプロラクトンセグメントは、弾性回復の効果を奏するものであり、ポリカプロラクトンジオール、ポリカプロラクトントリオールや、ラクトン変性ヒドロキシエチルアクリレートなどのラジカル重合性ポリカプロラクトンを用いることが出来る。 The polycaprolactone segment constituting the thermosetting urethane resin exhibits an effect of elastic recovery, and radically polymerizable polycaprolactone such as polycaprolactone diol, polycaprolactone triol, and lactone-modified hydroxyethyl acrylate can be used.
 熱硬化性ウレタン樹脂を構成するポリシロキサンおよび/またはポリジメチルシロキサンセグメントは、これらの成分が表面配位することで表面の潤滑性を向上し、摩擦抵抗を低減する効果を奏する。ポリシロキサンセグメントを有する樹脂としては、テトラアルコキシシラン、メチルトリアルコキシシラン、ジメチルジアルコキシシラン、γ‐グリシドキシプロピルトリアルコキシシラン、γ‐メタクリロキシプロピルトリアルコキシシランなどを用いることができる。一方、ポリジメチルシロキサンセグメントを有する樹脂としては、ポリジメチルシロキサンセグメントに種々のビニルモノマー、たとえば、メチルアクリレート、イソブチルアクリレート、メチルメタクリレート、n-ブチルメタクリレート、スチレン、α-メチルスチレン、アクリロニトリル、酢酸ビニル、塩化ビニル、フッ化ビニル、アクリルアミド、メタクリルアミド、N,N-ジメチルアクリルアミド、などが共重合された共重合体を好ましく用いることが出来る。 The polysiloxane and / or polydimethylsiloxane segment constituting the thermosetting urethane resin has the effect of improving the lubricity of the surface and reducing the frictional resistance due to the surface coordination of these components. As the resin having a polysiloxane segment, tetraalkoxysilane, methyltrialkoxysilane, dimethyldialkoxysilane, γ-glycidoxypropyltrialkoxysilane, γ-methacryloxypropyltrialkoxysilane, and the like can be used. On the other hand, as a resin having a polydimethylsiloxane segment, various vinyl monomers such as methyl acrylate, isobutyl acrylate, methyl methacrylate, n-butyl methacrylate, styrene, α-methyl styrene, acrylonitrile, vinyl acetate, A copolymer obtained by copolymerizing vinyl chloride, vinyl fluoride, acrylamide, methacrylamide, N, N-dimethylacrylamide, or the like can be preferably used.
 熱硬化性ウレタン樹脂からなるハードコート層は、任意の温度で樹脂や化合物同士を連結反応させ、層内の溶媒を揮発させると同時に熱架橋することで形成される。ハードコート層の熱架橋反応を促進させるため、加熱工程における温度は150℃以上であることが好ましく、より好ましくは160℃以上である。加熱温度は高温であることが好ましいが、基材の熱収縮による収縮シワの発生などを考慮すると170℃以下で熱処理することが好ましい。加熱時間は、1分間以上、好ましくは2分間以上であり、上限は特に定められるものではないが、積層フィルムの寸法安定性や透明性の観点から5分間以内とすることが好ましい。このようにして、高温で短時間熱処理された積層シートは、20℃~80℃の温度で3日以上、より好ましくは7日以上エージング処理を行うことが、ウレタン結合を増やして積層シートの伸度を向上させる点で好ましい。 A hard coat layer made of a thermosetting urethane resin is formed by linking and reacting resins and compounds at an arbitrary temperature to volatilize the solvent in the layer and at the same time thermally crosslink. In order to promote the thermal crosslinking reaction of the hard coat layer, the temperature in the heating step is preferably 150 ° C. or higher, more preferably 160 ° C. or higher. The heating temperature is preferably high, but it is preferable to perform heat treatment at 170 ° C. or lower in consideration of generation of shrinkage wrinkles due to thermal shrinkage of the substrate. The heating time is 1 minute or longer, preferably 2 minutes or longer, and the upper limit is not particularly defined, but is preferably within 5 minutes from the viewpoint of dimensional stability and transparency of the laminated film. Thus, the laminated sheet that has been heat-treated at a high temperature for a short time is subjected to an aging treatment at a temperature of 20 ° C. to 80 ° C. for 3 days or more, more preferably 7 days or more. It is preferable in terms of improving the degree.
 接着性・密着性を付加するために利用される硬化性樹脂Cとしては、ディスプレイ用光学フィルムとして、特に偏光子との貼り合わせとして用いる場合には、PVAとの密着において良好な効果を奏する、脂環式エポキシ基を有する化合物、ポリオールのポリアクリレート、オキセタン化合物、アルキルアクリレートを単量体単位とする重合体の4種の組み合わせで構成される光硬化性樹脂を用いることが好ましい。 As the curable resin C used for adding adhesiveness / adhesiveness, when used as an optical film for display, particularly as a laminate with a polarizer, there is a good effect in adhesion with PVA, It is preferable to use a photocurable resin composed of four types of combinations of a compound having an alicyclic epoxy group, a polyol polyacrylate, an oxetane compound, and a polymer having an alkyl acrylate as a monomer unit.
 脂環式エポキシ基を有する化合物としては、エポキシ基を2~5個程度有するものが低粘度、硬化性、接着力の観点から好ましく、3,4-エポキシシクロへキシルメチル-3,4-エポキシシクロヘキサンカルボキシレートなどが挙げられる。 As the compound having an alicyclic epoxy group, those having about 2 to 5 epoxy groups are preferable from the viewpoint of low viscosity, curability and adhesive strength. 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane Examples include carboxylate.
 ポリオールのポリアクリレートとしては、炭素数が2~10個程度有するものが粘度を下げながらも偏光子への密着性が向上させるため好ましく、ネオペンチルグリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、3-メチル-1,5-ペンタンジオールジメタクリレートなどが挙げられる。 As the polyacrylate of the polyol, those having about 2 to 10 carbon atoms are preferable because the adhesion to the polarizer is improved while lowering the viscosity, and neopentyl glycol dimethacrylate, 1,6-hexanediol dimethacrylate, Examples include 3-methyl-1,5-pentanediol dimethacrylate.
 オキセタン化合物としては、光照射後の接着発現速度を向上することが出来、相対湿度が変動する環境下においても接着力を発現することができる。3-エタン-3-オキセタンメタノール、3,3´-(オキシビスメチレン)ビス(3-エチルオキセタン)などを好ましく用いることが出来る。 As an oxetane compound, the adhesion development rate after light irradiation can be improved, and adhesion can be developed even in an environment where the relative humidity varies. 3-ethane-3-oxetanemethanol, 3,3 ′-(oxybismethylene) bis (3-ethyloxetane), and the like can be preferably used.
 アクリルアクリレートを単量体とする重合体としては、促進耐湿熱試験後の接着力を良好にする効果を奏するものであり、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、イソブチルメタクリレートをはじめとする炭素数1~10のアルキルメタクリレートを用いることが好ましく、中でも炭素数1~4の範囲内のアクリルメタクリレートを用いることが最も好ましい。 As a polymer using acrylic acrylate as a monomer, it has an effect of improving the adhesive strength after the accelerated moist heat resistance test, and includes methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, isobutyl methacrylate. It is preferable to use an alkyl methacrylate having 1 to 10 carbon atoms such as the above, and it is most preferable to use an acrylic methacrylate having 1 to 4 carbon atoms.
 以上の各成分を適量配合し、光カチオン重合開始剤として前述の各種活性エネルギー線により常温で硬化することが可能となる。光カチオン重合開始剤としては、ベンゼンジアゾニウムなどの芳香族ジアゾニウム塩、トリフェニルスルフォニウムなどの芳香族スルフォニウム塩、ジフェニルジヨードニウムなどの芳香族ヨードニウム塩、もしくはこれらの2種類以上の組み合わせを用いることが出来る。また、少ない光照射量で十分な架橋反応性を発揮するために光ラジカル重合開始剤を利用することも可能である。 Appropriate amounts of each of the above components can be blended and cured at room temperature with the above-mentioned various active energy rays as a cationic photopolymerization initiator. As the cationic photopolymerization initiator, an aromatic diazonium salt such as benzenediazonium, an aromatic sulfonium salt such as triphenylsulfonium, an aromatic iodonium salt such as diphenyldiiodonium, or a combination of two or more of these may be used. I can do it. It is also possible to use a radical photopolymerization initiator in order to exhibit sufficient crosslinking reactivity with a small amount of light irradiation.
 ハードコート層には、前述した種々の紫外線吸収剤および/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を添加してもよい。ハードコート層と分けて添加することで、樹脂内に添加する紫外線吸収剤および380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素の添加量を減少させることが出来、樹脂押出時に発生するブリードアウト現象を抑制することが出来るため好ましい。また、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素をハードコート層に添加した場合、積層フィルム由来の視認側への青色反射色相を、色素の吸収により低減することが可能となり、画像表示有無時におけるクリアな白さや黒さを表現できる点から好ましい。 The hard coat layer may contain the various ultraviolet absorbers described above and / or a dye having a maximum wavelength that is the maximum in the visible light short wavelength region of more than 380 nm and not more than 430 nm. By adding it separately from the hard coat layer, it is possible to reduce the addition amount of the UV absorber added in the resin and the dye having the maximum wavelength that exceeds 380 nm and reaches the maximum in the visible light short wavelength region of 430 nm or less. The bleed-out phenomenon that occurs during resin extrusion can be suppressed, which is preferable. In addition, when a dye having a maximum wavelength exceeding 380 nm and not exceeding 430 nm is added to the hard coat layer, the blue reflection hue from the laminated film to the viewing side is reduced by absorption of the dye. This is preferable because clear whiteness and blackness when an image is displayed can be expressed.
 ハードコート層に添加する紫外線吸収剤および/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素の添加濃度は、ハードコート層を構成する樹脂組成物全体に対して10wt%以下であることが好ましく、より好ましくは5wt%以下である。添加濃度については、添加剤の吸収性能やカット性能に関与するハードコート層の厚みを鑑みて、目的とするカット性能を達成するために適宜調節されるべきであるが、10wt%を超える場合、促進信頼性試験時に各種添加剤の表面析出の可能性があるうえ、積層フィルムとハードコート層の密着性が悪化する場合もある。 The addition concentration of the ultraviolet absorber added to the hard coat layer and / or the dye having the maximum wavelength in the visible light short wavelength region exceeding 380 nm and below 430 nm is based on the entire resin composition constituting the hard coat layer. It is preferably 10 wt% or less, and more preferably 5 wt% or less. The additive concentration should be adjusted as appropriate in order to achieve the target cut performance in view of the thickness of the hard coat layer involved in the absorption performance and cut performance of the additive. During the accelerated reliability test, there is a possibility of surface precipitation of various additives, and the adhesion between the laminated film and the hard coat layer may deteriorate.
 また、積層シートの態様においても、先述した含有する紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素の含有量の和Mn[重量%]と、当該添加層の層厚みをTn[μm]の積を積層フィルム全層について足し合わせたΣ(Mn×Tn)が、50[重量%・μm]以下であることが好ましい。 In addition, in the aspect of the laminated sheet, the sum Mn [% by weight] of the content of the ultraviolet absorber contained above and / or the pigment having the maximum wavelength that exceeds 380 nm and reaches the maximum in the visible light short wavelength region of 430 nm or less. And, it is preferable that Σ (Mn × Tn) obtained by adding the product of Tn [μm] to the total thickness of the layer of the additive layer is 50 [wt% · μm] or less.
 これら硬化性樹脂Cを主成分とするハードコート層の上には、必要に応じて、さらにその上に、衝撃吸収層、反射防止(AR)層などの機能層を設けることも可能である。特に、AR層は、画像表示用途において視認性を向上させる効果を有するため、機能層として積層されることは好ましい。 A functional layer such as an impact absorbing layer or an antireflection (AR) layer can be further provided on the hard coat layer containing the curable resin C as a main component, if necessary. In particular, the AR layer is preferably laminated as a functional layer because it has an effect of improving visibility in image display applications.
 本発明の積層フィルムのうち少なくとも片面に、紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を含む、粘着層を有してもよい。該粘着層は、ディスプレイ用フィルムの場合、本発明の積層フィルムに対して、視認側に位置しても良く、ディスプレイ内部側に位置しても良く、また、両側に位置していても良い。
ただし、積層フィルムおよび粘着層の双方を介して本発明の目的とする波長カットを達成する場合、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素として染料を用いる場合、先述の通り、エネルギーの強い紫外線を受けることで吸収性能を失う。そのため、積層フィルムに紫外線吸収剤を、粘着層に紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を含有し、積層フィルムが粘着剤よりも視認側に位置する構成とすることで、積層フィルムの反射及び吸収の性能により色素の劣化を十分防止することが出来るため、好ましい態様となる。
You may have an adhesion layer which contains the pigment | dye which has the pigment | dye which has the maximum wavelength which becomes the largest in the visible light short wavelength area | region of 430 nm or more exceeding 380 nm on at least one side among the laminated | multilayer film of this invention. In the case of a display film, the pressure-sensitive adhesive layer may be positioned on the viewing side, on the display inner side, or on both sides of the laminated film of the present invention.
However, when achieving the target wavelength cut through the laminated film and the adhesive layer, the dye is used as a pigment having a maximum wavelength that is the maximum in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm. In this case, as described above, the absorption performance is lost by receiving ultraviolet rays with strong energy. Therefore, the laminated film contains an ultraviolet absorber, the adhesive layer contains an ultraviolet absorber and / or a pigment having a maximum wavelength in the short wavelength region of visible light shorter than 430 nm but not more than 430 nm. Since the deterioration of the pigment can be sufficiently prevented by the reflection and absorption performance of the laminated film, it is a preferable embodiment.
 粘着層は、積層フィルム基材に直接塗工後、乾燥して粘着層を形成し、さらに剥離シートを貼り合わせることで、粘着シートを得る方法でも良く、剥離シートに塗工した粘着剤を積層フィルム基材上に転写する方法でも良い。塗工方法は、ロールコーター、ダイコーター、バーコーター、リップコ-ター、グラビアコーター、ブレードコーターなどの種々の塗工方法を利用することがきる。粘着層の厚みは、5μm以上150μm以下であることが好ましく、より好ましくは、10μm以上80μm以下である。粘着層厚みが5μm未満のときは粘着性能が不十分である場合があり、150μmを越えると粘着シート自体のコストが嵩むため望ましくない。粘着剤の種類としては、特に限定はされないが、先述した密着性・接着性向上を付加するために利用される硬化性樹脂として記載したもの、また、アクリル系の光学粘着剤(OCA)や、液状のアクリル系光学粘着剤(LOCA)を用いることが、透明性ならびに耐久性に優れていることから最も好ましい。 The pressure-sensitive adhesive layer may be applied directly to the laminated film substrate, then dried to form a pressure-sensitive adhesive layer, and further bonded to the release sheet to obtain a pressure-sensitive adhesive sheet. The pressure-sensitive adhesive applied to the release sheet is laminated. A method of transferring onto a film substrate may also be used. Various coating methods such as a roll coater, a die coater, a bar coater, a lip coater, a gravure coater, and a blade coater can be used as the coating method. The thickness of the adhesive layer is preferably 5 μm or more and 150 μm or less, and more preferably 10 μm or more and 80 μm or less. When the pressure-sensitive adhesive layer thickness is less than 5 μm, the pressure-sensitive adhesive performance may be insufficient, and when it exceeds 150 μm, the cost of the pressure-sensitive adhesive sheet itself increases, which is not desirable. The type of the pressure-sensitive adhesive is not particularly limited, but is described as a curable resin used for adding the above-described adhesion and adhesion improvement, acrylic optical pressure-sensitive adhesive (OCA), It is most preferable to use a liquid acrylic optical adhesive (LOCA) because of excellent transparency and durability.
 以下、実施例に沿って本発明について説明するが、本発明はこれらの実施例に制限されるものではない。各特性は、以下の手法により測定した。 Hereinafter, the present invention will be described according to examples, but the present invention is not limited to these examples. Each characteristic was measured by the following method.
 (特性の測定方法および効果の評価方法)
 本発明における特性の測定方法、および効果の評価方法は次のとおりである。
(Characteristic measurement method and effect evaluation method)
The characteristic measuring method and the effect evaluating method in the present invention are as follows.
 (1)層厚み、積層数、積層構造
 フィルムの層構成は、ミクロトームを用いて断面を切り出したサンプルについて、透過型電子顕微鏡(TEM)観察により求めた。すなわち、透過型電子顕微鏡H-7100FA型((株)日立製作所製)を用い、加速電圧75kVの条件でフィルムの断面を観察し、断面写真を撮影、層構成および各層厚みを測定した。尚、場合によっては、コントラストを高く得るために、RuOやOsOなどを使用した染色技術を用いた。また、1枚の画像に取り込められるすべての層の中で最も厚みの薄い層(薄膜層)の厚みにあわせて、薄膜層厚みが50nm未満の場合は10万倍、薄膜層厚みが50nm以上500nm未満である場合は4万倍、500nm以上である場合は1万倍の拡大倍率にて観察を実施し、層厚み、積層数、積層構造を特定した。
(1) Layer thickness, number of layers, layered structure The layer structure of the film was determined by observation with a transmission electron microscope (TEM) for a sample obtained by cutting a cross section using a microtome. That is, using a transmission electron microscope H-7100FA type (manufactured by Hitachi, Ltd.), the cross section of the film was observed under the condition of an acceleration voltage of 75 kV, a cross-sectional photograph was taken, and the layer structure and each layer thickness were measured. In some cases, in order to obtain high contrast, a staining technique using RuO 4 or OsO 4 was used. Also, in accordance with the thickness of the thinnest layer (thin film layer) among all the layers that can be captured in one image, when the thin film layer thickness is less than 50 nm, the thin film layer thickness is 50 nm or more and 500 nm. When it was less than 40,000 times, and when it was 500 nm or more, observation was carried out at a magnification of 10,000 times, and the layer thickness, the number of layers, and the layered structure were specified.
 
 (2)光線透過率
 日立製の分光光度計U-4100を使用した。積分球を取り付け、酸化アルミニウム標準白色板(本体付属)の反射を100%としたときの、300~450nm波長範囲での相対透過率を測定した。波長410nmおよび波長440nmに対しては、該波長での透過率の値を読み取り、波長300~380nmの範囲に対しては、該範囲での最大の透過率を読み取った。条件として、スキャン速度を600nm/min,サンプリングピッチを1nmに設定し、連続的に測定した。

(2) Light transmittance A spectrophotometer U-4100 manufactured by Hitachi was used. An integrating sphere was attached, and the relative transmittance in the wavelength range of 300 to 450 nm was measured when the reflection of the aluminum oxide standard white plate (attached to the main body) was 100%. For the wavelength of 410 nm and the wavelength of 440 nm, the transmittance value at the wavelength was read, and for the wavelength range of 300 to 380 nm, the maximum transmittance in the range was read. As conditions, the scanning speed was set to 600 nm / min, the sampling pitch was set to 1 nm, and the measurement was continuously performed.
 (3)平均光線反射率
 日立製の分光光度計U-4100を使用した。積分球を取り付け、酸化アルミニウム標準白色板(本体付属)の反射を100%としたときの、300~400nm領域での相対反射率を測定し、該範囲での平均光線反射率を求めた。条件として、スキャン速度を600nm/min,サンプリングピッチを1nmに設定し、連続的に測定した。
(3) Average light reflectance Hitachi spectrophotometer U-4100 was used. An integrating sphere was attached, and the relative reflectance in the region of 300 to 400 nm was measured when the reflection of the aluminum oxide standard white plate (attached to the main body) was 100%, and the average light reflectance in this range was determined. As conditions, the scanning speed was set to 600 nm / min, the sampling pitch was set to 1 nm, and the measurement was continuously performed.
 (4)ハードコート塗布(実施例22~32)
 後述する実施例22~32の項に記載されている紫外線吸収剤、および、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を添加した、ハードコート層を構成する活性エネルギー線硬化型ウレタンアクリル樹脂(日本合成化学工業(株)製 紫光UV-1700B[屈折率:1.50~1.51])を、積層フィルムの最表面上にバーコーターを用いて均一に塗布した。次いで、ハードコート層の表面から13cmの高さにセットした120W/cmの照射強度を有する集光型高圧水銀灯(アイグラフィックス(株)製 H04-L41)で、積算照射強度が180mJ/cmとなるように紫外線を照射し、硬化させ、積層フィルム上にハードコート層が積層された積層シートを得た。なお、紫外線の積算照射強度測定には工業用UVチェッカー(日本電池(株)製UVR-N1)を用いた。
(4) Hard coat application (Examples 22 to 32)
A hard coat layer comprising an ultraviolet absorber described in Examples 22 to 32, which will be described later, and a dye having a maximum wavelength exceeding 380 nm and a maximum wavelength in the visible light short wavelength region of 430 nm or less. Active energy ray-curable urethane acrylic resin (purple light UV-1700B [refractive index: 1.50 to 1.51] manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) is uniformly applied on the outermost surface of the laminated film using a bar coater It was applied to. Subsequently, the integrated irradiation intensity was 180 mJ / cm with a concentrating high-pressure mercury lamp (H04-L41 manufactured by Eye Graphics Co., Ltd.) having an irradiation intensity of 120 W / cm 2 set at a height of 13 cm from the surface of the hard coat layer. Ultraviolet rays were irradiated so as to be 2 and cured to obtain a laminated sheet in which a hard coat layer was laminated on the laminated film. In addition, an industrial UV checker (UVR-N1 manufactured by Nippon Battery Co., Ltd.) was used for measuring the cumulative irradiation intensity of ultraviolet rays.
 (5)耐ブリードアウト性の評価
 製膜時に口金から出てきたポリマーの幅方向エッジ付近をライトで照射し、白煙の発生(口金からの揮散)有無を確認した。白煙の発生(口金からの揮散)が無いことが、耐ブリードアウト性に優れると評価した。
(5) Evaluation of bleed-out resistance The light was irradiated to the vicinity of the width direction edge of the polymer which came out of the die at the time of film formation, and the presence or absence of generation of white smoke (volatilization from the die) was confirmed. The absence of white smoke (volatilization from the base) was evaluated as having excellent bleed-out resistance.
 (6)85℃85%RH促進耐湿熱試験(ヘイズ変動量(Δヘイズ)評価)
 作成した積層フィルムをフィルム幅方向中央部から長手方向10cm×幅方向10cmで切り出し、普通紙に挟んで85℃85%RHの恒温恒湿槽内に250時間静置し、熱処理前後のフィルムのヘイズ値の変化量を評価した。ヘイズ測定は、スガ試験機(株)製 ヘイズメーター(HGM-2DP)を用い、旧JIS-K-7105に準じて測定を行った。フィルム面内に対してランダムに3点測定し、その平均値を測定結果とした。
◎:ヘイズ値変動量が 1.0%未満
○:ヘイズ値変動量が 1.0%以上1.5%未満
△:ヘイズ値変動量が 1.5%以上2.0%未満
×:ヘイズ値変動量が 2.0%以上。
(6) 85 ° C. and 85% RH accelerated moist heat resistance test (haze fluctuation (Δhaze) evaluation)
The produced laminated film was cut out from the central part in the film width direction at 10 cm in the longitudinal direction and 10 cm in the width direction, sandwiched between plain papers and left in a constant temperature and humidity chamber at 85 ° C. and 85% RH for 250 hours. The amount of change in value was evaluated. The haze measurement was performed according to the former JIS-K-7105 using a haze meter (HGM-2DP) manufactured by Suga Test Instruments Co., Ltd. Three points were measured at random on the film surface, and the average value was taken as the measurement result.
◎: Haze value fluctuation amount is less than 1.0% ○: Haze value fluctuation amount is 1.0% or more and less than 1.5% Δ: Haze value fluctuation amount is 1.5% or more and less than 2.0% ×: Haze value The fluctuation amount is 2.0% or more.
 (7)曲げ剛性
 サンプルの弾性率を算出するために、引張試験機(オリエンテック製テンシロンUCT-100)を用いた。積層フィルムを長さ150mm×幅10mmの短冊状に切り出し、初期引張チャック間距離を50mm、引張速度を300mm/分として引張試験を実施した。測定環境は室温23℃、相対湿度65%の雰囲気に設定し、得られた荷重-歪み曲線から弾性率(ヤング率)を算出した。サンプル数を5とし、これらの平均値を該サンプルの弾性率とした。サンプルの弾性率の最大値は、フィルム長手方向を0°とし、フィルム面内に対して-90°から90°まで10°毎に方向を変えて同様に測定することで決定した。測定したサンプルの厚みを接触式の厚み計(ニコン(株)製デジマイクロヘッドMH-15M)を用いて計測し、前述した曲げ剛性の式に適用することで、曲げ剛性値を算出した。
(7) Flexural rigidity In order to calculate the elastic modulus of the sample, a tensile tester (Orientec Tensilon UCT-100) was used. The laminated film was cut into strips having a length of 150 mm and a width of 10 mm, and a tensile test was carried out with an initial tensile chuck distance of 50 mm and a tensile speed of 300 mm / min. The measurement environment was set to an atmosphere of room temperature 23 ° C. and relative humidity 65%, and the elastic modulus (Young's modulus) was calculated from the obtained load-strain curve. The number of samples was 5, and the average value of these was the elastic modulus of the sample. The maximum value of the elastic modulus of the sample was determined by measuring in the same manner by changing the direction every 10 ° from −90 ° to 90 ° with respect to the film plane, with the film longitudinal direction being 0 °. The thickness of the measured sample was measured using a contact-type thickness meter (Digi Microhead MH-15M manufactured by Nikon Corporation), and the bending stiffness value was calculated by applying the thickness to the above-described bending stiffness equation.
 (8)耐屈曲性試験
 積層フィルムの長手方向および幅方向に対して、それぞれ幅5cm×長さ9cmのサンプルを切り出し、ユアサ機器システム(株)製の面状体無負荷U字伸縮試験機を用いて、耐屈曲性試験を実施した。室温23℃、相対湿度65%の測定雰囲気下にて、屈曲速度を50回/分、屈曲半径を1mmに設定し、100万回の屈曲性試験を実施した。サンプル数は3とし、試験前の積層フィルムと見比べて、傷や折れ癖の有無を目視にて確認した。3サンプルともに傷や折れ癖の無い場合は耐屈曲性良好(○)とし、1サンプルでも傷や折れ癖がついた場合は耐屈曲性不良(×)とした。
(8) Flexural resistance test A sample with a width of 5 cm and a length of 9 cm is cut out with respect to the longitudinal direction and the width direction of the laminated film, respectively, and a planar body-unloaded U-shaped extension tester manufactured by Yuasa Equipment Systems Co., Ltd. Used to conduct a flex resistance test. In a measurement atmosphere at a room temperature of 23 ° C. and a relative humidity of 65%, a bending rate was set to 50 times / minute, a bending radius was set to 1 mm, and a bendability test of 1 million times was performed. The number of samples was 3, and the presence or absence of scratches or creases was visually confirmed as compared with the laminated film before the test. In all three samples, when there was no scratch or crease, good bending resistance (◯), and when even one sample was scratched or creased, poor flex resistance (×).
 (9)ガラス転移温度、融点
 セイコー電子工業(株)製の示差走査熱量計EXSTAR DSC6220を用いた。測定ならびに温度の読み取りは、JIS-K-7122(1987年)に従って実施した。熱可塑性樹脂試料10mgをアルミニウム製受皿上、25℃から300℃まで10℃/分の速度で昇温させた後に、急冷し、再度25℃から300℃まで10℃/分の速度で昇温させた際の、段差転移部分の温度をガラス転移温度、吸熱ピークのピークトップをそれぞれガラス転移温度、融点とした。
(9) Glass transition temperature and melting point A differential scanning calorimeter EXSTAR DSC 6220 manufactured by Seiko Electronics Industry Co., Ltd. was used. Measurement and temperature reading were performed according to JIS-K-7122 (1987). A 10 mg sample of a thermoplastic resin was heated from 25 ° C. to 300 ° C. at a rate of 10 ° C./min on an aluminum tray, then rapidly cooled, and again raised from 25 ° C. to 300 ° C. at a rate of 10 ° C./min. The temperature of the step transition portion was the glass transition temperature, and the peak top of the endothermic peak was the glass transition temperature and melting point, respectively.
 (実施例1)
 熱可塑性樹脂Aとして、融点が258℃のポリエチレンテレフタレート(PET)を用いた。また熱可塑性樹脂Bとして融点を持たない非晶性樹脂であるシクロヘキサンジメタノール20mol%ならびにスピログリコール15mol%を共重合したポリエチレンテレフタレート(PE/SPG15T/CHDC20)を用いた。熱可塑性樹脂B内には、分子量が700g/molのトリアジン系紫外線吸収剤(2,4,6-トリス(2-ヒドロキシ-4-ヘキシルオキシ-3-メチルフェニル)-s-トリアジン)を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して10wt%となるように添加した。準備した熱可塑性樹脂Aと熱可塑性樹脂Bをそれぞれ、2台の単軸押出機に投入し、前者は280℃、後者は260℃で溶融させて、混練した。次いで、それぞれFSSタイプのリーフディスクフィルタを5枚介した後、ギアポンプにて計量しながら、スリット数5個のフィードブロックにて合流させて、積層比0.5の厚み方向に交互に5層積層された積層体とした。ここでは、スリット長さは階段状になるように設計し、間隔は全て一定とした。得られた積層体は、熱可塑性樹脂A層が3層、熱可塑性樹脂B層が2層で構成されており、厚み方向に交互に積層されていた。該積層体をTダイに供給し、シート状に成形した後、ワイヤーで8kVの静電印可電圧をかけながら、表面温度が25℃に保たれたキャスティングドラム上で急冷固化し、未延伸の積層キャストフィルムを得た。
Example 1
As the thermoplastic resin A, polyethylene terephthalate (PET) having a melting point of 258 ° C. was used. Further, as the thermoplastic resin B, polyethylene terephthalate (PE / SPG15T / CHDC20) copolymerized with 20 mol% of cyclohexanedimethanol which is an amorphous resin having no melting point and 15 mol% of spiroglycol was used. In the thermoplastic resin B, a triazine-based ultraviolet absorber (2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -s-triazine) having a molecular weight of 700 g / mol is added. It added so that it might become 10 wt% with respect to the resin composition which comprises B layer which has the plastic resin B as a main component. The prepared thermoplastic resin A and thermoplastic resin B were respectively put into two single-screw extruders, and the former was melted at 280 ° C. and the latter was 260 ° C. and kneaded. Next, after 5 sheets of FSS type leaf disk filters are passed through each, 5 layers are stacked alternately in the thickness direction with a stacking ratio of 0.5 while being combined with a feed block with 5 slits while measuring with a gear pump. It was set as the laminated body made. Here, the slit length was designed to be stepped, and the intervals were all constant. The obtained laminate was composed of three thermoplastic resin A layers and two thermoplastic resin B layers, which were alternately laminated in the thickness direction. After feeding the laminate to a T-die and forming it into a sheet, it was rapidly cooled and solidified on a casting drum whose surface temperature was maintained at 25 ° C. while applying an electrostatic applied voltage of 8 kV with a wire, and an unstretched laminate A cast film was obtained.
 得られた積層キャストフィルムを、100℃に設定したロール群で加熱した後、延伸区間長100mmの間で、フィルム両面からラジエーションヒーターにより急速加熱しながら、フィルム長手方向に3.3倍延伸し、その後一旦冷却した。つづいて、この積層一軸延伸フィルムの両面に空気中でコロナ放電処理を施し、基材フィルムの濡れ張力を55mN/mとし、そのフィルム両面の処理面に(#4のメタバーで易滑層となる粒径100nmのコロイダルシリカを3wt%含有した酢酸ビニル・アクリル系樹脂を含有した水系塗剤をコーティングし(以後、コーティングを行うとは、前記内容を意味する。))、透明・易滑・易接着層を形成した。 After heating the obtained laminated cast film with a roll group set at 100 ° C., the film was stretched 3.3 times in the longitudinal direction of the film while rapidly heating from both sides of the film with a radiation heater between 100 mm in the stretching section length. Then it was once cooled. Subsequently, corona discharge treatment was applied to both surfaces of this laminated uniaxially stretched film in the air, the wetting tension of the base film was set to 55 mN / m, and the treated surfaces on both surfaces of the film (# 4 metabar became an easy slipping layer). A water-based coating containing vinyl acetate / acrylic resin containing 3 wt% of colloidal silica with a particle size of 100 nm is coated (hereinafter, “coating” means the above-mentioned content)), transparent, easy slipping, easy An adhesive layer was formed.
 この積層一軸延伸フィルムをテンターに導き、90℃の熱風で予熱後、140℃の温度でフィルム幅方向に3.3倍延伸した。ここでの延伸速度と温度は一定とした。延伸した二軸延伸フィルムは、そのまま、テンター内で220℃の熱風にて熱処理を行い、続いて同温度条件で幅方向に2%の弛緩処理を施し、その後巻き取ることで、積層フィルムを得た。得られた積層フィルムは、表1に示すとおりの物性を示すものであった。積層フィルムの厚みは30μmであり、添加した紫外線吸収剤の吸収の効果により、波長410nm、440nmにおける光線透過率はそれぞれ、18%、88%と目標値を満足した。厚みはやや厚く、紫外線吸収剤含有量が10wt%であるためにヘイズがやや高めであったものの、ディスプレイに実装することで視認性は良好であった。また、85℃85%RH促進耐湿熱試験におけるヘイズ値変動量は1.7%と比較的高い値を示したが、ディスプレイ実装時の視認性を悪化させる程度の変動量ではなかった。 The laminated uniaxially stretched film was guided to a tenter, preheated with hot air of 90 ° C., and stretched 3.3 times in the film width direction at a temperature of 140 ° C. The stretching speed and temperature here were constant. The stretched biaxially stretched film is directly heat treated in a tenter with hot air of 220 ° C., then subjected to a 2% relaxation treatment in the width direction under the same temperature conditions, and then wound to obtain a laminated film. It was. The obtained laminated film exhibited physical properties as shown in Table 1. The thickness of the laminated film was 30 μm, and the light transmittance at wavelengths of 410 nm and 440 nm satisfied the target values of 18% and 88%, respectively, due to the absorption effect of the added ultraviolet absorber. Although the thickness was slightly thick and the UV absorber content was 10 wt%, the haze was slightly high, but the visibility was good when mounted on a display. Moreover, although the haze value fluctuation amount in the 85 ° C. and 85% RH accelerated moist heat resistance test was 1.7%, which was a relatively high value, it was not a fluctuation amount that deteriorated the visibility when the display was mounted.
 (比較例1)
 実施例1において、熱可塑性樹脂B内を主成分とするB層に紫外線吸収剤を添加せずに、同様の手法でフィルムを作成した。無色透明の積層フィルムを得たが、紫外線領域の光線カット性能を有していないことから、ディスプレイに実装した際に紫外線を透過し、偏光子など内容物の劣化が顕著に確認された。外部の紫外線から内容物を保護する目的でのディスプレイ部材としては適さないフィルムであった。
(Comparative Example 1)
In Example 1, a film was prepared in the same manner without adding an ultraviolet absorber to the B layer mainly composed of the thermoplastic resin B. Although a colorless and transparent laminated film was obtained, since it did not have the ability to cut light in the ultraviolet region, ultraviolet rays were transmitted when mounted on a display, and deterioration of contents such as a polarizer was remarkably confirmed. The film was not suitable as a display member for the purpose of protecting the contents from external ultraviolet rays.
 (比較例2)
 実施例1において、スリット数が3個のフィードブロックで異なる2種の熱可塑性樹脂を積層し、積層比0.5の交互に3層積層された積層フィルムとした以外は、実施例1と同様にして積層フィルムを得た。得られた積層フィルムは、紫外線吸収剤による吸収性能が実施例1と同等であることから波長410nm、440nmにおける光線透過率は達成した。一方で、促進耐湿熱試験におけるヘイズ値変動が非常に高く、積層フィルムの白化が目視でも確認され、高い透明性が求められるディスプレイ用途に適するものではなかった。
(Comparative Example 2)
Example 1 is the same as Example 1 except that two different thermoplastic resins are laminated in a feed block with three slits, and a laminated film in which three layers are laminated alternately with a lamination ratio of 0.5. Thus, a laminated film was obtained. The obtained laminated film achieved the light transmittance at wavelengths of 410 nm and 440 nm because the absorption performance by the ultraviolet absorber was equivalent to that of Example 1. On the other hand, the haze value variation in the accelerated moist heat resistance test was very high, and the whitening of the laminated film was confirmed by visual observation, which was not suitable for display applications requiring high transparency.
 (実施例2)
 熱可塑性樹脂Aとして融点が230℃のアクリル樹脂を、熱可塑性樹脂Bとして実施例1に記載のトリアジン系紫外線吸収剤を、積層フィルムを構成する樹脂組成物全体に対して10wt%となるよう添加した、アクリル弾性体粒子を混合した融点が210℃のアクリル樹脂Bを用いた。準備した熱可塑性樹脂Aと熱可塑性樹脂Bをそれぞれ、2台の単軸押出機に投入し、前者は270℃、後者は250℃で溶融させて、実施例1と同様にして積層比0.5の厚み方向に交互に5層積層された積層体とした。この積層体をステンレス製ポリシングロール(70℃)に両面を完全に接着させるようにして冷却し、フィルム厚み30μmのアクリル樹脂フィルムを得た。得られた積層フィルムは、樹脂が非晶である点から、促進耐熱性試験において添加した紫外線吸収剤が表面に析出しやすくなっており、実施例1と比較してやや白っぽく見えるものの、ディスプレイ用途に使用できる光学性能を有していた。
(Example 2)
An acrylic resin having a melting point of 230 ° C. is added as the thermoplastic resin A, and the triazine-based ultraviolet absorber described in Example 1 is added as the thermoplastic resin B so as to be 10 wt% with respect to the entire resin composition constituting the laminated film. Acrylic resin B having a melting point of 210 ° C. mixed with acrylic elastic particles was used. The prepared thermoplastic resin A and thermoplastic resin B were respectively fed into two single-screw extruders, and the former was melted at 270 ° C. and the latter at 250 ° C. It was set as the laminated body by which five layers were laminated | stacked alternately in the thickness direction of 5. The laminate was cooled so that both surfaces were completely adhered to a stainless steel polishing roll (70 ° C.) to obtain an acrylic resin film having a film thickness of 30 μm. From the point that the obtained laminated film is an amorphous resin, the UV absorber added in the accelerated heat resistance test is likely to precipitate on the surface, and although it looks somewhat whitish compared to Example 1, it is suitable for display applications. It had usable optical performance.
 (実施例3)
 実施例1において、スリット数501個のフィードブロックで熱可塑性樹脂を積層し、積層比1.0の厚み方向に交互に501層積層された厚み30μmの積層フィルムとした。得られた積層フィルムは、A層が251層、B層が250層、厚み方向に交互に積層されており、積層層厚み分布が2つの傾斜構造を有していることを、透過型電子顕微鏡観察により確認した。また、傾斜構造がフィルムの片面側からフィルム中心へ向かって層厚みが線形的に増加した後に、中央からフィルムの反対側に向かって線形的に減少する層厚み分布を有していた。熱可塑性樹脂Bに添加する紫外線吸収剤は、実施例1と同じトリアジン系紫外線吸収剤を使用し、添加濃度を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して10wt%とした。フィルムの延伸条件などは、実施例1に記載の手法で行った。得られた積層フィルムは積層構造に伴う反射性能を有していたが、厚みが少し薄かったために、反射波長範囲の長波長端が390nm程度までであり、波長410nmのカットは紫外線吸収剤の添加濃度に依存する態様であった。積層構造を利用しているため、口金からの紫外線吸収剤の揮散も確認されず、促進耐湿熱試験におけるΔヘイズ上昇も抑制される結果となり、ディスプレイ用途に使用可能な性能を有していた。
(Example 3)
In Example 1, a thermoplastic resin was laminated with a feed block having 501 slits, and a laminated film having a thickness of 30 μm was obtained by alternately stacking 501 layers in the thickness direction with a lamination ratio of 1.0. The obtained laminated film has 251 layers of A layers and 250 layers of B layers, which are alternately laminated in the thickness direction, and shows that the laminated layer thickness distribution has two inclined structures. This was confirmed by observation. The inclined structure had a layer thickness distribution that linearly decreased from the center toward the opposite side of the film after the layer thickness increased linearly from one side of the film toward the center of the film. The ultraviolet absorber added to the thermoplastic resin B uses the same triazine-based ultraviolet absorber as in Example 1, and the concentration of addition is relative to the resin composition constituting the B layer mainly composed of the thermoplastic resin B. It was 10 wt%. The stretching conditions of the film were performed by the method described in Example 1. The obtained laminated film had reflection performance associated with the laminated structure, but because the thickness was a little thin, the long wavelength end of the reflection wavelength range was up to about 390 nm, and the cut of wavelength 410 nm was added with an ultraviolet absorber. It was an embodiment depending on the concentration. Since a laminated structure is used, no volatilization of the UV absorber from the die was confirmed, and an increase in Δhaze in the accelerated moist heat resistance test was suppressed, and the performance usable for display applications was obtained.
 (実施例4)
 実施例3において、厚みを31μmの積層フィルムとし、熱可塑性樹脂Bに添加する紫外線吸収剤の添加濃度を3wt%とした以外は、実施例3と同様にして積層フィルムを得た。厚みが1μm増加したことで、反射波長範囲の長波長端が405nm程度までシフトし、波長410nmの光線透過率は6%を示し、紫外線吸収剤の添加濃度を小さくしても目標を達成することが出来た。やや反射による紫色の色味が強く確認されたが、ディスプレイの視認性を著しく悪化するものではなく、好適に利用できる性能を有していた。
Example 4
In Example 3, a laminated film was obtained in the same manner as in Example 3 except that the laminated film had a thickness of 31 μm and the addition concentration of the ultraviolet absorber added to the thermoplastic resin B was 3 wt%. By increasing the thickness by 1 μm, the long wavelength end of the reflection wavelength range is shifted to about 405 nm, the light transmittance at a wavelength of 410 nm shows 6%, and even if the additive concentration of the UV absorber is reduced, the target is achieved. Was made. Although a slightly purple color due to reflection was strongly confirmed, the visibility of the display was not significantly deteriorated, and the performance was suitably usable.
 (比較例3)
 実施例3において、熱可塑性樹脂Bに添加する紫外線吸収剤の添加濃度を3wt%とした以外は、実施例3と同様にして積層フィルムを得た。紫外線吸収性能に乏しいために、波長410nmにおける光線透過率は62%を示した。本積層フィルムをディスプレイに実装して、紫外線照射による内容物保護の試験を実施したが、内容物の劣化が確認されたことから、ディスプレイの内容物保護目的でのフィルムには好適なものではなかった。
(Comparative Example 3)
In Example 3, a laminated film was obtained in the same manner as in Example 3 except that the addition concentration of the ultraviolet absorber added to the thermoplastic resin B was 3 wt%. Due to poor ultraviolet absorption performance, the light transmittance at a wavelength of 410 nm was 62%. This laminated film was mounted on a display and tested for content protection by UV irradiation. However, since the content was confirmed to be deteriorated, it was not suitable for the purpose of protecting the content of the display. It was.
 (実施例5)
 実施例4において、厚みを30.5μmとした以外は、実施例4と同様にして積層フィルムを得た。反射波長範囲の長波長端が397nm程度にシフトし、波長410nmの光線透過率は48%を示した。実施例4と比較すると、波長410nmにおけるカット性は劣るものの、ディスプレイに内蔵したことによる内容物の劣化保護には十分に効果を発揮した。また、反射波長範囲が短波長シフトしたことで、反射色相がかなり抑えられ、ディスプレイ実装時には紫色の反射は殆ど確認されなかった。
(Example 5)
In Example 4, a laminated film was obtained in the same manner as in Example 4 except that the thickness was 30.5 μm. The long wavelength end of the reflection wavelength range was shifted to about 397 nm, and the light transmittance at a wavelength of 410 nm was 48%. Although it was inferior in cutability at a wavelength of 410 nm as compared with Example 4, it was sufficiently effective in protecting the deterioration of contents due to being incorporated in the display. In addition, since the reflection wavelength range was shifted by a short wavelength, the reflection hue was considerably suppressed, and almost no purple reflection was observed when the display was mounted.
 (実施例6)
 実施例1において、スリット数251個のフィードブロックで樹脂を積層し、積層比0.5の厚み方向に交互に251層積層された厚み12μmの積層フィルムとした。得られた積層フィルムは、A層が126層、B層が125層で厚み方向に交互に積層されており、積層層厚み分布が2つの傾斜構造を有していることを、透過型電子顕微鏡観察により確認した。その他、紫外線吸収剤の添加処方やフィルムの延伸条件は実施例1に記載の手法で行った。得られた積層フィルムは、反射波長範囲の長波長端が395nm程度であり、波長380~410nmの平均光線反射率は約12%と低く、紫外線吸収剤の添加濃度を高くすることで波長410nmのカット性を満足する結果となった。多層構造を有していることから、口金からのブリードアウト現象が抑制される結果を得た。促進耐湿熱試験後のΔヘイズも1.3%程度と実施例1と比較して低く抑えることが出来、ディスプレイ向け目的のフィルムとして好適なものであった。また、曲げ剛性も3.6×10-9と低く、耐屈曲性試験を実施しても、傷や折れ癖が全くなく、屈曲を必要とするディスプレイ用途にも十分適用できるものであった。
(Example 6)
In Example 1, a resin was laminated with a feed block having 251 slits, and a laminated film having a thickness of 12 μm was obtained by alternately laminating 251 layers in the thickness direction with a lamination ratio of 0.5. The obtained laminated film is composed of 126 layers of A and 125 layers of B, which are alternately laminated in the thickness direction, and that the laminated layer thickness distribution has two inclined structures. This was confirmed by observation. In addition, the addition prescription of the ultraviolet absorber and the stretching conditions of the film were performed by the method described in Example 1. The obtained laminated film has a long wavelength end of the reflection wavelength range of about 395 nm, the average light reflectance at a wavelength of 380 to 410 nm is as low as about 12%, and the wavelength of 410 nm is increased by increasing the concentration of the ultraviolet absorber. As a result, the cutting performance was satisfied. Since it has a multilayer structure, the result that the bleed-out phenomenon from a nozzle | cap | die was suppressed was obtained. The Δhaze after the accelerated moist heat resistance test was about 1.3%, which was low compared to Example 1, and was suitable as a film for display purposes. Further, the bending rigidity was as low as 3.6 × 10 −9, and even when the bending resistance test was performed, there was no scratch or crease, and it was sufficiently applicable to display applications requiring bending.
 (比較例4)
 実施例6において、トリアジン系紫外線吸収剤の代わりに、分子量が650g/molのベンゾトリアゾール系紫外線吸収剤(2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して10wt%となるように添加した以外は、実施例6と同様にして積層フィルムを得た。促進耐湿熱試験後のヘイズ値変動量が著しく、目視で白化が強く確認され、ディスプレイ用途には適さない積層フィルムであった。
(Comparative Example 4)
In Example 6, instead of the triazine-based UV absorber, a benzotriazole-based UV absorber having a molecular weight of 650 g / mol (2,2′-methylenebis (4- (1,1,3,3-tetramethylbutyl)- Example 6 except that 6- (2H-benzotriazol-2-yl) phenol) was added at 10 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B. A laminated film was obtained in the same manner as described above, and the haze value fluctuation amount after the accelerated moist heat resistance test was remarkable, and whitening was strongly confirmed by visual observation, and the laminated film was not suitable for display applications.
 (実施例7)
 実施例6において、厚みを12.3μmとした以外は、実施例6と同様にして積層フィルムを得た。厚みを少し増大したことで、反射波長範囲の長波長端が405nm付近までシフトし、紫外線吸収剤の濃度を低下しても、反射によりカット性が十分に得られていることを確認した。それ以外の性能は、実施例6と同等であり、ディスプレイ用途に好適なフィルムであった。
(Example 7)
In Example 6, a laminated film was obtained in the same manner as in Example 6 except that the thickness was 12.3 μm. By slightly increasing the thickness, the long wavelength end of the reflection wavelength range shifted to around 405 nm, and it was confirmed that sufficient cutability was obtained by reflection even when the concentration of the UV absorber was lowered. The other performance was the same as in Example 6 and was a film suitable for display applications.
 (実施例8)
 実施例6において、紫外線吸収剤の添加処方として、実施例1に記載の分子量が700g/molのトリアジン系紫外線吸収剤を、熱可塑性樹脂Bに対して9.0wt%となるように添加した以外は、フィルムの延伸条件は実施例6に記載の手法と同様に行った。積層数が251層となったことで、多重干渉反射の効果が得られているため、添加濃度を抑えた場合でも紫外線カット性能を目的の通り達成できることを確認した。添加濃度が減少したことで、促進耐湿熱試験でのヘイズ値変動量も実施例2より低減することを確認できた。
(Example 8)
In Example 6, as an additive formulation of the ultraviolet absorber, the triazine-based ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 was added so as to be 9.0 wt% with respect to the thermoplastic resin B. The film stretching conditions were the same as those described in Example 6. Since the effect of multiple interference reflection was obtained because the number of laminated layers was 251, it was confirmed that even when the addition concentration was suppressed, the ultraviolet cut performance could be achieved as intended. It was confirmed that the amount of fluctuation in the haze value in the accelerated moist heat resistance test was also reduced as compared with Example 2 because the additive concentration was reduced.
 (実施例9)
 実施例6において、添加する紫外線吸収剤として、分子量が510g/molのトリアジン系紫外線吸収剤(2-(4,6-ジフェニル-s-トリアジン-2-イル)-5-(2-(2-エチルヘキサノイルオキシ)エトキシ)フェノール)を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して2.0wt%、実施例1に記載の分子量が700g/molのトリアジン系紫外線吸収剤を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して7.0wt%となるよう添加した以外は、同様の手法で積層フィルムを得た。前者のトリアジン系紫外線吸収剤は285nmにおいて極大波長を有しており、紫外線領域における光線カット性能が高まったことから、より強く紫外線をカットすることが可能となり、実施例6と比較して、紫外線からの内容物保護のためのディスプレイ向け光学フィルムとして好適なものであった。
Example 9
In Example 6, as a UV absorber to be added, a triazine-based UV absorber having a molecular weight of 510 g / mol (2- (4,6-diphenyl-s-triazin-2-yl) -5- (2- (2- (2- Ethylhexanoyloxy) ethoxy) phenol) is 2.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B, and a triazine type having a molecular weight of 700 g / mol described in Example 1 A laminated film was obtained in the same manner except that the ultraviolet absorber was added to 7.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B. The former triazine-based ultraviolet absorber has a maximum wavelength at 285 nm, and the light-cutting performance in the ultraviolet region is increased, so that it is possible to cut ultraviolet rays more strongly. It was suitable as an optical film for display for protecting contents from the above.
 (実施例10)
 実施例6において、添加する紫外線吸収剤として、分子量が650g/molのベンゾトリアゾール系紫外線吸収剤(2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して2.0wt%、実施例1に記載の分子量が700g/molのトリアジン系紫外線吸収剤を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して7.0wt%とした以外は、実施例6と同様の手法で積層フィルムを得た。前者のベンゾトリアゾール系紫外線吸収剤は346nmに極大波長を有しており、実施例9と同様、実施例6や実施例7と比較して紫外線領域での光線透過率が低下し、紫外線カット性により優れるものであった。ベンゾトリアゾール系を利用した場合、促進耐湿熱試験におけるヘイズの変動量はやや高くなる傾向が確認されたが、ディスプレイ向け光学フィルムとして十分使用できる性能を有していた。
(Example 10)
In Example 6, as an ultraviolet absorber to be added, a benzotriazole ultraviolet absorber (2,2′-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6-) having a molecular weight of 650 g / mol. (2H-benzotriazol-2-yl) phenol) is 2.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B, and the molecular weight described in Example 1 is 700 g / mol. A laminated film was obtained in the same manner as in Example 6 except that the triazine-based ultraviolet absorber was 7.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B. The former benzotriazole-based UV absorber has a maximum wavelength at 346 nm, and as in Example 9, the light transmittance in the UV region is lower than that in Examples 6 and 7, and UV blocking is achieved. When the benzotriazole system was used, the haze fluctuation amount in the accelerated moisture and heat resistance test tended to be slightly higher, but it had sufficient performance as an optical film for displays. .
 (実施例11)
 実施例10において、積層フィルムの厚みを12.3μmとし、さらに、熱可塑性樹脂Bに添加する紫外線吸収剤のうち、ベンゾトリアゾール系紫外線吸収剤の添加濃度を0.7wt%、トリアジン系紫外線吸収剤の添加濃度を2.3wt%とした以外は、実施例10と同様にして積層フィルムを得た。積層構造による反射の効果と、紫外線吸収剤の吸収の効果を併用したことで、紫外線吸収剤の添加濃度を低くすることが可能となり、促進耐湿熱試験におけるΔヘイズを大きく減少させることが出来た。
(Example 11)
In Example 10, the thickness of the laminated film was 12.3 μm, and among the UV absorbers added to the thermoplastic resin B, the addition concentration of benzotriazole UV absorber was 0.7 wt%, and the triazine UV absorber A laminated film was obtained in the same manner as in Example 10 except that the addition concentration of was changed to 2.3 wt%. By combining the effect of reflection due to the laminated structure and the effect of absorption of the UV absorber, it was possible to reduce the concentration of the UV absorber added, and the Δ haze in the accelerated moist heat resistance test could be greatly reduced. .
 (実施例12)
 実施例6において、添加する紫外線吸収剤として、分子量が315g/molのベンゾトリアゾール系紫外線吸収剤(2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-6-第三ブチル-4-メチルフェノール)を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して4.0wt%、実施例1に記載の分子量が700g/molのトリアジン系紫外線吸収剤を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して4.0wt%添加した以外は、実施例6と同様の手法で積層フィルムを製膜した。本実施例で利用したベンゾトリアゾール系紫外線吸収剤は、長波長側の紫外線カット能力に優れており、トリアジン系紫外線吸収剤の添加濃度を低減しても目標を達成するに至った。ただし、実施例6と比較して低波長側の紫外線領域での透過率の抜けが発生したほか、信頼性試験でのヘイズ値も少し上昇する結果となった。ディスプレイに実装した際の視認性は良好で、ディスプレイ向け光学フィルムに適した高透明な積層フィルムであった。
Example 12
In Example 6, as the UV absorber to be added, a benzotriazole UV absorber (2- (5-chloro-2H-benzotriazol-2-yl) -6-tert-butyl-4-ylate having a molecular weight of 315 g / mol) was added. Methylphenol) is 4.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B, and a triazine ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 is heated. A laminated film was formed in the same manner as in Example 6 except that 4.0 wt% was added to the resin composition constituting the B layer containing the plastic resin B as a main component. The benzotriazole-based UV absorber used in this example was excellent in UV-cutting ability on the long wavelength side, and reached the target even when the concentration of the triazine-based UV absorber was reduced. However, compared with Example 6, the loss of transmittance in the ultraviolet region on the low wavelength side occurred, and the haze value in the reliability test slightly increased. The visibility when mounted on a display was good, and it was a highly transparent laminated film suitable for an optical film for display.
 (実施例13)
 実施例6において、添加する紫外線吸収剤として、分子量が250g/molで極大吸収波長が378nmのアゾメチン系紫外線吸収剤を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して2.0wt%、実施例1に記載の分子量が700g/molのトリアジン系紫外線吸収剤を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して1.0wt%添加した以外は、実施例6と同様にして積層フィルムを得た。前者のアゾメチン系化合物が主に可視光短波長領域を、後者のトリアジン系紫外線吸収剤が紫外線領域を吸収することにより、比較的低濃度で410nm以下波長領域の透過率カットを達成することができた。光学性能は表1に示したとおりであり、高透明な、ディスプレイ用途に好適な積層フィルムであった。
(Example 13)
In Example 6, as an ultraviolet absorber to be added, an azomethine ultraviolet absorber having a molecular weight of 250 g / mol and a maximum absorption wavelength of 378 nm is used for the resin composition constituting the B layer mainly composed of the thermoplastic resin B. 1.0 wt% of the triazine-based ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 is added to the resin composition constituting the B layer mainly composed of the thermoplastic resin B. A laminated film was obtained in the same manner as in Example 6 except that. The former azomethine compound mainly absorbs visible light in the short wavelength region, and the latter triazine ultraviolet absorber absorbs in the ultraviolet region. It was. The optical performance was as shown in Table 1, and it was a highly transparent laminated film suitable for display applications.
 (実施例14)
 実施例6において、熱可塑性樹脂Aとして、ポリエチレンテレフタレートを利用し、実施例1に記載の分子量が700g/molのトリアジン系紫外線吸収剤を、熱可塑性樹脂Aを主成分とする樹脂組成物に対して2.0wt%になるように添加し、さらに熱可塑性樹脂B内に、実施例1に記載のトリアジン系紫外線吸収剤を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して6.0wt%となるように添加し、さらに積層比が1.0となるように設計した以外は、実施例6と同様にして積層フィルムを得た。2.0wt%程度の少量を最表層含む熱可塑性樹脂AからなるA層に添加しても、促進耐湿熱試験において顕著なヘイズ上昇は確認されなかった。また、B層のみに添加した実施例6と比較して、層間での多重干渉反射に伴う光路長増大効果により紫外線吸収量が増大し、両樹脂に分けて添加することで低添加濃度でも同様の効果が得られた。
(Example 14)
In Example 6, polyethylene terephthalate is used as the thermoplastic resin A, and the triazine-based ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 is used for the resin composition containing the thermoplastic resin A as a main component. A resin composition that constitutes a B layer mainly composed of the thermoplastic resin B and the triazine-based ultraviolet absorber described in Example 1 in the thermoplastic resin B. A laminated film was obtained in the same manner as in Example 6 except that it was added so as to be 6.0 wt% and that the lamination ratio was designed to be 1.0. Even when a small amount of about 2.0 wt% was added to the A layer composed of the thermoplastic resin A containing the outermost layer, no significant haze increase was confirmed in the accelerated moist heat resistance test. Also, compared with Example 6 added only to the B layer, the amount of ultraviolet absorption increases due to the effect of increasing the optical path length associated with the multiple interference reflection between the layers. The effect of was obtained.
 (実施例15)
 実施例6において、紫外線吸収剤を添加せず、熱可塑性樹脂B内に380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素として、極大波長が393nmであるインドール系色素を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して4.0wt%となるように添加し、積層比が1.0となるように設計した以外は、実施例6と同様にして積層フィルムを得た。紫外線吸収剤が未添加である分、300~380nmの波長領域の紫外線カットはこれまでの実施例と比較して弱まるものの、反射の効果を利用することにより目的のカット性能を示した。ディスプレイ用途として実装した場合にも、液晶や発光層は著しく劣化しておらず、好適に利用できることを確認した。
(Example 15)
In Example 6, an indole system having a maximum wavelength of 393 nm as a dye having a maximum wavelength in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm in the thermoplastic resin B without adding an ultraviolet absorber. Implementation was performed except that the dye was added so as to be 4.0 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B, and the lamination ratio was 1.0. A laminated film was obtained in the same manner as in Example 6. Although the ultraviolet cut in the wavelength region of 300 to 380 nm is weakened as compared with the previous examples, the target cut performance was shown by utilizing the reflection effect because the ultraviolet absorber was not added. Even when mounted as a display application, it was confirmed that the liquid crystal and the light emitting layer were not significantly deteriorated and could be suitably used.
 (実施例16)
 実施例15において、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素として、極大波長が382nmであるナフタルイミド系色素を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して3.5wt%となるように添加した以外は、実施例15と同様にして積層フィルムを得た。ナフタルイミド系の色素は、波長410nmでのシャープカット性に非常に優れており、300~380nmでの透過率の抜けが多少存在した以外は、非常に良好なカット性を示した。
(Example 16)
In Example 15, a naphthalimide dye having a maximum wavelength of 382 nm as a dye having the maximum wavelength in the visible light short wavelength region of more than 380 nm and not more than 430 nm is used as a main component of the thermoplastic resin B. A laminated film was obtained in the same manner as in Example 15 except that it was added so as to be 3.5 wt% with respect to the resin composition constituting the layer. The naphthalimide-based dye is very excellent in sharp cutability at a wavelength of 410 nm, and exhibits very good cutability except that there is some loss of transmittance at 300 to 380 nm.
 (実施例17)
 実施例15において、熱可塑性樹脂Bに、紫外線吸収剤として実施例1に記載の分子量700g/molのトリアジン系紫外線吸収剤を、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素として実施例15に用いたインドール系色素を、それぞれ2.0wt%、1.0wt%となるように添加した以外は、実施例15と同様にして積層フィルムを得た。異なる波長領域をカットする吸収剤を2種組み合わせることで、効果的に低濃度での波長カットを達成できた。
(Example 17)
In Example 15, the thermoplastic resin B has the maximum of the triazine-based ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 as the ultraviolet absorber in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm. A laminated film was obtained in the same manner as in Example 15 except that the indole dye used in Example 15 as a dye having a wavelength was added to 2.0 wt% and 1.0 wt%, respectively. By combining two kinds of absorbents that cut different wavelength regions, it was possible to effectively achieve a wavelength cut at a low concentration.
 (実施例18)
 実施例17において、熱可塑性樹脂Bに添加する紫外線吸収剤として、実施例1に記載の分子量700g/molのトリアジン系紫外線吸収剤と、実施例7に記載の分子量650g/molのベンゾトリアゾール系紫外線吸収剤を混合して、それぞれ熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して1.4wt%、0.6wt%となるように添加した以外は、同様の手法で積層フィルムを得た。得られた積層フィルムは実施例17と比較して、長期信頼性試験でのヘイズ値変動量がやや高いものの、十分ディスプレイ用途のフィルムとして適した性能を有していた。
(Example 18)
In Example 17, as an ultraviolet absorber to be added to the thermoplastic resin B, a triazine ultraviolet absorber having a molecular weight of 700 g / mol described in Example 1 and a benzotriazole ultraviolet having a molecular weight of 650 g / mol described in Example 7 were used. In the same manner except that the absorbent is mixed and added to 1.4 wt% and 0.6 wt% with respect to the resin composition constituting the B layer mainly composed of the thermoplastic resin B, respectively. A laminated film was obtained. Although the obtained laminated film had a slightly high haze value fluctuation amount in the long-term reliability test as compared with Example 17, it had sufficient performance suitable as a film for display applications.
 (実施例19)
 実施例18において、積層フィルムの厚みを12.2μmとし、熱可塑性樹脂Bに添加するインドール系色素の添加濃度を0.5wt%に減少した以外は、実施例18と同様にして積層フィルムを得た。得られた積層フィルムは、反射波長範囲の長波長端が400nm付近にあるため、色素の吸収と積層構造による反射の併用により、効果的に目的の紫外線カット性を達成できた。
(Example 19)
In Example 18, a laminated film was obtained in the same manner as in Example 18 except that the thickness of the laminated film was 12.2 μm and the addition concentration of the indole dye added to the thermoplastic resin B was reduced to 0.5 wt%. It was. Since the obtained laminated film has the long wavelength end of the reflection wavelength range in the vicinity of 400 nm, it was possible to effectively achieve the intended UV-cutting property by combining the absorption of the dye and the reflection by the laminated structure.
 (実施例20)
 実施例17において、熱可塑性樹脂Bに添加するトリアジン系紫外線吸収剤の添加濃度を1.0wt%に減少させ、インドール系色素の添加濃度を2.0wt%に増加した以外は、同様の手法で積層フィルムを得た。紫外線領域での光線透過率が上述の実施例と比較して高いものの、目的のカット性を十分に達成した積層フィルムであった。
(Example 20)
In Example 17, the same procedure was used except that the addition concentration of the triazine-based ultraviolet absorber added to the thermoplastic resin B was reduced to 1.0 wt% and the addition concentration of the indole dye was increased to 2.0 wt%. A laminated film was obtained. Although the light transmittance in the ultraviolet region was higher than that in the above-described Examples, it was a laminated film that sufficiently achieved the target cut property.
 (実施例21)
 実施例17において、トリアジン系紫外線吸収剤の添加濃度を5.0wt%にし、さらに380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素として波長420nmに極大波長を有するフタロシアニン系色素を用いて、実施例17と同様の手法で積層フィルムを得た。該フタロシアニン系色素は波長400~440nm付近のみの光線をシャープカットできるものであり、波長440nmの光線透過率は80%と、目標値を辛うじて満足した。一方で、波長400nmまでの紫外線をカットするために紫外線吸収剤の添加濃度を上げる必要があったが、特に信頼性試験でのヘイズ変動量は顕著になっておらず、ディスプレイ用途に適した積層フィルムが得られた。
(Example 21)
In Example 17, the addition concentration of the triazine-based ultraviolet absorber is 5.0 wt%, and further has a maximum wavelength at a wavelength of 420 nm as a dye having a maximum wavelength in the visible light short wavelength region of more than 380 nm and not more than 430 nm. A laminated film was obtained in the same manner as in Example 17 using a phthalocyanine dye. The phthalocyanine colorant can sharply cut light only in the vicinity of a wavelength of 400 to 440 nm, and the light transmittance at a wavelength of 440 nm was barely satisfied with the target value of 80%. On the other hand, it was necessary to increase the additive concentration of the ultraviolet absorber in order to cut ultraviolet rays up to a wavelength of 400 nm. However, the haze fluctuation amount in the reliability test was not particularly significant, and it was suitable for display applications. A film was obtained.
 (実施例22)
 実施例17において作成した積層フィルム上に、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有するインドール系色素を添加したハードコート剤をフィルム上に塗布することで、ハードコート層を積層した積層シートを得た。インドール系色素をメチルエチルケトンに溶解した後、ハードコート主剤に、ハードコート層を構成する樹脂組成物に対して4.0wt%になるように添加し、最終的に全体の固形分濃度が30%となるようにメチルエチルケトン溶媒を加えることでハードコート剤を調製した。ハードコートの厚みは2μmとなるように積層フィルムの片面に塗布した。塗布後、80℃のオーブン内で1~2分間乾燥してメチルエチルケトン溶媒を揮発させた後、紫外線照射積算量が180mJ/cmとなるように紫外線照射し、目的の積層シートを得た。得られた積層シートは、架橋性の高いハードコート層が最表面に位置していることから、積層フィルム内のオリゴマーや添加剤の析出も少なくなり、ハードコート未塗布の実施例17よりも促進耐湿熱試験時のヘイズ値変動が小さくなった。また、寸法安定性も良好であり、ディスプレイ用途に適するものであった。
(Example 22)
By applying a hard coat agent added with an indole dye having a maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not more than 430 nm on the laminated film prepared in Example 17, hard A laminated sheet having a coat layer laminated thereon was obtained. After the indole dye is dissolved in methyl ethyl ketone, it is added to the hard coat main agent so as to be 4.0 wt% with respect to the resin composition constituting the hard coat layer, and finally the total solid content concentration is 30%. A hard coat agent was prepared by adding a methyl ethyl ketone solvent. The hard coat was applied to one side of the laminated film so as to have a thickness of 2 μm. After coating, the film was dried in an oven at 80 ° C. for 1 to 2 minutes to volatilize the methyl ethyl ketone solvent, and then irradiated with ultraviolet rays so that the cumulative amount of ultraviolet rays was 180 mJ / cm 2 to obtain the desired laminated sheet. The resulting laminated sheet has a highly crosslinkable hard coat layer located on the outermost surface, so that precipitation of oligomers and additives in the laminated film is reduced, which is faster than in Example 17 where no hard coat is applied. Fluctuation in haze value during the wet heat resistance test was reduced. Moreover, the dimensional stability was also good, and it was suitable for display applications.
 (実施例23)
 実施例22において、ハードコート剤に添加する380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素として、極大吸収波長が406nmであるアントラキノン系色素を、ハードコート層を構成する樹脂組成物に対して10wt%となるように添加した以外は、実施例17と同様にして積層シートを得た。該アントラキノン系の色素は吸収性能にやや乏しく高濃度添加による表面析出が懸念されたものの、長期信頼性試験後の顕著な白化は確認されず、長期で安定性を有し、ディスプレイ用途には好適なものであると判断できた。
(Example 23)
In Example 22, an anthraquinone dye having a maximum absorption wavelength of 406 nm as a dye having a maximum wavelength that exceeds 380 nm and is 430 nm or less added to the hard coat agent is used as a hard coat layer. A laminated sheet was obtained in the same manner as in Example 17 except that it was added so as to be 10 wt% with respect to the resin composition to be constituted. Although the anthraquinone dye is slightly poor in absorption performance and there is concern about surface precipitation due to the addition of a high concentration, no significant whitening after the long-term reliability test has been confirmed, and it has long-term stability and is suitable for display applications I was able to judge that
 (実施例24)
 実施例22において、ハードコート剤に、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素に加えて、ヒンダードアミン系光安定剤としてAdeka社製のLA-72を、ハードコート層を構成する樹脂組成物に対して0.5wt%となるように添加した以外は、実施例22と同様にして積層シートを得た。光安定剤を添加したことで、ディスプレイ実装時の内容物の劣化を実施例22と比較してより長く防止することが出来た。
(Example 24)
In Example 22, in addition to a dye having a maximum wavelength that is maximum in the visible light short wavelength region of more than 380 nm and less than or equal to 430 nm, hard coat agent, LA-72 manufactured by Adeka as a hindered amine light stabilizer, A laminated sheet was obtained in the same manner as in Example 22 except that 0.5 wt% was added to the resin composition constituting the hard coat layer. By adding the light stabilizer, it was possible to prevent deterioration of the contents at the time of display mounting longer than in Example 22.
 (実施例25)
 実施例24において、光安定剤に加えて、酸化防止剤としてAdeka製のリン系/フェノール系の混合酸化防止剤A-612を、一重項酸素クエンチャーとしてシプロ化成製のニッケルクエンチャーSEESORB612NHを、それぞれハードコート層を構成する樹脂組成物に対して0.3wt%、4wt%となるように添加した。また、溶媒としてメチルエチルケトンの代わりにトルエン、ハードコート剤塗布後に110℃の熱風オーブンで3分間乾燥を実施した以外は、実施例24と同様にして積層シートを得た。光安定剤、酸化防止剤、一重項酸素クエンチャーの併用により、光照射に対するインドール系色素の長期安定性が実施例24よりも向上し、これまでのインドール系色素を添加した実施例の中でも、最も長期耐光性に優れた積層シートであった。基本の光学性能は、実施例24と同等であった。 
(Example 25)
In Example 24, in addition to the light stabilizer, a phosphorus / phenolic mixed antioxidant A-612 made by Adeka as an antioxidant, and a nickel quencher SEESORB 612NH made by Cypro Kasei as a singlet oxygen quencher, It added so that it might become 0.3 wt% and 4 wt% with respect to the resin composition which comprises a hard-coat layer, respectively. Further, a laminated sheet was obtained in the same manner as in Example 24 except that toluene was used instead of methyl ethyl ketone as a solvent and drying was performed in a hot air oven at 110 ° C. for 3 minutes after applying the hard coating agent. By using a light stabilizer, an antioxidant, and a singlet oxygen quencher in combination, the long-term stability of the indole dye with respect to light irradiation is improved from that in Example 24. The laminate sheet had the longest light resistance. The basic optical performance was equivalent to that in Example 24.
 (実施例26)
 実施例24において、熱可塑性樹脂Bに添加する紫外線吸収剤として、実施例18に用いた分子量650g/molのベンゾトリアゾール系紫外線吸収剤と分子量700g/molのトリアジン系紫外線吸収剤を、それぞれ熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して0.6wt%、1.4wt%添加し、積層フィルムの厚みを12.2μmとした以外は、同様の手法で積層シートを得た。析出性の高いベンゾトリアゾール系紫外線吸収剤のために、長期信頼試験後のヘイズ変動量がやや高めに確認されたものの、ディスプレイ実装時に視認性を悪化させるほどでなく、ディスプレイ用途として十分利用可能な積層シートであった。
(Example 26)
In Example 24, as the ultraviolet absorber added to the thermoplastic resin B, the benzotriazole ultraviolet absorber having a molecular weight of 650 g / mol and the triazine ultraviolet absorber having a molecular weight of 700 g / mol used in Example 18 were respectively thermoplastic. The laminated sheet was formed in the same manner except that 0.6 wt% and 1.4 wt% were added to the resin composition constituting the B layer containing resin B as the main component and the thickness of the laminated film was 12.2 μm. Obtained. Although the haze fluctuation amount after a long-term reliability test has been confirmed to be slightly higher due to the highly precipitateable benzotriazole-based UV absorber, it does not deteriorate visibility during display mounting and can be used as a display application. It was a laminated sheet.
 (実施例27)
 実施例22において、厚み12.2μmの積層フィルムを作成し、さらに、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素として、実施例22に用いた極大波長が393nmのインドール系色素、および、実施例23に用いた極大波長が406nmのアントラキノン系色素を、ハードコート層を構成する樹脂組成物に対してそれぞれ3.0wt%、6.0wt%添加した以外は、実施例17と同様にして積層シートを得た。色素の組み合わせにより、410nmにおけるカット性が向上すると共に、440nmの光線透過率が向上し、これまでの実施例の中で最も好ましいシャープカット性を達成した。また、信頼性試験後のヘイズ変動量も小さく、ディスプレイ用途のフィルムとして好適なものであった。
(Example 27)
In Example 22, a laminated film having a thickness of 12.2 μm was prepared, and the maximum wavelength used in Example 22 was as a pigment having a maximum wavelength exceeding 380 nm and in the visible light short wavelength region of 430 nm or less. Except for adding 393 nm indole dye and anthraquinone dye having a maximum wavelength of 406 nm used in Example 23 to the resin composition constituting the hard coat layer, 3.0 wt% and 6.0 wt%, respectively. In the same manner as in Example 17, a laminated sheet was obtained. The combination of the dyes improved the cut property at 410 nm and the light transmittance at 440 nm, and achieved the most preferable sharp cut property among the examples so far. Moreover, the amount of haze fluctuation after the reliability test was small, and it was suitable as a film for display applications.
 (実施例28)
 実施例4において、トリアジン系紫外線吸収剤の添加濃度を1.0wt%として積層フィルムを作成した。得られた積層フィルムの表面の片側に、実施例24と同等にして、光安定剤を含有したインドール系色素添加ハードコート層を設け、積層シートを製膜した。紫外線領域の波長の反射をより強めることが出来、紫外線領域でのカット性能が向上する結果を得た上、長期の紫外線照射においても耐えうる性能を有した積層シートとなった。多層積層構造およびハードコート層の存在により、紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素の析出もかなり少なく、ヘイズの変動量も大きく抑制される結果となった。
(Example 28)
In Example 4, a laminated film was prepared with an addition concentration of the triazine-based ultraviolet absorber being 1.0 wt%. An indole dye-added hard coat layer containing a light stabilizer was provided on one side of the surface of the obtained laminated film in the same manner as in Example 24 to form a laminated sheet. Reflection of the wavelength in the ultraviolet region can be further strengthened, the result of improved cut performance in the ultraviolet region, and a laminated sheet having the performance that can withstand long-term ultraviolet irradiation. Due to the presence of the multilayer laminated structure and the hard coat layer, the precipitation of the UV absorber and / or the dye having the maximum maximum wavelength in the visible light short wavelength region exceeding 380 nm and 430 nm or less is considerably small, and the amount of fluctuation in haze is large. The result was suppressed.
 (実施例29)
 実施例5において、トリアジン系紫外線吸収剤の添加濃度を1.4wt%とし、さらに実施例10で用いた分子量650g/molのベンゾトリアゾール系紫外線吸収剤を、熱可塑性樹脂Bを主成分とするB層を構成する樹脂組成物に対して0.6wt%添加し、積層フィルムを得た。得られた積層フィルム上に、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素として、極大波長が381nmのベンジルイジン系色素を添加したハードコート剤を、フィルム上に塗布することでハードコート層が積層された積層シートを得た。具体的には、ベンジルイジン系色素をメチルエチルケトンに溶解後、ハードコート層を構成する樹脂組成物に対して1.0wt%になるように添加し、さらに、実施例24で用いたヒンダードアミン系光安定剤を0.5wt%添加し、最終的に全体の固形分濃度が30%となるようにメチルエチルケトン溶媒を加えることでハードコート剤を調製した。ハードコート層は、厚みが5μmとなるように積層フィルムの片面に塗布した。塗布後、80℃のオーブン内で1~2分間乾燥してメチルエチルケトン溶媒を揮発させた後、紫外線照射積算量が180mJ/cmとなるように紫外線照射して硬化させ、目的の積層シートを得た。得られた積層シートは、反射色相も抑制されており、かつ目標の光線透過率も満足し、ディスプレイに実装した時も長期にわたって内容物の劣化防止が出来ていた。また、ハードコート厚みも厚く、促進耐湿熱試験におけるΔヘイズも0.5と大きく抑えることができ、ディスプレイ用途の光学フィルムとして十分使用可能な性質を有していた。
(Example 29)
In Example 5, the addition concentration of the triazine-based ultraviolet absorber was 1.4 wt%, and the benzotriazole-based ultraviolet absorber having a molecular weight of 650 g / mol used in Example 10 was further mixed with the thermoplastic resin B as a main component. 0.6 wt% was added to the resin composition constituting the layer to obtain a laminated film. On the obtained laminated film, a hard coat agent added with a benzylidine-based dye having a maximum wavelength of 381 nm as a dye having a maximum wavelength in a short wavelength region of visible light shorter than 430 nm and exceeding 380 nm is applied on the film. The laminated sheet on which the hard coat layer was laminated was obtained by applying to. Specifically, after dissolving the benzylidine dye in methyl ethyl ketone, it was added to 1.0 wt% with respect to the resin composition constituting the hard coat layer, and the hindered amine light stability used in Example 24 was further added. A hard coat agent was prepared by adding 0.5 wt% of the agent, and finally adding a methyl ethyl ketone solvent so that the total solid concentration was 30%. The hard coat layer was applied to one side of the laminated film so as to have a thickness of 5 μm. After coating, obtained after evaporation of the methyl ethyl ketone solvent and dried for 1-2 minutes in an oven at 80 ° C., UV irradiation integrated amount is then cured by UV irradiation so that 180 mJ / cm 2, the desired laminated sheet It was. The obtained laminated sheet was suppressed in the reflected hue, and also satisfied the target light transmittance, and was able to prevent deterioration of the contents for a long time even when mounted on a display. In addition, the hard coat thickness was large, and the Δhaze in the accelerated moisture and heat resistance test could be greatly suppressed to 0.5, so that it had a property that it could be sufficiently used as an optical film for display applications.
 (実施例30)
 実施例26において、380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素として、実施例17で用いたインドール系色素を4.0wt%添加し、酸化防止剤として実施例25で用いたリン系/フェノール系の混合酸化防止剤A-612を0.3wt%添加した以外は、実施例26と同様にして積層シートを得た。積層シートの基本性能は実施例26と同等である一方、紫外線照射での内容物保護がより長く持続する結果となった。
(Example 30)
In Example 26, 4.0 wt% of the indole dye used in Example 17 was added as a dye having the maximum wavelength in the short wavelength region of visible light exceeding 380 nm and not more than 430 nm, and was implemented as an antioxidant. A laminated sheet was obtained in the same manner as in Example 26, except that 0.3 wt% of the phosphorus / phenol mixed antioxidant A-612 used in Example 25 was added. While the basic performance of the laminated sheet was the same as that of Example 26, the content protection by ultraviolet irradiation lasted longer.
 (実施例31)
 実施例30において、インドール系色素の添加濃度を2.0wt%、光安定剤および酸化防止剤の添加濃度をそれぞれ0.25wt%、0.15wt%とし、ハードコート層を積層フィルムの両面に塗布した以外は、実施例30と同様の手法で積層シートを得た。両面にハードコート層を積層したことで、促進耐湿熱試験でのヘイズアップがほとんど確認されず、より長期にわたってディスプレイ向けで使用するフィルムとして適したものとなった。
(Example 31)
In Example 30, the addition concentration of the indole dye was 2.0 wt%, the addition concentrations of the light stabilizer and the antioxidant were 0.25 wt% and 0.15 wt%, respectively, and the hard coat layer was applied to both sides of the laminated film. A laminated sheet was obtained in the same manner as in Example 30 except that. By laminating the hard coat layers on both sides, almost no haze-up in the accelerated moist heat resistance test was confirmed, and it became suitable as a film used for displays for a longer period.
 (実施例32)
 実施例30において、積層フィルムの片面に、色素未添加のハードコート層を厚み2μmとなるように設けた。さらに、積層フィルムのハードコート層の反対面に、インドール系色素を0.4wt%添加したアクリル系光学粘着剤を、バーコートにて厚み20μmとなるように塗布した。粘着剤を塗布後、100℃のオーブンで2~3分乾燥し、さらに40℃の熱風オーブン内で2日間エージング処理を実施することで、粘着剤付き積層シートを得た。粘着剤付き積層シートの光学性能は実施例30と同等のものであった。ディスプレイに貼り合せたところ、色素が積層フィルムよりディスプレイ内側の粘着層に位置するため、積層シートの紫外線カット性能を受けることで、より色素の光安定性が増す結果となった。長期にわたるディスプレイ内容物保護の観点では、全ての実施例の中で最も好ましいものとなった。 
(Example 32)
In Example 30, a pigment-free hard coat layer was provided on one side of the laminated film so as to have a thickness of 2 μm. Further, an acrylic optical adhesive to which 0.4 wt% of indole dye was added was applied to the opposite surface of the hard coat layer of the laminated film so as to have a thickness of 20 μm by bar coating. After the adhesive was applied, it was dried in an oven at 100 ° C. for 2 to 3 minutes, and further subjected to an aging treatment in a hot air oven at 40 ° C. for 2 days to obtain a laminated sheet with an adhesive. The optical performance of the laminated sheet with pressure-sensitive adhesive was the same as in Example 30. When it was bonded to the display, the dye was positioned in the adhesive layer inside the display from the laminated film, so that the light stability of the dye was further increased by receiving the UV-cutting performance of the laminated sheet. From the viewpoint of protecting the display contents over a long period of time, it became the most preferable among all the examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の積層フィルムは、波長410nm以下の光線をシャープにカットする紫外線カット性と可視光透過率に優れるため、視認性の向上および紫外線による劣化を防止することができる。そのため、本発明の積層フィルムは、液晶ディスプレイ等の画像表示装置に内蔵されるフィルムとして好適に用いることが出来る。その他、紫外線カットが必要とされる、例えば、建材や自動車用途ではウィンドウフィルム、工業材料用途では、看板などへの鋼板ラミネート用フィルム、また、電子デバイス用途ではフォトリソ材料の工程・離型フィルム、さらに食品、医薬、農業用途のフィルムに好適に用いることができる。 Since the laminated film of the present invention is excellent in ultraviolet cut ability and visible light transmittance for sharply cutting light having a wavelength of 410 nm or less, visibility can be improved and deterioration due to ultraviolet rays can be prevented. Therefore, the laminated film of the present invention can be suitably used as a film incorporated in an image display device such as a liquid crystal display. In addition, UV protection is required, for example, window films for building materials and automotive applications, steel film laminating films for signboards for industrial materials, and photolithographic process / release films for electronic devices. It can be suitably used for films for food, medicine and agriculture.

Claims (16)

  1. 熱可塑性樹脂Aを主成分とする層(A層)と、前記熱可塑性樹脂Aと異なる熱可塑性樹脂Bを主成分とする層(B層)を交互に5層以上積層したフィルムであって、波長410nmにおける光線透過率が60%以下、波長440nmにおける光線透過率が80%以上である、積層フィルム。 A film in which five or more layers (layer B) mainly composed of a thermoplastic resin A and layers (layer B) composed mainly of a thermoplastic resin B different from the thermoplastic resin A are laminated, A laminated film having a light transmittance of 60% or less at a wavelength of 410 nm and a light transmittance of 80% or more at a wavelength of 440 nm.
  2. 波長300~380nmにおける光線透過率の最大値が10%以下である、請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the maximum value of light transmittance at a wavelength of 300 to 380 nm is 10% or less.
  3. 波長380~410nmにおける平均光線反射率が20%以上である、請求項1または2のいずれかに記載の積層フィルム。 The laminated film according to claim 1, wherein the average light reflectance at a wavelength of 380 to 410 nm is 20% or more.
  4. A層及び/又はB層に、紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を含有する、請求項1~3のいずれかに記載の積層フィルム。 The A layer and / or the B layer contain an ultraviolet absorber and / or a dye having a maximum wavelength that is the maximum in the visible light short wavelength region of more than 380 nm and not more than 430 nm. Laminated film.
  5. 前記紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素が、トリアジン骨格を有する、請求項4に記載の積層フィルム。 The laminated film according to claim 4, wherein the ultraviolet absorber and / or the pigment having a maximum wavelength that is maximum in the visible light short wavelength region exceeding 380 nm and not exceeding 430 nm has a triazine skeleton.
  6. 前記380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素が、アゾメチン系、インドール系、キノン系、ナフタルイミド系、フタロシアニン系、ベンジルイジン系から選ばれる少なくとも1つの骨格を有する、請求項4または5に記載の積層フィルム。 The dye having the maximum wavelength in the short wavelength range of visible light shorter than 380 nm and longer than 430 nm is at least one skeleton selected from azomethine, indole, quinone, naphthalimide, phthalocyanine, and benzylidine The laminated film according to claim 4 or 5, which has
  7. 前記積層フィルムのある層に含有する紫外線吸収剤と380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素の含有量の和をMn[重量%]、当該層の層厚みをTn[μm]としたとき、前記含有量の和と層厚みの積を積層フィルム全層について足し合わせたΣ(Mn×Tn)が50[重量%・μm]以下であることを特徴とする、請求項4~6のいずれかに記載の積層フィルム。 The sum of the content of the ultraviolet absorber contained in a layer of the laminated film and the pigment having the maximum wavelength exceeding 380 nm and the maximum wavelength in the visible light short wavelength region of 430 nm or less is Mn [wt%], and the layer of the layer When the thickness is defined as Tn [μm], Σ (Mn × Tn) obtained by adding the product of the sum of the contents and the layer thickness for all layers of the laminated film is 50 [wt% · μm] or less. The laminated film according to any one of claims 4 to 6.
  8. ヒンダードアミン系光安定剤をフィルム全重量に対して0.01重量%以上1重量%以下含有する、請求項1~7のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 7, comprising a hindered amine light stabilizer in an amount of 0.01 wt% to 1 wt% based on the total weight of the film.
  9. A層とB層を交互に51層以上積層してなる、請求項1~8のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 8, wherein 51 layers or more of A layers and B layers are alternately laminated.
  10. 熱可塑性樹脂A及び熱可塑性樹脂Bがポリエステル樹脂である、請求項1~9のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 9, wherein the thermoplastic resin A and the thermoplastic resin B are polyester resins.
  11. 単位長さあたりの曲げ剛性が1.0×10-7[N・m]以下である、請求項1~10のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 10, wherein a bending rigidity per unit length is 1.0 × 10 -7 [N · m 2 ] or less.
  12. 85℃85%RH条件で250時間処理した際のΔヘイズが1.0%以下である、請求項1~11のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 11, wherein the Δhaze when treated at 85 ° C and 85% RH for 250 hours is 1.0% or less.
  13. 請求項1~12のいずれかに記載の積層フィルムの少なくとも片面に、硬化性樹脂Cを主成分とするハードコート層(C層)を有する、積層シート。 A laminated sheet comprising a hard coat layer (C layer) comprising a curable resin C as a main component on at least one surface of the laminated film according to any one of claims 1 to 12.
  14. 請求項1~12のいずれかに記載の積層フィルムと、紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大吸収を有する色素を含む粘着層を有する、積層シート。 A laminated film comprising the laminated film according to any one of claims 1 to 12 and an adhesive layer comprising an ultraviolet absorber and / or a dye having a maximum absorption exceeding 380 nm and in the visible light short wavelength region of 430 nm or less. Sheet.
  15. 請求項13に記載の積層シートと、紫外線吸収剤及び/又は380nmを超えて430nm以下の可視光短波長領域に最大となる極大波長を有する色素を含む粘着層を有する、積層シート。 A laminated sheet comprising the laminated sheet according to claim 13 and an adhesive layer comprising an ultraviolet absorber and / or a dye having a maximum wavelength exceeding 380 nm and in the visible light short wavelength region of 430 nm or less.
  16. ディスプレイ用途に用いられる、請求項1~12のいずれかに記載の積層フィルム、または、請求項13~15のいずれかに記載の積層シート。 The laminated film according to any one of claims 1 to 12, or the laminated sheet according to any one of claims 13 to 15, which is used for display applications.
PCT/JP2016/085904 2015-12-08 2016-12-02 Layered film WO2017099016A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017503037A JP6780636B2 (en) 2015-12-08 2016-12-02 Laminated film
KR1020187005748A KR102655116B1 (en) 2015-12-08 2016-12-02 laminated film
CN201680057914.9A CN108136745B (en) 2015-12-08 2016-12-02 Laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015239076 2015-12-08
JP2015-239076 2015-12-08

Publications (1)

Publication Number Publication Date
WO2017099016A1 true WO2017099016A1 (en) 2017-06-15

Family

ID=59014128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085904 WO2017099016A1 (en) 2015-12-08 2016-12-02 Layered film

Country Status (5)

Country Link
JP (1) JP6780636B2 (en)
KR (1) KR102655116B1 (en)
CN (1) CN108136745B (en)
TW (1) TWI706862B (en)
WO (1) WO2017099016A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004041A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Optical film
WO2019004045A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Optical film
JP2019091040A (en) * 2017-11-15 2019-06-13 東レ株式会社 Laminated film
JP2020034701A (en) * 2018-08-29 2020-03-05 Jsr株式会社 Optical filter, solid-state image sensor, camera module and biometric authentication device
WO2022158045A1 (en) * 2021-01-19 2022-07-28 凸版印刷株式会社 Optical film, display device using same, and composition for forming colored layer used for manufacturing optical film
WO2022191319A1 (en) * 2021-03-11 2022-09-15 大日本印刷株式会社 Multilayer body for display devices, and display device
CN115851177A (en) * 2017-06-22 2023-03-28 日东电工株式会社 Adhesive composition for organic EL display device, adhesive layer, polarizing film with adhesive layer, and organic EL display device
TWI844515B (en) 2017-06-27 2024-06-11 日商住友化學股份有限公司 Optical film

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202023831A (en) * 2018-11-12 2020-07-01 日商日東電工股份有限公司 Polarizing film, laminated polarizing film, image display panel and image display device
WO2020162120A1 (en) 2019-02-08 2020-08-13 東洋紡株式会社 Foldable display and portable terminal device
KR20210125514A (en) 2019-02-08 2021-10-18 도요보 가부시키가이샤 Polyester film and its uses
EP3943288A4 (en) * 2019-03-20 2023-01-04 Sekisui Chemical Co., Ltd. Thermoplastic film and laminated glass
CN113874191B (en) 2019-05-28 2024-03-12 东洋纺株式会社 Polyester film and use thereof
US11939499B2 (en) 2019-05-28 2024-03-26 Toyobo Co., Ltd. Multilayer film and use of same
CN117940285A (en) 2021-10-11 2024-04-26 东洋纺株式会社 Laminated film, film for gardening facilities, and woven/knitted fabric
WO2023074109A1 (en) 2021-10-25 2023-05-04 東洋紡株式会社 Laminate film, film for protected horticulture, and woven/knit fabric
CN117048164B (en) * 2023-10-11 2024-01-26 畅的新材料科技(上海)有限公司 High-weather-resistance photovoltaic backboard base film and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132846A (en) * 2008-03-30 2010-06-17 Fujifilm Corp Resin molded product and polymer film
JP2014223794A (en) * 2013-04-18 2014-12-04 東レ株式会社 Window film
JP2015027746A (en) * 2013-07-30 2015-02-12 東レ株式会社 Biaxially-stretched multilayer laminated polyester film, and screen protection film obtained by using the same
JP2015169769A (en) * 2014-03-06 2015-09-28 帝人株式会社 Multilayer uniaxially oriented film, reflective polarizing plate comprising the same, optical member for liquid crystal display device employing ips system, and liquid crystal display device employing ips system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238586A (en) 2007-03-27 2008-10-09 Fujifilm Corp Biaxially stretched laminated polyester film
JP5935393B2 (en) * 2011-03-03 2016-06-15 東レ株式会社 Laminated film
WO2012124742A1 (en) * 2011-03-15 2012-09-20 三菱樹脂株式会社 Laminated moisture proof film
JP2013210598A (en) 2012-03-01 2013-10-10 Mitsubishi Plastics Inc Polyester film for protecting polarizing plate
JP5887259B2 (en) 2012-12-11 2016-03-16 富士フイルム株式会社 Outdoor display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132846A (en) * 2008-03-30 2010-06-17 Fujifilm Corp Resin molded product and polymer film
JP2014223794A (en) * 2013-04-18 2014-12-04 東レ株式会社 Window film
JP2015027746A (en) * 2013-07-30 2015-02-12 東レ株式会社 Biaxially-stretched multilayer laminated polyester film, and screen protection film obtained by using the same
JP2015169769A (en) * 2014-03-06 2015-09-28 帝人株式会社 Multilayer uniaxially oriented film, reflective polarizing plate comprising the same, optical member for liquid crystal display device employing ips system, and liquid crystal display device employing ips system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115851177A (en) * 2017-06-22 2023-03-28 日东电工株式会社 Adhesive composition for organic EL display device, adhesive layer, polarizing film with adhesive layer, and organic EL display device
CN110799865B (en) * 2017-06-27 2022-06-10 住友化学株式会社 Optical film
CN110799865A (en) * 2017-06-27 2020-02-14 住友化学株式会社 Optical film
TWI844515B (en) 2017-06-27 2024-06-11 日商住友化學股份有限公司 Optical film
JP7474564B2 (en) 2017-06-27 2024-04-25 住友化学株式会社 Optical Film
KR102603487B1 (en) * 2017-06-27 2023-11-16 스미또모 가가꾸 가부시키가이샤 optical film
CN110799867A (en) * 2017-06-27 2020-02-14 住友化学株式会社 Optical film
KR20200019236A (en) * 2017-06-27 2020-02-21 스미또모 가가꾸 가부시키가이샤 Optical film
JP7320926B2 (en) 2017-06-27 2023-08-04 住友化学株式会社 optical film
WO2019004045A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Optical film
WO2019004041A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Optical film
JP2019008292A (en) * 2017-06-27 2019-01-17 住友化学株式会社 Optical film
JP2019008295A (en) * 2017-06-27 2019-01-17 住友化学株式会社 Optical film
TWI782045B (en) * 2017-06-27 2022-11-01 日商住友化學股份有限公司 Optical film
JP2019091040A (en) * 2017-11-15 2019-06-13 東レ株式会社 Laminated film
JP7326726B2 (en) 2017-11-15 2023-08-16 東レ株式会社 laminated film
JP7040362B2 (en) 2018-08-29 2022-03-23 Jsr株式会社 Optical filters, solid-state image sensors, camera modules and biometrics
JP2020034701A (en) * 2018-08-29 2020-03-05 Jsr株式会社 Optical filter, solid-state image sensor, camera module and biometric authentication device
JP7186249B2 (en) 2021-01-19 2022-12-08 凸版印刷株式会社 Optical film, display device using the same, composition for forming colored layer used for manufacturing optical film
JP2022110825A (en) * 2021-01-19 2022-07-29 凸版印刷株式会社 Optical film, display device using the same, and coloring layer-forming composition used to produce optical film
WO2022158045A1 (en) * 2021-01-19 2022-07-28 凸版印刷株式会社 Optical film, display device using same, and composition for forming colored layer used for manufacturing optical film
WO2022191319A1 (en) * 2021-03-11 2022-09-15 大日本印刷株式会社 Multilayer body for display devices, and display device

Also Published As

Publication number Publication date
TWI706862B (en) 2020-10-11
CN108136745B (en) 2021-01-08
CN108136745A (en) 2018-06-08
JPWO2017099016A1 (en) 2018-09-27
KR20180090982A (en) 2018-08-14
JP6780636B2 (en) 2020-11-04
KR102655116B1 (en) 2024-04-08
TW201733807A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
JP6780636B2 (en) Laminated film
JP6753118B2 (en) Optical film
JP7290111B2 (en) laminated film
JP6973584B2 (en) Laminated film
JP6226762B2 (en) OPTICAL POLYESTER FILM, POLARIZING PLATE, IMAGE DISPLAY DEVICE, OPTICAL POLYESTER FILM MANUFACTURING METHOD, AND COMPOSITION FOR Easily Adhesive Layer
JP6361400B2 (en) Biaxially stretched polyester film, polarizing plate using the same, and liquid crystal display
JP2019061241A (en) Image display device
JP6776612B2 (en) Laminated biaxially stretched polyester film
JP7326726B2 (en) laminated film
JP7087470B2 (en) Laminate
JP6988318B2 (en) Laminated film
JP2022054572A (en) Laminated film
JP2022085847A (en) Polyester film for flexible displays, laminate film for flexible displays, flexible display, and flexible display device
JP6172027B2 (en) Film for display
TWI773115B (en) Polarizing plate and organic electroluminescence display device
JP6291830B2 (en) Multilayer laminated film
TWI770876B (en) Polarizing plate and organic electroluminescence display device
JP2023133241A (en) Laminate film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017503037

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187005748

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872914

Country of ref document: EP

Kind code of ref document: A1