WO2019004041A1 - Optical film - Google Patents

Optical film Download PDF

Info

Publication number
WO2019004041A1
WO2019004041A1 PCT/JP2018/023582 JP2018023582W WO2019004041A1 WO 2019004041 A1 WO2019004041 A1 WO 2019004041A1 JP 2018023582 W JP2018023582 W JP 2018023582W WO 2019004041 A1 WO2019004041 A1 WO 2019004041A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
film
compound
group
optical film
Prior art date
Application number
PCT/JP2018/023582
Other languages
French (fr)
Japanese (ja)
Inventor
智恵 阪上
亜依 小橋
悠司 淺津
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020207002414A priority Critical patent/KR102603487B1/en
Priority to CN201880042772.8A priority patent/CN110799865B/en
Publication of WO2019004041A1 publication Critical patent/WO2019004041A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to an optical film comprising at least one light selective absorption layer.
  • Patent Document 1 describes a polarizing plate in which an ultraviolet light absorber excellent in ultraviolet light absorbing ability in a wavelength range of 370 nm or less is added to a protective film of the polarizing plate.
  • the present invention includes an invention described below [1] An optical film comprising at least one light selective absorption layer formed from an active energy ray-curable composition which provides an optical film, and satisfying the following formula (1) .
  • a (405) 0.5 0.5 (1) [In Formula (1), A (405) represents the absorbance at a wavelength of 405 nm. ] [2] The optical film according to [1], further satisfying the following formula (2).
  • a (440) ⁇ 0.1 (2)
  • [In Formula (2), A (440) represents the light absorbency in wavelength 440nm. ] [3]
  • a (405) / A (440) ⁇ 5 (3) [In Formula (3), A (405) represents the absorbance at a wavelength of 405 nm, and A (440) represents the absorbance at a wavelength of 440 nm. ] [4] The optical film according to any one of [1] to [3], wherein the storage elastic modulus E at 23 ° C. of the light selective absorption layer is 100 MPa or more.
  • the photoselective absorption layer is a layer formed from an active energy ray curable composition containing a photocurable component (A), a photoselective absorption compound (B) and a photopolymerization initiator (C) [
  • the content of the layer [6] photoselective absorption compound (B) according to any one of 1) to [4] is 0.01 to 20 parts by mass with respect to 100 parts by mass of the photocurable component (A)
  • ⁇ (405) 20 20 (4) [In Formula (4), (epsilon) (405) represents the gram absorption coefficient of a compound in wavelength 405 nm. The unit of gram absorption coefficient is L / (g ⁇ cm). ] [8] The optical film according to [7], wherein the light selective absorption compound (B) is a compound satisfying the formula (5). ⁇ (405) / ⁇ (440) ⁇ 20 (5) [In Formula (5), (epsilon) (405) represents the gram absorption coefficient of the compound in wavelength 405 nm, and (epsilon) (440) represents the gram absorption coefficient in wavelength 440 nm.
  • the compound selectively absorbing visible light with a short wavelength near 400 nm contained in the light selective absorption layer does not shift to a layer other than the light selective absorption layer, and suppresses the deterioration of the retardation film And can provide good display characteristics.
  • the optical film of the present invention is an optical film including at least one light selective absorption layer formed from an active energy ray curable resin composition and satisfying the following formula (1).
  • a (405) 0.5 0.5 (1) [Represents the absorbance of the optical film at a wavelength of 405 nm. ] The larger the value of A (405), the larger the absorption at a wavelength of 405 nm. When the value of A (405) is less than 1, the absorption at a wavelength of 405 nm is low, and the effect of suppressing deterioration of a display device such as a retardation film or an organic EL element in visible light of short wavelength is small.
  • the value of A (405) is preferably 0.6 or more, more preferably 0.8 or more, and particularly preferably 1.0 or more, from the viewpoint of suppressing weathering deterioration.
  • the optical film of the present invention preferably further satisfies the following formula (2).
  • a (440) ⁇ 0.1 (2) [In Formula (2), A (440) represents the light absorbency in wavelength 440nm. ] The smaller the value of A (440), the lower the absorption at a wavelength of 440 nm. When the value of A (440) exceeds 0.1, it tends to impair good color expression in the display device. In addition, since the light emission of the display device tends to be inhibited, the luminance of the display device may also be reduced.
  • the value of A (440) is preferably 0.05 or less, more preferably 0.04 or less, and particularly preferably 0.03 or less from the viewpoint of suppressing light emission inhibition of the display device.
  • the optical film of this invention further satisfy
  • a (405) represents the absorbance at a wavelength of 405 nm
  • a (440) represents the absorbance at a wavelength of 440 nm.
  • the value of A (405) / A (440) represents the magnitude of absorption at a wavelength of 405 nm relative to the magnitude of absorption at a wavelength of 440 nm. As the value of A (405) / A (440) is larger, it indicates that there is specific absorption in the wavelength range around 405 nm.
  • the value of A (405) / A (440) is preferably 10 or more, more preferably 30 or more, and particularly preferably 60 or more.
  • the light selective absorption layer 1 is formed on at least one surface of a resin film 2 (for example, a resin film (a) described later).
  • the light selective absorption layer 1 may be a single layer or a multilayer.
  • an adhesive layer or a pressure-sensitive adhesive layer may be present between the resin film 2 and the light selective absorption layer 1.
  • the adhesive layer in this case may be an adhesive layer formed of a known adhesive (water-based adhesive, active energy ray curing adhesive), and an adhesive layer is also formed of a known adhesive. It is sufficient if it is an agent layer.
  • the optical laminate 10A described in FIG. 2 is an optical laminate including the optical film 10 of the present invention and a polarizing plate film.
  • the light selective absorption layer 1 shown in FIG. 2 also functions as an adhesive layer.
  • the optical laminate 10B described in FIG. 3 is an optical laminate including a resin film 2, a light selective absorption layer 1, a polarizing film 3, an adhesive layer 4, and a protective film 5.
  • the adhesive layer 4 may be an adhesive layer formed of a known adhesive, or the light selective absorption layer 2 of the present application may be used as an adhesive layer.
  • the protective film 5 may be a film having retardation (retardation film).
  • the optical laminate includes the film 40, the pressure-sensitive adhesive layer 30, and the light emitting element 110.
  • the adhesive layer 4 may be an adhesive layer formed of a known adhesive, or the light selective absorption layer 2 of the present application may be used as an adhesive layer.
  • the optical laminate 10E described in FIG. 6 is an optical laminate including the light selective absorption layer 1, the resin film 2, the adhesive layer 4, the polarizing film 3, the adhesive layer 4, and the resin film 2.
  • the light selective absorption layer 1 also functions as a surface treatment layer. That is, the light selective absorption layer 1 of the present invention functions as an adhesive layer and also functions as a surface treatment layer.
  • the thickness of the light selective absorption layer 1 of the present invention is usually 0.1 to 30 ⁇ m.
  • the thickness is preferably 5 to 15 ⁇ m. If it is less than 5 ⁇ m, the hardness may be insufficient. If it exceeds 15 ⁇ m, residual solvent may remain or coating adhesion may be reduced.
  • the thickness is usually 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, particularly preferably 3 ⁇ m or less.
  • the storage elastic modulus (E ‘) at 23 ° C. of the light selective absorption layer is preferably 100 MPa or more, more preferably 500 MPa or more, still more preferably 1000 MPa or more, and preferably 100000 MPa or less.
  • the storage elastic modulus at 80 ° C. of the light selective absorption layer is preferably 600 MPa or more, more preferably 1000 MPa or more, still more preferably 1500 MPa or more, and preferably 10000 MPa or less.
  • the hardness of the light selective absorption layer is preferably H or more in a pencil hardness test (load 4.9 N) according to JIS K 5600-5-4 (1999). 3H or more is more preferable, and 4H or more is even more preferable.
  • the optical film of the present invention comprises at least one light selective absorption layer formed from an active energy ray-curable composition.
  • the optical film of the present invention satisfies the formula (1).
  • the light selective absorption layer preferably satisfies the above-mentioned formula (1), more preferably the above-mentioned formulas (1) and (2), and the above-mentioned formulas (1), (2) and It is further preferable to satisfy 3).
  • the light selective absorption layer is formed on at least one surface of a resin film (hereinafter sometimes referred to as a resin film (a)).
  • An active energy ray curable composition refers to a composition that cures upon irradiation with active energy rays.
  • an active energy ray an ultraviolet ray, an electron beam, an X ray, visible light etc. are mentioned, Preferably it is an ultraviolet ray.
  • an ultraviolet light source a light source having a light emission distribution at a wavelength of 400 nm or less is preferable. For example, low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, chemical lamp, black light lamp, microwave excitation mercury lamp, metal halide lamp etc. be able to.
  • the active energy ray curable composition contains a photocurable component (A), a photoselective absorption compound (B) and a photopolymerization initiator (C).
  • the photocurable component (A) a compound or oligomer (radically polymerizable compound) that cures by radical polymerization reaction upon irradiation with active energy rays, and / or a compound that cures by cationic polymerization reaction upon irradiation with active energy rays (cationic polymerization Sex compounds) and the like.
  • radically polymerizable compound examples include radically polymerizable (meth) acrylic compounds.
  • the term "(meth) acrylic compound” refers to a compound having one or more (meth) acryloyl groups in the molecule.
  • the “(meth) acryloyl group” means at least one selected from an acryloyl group and a methacryloyl group. The same applies to the cases of “(meth) acryloyloxy group”, “(meth) acrylic”, “(meth) acrylate” and the like.
  • the active energy ray-curable adhesive composition can contain one or more radically polymerizable (meth) acrylic compounds.
  • (meth) acrylic compound As the (meth) acrylic compound, (meth) acrylate monomers having at least one (meth) acryloyloxy group in the molecule, (meth) acrylamide monomers, and at least two (meth) acryloyl groups in the molecule And (meth) acryloyl group-containing compounds such as (meth) acrylic oligomers having The (meth) acrylic oligomer is preferably a (meth) acrylate oligomer having at least two (meth) acryloyloxy groups in the molecule.
  • the (meth) acrylic compounds one type may be used alone, or two or more types may be used in combination.
  • the (meth) acrylate monomer a monofunctional (meth) acrylate monomer having one (meth) acryloyloxy group in the molecule, and a bifunctional (meth) acrylate having two (meth) acryloyloxy groups in the molecule
  • Monomers and polyfunctional (meth) acrylate monomers having three or more (meth) acryloyloxy groups in the molecule can be mentioned.
  • Examples of monofunctional (meth) acrylate monomers include alkyl (meth) acrylates.
  • the alkyl group may be linear, branched or cyclic as long as it has 3 or more carbon atoms.
  • alkyl (meth) acrylate methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl ( Meta) acrylate etc. are mentioned.
  • aralkyl (meth) acrylates such as benzyl (meth) acrylate; (meth) acrylates of terpene alcohols such as isobornyl (meth) acrylate; tetrahydro such as tetrahydrofurfuryl (meth) acrylate (Meth) acrylates having a furfuryl structure; Cycloalkyl groups such as cyclohexyl (meth) acrylate, cyclohexylmethyl methacrylate, dicyclopentanyl acrylate, dicyclopentenyl (meth) acrylate, 1,4-cyclohexanedimethanol monoacrylate, etc.
  • (Meth) acrylates having an alkyl group aminoalkyl (meth) acrylates such as N, N-dimethylaminoethyl (meth) acrylate; 2-phenoxyethyl (meth) acrylate ) Acrylate, dicyclopentenyl oxyethyl (meth) acrylate, ethyl carbitol (meth) acrylate, (meth) acrylate having an ether bond in the alkyl moiety such as phenoxy polyethylene glycol (meth) acrylates are also equal may also be mentioned.
  • a functional (meth) acrylate monomer the monofunctional (meth) acrylate which has a hydroxyl group in an alkyl part;
  • the monofunctional (meth) acrylate which has a carboxyl group in an alkyl part is mentioned.
  • a monofunctional (meth) acrylate having a hydroxyl group at the alkyl site 2-hydroxyethyl (meth) acrylate, 2- or 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3 -Phenoxy propyl (meth) acrylate, trimethylol propane mono (meth) acrylate, pentaerythritol mono (meth) acrylate are mentioned.
  • Phthalic acid 1- [2- (meth) acryloyloxyethyl] hexahydrophthalic acid, 1- [2- (meth) acryloyloxyethyl] succinic acid, 4- [2- (meth) acryloyloxyethyl ] Trimellitic acid, N- (meth) acryloyloxy-N ', N'-dicarboxymethyl-p-phenylenediamine and the like can be mentioned.
  • the (meth) acrylamide monomer is preferably a (meth) acrylamide having a substituent at the N-position.
  • a typical example of the substituent at the N-position is an alkyl group, but it may form a ring together with the nitrogen atom of (meth) acrylamide, and this ring is a carbon atom and the nitrogen atom of (meth) acrylamide And may have an oxygen atom as a ring member.
  • N-substituted (meth) acrylamides include N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nn-butyl (meth) acrylamide, N-t-butyl ( N-alkyl (meth) acrylamide such as acrylamide, N-hexyl (meth) acrylamide; N, N- dialkyl (such as N, N- dimethyl (meth) acrylamide, N, N- diethyl (meth) acrylamide Meta) acrylamide etc. are mentioned.
  • the N-substituent may be an alkyl group having a hydroxyl group, and examples thereof include N-hydroxymethyl (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, N- (2-hydroxy) Propyl) (meth) acrylamide etc. are mentioned.
  • specific examples of the above-mentioned N-substituted (meth) acrylamide forming a 5- or 6-membered ring include N-acryloyl pyrrolidine, 3-acryloyl-2-oxazolidinone, 4-acryloyl morpholine, and N-acryloyl pyrrolidone. Examples include piperidine, N-methacryloylpiperidine and the like.
  • Ethylene glycol di (meth) acrylate As a bifunctional (meth) acrylate monomer, Ethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol Alkylene glycol di (meth) acrylates such as di (meth) acrylates and neopentyl glycol di (meth) acrylates; Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate and Polyoxyalkylene glycol di (meth) acrylates
  • glycerin tri (meth) acrylate alkoxylated glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylol Propane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc.
  • (meth) acrylic oligomers examples include urethane (meth) acrylic oligomers, polyester (meth) acrylic oligomers, epoxy (meth) acrylic oligomers and the like.
  • the urethane (meth) acrylic oligomer is a compound having a urethane bond (—NHCOO—) and at least two (meth) acryloyl groups in the molecule.
  • a urethanization reaction product of a hydroxyl group-containing (meth) acrylic monomer having at least one (meth) acryloyl group and at least one hydroxyl group in the molecule and a polyisocyanate, or a polyol with a polyisocyanate It may be a urethanated reaction product of a terminal isocyanato group-containing urethane compound obtained by reaction, and a (meth) acrylic monomer having at least one (meth) acryloyl group and at least one hydroxyl group in the molecule.
  • the hydroxyl group-containing (meth) acrylic monomer used for the urethanization reaction can be, for example, a hydroxyl group-containing (meth) acrylate monomer, and specific examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate ) Acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, di And pentaerythritol penta (meth) acrylate.
  • a hydroxyl group-containing (meth) acrylate monomer and specific examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate ) Acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy
  • hydroxyl group-containing (meth) acrylate monomer examples include N-hydroxyalkyl (meth) acrylamide monomers such as N-hydroxyethyl (meth) acrylamide and N-methylol (meth) acrylamide.
  • polyisocyanates to be subjected to the urethanization reaction with a hydroxyl group-containing (meth) acrylic monomer hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and aromatic ones of these diisocyanates
  • Diisocyanates obtained by hydrogenating isocyanates for example, hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, etc.
  • di- or tri-isocyanates such as triphenylmethane triisocyanate, dibenzyl benzene triisocyanate, and the above
  • the polyisocyanate etc. which are obtained by multimerizing the diisocyanate of this are mentioned.
  • polystyrene resin in addition to the aromatic, aliphatic or alicyclic polyols, polyester polyols, polyether polyols, etc. may be used as the polyol to be used to make the terminal isocyanate group-containing urethane compound by the reaction with the polyisocyanate. it can.
  • aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, trimethylolpropane, and ditriol.
  • Methylol propane, pentaerythritol, dipentaerythritol, dimethylol heptane, dimethylol propionic acid, dimethylol butanoic acid, glycerin, hydrogenated bisphenol A and the like can be mentioned.
  • the polyester polyol is obtained by the dehydration condensation reaction of the above-described polyol and a polybasic carboxylic acid or an anhydride thereof.
  • polybasic carboxylic acids or their anhydrides are represented by adding "(anhydride)" to those which may be anhydrides, (anhydride) succinic acid, adipic acid, (anhydride) maleic acid (anhydride) Itaconic acid, (anhydride) trimellitic acid, (anhydride) pyromellitic acid, (anhydride) phthalic acid, isophthalic acid, terephthalic acid, hexahydro (anhydride) phthalic acid and the like.
  • the polyether polyol may be, in addition to the polyalkylene glycol, the above-mentioned polyol or a polyoxyalkylene modified polyol obtained by the reaction of dihydroxybenzenes with an alkylene oxide.
  • the polyester (meth) acrylate oligomer means an oligomer having an ester bond and at least two (meth) acryloyloxy groups in the molecule.
  • the polyester (meth) acrylate oligomer can be obtained, for example, by subjecting a (meth) acrylic acid, a polybasic carboxylic acid or an anhydride thereof, and a polyol to a dehydration condensation reaction.
  • succinic anhydride As polybasic carboxylic acid or its anhydride, succinic anhydride, adipic acid, maleic anhydride, itaconic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, phthalic acid, succinic acid, maleic acid And itaconic acid, trimellitic acid, pyromellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, terephthalic acid and the like.
  • 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylol ethane, trimethylol propane, ditrimethylol propane, pentaerythritol, di- Pentaerythritol, dimethylolheptane, dimethylolpropionic acid, dimethylolbutanoic acid, glycerin, hydrogenated bisphenol A and the like can be mentioned.
  • Epoxy (meth) acrylic oligomers can be obtained by the addition reaction of polyglycidyl ether and (meth) acrylic acid. Epoxy (meth) acrylic oligomers have at least two (meth) acryloyloxy groups in the molecule.
  • Examples of polyglycidyl ethers include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
  • the total content of the bifunctional (meth) acrylate monomer and the polyfunctional (meth) acrylate monomer is a photocurable component (A) in order to increase the hardness of the photoselective absorption layer.
  • the amount is 50 parts by mass or more, preferably 60 parts by mass or more, and more preferably 80 parts by mass or more based on 100 parts by mass.
  • the content of the monofunctional (meth) acrylate monomer is preferably 50 parts by mass or more, preferably 100 parts by mass of the photocurable component (A), from the viewpoint of adhesion. 60 parts by mass or more, more preferably 60 parts by mass or more.
  • the cationically polymerizable compound represents a compound or an oligomer which is cured by the cationic polymerization reaction proceeding by irradiation with an active energy ray such as ultraviolet light, visible light, electron beam, X-ray or the like and heating.
  • an active energy ray such as ultraviolet light, visible light, electron beam, X-ray or the like and heating.
  • an epoxy compound, an oxetane compound, a vinyl compound etc. are mentioned.
  • the cationically polymerizable compound is preferably an epoxy compound.
  • the epoxy compound is a compound having one or more (preferably two or more) epoxy groups in the molecule.
  • the epoxy compounds may be used alone or in combination of two or more.
  • an epoxy compound an alicyclic epoxy compound, an aromatic epoxy compound, a hydrogenated epoxy compound, an aliphatic epoxy compound etc. can be mentioned.
  • the epoxy compound is preferably an alicyclic epoxy compound and an aliphatic epoxy compound, and more preferably an alicyclic epoxy compound.
  • the alicyclic epoxy compound is a compound having one or more epoxy groups bonded to an alicyclic ring in the molecule.
  • the “epoxy group bonded to an alicyclic ring” means a bridging oxygen atom —O— in a structure represented by the following formula (I).
  • m is an integer of 2 to 5.
  • a compound in which one or more hydrogen atoms in (CH 2 ) m in the above-mentioned formula (I) are removed and which is bonded to another chemical structure may be a cycloaliphatic epoxy compound.
  • One or more hydrogen atoms in (CH 2 ) m may be optionally substituted by a linear alkyl group such as a methyl group or an ethyl group.
  • the transition temperature is high, which is also advantageous in terms of adhesion.
  • specific examples of the alicyclic epoxy compound will be listed. Here, first, the compound name is listed, and then the corresponding chemical formula is shown, and the compound name and the corresponding chemical formula are given the same reference numerals.
  • the aromatic epoxy compound is a compound having an aromatic ring and an epoxy group in the molecule.
  • aromatic epoxy compounds bisphenol-type epoxy compounds such as diglycidyl ether of bisphenol A, diglycidyl ether of bisferr F, diglycidyl ether of bisphenol S, or oligomers thereof; phenol novolac epoxy resin, cresol novolac epoxy resin, hydroxybenzaldehyde Novolac type epoxy resin such as phenol novolac epoxy resin; glycidyl ether of 2,2 ', 4,4'-tetrahydroxydiphenylmethane, and polyfunctional type such as glycidyl ether of 2,2', 4,4'-tetrahydroxybenzophenone And epoxy resins of epoxy resins such as epoxidized polyvinyl phenol.
  • the hydrogenated epoxy compound is a glycidyl ether of a polyol having an alicyclic ring, and is a nucleus-hydrogenated poly obtained by selectively performing a hydrogenation reaction on an aromatic ring under pressure in the presence of a catalyst and an aromatic polyol. It can be obtained by glycidyl etherification of a hydroxy compound.
  • aromatic polyol examples include, for example, bisphenol type compounds such as bisphenol A, bisphor F, bisphenol S; novolac resins such as phenol novolac resin, cresol novolac resin, hydroxybenzaldehyde phenol novolac resin; tetrahydroxydiphenylmethane, tetrahydroxy It includes polyfunctional compounds such as benzophenone and polyvinylphenol.
  • a glycidyl ether can be obtained by reacting epichlorohydrin with an alicyclic polyol obtained by subjecting the aromatic ring of an aromatic polyol to a hydrogenation reaction.
  • hydrogenated epoxy compounds preferred is a diglycidyl ether of hydrogenated bisphenol A.
  • the aliphatic epoxy compound is a compound having at least one oxirane ring (three-membered cyclic ether) bonded to an aliphatic carbon atom in the molecule.
  • monofunctional epoxy compounds such as butyl glycidyl ether and 2-ethylhexyl glycidyl ether; and difunctional ones such as 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether and neopentyl glycol diglycidyl ether Epoxy compounds; trifunctional or higher epoxy compounds such as trimethylolpropane triglycidyl ether and pentaerythritol tetraglycidyl ether; and one epoxy group directly bonded to an alicyclic ring such as 4-vinylcyclohexene dioxide and limonene dioxide And epoxy compounds having an oxirane ring bonded to an aliphatic carbon atom.
  • a bifunctional epoxy compound (also referred to as an aliphatic diepoxy compound) having two oxirane rings bonded to an aliphatic carbon atom in the molecule is preferable from the viewpoint of adhesiveness.
  • a suitable aliphatic diepoxy compound can be represented, for example, by the following formula (II).
  • Y in the above formula (II) is an alkylene group having 2 to 9 carbon atoms, an alkylene group having 4 to 9 carbon atoms in total having an ether bond, or a divalent carbon number having 6 to 18 carbon atoms having an alicyclic structure.
  • Examples of aliphatic diepoxy compounds represented by the above formula (II) include diglycidyl ethers of alkanediols, diglycidyl ethers of oligoalkylene glycols having a repeating number up to about 4, or diglycidyl ethers of alicyclic diols. .
  • An oxetane compound is a compound containing one or more oxetane rings (oxetanyl groups) in the molecule.
  • oxetane compounds include 3-ethyl-3-hydroxymethyl oxetane, 2-ethylhexyl oxetane, 1,4-bis [ ⁇ (3-ethyloxetan-3-yl) methoxy ⁇ methyl] benzene, 3-ethyl-3 [ ⁇ (3-ethyloxetan-3-yl) methoxy ⁇ methyl] oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3- (cyclohexyloxy) methyl-3-ethyloxetane and the like.
  • the oxetane compound may be used as a main component of the cationically polymerizable compound, or may be used in combination with an epoxy compound. By using an oxetane compound in combination, the curing speed and the adhesion may be improved.
  • the vinyl compounds include aliphatic or alicyclic vinyl ether compounds.
  • the vinyl compound include alkyls having 5 to 20 carbon atoms such as n-amyl vinyl ether, i-amyl vinyl ether, n-hexyl vinyl ether, n-octyl vinyl ether, 2-ethylhexyl vinyl ether, n-dodecyl vinyl ether, stearyl vinyl ether, oleyl vinyl ether, etc.
  • Vinyl ethers of alkenyl alcohols hydroxyl group-containing vinyl ethers such as 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether; aliphatic rings or aromatics such as cyclohexyl vinyl ether, 2-methylcyclohexyl vinyl ether, cyclohexyl methyl vinyl ether, benzyl vinyl ether Vinyl ethers of monoalcohols having an aliphatic ring; glycerol monovinyl ether , 1,4-butanediol monovinyl ether, 1,4-butanediol divinyl ether, 1,6-hexanediol divinyl ether, neopentyl glycol divinyl ether, pentaerythritol divinyl ether, pentaerythritol tetravinyl ether, trimethylolpropane divinyl ether Of polyhydric alcohols such
  • the vinyl compound may be used as a main component of the cationically polymerizable compound, or may be used in combination with an epoxy compound, or an epoxy compound and an oxetane compound. By using a vinyl compound in combination, it may be possible to improve the curing speed and the viscosity reduction of the adhesive.
  • the photocurable component (A) may use a radically polymerizable compound and a cationically polymerizable compound in combination.
  • the content of the photocurable component (A) is usually 50 to 99.5% by mass, preferably 70 to 97% by mass, with respect to 100% by mass of the active energy ray-curable composition.
  • the light selective absorption compound (B) is a compound that selectively absorbs light of a wavelength of 405 nm, is preferably a compound that satisfies the formula (5), and is further a compound that satisfies the formula (6) preferable.
  • ⁇ (405) 20 20 (5) [In Formula (5), (epsilon) (405) represents the gram absorption coefficient of the compound in wavelength 405 nm. The unit of gram absorption coefficient is L / (g ⁇ cm).
  • (epsilon) (405) represents the gram absorption coefficient of the compound in wavelength 405 nm
  • (epsilon) (440) represents the gram absorption coefficient in wavelength 440 nm.
  • the gram absorbance coefficient is measured by the method described in the examples.
  • ⁇ (405) The larger the value of ⁇ (405) is, the easier it is to absorb light with a wavelength of 405 nm, and it is easy to exhibit the function of suppressing deterioration by ultraviolet light or visible light of short wavelength.
  • ⁇ (405) is less than 20 L / (g ⁇ cm)
  • the content of the photoselective absorption compound (B) is increased.
  • the content of the light selective absorption compound (B) may be bled out or dispersed unevenly, and the light absorption function may be insufficient.
  • ⁇ (405) is preferably 20 L / (g ⁇ cm) or more, more preferably 30 L / (g ⁇ cm) or more, and even more preferably 40 L / (g ⁇ cm) or more Preferably, it is usually 500 L / (g ⁇ cm) or less.
  • a compound having a larger value of ⁇ (405) / ⁇ (440) absorbs light in the vicinity of 405 nm without inhibiting color expression of the display device, and suppresses light deterioration of the display device such as a retardation film or an organic EL element can do.
  • the value of ⁇ (405) / ⁇ (440) is preferably 20 or more, more preferably 40 or more, still more preferably 70 or more, and particularly preferably 80 or more.
  • the photoselective absorption compound (B) is preferably a compound containing a merocyanine structure in the molecule.
  • the light selective absorption compound (B) is preferably a compound represented by the formula (I) (hereinafter sometimes referred to as a compound (I)).
  • R 1 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 25 carbon atoms which may have a substituent, or 7 to carbon atoms which may have a substituent; 15 represent an aralkyl group, an aryl group having a carbon number of 6 to 15, and a heterocyclic group, and -CH 2- contained in the alkyl group or the aralkyl group is -NR 1A- , -CO-, -SO 2- , -O It may be substituted by-or -S-.
  • R 1A represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 2 , R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aromatic hydrocarbon group which may have a substituent Or an aromatic heterocyclic group which may have a substituent, and -CH 2- contained in the alkyl group is -NR 1B- , -CO-, -NO 2- , -O- or -S- And may be substituted.
  • R 1B represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 6 and R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 25 carbon atoms, or an electron-withdrawing group, or R 6 and R 7 may be linked to each other to form a ring structure .
  • R 1 and R 2 may be linked to each other to form a ring structure
  • R 2 and R 3 may be linked to each other to form a ring structure
  • R 2 and R 4 are linked to each other to form a ring structure
  • R 3 and R 6 may be linked to each other to form a ring structure.
  • Examples of the alkyl group having 1 to 25 carbon atoms represented by R 1 and R 5 include methyl group, ethyl group, n-propyl group, isopropyl group, 2-cyanopropyl group, n-butyl group, tert-butyl group, and sec-butyl, n-pentyl, n-hexyl, 1-methylbutyl, 3-methylbutyl, n-octyl, n-decyl, 2-hexyl-octyl and the like.
  • Examples of the substituent which the alkyl group having 1 to 25 carbon atoms represented by R 1 and R 5 may have include the groups described in the following group A.
  • Group A nitro, hydroxy, carboxy, sulfo, cyano, amino, halogen, alkoxy having 1 to 6 carbons, alkylsilyl having 1 to 12 carbons, alkyl having 2 to 8 carbons carbonyl group, * - R a1 - (O -R a2) t1 -R a3 (R a1 and R a2 each independently represent an alkanediyl group having 1 to 6 carbon atoms, R a3 is a C1- 6 represents an alkyl group, and s 1 represents an integer of 1 to 3.) and the like.
  • alkylsilyl group having 1 to 12 carbon atoms examples include monoalkylsilyl groups such as methylsilyl group, ethylsilyl and propylsilyl groups; dialkylsilyl groups such as dimethylsilyl group, diethylsilyl group and methylethylsilyl group; trimethylsilyl and triethylsilyl, And trialkylsilyl groups such as tripropylsilyl group.
  • alkylcarbonyl group having 2 to 8 carbon atoms examples include a methylcarbonyl group and an ethylcarbonyl group.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom etc. are mentioned.
  • Examples of the aralkyl group having 7 to 15 carbon atoms represented by R 1 and R 5 include a benzyl group and a phenylethyl group.
  • Examples of the group in which —CH 2 — contained in the aralkyl group is replaced by —SO 2 — or —COO— include a 2-phenylacetic acid ethyl group and the like.
  • Examples of the substituent which the aralkyl group having 7 to 15 carbon atoms represented by R 1 and R 5 may have include the groups described in Group A above.
  • Examples of the aryl group having 6 to 15 carbon atoms represented by R 1 and R 5 include a phenyl group, a naphthyl group and an anthracenyl group.
  • Examples of the substituent which the aryl group having 6 to 15 carbon atoms represented by R 1 and R 5 may have include the groups described in Group A above.
  • Examples of the heterocyclic group having 6 to 15 carbon atoms represented by R 1 and R 5 include carbons such as pyridyl, pyrrolidinyl, quinolyl, thiophene, imidazolyl, oxazolyl, pyrrole, thiazolyl and furanyl And 3 to 9 aromatic heterocyclic groups.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 1A and R 1B include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, sec-butyl group, n -Pentyl group, n-hexyl group and the like.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 2 , R 3 and R 4 include the same ones as the alkyl group having 1 to 6 carbon atoms represented by R 1B .
  • Examples of the substituent which the alkyl group having 1 to 6 carbon atoms represented by R 2 , R 3 and R 4 may have include the groups described in the above-mentioned group A.
  • the aromatic hydrocarbon group represented by R 2 , R 3 and R 4 includes aryl groups having 6 to 15 carbon atoms such as phenyl, naphthyl and anthracenyl; and 7 to 15 carbon atoms such as benzyl and phenylethyl. There may be mentioned 15 aralkyl groups.
  • Examples of the substituent which the aromatic hydrocarbon group represented by R 2 , R 3 and R 4 may have include the groups described in Group A above.
  • the aromatic heterocyclic ring represented by R 2 , R 3 and R 4 has 3 carbon atoms such as pyridyl, pyrrolidinyl, quinolyl, thiophene, imidazolyl, oxazolyl, pyrrole, thiazolyl and furanyl.
  • aromatic heterocyclic groups of -9 As a substituent which the aromatic heterocyclic ring represented by R ⁇ 2 >, R ⁇ 3 > and R ⁇ 4 > may have, the group as described in the said group A is mentioned.
  • Examples of the alkyl group having 1 to 25 carbon atoms represented by R 6 and R 7 include the same ones as the alkyl group having 1 to 25 carbon atoms represented by R 1 and R 5 .
  • Examples of the substituent which the alkyl group having 1 to 25 carbon atoms represented by R 6 and R 7 may have include the groups described in Group A above.
  • Examples of the electron withdrawing group represented by R 6 and R 7 include a cyano group, a nitro group, a halogen atom, an alkyl group substituted with a halogen atom, and a group represented by formula (I-1) .
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 25 carbon atoms, and at least one of the methylene groups contained in the alkyl group may be substituted by an oxygen atom.
  • X 1 represents —CO—, —COO—, —OCO—, —NR 12 CO— or CONR 13 —.
  • R 12 and R 13 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkyl group substituted by a halogen atom include trifluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluoroisopropyl group, perfluorobutyl group, perfluorosec-butyl group, perfluorotert-butyl group, perfluoropentyl group, and the like
  • Perfluoroalkyl groups, such as perfluorohexyl group, etc. are mentioned.
  • the carbon number of the alkyl group substituted with a halogen atom is usually 1 to 25.
  • Examples of the alkyl group having 1 to 25 carbon atoms represented by R 11 include the same as the alkyl groups represented by R 1 and R 5 .
  • Examples of the C 1 to C 6 alkyl group represented by R 12 and R 13 include the same as the C 1 to C 6 alkyl group represented by R 1A .
  • R 6 and R 7 may be linked to each other to form a ring structure, and examples of the ring structure formed of R 6 and R 7 include a Meldrum's acid structure, a barbituric acid structure, a dimedone structure, etc.
  • the ring structure formed by bonding R 2 and R 3 to each other is a nitrogen-containing ring structure containing a nitrogen atom bonded to R 2, and is, for example, a 4- to 14-membered nitrogen-containing heterocyclic ring It can be mentioned.
  • the ring structure formed by linking R 2 and R 3 to each other may be monocyclic or polycyclic. Specifically, pyrrolidine ring, pyrroline ring, imidazolidine ring, imidazoline ring, oxazoline ring, thiazoline ring, piperidine ring, morpholine ring, piperazine ring, indole ring, isoindole ring and the like can be mentioned.
  • the ring structure formed by bonding R 1 and R 2 to each other is a nitrogen-containing ring structure containing a nitrogen atom to which R 1 and R 2 are bonded, and is, for example, a 4- to 14-membered ring (preferably And 4 to 8 membered rings).
  • the ring structure formed by linking R 1 and R 2 to each other may be monocyclic or polycyclic. Specifically, the same as the ring structure formed by linking R 2 and R 3 to each other can be mentioned.
  • the ring structure formed by combining R 2 and R 4 with one another includes a 4- to 14-membered nitrogen-containing ring structure, and a 5- to 9-membered nitrogen-containing ring structure is preferable.
  • the ring structure formed by bonding R 2 and R 4 to each other may be monocyclic or polycyclic. These rings may have a substituent, and as such a ring structure, the same one as exemplified as the ring structure formed by connecting the aforementioned R 2 and R 3 to each other can be mentioned.
  • a phenyl group etc. are mentioned.
  • Examples of the compound represented by formula (I) in which R 2 and R 3 are linked to each other to form a ring structure include compounds represented by formula (IA), and R 2 and R 4
  • Examples of the compound represented by the formula (I) which forms a ring structure by linking include a compound represented by the formula (IB) and the like.
  • R 1 , R 3 , R 4 , R 5 , R 6 and R 7 each represent the same meaning as described above.
  • Ring W 1 and ring W 2 each independently represent a nitrogen-containing ring.
  • Ring W 1 and ring W 2 represent a nitrogen-containing ring containing a nitrogen atom as a constituent unit of the ring.
  • the ring W 1 and the ring W 2 may be each independently a single ring or multiple rings, and may contain a heteroatom other than nitrogen as a constituent unit of the ring.
  • the ring W 1 and the ring W 2 are preferably each independently a 5- to 9-membered ring.
  • the compound represented by the formula (IA) is preferably a compound represented by the formula (IA-1).
  • R 1 , R 4 , R 5 , R 6 and R 7 each represent the same meaning as described above.
  • a 1 represents -CH 2- , -O-, -S- or -NR 1D- .
  • Each of R 14 and R 15 independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • R 1D represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the compound represented by the formula (IB) is preferably a compound represented by the formula (IB-1) and a compound represented by the formula (IB-2).
  • R 1 , R 6 and R 7 each represent the same meaning as described above.
  • Each R 16 independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group.
  • R 3 , R 5 , R 6 and R 7 each represent the same meaning as described above.
  • R 30 represents a hydrogen atom, a cyano group, a nitro group, a halogen atom, a mercapto group, an amino group, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aromatic hydrocarbon having 6 to 18 carbon atoms And an acyl group having 2 to 13 carbon atoms, an acyloxy group having 2 to 13 carbon atoms, or an alkoxycarbonyl group having 2 to 13 carbon atoms.
  • R 31 represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a mercapto group, an alkylthio group having 1 to 12 carbon atoms, an amino group or heterocyclic group which may have a substituent, Represent. ]
  • the halogen atom represented by R 30, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom.
  • Examples of the acyloxy group having 2 to 13 carbon atoms represented by R 30 include a methyl carbonyloxy group, an ethyl carbonyloxy group, a propyl carbonyloxy group, and a butyl carbonyloxy group.
  • Examples of the alkoxycarbonyl group having 2 to 13 carbon atoms represented by R 30 include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a butoxycarbonyl group and the like.
  • Examples of the aromatic hydrocarbon group having 6 to 18 carbon atoms represented by R 30 include aryl groups having 6 to 18 carbon atoms such as phenyl group, naphthyl group and biphenyl group; 7 carbon atoms such as benzyl group and phenylethyl group There may be mentioned an aralkyl group of -18.
  • Examples of the alkyl group having 1 to 12 carbon atoms represented by R 30 include the same ones as the alkyl group having 1 to 12 carbon atoms represented by R 14 .
  • Examples of the alkyl group having 1 to 12 carbon atoms represented by R 30 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and a pentoxy group.
  • R 30 is preferably an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an amino group or a mercapto group.
  • Examples of the alkyl group having 1 to 12 carbon atoms represented by R 31 include the same ones as the alkyl group having 1 to 12 carbon atoms represented by R 14 .
  • Examples of the C 1-12 alkoxy group represented by R 31 include the same as the C 1-12 alkoxy group represented by R 30 .
  • Examples of the alkylthio group having 1 to 12 carbon atoms represented by R 31 include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group and a hexylthio group.
  • the amino group which may have a substituent represented by R 31 is, for example, an amino group; one alkyl group having 1 to 8 carbon atoms such as N-methylamino group or N-ethylamino group Amino groups; amino groups substituted with two alkyl groups having 1 to 8 carbon atoms such as N, N-dimethylamino, N, N-diethylamino, N, N-methylethylamino and the like; and the like.
  • Examples of the heterocyclic ring represented by R 31 include nitrogen-containing heterocyclic groups having 4 to 9 carbon atoms such as pyrrolidinyl group, piperidinyl group and morpholinyl group.
  • R 1, R 6 and R 7 represent the same meaning as described above.
  • Each of R 21 and R 22 independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a hydroxy group.
  • R 25 represents a hydrogen atom, an alkyl group having 1 to 25 carbon atoms, or an aromatic hydrocarbon group which may have a substituent.
  • Examples of the alkyl group having 1 to 25 carbon atoms represented by R 25 include the same ones as the alkyl group having 1 to 25 carbon atoms represented by R 1 .
  • Examples of the aromatic hydrocarbon group represented by R 25 include aryl groups such as phenyl group and naphthyl group: aralkyl groups such as benzyl group and phenylethyl group: biphenyl group and the like, and aromatics having 6 to 20 carbon atoms It is preferably a hydrocarbon group.
  • Examples of the substituent which the aromatic hydrocarbon group represented by R 25 may have include a hydroxy group and the like.
  • R 3 and R 6 are each independently an electron withdrawing group.
  • Examples of the compound represented by the formula (I) in which R 1 and R 2 are linked to each other to form a ring structure and R 3 and R 6 are linked to each other to form a ring structure include a compound represented by formula (ID) And the like.
  • R 4 , R 5 and R 7 represent the same meaning as described above.
  • R 25 , R 26 , R 27 and R 28 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may have a substituent, a hydroxy group or an aralkyl group.
  • Examples of the alkyl group having 1 to 12 carbon atoms represented by R 25 , R 26 , R 27 and R 28 include the same ones as the alkyl group having 1 to 12 carbon atoms represented by R 1A and R 1B .
  • Examples of the substituent which the alkyl group having 1 to 12 carbon atoms represented by R 25 , R 26 , R 27 and R 28 may have include a hydroxy group.
  • Examples of the aralkyl group represented by R 25 , R 26 , R 27 and R 28 include aralkyl groups having 7 to 15 carbon atoms such as benzyl group and phenylethyl group.
  • Examples of the compound (I) in which R 6 and R 7 are linked to each other to form a ring structure include compounds represented by the formula (IE) and the like.
  • R 1 , R 3 , R 4 and R 5 each represent the same meaning as described above.
  • Ring W 3 represents a cyclic compound.
  • the ring W 3 is a 5- to 9-membered ring, and may contain a heteroatom such as a nitrogen atom, an oxygen atom or a sulfur atom as a constituent unit of the ring.
  • the compound represented by the formula (IE) is preferably a compound represented by the formula (IE-1).
  • R 1 , R 2 , R 3 and R 5 each represent the same meaning as described above.
  • R 17 , R 18 , R 19 and R q each independently represent a hydrogen atom or an alkyl, aralkyl or aryl group having 1 to 12 carbon atoms which may have a substituent, and the alkyl or
  • R 17 and R 18 may be linked to each other to form a ring structure
  • R 18 and R 19 may be linked to each other to form a ring structure
  • R 19 and R q are linked to each other to form a ring structure
  • Examples of the compound represented by the formula (I) include the following compounds.
  • the content of the photoselective absorption compound (B) is usually 0.01 to 20 parts by mass, preferably 0.05 to 15 parts by mass, relative to 100 parts by mass of the photocurable component (A).
  • the amount is preferably 0.1 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
  • the photocurable component (A) is a radical polymerization compound
  • the photopolymerization initiator (C) contains a photoradical polymerization initiator.
  • a thermal radical polymerization initiator may be contained.
  • the photo radical polymerization initiator is to initiate the polymerization reaction of the radical curable compound by irradiation of an active energy ray such as visible light, ultraviolet light, X-ray or electron beam.
  • the active energy ray-curable adhesive composition can contain one or more radical polymerization initiators.
  • photo radical polymerization initiator and the thermal radical polymerization initiator conventionally known ones can be used.
  • a radical photopolymerization initiator acetophenone, 3-methylacetophenone, benzyl dimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-methyl-1- [4- (4) Acetophenone-based initiators such as (methylthio) phenyl-2-morpholinopropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzophenone, 4-chlorobenzophenone, 4,4'-diamino Benzophenone-based initiators such as benzophenone; Benzoin-ether-based initiators such as benzoin propyl ether, benzoimme, and chill ether benzoin ethyl ether; Thioxanthone-based initiators such as 4-isopropyl thioxanthone; Dehydrogenase,
  • the content of the radical polymerization initiator is usually 0.5 to 20 parts by mass, preferably 1 to 6 parts by mass with respect to 100 parts by mass of the radical polymerizable compound. By containing 0.5 parts by weight or more of the radical polymerization initiator, the radically polymerizable compound can be sufficiently cured.
  • the photopolymerization initiator (C) is a photocationic polymerization initiator.
  • the cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation of an active energy ray such as visible light, ultraviolet light, X-ray or electron beam to initiate a polymerization reaction of the cationic curable compound. . Since the photocationic polymerization initiator acts catalytically with light, it is excellent in storage stability and workability even when it is mixed with the photocationic curable compound.
  • Examples of the compound that generates a cationic species or a Lewis acid upon irradiation with active energy rays include onium salts such as aromatic iodonium salts and aromatic sulfonium salts; aromatic diazonium salts; iron-arene complexes and the like.
  • the aromatic iodonium salt is a compound having a diaryliodonium cation, and the cation can typically include a diphenyl iodonium cation.
  • the aromatic sulfonium salt is a compound having a triarylsulfonium cation, and as the cation, typically, triphenylsulfonium cation, 4,4'-bis (diphenylsulfonio) diphenyl sulfide cation and the like can be mentioned.
  • the aromatic diazonium salt is a compound having a diazonium cation, and typically, a benzene diazonium cation can be mentioned as the cation.
  • the iron-arene complex is typically cyclopentadienyl iron (II) arene cation complex salt.
  • the photocationic polymerization initiator may be used alone or in combination of two or more.
  • the aromatic sulfonium salt is preferably used because it has an ultraviolet absorbing property even in the wavelength region around 300 nm and is excellent in curability and can give a cured product having good mechanical strength and adhesive strength.
  • the content of the photo cationic polymerization initiator is usually 0.5 to 10 parts by mass, preferably 6 parts by mass or less, with respect to 100 parts by mass of the cationically polymerizable compound.
  • the cationically polymerizable compound can be sufficiently cured by blending the cationic photopolymerization initiator in an amount of 0.5 parts by mass or more.
  • the active energy ray-curable composition can optionally contain an additive.
  • an additive an ion trap agent, a chain transfer agent, a polymerization accelerator, a sensitizer, a sensitizer, a light stabilizer, a tackifier, a filler, a flow control agent, a plasticizer, an antifoamer, a leveling agent , Silane coupling agent, translucent fine particles, solvents such as organic solvents, thermal polymerization initiator, blocking agent, antifouling agent, surfactant, crosslinking agent, curing agent, viscosity modifier, antistatic agent, antifouling agent Slip agents, refractive index modifiers, dispersants and the like.
  • Organic solvents include aliphatic hydrocarbons such as hexane, cyclohexane and octane; aromatic hydrocarbons such as toluene and xylene; methanol, ethanol, 1-propanol, isopropanol, n-butanol, s-butanol and t-butanol Alcohols such as benzyl alcohol, PGME, ethylene glycol and cyclohexanol; Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, heptanone, diisobutyl ketone and diethyl ketone; Ethyl acetate, butyl acetate, isobutyl acetate and the like Esters;
  • organic solvents may be used alone or, if necessary, may be used as a mixture of several kinds.
  • the active energy ray curable composition contains an organic solvent, it is necessary to evaporate the organic solvent after coating. Therefore, it is desirable that the organic solvent have a boiling point in the range of 60.degree. C. to 160.degree.
  • the saturated vapor pressure at 20 ° C. is preferably in the range of 0.1 kPa to 20 kPa.
  • leveling agent well-known things, such as a fluorine-type leveling agent, a silicone type leveling agent, an acryl-type leveling agent, can be mentioned, for example.
  • the content of the leveling agent is preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the photocurable component (A). If the light selective absorption layer is a surface treatment layer, the flatness of the surface may be deteriorated, haze and unevenness may easily occur, and the blocking resistance may not be sufficiently exhibited. On the other hand, when it is more than 1 part by mass, the dispersibility and the pot life of the active energy ray-curable composition tend to be deteriorated.
  • the active energy ray curable composition may have an adhesive function depending on the type of the photocurable component (A) and the like, and can be used as an adhesive.
  • its viscosity is preferably low.
  • the viscosity at 25 ° C. is preferably 1000 mPa ⁇ s or less, more preferably 500 mPa ⁇ s or less, still more preferably 300 mPa ⁇ s or less, and usually 250 mPa ⁇ s or more.
  • the curable adhesive composition according to the present invention may be of a non-solvent type, but may contain an organic solvent in order to adjust the viscosity to a suitable value for the applied coating method.
  • the resin film (a) may be a film having an optical function, such as a polarizing film, a retardation film, or a wind film.
  • the film having an optical function means a film capable of transmitting, reflecting and absorbing light.
  • a window film means a front plate in a flexible display such as a flexible display, and is generally disposed on the outermost surface of the display.
  • the window film is, for example, a resin film made of a polyimide resin.
  • the window film may be a hybrid film of an organic material and an inorganic material such as a resin film containing, for example, polyimide and silica.
  • a hard coat layer may be disposed on the surface of the window film to impart surface hardness, stain resistance, and fingerprint resistance.
  • the film of Unexamined-Japanese-Patent No. 2017-94488, etc. are mentioned.
  • the retardation film is an optical film showing optical anisotropy, and for example, polyvinyl alcohol, polycarbonate, polyester, polyarylate, polyimide, polyolefin, polycycloolefin, polystyrene, polysulfone, polyether sulfone, polyvinylidene fluoro,
  • An example is a stretched film obtained by stretching a polymer film composed of a ride / polymethyl methacrylate, acetyl cellulose, a saponified ethylene-vinyl acetate copolymer, polyvinyl chloride and the like by about 1.01 to 6 times.
  • the retardation film may be a retardation film obtained by curing a polymerizable liquid crystal compound.
  • the retardation film includes a zero retardation film, and also includes a film referred to as a uniaxial retardation film, a low photoelastic modulus retardation film, a wide viewing angle retardation film, or the like.
  • a film referred to as a temperature compensation type retardation film a film referred to as a temperature-compensated retardation film, a film in which optical anisotropy is expressed by application and orientation of a liquid crystal compound, and a film in which optical anisotropy is expressed by application of an inorganic layered compound.
  • the zero retardation film is an optically isotropic film in which both the front retardation R e and the retardation R th in the thickness direction are -15 to 15 nm.
  • resin films made of cellulose resins, polyolefin resins (chain polyolefin resins, polycycloolefin resins, etc.) or polyethylene terephthalate resins can be mentioned. Cellulose-based resins or polyolefin-based resins are preferred in that they are easy.
  • the zero retardation film can also be used as a protective film.
  • Z-TAC As the zero retardation film, “Z-TAC” (trade name) sold by Fuji Film Co., Ltd., “Zero Tack (registered trademark)” sold by Konica Minolta Opto Co., Ltd., Nippon Zeon Co., Ltd. And “ZF-14” (trade name) sold by
  • the retardation film is preferably a retardation film obtained by curing a polymerizable liquid crystal compound.
  • First embodiment a retardation film in which a rod-like liquid crystal compound is oriented horizontally to a supporting substrate
  • Second embodiment a retardation film in which a rod-like liquid crystal compound is oriented in a direction perpendicular to a supporting substrate
  • Third embodiment a retardation film in which a rod-like liquid crystal compound has a helical orientation in the plane
  • fourth embodiment a retardation film in which a discotic liquid crystal compound is obliquely aligned
  • Fifth embodiment A biaxial retardation film in which a discotic liquid crystal compound is oriented in a direction perpendicular to a support substrate can be mentioned.
  • the 1st form, the 2nd form, and the 5th form are used suitably. Or these may be laminated and used.
  • the retardation film When the retardation film is a layer composed of a polymer in the alignment state of the polymerizable liquid crystal compound (hereinafter sometimes referred to as "optically anisotropic layer"), the retardation film has reverse wavelength dispersion.
  • Reverse wavelength dispersion is an optical characteristic in which the in-plane retardation value at the short wavelength is smaller than the in-plane retardation value at the long wavelength, and preferably the retardation film has the following formula It is to satisfy (7) and equation (8).
  • Re ( ⁇ ) represents an in-plane retardation value for light of wavelength ⁇ nm.
  • the retardation film when the retardation film is in the first form and has reverse wavelength dispersion, it is preferable because the coloration at the time of black display in the display device is reduced, and 0.82 ⁇ in the formula (7). It is more preferable if Re (450) / Re (550) ⁇ 0.93. Furthermore, 120 ⁇ Re (550) ⁇ 150 is preferable.
  • Examples of the method for producing a retardation film from a polymer in the alignment state of the polymerizable liquid crystal compound include the method described in JP-A-2010-31223.
  • the front retardation value Re (550) may be adjusted in the range of 0 to 10 nm, preferably in the range of 0 to 5 nm, and the retardation value R th in the thickness direction is -10 to- It may be adjusted in the range of 300 nm, preferably in the range of -20 to -200 nm.
  • the retardation value R th in the thickness direction which means the refractive index anisotropy in the thickness direction, is an in-plane retardation difference from the retardation value R 50 measured by tilting 50 degrees with the in-plane fast axis as the tilt axis. It can be calculated from the value R 0 .
  • the phase difference value R th in the thickness direction retardation value R 0 in the plane retardation value R 50 measured by inclining 50 degrees inclination axis fast axis, thickness of the retardation film d, and positions the average refractive index n 0 of the retardation film obtains the n x, n y and n z by the following equation (10) to (12), these are substituted into equation (9) can be calculated.
  • R th [(n x + n y ) / 2-n z ] ⁇ d (9)
  • R 0 (n x -n y ) ⁇ d (10)
  • n y ' n y ⁇ n z / [ ny 2 ⁇ sin 2 ( ⁇ ) + n z 2 ⁇ cos 2 ( ⁇ )] 1/2
  • the retardation film may be a multilayer film having two or more layers.
  • stacked via the adhesive or the adhesive agent are mentioned.
  • the optical film 40 is a multilayer film in which two or more retardation films are laminated, as a configuration of an optical laminate including the optical film of the present invention, as shown in FIG.
  • a configuration including the laminated optical film 40 can be mentioned.
  • stacked the quarter wavelength phase difference layer 50a and the positive C layer 80 through the adhesive bond layer or the adhesive layer is also mentioned.
  • the first wavelength retardation layer 50 for giving a phase difference of 1 ⁇ 4 wavelength shown in FIG. 4 and the half wavelength retardation layer 70 for giving a phase difference of 1 ⁇ 2 wavelength to transmitted light The optical film of the fifth aspect may be used. In the case of the configuration of FIG. 4, it is more preferable that at least one is the fifth form.
  • the 1 ⁇ 4 wavelength retardation layer 50 a is preferably the optical film of the first embodiment, and more preferably satisfies the expressions (7) and (8).
  • the polarizing film is a film having a function of selectively transmitting one-way linear polarized light from natural light.
  • an iodine-based polarizing film in which iodine as a dichroic dye is adsorbed and oriented in a polyvinyl alcohol-based resin film and a dye-based film in which a dichroic dye as a dichroic dye is adsorbed and oriented in a polyvinyl alcohol-based resin film
  • the polarizing film include a polarizing film, and a coating-type polarizing film which is coated with a dichroic dye in a lyotropic liquid crystal state, and is oriented and fixed.
  • polarizing films are referred to as absorptive polarizing films because they selectively transmit one linearly polarized light in one direction from natural light and absorb linearly polarized light in the other.
  • the polarizing film is not limited to the absorptive polarizing film, and is a reflective polarizing film that selectively transmits one linearly polarized light from natural light and reflects the linearly polarized light in the other, or linearly polarized light in the other. It may be a scattering type polarizing film that scatters, but an absorbing type polarizing film is preferable in terms of excellent visibility.
  • a polyvinyl alcohol-based polarizing film composed of a polyvinyl alcohol-based resin is more preferable, and a polyvinyl alcohol-based polarizing film in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented on the polyvinyl alcohol-based resin film is further preferable.
  • a polyvinyl alcohol-based polarizing film in which iodine is adsorbed and oriented to a polyvinyl alcohol-based resin film is particularly preferable.
  • polyvinyl alcohol-type resin which comprises a polyvinyl alcohol-type polarizing film
  • saponified polyvinyl acetate type resin can be used.
  • polyvinyl acetate resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, (meth) acrylamides having an ammonium group, and the like.
  • the degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used.
  • the average degree of polymerization of the polyvinyl alcohol resin is usually about 1000 to 10000, preferably about 1500 to 5000.
  • the average degree of polymerization of the polyvinyl alcohol-based resin can be determined in accordance with JIS K 6726.
  • What formed such a polyvinyl alcohol-type resin into a film is used as a raw film of a polarizing film.
  • the method of forming a polyvinyl alcohol-based resin into a film is not particularly limited, and a known method is adopted.
  • the thickness of the polyvinyl alcohol-based raw film is, for example, 150 ⁇ m or less, and preferably 100 ⁇ m or less (eg, 50 ⁇ m or less).
  • the polarizing film is a step of uniaxially stretching a polyvinyl alcohol-based resin film; a step of adsorbing a dichroic dye by dyeing a polyvinyl alcohol-based resin film with a dichroic dye; a polyvinyl alcohol-based dye having a dichroic dye adsorbed thereon
  • the resin film can be manufactured by a method including a step of treating (crosslinking treatment) with a boric acid aqueous solution; and a step of washing with water after treatment with a boric acid aqueous solution.
  • the uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before, simultaneously with, or after the dyeing of the dichroic dye. If uniaxial stretching is performed after dyeing, this uniaxial stretching may be performed before or during the boric acid treatment. Moreover, you may uniaxially stretch in these several steps.
  • uniaxial stretching may be performed between rolls having different peripheral speeds, or uniaxial stretching may be performed using a heat roll.
  • the uniaxial stretching may be dry stretching in which stretching is performed in the air, or wet stretching in which stretching is performed in a state in which a polyvinyl alcohol resin film is swollen using a solvent or water.
  • the stretching ratio is usually about 3 to 8 times.
  • a method of dyeing a polyvinyl alcohol-based resin film with a dichroic dye for example, a method of immersing the film in an aqueous solution containing a dichroic dye is employed.
  • a dichroic dye iodine or a dichroic organic dye is used.
  • the polyvinyl alcohol-based resin film is preferably subjected to immersion treatment in water prior to the dyeing treatment.
  • the method of immersing a polyvinyl-alcohol-type resin film in the aqueous solution containing an iodine and potassium iodide is employ
  • the content of iodine in this aqueous solution can be about 0.01 to 1 part by weight per 100 parts by weight of water.
  • the content of potassium iodide can be about 0.5 to 20 parts by weight per 100 parts by weight of water.
  • the temperature of this aqueous solution can be about 20 to 40.degree.
  • the method of immersing a polyvinyl alcohol-type resin film in the aqueous solution containing a dichroic organic dye is employ
  • the aqueous solution containing the dichroic organic dye may contain an inorganic salt such as sodium sulfate as a dyeing assistant.
  • the content of the dichroic organic dye in this aqueous solution can be about 1 ⁇ 10 ⁇ 4 to 10 parts by weight per 100 parts by weight of water.
  • the temperature of this aqueous solution can be about 20 to 80.degree.
  • this boric-acid containing aqueous solution contains potassium iodide.
  • the amount of boric acid in the boric acid-containing aqueous solution can be about 2 to 15 parts by weight per 100 parts by weight of water.
  • the amount of potassium iodide in the aqueous solution can be about 0.1 to 20 parts by weight per 100 parts by weight of water.
  • the temperature of the aqueous solution can be 50 ° C. or higher, for example, 50 to 85 ° C.
  • the polyvinyl alcohol resin film after boric acid treatment is usually washed with water.
  • the water washing process can be performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water.
  • the temperature of water in the water washing treatment is usually about 5 to 40.degree.
  • the film is dried to obtain a polarizing film 30.
  • the drying process can be performed using a hot air dryer or a far infrared heater.
  • a polarizing plate can be obtained by bonding a thermoplastic resin film as a protective film or the like on one side or both sides of this polarizing film using a curable adhesive composition or the like.
  • the thickness of the polarizing film can be 40 ⁇ m or less, preferably 30 ⁇ m or less (eg, 20 ⁇ m or less, further 15 ⁇ m or less, or even 10 ⁇ m or less).
  • the thin film polarizing film 30 can be manufactured more easily, and the thickness of the polarizing film 30 is, for example, 20 ⁇ m or less, and further, Of 15 ⁇ m or less, or even 10 ⁇ m or less.
  • the thickness of the polarizing film 30 is usually 2 ⁇ m or more. Reducing the thickness of the polarizing film is advantageous for reducing the thickness of the polarizing plate and thus the image display device.
  • a preferable configuration of the polarizing plate is a polarizing plate in which a protective film is laminated on at least one surface of a polarizing film via an adhesive layer.
  • stacked on the visual recognition side is a protective film which consists of triacetyl-cellulose-type resin or cycloolefin type resin.
  • the protective film may be an unstretched film, or may be stretched in any direction and have a retardation.
  • a surface treatment layer such as a hard coat layer or an antiglare layer may be provided on the surface of the protective film laminated on the viewing side.
  • the surface treatment layer may be the light selective absorption layer in the present invention.
  • the protective film on the panel side is a protective film or a retardation film made of a triacetyl cellulose resin, a cycloolefin resin or an acrylic resin.
  • the retardation film may be a zero retardation film described later.
  • Another layer or film may be further laminated between the polarizing plate and the panel.
  • a retardation layer having a 1 ⁇ 4 wavelength retardation layer and a 1 ⁇ 2 wavelength retardation layer, and a 1 ⁇ 4 wavelength layer of reverse wavelength dispersion described later are laminated.
  • the retardation layer is preferably a liquid crystal retardation film from the viewpoint of thinning.
  • An active energy ray-curable composition is applied on the above-mentioned resin film (a) to form a coating film, dried if necessary, and then the above-mentioned coating film is cured to form a light selective absorption layer.
  • the optical film of the present invention can be manufactured.
  • the active energy ray curable composition may have an adhesive function depending on its component.
  • an active energy ray curable composition for example, a spin coating method, a dip method, a spray method, a die coating method, a bar coating method, a roll coater method, a meniscus coater method, a flexo printing method
  • various known methods such as screen printing method and bead coater method.
  • the drying method is not particularly limited, but in general, the drying temperature may be 30 to 80 ° C., and the drying time may be 3 to 120 seconds.
  • the drying temperature is less than 30 degreeC, manufacture of a surface treatment film takes a long time, and manufacturing cost may become high.
  • the drying temperature exceeds 80 ° C., there is a problem that the manufacturing cost of the surface treatment film becomes high, and there is a possibility that the initiator, the solvent and the like adhere to the inside of the drying furnace and the like to deteriorate the appearance.
  • the drying time is less than 3 seconds, the adhesion between the substrate film and the surface treatment layer may be poor, or interference fringes may occur.
  • the drying time exceeds 120 seconds, it takes a long time to dry the coating, which may increase the manufacturing cost.
  • the active energy ray irradiation intensity is determined for each curable composition, but the light irradiation intensity in the wavelength range effective for activating the photopolymerization initiator should be 0.1 to 1000 mW / cm 2 preferable.
  • the light irradiation intensity is too low, the reaction time becomes too long, while when the light irradiation intensity is too high, yellowing of the cured layer occurs due to heat radiated from the lamp and heat generation during polymerization of the curable composition. It may cause deterioration of the polarizing film or skin defects of the protective film.
  • the light irradiation time to the curable composition is also controlled for each curable composition, but the integrated light quantity represented as the product of the light irradiation intensity and the light irradiation time is 10 to 5000 mJ / cm 2. It is preferable to set. If the accumulated light amount is too small, generation of the active species derived from the photopolymerization initiator may not be sufficient, and curing of the obtained cured layer may be insufficient. On the other hand, if the accumulated light amount is too large, light irradiation may occur. The time is very long and it is likely to be disadvantageous to the improvement of productivity.
  • the optical film of the present invention can be laminated on a display element such as an organic EL element or a liquid crystal cell, and can be used for a display (FPD: flat panel display) such as an organic EL display or a liquid crystal display.
  • a display element such as an organic EL element or a liquid crystal cell
  • FPD flat panel display
  • acetonitrile is removed using a vacuum evaporator, purified by column chromatography (silica gel) and purified, and the effluent containing the photoselective absorptive compound represented by the formula (aa1) is purified using a vacuum evaporator
  • the solvent was removed to give yellow crystals.
  • the crystals were dried at 60 ° C. under reduced pressure to obtain 4.6 g of a photoselective absorptive compound (1) represented by the formula (aa1) as a yellow powder. The yield was 50%.
  • ⁇ Gram absorption coefficient ⁇ measurement> In order to measure the gram absorption coefficient of the obtained photoselective absorptive compound (1), the photoselective absorptive compound (1) was dissolved in 2-butanone. The resulting solution (concentration: 0.006 g ⁇ L -1 ) is placed in a 1 cm quartz cell, and the quartz cell is set in a spectrophotometer UV-2450 (manufactured by Shimadzu Corporation), and 1 nm steps 300 to 200 by double beam method. Absorbance was measured in the wavelength range of 800 nm. From the obtained absorbance value, the concentration of the light absorbing compound in the solution, and the optical path length of the quartz cell, the gram absorption coefficient for each wavelength was calculated using the following equation.
  • ⁇ ( ⁇ ) A ( ⁇ ) / CL [Wherein, ⁇ ( ⁇ ) represents the gram absorption coefficient L / (g ⁇ cm) of the compound at the wavelength ⁇ nm, A ( ⁇ ) represents the absorbance at the wavelength ⁇ nm, C represents the concentration g / L, and L is It represents the optical path length cm of the quartz cell.
  • Synthesis Example 2 Synthesis of Photoselective Absorbent Compound (2) 10 g of a compound represented by the formula (aa) prepared by referring to JP-A-2014-194508 in a nitrogen atmosphere in a 200 mL four-necked flask provided with a Dimroth condenser and a thermometer, acetic anhydride (Wako Pure Chemical Industries, Ltd. 3.6 g of the product, Inc., 10 g of 2-butyloctyl cyanoacetate (manufactured by Tokyo Chemical Industry Co., Ltd.), and 60 g of acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and stirred with a magnetic stirrer.
  • the value of ⁇ (405) of the compound represented by formula (aa2) is 45 L / (g ⁇ cm), and the value of ⁇ (420) is 2.1 L / (G ⁇ cm).
  • Example 1 Preparation of Optical Film A1
  • Another surface of the COP resin film is also subjected to corona discharge treatment, and the surface coated with the active energy ray curable resin composition A is bonded to the surface treated with the corona discharge, and an ultraviolet irradiation device with a belt conveyor [
  • the lamp was irradiated with ultraviolet light so that the illuminance was 250 mW / cm 2 and the integrated light quantity was 250 mJ / cm 2 (UVB), using “H bulb” manufactured by Fusion UV Systems, Inc. to obtain an optical film A1.
  • the optical film A1 has a layer structure of a cured layer of COP resin film / active energy ray curable resin composition A1 / COP resin film.
  • Example 2 Preparation of Optical Film A2 An optical film was prepared in the same manner as Example 1, except that the active energy ray curable resin composition was replaced with the active energy ray curable resin composition A2 obtained in Production Example 2. Film A2 was produced.
  • the optical film A2 has a layer configuration of a COP resin film / a cured layer of an active energy ray curable resin composition A2 / COP resin film.
  • Example 3 Preparation of Polarizing Plate A1
  • a resin film made of a cyclic polyolefin resin having a thickness of 23 ⁇ m (trade name “ZEONOR”, manufactured by Nippon Zeon Co., Ltd .; hereinafter referred to as “COP resin film”).
  • the corona discharge treatment was applied to the surface of the above, and the active energy ray curable resin composition A1 was coated on the corona discharge treated surface using a bar coater such that the film thickness after curing was about 5.0 ⁇ m.
  • the polarizing film produced in Production Example 1 was bonded to the coated surface to obtain a protective film-carrying polarizing film (1).
  • a retardation film made of a triacetylcellulose-based resin having a thickness of 40 ⁇ m [trade name “KC4CW”, manufactured by Konica Minolta Co., Ltd .; hereinafter, it may be referred to as a TAC film.
  • the corona discharge treatment was applied to the surface of the above, and the active energy ray curable resin composition A1 was coated on the corona discharge treated surface using a bar coater such that the film thickness after curing was about 5.0 ⁇ m.
  • the coated surface and the polarizing film side of the polarizing film (1) with a protective film were bonded to obtain a laminate.
  • the curable adhesive composition was cured by irradiation with ultraviolet light to obtain a polarizing plate.
  • polarizing plate A1 has a constitution of a cured layer of a COP resin film / active energy ray curable resin composition A1 / a polarizing film / a cured layer of an active energy ray curable resin composition A1 / TAC film.
  • Example 4 Production of Polarizing Plate A2
  • a polarizing plate A2 was produced in the same manner as in Example 3, except that the active energy ray-curable resin composition was replaced with the active energy ray-curable resin composition A2.
  • the polarizing plate A2 has a constitution of a cured layer of a COP resin film / active energy ray curable resin composition A2 / a polarizing film / a cured layer of active energy ray curable resin composition A2 / TAC film.
  • a polarizing plate B was prepared in the same manner as the polarizing plate A except that the active energy ray curable resin composition was changed to the active energy ray curable resin composition B.
  • the polarizing plate B has a structure of a cured layer of a COP resin film / active energy ray curable resin composition B / a polarizing film / a cured layer of active energy ray curable resin composition B / TAC film.
  • the measurement of a weight average molecular weight and a number average molecular weight uses four "TSK gel XL (made by Tosoh Corp.)" as a column in a GPC apparatus, and "Shodex GPC KF-802 (made by Showa Denko KK)" 1 piece, 5 pieces in total are connected in series, and using tetrahydrofuran as an eluent, the sample concentration is 5 mg / mL, the sample introduction amount is 100 ⁇ L, the temperature is 40 ° C, and the flow rate is 1 mL / min. Calculated by
  • Synthesis Example 4 Synthesis of (Meth) Acrylic Resin Adhesive Composition A
  • the ethyl acetate solution (resin concentration: 20%) of the (meth) acrylic resin obtained in Synthesis Example 3 contained 100% solids of the solution.
  • a crosslinking agent Coronate L, solid content 75%: manufactured by Tosoh Co., Ltd.
  • a silane compound manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-403
  • Ethyl acetate was added so as to be% to obtain a pressure-sensitive adhesive composition.
  • the compounding quantity of the said crosslinking agent is a weight part number as an active ingredient.
  • crosslinking agent Ethyl acetate solution (75% solid concentration) of trimethylolpropane adduct of tolylene diisocyanate, trade name "Corronate L” obtained from Tosoh Corporation.
  • Silane compound 3-glycidoxypropyltrimethoxysilane, trade name "KBM403" obtained from Shin-Etsu Chemical Co., Ltd.
  • Adhesive composition A was dried using an applicator on the release-treated surface of a separate film (trade name "PLR-382190” obtained from Lintec Co., Ltd.) made of a polyethylene terephthalate film subjected to release treatment It applied so that thickness of 20 micrometers might be set, and it dried at 100 degreeC for 1 minute, and produced the adhesive layer A.
  • a separate film trade name "PLR-382190” obtained from Lintec Co., Ltd.
  • a pressure-sensitive adhesive layer B2 was produced in the same manner except that the pressure-sensitive adhesive composition B1 was replaced with the pressure-sensitive adhesive composition B2.
  • Example 5 Preparation of Pressure-Sensitive Adhesive Layer-Containing Polarizing Plate A1
  • the surface of the triacetylcellulose-based resin film of the polarizing plate A1 is subjected to corona treatment, and the pressure-sensitive adhesive layer A produced above is bonded with a laminator, It aged for 7 days on 23 degreeC and the conditions of 65% of relative humidity, and obtained polarizing plate A1 with an adhesive layer.
  • Example 6 Preparation of Pressure-Sensitive Adhesive Layer-Containing Polarizing Plate A2
  • a pressure-sensitive adhesive layer-attached polarizing plate A2 was obtained in the same manner as in Example 5, except that the polarizing plate A1 was replaced with the polarizing plate A2.
  • the pressure-sensitive adhesive layer-attached polarizing plate A1 was cut into a size of 30 mm ⁇ 30 mm, and the pressure-sensitive adhesive layer was bonded to an alkali-free glass (trade name “EAGLE XG” manufactured by Corning Co., Ltd.) to obtain a sample.
  • the absorbance of the prepared sample in the wavelength range of 300 to 800 nm was measured using a spectrophotometer (UV-2450: manufactured by Shimadzu Corporation).
  • a (405) was 0.6
  • a (440) was 0.05
  • a (405) / A (440) was 12.7.
  • the sample after measurement was stored in an oven at a temperature of 95 ° C.
  • Absorbance was measured in the same manner as described above except that the pressure-sensitive adhesive layer-attached polarizing plate A1 was replaced with the pressure-sensitive adhesive layer-attached polarizing plate A2. As a result, A (405) was 0.5, A (440) was 0.05, A (405) / A (440) was 9.5, and the absorbance retention was 98%.
  • the triacetyl cellulose was peeled off from the polarizing plate A1 prepared in Example 3, and the triacetyl cellulose surface after peeling was subjected to FTIR measurement by the ATR method.
  • the peak at 1550 to 1560 cm -1 derived from the photoselective absorptivity compound (1) was confirmed.
  • the polarizing plate A1 was stored in an oven at a temperature of 95 ° C. for 48 hours, and as a result of performing FTIR measurement using the same method, 1550 to 1560 cm ⁇ derived from the photoselective absorption compound (1) on the triacetylcellulose surface An increase of the 1 peak could not be confirmed.
  • the pressure-sensitive adhesive layer was physically removed from the polarizing plate B1 prepared in Comparative Example 2, and the triacetylcellulose surface after removal was confirmed by the above method.
  • 1550 to 1560 cm ⁇ derived from the photoselective absorptive compound (1) The peak of 1 was confirmed.
  • the polarizing plate B1 was stored in an oven at a temperature of 95 ° C. for 48 hours, and as a result of performing FTIR measurement using the same method, 1550 to 1560 cm ⁇ derived from the photoselective absorptive compound (1) on the triacetylcellulose surface An increase of the 1 peak was confirmed.
  • the optical film of the present invention not only has a high function of selectively absorbing light near a wavelength of 400 nm (405 nm), but also a compound that selectively absorbs light near a wavelength of 400 nm (405 nm) is transferred to other layers It is possible to suppress the deterioration of the retardation film etc.
  • the optical film of the present invention has good display properties, and can suppress deterioration of the optical film due to visible light of short wavelength.
  • Optical film 10A, 10B, 10C Optical laminate 1 Light selective absorption layer 2 Resin film (a) DESCRIPTION OF SYMBOLS 3 Polarizing film 4, 7, 60 Adhesive layer 5 Protective film 6 Polarizing film 30 Adhesive layer 40 Optical film 50, 50a 1 ⁇ 4 wavelength retardation layer 70 1/2 wavelength retardation layer 80 Positive C layer 110 Light emitting element

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided is an optical film in which it is possible to suppress deterioration of a retardation film without a compound that selectively absorbs visible light having a short wavelength near 400 nm and is contained in a light-selective absorption layer migrating to a layer outside the light-selective absorption layer, and to which excellent display characteristics can be imparted. The optical film includes at least one layer of a light-selective absorption layer formed from an active-energy-ray-curable composition, and satisfies formula (1). Formula (1): A (405) ≥ 0.5 [In formula (1), A (405) represents the degree of absorbance at a wavelength of 405 nm.]

Description

光学フィルムOptical film
 本発明は、少なくとも1層の光選択吸収層を含む光学フィルムに関する。 The present invention relates to an optical film comprising at least one light selective absorption layer.
 有機EL表示装置や液晶表示装置等の表示装置(FPD:フラットパネルディスプレイ)には、有機EL素子、液晶セル等の表示素子や偏光板等の光学フィルムなど様々な部材が用いられている。これらの部材に用いられる有機EL化合物および液晶化合物等は有機物であるため、紫外線(UV)による劣化が問題となりやすい。このような問題を解決するため、例えば、特許文献1には370nm以下の波長域の紫外線吸収能が優れる紫外線吸収剤を偏光板の保護フィルムに添加した偏光板が記載されている。 Various members such as organic EL elements, display elements such as liquid crystal cells, and optical films such as polarizing plates are used in display devices (FPD: flat panel display) such as organic EL display devices and liquid crystal display devices. Since organic EL compounds and liquid crystal compounds used for these members are organic substances, deterioration by ultraviolet light (UV) tends to be a problem. In order to solve such a problem, for example, Patent Document 1 describes a polarizing plate in which an ultraviolet light absorber excellent in ultraviolet light absorbing ability in a wavelength range of 370 nm or less is added to a protective film of the polarizing plate.
特開2006-308936号公報Unexamined-Japanese-Patent No. 2006-308936
 近年の表示装置の薄型化が進む中、重合性液晶化合物を配向・光硬化させてなる液晶系位相差フィルムの開発が進められている。これらの液晶系位相差フィルムや有機EL発光素子は紫外線による劣化のみではなく、短波長の可視光においても劣化する傾向があることが明らかになってきた。しかしながら、特許文献1に記載の偏光板は、370nm以下の波長域の紫外線吸収能が優れていても、400nm付近の短波長の可視光の吸収性能が低く、液晶系位相差フィルムや有機EL発光素子の劣化抑制が十分ではない場合があった。 With the progress in thinning of display devices in recent years, development of a liquid crystal retardation film formed by aligning and photocuring a polymerizable liquid crystal compound has been promoted. It has become clear that these liquid crystal retardation films and organic EL light emitting devices tend not to deteriorate not only by ultraviolet light but also by visible light of short wavelength. However, even if the polarizing plate described in Patent Document 1 is excellent in ultraviolet absorbing ability in a wavelength range of 370 nm or less, the absorbing ability of visible light having a short wavelength around 400 nm is low, and liquid crystal retardation film and organic EL emission In some cases, the deterioration of the device may not be sufficiently suppressed.
 そこで、400nm付近の短波長の可視光の吸収性能を有する粘着剤層を配置することで、液晶系位相差フィルムや有機EL発光素子の劣化を抑制できないか検討を行った。検討の結果、粘着剤層に400nm付近の短波長の可視光の吸収性能を有する化合物を含有させると、粘着剤層に含まれる400nm付近の短波長の可視光の吸収性能を有する化合物が、他の層に移行することによって位相差フィルムや偏光板の劣化を生じさせてしまう傾向にあることが明らかになった。 Then, it examined whether degradation of a liquid-crystal type | system | group retardation film or an organic EL light emitting element could be suppressed by arrange | positioning the adhesive layer which has the absorption capability of the visible light of short wavelength around 400 nm. As a result of the examination, when the pressure-sensitive adhesive layer contains a compound having the ability to absorb visible light of short wavelength near 400 nm, the compound having the ability to absorb visible light of short wavelength near 400 nm contained in the pressure-sensitive adhesive layer It has become clear that there is a tendency to cause deterioration of the retardation film and the polarizing plate by transferring to the layer of
 本発明は、以下に記載の発明を含む
[1]光学フィルムを提供する活性エネルギー線硬化性組成物から形成される光選択吸収層を少なくとも1層含み、かつ下記式(1)を満たす光学フィルム。
  A(405)≧0.5        (1)
[式(1)中、A(405)は、波長405nmにおける吸光度を表す。]
[2]さらに、下記式(2)を満たす[1]に記載の光学フィルム。
  A(440)≦0.1        (2)
[式(2)中、A(440)は、波長440nmにおける吸光度を表す。]
[3]下記式(3)を満たす[1]又は[2]に記載の光学フィルム。
  A(405)/A(440)≧5        (3)
[式(3)中、A(405)は波長405nmにおける吸光度を表し、A(440)は、波長440nmにおける吸光度を表す。]
[4]光選択吸収層の23℃における貯蔵弾性率Eが、100MPa以上である[1]~[3]のいずれかに記載の光学フィルム。
[5]光選択吸収層が、光硬化性成分(A)、光選択吸収化合物(B)及び光重合開始剤(C)を含有する活性エネルギー線硬化性組成物から形成される層である[1]~[4]のいずれかに記載の層
[6]光選択吸収化合物(B)の含有量が、光硬化性成分(A)100質量部に対して、0.01~20質量部である[5]に記載の光学フィルム。
[7]光選択吸収化合物(B)が、下記式(4)を満たす化合物である[5]又は[6]に記載の光学フィルム。
 ε(405)≧20  (4)
〔式(4)中、ε(405)は波長405nmにおける化合物のグラム吸光係数を表す。グラム吸光係数の単位はL/(g・cm)である。〕
[8]光選択吸収化合物(B)は、式(5)を満たす化合物である[7]に記載の光学フィルム。
ε(405)/ε(440)≧20      (5)
[式(5)中、ε(405)は波長405nmにおける化合物のグラム吸光係数を表し、ε(440)は波長440nmにおけるグラム吸光度係数を表す。]
[9]光硬化性成分(A)が、(メタ)アクリロイルオキシ基含有化合物及びエポキシ化合物からなる群から選ばれる少なくとも1つを含む[6]~[8]のいずれかに記載の光学フィルム。
[10][1]~[9]に記載の光学フィルムの少なくとも一方の面に、粘着剤層を有する粘着剤層付き光学フィルム。
[11][10]に記載の粘着剤層付き光学フィルムを有する表示装置。
The present invention includes an invention described below [1] An optical film comprising at least one light selective absorption layer formed from an active energy ray-curable composition which provides an optical film, and satisfying the following formula (1) .
A (405) 0.5 0.5 (1)
[In Formula (1), A (405) represents the absorbance at a wavelength of 405 nm. ]
[2] The optical film according to [1], further satisfying the following formula (2).
A (440) ≦ 0.1 (2)
[In Formula (2), A (440) represents the light absorbency in wavelength 440nm. ]
[3] The optical film according to [1] or [2], which satisfies the following formula (3).
A (405) / A (440) ≧ 5 (3)
[In Formula (3), A (405) represents the absorbance at a wavelength of 405 nm, and A (440) represents the absorbance at a wavelength of 440 nm. ]
[4] The optical film according to any one of [1] to [3], wherein the storage elastic modulus E at 23 ° C. of the light selective absorption layer is 100 MPa or more.
[5] The photoselective absorption layer is a layer formed from an active energy ray curable composition containing a photocurable component (A), a photoselective absorption compound (B) and a photopolymerization initiator (C) [ The content of the layer [6] photoselective absorption compound (B) according to any one of 1) to [4] is 0.01 to 20 parts by mass with respect to 100 parts by mass of the photocurable component (A) The optical film according to [5].
[7] The optical film according to [5] or [6], wherein the photoselective absorption compound (B) is a compound satisfying the following formula (4).
ε (405) 20 20 (4)
[In Formula (4), (epsilon) (405) represents the gram absorption coefficient of a compound in wavelength 405 nm. The unit of gram absorption coefficient is L / (g · cm). ]
[8] The optical film according to [7], wherein the light selective absorption compound (B) is a compound satisfying the formula (5).
ε (405) / ε (440) ≧ 20 (5)
[In Formula (5), (epsilon) (405) represents the gram absorption coefficient of the compound in wavelength 405 nm, and (epsilon) (440) represents the gram absorption coefficient in wavelength 440 nm. ]
[9] The optical film according to any one of [6] to [8], wherein the photocurable component (A) contains at least one selected from the group consisting of (meth) acryloyloxy group-containing compounds and epoxy compounds.
[10] An optical film with an adhesive layer having an adhesive layer on at least one surface of the optical film according to any one of [1] to [9].
The display apparatus which has an optical film with an adhesive layer as described in [11] [10].
 本発明の光学フィルムは、光選択吸収層に含まれる400nm付近の短波長の可視光を選択的に吸収する化合物が光選択吸収層以外の層へ移行せず、位相差フィルムの劣化を抑制することができ、良好な表示特性を付与し得る。 In the optical film of the present invention, the compound selectively absorbing visible light with a short wavelength near 400 nm contained in the light selective absorption layer does not shift to a layer other than the light selective absorption layer, and suppresses the deterioration of the retardation film And can provide good display characteristics.
本発明に係る光学フィルムの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the optical film which concerns on this invention. 本発明に係る光学積層体の層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated constitution of the optical laminated body which concerns on this invention. 本発明に係る光学積層体の層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated constitution of the optical laminated body which concerns on this invention. 本発明に係る光学積層体の層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated constitution of the optical laminated body which concerns on this invention. 本発明に係る光学積層体の層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated constitution of the optical laminated body which concerns on this invention. 本発明に係る光学積層体の層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated constitution of the optical laminated body which concerns on this invention.
 以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described herein, and various modifications can be made without departing from the spirit of the present invention.
 本発明の光学フィルムは、活性エネルギー線硬化樹脂組成物から形成される光選択吸収層を少なくとも1層含み、下記式(1)を満たす光学フィルムである。
 A(405)≧0.5            (1)
[波長405nmにおける光学フィルムの吸光度を表す。]
 A(405)の値は大きいほど波長405nmにおける吸収が大きいことを示す。A(405)の値が1未満であると、波長405nmにおける吸収が低く、短波長の可視光における位相差フィルムや有機EL素子等の表示装置の劣化を抑制する効果が小さい。A(405)の値は、耐候劣化抑制の観点から、好ましくは0.6以上であり、より好ましくは0.8以上であり、特に好ましくは1.0以上である。
The optical film of the present invention is an optical film including at least one light selective absorption layer formed from an active energy ray curable resin composition and satisfying the following formula (1).
A (405) 0.5 0.5 (1)
[Represents the absorbance of the optical film at a wavelength of 405 nm. ]
The larger the value of A (405), the larger the absorption at a wavelength of 405 nm. When the value of A (405) is less than 1, the absorption at a wavelength of 405 nm is low, and the effect of suppressing deterioration of a display device such as a retardation film or an organic EL element in visible light of short wavelength is small. The value of A (405) is preferably 0.6 or more, more preferably 0.8 or more, and particularly preferably 1.0 or more, from the viewpoint of suppressing weathering deterioration.
 本発明の光学フィルムは、さらに下記式(2)を満たすことが好ましい。
  A(440)≦0.1        (2)
[式(2)中、A(440)は、波長440nmにおける吸光度を表す。]
 A(440)の値が小さいほど波長440nmにおける吸収が低いことを表す。A(440)の値が0.1を超えると、表示装置における良好な色彩表現を損なう傾向にある。また、表示装置の発光を阻害する傾向にあるため、表示装置の輝度も低下する可能性がある。A(440)の値は、表示装置の発光阻害を抑制する観点から、好ましくは0.05以下であり、より好ましくは0.04以下であり、特に好ましくは0.03以下である。
The optical film of the present invention preferably further satisfies the following formula (2).
A (440) ≦ 0.1 (2)
[In Formula (2), A (440) represents the light absorbency in wavelength 440nm. ]
The smaller the value of A (440), the lower the absorption at a wavelength of 440 nm. When the value of A (440) exceeds 0.1, it tends to impair good color expression in the display device. In addition, since the light emission of the display device tends to be inhibited, the luminance of the display device may also be reduced. The value of A (440) is preferably 0.05 or less, more preferably 0.04 or less, and particularly preferably 0.03 or less from the viewpoint of suppressing light emission inhibition of the display device.
 本発明の光学フィルムは、さらに式(3)を満たすことが好ましい。
 下記式(3)を満たす請求項1又は2に記載の光学フィルム。
  A(405)/A(440)≧5        (3)
[式(3)中、A(405)は波長405nmにおける吸光度を表し、A(440)は、波長440nmにおける吸光度を表す。]
 A(405)/A(440)の値は、波長440nmにおける吸収の大きさに対する波長405nmの吸収の大きさを表す。A(405)/A(440)の値が大きいほど405nm付近の波長域に特異的な吸収があることを表す。A(405)/A(440)の値は10以上であることが好ましく、30以上であることがより好ましく、特に好ましくは60以上である。
It is preferable that the optical film of this invention further satisfy | fills Formula (3).
The optical film of Claim 1 or 2 which satisfy | fills following formula (3).
A (405) / A (440) ≧ 5 (3)
[In Formula (3), A (405) represents the absorbance at a wavelength of 405 nm, and A (440) represents the absorbance at a wavelength of 440 nm. ]
The value of A (405) / A (440) represents the magnitude of absorption at a wavelength of 405 nm relative to the magnitude of absorption at a wavelength of 440 nm. As the value of A (405) / A (440) is larger, it indicates that there is specific absorption in the wavelength range around 405 nm. The value of A (405) / A (440) is preferably 10 or more, more preferably 30 or more, and particularly preferably 60 or more.
<本発明の光学積層体>
 本発明の光学積層体の層構成の一例の断面模式図を図1に示した。
 図1に示す本発明の光学フィルム10は、樹脂フィルム2(例えば、後述する樹脂フィルム(a))の少なくとも一方の面に光選択吸収層1が形成される。光選択吸収層1は、単層であってもよいし、多層であってもよい。また、樹脂フィルム2と光選択吸収層1との間に接着剤層又は粘着剤層があってもよい。この場合の接着剤層は、公知の接着剤(水系接着剤、活性エネルギー線硬化型接着剤)から形成される接着剤層であればよく、粘着剤層も公知の粘着剤から形成される粘着剤層であればよい。
<Optical laminate of the present invention>
The cross-sectional schematic diagram of an example of the laminated constitution of the optical laminated body of this invention was shown in FIG.
In the optical film 10 of the present invention shown in FIG. 1, the light selective absorption layer 1 is formed on at least one surface of a resin film 2 (for example, a resin film (a) described later). The light selective absorption layer 1 may be a single layer or a multilayer. In addition, an adhesive layer or a pressure-sensitive adhesive layer may be present between the resin film 2 and the light selective absorption layer 1. The adhesive layer in this case may be an adhesive layer formed of a known adhesive (water-based adhesive, active energy ray curing adhesive), and an adhesive layer is also formed of a known adhesive. It is sufficient if it is an agent layer.
 図2に記載の光学積層体10Aは、本発明の光学フィルム10と偏光板フィルムとを含む光学積層体である。図2に示した光選択吸収層1は、接着剤層としても機能する。
 図3に記載の光学積層体10Bは、樹脂フィルム2、光選択吸収層1、偏光フィルム3、接着剤層4、保護フィルム5を含む光学積層体である。接着剤層4は、公知の接着剤から形成された接着剤層であってもよいし、本願の光選択吸収層2を接着剤層として用いてもよい。保護フィルム5は、位相差を有したフィルム(位相差フィルム)であってもよい。
 図4に記載の光学積層体10C及び図5に記載の光学積層体10Dは、樹脂フィルム2、光選択吸収層1、偏光フィルム3、接着剤層4、保護フィルム5、粘着剤層6、光学フィルム40、粘着剤層30、発光素子110含む光学積層体である。接着剤層4は、公知の接着剤から形成された接着剤層であってもよいし、本願の光選択吸収層2を接着剤層として用いてもよい。
 図6に記載の光学積層体10Eは、光選択吸収層1、樹脂フィルム2、接着剤層4、偏光フィルム3、接着剤層4、樹脂フィルム2を含む光学積層体である。図6において、光選択吸収層1は、表面処理層としても機能する。
 つまり、本発明の光選択吸収層1は、接着剤層としても機能するし、表面処理層としても機能する。
The optical laminate 10A described in FIG. 2 is an optical laminate including the optical film 10 of the present invention and a polarizing plate film. The light selective absorption layer 1 shown in FIG. 2 also functions as an adhesive layer.
The optical laminate 10B described in FIG. 3 is an optical laminate including a resin film 2, a light selective absorption layer 1, a polarizing film 3, an adhesive layer 4, and a protective film 5. The adhesive layer 4 may be an adhesive layer formed of a known adhesive, or the light selective absorption layer 2 of the present application may be used as an adhesive layer. The protective film 5 may be a film having retardation (retardation film).
The optical laminate 10C described in FIG. 4 and the optical laminate 10D described in FIG. 5 are resin film 2, light selective absorption layer 1, polarizing film 3, adhesive layer 4, protective film 5, adhesive layer 6, optical The optical laminate includes the film 40, the pressure-sensitive adhesive layer 30, and the light emitting element 110. The adhesive layer 4 may be an adhesive layer formed of a known adhesive, or the light selective absorption layer 2 of the present application may be used as an adhesive layer.
The optical laminate 10E described in FIG. 6 is an optical laminate including the light selective absorption layer 1, the resin film 2, the adhesive layer 4, the polarizing film 3, the adhesive layer 4, and the resin film 2. In FIG. 6, the light selective absorption layer 1 also functions as a surface treatment layer.
That is, the light selective absorption layer 1 of the present invention functions as an adhesive layer and also functions as a surface treatment layer.
 本発明の光選択吸収層1の厚みは、通常0.1~30μmである。
 光選択吸収層1が、表面処理層として使用される場合の厚みは、5~15μmであることが好ましい。5μm未満であると、硬度が不充分となるおそれがある。15μmを超えると、残留溶剤が残ったり、塗膜密着性が低下するおそれがある。
 光選択吸収層1が、接着剤層として使用される場合の厚みは、通常20μm以下、好ましくは10μm以下、さらに好ましくは5μm以下、特に好ましくは3μm以下である。
The thickness of the light selective absorption layer 1 of the present invention is usually 0.1 to 30 μm.
When the light selective absorption layer 1 is used as a surface treatment layer, the thickness is preferably 5 to 15 μm. If it is less than 5 μm, the hardness may be insufficient. If it exceeds 15 μm, residual solvent may remain or coating adhesion may be reduced.
When the light selective absorption layer 1 is used as an adhesive layer, the thickness is usually 20 μm or less, preferably 10 μm or less, more preferably 5 μm or less, particularly preferably 3 μm or less.
 光選択吸収層の23℃における貯蔵弾性率(E‘)が100MPa以上であることが好ましく、500MPa以上であることがより好ましく、1000MPa以上であることがさらに好ましく、100000MPa以下であることが好ましい。また光選択吸収層の80℃における貯蔵弾性率が、600MPa以上であることが好ましく、1000MPa以上であることがより好ましく、1500MPa以上であることがさらに好ましく、10000MPa以下であることが好ましい。 The storage elastic modulus (E ‘) at 23 ° C. of the light selective absorption layer is preferably 100 MPa or more, more preferably 500 MPa or more, still more preferably 1000 MPa or more, and preferably 100000 MPa or less. The storage elastic modulus at 80 ° C. of the light selective absorption layer is preferably 600 MPa or more, more preferably 1000 MPa or more, still more preferably 1500 MPa or more, and preferably 10000 MPa or less.
 光選択吸収層1が表面処理フィルムとして機能する場合、光選択吸収層の硬度が、JIS K5600-5-4(1999)による鉛筆硬度試験(荷重4.9N)において、H以上であることが好ましく、3H以上であることがより好ましく、4H以上であることがよりさらに好ましい。 When the light selective absorption layer 1 functions as a surface-treated film, the hardness of the light selective absorption layer is preferably H or more in a pencil hardness test (load 4.9 N) according to JIS K 5600-5-4 (1999). 3H or more is more preferable, and 4H or more is even more preferable.
<光選択吸収層>
 本発明の光学フィルムは、活性エネルギー線硬化性組成物から形成される光選択吸収層を少なくとも1層含む。該光選択吸収層を含むことにより、本発明の光学フィルムは式(1)を満たす。光選択吸収層は、上述した式(1)を満たすことが好ましく、上述した式(1)及び式(2)を満たすことがより好ましく、上述した式(1)、式(2)及び式(3)を満たすことがさらに好ましい。
 光選択吸収層は、樹脂フィルム(以下、樹脂フィルム(a)という場合がある。)の少なくとも一方の面に形成される。
<Selective absorption layer>
The optical film of the present invention comprises at least one light selective absorption layer formed from an active energy ray-curable composition. By including the light selective absorption layer, the optical film of the present invention satisfies the formula (1). The light selective absorption layer preferably satisfies the above-mentioned formula (1), more preferably the above-mentioned formulas (1) and (2), and the above-mentioned formulas (1), (2) and It is further preferable to satisfy 3).
The light selective absorption layer is formed on at least one surface of a resin film (hereinafter sometimes referred to as a resin film (a)).
 活性エネルギー線硬化性組成物とは、活性エネルギー線の照射を受けて硬化する組成物を表す。活性エネルギー線としては、紫外線、電子線、X線、可視光等が挙げられ、好ましくは紫外線である。紫外線光源としては、波長400nm以下に発光分布を有する光源が好ましく、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等を挙げることができる。
 活性エネルギー線硬化性組成物は、光硬化性成分(A)、光選択吸収化合物(B)及び光重合開始剤(C)を含有する。
An active energy ray curable composition refers to a composition that cures upon irradiation with active energy rays. As an active energy ray, an ultraviolet ray, an electron beam, an X ray, visible light etc. are mentioned, Preferably it is an ultraviolet ray. As an ultraviolet light source, a light source having a light emission distribution at a wavelength of 400 nm or less is preferable. For example, low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, chemical lamp, black light lamp, microwave excitation mercury lamp, metal halide lamp etc. be able to.
The active energy ray curable composition contains a photocurable component (A), a photoselective absorption compound (B) and a photopolymerization initiator (C).
 光硬化性成分(A)としては、活性エネルギー線の照射によりラジカル重合反応により硬化する化合物又はオリゴマー(ラジカル重合性化合物)、並びに又は活性エネルギー線の照射によりカチオン重合反応により硬化する化合物(カチオン重合性化合物)等が挙げられる。 As the photocurable component (A), a compound or oligomer (radically polymerizable compound) that cures by radical polymerization reaction upon irradiation with active energy rays, and / or a compound that cures by cationic polymerization reaction upon irradiation with active energy rays (cationic polymerization Sex compounds) and the like.
<ラジカル重合性化合物>
 ラジカル重合性化合物としては、ラジカル重合性(メタ)アクリル系化合物等が挙げられる。本明細書において「(メタ)アクリル系化合物」とは、分子内に1個以上の(メタ)アクリロイル基を有する化合物をいう。「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基から選択される少なくとも一方を意味する。「(メタ)アクリロイルオキシ基」や「(メタ)アクリル」、「(メタ)アクリレート」などというときについても同様である。活性エネルギー線硬化性接着剤組成物は、ラジカル重合性(メタ)アクリル系化合物を1種又は2種以上含有することができる。
<Radical polymerizable compound>
Examples of the radically polymerizable compound include radically polymerizable (meth) acrylic compounds. In the present specification, the term "(meth) acrylic compound" refers to a compound having one or more (meth) acryloyl groups in the molecule. The “(meth) acryloyl group” means at least one selected from an acryloyl group and a methacryloyl group. The same applies to the cases of “(meth) acryloyloxy group”, “(meth) acrylic”, “(meth) acrylate” and the like. The active energy ray-curable adhesive composition can contain one or more radically polymerizable (meth) acrylic compounds.
 (メタ)アクリル系化合物としては、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー、(メタ)アクリルアミドモノマー、及び、分子内に少なくとも2個の(メタ)アクリロイル基を有する(メタ)アクリルオリゴマー等の(メタ)アクリロイル基含有化合物を挙げることができる。(メタ)アクリルオリゴマーは好ましくは、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマーである。(メタ)アクリル系化合物は、1種のみを単独で用いてもよいし2種以上を併用してもよい。 As the (meth) acrylic compound, (meth) acrylate monomers having at least one (meth) acryloyloxy group in the molecule, (meth) acrylamide monomers, and at least two (meth) acryloyl groups in the molecule And (meth) acryloyl group-containing compounds such as (meth) acrylic oligomers having The (meth) acrylic oligomer is preferably a (meth) acrylate oligomer having at least two (meth) acryloyloxy groups in the molecule. As the (meth) acrylic compounds, one type may be used alone, or two or more types may be used in combination.
 (メタ)アクリレートモノマーとしては、分子内に1個の(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレートモノマー、分子内に2個の(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレートモノマー、分子内に3個以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレートモノマーが挙げられる。 As the (meth) acrylate monomer, a monofunctional (meth) acrylate monomer having one (meth) acryloyloxy group in the molecule, and a bifunctional (meth) acrylate having two (meth) acryloyloxy groups in the molecule Monomers and polyfunctional (meth) acrylate monomers having three or more (meth) acryloyloxy groups in the molecule can be mentioned.
 単官能(メタ)アクリレートモノマーとしては、アルキル(メタ)アクリレートが挙げられる。アルキル(メタ)アクリレートにおいて、そのアルキル基は炭素数3以上であれば直鎖、分岐、環状のいずれでもよい。アルキル(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が挙げられる。また、単官能(メタ)アクリレートモノマーとしては、ベンジル(メタ)アクリレート等のアラルキル(メタ)アクリレート;イソボルニル(メタ)アクリレート等のテルペンアルコールの(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート等のテトラヒドロフルフリル構造を有する(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、シクロヘキシルメチルメタクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノアクリレート等のアルキル基部位にシクロアルキル基を有する(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート;2-フェノキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート等のアルキル部位にエーテル結合を有する(メタ)アクリレートも等も挙げられる。 Examples of monofunctional (meth) acrylate monomers include alkyl (meth) acrylates. In the alkyl (meth) acrylate, the alkyl group may be linear, branched or cyclic as long as it has 3 or more carbon atoms. As the alkyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl ( Meta) acrylate etc. are mentioned. In addition, as monofunctional (meth) acrylate monomers, aralkyl (meth) acrylates such as benzyl (meth) acrylate; (meth) acrylates of terpene alcohols such as isobornyl (meth) acrylate; tetrahydro such as tetrahydrofurfuryl (meth) acrylate (Meth) acrylates having a furfuryl structure; Cycloalkyl groups such as cyclohexyl (meth) acrylate, cyclohexylmethyl methacrylate, dicyclopentanyl acrylate, dicyclopentenyl (meth) acrylate, 1,4-cyclohexanedimethanol monoacrylate, etc. (Meth) acrylates having an alkyl group; aminoalkyl (meth) acrylates such as N, N-dimethylaminoethyl (meth) acrylate; 2-phenoxyethyl (meth) acrylate ) Acrylate, dicyclopentenyl oxyethyl (meth) acrylate, ethyl carbitol (meth) acrylate, (meth) acrylate having an ether bond in the alkyl moiety such as phenoxy polyethylene glycol (meth) acrylates are also equal may also be mentioned.
 さらに、官能(メタ)アクリレートモノマーとしては、アルキル部位に水酸基を有する単官能(メタ)アクリレート;アルキル部位にカルボキシル基を有する単官能(メタ)アクリレートが挙げられる。アルキル部位に水酸基を有する単官能(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート、2-又は3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレートが挙げられる。アルキル部位にカルボキシル基を有する単官能(メタ)アクリレートとしては、2-カルボキシエチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトン(n=2)モノ(メタ)アクリレート、1-[2-(メタ)アクリロイルオキシエチル]フタル酸、1-[2-(メタ)アクリロイルオキシエチル]ヘキサヒドロフタル酸、1-[2-(メタ)アクリロイルオキシエチル]コハク酸、4-[2-(メタ)アクリロイルオキシエチル]トリメリット酸、N-(メタ)アクリロイルオキシ-N’,N’-ジカルボキシメチル-p-フェニレンジアミン等が挙げられる。 Furthermore, as a functional (meth) acrylate monomer, the monofunctional (meth) acrylate which has a hydroxyl group in an alkyl part; The monofunctional (meth) acrylate which has a carboxyl group in an alkyl part is mentioned. As a monofunctional (meth) acrylate having a hydroxyl group at the alkyl site, 2-hydroxyethyl (meth) acrylate, 2- or 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3 -Phenoxy propyl (meth) acrylate, trimethylol propane mono (meth) acrylate, pentaerythritol mono (meth) acrylate are mentioned. Examples of monofunctional (meth) acrylates having a carboxyl group at the alkyl site include 2-carboxyethyl (meth) acrylate, ω-carboxy-polycaprolactone (n = 2) mono (meth) acrylate, 1- [2- (meth) acrylate Acryloyloxyethyl! Phthalic acid, 1- [2- (meth) acryloyloxyethyl] hexahydrophthalic acid, 1- [2- (meth) acryloyloxyethyl] succinic acid, 4- [2- (meth) acryloyloxyethyl ] Trimellitic acid, N- (meth) acryloyloxy-N ', N'-dicarboxymethyl-p-phenylenediamine and the like can be mentioned.
 (メタ)アクリルアミドモノマーは、好ましくはN-位に置換基を有する(メタ)アクリルアミドである。そのN-位の置換基の典型的な例はアルキル基であるが、(メタ)アクリルアミドの窒素原子とともに環を形成していてもよく、この環は、炭素原子及び(メタ)アクリルアミドの窒素原子に加え、酸素原子を環構成員として有してもよい。さらに、その環を構成する炭素原子には、アルキルやオキソ(=O)のような置換基が結合していてもよい。 The (meth) acrylamide monomer is preferably a (meth) acrylamide having a substituent at the N-position. A typical example of the substituent at the N-position is an alkyl group, but it may form a ring together with the nitrogen atom of (meth) acrylamide, and this ring is a carbon atom and the nitrogen atom of (meth) acrylamide And may have an oxygen atom as a ring member. Furthermore, a substituent such as alkyl or oxo (= O) may be bonded to a carbon atom constituting the ring.
 N-置換(メタ)アクリルアミドとしては、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミドのようなN-アルキル(メタ)アクリルアミド;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミドのようなN,N-ジアルキル(メタ)アクリルアミド等が挙げられる。また、N-置換基は水酸基を有するアルキル基であってもよく、その例として、N-ヒドロキシメチル(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(2-ヒドロキシプロピル)(メタ)アクリルアミド等が挙げられる。さらに、上記した5員環又は6員環を形成するN-置換(メタ)アクリルアミドの具体的な例としては、N-アクリロイルピロリジン、3-アクリロイル-2-オキサゾリジノン、4-アクリロイルモルホリン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン等が挙げられる。 Examples of N-substituted (meth) acrylamides include N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Nn-butyl (meth) acrylamide, N-t-butyl ( N-alkyl (meth) acrylamide such as acrylamide, N-hexyl (meth) acrylamide; N, N- dialkyl (such as N, N- dimethyl (meth) acrylamide, N, N- diethyl (meth) acrylamide Meta) acrylamide etc. are mentioned. Further, the N-substituent may be an alkyl group having a hydroxyl group, and examples thereof include N-hydroxymethyl (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, N- (2-hydroxy) Propyl) (meth) acrylamide etc. are mentioned. Furthermore, specific examples of the above-mentioned N-substituted (meth) acrylamide forming a 5- or 6-membered ring include N-acryloyl pyrrolidine, 3-acryloyl-2-oxazolidinone, 4-acryloyl morpholine, and N-acryloyl pyrrolidone. Examples include piperidine, N-methacryloylpiperidine and the like.
 2官能(メタ)アクリレートモノマーとしては、
エチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート及びネオペンチルグリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;
ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート及びポリテトラメチレングリコールジ(メタ)アクリレート等のポリオキシアルキレングリコールジ(メタ)アクリレート;
テトラフルオロエチレングリコールジ(メタ)アクリレート等のハロゲン置換アルキレングリコールのジ(メタ)アクリレート;
トリメチロールプロパンジ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート等の脂肪族ポリオールのジ(メタ)アクリレート;
水添ジシクロペンタジエニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の水添ジシクロペンタジエン又はトリシクロデカンジアルカノールのジ(メタ)アクリレート;
1,3-ジオキサン-2,5-ジイルジ(メタ)アクリレート〔別名:ジオキサングリコールジ(メタ)アクリレート〕等のジオキサングリコール又はジオキサンジアルカノールのジ(メタ)アクリレート;
ビスフェノールAエチレンオキサイド付加物ジアクリレート物、ビスフェノールFエチレンオキサイド付加物ジアクリレート物等のビスフェノールA又はビスフェノールFのアルキレンオキサイド付加物のジ(メタ)アクリレート;
ビスフェノールAジグリシジルエーテルのアクリル酸付加物、ビスフェノールFジグリシジルエーテルのアクリル酸付加物等のビスフェノールA又はビスフェノールFのエポキシジ(メタ)アクリレート;シリコーンジ(メタ)アクリレート;
ヒドロキシピバリン酸ネオペンチルグリコールエステルのジ(メタ)アクリレート;
2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシフェニル]プロパン;2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシシクロヘキシル]プロパン;
2-(2-ヒドロキシ-1,1-ジメチルエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン〕のジ(メタ)アクリレート;
トリス(ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート;等が挙げられる。
As a bifunctional (meth) acrylate monomer,
Ethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol Alkylene glycol di (meth) acrylates such as di (meth) acrylates and neopentyl glycol di (meth) acrylates;
Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate and Polyoxyalkylene glycol di (meth) acrylates such as polytetramethylene glycol di (meth) acrylate;
Di (meth) acrylate of halogen substituted alkylene glycol such as tetrafluoroethylene glycol di (meth) acrylate;
Di (meth) acrylates of aliphatic polyols such as trimethylolpropane di (meth) acrylate, ditrimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate;
Hydrogenated dicyclopentadiene or di (meth) acrylate of tricyclodecane dialkanol such as hydrogenated dicyclopentadienyl di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate;
Dioxane glycol or di (meth) acrylate of dioxane dialkanol such as 1,3-dioxane-2,5-diyl di (meth) acrylate (alias: dioxane glycol di (meth) acrylate);
A di (meth) acrylate of an alkylene oxide adduct of bisphenol A or bisphenol F, such as a bisphenol A ethylene oxide adduct diacrylate or a bisphenol F ethylene oxide adduct diacrylate;
Epoxy di (meth) acrylates of bisphenol A or bisphenol F such as acrylic acid adducts of bisphenol A diglycidyl ether, acrylic acid adducts of bisphenol F diglycidyl ether, silicone di (meth) acrylates;
Di (meth) acrylate of hydroxypivalic acid neopentyl glycol ester;
2,2-bis [4- (meth) acryloyloxyethoxyethoxyphenyl] propane; 2,2-bis [4- (meth) acryloyloxyethoxyethoxycyclohexyl] propane;
2- (2-hydroxy-1,1-dimethylethyl) -5-ethyl-5-hydroxymethyl-1,3-dioxane] di (meth) acrylate;
Tris (hydroxyethyl) isocyanurate di (meth) acrylate; and the like.
 3官能以上の多官能(メタ)アクリレートモノマーとしては、グリセリントリ(メタ)アクリレート、アルコキシ化グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の3官能以上の脂肪族ポリオールのポリ(メタ)アクリレート;3官能以上のハロゲン置換ポリオールのポリ(メタ)アクリレート;グリセリンのアルキレンオキシド付加物のトリ(メタ)アクリレート;トリメチロールプロパンのアルキレンオキシド付加物のトリ(メタ)アクリレート;1,1,1-トリス[(メタ)アクリロイルオキシエトキシエトキシ]プロパン;トリス(ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート等が挙げられる。 As trifunctional or higher polyfunctional (meth) acrylate monomers, glycerin tri (meth) acrylate, alkoxylated glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylol Propane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. Trifunctional or higher aliphatic polyol poly (meth) acrylate; trifunctional or higher halogen substituted polyol poly (meth) acrylate; glycerin Tri (meth) acrylate of alkylene oxide adduct; tri (meth) acrylate of alkylene oxide adduct of trimethylolpropane; 1,1,1-tris [(meth) acryloyloxyethoxyethoxy] propane; tris (hydroxyethyl) isocyanate A nurate tri (meth) acrylate etc. are mentioned.
 (メタ)アクリルオリゴマーとしては、ウレタン(メタ)アクリルオリゴマー、ポリエステル(メタ)アクリルオリゴマー、エポキシ(メタ)アクリルオリゴマー等が挙げられる。 Examples of (meth) acrylic oligomers include urethane (meth) acrylic oligomers, polyester (meth) acrylic oligomers, epoxy (meth) acrylic oligomers and the like.
 ウレタン(メタ)アクリルオリゴマーとは、分子内にウレタン結合(-NHCOO-)及び少なくとも2個の(メタ)アクリロイル基を有する化合物である。具体的には、分子内に少なくとも1個の(メタ)アクリロイル基及び少なくとも1個の水酸基をそれぞれ有する水酸基含有(メタ)アクリルモノマーとポリイソシアネートとのウレタン化反応生成物や、ポリオールをポリイソシアネートと反応させて得られる末端イソシアナト基含有ウレタン化合物と、分子内に少なくとも1個の(メタ)アクリロイル基及び少なくとも1個の水酸基をそれぞれ有する(メタ)アクリルモノマーとのウレタン化反応生成物等であり得る。 The urethane (meth) acrylic oligomer is a compound having a urethane bond (—NHCOO—) and at least two (meth) acryloyl groups in the molecule. Specifically, a urethanization reaction product of a hydroxyl group-containing (meth) acrylic monomer having at least one (meth) acryloyl group and at least one hydroxyl group in the molecule and a polyisocyanate, or a polyol with a polyisocyanate It may be a urethanated reaction product of a terminal isocyanato group-containing urethane compound obtained by reaction, and a (meth) acrylic monomer having at least one (meth) acryloyl group and at least one hydroxyl group in the molecule. .
 上記ウレタン化反応に用いられる水酸基含有(メタ)アクリルモノマーは、例えば水酸基含有(メタ)アクリレートモノマーであることができ、その具体例は、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートを含む。水酸基含有(メタ)アクリレートモノマー以外の具体例は、N-ヒドロキシエチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等のN-ヒドロキシアルキル(メタ)アクリルアミドモノマーを含む。 The hydroxyl group-containing (meth) acrylic monomer used for the urethanization reaction can be, for example, a hydroxyl group-containing (meth) acrylate monomer, and specific examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate ) Acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, di And pentaerythritol penta (meth) acrylate. Specific examples other than the hydroxyl group-containing (meth) acrylate monomer include N-hydroxyalkyl (meth) acrylamide monomers such as N-hydroxyethyl (meth) acrylamide and N-methylol (meth) acrylamide.
 水酸基含有(メタ)アクリルモノマーとのウレタン化反応に供されるポリイソシアネートとしては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのうち芳香族のイソシアネート類を水素添加して得られるジイソシアネート(例えば、水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネート等)、トリフェニルメタントリイソシアネート、ジベンジルベンゼントリイソシアネート等のジ-又はトリ-イソシアネート、及び、上記のジイソシアネートを多量化させて得られるポリイソシアネート等が挙げられる。 Among polyisocyanates to be subjected to the urethanization reaction with a hydroxyl group-containing (meth) acrylic monomer, hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and aromatic ones of these diisocyanates Diisocyanates obtained by hydrogenating isocyanates (for example, hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, etc.), di- or tri-isocyanates such as triphenylmethane triisocyanate, dibenzyl benzene triisocyanate, and the above The polyisocyanate etc. which are obtained by multimerizing the diisocyanate of this are mentioned.
 また、ポリイソシアネートとの反応により末端イソシアナト基含有ウレタン化合物とするために用いられるポリオールとしては、芳香族、脂肪族又は脂環式のポリオールの他、ポリエステルポリオール、ポリエーテルポリオール等を使用することができる。脂肪族及び脂環式のポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブタン酸、グリセリン、水添ビスフェノールA等が挙げられる。 In addition to the aromatic, aliphatic or alicyclic polyols, polyester polyols, polyether polyols, etc. may be used as the polyol to be used to make the terminal isocyanate group-containing urethane compound by the reaction with the polyisocyanate. it can. Examples of aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, trimethylolpropane, and ditriol. Methylol propane, pentaerythritol, dipentaerythritol, dimethylol heptane, dimethylol propionic acid, dimethylol butanoic acid, glycerin, hydrogenated bisphenol A and the like can be mentioned.
 ポリエステルポリオールは、上記したポリオールと多塩基性カルボン酸又はその無水物との脱水縮合反応により得られるものである。多塩基性カルボン酸又はその無水物の例を、無水物であり得るものに「(無水)」を付して表すと、(無水)コハク酸、アジピン酸、(無水)マレイン酸、(無水)イタコン酸、(無水)トリメリット酸、(無水)ピロメリット酸、(無水)フタル酸、イソフタル酸、テレフタル酸、ヘキサヒドロ(無水)フタル酸等がある。 The polyester polyol is obtained by the dehydration condensation reaction of the above-described polyol and a polybasic carboxylic acid or an anhydride thereof. When examples of polybasic carboxylic acids or their anhydrides are represented by adding "(anhydride)" to those which may be anhydrides, (anhydride) succinic acid, adipic acid, (anhydride) maleic acid (anhydride) Itaconic acid, (anhydride) trimellitic acid, (anhydride) pyromellitic acid, (anhydride) phthalic acid, isophthalic acid, terephthalic acid, hexahydro (anhydride) phthalic acid and the like.
 ポリエーテルポリオールは、ポリアルキレングリコールの他、上記したポリオール又はジヒドロキシベンゼン類とアルキレンオキサイドとの反応により得られるポリオキシアルキレン変性ポリオール等であり得る。 The polyether polyol may be, in addition to the polyalkylene glycol, the above-mentioned polyol or a polyoxyalkylene modified polyol obtained by the reaction of dihydroxybenzenes with an alkylene oxide.
 ポリエステル(メタ)アクリレートオリゴマーとは、分子内にエステル結合と少なくとも2個の(メタ)アクリロイルオキシ基とを有するオリゴマーを意味する。
 ポリエステル(メタ)アクリレートオリゴマーは、例えば、(メタ)アクリル酸、多塩基性カルボン酸又はその無水物、及びポリオールを脱水縮合反応させることにより得ることができる。
 多塩基性カルボン酸又はその無水物としては、無水コハク酸、アジピン酸、無水マレイン酸、無水イタコン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、フタル酸、コハク酸、マレイン酸、イタコン酸、トリメリット酸、ピロメリット酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸等が挙げられる。
 ポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブタン酸、グリセリン、水添ビスフェノールA等が挙げられる。
The polyester (meth) acrylate oligomer means an oligomer having an ester bond and at least two (meth) acryloyloxy groups in the molecule.
The polyester (meth) acrylate oligomer can be obtained, for example, by subjecting a (meth) acrylic acid, a polybasic carboxylic acid or an anhydride thereof, and a polyol to a dehydration condensation reaction.
As polybasic carboxylic acid or its anhydride, succinic anhydride, adipic acid, maleic anhydride, itaconic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, phthalic acid, succinic acid, maleic acid And itaconic acid, trimellitic acid, pyromellitic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, terephthalic acid and the like.
As the polyol, 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylol ethane, trimethylol propane, ditrimethylol propane, pentaerythritol, di- Pentaerythritol, dimethylolheptane, dimethylolpropionic acid, dimethylolbutanoic acid, glycerin, hydrogenated bisphenol A and the like can be mentioned.
 エポキシ(メタ)アクリルオリゴマーは、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得ることができる。エポキシ(メタ)アクリルオリゴマーは、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する。
 ポリグリシジルエーテルとしては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル等が挙げられる。
Epoxy (meth) acrylic oligomers can be obtained by the addition reaction of polyglycidyl ether and (meth) acrylic acid. Epoxy (meth) acrylic oligomers have at least two (meth) acryloyloxy groups in the molecule.
Examples of polyglycidyl ethers include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
 光選択吸収層を表面処理層として用いる場合は、光選択吸収層の硬度を高めるため、2官能(メタ)アクリレートモノマー及び多官能(メタ)アクリレートモノマーの合計含有量が光硬化性成分(A)100質量部に対して、50質量部以上、好ましくは60質量部以上、さらに好ましくは80質量部以上である。
 光選択吸収層を接着剤層として用いる場合、密着性の観点から、単官能(メタ)アクリレートモノマーの含有量が、光硬化性成分(A)100質量部に対して50質量部以上、好ましくは60質量部以上、更に好ましくは60質量部以上である。
When using a photoselective absorption layer as a surface treatment layer, the total content of the bifunctional (meth) acrylate monomer and the polyfunctional (meth) acrylate monomer is a photocurable component (A) in order to increase the hardness of the photoselective absorption layer. The amount is 50 parts by mass or more, preferably 60 parts by mass or more, and more preferably 80 parts by mass or more based on 100 parts by mass.
When the photoselective absorption layer is used as an adhesive layer, the content of the monofunctional (meth) acrylate monomer is preferably 50 parts by mass or more, preferably 100 parts by mass of the photocurable component (A), from the viewpoint of adhesion. 60 parts by mass or more, more preferably 60 parts by mass or more.
[カチオン重合性化合物]
 カチオン重合性化合物は、紫外線、可視光、電子線、X線等の活性エネルギー線の照射や加熱によりカチオン重合反応が進行し、硬化する化合物又はオリゴマーを表す。カチオン重合性化合物としては、エポキシ化合物、オキセタン化合物、ビニル化合物等を挙げられる。カチオン重合性化合物は、好ましくはエポキシ化合物である。エポキシ化合物とは、分子内に1個以上(好ましくは2個以上)のエポキシ基を有する化合物である。エポキシ化合物は、1種のみを単独で使用してもよいし2種以上を併用してもよい。
 エポキシ化合物としては、脂環式エポキシ化合物、芳香族エポキシ化合物、水素化エポキシ化合物、脂肪族エポキシ化合物等を挙げることができる。中でも、耐候性、硬化速度及び接着性の観点から、エポキシ化合物は、脂環式エポキシ化合物及び脂肪族エポキシ化合物であることが好ましく、脂環式エポキシ化合物であることがより好ましい。
[Cationic Polymerizable Compound]
The cationically polymerizable compound represents a compound or an oligomer which is cured by the cationic polymerization reaction proceeding by irradiation with an active energy ray such as ultraviolet light, visible light, electron beam, X-ray or the like and heating. As a cationically polymerizable compound, an epoxy compound, an oxetane compound, a vinyl compound etc. are mentioned. The cationically polymerizable compound is preferably an epoxy compound. The epoxy compound is a compound having one or more (preferably two or more) epoxy groups in the molecule. The epoxy compounds may be used alone or in combination of two or more.
As an epoxy compound, an alicyclic epoxy compound, an aromatic epoxy compound, a hydrogenated epoxy compound, an aliphatic epoxy compound etc. can be mentioned. Among them, from the viewpoint of weatherability, curing speed and adhesiveness, the epoxy compound is preferably an alicyclic epoxy compound and an aliphatic epoxy compound, and more preferably an alicyclic epoxy compound.
 脂環式エポキシ化合物は、脂環式環に結合したエポキシ基を分子内に1個以上有する化合物である。「脂環式環に結合したエポキシ基」とは、下記式(I)で示される構造における橋かけの酸素原子-O-を意味する。下記式(I)中、mは2~5の整数である。 The alicyclic epoxy compound is a compound having one or more epoxy groups bonded to an alicyclic ring in the molecule. The “epoxy group bonded to an alicyclic ring” means a bridging oxygen atom —O— in a structure represented by the following formula (I). In the following formula (I), m is an integer of 2 to 5.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(I)における(CH2m中の1個又は複数個の水素原子を取り除いた形の基が他の化学構造に結合している化合物が、脂環式エポキシ化合物となり得る。(CH2m中の1個又は複数個の水素原子は、メチル基やエチル基のような直鎖状アルキル基で適宜置換されていてもよい。 A compound in which one or more hydrogen atoms in (CH 2 ) m in the above-mentioned formula (I) are removed and which is bonded to another chemical structure may be a cycloaliphatic epoxy compound. One or more hydrogen atoms in (CH 2 ) m may be optionally substituted by a linear alkyl group such as a methyl group or an ethyl group.
 中でも、エポキシシクロペンタン構造〔上記式(I)においてm=3のもの〕や、エポキシシクロヘキサン構造〔上記式(I)においてm=4のもの〕を有する脂環式エポキシ化合物は、硬化物のガラス転移温度が高く、接着性の面でも有利である。以下に、脂環式エポキシ化合物の具体的な例を掲げる。ここでは、まず化合物名を挙げ、その後、それぞれに対応する化学式を示すこととし、化合物名とそれに対応する化学式には同じ符号を付す。 Among them, an alicyclic epoxy compound having an epoxy cyclopentane structure (in the above formula (I) with m = 3) or an epoxy cyclohexane structure (in the above formula (I) with m = 4) is a glass of a cured product The transition temperature is high, which is also advantageous in terms of adhesion. Hereinafter, specific examples of the alicyclic epoxy compound will be listed. Here, first, the compound name is listed, and then the corresponding chemical formula is shown, and the compound name and the corresponding chemical formula are given the same reference numerals.
 A:3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、
 B:3,4-エポキシ-6-メチルシクロヘキシルメチル 3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、
 C:エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、
 D:ビス(3,4-エポキシシクロヘキシルメチル) アジペート、
 E:ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル) アジペート、
 F:ジエチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、
 G:エチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、
 H:2,3,14,15-ジエポキシ-7,11,18,21-テトラオキサトリスピ
ロ[5.2.2.5.2.2]ヘンイコサン、
 I:3-(3,4-エポキシシクロヘキシル)-8,9-エポキシ-1,5-ジオキサスピロ[5.5]ウンデカン、
 J:4-ビニルシクロヘキセンジオキサイド、
 K:リモネンジオキサイド、
 L:ビス(2,3-エポキシシクロペンチル)エーテル、
 M:ジシクロペンタジエンジオキサイド。
A: 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate,
B: 3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexanecarboxylate,
C: ethylene bis (3,4-epoxycyclohexane carboxylate),
D: Bis (3,4-epoxycyclohexylmethyl) adipate,
E: bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate,
F: diethylene glycol bis (3,4-epoxycyclohexyl methyl ether),
G: ethylene glycol bis (3,4-epoxycyclohexyl methyl ether),
H: 2,3,14,15-diepoxy-7,11,18,21-tetraoxatrispiro [5.2.2.5.2.2] henicosane,
I: 3- (3,4-epoxycyclohexyl) -8,9-epoxy-1,5-dioxaspiro [5.5] undecane,
J: 4-vinylcyclohexene dioxide,
K: limonene dioxide,
L: bis (2,3-epoxycyclopentyl) ether,
M: dicyclopentadiene dioxide.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 芳香族エポキシ化合物は、分子内に芳香族環とエポキシ基とを有する化合物である。芳香族エポキシ化合物としては、ビスフェノールAのジグリシジルエーテル、ビスフェールFのジグリシジルエーテル、ビスフェノールSのジグリシジルエーテル等のビスフェノール型エポキシ化合物又はそのオリゴマー;フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、ヒドロキシベンズアルデヒドフェノールノボラックエポキシ樹脂等のノボラック型のエポキシ樹脂;2,2’,4,4’-テトラヒドロキシジフェニルメタンのグリシジルエーテル、2,2’,4,4’-テトラヒドロキシベンゾフェノンのグリシジルエーテル等の多官能型のエポキシ化合物;エポキシ化ポリビニルフェノール等の多官能型のエポキシ樹脂等が挙げられる。 The aromatic epoxy compound is a compound having an aromatic ring and an epoxy group in the molecule. As aromatic epoxy compounds, bisphenol-type epoxy compounds such as diglycidyl ether of bisphenol A, diglycidyl ether of bisferr F, diglycidyl ether of bisphenol S, or oligomers thereof; phenol novolac epoxy resin, cresol novolac epoxy resin, hydroxybenzaldehyde Novolac type epoxy resin such as phenol novolac epoxy resin; glycidyl ether of 2,2 ', 4,4'-tetrahydroxydiphenylmethane, and polyfunctional type such as glycidyl ether of 2,2', 4,4'-tetrahydroxybenzophenone And epoxy resins of epoxy resins such as epoxidized polyvinyl phenol.
 水素化エポキシ化合物は、脂環式環を有するポリオールのグリシジルエーテルであり、芳香族ポリオールを触媒の存在下、加圧下で芳香環に選択的に水素化反応を行うことにより得られる核水添ポリヒドロキシ化合物をグリシジルエーテル化したものであることができる。芳香族ポリオールの具体例は、例えば、ビスフェノールA、ビスフェールF、ビスフェノールS等のビスフェノール型化合物;フェノールノボラック樹脂、クレゾールノボラック樹脂、ヒドロキシベンズアルデヒドフェノールノボラック樹脂等のノボラック型樹脂;テトラヒドロキシジフェニルメタン、テトラヒドロキシベンゾフェノン、ポリビニルフェノール等の多官能型の化合物を含む。芳香族ポリオールの芳香環に水素化反応を行って得られる脂環式ポリオールにエピクロロヒドリンを反応させることにより、グリシジルエーテルとすることができる。水素化エポキシ化合物の中でも好ましいものとして、水素化されたビスフェノールAのジグリシジルエーテルが挙げられる。 The hydrogenated epoxy compound is a glycidyl ether of a polyol having an alicyclic ring, and is a nucleus-hydrogenated poly obtained by selectively performing a hydrogenation reaction on an aromatic ring under pressure in the presence of a catalyst and an aromatic polyol. It can be obtained by glycidyl etherification of a hydroxy compound. Specific examples of the aromatic polyol are, for example, bisphenol type compounds such as bisphenol A, bisphor F, bisphenol S; novolac resins such as phenol novolac resin, cresol novolac resin, hydroxybenzaldehyde phenol novolac resin; tetrahydroxydiphenylmethane, tetrahydroxy It includes polyfunctional compounds such as benzophenone and polyvinylphenol. A glycidyl ether can be obtained by reacting epichlorohydrin with an alicyclic polyol obtained by subjecting the aromatic ring of an aromatic polyol to a hydrogenation reaction. Among the hydrogenated epoxy compounds, preferred is a diglycidyl ether of hydrogenated bisphenol A.
 脂肪族エポキシ化合物は、脂肪族炭素原子に結合するオキシラン環(3員の環状エーテル)を分子内に少なくとも1個有する化合物である。例えば、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル等の単官能のエポキシ化合物;1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル等の2官能のエポキシ化合物;トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル等の3官能以上のエポキシ化合物;4-ビニルシクロヘキセンジオキサイド、リモネンジオキサイド等の、脂環式環に直接結合するエポキシ基1個と、脂肪族炭素原子に結合するオキシラン環とを有するエポキシ化合物等がある。中でも、接着性の観点から、脂肪族炭素原子に結合するオキシラン環を分子内に2個有する2官能のエポキシ化合物(脂肪族ジエポキシ化合物ともいう)が好ましい。かかる好適な脂肪族ジエポキシ化合物は、例えば、下記式(II)で表すことができる。 The aliphatic epoxy compound is a compound having at least one oxirane ring (three-membered cyclic ether) bonded to an aliphatic carbon atom in the molecule. For example, monofunctional epoxy compounds such as butyl glycidyl ether and 2-ethylhexyl glycidyl ether; and difunctional ones such as 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether and neopentyl glycol diglycidyl ether Epoxy compounds; trifunctional or higher epoxy compounds such as trimethylolpropane triglycidyl ether and pentaerythritol tetraglycidyl ether; and one epoxy group directly bonded to an alicyclic ring such as 4-vinylcyclohexene dioxide and limonene dioxide And epoxy compounds having an oxirane ring bonded to an aliphatic carbon atom. Among them, a bifunctional epoxy compound (also referred to as an aliphatic diepoxy compound) having two oxirane rings bonded to an aliphatic carbon atom in the molecule is preferable from the viewpoint of adhesiveness. Such a suitable aliphatic diepoxy compound can be represented, for example, by the following formula (II).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(II)中のYは、炭素数2~9のアルキレン基、エーテル結合が介在している総炭素数4~9のアルキレン基、又は脂環構造を有する炭素数6~18の2価の炭化水素基である。 Y in the above formula (II) is an alkylene group having 2 to 9 carbon atoms, an alkylene group having 4 to 9 carbon atoms in total having an ether bond, or a divalent carbon number having 6 to 18 carbon atoms having an alicyclic structure. Is a hydrocarbon group of
 上記式(II)で表される脂肪族ジエポキシ化合物としては、アルカンジオールのジグリシジルエーテル、繰り返し数4程度までのオリゴアルキレングリコールのジグリシジルエーテル、又は脂環式ジオールのジグリシジルエーテル等が挙げられる。 Examples of aliphatic diepoxy compounds represented by the above formula (II) include diglycidyl ethers of alkanediols, diglycidyl ethers of oligoalkylene glycols having a repeating number up to about 4, or diglycidyl ethers of alicyclic diols. .
 オキセタン化合物は、分子内に1個以上のオキセタン環(オキセタニル基)を含有する化合物である。オキセタン化合物としては、3-エチル-3-ヒドロキシメチルオキセタン、2-エチルヘキシルオキセタン、1,4-ビス〔{(3-エチルオキセタン-3-イル)メトキシ}メチル〕ベンゼン、3-エチル-3〔{(3-エチルオキセタン-3-イル)メトキシ}メチル〕オキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-(シクロヘキシルオキシ)メチル-3-エチルオキセタン等が挙げられる。オキセタン化合物は、カチオン重合性化合物の主成分として用いてもよいし、エポキシ化合物と併用してもよい。オキセタン化合物を併用することで、硬化速度や接着性を向上できることがある。 An oxetane compound is a compound containing one or more oxetane rings (oxetanyl groups) in the molecule. Examples of oxetane compounds include 3-ethyl-3-hydroxymethyl oxetane, 2-ethylhexyl oxetane, 1,4-bis [{(3-ethyloxetan-3-yl) methoxy} methyl] benzene, 3-ethyl-3 [{{ (3-ethyloxetan-3-yl) methoxy} methyl] oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3- (cyclohexyloxy) methyl-3-ethyloxetane and the like. The oxetane compound may be used as a main component of the cationically polymerizable compound, or may be used in combination with an epoxy compound. By using an oxetane compound in combination, the curing speed and the adhesion may be improved.
 ビニル化合物としては、脂肪族又は脂環式のビニルエーテル化合物が挙げられる。ビニル化合物としては、n-アミルビニルエーテル、i-アミルビニルエーテル、n-ヘキシルビニルエーテル、n-オクチルビニルエーテル、2-エチルヘキシルビニルエーテル、n-ドデシルビニルエーテル、ステアリルビニルエーテル、オレイルビニルエーテル等の炭素数5~20のアルキル又はアルケニルアルコールのビニルエーテル;2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル等の水酸基含有ビニルエーテル;シクロヘキシルビニルエーテル、2-メチルシクロヘキシルビニルエーテル、シクロヘキシルメチルビニルエーテル、ベンジルビニルエーテル等の脂肪族環又は芳香族環を有するモノアルコールのビニルエーテル;グリセロールモノビニルエーテル、1,4-ブタンジオールモノビニルエーテル、1,4-ブタンジオールジビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、ペンタエリトリトールジビニルエーテル、ペンタエリトリトールテトラビニルエーテル、トリメチロールプロパンジビニルエーテル、トリメチロールプロパントリビニルエーテル、1,4-ジヒドロキシシクロヘキサンモノビニルエーテル、1,4-ジヒドロキシシクロヘキサンジビニルエーテル、1,4-ジヒドロキシメチルシクロヘキサンモノビニルエーテル、1,4-ジヒドロキシメチルシクロヘキサンジビニルエーテル等の多価アルコールのモノ~ポリビニルエーテル;ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ジエチレングリコールモノブチルモノビニルエーテル等のポリアルキレングリコールモノ~ジビニルエーテル;グリシジルビニルエーテル、エチレングリコールビニルエーテルメタクリレート等が挙げられる。
 ビニル化合物は、カチオン重合性化合物の主成分として用いてもよいし、エポキシ化合物、又はエポキシ化合物及びオキセタン化合物と併用してもよい。ビニル化合物を併用することで、硬化速度や接着剤の低粘度化を向上できることがある。
The vinyl compounds include aliphatic or alicyclic vinyl ether compounds. Examples of the vinyl compound include alkyls having 5 to 20 carbon atoms such as n-amyl vinyl ether, i-amyl vinyl ether, n-hexyl vinyl ether, n-octyl vinyl ether, 2-ethylhexyl vinyl ether, n-dodecyl vinyl ether, stearyl vinyl ether, oleyl vinyl ether, etc. Vinyl ethers of alkenyl alcohols; hydroxyl group-containing vinyl ethers such as 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether; aliphatic rings or aromatics such as cyclohexyl vinyl ether, 2-methylcyclohexyl vinyl ether, cyclohexyl methyl vinyl ether, benzyl vinyl ether Vinyl ethers of monoalcohols having an aliphatic ring; glycerol monovinyl ether , 1,4-butanediol monovinyl ether, 1,4-butanediol divinyl ether, 1,6-hexanediol divinyl ether, neopentyl glycol divinyl ether, pentaerythritol divinyl ether, pentaerythritol tetravinyl ether, trimethylolpropane divinyl ether Of polyhydric alcohols such as trimethylolpropane trivinyl ether, 1,4-dihydroxycyclohexane monovinyl ether, 1,4-dihydroxycyclohexane divinyl ether, 1,4-dihydroxymethyl cyclohexane monovinyl ether and 1,4-dihydroxymethyl cyclohexane divinyl ether Mono-polyvinyl ether; diethylene glycol divinyl ether, triethylene glycol divinyl Ethers, polyalkylene glycol mono-divinyl ether and diethylene glycol monobutyl monovinyl ethers; glycidyl ether, ethylene glycol vinyl methacrylate.
The vinyl compound may be used as a main component of the cationically polymerizable compound, or may be used in combination with an epoxy compound, or an epoxy compound and an oxetane compound. By using a vinyl compound in combination, it may be possible to improve the curing speed and the viscosity reduction of the adhesive.
 光硬化性成分(A)は、ラジカル重合性化合物とカチオン重合性化合物を併用してもよい。
 光硬化性成分(A)の含有量は、活性エネルギー線硬化性組成物100質量%に対して、通常50~99.5質量%であり、好ましくは70~97質量%である。
The photocurable component (A) may use a radically polymerizable compound and a cationically polymerizable compound in combination.
The content of the photocurable component (A) is usually 50 to 99.5% by mass, preferably 70 to 97% by mass, with respect to 100% by mass of the active energy ray-curable composition.
<光選択吸収化合物(B)>
 光選択吸収化合物(B)としては、波長405nmの光を選択的に吸収する化合物であり、式(5)を満たす化合物であることが好ましく、さらに式(6)を満たす化合物であることがより好ましい。
 ε(405)≧20  (5)
〔式(5)中、ε(405)は波長405nmにおける化合物のグラム吸光係数を表す。グラム吸光係数の単位はL/(g・cm)である。〕
ε(405)/ε(440)≧20      (6)
[式(6)中、ε(405)は波長405nmにおける化合物のグラム吸光係数を表し、ε(440)は波長440nmにおけるグラム吸光度係数を表す。]
 なお、グラム吸光度係数は、実施例に記載の方法で測定する。
<Selective light selective compound (B)>
The light selective absorption compound (B) is a compound that selectively absorbs light of a wavelength of 405 nm, is preferably a compound that satisfies the formula (5), and is further a compound that satisfies the formula (6) preferable.
ε (405) 20 20 (5)
[In Formula (5), (epsilon) (405) represents the gram absorption coefficient of the compound in wavelength 405 nm. The unit of gram absorption coefficient is L / (g · cm). ]
ε (405) / ε (440) ≧ 20 (6)
[In Formula (6), (epsilon) (405) represents the gram absorption coefficient of the compound in wavelength 405 nm, and (epsilon) (440) represents the gram absorption coefficient in wavelength 440 nm. ]
The gram absorbance coefficient is measured by the method described in the examples.
 ε(405)の値が大きい化合物ほど波長405nmの光を吸収しやすく、紫外線や短波長の可視光による劣化抑制機能を発現しやすい。ε(405)の値が20L/(g・cm)未満であると、位相差フィルムや有機EL発光素子の紫外線や短波長の可視光による劣化抑制機能を発現するために、光吸収選択層中の光選択吸収化合物(B)の含有量が増大する。光選択吸収化合物(B)の含有量が増大すると、光選択吸収化合物(B)がブリードアウト又は不均一に分散してしまい、光吸収機能が不十分となることがある。ε(405)の値は20L/(g・cm)以上であることが好ましく、30L/(g・cm)以上であることがより好ましく、40L/(g・cm)以上であることがさらにより好ましく、通常500L/(g・cm)以下である。 The larger the value of ε (405) is, the easier it is to absorb light with a wavelength of 405 nm, and it is easy to exhibit the function of suppressing deterioration by ultraviolet light or visible light of short wavelength. When the value of ε (405) is less than 20 L / (g · cm), in the light absorption selective layer in order to exhibit the function of suppressing deterioration of the retardation film or the organic EL light emitting device due to ultraviolet light or short wavelength visible light The content of the photoselective absorption compound (B) is increased. When the content of the light selective absorption compound (B) is increased, the light selective absorption compound (B) may be bled out or dispersed unevenly, and the light absorption function may be insufficient. The value of ε (405) is preferably 20 L / (g · cm) or more, more preferably 30 L / (g · cm) or more, and even more preferably 40 L / (g · cm) or more Preferably, it is usually 500 L / (g · cm) or less.
 ε(405)/ε(440)の値が大きい化合物ほど、表示装置の色彩表現を阻害することなく405nm付近の光を吸収し、位相差フィルムや有機EL素子等の表示装置の光劣化を抑制することができる。ε(405)/ε(440)の値は20以上が好ましく、40以上がより好ましく、70以上がさらにより好ましく、80以上が特により好ましい。 A compound having a larger value of ε (405) / ε (440) absorbs light in the vicinity of 405 nm without inhibiting color expression of the display device, and suppresses light deterioration of the display device such as a retardation film or an organic EL element can do. The value of ε (405) / ε (440) is preferably 20 or more, more preferably 40 or more, still more preferably 70 or more, and particularly preferably 80 or more.
 また、光選択吸収化合物(B)は、分子内にメロシアニン構造を含む化合物であることが好ましい。メロシアニン構造を含む化合物とは、-(N-C=C-C=C)-で示される部分構造を分子内に含有している化合物であって、例えば、メロシアニン系化合物、シアニン系化合物、インドール系化合物、ベンゾトリアゾール系化合物等が挙げられる。
 光選択吸収化合物(B)は、式(I)で表される化合物(以下、化合物(I)という場合がある。)であることが好ましい。
Figure JPOXMLDOC01-appb-I000005
[式中、R及びRは、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~25のアルキル基、置換基を有していてもよい炭素数7~15のアラルキル基、炭素数6~15のアリール基、複素環基を表し、該アルキル基又はアラルキル基に含まれる-CH-は-NR1A-、-CO-、-SO-、-O-又は-S-に置換されていてもよい。
 R1Aは、水素原子又は炭素数1~6のアルキル基を表す。
 R、R及びRは、それぞれ独立して、水素原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表し、該アルキル基に含まれる-CH-は-NR1B-、-CO-、-NO-、-O-又は-S-で置換されていてもよい。
 R1Bは、水素原子又は炭素数1~6のアルキル基を表す。
 R及びRは、それぞれ独立して、水素原子、炭素数1~25のアルキル基又は電子吸引性基を表すか、R及びRは互いに連結して環構造を形成してもよい。
 R及びRは互いに連結して環構造を形成してもよく、R及びRは互いに連結して環構造を形成してもよく、R及びRは互いに連結して環構造を形成してもよく、R及びRは、互いに連結して環構造を形成してもよい。]
Further, the photoselective absorption compound (B) is preferably a compound containing a merocyanine structure in the molecule. The compound having a merocyanine structure is a compound containing in its molecule a partial structure represented by-(N-C = C-C = C)-, and examples thereof include merocyanine compounds, cyanine compounds and indoles. Examples include compounds based on the type and benzotriazole type compounds.
The light selective absorption compound (B) is preferably a compound represented by the formula (I) (hereinafter sometimes referred to as a compound (I)).
Figure JPOXMLDOC01-appb-I000005
[Wherein, R 1 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 25 carbon atoms which may have a substituent, or 7 to carbon atoms which may have a substituent; 15 represent an aralkyl group, an aryl group having a carbon number of 6 to 15, and a heterocyclic group, and -CH 2- contained in the alkyl group or the aralkyl group is -NR 1A- , -CO-, -SO 2- , -O It may be substituted by-or -S-.
R 1A represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
R 2 , R 3 and R 4 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, or an aromatic hydrocarbon group which may have a substituent Or an aromatic heterocyclic group which may have a substituent, and -CH 2- contained in the alkyl group is -NR 1B- , -CO-, -NO 2- , -O- or -S- And may be substituted.
R 1B represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
R 6 and R 7 each independently represent a hydrogen atom, an alkyl group having 1 to 25 carbon atoms, or an electron-withdrawing group, or R 6 and R 7 may be linked to each other to form a ring structure .
R 1 and R 2 may be linked to each other to form a ring structure, and R 2 and R 3 may be linked to each other to form a ring structure, and R 2 and R 4 are linked to each other to form a ring structure And R 3 and R 6 may be linked to each other to form a ring structure. ]
 R及びRで表される炭素数1~25のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、2-シアノプロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、n-ヘキシル基、1-メチルブチル基、3-メチルブチル基、n-オクチル基、n-デシル、2-へキシル-オクチル基等が挙げられる。
 R及びRで表される炭素数1~25のアルキル基が有していてもよい置換基としては、以下の群Aに記載の基が挙げられる。
群A:ニトロ基、ヒドロキシ基、カルボキシ基、スルホ基、シアノ基、アミノ基、ハロゲン原子、炭素数1~6のアルコキシ基、炭素数1~12のアルキルシリル基、炭素数2~8のアルキルカルボニル基、*-Ra1-(O-Ra2t1-Ra3(Ra1及びRa2は、それぞれ独立して、炭素数1~6のアルカンジイル基を表し、Ra3は炭素数1~6のアルキル基を表し、s1は1~3の整数を表す。)で表される基等が挙げられる。
 炭素数1~12のアルキルシリル基としては、メチルシリル基、エチルシリル、プロピルシリル基等のモノアルキルシリル基;ジメチルシリル基、ジエチルシリル基、メチルエチルシリル基等のジアルキルシリル基;トリメチルシリル、トリエチルシリル、トリプロピルシリル基等のトリアルキルシリル基が挙げられる。
 炭素数2~8のアルキルカルボニル基としては、メチルカルボニル基、エチルカルボニル基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。
Examples of the alkyl group having 1 to 25 carbon atoms represented by R 1 and R 5 include methyl group, ethyl group, n-propyl group, isopropyl group, 2-cyanopropyl group, n-butyl group, tert-butyl group, and sec-butyl, n-pentyl, n-hexyl, 1-methylbutyl, 3-methylbutyl, n-octyl, n-decyl, 2-hexyl-octyl and the like.
Examples of the substituent which the alkyl group having 1 to 25 carbon atoms represented by R 1 and R 5 may have include the groups described in the following group A.
Group A: nitro, hydroxy, carboxy, sulfo, cyano, amino, halogen, alkoxy having 1 to 6 carbons, alkylsilyl having 1 to 12 carbons, alkyl having 2 to 8 carbons carbonyl group, * - R a1 - (O -R a2) t1 -R a3 (R a1 and R a2 each independently represent an alkanediyl group having 1 to 6 carbon atoms, R a3 is a C1- 6 represents an alkyl group, and s 1 represents an integer of 1 to 3.) and the like.
Examples of the alkylsilyl group having 1 to 12 carbon atoms include monoalkylsilyl groups such as methylsilyl group, ethylsilyl and propylsilyl groups; dialkylsilyl groups such as dimethylsilyl group, diethylsilyl group and methylethylsilyl group; trimethylsilyl and triethylsilyl, And trialkylsilyl groups such as tripropylsilyl group.
Examples of the alkylcarbonyl group having 2 to 8 carbon atoms include a methylcarbonyl group and an ethylcarbonyl group.
As a halogen atom, a fluorine atom, a chlorine atom, a bromine atom etc. are mentioned.
 R及びRで表される炭素数7~15のアラルキル基としては、ベンジル基、フェニルエチル基等が挙げられる。アラルキル基に含まれる-CH-が、-SO-又は-COO-に置き換わった基としては2-フェニル酢酸エチル基等が挙げられる。
 R及びRで表される炭素数7~15のアラルキル基が有していてもよい置換基としては、上記群Aに記載の基が挙げられる。
Examples of the aralkyl group having 7 to 15 carbon atoms represented by R 1 and R 5 include a benzyl group and a phenylethyl group. Examples of the group in which —CH 2 — contained in the aralkyl group is replaced by —SO 2 — or —COO— include a 2-phenylacetic acid ethyl group and the like.
Examples of the substituent which the aralkyl group having 7 to 15 carbon atoms represented by R 1 and R 5 may have include the groups described in Group A above.
 R及びRで表される炭素数6~15のアリール基としては、フェニル基、ナフチル基、アントラセニル基等が挙げられる。
 R及びRで表される炭素数6~15のアリール基が有していてもよい置換基としては、上記群Aに記載の基が挙げられる。
 R及びRで表される炭素数6~15の複素環基としては、ピリジル基、ピロリジル基、キノリル基、チオフェン基、イミダゾリル基、オキサゾリル基、ピロール基、チアゾリル基及びフラニル基等の炭素数3~9の芳香族複素環基が挙げられる。
Examples of the aryl group having 6 to 15 carbon atoms represented by R 1 and R 5 include a phenyl group, a naphthyl group and an anthracenyl group.
Examples of the substituent which the aryl group having 6 to 15 carbon atoms represented by R 1 and R 5 may have include the groups described in Group A above.
Examples of the heterocyclic group having 6 to 15 carbon atoms represented by R 1 and R 5 include carbons such as pyridyl, pyrrolidinyl, quinolyl, thiophene, imidazolyl, oxazolyl, pyrrole, thiazolyl and furanyl And 3 to 9 aromatic heterocyclic groups.
 R1A及びR1Bで表される炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。 Examples of the alkyl group having 1 to 6 carbon atoms represented by R 1A and R 1B include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, sec-butyl group, n -Pentyl group, n-hexyl group and the like.
 R、R及びRで表される炭素数1~6のアルキル基としては、R1Bで表される炭素数1~6のアルキル基と同じものが挙げられる。
 R、R及びRで表される炭素数1~6のアルキル基が有していてもよい置換基としては、上記群Aに記載の基が挙げられる。
 R、R及びRで表される芳香族炭化水素基としては、フェニル基、ナフチル基、アントラセニル基等炭素数6~15のアリール基;ベンジル基、フェニルエチル基等の炭素数7~15のアラルキル基が挙げられる。
 R、R及びRで表される芳香族炭化水素基が有していてもよい置換基としては上記群Aに記載の基が挙げられる。
 R、R及びRで表される芳香族複素環としては、ピリジル基、ピロリジル基、キノリル基、チオフェン基、イミダゾリル基、オキサゾリル基、ピロール基、チアゾリル基及びフラニル基等の炭素数3~9の芳香族複素環基が挙げられる。
 R、R及びRで表される芳香族複素環が有していてもよい置換基としては、上記群Aに記載の基が挙げられる。
Examples of the alkyl group having 1 to 6 carbon atoms represented by R 2 , R 3 and R 4 include the same ones as the alkyl group having 1 to 6 carbon atoms represented by R 1B .
Examples of the substituent which the alkyl group having 1 to 6 carbon atoms represented by R 2 , R 3 and R 4 may have include the groups described in the above-mentioned group A.
The aromatic hydrocarbon group represented by R 2 , R 3 and R 4 includes aryl groups having 6 to 15 carbon atoms such as phenyl, naphthyl and anthracenyl; and 7 to 15 carbon atoms such as benzyl and phenylethyl. There may be mentioned 15 aralkyl groups.
Examples of the substituent which the aromatic hydrocarbon group represented by R 2 , R 3 and R 4 may have include the groups described in Group A above.
The aromatic heterocyclic ring represented by R 2 , R 3 and R 4 has 3 carbon atoms such as pyridyl, pyrrolidinyl, quinolyl, thiophene, imidazolyl, oxazolyl, pyrrole, thiazolyl and furanyl. And aromatic heterocyclic groups of -9.
As a substituent which the aromatic heterocyclic ring represented by R < 2 >, R < 3 > and R < 4 > may have, the group as described in the said group A is mentioned.
 R及びRで表される炭素数1~25のアルキル基としては、R及びRで表される炭素数1~25のアルキル基と同じものが挙げられる。
 R及びRで表される炭素数1~25のアルキル基が有していてもよい置換基としては、上記群Aに記載の基が挙げられる。
Examples of the alkyl group having 1 to 25 carbon atoms represented by R 6 and R 7 include the same ones as the alkyl group having 1 to 25 carbon atoms represented by R 1 and R 5 .
Examples of the substituent which the alkyl group having 1 to 25 carbon atoms represented by R 6 and R 7 may have include the groups described in Group A above.
 R及びRで表される電子吸引性基としては、例えば、シアノ基、ニトロ基、ハロゲン原子、ハロゲン原子で置換されたアルキル基、式(I-1)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-I000006
[式中、R11は、水素原子又は炭素数1~25のアルキル基を表し、該アルキル基に含まれるメチレン基の少なくとも1つは酸素原子に置換されていてもよい。
 Xは、-CO-、-COO-、-OCO-、-NR12CO-又はCONR13-を表す。
 R12及びR13は、それぞれ独立して、水素原子、炭素数1~6のアルキル基又はフェニル基を表す。]
Examples of the electron withdrawing group represented by R 6 and R 7 include a cyano group, a nitro group, a halogen atom, an alkyl group substituted with a halogen atom, and a group represented by formula (I-1) .
Figure JPOXMLDOC01-appb-I000006
[Wherein, R 11 represents a hydrogen atom or an alkyl group having 1 to 25 carbon atoms, and at least one of the methylene groups contained in the alkyl group may be substituted by an oxygen atom.
X 1 represents —CO—, —COO—, —OCO—, —NR 12 CO— or CONR 13 —.
R 12 and R 13 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group. ]
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 ハロゲン原子で置換されたアルキル基としては、例えば、トリフルオロメチル基、ペルフルオロエチル基、ペルフルオロプロピル基、ペルフルオロイソプロピル基、ペルフルオロブチル基、ペルフルオロsec-ブチル基、ペルフルオロtert-ブチル基、ペルフルオロペンチル基及びペルフルオロヘキシル基等のパーフルオロアルキル基等が挙げられる。ハロゲン原子で置換されたアルキル基の炭素数としては、通常1~25である。
The halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
Examples of the alkyl group substituted by a halogen atom include trifluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluoroisopropyl group, perfluorobutyl group, perfluorosec-butyl group, perfluorotert-butyl group, perfluoropentyl group, and the like Perfluoroalkyl groups, such as perfluorohexyl group, etc. are mentioned. The carbon number of the alkyl group substituted with a halogen atom is usually 1 to 25.
 R11で表される炭素数1~25のアルキル基としては、R及びRで表されるアルキル基と同じものが挙げられる。
 R12及びR13で表される炭素数1~6のアルキル基としては、R1Aで表される炭素数1~6で表されるアルキル基と同じものが挙げられる。
Examples of the alkyl group having 1 to 25 carbon atoms represented by R 11 include the same as the alkyl groups represented by R 1 and R 5 .
Examples of the C 1 to C 6 alkyl group represented by R 12 and R 13 include the same as the C 1 to C 6 alkyl group represented by R 1A .
 R及びRは互いに連結して環構造を形成していてもよく、R及びRより形成される環構造としては、例えば、メルドラム酸構造、バルビツール酸構造、ジメドン構造等が挙げられる。 R 6 and R 7 may be linked to each other to form a ring structure, and examples of the ring structure formed of R 6 and R 7 include a Meldrum's acid structure, a barbituric acid structure, a dimedone structure, etc. Be
 R及びRが互いに結合して形成される環構造としては、Rと結合している窒素原子を含む含窒素環構造であって、例えば、4~14員環の含窒素複素環が挙げられる。R及びRが互いに連結して形成される環構造は、単環であってもよいし、多環であってもよい。具体的には、ピロリジン環、ピロリン環、イミダゾリジン環、イミダゾリン環、オキサゾリン環、チアゾリン環、ピペリジン環、モルホリン環、ピペラジン環、インドール環、イソインドール環等が挙げられる。 The ring structure formed by bonding R 2 and R 3 to each other is a nitrogen-containing ring structure containing a nitrogen atom bonded to R 2, and is, for example, a 4- to 14-membered nitrogen-containing heterocyclic ring It can be mentioned. The ring structure formed by linking R 2 and R 3 to each other may be monocyclic or polycyclic. Specifically, pyrrolidine ring, pyrroline ring, imidazolidine ring, imidazoline ring, oxazoline ring, thiazoline ring, piperidine ring, morpholine ring, piperazine ring, indole ring, isoindole ring and the like can be mentioned.
 R及びRが互いに結合して形成される環構造としては、R及びRが結合している窒素原子を含む含窒素環構造であって、例えば、4~14員環(好ましくは4~8員環)の含窒素複素環が挙げられる。R及びRが互いに連結して形成される環構造は、単環であってもよいし、多環であってもよい。具体的には、R及びRが互いに連結して形成される環構造と同じものが挙げられる。 The ring structure formed by bonding R 1 and R 2 to each other is a nitrogen-containing ring structure containing a nitrogen atom to which R 1 and R 2 are bonded, and is, for example, a 4- to 14-membered ring (preferably And 4 to 8 membered rings). The ring structure formed by linking R 1 and R 2 to each other may be monocyclic or polycyclic. Specifically, the same as the ring structure formed by linking R 2 and R 3 to each other can be mentioned.
 R及びRが互いに結合して形成される環構造としては、4~14員環の含窒素環構造が挙げられ、5員環~9員環の含窒素環構造が好ましい。R及びRが互いに結合して形成される環構造は、単環であってもよいし、多環であってもよい。これらの環は置換基を有していてもよく、このような環構造としては、前記R及びRが互いに連結して形成される環構造として例示したものと同じものが挙げられる。 The ring structure formed by combining R 2 and R 4 with one another includes a 4- to 14-membered nitrogen-containing ring structure, and a 5- to 9-membered nitrogen-containing ring structure is preferable. The ring structure formed by bonding R 2 and R 4 to each other may be monocyclic or polycyclic. These rings may have a substituent, and as such a ring structure, the same one as exemplified as the ring structure formed by connecting the aforementioned R 2 and R 3 to each other can be mentioned.
 R及びRが互いに連結して形成される環構造としては、R-C=C-C=C-Rが環の骨格を形成する環構造である。例えば、フェニル基等が挙げられる。 The ring structure formed by linking R 3 and R 6 to each other is a ring structure in which R 3 -C = C-C = C-R 6 forms a ring skeleton. For example, a phenyl group etc. are mentioned.
 RとRが互いに連結して環構造を形成している式(I)で表される化合物としては式(I-A)で表される化合物が挙げられ、R及びRが互いに連結して環構造を形成している式(I)で表される化合物としては、式(I-B)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-I000007
[式(I-A)、式(I-B)中、R、R、R、R、R及びRは、それぞれ上記と同じ意味を表す。
 環W及び環Wは、それぞれ独立して、含窒素環を表す。]
Examples of the compound represented by formula (I) in which R 2 and R 3 are linked to each other to form a ring structure include compounds represented by formula (IA), and R 2 and R 4 Examples of the compound represented by the formula (I) which forms a ring structure by linking include a compound represented by the formula (IB) and the like.
Figure JPOXMLDOC01-appb-I000007
[In formula (IA) and formula (IB), R 1 , R 3 , R 4 , R 5 , R 6 and R 7 each represent the same meaning as described above.
Ring W 1 and ring W 2 each independently represent a nitrogen-containing ring. ]
 環W及び環Wは、環の構成単位として窒素原子を含有する含窒素環を表す。環W及び環Wは、それぞれ独立して、単環であってもよいし、多環であってもよく、窒素以外のヘテロ原子を環の構成単位として含んでいてもよい。環W及び環Wは、それぞれ独立して、5員環~9員環の環であることが好ましい。 Ring W 1 and ring W 2 represent a nitrogen-containing ring containing a nitrogen atom as a constituent unit of the ring. The ring W 1 and the ring W 2 may be each independently a single ring or multiple rings, and may contain a heteroatom other than nitrogen as a constituent unit of the ring. The ring W 1 and the ring W 2 are preferably each independently a 5- to 9-membered ring.
 式(I-A)で表される化合物は、式(I-A-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-I000008
[式(I-A)中、R、R、R、R及びRは、それぞれ上記と同じ意味を表す。
 Aは、-CH-、-O-、-S-又は-NR1D-を表す。
 R14及びR15は、それぞれ独立して、水素原子又は炭素数1~12のアルキル基を表す。
 R1Dは、水素原子又は炭素数1~6のアルキル基を表す。]
The compound represented by the formula (IA) is preferably a compound represented by the formula (IA-1).
Figure JPOXMLDOC01-appb-I000008
[In formula (IA), R 1 , R 4 , R 5 , R 6 and R 7 each represent the same meaning as described above.
A 1 represents -CH 2- , -O-, -S- or -NR 1D- .
Each of R 14 and R 15 independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
R 1D represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. ]
 式(I-B)で表される化合物は、式(I-B-1)で表される化合物及び式(I-B-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-I000009
[式(I-B-1)中、R、R及びRは、それぞれ上記と同じ意味を表す。
 R16は、それぞれ独立して、水素原子又は炭素数1~12のアルキル基、アリール基を表す。]
The compound represented by the formula (IB) is preferably a compound represented by the formula (IB-1) and a compound represented by the formula (IB-2).
Figure JPOXMLDOC01-appb-I000009
[In the formula (I-B-1), R 1 , R 6 and R 7 each represent the same meaning as described above.
Each R 16 independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group. ]
Figure JPOXMLDOC01-appb-I000010
[式(I-B-2)中、R、R、R及びRは、それぞれ上記と同じ意味を表す。
 R30は、水素原子、シアノ基、ニトロ基、ハロゲン原子、メルカプト基、アミノ基、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数6~18の芳香族炭化水素基、炭素数2~13のアシル基、炭素数2~13のアシルオキシ基又は炭素数2~13のアルコキシカルボニル基を表す。
 R31は、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、メルカプト基、炭素数1~12のアルキルチオ基、置換基を有していてもよいアミノ基又は複素環基を表す。]
Figure JPOXMLDOC01-appb-I000010
[In the formula (I-B-2), R 3 , R 5 , R 6 and R 7 each represent the same meaning as described above.
R 30 represents a hydrogen atom, a cyano group, a nitro group, a halogen atom, a mercapto group, an amino group, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aromatic hydrocarbon having 6 to 18 carbon atoms And an acyl group having 2 to 13 carbon atoms, an acyloxy group having 2 to 13 carbon atoms, or an alkoxycarbonyl group having 2 to 13 carbon atoms.
R 31 represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a mercapto group, an alkylthio group having 1 to 12 carbon atoms, an amino group or heterocyclic group which may have a substituent, Represent. ]
 R30で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 R30で表されるR30で表される炭素数2~13のアシル基としては、アセチル基、プロピオニル基及びブチリル基等が挙げられる。
 R30で表される炭素数2~13のアシルオキシ基としては、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、ブチルカルボニルオキシ基等が挙げられる。
 R30で表される炭素数2~13のアルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等が挙げられる。
 R30で表される炭素数6~18の芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニル基等の炭素数6~18のアリール基;ベンジル基、フェニルエチル基等の炭素数7~18のアラルキル基が挙げられる。
 R30で表される炭素数1~12のアルキル基としては、R14で表される炭素数1~12のアルキル基と同じものが挙げられる。
 R30で表される炭素数1~12のアルキル基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基等が挙げられる。
 R30は、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、アミノ基又はメルカプト基であることが好ましい。
The halogen atom represented by R 30, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom.
The acyl group of 2 to 13 carbon atoms represented by R 30 represented by R 30, an acetyl group, and the like propionyl group and butyryl group.
Examples of the acyloxy group having 2 to 13 carbon atoms represented by R 30 include a methyl carbonyloxy group, an ethyl carbonyloxy group, a propyl carbonyloxy group, and a butyl carbonyloxy group.
Examples of the alkoxycarbonyl group having 2 to 13 carbon atoms represented by R 30 include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a butoxycarbonyl group and the like.
Examples of the aromatic hydrocarbon group having 6 to 18 carbon atoms represented by R 30 include aryl groups having 6 to 18 carbon atoms such as phenyl group, naphthyl group and biphenyl group; 7 carbon atoms such as benzyl group and phenylethyl group There may be mentioned an aralkyl group of -18.
Examples of the alkyl group having 1 to 12 carbon atoms represented by R 30 include the same ones as the alkyl group having 1 to 12 carbon atoms represented by R 14 .
Examples of the alkyl group having 1 to 12 carbon atoms represented by R 30 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and a pentoxy group.
R 30 is preferably an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an amino group or a mercapto group.
 R31で表される炭素数1~12のアルキル基としては、R14で表される炭素数1~12のアルキル基と同じものが挙げられる。
 R31で表される炭素数1~12のアルコキシ基としては、R30で表される炭素数1~12のアルコキシ基と同じものが挙げられる。
 R31で表される炭素数1~12のアルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基等が挙げられる。
 R31で表される置換基を有していてもよいアミノ基としては、アミノ基;N-メチルアミノ基、N-エチルアミノ基等の1つの炭素数1~8のアルキル基で置換されたアミノ基;N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N,N-メチルエチルアミノ基等の2つの炭素数1~8のアルキル基で置換されたアミノ基;等が挙げられる。
 R31で表される複素環としては、ピロリジニル基、ピペリジニル基、モルホリニル基等の炭素数4~9の含窒素複素環基等が挙げられる。
Examples of the alkyl group having 1 to 12 carbon atoms represented by R 31 include the same ones as the alkyl group having 1 to 12 carbon atoms represented by R 14 .
Examples of the C 1-12 alkoxy group represented by R 31 include the same as the C 1-12 alkoxy group represented by R 30 .
Examples of the alkylthio group having 1 to 12 carbon atoms represented by R 31 include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group and a hexylthio group.
The amino group which may have a substituent represented by R 31 is, for example, an amino group; one alkyl group having 1 to 8 carbon atoms such as N-methylamino group or N-ethylamino group Amino groups; amino groups substituted with two alkyl groups having 1 to 8 carbon atoms such as N, N-dimethylamino, N, N-diethylamino, N, N-methylethylamino and the like; and the like.
Examples of the heterocyclic ring represented by R 31 include nitrogen-containing heterocyclic groups having 4 to 9 carbon atoms such as pyrrolidinyl group, piperidinyl group and morpholinyl group.
 R及びRが互いに連結して環構造を形成し、かつR及びRが互いに結合して環構造を形成する式(I)で表される化合物としては、式(I-C)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-I000011
[式(I-C)中、R1、及びRは上記と同じ意味を表す。
 R21、R22は、それぞれ独立して、水素原子、炭素数1~12のアルキル基又はヒドロキシ基を表す。
 X及びXは、それぞれ独立して、-CH-又は-N(R25)=を表す。
 R25は、水素原子、炭素数1~25のアルキル基、置換基を有していてもよい芳香族炭化水素基を表す。]
As a compound represented by the formula (I) in which R 3 and R 6 are linked to each other to form a ring structure, and R 2 and R 4 are linked to each other to form a ring structure, a compound represented by formula (IC) And the like.
Figure JPOXMLDOC01-appb-I000011
[In formula (I-C), R 1, R 6 and R 7 represent the same meaning as described above.
Each of R 21 and R 22 independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a hydroxy group.
Each of X 2 and X 3 independently represents —CH 2 — or —N (R 25 ) =.
R 25 represents a hydrogen atom, an alkyl group having 1 to 25 carbon atoms, or an aromatic hydrocarbon group which may have a substituent. ]
 R25で表される炭素数1~25のアルキル基としては、Rで表される炭素数1~25のアルキル基と同じものが挙げられる。
 R25で表される芳香族炭化水素基としては、フェニル基、ナフチル基等のアリール基:ベンジル基、フェニルエチル基等のアラルキル基:ビフェニル基等が挙げられ、炭素数6~20の芳香族炭化水素基であることが好ましい。R25で表される芳香族炭化水素基が有していてもよい置換基としては、ヒドロキシ基等が挙げられる。
Examples of the alkyl group having 1 to 25 carbon atoms represented by R 25 include the same ones as the alkyl group having 1 to 25 carbon atoms represented by R 1 .
Examples of the aromatic hydrocarbon group represented by R 25 include aryl groups such as phenyl group and naphthyl group: aralkyl groups such as benzyl group and phenylethyl group: biphenyl group and the like, and aromatics having 6 to 20 carbon atoms It is preferably a hydrocarbon group. Examples of the substituent which the aromatic hydrocarbon group represented by R 25 may have include a hydroxy group and the like.
 R及びRは、それぞれ独立して、電子吸引性基であることが好ましい。 Preferably, R 3 and R 6 are each independently an electron withdrawing group.
 R及びRが互いに連結して環構造を形成し、かつR及びRが互いに結合して環構造を形成する式(I)で表される化合物としては、式(I-D)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-I000012
 [式(I-D)中、R、R5、R7は上記と同じ意味を表す。
 R25、R26、R27及びR28は、それぞれ独立して、水素原子、置換基を有してもよい炭素数1~12のアルキル基、ヒドロキシ基、アラルキル基を表す。]
Examples of the compound represented by the formula (I) in which R 1 and R 2 are linked to each other to form a ring structure and R 3 and R 6 are linked to each other to form a ring structure include a compound represented by formula (ID) And the like.
Figure JPOXMLDOC01-appb-I000012
[In the formula (I-D), R 4 , R 5 and R 7 represent the same meaning as described above.
R 25 , R 26 , R 27 and R 28 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may have a substituent, a hydroxy group or an aralkyl group. ]
 R25、R26、R27及びR28で表される炭素数1~12のアルキル基としては、R1A及びR1Bで表される炭素数1~12のアルキル基と同じものが挙げられる。R25、R26、R27及びR28で表される炭素数1~12のアルキル基が有していてもよい置換基としてはヒドロキシ基が挙げられる。
 R25、R26、R27及びR28で表されるアラルキル基としては、ベンジル基、フェニルエチル基等の炭素数7~15のアラルキル基が挙げられる。
Examples of the alkyl group having 1 to 12 carbon atoms represented by R 25 , R 26 , R 27 and R 28 include the same ones as the alkyl group having 1 to 12 carbon atoms represented by R 1A and R 1B . Examples of the substituent which the alkyl group having 1 to 12 carbon atoms represented by R 25 , R 26 , R 27 and R 28 may have include a hydroxy group.
Examples of the aralkyl group represented by R 25 , R 26 , R 27 and R 28 include aralkyl groups having 7 to 15 carbon atoms such as benzyl group and phenylethyl group.
 R及びRが互いに連結して環構造を形成している化合物(I)としては、式(I-E)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-I000013
[式(I-C)中、R、R、R、Rは、それぞれ上記と同じ意味を表す。
環Wは、環状化合物を表す。]
 環Wは、5員環~9員環の環であり、窒素原子、酸素原子、硫黄原子等のヘテロ原子を環の構成単位として含んでいてもよい。
Examples of the compound (I) in which R 6 and R 7 are linked to each other to form a ring structure include compounds represented by the formula (IE) and the like.
Figure JPOXMLDOC01-appb-I000013
[In the formula (I-C), R 1 , R 3 , R 4 and R 5 each represent the same meaning as described above.
Ring W 3 represents a cyclic compound. ]
The ring W 3 is a 5- to 9-membered ring, and may contain a heteroatom such as a nitrogen atom, an oxygen atom or a sulfur atom as a constituent unit of the ring.
 式(I-E)で表される化合物は、式(IE-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-I000014
[式(I-E-1)中、R、R、R及びRは、それぞれ上記と同じ意味を表す。
 R17、R18、R19、Rは、それぞれ独立して、水素原子又は置換基を有してもよい炭素数1~12のアルキル基、アラルキル基、アリール基を表し、該アルキル基又はアラルキル基に含まれる-CH-基は-NR2D-、-C(=O)-、-C(=S)-、-O-、-S-に置換されていてもよく、R17及びR18は互いに連結して環構造を形成してもよく、R18及びR19は互いに連結して環構造を形成してもよく、R19及びRは、互いに連結して環構造を形成してもよい。R2Dは水素原子、又は置換基を有してもよい炭素数1~12のアルキル基、アラルキル基、アリール基を表し、該アルキル基又はアラルキル基に含まれる-CH-基は-C(=O)-、-C(=S)-、-O-、-S-に置換されていてもよい。
m、p、qはそれぞれ独立して1~3の整数を表す。]
The compound represented by the formula (IE) is preferably a compound represented by the formula (IE-1).
Figure JPOXMLDOC01-appb-I000014
[In the formula (I-E-1), R 1 , R 2 , R 3 and R 5 each represent the same meaning as described above.
R 17 , R 18 , R 19 and R q each independently represent a hydrogen atom or an alkyl, aralkyl or aryl group having 1 to 12 carbon atoms which may have a substituent, and the alkyl or The -CH 2 -group contained in the aralkyl group may be substituted by -NR 2D- , -C (= O)-, -C (= S)-, -O-, -S-, R 17 and R 18 may be linked to each other to form a ring structure, R 18 and R 19 may be linked to each other to form a ring structure, and R 19 and R q are linked to each other to form a ring structure You may R 2D represents a hydrogen atom, or an alkyl, aralkyl or aryl group having 1 to 12 carbon atoms which may have a substituent, and the —CH 2 — group contained in the alkyl or aralkyl group is —C OO) —, —C (= S) —, —O— or —S— may be substituted.
m, p and q each independently represent an integer of 1 to 3. ]
 式(I)で表される化合物としては、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000015
Examples of the compound represented by the formula (I) include the following compounds.
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000022

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000025
 光選択吸収化合物(B)の含有量は、光硬化性成分(A)100質量部に対して、通常0.01~20質量部であり、好ましくは0.05~15質量部であり、より好ましくは0.1~10質量部であり、さらに好ましくは0.1~5質量部である。 The content of the photoselective absorption compound (B) is usually 0.01 to 20 parts by mass, preferably 0.05 to 15 parts by mass, relative to 100 parts by mass of the photocurable component (A). The amount is preferably 0.1 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
<光重合開始剤(C)>
[ラジカル重合性開始剤]
 光硬化性成分(A)がラジカル重合化合物である場合、光重合開始剤(C)は光ラジカル重合開始剤を含有する。また、さらに、熱ラジカル重合開始剤を含有していてもよい。光ラジカル重合開始剤は、可視光線、紫外線、X線、又は電子線のような活性エネルギー線の照射によって、ラジカル硬化性化合物の重合反応を開始させるものである。活性エネルギー線硬化性接着剤組成物は、ラジカル重合開始剤を1種又は2種以上含有することができる。
<Photoinitiator (C)>
[Radically polymerizable initiator]
When the photocurable component (A) is a radical polymerization compound, the photopolymerization initiator (C) contains a photoradical polymerization initiator. Furthermore, a thermal radical polymerization initiator may be contained. The photo radical polymerization initiator is to initiate the polymerization reaction of the radical curable compound by irradiation of an active energy ray such as visible light, ultraviolet light, X-ray or electron beam. The active energy ray-curable adhesive composition can contain one or more radical polymerization initiators.
 光ラジカル重合開始剤及び熱ラジカル重合開始剤としては従来公知のものを使用できる。光ラジカル重合開始剤としては、アセトフェノン、3-メチルアセトフェノン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル-2-モルホリノプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のアセトフェノン系開始剤;ベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジアミノベンゾフェノン等のベンゾフェノン系開始剤;ベンゾインプロピルエーテル、ベンゾインメ、チルエーテルベンゾインエチルエーテル等のベンゾインエーテル系開始剤;4-イソプロピルチオキサントン等のチオキサントン系開始剤;キサントン、フルオレノン、カンファーキノン、ベンズアルデヒド、アントラキノン等が挙げられる。 As the photo radical polymerization initiator and the thermal radical polymerization initiator, conventionally known ones can be used. As a radical photopolymerization initiator, acetophenone, 3-methylacetophenone, benzyl dimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-methyl-1- [4- (4) Acetophenone-based initiators such as (methylthio) phenyl-2-morpholinopropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzophenone, 4-chlorobenzophenone, 4,4'-diamino Benzophenone-based initiators such as benzophenone; Benzoin-ether-based initiators such as benzoin propyl ether, benzoimme, and chill ether benzoin ethyl ether; Thioxanthone-based initiators such as 4-isopropyl thioxanthone; Dehydrogenase, anthraquinone, and the like.
 ラジカル重合開始剤の含有量は、ラジカル重合性化合物100質量部に対して、通常0.5~20質量部であり、好ましくは1~6質量部である。ラジカル重合開始剤を0.5重量部以上含有させることにより、ラジカル重合性化合物を十分に硬化させることができる。 The content of the radical polymerization initiator is usually 0.5 to 20 parts by mass, preferably 1 to 6 parts by mass with respect to 100 parts by mass of the radical polymerizable compound. By containing 0.5 parts by weight or more of the radical polymerization initiator, the radically polymerizable compound can be sufficiently cured.
(カチオン重合性開始剤)
 光硬化性成分(A)がカチオン重合性化合物である場合、光重合開始剤(C)は光カチオン重合開始剤である。光カチオン重合開始剤は、可視光線、紫外線、X線、又は電子線のような活性エネルギー線の照射によって、カチオン種又はルイス酸を発生し、カチオン硬化性化合物の重合反応を開始させるものである。光カチオン重合開始剤は、光で触媒的に作用するため、光カチオン硬化性化合物に混合しても保存安定性や作業性に優れる。活性エネルギー線の照射によりカチオン種又はルイス酸を生じる化合物として、例えば、芳香族ヨードニウム塩や芳香族スルホニウム塩等のオニウム塩;芳香族ジアゾニウム塩;鉄-アレーン錯体等を挙げることができる。
(Cationically polymerizable initiator)
When the photocurable component (A) is a cationically polymerizable compound, the photopolymerization initiator (C) is a photocationic polymerization initiator. The cationic photopolymerization initiator generates a cationic species or a Lewis acid by irradiation of an active energy ray such as visible light, ultraviolet light, X-ray or electron beam to initiate a polymerization reaction of the cationic curable compound. . Since the photocationic polymerization initiator acts catalytically with light, it is excellent in storage stability and workability even when it is mixed with the photocationic curable compound. Examples of the compound that generates a cationic species or a Lewis acid upon irradiation with active energy rays include onium salts such as aromatic iodonium salts and aromatic sulfonium salts; aromatic diazonium salts; iron-arene complexes and the like.
 芳香族ヨードニウム塩は、ジアリールヨードニウムカチオンを有する化合物であり、当該カチオンとして、典型的にはジフェニルヨードニウムカチオンを挙げることができる。芳香族スルホニウム塩は、トリアリールスルホニウムカチオンを有する化合物であり、当該カチオンとして、典型的にはトリフェニルスルホニウムカチオンや4,4’-ビス(ジフェニルスルホニオ)ジフェニルスルフィドカチオン等を挙げることができる。芳香族ジアゾニウム塩は、ジアゾニウムカチオンを有する化合物であり、当該カチオンとして、典型的にはベンゼンジアゾニウムカチオンを挙げることができる。また、鉄-アレーン錯体は、典型的にはシクロペンタジエニル鉄(II)アレーンカチオン錯塩である。 The aromatic iodonium salt is a compound having a diaryliodonium cation, and the cation can typically include a diphenyl iodonium cation. The aromatic sulfonium salt is a compound having a triarylsulfonium cation, and as the cation, typically, triphenylsulfonium cation, 4,4'-bis (diphenylsulfonio) diphenyl sulfide cation and the like can be mentioned. The aromatic diazonium salt is a compound having a diazonium cation, and typically, a benzene diazonium cation can be mentioned as the cation. Also, the iron-arene complex is typically cyclopentadienyl iron (II) arene cation complex salt.
 上に示したカチオンは、アニオン(陰イオン)と対になって光カチオン重合開始剤を構成する。光カチオン重合開始剤を構成するアニオンの例を挙げると、特殊リン系アニオン[(Rf)nPF6-n-、ヘキサフルオロホスフェートアニオンPF6 -、ヘキサフルオロアンチモネートアニオンSbF6 -、ペンタフルオロヒドロキシアンチモネートアニオンSbF5(OH)-、ヘキサフルオロアーセネートアニオンAsF6 -、テトラフルオロボレートアニオンBF4 -、テトラキス(ペンタフルオロフェニル)ボレートアニオンB(C65)4 -等がある。中でも、カチオン重合性化合物の硬化性及び得られる光選択吸収層の安全性の観点から、特殊リン系アニオン[(Rf)nPF6-n-、ヘキサフルオロホスフェートアニオンPF6 -であることが好ましい。 The cations shown above are paired with anions (anions) to make up a photocationic initiator. Examples of anions constituting the photocationic polymerization initiator include: special phosphorus anion [(Rf) n PF 6-n ] , hexafluorophosphate anion PF 6 , hexafluoroantimonate anion SbF 6 , pentafluoro There are hydroxyantimonate anion SbF 5 (OH) , hexafluoroarsenate anion AsF 6 , tetrafluoroborate anion BF 4 , tetrakis (pentafluorophenyl) borate anion B (C 6 F 5 ) 4 − and the like. Among them, from the viewpoint of safety of the curability and the resulting light selective absorption layer of the cationically polymerizable compound, a special phosphate based anionic [(Rf) n PF 6- n] -, hexafluorophosphate anion PF 6 - to be preferable.
 光カチオン重合開始剤は、1種のみを単独で使用してもよいし2種以上を併用してもよい。中でも、芳香族スルホニウム塩は、300nm付近の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械的強度や接着強度を有する硬化物を与えることができるため好ましく用いられる。 The photocationic polymerization initiator may be used alone or in combination of two or more. Among them, the aromatic sulfonium salt is preferably used because it has an ultraviolet absorbing property even in the wavelength region around 300 nm and is excellent in curability and can give a cured product having good mechanical strength and adhesive strength.
 光カチオン重合開始剤の含有量は、カチオン重合性化合物100質量部に対して通常、0.5~10質量部であり、好ましくは6質量部以下である。光カチオン重合開始剤を0.5質量部以上配合することにより、カチオン重合性化合物を十分に硬化させることができる。 The content of the photo cationic polymerization initiator is usually 0.5 to 10 parts by mass, preferably 6 parts by mass or less, with respect to 100 parts by mass of the cationically polymerizable compound. The cationically polymerizable compound can be sufficiently cured by blending the cationic photopolymerization initiator in an amount of 0.5 parts by mass or more.
(任意成分)
 活性エネルギー線硬化性組成物は、必要に応じて、添加剤を含むことができる。添加剤としては、イオントラップ剤、連鎖移動剤、重合促進剤、増感剤、増感助剤、光安定剤、粘着付与剤、充填剤、流動調整剤、可塑剤、消泡剤、レベリング剤、シランカップリング剤、透光性微粒子、有機溶剤等の溶剤、熱重合開始剤、ブロッキング剤、防汚剤、界面活性剤、架橋剤、硬化剤、粘度調整剤、帯電防止剤、防汚剤、スリップ剤、屈折率調整剤、分散剤等が挙げられる。
(Optional ingredient)
The active energy ray-curable composition can optionally contain an additive. As an additive, an ion trap agent, a chain transfer agent, a polymerization accelerator, a sensitizer, a sensitizer, a light stabilizer, a tackifier, a filler, a flow control agent, a plasticizer, an antifoamer, a leveling agent , Silane coupling agent, translucent fine particles, solvents such as organic solvents, thermal polymerization initiator, blocking agent, antifouling agent, surfactant, crosslinking agent, curing agent, viscosity modifier, antistatic agent, antifouling agent Slip agents, refractive index modifiers, dispersants and the like.
 活性エネルギー線硬化性組成物を、ハードコート層等の表面処理層の形成に用いる場合、有機溶剤を含むことが好ましい。有機溶剤としては、ヘキサン、シクロヘキサン、オクタン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;メタノール、エタノール、1-プロパノール、イソプロパノール、n-ブタノール、s-ブタノール、t-ブタノール、ベンジルアルコール、PGME、エチレングリコール、シクロヘキサノール等のアルコール類;メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、ヘプタノン、ジイソブチルケトン、ジエチルケトン等のケトン類;酢酸エチル、酢酸ブチル、酢酸イソブチル等のエステル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル化グリコールエーテル類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール等のセルソルブ類;2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール等のカルビトール類;ヘキサン、シクロヘキサン等の脂肪族炭化水素類;メチレンクロライド、クロロホルム、四塩化炭素等のハロゲン化炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、n-メチルピロリドン等のアミド類;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類;1-メトキシ-2-プロパノール等のエーテルアルコール類、;水等が挙げられる。有機溶媒は、粘度等を考慮して選択して用いることができる。活性エネルギー線硬化性組成物に有機溶剤を含むことにより、樹脂フィルムに対する塗工性が向上する。 When using an active energy ray curable composition for formation of surface treatment layers, such as a hard-coat layer, it is preferable that an organic solvent is included. Organic solvents include aliphatic hydrocarbons such as hexane, cyclohexane and octane; aromatic hydrocarbons such as toluene and xylene; methanol, ethanol, 1-propanol, isopropanol, n-butanol, s-butanol and t-butanol Alcohols such as benzyl alcohol, PGME, ethylene glycol and cyclohexanol; Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, heptanone, diisobutyl ketone and diethyl ketone; Ethyl acetate, butyl acetate, isobutyl acetate and the like Esters; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene Glycol ethers such as glycol monoethyl ether; Esterified glycol ethers such as ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate; Cellsolves such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol; 2- Carbitols such as (2-methoxyethoxy) ethanol, 2- (2-ethoxyethoxy) ethanol and 2- (2-butoxyethoxy) ethanol; aliphatic hydrocarbons such as hexane and cyclohexane; methylene chloride, chloroform, Halogenated hydrocarbons such as carbon chloride; Aromatic hydrocarbons such as benzene, toluene and xylene; Amides such as dimethylformamide, dimethylacetamide and n-methylpyrrolidone; Diethyl 1-methoxy-2-ether alcohols propanol,; ether, dioxane, tetrahydrofuran and the like water and the like. The organic solvent can be selected and used in consideration of viscosity and the like. By including the organic solvent in the active energy ray curable composition, the coatability to the resin film is improved.
 これらの有機溶剤は、単独で用いてもよいし、必要に応じて数種類を混合して用いてもよい。活性エネルギー線硬化性組成物が有機溶剤を含む場合には、塗工後にその有機溶剤を蒸発させる必要がある。そのため有機溶剤は、60℃~160℃の範囲の沸点を有するものであることが望ましい。また、その20℃における飽和蒸気圧は、0.1kPa~20kPaの範囲にあることが好ましい。 These organic solvents may be used alone or, if necessary, may be used as a mixture of several kinds. When the active energy ray curable composition contains an organic solvent, it is necessary to evaporate the organic solvent after coating. Therefore, it is desirable that the organic solvent have a boiling point in the range of 60.degree. C. to 160.degree. The saturated vapor pressure at 20 ° C. is preferably in the range of 0.1 kPa to 20 kPa.
 レベリング剤としては、例えば、フッ素系レベリング剤、シリコーン系レベリング剤、アクリル系レベリング剤等の公知のものを挙げることができる。レベリング剤の含有量は、光硬化性成分(A)100質量部に対して0.1~1質量部であることが好ましい。0.1質量部未満であると、特に光選択吸収層が表面処理層である場合、表面の平面性が悪くなり、ヘイズやムラが生じやすく、ブロッキング防止性が充分に発揮されないおそれがある。一方、1質量部を超えると、活性エネルギー線硬化性組成物の分散性やポットライフが悪くなりやすい。 As a leveling agent, well-known things, such as a fluorine-type leveling agent, a silicone type leveling agent, an acryl-type leveling agent, can be mentioned, for example. The content of the leveling agent is preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the photocurable component (A). If the light selective absorption layer is a surface treatment layer, the flatness of the surface may be deteriorated, haze and unevenness may easily occur, and the blocking resistance may not be sufficiently exhibited. On the other hand, when it is more than 1 part by mass, the dispersibility and the pot life of the active energy ray-curable composition tend to be deteriorated.
 活性エネルギー線硬化性組成物は、光硬化性成分(A)の種類等によっては、接着機能を有する場合があり、接着剤として使用することができる。活性エネルギー線硬化性組成物を接着剤として使用する場合、その粘度が低いことが好ましい。具体的には、25℃における粘度が、好ましくは1000mPa・s以下、より好ましくは500mPa・s以下、さらに好ましくは300mPa・s以下であり、通常250mPa・s以上である。本発明に係る硬化性接着剤組成物は無溶剤型であることができるが、採用する塗工方式に適した粘度に調整するために有機溶剤を含有させてもよい。 The active energy ray curable composition may have an adhesive function depending on the type of the photocurable component (A) and the like, and can be used as an adhesive. When the active energy ray-curable composition is used as an adhesive, its viscosity is preferably low. Specifically, the viscosity at 25 ° C. is preferably 1000 mPa · s or less, more preferably 500 mPa · s or less, still more preferably 300 mPa · s or less, and usually 250 mPa · s or more. The curable adhesive composition according to the present invention may be of a non-solvent type, but may contain an organic solvent in order to adjust the viscosity to a suitable value for the applied coating method.
<樹脂フィルム(a)>
 樹脂フィルム(a)としては、偏光フィルム、位相差フィルム、ウィンドフィルム等の光学機能を有するフィルムであってもよい。光学機能を有するフィルムとは、光線を透過、反射、吸収することができるフィルムを意味する。
<Resin film (a)>
The resin film (a) may be a film having an optical function, such as a polarizing film, a retardation film, or a wind film. The film having an optical function means a film capable of transmitting, reflecting and absorbing light.
 ウィンドフィルムとは、フレキシブルディスプレイ等のフレキシブル表示装置における前面板を意味し、一般的には表示装置の最表面に配置される。ウィンドウフィルムは、例えばポリイミド樹脂からなる樹脂フィルムが挙げられる。ウィンドウフィルムは、例えばポリイミド及びシリカを含む樹脂フィルム等の有機材料と無機材料とのハイブリッドフィルムであってもよい。また、ウィンドウフィルムはその表面に、表面硬度や防汚性、耐指紋性を機能付与するためのハードコート層が配置されていてもよい。ウィンドウフィルムとしては、特開2017―94488号記載のフィルム等が挙げられる。 A window film means a front plate in a flexible display such as a flexible display, and is generally disposed on the outermost surface of the display. The window film is, for example, a resin film made of a polyimide resin. The window film may be a hybrid film of an organic material and an inorganic material such as a resin film containing, for example, polyimide and silica. In addition, a hard coat layer may be disposed on the surface of the window film to impart surface hardness, stain resistance, and fingerprint resistance. As a window film, the film of Unexamined-Japanese-Patent No. 2017-94488, etc. are mentioned.
〔位相差フィルム〕
 位相差フィルムとは、光学異方性を示す光学フィルムであって、例えば、ポリビニルアルコール、ポリカーボネート、ポリエステル、ポリアリレート、ポリイミド、ポリオレフィン、ポリシクロオレフィン、ポリスチレン、ポリサルホン、ポリエーテルサルホン、ポリビニリデンフルオライド/ポリメチルメタクリレート、アセチルセルロース、エチレン-酢酸ビニル共重合体ケン化物、ポリ塩化ビニルなどからなる高分子フィルムを1.01~6倍程度に延伸することにより得られる延伸フィルムなどが挙げられる。中でも、ポリカーボネートフィルムやシクロオレフィン系樹脂フィルムを一軸延伸または二軸延伸した高分子フィルムであることが好ましい。また、位相差フィルムは重合性液晶化合物を硬化させてなる位相差フィルムであってもよい。なお、本明細書において、位相差フィルムは、ゼロレタデーションフィルムを含み、一軸性位相差フィルム、低光弾性率位相差フィルム、広視野角位相差フィルムなどと称されるフィルムも含む。
[Retardation film]
The retardation film is an optical film showing optical anisotropy, and for example, polyvinyl alcohol, polycarbonate, polyester, polyarylate, polyimide, polyolefin, polycycloolefin, polystyrene, polysulfone, polyether sulfone, polyvinylidene fluoro, An example is a stretched film obtained by stretching a polymer film composed of a ride / polymethyl methacrylate, acetyl cellulose, a saponified ethylene-vinyl acetate copolymer, polyvinyl chloride and the like by about 1.01 to 6 times. Among them, a polymer film obtained by uniaxially or biaxially stretching a polycarbonate film or a cycloolefin resin film is preferable. The retardation film may be a retardation film obtained by curing a polymerizable liquid crystal compound. In the present specification, the retardation film includes a zero retardation film, and also includes a film referred to as a uniaxial retardation film, a low photoelastic modulus retardation film, a wide viewing angle retardation film, or the like.
 液晶性化合物の塗布・配向によって光学異方性を発現させたフィルムや、無機層状化合物の塗布によって光学異方性を発現させたフィルムとしては、温度補償型位相差フィルムと称されるフィルム、JX液晶フィルム株式会社ら販売されている「NHフィルム(商品名;棒状液晶が傾斜配向したフィルム)」、富士フイルム株式会社から販売されている「WVフィルム(商品名;円盤状液晶が傾斜配向したフィルム)」、住友化学株式会社から販売されている「VACフィルム(商品名;完全二軸配向型のフィルム)」、「new VACフィルム(商品名;二軸配向型のフィルム)」などが挙げられる。 A film referred to as a temperature compensation type retardation film, a film referred to as a temperature-compensated retardation film, a film in which optical anisotropy is expressed by application and orientation of a liquid crystal compound, and a film in which optical anisotropy is expressed by application of an inorganic layered compound. “NH film (trade name; film in which rod-like liquid crystals are inclined and oriented)” sold by Liquid Crystal Film Co., Ltd., etc., “WV film (trade name: disk-like liquid crystal with slant orientation) sold by Fujifilm Co., Ltd. ], "VAC film (trade name; film of fully biaxial orientation type)" sold by Sumitomo Chemical Co., Ltd., "new VAC film (trade name: film of biaxial orientation type)" and the like.
 ゼロレタデーションフィルムとは、正面レタデーションReと厚み方向のレタデーションRthとが、ともに-15~15nmであり、光学的に等方なフィルムをいう。ゼロレタデーションフィルムとしては、セルロース系樹脂、ポリオレフィン系樹脂(鎖状ポリオレフィン系樹脂、ポリシクロオレフィン系樹脂など)またはポリエチレンテレフタレート系樹脂からなる樹脂フィルムが挙げられ、レタデーション値の制御が容易で、入手も容易であるという点で、セルロース系樹脂またはポリオレフィン系樹脂が好ましい。ゼロレタデーションフィルムは、保護フィルムとしても用いることができる。ゼロレタデーションフィルムとしては、富士フイルム(株)から販売されている“Z-TAC”(商品名)、コニカミノルタオプト(株)から販売されている“ゼロタック(登録商標)”、日本ゼオン(株)から販売されている“ZF-14”(商品名)などが挙げられる。 The zero retardation film is an optically isotropic film in which both the front retardation R e and the retardation R th in the thickness direction are -15 to 15 nm. As a zero retardation film, resin films made of cellulose resins, polyolefin resins (chain polyolefin resins, polycycloolefin resins, etc.) or polyethylene terephthalate resins can be mentioned. Cellulose-based resins or polyolefin-based resins are preferred in that they are easy. The zero retardation film can also be used as a protective film. As the zero retardation film, “Z-TAC” (trade name) sold by Fuji Film Co., Ltd., “Zero Tack (registered trademark)” sold by Konica Minolta Opto Co., Ltd., Nippon Zeon Co., Ltd. And “ZF-14” (trade name) sold by
 本発明の光学フィルムにおいて、位相差フィルムは、重合性液晶化合物を硬化させてなる位相差フィルムが好ましい。 In the optical film of the present invention, the retardation film is preferably a retardation film obtained by curing a polymerizable liquid crystal compound.
 液晶性化合物の塗布・配向によって光学異方性を発現させたフィルムとしては、
第一の形態:棒状液晶化合物が支持基材に対して水平方向に配向した位相差フィルム、
第二の形態:棒状液晶化合物が支持基材に対して垂直方向に配向した位相差フィルム、
第三の形態:棒状液晶化合物が面内で螺旋状に配向の方向が変化している位相差フィルム、第四の形態:円盤状液晶化合物が傾斜配向している位相差フィルム、
第五の形態:円盤状液晶化合物が支持基材に対して垂直方向に配向した二軸性の位相差フィルムがあげられる。
As a film in which optical anisotropy is expressed by application and orientation of a liquid crystal compound,
First embodiment: a retardation film in which a rod-like liquid crystal compound is oriented horizontally to a supporting substrate,
Second embodiment: a retardation film in which a rod-like liquid crystal compound is oriented in a direction perpendicular to a supporting substrate,
Third embodiment: a retardation film in which a rod-like liquid crystal compound has a helical orientation in the plane, and a fourth embodiment: a retardation film in which a discotic liquid crystal compound is obliquely aligned,
Fifth embodiment: A biaxial retardation film in which a discotic liquid crystal compound is oriented in a direction perpendicular to a support substrate can be mentioned.
 たとえば、有機エレクトロルミネッセンスディスプレイに用いられる光学フィルムとしては、第一の形態、第二の形態、第五の形態が好適に用いられる。またはこれらを積層させて用いてもよい。 For example, as an optical film used for an organic electroluminescent display, the 1st form, the 2nd form, and the 5th form are used suitably. Or these may be laminated and used.
 位相差フィルムが、重合性液晶化合物の配向状態における重合体からなる層(以下、「光学異方性層」と称する場合がある)である場合、位相差フィルムは逆波長分散性を有することが好ましい。逆波長分散性とは、短波長での液晶配向面内位相差値の方が長波長での液晶配向面内位相差値よりも小さくなる光学特性であり、好ましくは、位相差フィルムが下記式(7)および式(8)を満たすことである。なお、Re(λ)は波長λnmの光に対する面内位相差値を表す。
 Re(450)/Re(550)≦1   (7)
 1≦Re(630)/Re(550)   (8)
 本発明の光学フィルムにおいて、位相差フィルムが第一の形態でかつ逆波長分散性を有する場合、表示装置での黒表示時の着色が低減するため好ましく、前記式(7)において0.82≦Re(450)/Re(550)≦0.93であればより好ましい。さらに120≦Re(550)≦150が好ましい。
When the retardation film is a layer composed of a polymer in the alignment state of the polymerizable liquid crystal compound (hereinafter sometimes referred to as "optically anisotropic layer"), the retardation film has reverse wavelength dispersion. preferable. Reverse wavelength dispersion is an optical characteristic in which the in-plane retardation value at the short wavelength is smaller than the in-plane retardation value at the long wavelength, and preferably the retardation film has the following formula It is to satisfy (7) and equation (8). Re (λ) represents an in-plane retardation value for light of wavelength λ nm.
Re (450) / Re (550) ≦ 1 (7)
1 ≦ Re (630) / Re (550) (8)
In the optical film of the present invention, when the retardation film is in the first form and has reverse wavelength dispersion, it is preferable because the coloration at the time of black display in the display device is reduced, and 0.82 ≦ in the formula (7). It is more preferable if Re (450) / Re (550) ≦ 0.93. Furthermore, 120 ≦ Re (550) ≦ 150 is preferable.
 位相差フィルムが、光学異方性層を有するフィルムである場合の重合性液晶化合物としては、液晶便覧(液晶便覧編集委員会編、丸善(株)平成12年10月30日発行)の「3.8.6 ネットワーク(完全架橋型)」、「6.5.1 液晶材料 b.重合性ネマチック液晶材料」に記載された化合物の中で重合性基を有する化合物、並びに、特開2010-31223号公報、特開2010-270108号公報、特開2011-6360号公報、特開2011-207765号公報、特開2011-162678号、特開2016-81035号公報、国際公開第2017/043438号公報及び特表2011-207765号公報に記載の重合性液晶化合物が挙げられる。 As a polymerizable liquid crystal compound when the retardation film is a film having an optically anisotropic layer, “3” of “Liquid Crystal Handbook” (edited by the LCD Handbook Editorial Board, Maruzen Co., Ltd., published on October 30, 2000). Of the compounds described in “8.6 Network (fully cross-linked type)”, “6.5.1 liquid crystal material b. Polymerizable nematic liquid crystal material”, compounds having a polymerizable group, and JP-A-2010-31223 Publication No. 2010-270108 Publication No. 2011-6360 Publication No. 2011-207765 Publication No. 2011-162678 Publication No. 2016-81035 Publication International Publication No. 2017/043438 And polymerizable liquid crystal compounds described in JP-A-2011-207765.
 重合性液晶化合物の配向状態における重合体から位相差フィルムを製造する方法は、例えば、特開2010-31223号公報に記載の方法が挙げられる。 Examples of the method for producing a retardation film from a polymer in the alignment state of the polymerizable liquid crystal compound include the method described in JP-A-2010-31223.
 第2の形態の場合、正面位相差値Re(550)は0~10nmの範囲に、好ましくは0~5nmの範囲に調整すればよく、厚み方向の位相差値Rthは、-10~-300nmの範囲に、好ましくは-20~-200nmの範囲に調整すればよい。厚み方向の屈折率異方性を意味する厚み方向の位相差値Rthは、面内の進相軸を傾斜軸として50度傾斜させて測定される位相差値R50と面内の位相差値R0 とから算出できる。すなわち、厚み方向の位相差値Rthは、面内の位相差値R0、進相軸を傾斜軸として50度傾斜させて測定した位相差値R50、位相差フィルムの厚みd、及び位相差フィルムの平均屈折率n0から、以下の式 (10)~(12)によりnx、ny及びnz を求め、これらを式(9)に代入して、算出することができる。 In the case of the second embodiment, the front retardation value Re (550) may be adjusted in the range of 0 to 10 nm, preferably in the range of 0 to 5 nm, and the retardation value R th in the thickness direction is -10 to- It may be adjusted in the range of 300 nm, preferably in the range of -20 to -200 nm. The retardation value R th in the thickness direction, which means the refractive index anisotropy in the thickness direction, is an in-plane retardation difference from the retardation value R 50 measured by tilting 50 degrees with the in-plane fast axis as the tilt axis. It can be calculated from the value R 0 . That is, the phase difference value R th in the thickness direction retardation value R 0 in the plane retardation value R 50 measured by inclining 50 degrees inclination axis fast axis, thickness of the retardation film d, and positions the average refractive index n 0 of the retardation film, obtains the n x, n y and n z by the following equation (10) to (12), these are substituted into equation (9) can be calculated.
  Rth=[(n+n)/2-n]×d  (9)
  R =(n-n)×d          (10)
  R50=(n-n')×d/cos(φ)   (11)
  (n+n+n)/3=n        (12)
ここで、
  φ=sin-1〔sin(40°)/n
  n'=n×n/〔n ×sin(φ)+n ×cos(φ)〕1/2
R th = [(n x + n y ) / 2-n z ] × d (9)
R 0 = (n x -n y ) × d (10)
R 50 = (n x -n y ') × d / cos (φ) (11)
(n x + n y + n z ) / 3 = n 0 (12)
here,
φ = sin −1 (sin (40 °) / n 0 )
n y '= n y × n z / [ ny 2 × sin 2 (φ) + n z 2 × cos 2 (φ)] 1/2
 位相差フィルムは、二以上の層を有する多層フィルムであってもよい。例えば、位相差フィルムの片面又は両面に保護フィルムが積層されたものや、二以上の位相差フィルムが粘着剤又は接着剤を介して積層されたものが挙げられる。 The retardation film may be a multilayer film having two or more layers. For example, the thing by which the protective film was laminated | stacked on the single side | surface or both surfaces of retardation film, and the thing by which two or more retardation films were laminated | stacked via the adhesive or the adhesive agent are mentioned.
 光学フィルム40が二以上の位相差フィルムが積層された多層フィルムである場合、本発明の光学フィルムを含む光学積層体の構成としては、図4に示したように、透過光に1/4波長分の位相差を付与する1/4波長位相差層50と透過光に1/2波長分の位相差を付与する1/2波長位相差層70とを、接着剤又は粘着剤60を介して積層した光学フィルム40を含む構成が挙げられる。また、図5に示したように、1/4波長位相差層50aとポジティブC層80とを、接着剤層又は粘着剤層を介して積層した光学フィルム40を含む構成も挙げられる。 When the optical film 40 is a multilayer film in which two or more retardation films are laminated, as a configuration of an optical laminate including the optical film of the present invention, as shown in FIG. A quarter-wave retardation layer 50 for giving a retardation of a minute and a half-wave retardation layer 70 for giving a retardation of a 1⁄2 wavelength to transmitted light through an adhesive or a pressure-sensitive adhesive 60 A configuration including the laminated optical film 40 can be mentioned. Moreover, as shown in FIG. 5, the structure containing the optical film 40 which laminated | stacked the quarter wavelength phase difference layer 50a and the positive C layer 80 through the adhesive bond layer or the adhesive layer is also mentioned.
 図4の1/4波長分の位相差を付与する1/4波長位相差層50、および透過光に1/2波長分の位相差を付与する1/2波長位相差層70は上記第一の形態の光学フィルムであっても第五の形態の光学フィルムであってもよい。図4の構成の場合、少なくとも片方が第五の形態であることがより好ましい。 The first wavelength retardation layer 50 for giving a phase difference of 1⁄4 wavelength shown in FIG. 4 and the half wavelength retardation layer 70 for giving a phase difference of 1⁄2 wavelength to transmitted light The optical film of the fifth aspect may be used. In the case of the configuration of FIG. 4, it is more preferable that at least one is the fifth form.
 図5の構成の場合、1/4波長位相差層50aは上記第一の形態の光学フィルムであることが好ましく、さらに式(7)、式(8)を満たすことがより好ましい。 In the case of the configuration of FIG. 5, the 1⁄4 wavelength retardation layer 50 a is preferably the optical film of the first embodiment, and more preferably satisfies the expressions (7) and (8).
〔偏光フィルム〕
 偏光フィルムは、自然光からある一方向の直線偏光を選択的に透過する機能を有するフィルムである。例えば、ポリビニルアルコール系樹脂フィルムに二色性色素としてのヨウ素を吸着・配向させたヨウ素系偏光フィルム、ポリビニルアルコール系樹脂フィルムに二色性色素としての二色性染料を吸着・配向させた染料系偏光フィルム、及びリオトロビック液晶状態の二色性染料をコーティングし、配向・固定化した塗布型偏光フィルム等が挙げられる。これらの偏光フィルムは、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を吸収するため吸収型偏光フィルムと呼ばれている。偏光フィルムは、吸収型偏光フィルムに限定されず、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を反射する反射型偏光フィルム、又はもう一方向の直線偏光を散乱する散乱型偏光フィルムでも構わないが、視認性に優れる点から吸収型偏光フィルムが好ましい。中でも、ポリビニルアルコール系樹脂で構成されるポリビニルアルコール系偏光フィルムがより好ましく、ポリビニルアルコール系樹脂フィルムにヨウ素や二色性染料等の二色性色素を吸着・配向させたポリビニルアルコール系偏光フィルムがさらに好ましく、ポリビニルアルコール系樹脂フィルムにヨウ素を吸着・配向させたポリビニルアルコール系偏光フィルムが特に好ましい。
[Polarizing film]
The polarizing film is a film having a function of selectively transmitting one-way linear polarized light from natural light. For example, an iodine-based polarizing film in which iodine as a dichroic dye is adsorbed and oriented in a polyvinyl alcohol-based resin film, and a dye-based film in which a dichroic dye as a dichroic dye is adsorbed and oriented in a polyvinyl alcohol-based resin film Examples of the polarizing film include a polarizing film, and a coating-type polarizing film which is coated with a dichroic dye in a lyotropic liquid crystal state, and is oriented and fixed. These polarizing films are referred to as absorptive polarizing films because they selectively transmit one linearly polarized light in one direction from natural light and absorb linearly polarized light in the other. The polarizing film is not limited to the absorptive polarizing film, and is a reflective polarizing film that selectively transmits one linearly polarized light from natural light and reflects the linearly polarized light in the other, or linearly polarized light in the other. It may be a scattering type polarizing film that scatters, but an absorbing type polarizing film is preferable in terms of excellent visibility. Among them, a polyvinyl alcohol-based polarizing film composed of a polyvinyl alcohol-based resin is more preferable, and a polyvinyl alcohol-based polarizing film in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented on the polyvinyl alcohol-based resin film is further preferable. Preferably, a polyvinyl alcohol-based polarizing film in which iodine is adsorbed and oriented to a polyvinyl alcohol-based resin film is particularly preferable.
 ポリビニルアルコール系偏光フィルムを構成するポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルと共重合可能な他の単量体との共重合体等が挙げられる。酢酸ビニルに共重合可能な他の単量体の例は、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、及びアンモニウム基を有する(メタ)アクリルアミド類等を含む。 As polyvinyl alcohol-type resin which comprises a polyvinyl alcohol-type polarizing film, what saponified polyvinyl acetate type resin can be used. Examples of polyvinyl acetate resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, (meth) acrylamides having an ammonium group, and the like.
 ポリビニルアルコール系樹脂のケン化度は通常、85~100mol%程度であり、98mol%以上が好ましい。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール又はポリビニルアセタール等を用いることもできる。ポリビニルアルコール系樹脂の平均重合度は通常、1000~10000程度であり、1500~5000程度が好ましい。ポリビニルアルコール系樹脂の平均重合度は、JIS K 6726に準拠して求めることができる。 The degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used. The average degree of polymerization of the polyvinyl alcohol resin is usually about 1000 to 10000, preferably about 1500 to 5000. The average degree of polymerization of the polyvinyl alcohol-based resin can be determined in accordance with JIS K 6726.
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものではなく、公知の方法が採用される。ポリビニルアルコール系原反フィルムの厚みは、例えば150μm以下であり、好ましくは100μm以下(例えば50μm以下)である。 What formed such a polyvinyl alcohol-type resin into a film is used as a raw film of a polarizing film. The method of forming a polyvinyl alcohol-based resin into a film is not particularly limited, and a known method is adopted. The thickness of the polyvinyl alcohol-based raw film is, for example, 150 μm or less, and preferably 100 μm or less (eg, 50 μm or less).
 偏光フィルムは、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程;ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程;二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理(架橋処理)する工程;及び、ホウ酸水溶液による処理後に水洗する工程を含む方法によって製造できる。 The polarizing film is a step of uniaxially stretching a polyvinyl alcohol-based resin film; a step of adsorbing a dichroic dye by dyeing a polyvinyl alcohol-based resin film with a dichroic dye; a polyvinyl alcohol-based dye having a dichroic dye adsorbed thereon The resin film can be manufactured by a method including a step of treating (crosslinking treatment) with a boric acid aqueous solution; and a step of washing with water after treatment with a boric acid aqueous solution.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素の染色前、染色と同時、又は染色の後に行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、ホウ酸処理の前又はホウ酸処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行ってもよい。 The uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before, simultaneously with, or after the dyeing of the dichroic dye. If uniaxial stretching is performed after dyeing, this uniaxial stretching may be performed before or during the boric acid treatment. Moreover, you may uniaxially stretch in these several steps.
 一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤や水を用いてポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は通常、3~8倍程度である。 In uniaxial stretching, uniaxial stretching may be performed between rolls having different peripheral speeds, or uniaxial stretching may be performed using a heat roll. The uniaxial stretching may be dry stretching in which stretching is performed in the air, or wet stretching in which stretching is performed in a state in which a polyvinyl alcohol resin film is swollen using a solvent or water. The stretching ratio is usually about 3 to 8 times.
 ポリビニルアルコール系樹脂フィルムを二色性色素で染色する方法としては、例えば、該フィルムを二色性色素が含有された水溶液に浸漬する方法が採用される。二色性色素としては、ヨウ素や二色性有機染料が用いられる。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に水への浸漬処理を施しておくことが好ましい。 As a method of dyeing a polyvinyl alcohol-based resin film with a dichroic dye, for example, a method of immersing the film in an aqueous solution containing a dichroic dye is employed. As the dichroic dye, iodine or a dichroic organic dye is used. The polyvinyl alcohol-based resin film is preferably subjected to immersion treatment in water prior to the dyeing treatment.
 ヨウ素による染色処理としては通常、ヨウ素及びヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬する方法が採用される。この水溶液におけるヨウ素の含有量は、水100重量部あたり0.01~1重量部程度であることができる。ヨウ化カリウムの含有量は、水100重量部あたり0.5~20重量部程度であることができる。また、この水溶液の温度は、20~40℃程度であることができる。一方、二色性有機染料による染色処理としては通常、二色性有機染料を含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬する方法が採用される。二色性有機染料を含有する水溶液は、硫酸ナトリウム等の無機塩を染色助剤として含有していてもよい。この水溶液における二色性有機染料の含有量は、水100重量部あたり1×10-4~10重量部程度であることができる。この水溶液の温度は、20~80℃程度であることができる。 As a dyeing | staining process by iodine, the method of immersing a polyvinyl-alcohol-type resin film in the aqueous solution containing an iodine and potassium iodide is employ | adopted normally. The content of iodine in this aqueous solution can be about 0.01 to 1 part by weight per 100 parts by weight of water. The content of potassium iodide can be about 0.5 to 20 parts by weight per 100 parts by weight of water. In addition, the temperature of this aqueous solution can be about 20 to 40.degree. On the other hand, as a dyeing | staining process by a dichroic organic dye, the method of immersing a polyvinyl alcohol-type resin film in the aqueous solution containing a dichroic organic dye is employ | adopted normally. The aqueous solution containing the dichroic organic dye may contain an inorganic salt such as sodium sulfate as a dyeing assistant. The content of the dichroic organic dye in this aqueous solution can be about 1 × 10 −4 to 10 parts by weight per 100 parts by weight of water. The temperature of this aqueous solution can be about 20 to 80.degree.
 二色性色素による染色後のホウ酸処理としては通常、染色されたポリビニルアルコール系樹脂フィルムをホウ酸含有水溶液に浸漬する方法が採用される。二色性色素としてヨウ素を用いる場合、このホウ酸含有水溶液は、ヨウ化カリウムを含有することが好ましい。ホウ酸含有水溶液におけるホウ酸の量は、水100重量部あたり2~15重量部程度であることができる。この水溶液におけるヨウ化カリウムの量は、水100重量部あたり0.1~20重量部程度であることができる。この水溶液の温度は、50℃以上であることができ、例えば50~85℃である。 As a boric acid process after dyeing | staining with a dichroic dye, the method of immersing the dyed polyvinyl alcohol-type resin film in boric-acid containing aqueous solution is employ | adopted normally. When using iodine as a dichroic dye, it is preferable that this boric-acid containing aqueous solution contains potassium iodide. The amount of boric acid in the boric acid-containing aqueous solution can be about 2 to 15 parts by weight per 100 parts by weight of water. The amount of potassium iodide in the aqueous solution can be about 0.1 to 20 parts by weight per 100 parts by weight of water. The temperature of the aqueous solution can be 50 ° C. or higher, for example, 50 to 85 ° C.
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬することにより行うことができる。水洗処理における水の温度は通常、5~40℃程度である。水洗後に乾燥処理を施して、偏光フィルム30が得られる。乾燥処理は、熱風乾燥機や遠赤外線ヒーターを用いて行うことができる。この偏光フィルムの片面又は両面に保護フィルムなどとしての熱可塑性樹脂フィルムを硬化性接着剤組成物等を用いて貼合することにより、偏光板を得ることができる。 The polyvinyl alcohol resin film after boric acid treatment is usually washed with water. The water washing process can be performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water. The temperature of water in the water washing treatment is usually about 5 to 40.degree. After washing with water, the film is dried to obtain a polarizing film 30. The drying process can be performed using a hot air dryer or a far infrared heater. A polarizing plate can be obtained by bonding a thermoplastic resin film as a protective film or the like on one side or both sides of this polarizing film using a curable adhesive composition or the like.
 また、偏光フィルムの製造方法の他の例として、例えば、特開2000-338329号公報や特開2012-159778号公報に記載の方法が挙げられる。 Further, as another example of the method for producing a polarizing film, for example, methods described in JP-A-2000-338329 and JP-A-2012-159778 can be mentioned.
 偏光フィルムの厚みは、40μm以下とすることができ、好ましくは30μm以下(例えば20μm以下、さらには15μm以下、なおさらには10μm以下)である。特開2000-338329号公報や特開2012-159778号公報に記載の方法によれば、薄膜の偏光フィルム30をより容易に製造することができ、偏光フィルム30の厚みを、例えば20μm以下、さらには15μm以下、なおさらには10μm以下とすることがより容易になる。偏光フィルム30の厚みは、通常2μm以上である。偏光フィルムの厚みを小さくすることは、偏光板、ひいては画像表示装置の薄型化に有利である。 The thickness of the polarizing film can be 40 μm or less, preferably 30 μm or less (eg, 20 μm or less, further 15 μm or less, or even 10 μm or less). According to the methods described in JP-A-2000-338329 and JP-A-2012-159778, the thin film polarizing film 30 can be manufactured more easily, and the thickness of the polarizing film 30 is, for example, 20 μm or less, and further, Of 15 μm or less, or even 10 μm or less. The thickness of the polarizing film 30 is usually 2 μm or more. Reducing the thickness of the polarizing film is advantageous for reducing the thickness of the polarizing plate and thus the image display device.
 偏光板の好ましい構成としては、偏光フィルムの少なくとも一方の面に接着剤層を介して保護フィルムが積層された偏光板である。保護フィルムが偏光フィルムの一方の面にしか積層されない場合、視認側(パネルと逆側)に積層されることがより好ましい。視認側に積層された保護フィルムは、トリアセチルセルロース系樹脂又はシクロオレフィン系樹脂からなる保護フィルムであることが好ましい。保護フィルムは未延伸フィルムであってもよいし、任意の方向に延伸され位相差を有していてもよい。視認側に積層された保護フィルムの表面にはハードコート層やアンチグレア層などの表面処理層が設けられていてもよい。該表面処理層が、本発明における光選択吸収層であってもよい。
 保護フィルムが偏光フィルムの両面に積層される場合、パネル側(視認側と反対側)の保護フィルムは、トリアセチルセルロース系樹脂、シクロオレフィン系樹脂又はアクリル系樹脂からなる保護フィルム又は位相差フィルムであることが好ましい。位相差フィルムは後述するゼロレタデーションフィルムであってもよい。
 偏光板とパネルとの間には、さらにその他の層又はフィルムが積層されていてもよい。有機ELディスプレイ用の円偏光板として用いる場合は、1/4波長位相差層と1/2波長位相差層とを有する位相差層、後述する逆波長分散性の1/4波長層が積層されていることが好ましい。位相差層は薄膜化の観点から液晶系位相差フィルムであることが好ましい。
A preferable configuration of the polarizing plate is a polarizing plate in which a protective film is laminated on at least one surface of a polarizing film via an adhesive layer. When the protective film is laminated on only one side of the polarizing film, it is more preferable to be laminated on the viewing side (opposite side to the panel). It is preferable that the protective film laminated | stacked on the visual recognition side is a protective film which consists of triacetyl-cellulose-type resin or cycloolefin type resin. The protective film may be an unstretched film, or may be stretched in any direction and have a retardation. A surface treatment layer such as a hard coat layer or an antiglare layer may be provided on the surface of the protective film laminated on the viewing side. The surface treatment layer may be the light selective absorption layer in the present invention.
When the protective film is laminated on both sides of the polarizing film, the protective film on the panel side (the opposite side to the visible side) is a protective film or a retardation film made of a triacetyl cellulose resin, a cycloolefin resin or an acrylic resin. Is preferred. The retardation film may be a zero retardation film described later.
Another layer or film may be further laminated between the polarizing plate and the panel. When used as a circularly polarizing plate for an organic EL display, a retardation layer having a 1⁄4 wavelength retardation layer and a 1⁄2 wavelength retardation layer, and a 1⁄4 wavelength layer of reverse wavelength dispersion described later are laminated. Is preferred. The retardation layer is preferably a liquid crystal retardation film from the viewpoint of thinning.
<光選択吸収層の製造方法>
 活性エネルギー線硬化性組成物を、上記樹脂フィルム(a)上に塗布して塗膜を形成し、必要に応じて乾燥させた後、上記塗膜を硬化させることで、光選択吸収層を形成することができ、本発明の光学フィルムを製造することができる。活性エネルギー線硬化性組成は、その成分によって、接着機能を有する場合がある。
<Method of producing light selective absorption layer>
An active energy ray-curable composition is applied on the above-mentioned resin film (a) to form a coating film, dried if necessary, and then the above-mentioned coating film is cured to form a light selective absorption layer. The optical film of the present invention can be manufactured. The active energy ray curable composition may have an adhesive function depending on its component.
 活性エネルギー線硬化性組成物を塗布して塗膜を形成する方法としては、例えば、スピンコート法、ディップ法、スプレー法、ダイコート法、バーコート法、ロールコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ビードコーター法等の公知の各種方法を挙げることができる。 As a method of applying an active energy ray curable composition to form a coating film, for example, a spin coating method, a dip method, a spray method, a die coating method, a bar coating method, a roll coater method, a meniscus coater method, a flexo printing method And various known methods such as screen printing method and bead coater method.
 乾燥の方法としては特に限定されないが、一般的に乾燥温度30~80℃で、乾燥時間3~120秒で行うとよい。上記乾燥温度が30℃未満であると、表面処理フィルムの製造に長時間を要し、また、製造コストが高くなることがある。一方、上記乾燥温度が80℃を超えると、表面処理フィルムの製造コストが高くなる問題があり、かつ、開始剤、溶剤等が乾燥炉内等に付着し外観を悪化させる恐れがある。また、上記乾燥時間が3秒未満であると、基材フィルムと表面処理層との密着性に劣ったり、干渉縞が発生したりするこことがある。一方、上記乾燥時間が120秒を超えると、上記塗膜の乾燥に長時間を要し、製造コストが高くなることがある。 The drying method is not particularly limited, but in general, the drying temperature may be 30 to 80 ° C., and the drying time may be 3 to 120 seconds. When the said drying temperature is less than 30 degreeC, manufacture of a surface treatment film takes a long time, and manufacturing cost may become high. On the other hand, if the drying temperature exceeds 80 ° C., there is a problem that the manufacturing cost of the surface treatment film becomes high, and there is a possibility that the initiator, the solvent and the like adhere to the inside of the drying furnace and the like to deteriorate the appearance. If the drying time is less than 3 seconds, the adhesion between the substrate film and the surface treatment layer may be poor, or interference fringes may occur. On the other hand, when the drying time exceeds 120 seconds, it takes a long time to dry the coating, which may increase the manufacturing cost.
 活性エネルギー線照射強度は、硬化性組成物毎に決定されるが、光重合開始剤の活性化に有効な波長領域の光照射強度が0.1~1000mW/cm2となるようにすることが好ましい。光照射強度が小さすぎると、反応時間が長くなりすぎ、一方でその光照射強度が大きすぎると、ランプから輻射される熱及び硬化性組成物の重合時の発熱により、硬化層の黄変や偏光フィルムの劣化、又は保護フィルムの肌不良を生じる可能性がある。また、硬化性組成物への光照射時間も、硬化性組成物毎に制御されるが、光照射強度と光照射時間の積として表される積算光量が10~5000mJ/cm2となるように設定されることが好ましい。積算光量が小さすぎると、光重合開始剤由来の活性種の発生が十分でなく、得られる硬化層の硬化が不十分となる可能性があり、一方でその積算光量が大きすぎると、光照射時間が非常に長くなって生産性向上には不利になりやすい。 The active energy ray irradiation intensity is determined for each curable composition, but the light irradiation intensity in the wavelength range effective for activating the photopolymerization initiator should be 0.1 to 1000 mW / cm 2 preferable. When the light irradiation intensity is too low, the reaction time becomes too long, while when the light irradiation intensity is too high, yellowing of the cured layer occurs due to heat radiated from the lamp and heat generation during polymerization of the curable composition. It may cause deterioration of the polarizing film or skin defects of the protective film. Further, the light irradiation time to the curable composition is also controlled for each curable composition, but the integrated light quantity represented as the product of the light irradiation intensity and the light irradiation time is 10 to 5000 mJ / cm 2. It is preferable to set. If the accumulated light amount is too small, generation of the active species derived from the photopolymerization initiator may not be sufficient, and curing of the obtained cured layer may be insufficient. On the other hand, if the accumulated light amount is too large, light irradiation may occur. The time is very long and it is likely to be disadvantageous to the improvement of productivity.
(表示装置)
 本発明の光学フィルムは、有機EL素子、液晶セル等の表示素子に積層させて、有機EL表示装置や液晶表示装置等の表示装置(FPD:フラットパネルディスプレイ)に用いる事ができる。
(Display device)
The optical film of the present invention can be laminated on a display element such as an organic EL element or a liquid crystal cell, and can be used for a display (FPD: flat panel display) such as an organic EL display or a liquid crystal display.
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量ないし使用量を表す%及び部は、特に断りのない限り重量基準である。 EXAMPLES The present invention will be more specifically described below by showing Examples and Comparative Examples, but the present invention is not limited by these examples. In the examples,% and parts representing contents or amounts used are on a weight basis unless otherwise noted.
 <光選択吸収性化合物の合成>
[合成例1]光選択吸収性化合物(1)の合成
Figure JPOXMLDOC01-appb-I000026
 ジムロート冷却管、温度計を設置した200mL-四ツ口フラスコ内を窒素雰囲気とし、特許文献(特開2014-194508)を参考に合成した式(aa)で表される化合物10g、無水酢酸(和光純薬工業株式会社製)3.6g、シアノ酢酸2-エチルヘキシル(東京化成工業株式会社製)6.9g、およびアセトニトリル(和光純薬工業株式会社製)60gを仕込み、マグネチックスターラーで撹拌した。内温25℃にてDIPEA(東京化成工業株式会社製)4.5gを滴下漏斗から1時間かけて滴下し、滴下終了後に内温25℃にてさらに2時間保温した。反応終了後、減圧エバポレーターを用いてアセトニトリルを除去し、カラムクロマトグラフィー(シリカゲル)に供して精製し、式(aa1)で表される光選択吸収性化合物を含む流出液を、減圧エバポレーターを用いて溶媒を除去し、黄色結晶を得た。該結晶を60℃減圧乾燥することにより、黄色粉末として式(aa1)で表される光選択吸収性化合物(1)を4.6g得た。収率は50%であった。
<Synthesis of Photoselective Absorbent Compound>
Synthesis Example 1 Synthesis of Photoselective Absorbent Compound (1)
Figure JPOXMLDOC01-appb-I000026
The inside of a 200 mL four-necked flask equipped with a Dimroth condenser and a thermometer is a nitrogen atmosphere, and 10 g of a compound represented by the formula (aa) synthesized with reference to patent document (Japanese Patent Laid-Open No. 2014-194508) 3.6 g of Kojun Pharmaceutical Co., Ltd., 6.9 g of 2-ethylhexyl cyanoacetate (manufactured by Tokyo Chemical Industry Co., Ltd.), and 60 g of acetonitrile (Wako Pure Chemical Industries, Ltd.) were charged, and stirred with a magnetic stirrer. At an internal temperature of 25 ° C., 4.5 g of DIPEA (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was dropped from the dropping funnel over 1 hour, and after completion of dropping, the temperature was kept at 25 ° C. for further 2 hours. After completion of the reaction, acetonitrile is removed using a vacuum evaporator, purified by column chromatography (silica gel) and purified, and the effluent containing the photoselective absorptive compound represented by the formula (aa1) is purified using a vacuum evaporator The solvent was removed to give yellow crystals. The crystals were dried at 60 ° C. under reduced pressure to obtain 4.6 g of a photoselective absorptive compound (1) represented by the formula (aa1) as a yellow powder. The yield was 50%.
 H-NMR解析を行ったところ、以下のピークが観測されたことから、光選択吸収性化合物1が生成したことが確認された。
H-NMR(CDCl3)δ:0.87-0.94(m、6H)、1.32-1.67(m、8H)、1.59-1.66(m、2H)、2.09(quin、2H)、3.00(m、5H)、3.64(t、2H)、4.10(dd、2H)、5.52(d、2H)、7.87(d、2H)
When 1 H-NMR analysis was performed, the following peaks were observed, and thus, it was confirmed that the light selective absorption compound 1 was generated.
1 H-NMR (CDCl 3) δ: 0.87 to 0.94 (m, 6H), 1.32-1.67 (m, 8H), 1.59- 1.66 (m, 2H), 09 (quin, 2 H), 3.00 (m, 5 H), 3.64 (t, 2 H), 4. 10 (dd, 2 H), 5.52 (d, 2 H), 7.87 (d, 2 H) )
<グラム吸光係数ε測定>
 得られた光選択吸収性化合物(1)のグラム吸光係数を測定するために、光選択吸収性化合物(1)を2-ブタノンに溶解させた。得られた溶液(濃度;0.006g・L-1)を1cmの石英セルに入れ、石英セルを分光光度計UV-2450(株式会社島津製作所製)にセットし、ダブルビーム法により1nmステップ300~800nmの波長範囲で吸光度を測定した。得られた吸光度の値と、溶液中の光吸収性化合物濃度、石英セルの光路長から、波長ごとのグラム吸光係数を下記式を用いて算出した。
 ε(λ)=A(λ)/CL   
〔式中、ε(λ)は波長λnmにおける化合物のグラム吸光係数L/(g・cm)を表し、A(λ)は波長λnmにおける吸光度を表し、Cは濃度g/Lを表し、Lは石英セルの光路長cmを表す。〕
 光選択吸収性化合物(1)の吸収極大波長(λmax)を測定したところ、λmax=389nm(2-ブタノン中)であり、ε(405)の値は47L/(g・cm)であり、ε(440)の値は0.1L/(g・cm)以下であり、ε(405)/ε(440)の値は80以上であった。
<Gram absorption coefficient ε measurement>
In order to measure the gram absorption coefficient of the obtained photoselective absorptive compound (1), the photoselective absorptive compound (1) was dissolved in 2-butanone. The resulting solution (concentration: 0.006 g · L -1 ) is placed in a 1 cm quartz cell, and the quartz cell is set in a spectrophotometer UV-2450 (manufactured by Shimadzu Corporation), and 1 nm steps 300 to 200 by double beam method. Absorbance was measured in the wavelength range of 800 nm. From the obtained absorbance value, the concentration of the light absorbing compound in the solution, and the optical path length of the quartz cell, the gram absorption coefficient for each wavelength was calculated using the following equation.
ε (λ) = A (λ) / CL
[Wherein, ε (λ) represents the gram absorption coefficient L / (g · cm) of the compound at the wavelength λ nm, A (λ) represents the absorbance at the wavelength λ nm, C represents the concentration g / L, and L is It represents the optical path length cm of the quartz cell. ]
When the absorption maximum wavelength (λmax) of the photoselective absorption compound (1) is measured, λmax = 389 nm (in 2-butanone), the value of ε (405) is 47 L / (g · cm), and ε The value of (440) was 0.1 L / (g · cm) or less, and the value of ε (405) / ε (440) was 80 or more.
[合成例2]光選択吸収性化合物(2)の合成
Figure JPOXMLDOC01-appb-I000027
 ジムロート冷却管、温度計を設置した200mL-四ツ口フラスコ内に、窒素雰囲気において、特開2014-194508を参考に合成した式(aa)で表される化合物10g、無水酢酸(和光純薬工業株式会社製)3.6g、シアノ酢酸2-ブチルオクチル(東京化成工業株式会社製)10g、及びアセトニトリル(和光純薬工業株式会社製)60gを仕込み、マグネチックスターラーで撹拌した。内温25℃にてDIPEA(東京化成工業株式会社製)4.5gを、得られた混合物に1時間かけて滴下した後、内温25℃にてさらに2時間保温した。その後、減圧エバポレーターを用いてアセトニトリルを除去し、カラムクロマトグラフィー(シリカゲル)に供して精製し、式(aa2)で表される化合物を含む流出液を、減圧エバポレーターを用いて溶媒を除去し、黄色結晶を得た。該結晶を60℃減圧乾燥することにより、黄色粉末として式(aa2)で表される化合物(光選択吸収化合物(2))を4.6g得た。収率は56%であった。
 上記と同じ方法でグラム吸光度係数を求めると、式(aa2)で表される化合物のε(405)の値は45L/(g・cm)であり、ε(420)の値は2.1L/(g・cm)であった。
Synthesis Example 2 Synthesis of Photoselective Absorbent Compound (2)
Figure JPOXMLDOC01-appb-I000027
10 g of a compound represented by the formula (aa) prepared by referring to JP-A-2014-194508 in a nitrogen atmosphere in a 200 mL four-necked flask provided with a Dimroth condenser and a thermometer, acetic anhydride (Wako Pure Chemical Industries, Ltd. 3.6 g of the product, Inc., 10 g of 2-butyloctyl cyanoacetate (manufactured by Tokyo Chemical Industry Co., Ltd.), and 60 g of acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) were charged, and stirred with a magnetic stirrer. After 4.5 g of DIPEA (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise to the obtained mixture over 1 hour at an internal temperature of 25 ° C., the mixture was kept at an internal temperature of 25 ° C. for 2 hours. Thereafter, acetonitrile is removed using a vacuum evaporator and purified by column chromatography (silica gel), and the effluent containing the compound represented by the formula (aa2) is solvent-removed using a vacuum evaporator, yellow I got a crystal. The crystals were dried at 60 ° C. under reduced pressure to obtain 4.6 g of a compound represented by the formula (aa2) (a light selective absorption compound (2)) as a yellow powder. The yield was 56%.
When the gram absorbance coefficient is determined by the same method as described above, the value of ε (405) of the compound represented by formula (aa2) is 45 L / (g · cm), and the value of ε (420) is 2.1 L / (G · cm).
 <活性エネルギー線硬化性樹脂組成物の調製>
(調製例1)活性エネルギー線硬化性樹脂組成物A1の調製
 各成分を以下の割合で混合して、活性エネルギー線硬化性樹脂組成物A1を調製した。
N-ヒドロキシルエチルアクリルアミド               80部
ペンタエリスリトールトリアクリレート               12部
多官能ウレタン化アクリレート                    8部
 (ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物)
イルガキュア 500(BASF(株)から入手)           3部
合成例1で得た光選択吸収性化合物(1)               1部
<Preparation of Active Energy Ray-Curable Resin Composition>
Preparation Example 1 Preparation of Active Energy Ray-Curable Resin Composition A1 The components were mixed in the following proportions to prepare active energy ray-curable resin composition A1.
N-hydroxy ethyl acrylamide 80 parts pentaerythritol triacrylate 12 parts multifunctional urethane acrylate 8 parts (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate)
Irgacure 500 (obtained from BASF Corp.) 3 parts 1 part of the photoselective absorptive compound (1) obtained in Synthesis Example 1
(調製例2)活性エネルギー線硬化性樹脂組成物A2の調製
 各成分を以下の割合で混合して、活性エネルギー線硬化性樹脂組成物A1を調製した。
N-ヒドロキシルエチルアクリルアミド               80部
ペンタエリスリトールトリアクリレート               12部
多官能ウレタン化アクリレート                    8部
 (ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物)
 イルガキュア 500(BASF(株)から入手)           3部
 合成例2で得た光選択吸収性化合物(2)               1部
Preparation Example 2 Preparation of Active Energy Ray-Curable Resin Composition A2 The components were mixed in the following proportions to prepare active energy ray-curable resin composition A1.
N-hydroxy ethyl acrylamide 80 parts pentaerythritol triacrylate 12 parts multifunctional urethane acrylate 8 parts (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate)
Irgacure 500 (obtained from BASF Corp.) 3 parts 1 part of the photoselective absorptive compound (2) obtained in Synthesis Example 2
(調製例3)活性エネルギー線硬化性樹脂組成物Bを調製
 各成分を以下の割合で混合して、活性エネルギー線硬化性樹脂組成物Bを調製した。
N-ヒドロキシルエチルアクリルアミド               80部
ペンタエリスリトールトリアクリレート               12部
多官能ウレタン化アクリレート                    8部
 (ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物)
イルガキュア 500(BASF(株)から入手)           3部
Preparation Example 3 Preparation of Active Energy Ray-Curable Resin Composition B The components were mixed in the following proportions to prepare active energy ray-curable resin composition B.
N-hydroxy ethyl acrylamide 80 parts pentaerythritol triacrylate 12 parts multifunctional urethane acrylate 8 parts (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate)
Irgacure 500 (obtained from BASF Corp.) 3 parts
(実施例1)光学フィルムA1の作製
 厚み23μmの環状ポリオレフィン系樹脂からなる樹脂フィルム〔商品名「ZEONOR」、日本ゼオン株式会社製;以下COP樹脂フィルムという場合がある。〕を2枚用意した。COP樹脂フィルムの表面にコロナ放電処理を施し、そのコロナ放電処理面に、活性エネルギー線硬化性樹脂組成物A1をバーコーターを用いて硬化後の膜厚が約5.0μmとなるように塗工した。もう1枚のCOP樹脂フィルムの表面にもコロナ放電処理を施し、そのコロナ放電処理面との活性エネルギー線硬化性樹脂組成物Aを塗工した面を貼合し、ベルトコンベア付き紫外線照射装置〔ランプはフュージョンUVシステムズ社製の「Hバルブ」使用〕を用いて照度250mW/cm2、積算光量が250mJ/cm2(UVB)となるように紫外線を照射し、光学フィルムA1を得た。光学フィルムA1は、COP樹脂フィルム/活性エネルギー線硬化性樹脂組成物A1の硬化層/COP樹脂フィルムの層構成を有する。
Example 1 Preparation of Optical Film A1 A resin film made of a cyclic polyolefin resin having a thickness of 23 μm [trade name “ZEONOR”, manufactured by Nippon Zeon Co., Ltd .; hereinafter, it may be referred to as a COP resin film. Two sheets of] were prepared. The surface of the COP resin film is subjected to a corona discharge treatment, and the surface treated with the corona discharge is coated with an active energy ray curable resin composition A1 using a bar coater so that the film thickness after curing becomes about 5.0 μm. did. Another surface of the COP resin film is also subjected to corona discharge treatment, and the surface coated with the active energy ray curable resin composition A is bonded to the surface treated with the corona discharge, and an ultraviolet irradiation device with a belt conveyor [ The lamp was irradiated with ultraviolet light so that the illuminance was 250 mW / cm 2 and the integrated light quantity was 250 mJ / cm 2 (UVB), using “H bulb” manufactured by Fusion UV Systems, Inc. to obtain an optical film A1. The optical film A1 has a layer structure of a cured layer of COP resin film / active energy ray curable resin composition A1 / COP resin film.
(実施例2)光学フィルムA2の作製
 活性エネルギー線硬化性樹脂組成物を、製造例2で得られた活性エネルギー線硬化性樹脂組成物A2に代えた以外は、実施例1と同様にして光学フィルムA2を作製した。光学フィルムA2は、COP樹脂フィルム/活性エネルギー線硬化性樹脂組成物A2の硬化層/COP樹脂フィルムの層構成を有する。
Example 2 Preparation of Optical Film A2 An optical film was prepared in the same manner as Example 1, except that the active energy ray curable resin composition was replaced with the active energy ray curable resin composition A2 obtained in Production Example 2. Film A2 was produced. The optical film A2 has a layer configuration of a COP resin film / a cured layer of an active energy ray curable resin composition A2 / COP resin film.
[製造例1]偏光フィルムの作製
 平均重合度約2400、ケン化度99.9モル%、厚み30μmのポリビニルアルコールフィルム〔(株)クラレ製の商品名「クラレビニロン VF-PE♯3000」〕を、37℃の純水に浸漬した後、ヨウ素とヨウ化カリウムとを含む水溶液(ヨウ素/ヨウ化カリウム/水(重量比)=0.04/1.5/100)に30℃で浸漬した。その後、ヨウ化カリウムとホウ酸とを含む水溶液(ヨウ化カリウム/ホウ酸/水(重量比)=12/3.6/100)に56.5℃で浸漬した。フィルムを10℃の純水で洗浄した後、85℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向された厚み約12μmの偏光子を得た。延伸は、主に、ヨウ素染色及びホウ酸処理の工程で行い、トータルの延伸倍率は5.3倍であった。
Production Example 1 Preparation of Polarizing Film A polyvinyl alcohol film having a degree of polymerization of about 2400, a degree of saponification of 99.9 mol%, and a thickness of 30 μm [trade name “Klare vignon VF-PE # 3000” manufactured by Kuraray Co., Ltd. After immersion in pure water at 37 ° C., it was immersed at 30 ° C. in an aqueous solution containing iodine and potassium iodide (iodine / potassium iodide / water (weight ratio) = 0.04 / 1.5 / 100). Then, it was immersed at 56.5 ° C. in an aqueous solution containing potassium iodide and boric acid (potassium iodide / boric acid / water (weight ratio) = 12 / 3.6 / 100). The film was washed with pure water at 10 ° C. and then dried at 85 ° C. to obtain a polarizer with a thickness of about 12 μm in which iodine was adsorbed and oriented to polyvinyl alcohol. Stretching was mainly performed in the iodine dyeing and boric acid treatment steps, and the total stretch ratio was 5.3.
(実施例3)偏光板A1の作製
 厚み23μmの環状ポリオレフィン系樹脂からなる樹脂フィルム〔商品名「ZEONOR」、日本ゼオン株式会社製;以下COP樹脂フィルムという場合がある。〕の表面にコロナ放電処理を施し、そのコロナ放電処理面に、活性エネルギー線硬化性樹脂組成物A1をバーコーターを用いて硬化後の膜厚が約5.0μmとなるように塗工した。その塗工面に、製造例1で作製した偏光フィルムを貼合し、保護フィルム付き偏光フィルム(1)を得た。
 次いで、厚み40μmのトリアセチルセルロース系樹脂からなる位相差フィルム〔商品名「KC4CW」、コニカミノルタ株式会社製;以下TACフィルムという場合がある。〕の表面にコロナ放電処理を施し、そのコロナ放電処理面に、活性エネルギー線硬化性樹脂組成物A1を硬化後の膜厚が約5.0μmとなるようにバーコーターを用いて塗工した。その塗工面と、保護フィルム付の偏光フィルム(1)の偏光フィルム側とを貼合して積層体を得た。この積層体における保護フィルム側から、ベルトコンベア付き紫外線照射装置〔ランプはフュージョンUVシステムズ社製の「Hバルブ」使用〕を用いて照度250mW/cm2、積算光量が250mJ/cm2(UVB)となるように紫外線を照射し、硬化性接着剤組成物を硬化させ、偏光板を作製した。これを偏光板A1とする。偏光板A1は、COP樹脂フィルム/活性エネルギー線硬化性樹脂組成物A1の硬化層/偏光フィルム/活性エネルギー線硬化性樹脂組成物A1の硬化層/TACフィルムの構成を有する。
Example 3 Preparation of Polarizing Plate A1 A resin film made of a cyclic polyolefin resin having a thickness of 23 μm (trade name “ZEONOR”, manufactured by Nippon Zeon Co., Ltd .; hereinafter referred to as “COP resin film”). The corona discharge treatment was applied to the surface of the above, and the active energy ray curable resin composition A1 was coated on the corona discharge treated surface using a bar coater such that the film thickness after curing was about 5.0 μm. The polarizing film produced in Production Example 1 was bonded to the coated surface to obtain a protective film-carrying polarizing film (1).
Next, a retardation film made of a triacetylcellulose-based resin having a thickness of 40 μm [trade name “KC4CW”, manufactured by Konica Minolta Co., Ltd .; hereinafter, it may be referred to as a TAC film. The corona discharge treatment was applied to the surface of the above, and the active energy ray curable resin composition A1 was coated on the corona discharge treated surface using a bar coater such that the film thickness after curing was about 5.0 μm. The coated surface and the polarizing film side of the polarizing film (1) with a protective film were bonded to obtain a laminate. From the protective film side of this laminate, using a UV light irradiation device with a belt conveyor (lamp used “H bulb” manufactured by Fusion UV Systems, Inc.), illuminance 250 mW / cm 2 and integrated light quantity 250 mJ / cm 2 (UVB) The curable adhesive composition was cured by irradiation with ultraviolet light to obtain a polarizing plate. This is called polarizing plate A1. The polarizing plate A1 has a constitution of a cured layer of a COP resin film / active energy ray curable resin composition A1 / a polarizing film / a cured layer of an active energy ray curable resin composition A1 / TAC film.
(実施例4)偏光板A2の作製
 活性エネルギー線硬化性樹脂組成物を、活性エネルギー線硬化性樹脂組成物A2に代えた以外は、実施例3と同様にして偏光板A2を作製した。偏光板A2はCOP樹脂フィルム/活性エネルギー線硬化性樹脂組成物A2の硬化層/偏光フィルム/活性エネルギー線硬化性樹脂組成物A2の硬化層/TACフィルムの構成を有する。
Example 4 Production of Polarizing Plate A2 A polarizing plate A2 was produced in the same manner as in Example 3, except that the active energy ray-curable resin composition was replaced with the active energy ray-curable resin composition A2. The polarizing plate A2 has a constitution of a cured layer of a COP resin film / active energy ray curable resin composition A2 / a polarizing film / a cured layer of active energy ray curable resin composition A2 / TAC film.
(比較例1)偏光板Bの作製
 活性エネルギー線硬化性樹脂組成物を活性エネルギー線硬化性樹脂組成物Bとしたこと以外、偏光板Aと同様にして偏光板Bを作製した。偏光板Bは、COP樹脂フィルム/活性エネルギー線硬化性樹脂組成物Bの硬化層/偏光フィルム/活性エネルギー線硬化性樹脂組成物Bの硬化層/TACフィルムの構成を有する。
Comparative Example 1 Preparation of Polarizing Plate B A polarizing plate B was prepared in the same manner as the polarizing plate A except that the active energy ray curable resin composition was changed to the active energy ray curable resin composition B. The polarizing plate B has a structure of a cured layer of a COP resin film / active energy ray curable resin composition B / a polarizing film / a cured layer of active energy ray curable resin composition B / TAC film.
(合成例3)(メタ)アクリル系樹脂の合成
 冷却管、窒素導入管、温度計及び攪拌機を備えた反応容器に、溶媒として酢酸エチル81.8部、単量体としてアクリル酸ブチル70.4部、アクリル酸メチル20.0部、およびアクリル酸2-フェノキシエチル8.0部、としてアクリル酸2-ヒドロキシエチル1.0部およびアクリル酸0.6部と混合して得られた溶液を仕込んだ。反応容器内の空気を窒素ガスで置換した後、内温を60℃にした。その後、アゾビスイソブチロニトリル0.12部を酢酸エチル10部に溶解させた溶液を添加した。1時間同温度で保持した後、内温を54~56℃に保ちながら、添加速度17.3部/Hrで酢酸エチルを、重合体の濃度がほぼ35%となるように反応容器内へ連続的に加えた。酢酸エチルの添加開始から12時間経過するまで内温を54~56℃に保持した後、酢酸エチルを加えて重合体の濃度が20%となるように調整して、(メタ)アクリル系樹脂の酢酸エチル溶液を得た。(メタ)アクリル系樹脂の重量平均分子量Mwは139万、重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnは5.32であった。
Synthesis Example 3 Synthesis of (Meth) Acrylic Resin In a reaction vessel equipped with a cooling pipe, a nitrogen introducing pipe, a thermometer and a stirrer, 81.8 parts of ethyl acetate as a solvent and butyl acrylate 70.4 as a monomer A solution obtained by mixing with 20.0 parts of methyl acrylate and 8.0 parts of 2-phenoxyethyl acrylate as mixed with 1.0 part of 2-hydroxyethyl acrylate and 0.6 parts of acrylic acid It is. After the air in the reaction vessel was replaced with nitrogen gas, the internal temperature was brought to 60.degree. Thereafter, a solution of 0.12 parts of azobisisobutyronitrile in 10 parts of ethyl acetate was added. After maintaining at the same temperature for 1 hour, while maintaining the internal temperature at 54 to 56 ° C., continuously add ethyl acetate at a rate of 17.3 parts / hr to the reaction vessel so that the concentration of the polymer is approximately 35%. Added. The internal temperature is kept at 54 to 56 ° C. until 12 hours have passed from the start of the addition of ethyl acetate, and then ethyl acetate is added to adjust the concentration of the polymer to 20%, and the (meth) acrylic resin An ethyl acetate solution was obtained. The weight average molecular weight Mw of the (meth) acrylic resin was 1,390,000, and the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn was 5.32.
 なお、重量平均分子量および数平均分子量の測定は、GPC装置にカラムとして「TSK gel XL(東ソー(株)製)」を4本、および「Shodex GPC KF-802(昭和電工(株)製)」を1本、計5本を直列につないで配置し、溶出液としてテトラヒドロフランを用いて、試料濃度5mg/mL、試料導入量100μL、温度40℃、流速1mL/分の条件で行い、標準ポリスチレン換算により算出した。 In addition, the measurement of a weight average molecular weight and a number average molecular weight uses four "TSK gel XL (made by Tosoh Corp.)" as a column in a GPC apparatus, and "Shodex GPC KF-802 (made by Showa Denko KK)" 1 piece, 5 pieces in total are connected in series, and using tetrahydrofuran as an eluent, the sample concentration is 5 mg / mL, the sample introduction amount is 100 μL, the temperature is 40 ° C, and the flow rate is 1 mL / min. Calculated by
(合成例4)(メタ)アクリル系樹脂粘着剤組成物Aの合成
 合成例3で得られた(メタ)アクリル系樹脂の酢酸エチル溶液(樹脂濃度:20%)に、該溶液の固形分100部に対して、架橋剤(コロネートL、固形分75%:東ソー製)0.4部及びシラン化合物(信越化学工業製:KBM-403)0.4部を混合し、さらに固形分濃度が14%となるように酢酸エチルを添加して粘着剤組成物を得た。なお、上記架橋剤の配合量は、有効成分としての重量部数である。
Synthesis Example 4 Synthesis of (Meth) Acrylic Resin Adhesive Composition A The ethyl acetate solution (resin concentration: 20%) of the (meth) acrylic resin obtained in Synthesis Example 3 contained 100% solids of the solution. Mixed with 0.4 parts of a crosslinking agent (Coronate L, solid content 75%: manufactured by Tosoh Co., Ltd.) and 0.4 parts of a silane compound (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-403). Ethyl acetate was added so as to be% to obtain a pressure-sensitive adhesive composition. In addition, the compounding quantity of the said crosslinking agent is a weight part number as an active ingredient.
 なお、合成例4で使用した架橋剤及びシラン化合物の詳細は以下のとおりである。
 架橋剤:トリレンジイソシアネートのトリメチロールプロパンアダクト体の酢酸エチル溶液(固形分濃度75%)、東ソー株式会社から入手した商品名「コロネートL」。
 シラン化合物:3-グリシドキシプロピルトリメトキシシラン、信越化学工業株式会社から入手した商品名「KBM403」。
In addition, the detail of the crosslinking agent and silane compound which were used by the synthesis example 4 is as follows.
Crosslinking agent: Ethyl acetate solution (75% solid concentration) of trimethylolpropane adduct of tolylene diisocyanate, trade name "Corronate L" obtained from Tosoh Corporation.
Silane compound: 3-glycidoxypropyltrimethoxysilane, trade name "KBM403" obtained from Shin-Etsu Chemical Co., Ltd.
<粘着剤層Aの作製>
 粘着剤組成物Aを、離型処理が施されたポリエチレンテレフタレートフィルムからなるセパレートフィルム〔リンテック(株)から入手した商品名「PLR-382190」〕の離型処理面に、アプリケーターを用いて乾燥後の厚みが20μmとなるように塗布し、100℃で1分間乾燥して粘着剤層Aを作製した。
<Preparation of Pressure-Sensitive Adhesive Layer A>
Adhesive composition A was dried using an applicator on the release-treated surface of a separate film (trade name "PLR-382190" obtained from Lintec Co., Ltd.) made of a polyethylene terephthalate film subjected to release treatment It applied so that thickness of 20 micrometers might be set, and it dried at 100 degreeC for 1 minute, and produced the adhesive layer A.
(合成例5)(メタ)アクリル系樹脂粘着剤組成物B1の合成
 合成例3で得られた(メタ)アクリル系樹脂の酢酸エチル溶液(樹脂濃度:20%)に、該溶液の固形分100部に対して、架橋剤(コロネートL、固形分75%:東ソー製)0.4部、シラン化合物(信越化学工業製:KBM-403)0.4部及び合成例1で得られた光選択吸収性化合物(1)2部を混合し、さらに固形分濃度が14%となるように酢酸エチルを添加して粘着剤組成物B1を得た。なお、上記架橋剤の配合量は、有効成分としての重量部数である。
Synthesis Example 5 Synthesis of (Meth) Acrylic Resin Adhesive Composition B1 In an ethyl acetate solution (resin concentration: 20%) of the (meth) acrylic resin obtained in Synthesis Example 3, the solid content of the solution was 100. Relative to 1 part, 0.4 parts of a crosslinking agent (Corronate L, solid content 75%: manufactured by Tosoh Corporation), 0.4 parts of a silane compound (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-403) Two parts of the absorbing compound (1) were mixed, and ethyl acetate was further added so that the solid concentration would be 14%, to obtain a pressure-sensitive adhesive composition B1. In addition, the compounding quantity of the said crosslinking agent is a weight part number as an active ingredient.
(合成例6)(メタ)アクリル系樹脂粘着剤組成物B2の合成
 光選択吸収性化合物(1)2部に代えて、光選択吸収性化合物(2)1部を用いた以外は、合成例5と同様にして粘着剤組成物B2を得た。
Synthesis Example 6 Synthesis of (meth) acrylic resin pressure-sensitive adhesive composition B2 A synthesis example except that 1 part of the photoselective absorptive compound (2) was used instead of 2 parts of the photoselective absorptive compound (1) In the same manner as in 5, a pressure-sensitive adhesive composition B2 was obtained.
<粘着剤層B1の作製>
 粘着剤組成物B1を、離型処理が施されたポリエチレンテレフタレートフィルムからなるセパレートフィルム〔リンテック(株)から入手した商品名「PLR-382190」〕の離型処理面に、アプリケーターを用いて乾燥後の厚みが20μmとなるように塗布し、100℃で1分間乾燥して粘着剤層B1を作製した。
<Preparation of pressure-sensitive adhesive layer B1>
After drying adhesive composition B1 using an applicator on the release-treated surface of a separate film (trade name "PLR-382190" obtained from Lintec Co., Ltd.) obtained from a polyethylene terephthalate film subjected to release treatment The solution was applied to a thickness of 20 μm and dried at 100 ° C. for 1 minute to prepare a pressure-sensitive adhesive layer B1.
 粘着剤組成物B1を、粘着剤組成物B2に代えた以外は同様にして粘着剤層B2を作製した。 A pressure-sensitive adhesive layer B2 was produced in the same manner except that the pressure-sensitive adhesive composition B1 was replaced with the pressure-sensitive adhesive composition B2.
<粘着剤層付偏光板の作製>
(実施例5)粘着剤層付き偏光板A1の作製
 偏光板A1のトリアセチルセルロース系樹脂フィルムの表面に、コロナ処理を施し、上記で製造した粘着剤層Aをラミネーターにより貼り合わせた後、温度23℃、相対湿度65%の条件で7日間養生し、粘着剤層付き偏光板A1を得た。
<Preparation of polarizing plate with pressure-sensitive adhesive layer>
Example 5 Preparation of Pressure-Sensitive Adhesive Layer-Containing Polarizing Plate A1 The surface of the triacetylcellulose-based resin film of the polarizing plate A1 is subjected to corona treatment, and the pressure-sensitive adhesive layer A produced above is bonded with a laminator, It aged for 7 days on 23 degreeC and the conditions of 65% of relative humidity, and obtained polarizing plate A1 with an adhesive layer.
(実施例6)粘着剤層付き偏光板A2の作製
 偏光板A1を偏光板A2に代えた以外は、実施例5と同様にして粘着剤層付偏光板A2を得た。
Example 6 Preparation of Pressure-Sensitive Adhesive Layer-Containing Polarizing Plate A2 A pressure-sensitive adhesive layer-attached polarizing plate A2 was obtained in the same manner as in Example 5, except that the polarizing plate A1 was replaced with the polarizing plate A2.
(比較例2)粘着剤層付き偏光板B1の作製
 偏光板Bのトリアセチルセルロース系樹脂フィルムの表面に、コロナ処理を施し、上記で製造した粘着剤層B1をラミネーターにより貼り合わせた後、温度23℃、相対湿度65%の条件で7日間養生し、粘着剤層付き偏光板B1を得た。
Comparative Example 2 Preparation of Pressure-Sensitive Adhesive Layer-Containing Polarizing Plate B1 The surface of the triacetylcellulose-based resin film of polarizing plate B is subjected to corona treatment, and pressure-sensitive adhesive layer B1 manufactured above is bonded with a laminator, It aged for 7 days on 23 degreeC and the conditions of 65% of relative humidity, and obtained polarizing plate B1 with an adhesive layer.
(比較例3)粘着剤層付き偏光板B2の作製
 粘着剤層B1を粘着剤層B2に代えた以外、比較例2と同様にして粘着剤層付き偏光板B2を得た。
Comparative Example 3 Production of Pressure-Sensitive Adhesive Layer-Containing Polarizing Plate B2 A pressure-sensitive adhesive layer-attached polarizing plate B2 was obtained in the same manner as in Comparative Example 2 except that the pressure-sensitive adhesive layer B1 was replaced with the pressure-sensitive adhesive layer B2.
<光学フィルムの吸光度測定>
 光学フィルムA1を30mm×30mmの大きさに裁断し、これをサンプルとした。作製したサンプルの波長300~800nm範囲の吸光度を、分光光度計(UV-2450:株式会社島津製作所製)を用いて測定した。結果を表1に示す。
 測定後のサンプルを、温度95℃のオーブンに48時間保管し、耐熱評価試験を実施した。保管後のサンプルの吸光度を測定し、光学フィルムA1の吸光度保持率を下記式に基づき吸光度保持率を求めた。結果を表1に示す。吸光度保持率が高いほど、光選択吸収機能の劣化がなく良好な耐熱性を示す。なお、COP樹脂フィルム単体の吸光度はほぼ0であった。
吸光度保持率=(耐久試験後のA(405)/耐久試験前のA(405))×100
<Absorbance measurement of optical film>
The optical film A1 was cut into a size of 30 mm × 30 mm and used as a sample. The absorbance of the prepared sample in the wavelength range of 300 to 800 nm was measured using a spectrophotometer (UV-2450: manufactured by Shimadzu Corporation). The results are shown in Table 1.
The sample after measurement was stored in an oven at a temperature of 95 ° C. for 48 hours, and a heat resistance evaluation test was performed. The absorbance of the sample after storage was measured, and the absorbance retention of the optical film A1 was determined based on the following equation. The results are shown in Table 1. The higher the absorbance retention rate, the better the heat resistance without deterioration of the light selective absorption function. The absorbance of the COP resin film alone was almost zero.
Absorbance retention rate = (A (405) after endurance test / A (405) before endurance test) x 100
 光学フィルムA1を光学フィルムA2に代えた以外、上記と同様にして吸光度を測定した。結果を表1に示す。 Absorbance was measured in the same manner as described above except that the optical film A1 was replaced with the optical film A2. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028

<粘着剤付き偏光板の吸光度測定>
 粘着剤層付き偏光板A1を30mm×30mmの大きさに裁断し、粘着剤層と無アルカリガラス〔コーニング社製の商品名“EAGLE XG”〕とを貼合し、これをサンプルとした。作成したサンプルの波長300~800nm範囲の吸光度を、分光光度計(UV-2450:株式会社島津製作所製)を用いて測定した。A(405)は0.6、A(440)は0.05、A(405)/A(440)は12.7であった。
 測定後のサンプルを、温度95℃のオーブンに48時間保管し、耐熱評価試験を実施した。保管後のサンプルの吸光度を測定し、粘着剤層付き偏光板A1の吸光度保持率を上記と同様にして求めた。結果は、94%であった。
 なお、TACフィルム単体、COP樹脂フィルム単体及び無アルカリガラスのそれぞれの波長405nm、波長440nmにおける吸光度はほぼ0であった。
<Absorbance measurement of polarizing plate with adhesive>
The pressure-sensitive adhesive layer-attached polarizing plate A1 was cut into a size of 30 mm × 30 mm, and the pressure-sensitive adhesive layer was bonded to an alkali-free glass (trade name “EAGLE XG” manufactured by Corning Co., Ltd.) to obtain a sample. The absorbance of the prepared sample in the wavelength range of 300 to 800 nm was measured using a spectrophotometer (UV-2450: manufactured by Shimadzu Corporation). A (405) was 0.6, A (440) was 0.05, and A (405) / A (440) was 12.7.
The sample after measurement was stored in an oven at a temperature of 95 ° C. for 48 hours, and a heat resistance evaluation test was performed. The absorbance of the sample after storage was measured, and the absorbance retention of the pressure-sensitive adhesive layer-attached polarizing plate A1 was determined in the same manner as described above. The result was 94%.
In addition, the light absorbency in wavelength 405nm and wavelength 440nm of each of a TAC film single-piece | unit, COP resin film single-piece | unit, and an alkali free glass was substantially zero.
 粘着剤層付き偏光板A1を粘着剤層付き偏光板A2に代えた以外、上記と同様の方法にて、それぞれ吸光度を測定した。結果は、A(405)は0.5、A(440)は0.05、A(405)/A(440)は9.5、吸光度保持率は98%であった。 Absorbance was measured in the same manner as described above except that the pressure-sensitive adhesive layer-attached polarizing plate A1 was replaced with the pressure-sensitive adhesive layer-attached polarizing plate A2. As a result, A (405) was 0.5, A (440) was 0.05, A (405) / A (440) was 9.5, and the absorbance retention was 98%.
<光選択吸収化合物の移行性評価>
 以下の方法により、フィルムへの光選択吸収化合物の移行性を評価した。
 装置名:フーリエ変換赤外分光光度計Cary 660 FTIR(Agilent Technologies製)
 手法:検出器としてMCT(テルル化カドミウム水銀)を用いたATR法(結晶:ダイヤモンド)
<Evaluation of migration of light selective absorption compound>
The transferability of the light selective absorption compound to the film was evaluated by the following method.
Device name: Fourier transform infrared spectrophotometer Cary 660 FTIR (manufactured by Agilent Technologies)
Method: ATR method (crystal: diamond) using MCT (cadmium telluride mercury) as a detector
 実施例3で作製した偏光板A1からトリアセチルセルロースを剥離し、剥離後のトリアセチルセルロース面をATR法でFTIR測定を行った。光選択吸収性化合物由来(1)の1550~1560cm-1のピークを確認した。
 次いで、偏光板A1を温度95℃のオーブンに48時間保管した後、同様の方法を用いてFTIR測定を行った結果、トリアセチルセルロース面に光選択吸収性化合物(1)由来の1550~1560cm-1のピークの増大は確認できなかった。
 加熱後にトリアセチルセルロース面に表層に光選択性吸収化合物(1)由来のピークの増大が確認できないことから、光選択吸収性化合物(1)の移行がないと判断した。結果を表2に示す。
The triacetyl cellulose was peeled off from the polarizing plate A1 prepared in Example 3, and the triacetyl cellulose surface after peeling was subjected to FTIR measurement by the ATR method. The peak at 1550 to 1560 cm -1 derived from the photoselective absorptivity compound (1) was confirmed.
Subsequently, the polarizing plate A1 was stored in an oven at a temperature of 95 ° C. for 48 hours, and as a result of performing FTIR measurement using the same method, 1550 to 1560 cm derived from the photoselective absorption compound (1) on the triacetylcellulose surface An increase of the 1 peak could not be confirmed.
Since an increase in the peak derived from the photoselective absorption compound (1) could not be confirmed in the surface layer on the triacetylcellulose surface after heating, it was judged that there was no migration of the photoselective absorption compound (1). The results are shown in Table 2.
 比較例2で作製した偏光板B1から粘着剤層を物理的に除去し、除去後のトリアセチルセルロース面を上記方法にて確認したところ、光選択吸収性化合物(1)由来の1550~1560cm-1のピークを確認した。
 次いで、偏光板B1を温度95℃のオーブンに48時間保管した後、同様の方法を用いてFTIR測定を行った結果、トリアセチルセルロース面に光選択吸収性化合物(1)由来の1550~1560cm-1のピークの増大が確認できた。
 加熱後にトリアセチルセルロース表層に光選択性吸収化合物(1)由来のピークの増大が確認できたことから、光選択吸収性化合物(1)の移行があったと判断した。結果を表2に示す。
The pressure-sensitive adhesive layer was physically removed from the polarizing plate B1 prepared in Comparative Example 2, and the triacetylcellulose surface after removal was confirmed by the above method. As a result, 1550 to 1560 cm derived from the photoselective absorptive compound (1) The peak of 1 was confirmed.
Subsequently, the polarizing plate B1 was stored in an oven at a temperature of 95 ° C. for 48 hours, and as a result of performing FTIR measurement using the same method, 1550 to 1560 cm derived from the photoselective absorptive compound (1) on the triacetylcellulose surface An increase of the 1 peak was confirmed.
From the fact that an increase in the peak derived from the photoselective absorption compound (1) could be confirmed in the surface layer of triacetyl cellulose after heating, it was judged that there was migration of the photoselective absorption compound (1). The results are shown in Table 2.
 上記と同様にして、実施例3で作製した偏光板A1、比較例3で作製した偏光板B2における光選択吸収化合物の移行性評価を行った。結果を表2に示す。 The migration evaluation of the light selective absorption compound in the polarizing plate A1 manufactured in Example 3 and the polarizing plate B2 manufactured in Comparative Example 3 was performed in the same manner as described above. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 本発明の光学フィルムは、波長400nm付近(405nm)の光を選択的に吸収する機能が高いだけでなく、耐長400nm付近(405nm)の光を選択的に吸収する化合物がその他の層へ移行せず、位相差フィルム等の劣化を抑制することができる。 The optical film of the present invention not only has a high function of selectively absorbing light near a wavelength of 400 nm (405 nm), but also a compound that selectively absorbs light near a wavelength of 400 nm (405 nm) is transferred to other layers It is possible to suppress the deterioration of the retardation film etc.
 本発明の光学フィルムは、良好な表示特性を有し、かつ短波長の可視光による光学フィルムの劣化を抑制することが可能である。 The optical film of the present invention has good display properties, and can suppress deterioration of the optical film due to visible light of short wavelength.
 10   光学フィルム
 10A、10B、10C   光学積層体
 1   光選択吸収層
 2   樹脂フィルム(a)
 3   偏光フィルム
 4、7、60   接着剤層
 5   保護フィルム
 6   偏光フィルム
 30  粘着剤層
 40   光学フィルム
 50、50a   1/4波長位相差層
 70   1/2波長位相差層
 80   ポジティブC層
 110  発光素子
10 Optical film 10A, 10B, 10C Optical laminate 1 Light selective absorption layer 2 Resin film (a)
DESCRIPTION OF SYMBOLS 3 Polarizing film 4, 7, 60 Adhesive layer 5 Protective film 6 Polarizing film 30 Adhesive layer 40 Optical film 50, 50a 1⁄4 wavelength retardation layer 70 1/2 wavelength retardation layer 80 Positive C layer 110 Light emitting element

Claims (11)

  1.  活性エネルギー線硬化性組成物から形成される光選択吸収層を少なくとも1層含み、かつ下記式(1)を満たす光学フィルム。
      A(405)≧0.5        (1)
    [式(1)中、A(405)は、波長405nmにおける吸光度を表す。]
    An optical film comprising at least one light selective absorption layer formed from an active energy ray curable composition and satisfying the following formula (1).
    A (405) 0.5 0.5 (1)
    [In Formula (1), A (405) represents the absorbance at a wavelength of 405 nm. ]
  2.  さらに、下記式(2)を満たす請求項1に記載の光学フィルム。
      A(440)≦0.1        (2)
    [式(2)中、A(440)は、波長440nmにおける吸光度を表す。]
    Furthermore, the optical film of Claim 1 which satisfy | fills following formula (2).
    A (440) ≦ 0.1 (2)
    [In Formula (2), A (440) represents the light absorbency in wavelength 440nm. ]
  3.  下記式(3)を満たす請求項1又は2に記載の光学フィルム。
      A(405)/A(440)≧5        (3)
    [式(3)中、A(405)は波長405nmにおける吸光度を表し、A(440)は、波長440nmにおける吸光度を表す。]
    The optical film of Claim 1 or 2 which satisfy | fills following formula (3).
    A (405) / A (440) ≧ 5 (3)
    [In Formula (3), A (405) represents the absorbance at a wavelength of 405 nm, and A (440) represents the absorbance at a wavelength of 440 nm. ]
  4.  光選択吸収層の23℃における貯蔵弾性率Eが、100MPa以上である請求項1~3のいずれかに記載の光学フィルム。 The optical film according to any one of claims 1 to 3, wherein the storage elastic modulus E at 23 ° C of the light selective absorption layer is 100 MPa or more.
  5.  光選択吸収層が、光硬化性成分(A)、光選択吸収化合物(B)及び光重合開始剤(C)を含有する活性エネルギー線硬化性組成物から形成される層である請求項1~4のいずれかに光学フィルム。 The photoselective absorption layer is a layer formed from an active energy ray-curable composition comprising a photocurable component (A), a photoselective absorption compound (B) and a photopolymerization initiator (C). Optical film to any of four.
  6.  光選択吸収化合物(B)の含有量が、光硬化性成分(A)100質量部に対して、0.01~20質量部である請求項5に記載の光学フィルム。 The optical film according to claim 5, wherein the content of the photoselective absorption compound (B) is 0.01 to 20 parts by mass with respect to 100 parts by mass of the photocurable component (A).
  7.  光選択吸収化合物(B)が、下記式(4)を満たす化合物である請求項5又は6に記載の光学フィルム。
     ε(405)≧20  (4)
    〔式(4)中、ε(405)は波長405nmにおける化合物のグラム吸光係数を表す。グラム吸光係数の単位はL/(g・cm)である。〕
    The optical film according to claim 5 or 6, wherein the light selective absorption compound (B) is a compound satisfying the following formula (4).
    ε (405) 20 20 (4)
    [In Formula (4), (epsilon) (405) represents the gram absorption coefficient of a compound in wavelength 405 nm. The unit of gram absorption coefficient is L / (g · cm). ]
  8.  光選択吸収化合物(B)は、式(5)を満たす化合物である請求項7に記載の光学フィルム。
    ε(405)/ε(440)≧20      (5)
    [式(5)中、ε(405)は波長405nmにおける化合物のグラム吸光係数を表し、ε(440)は波長440nmにおけるグラム吸光係数を表す。]
    The optical film according to claim 7, wherein the photoselective absorption compound (B) is a compound satisfying the formula (5).
    ε (405) / ε (440) ≧ 20 (5)
    [In Formula (5), (epsilon) (405) represents the gram absorption coefficient of the compound in wavelength 405 nm, and (epsilon) (440) represents the gram absorption coefficient in wavelength 440 nm. ]
  9.  光硬化性成分(A)が、(メタ)アクリロイルオキシ基含有化合物及びエポキシ化合物からなる群から選ばれる少なくとも1つを含む請求項6~8のいずれかに記載の光学フィルム。 The optical film according to any one of claims 6 to 8, wherein the photocurable component (A) contains at least one selected from the group consisting of (meth) acryloyloxy group-containing compounds and epoxy compounds.
  10.  請求項1~9に記載の光学フィルムの少なくとも一方の面に、粘着剤層を有する粘着剤層付き光学フィルム。 An optical film with an adhesive layer having an adhesive layer on at least one surface of the optical film according to any one of claims 1 to 9.
  11.  請求項10に記載の粘着剤層付き光学フィルムを有する表示装置。 The display apparatus which has an optical film with an adhesive layer of Claim 10.
PCT/JP2018/023582 2017-06-27 2018-06-21 Optical film WO2019004041A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207002414A KR102603487B1 (en) 2017-06-27 2018-06-21 optical film
CN201880042772.8A CN110799865B (en) 2017-06-27 2018-06-21 Optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017125437 2017-06-27
JP2017-125437 2017-06-27

Publications (1)

Publication Number Publication Date
WO2019004041A1 true WO2019004041A1 (en) 2019-01-03

Family

ID=64740632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023582 WO2019004041A1 (en) 2017-06-27 2018-06-21 Optical film

Country Status (5)

Country Link
JP (1) JP7320926B2 (en)
KR (1) KR102603487B1 (en)
CN (1) CN110799865B (en)
TW (1) TWI844515B (en)
WO (1) WO2019004041A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099016A1 (en) * 2015-12-08 2017-06-15 東レ株式会社 Layered film
JP2017165941A (en) * 2015-12-25 2017-09-21 日東電工株式会社 Adhesive composition for organic el display device, adhesive layer for organic el display device, polarizing film with adhesive layer for organic el display device, and organic el display device
JP2017187619A (en) * 2016-04-06 2017-10-12 東レ株式会社 Optical film

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202777A (en) * 1997-01-23 1998-08-04 Nippon Oil Co Ltd Laminate
JP2005189645A (en) 2003-12-26 2005-07-14 Fuji Photo Film Co Ltd Circularly polarizing plate and organic el display element having circularly polarizing plate
JP2006184531A (en) * 2004-12-27 2006-07-13 Toyobo Co Ltd Wavelength selective absorption film and wavelength selective absorption filter
JP2006308936A (en) 2005-04-28 2006-11-09 Fuji Photo Film Co Ltd Polarizing plate and liquid crystal display device
JP2008224750A (en) * 2007-03-08 2008-09-25 Hitachi Maxell Ltd Optical film with near-infrared light blocking function and anti-reflection function, and manufacturing mthod thereof
JP2009128770A (en) * 2007-11-27 2009-06-11 Nof Corp Anti-reflection film having uv absorption, and manufacturing method thereof
JP2009244757A (en) 2008-03-31 2009-10-22 Panasonic Electric Works Co Ltd Transparent substrate
JP2010097062A (en) * 2008-10-17 2010-04-30 Fujifilm Corp Long-wavelength ultraviolet ray absorbing laminated body
JP2011026559A (en) * 2009-07-03 2011-02-10 Nippon Shokubai Co Ltd Wavelength-selective absorbing curable resin composition
JP5734681B2 (en) * 2010-01-29 2015-06-17 住友化学株式会社 Luminescent composition and light emitting device using the same
KR20130096167A (en) * 2010-06-25 2013-08-29 아사히 가라스 가부시키가이샤 Optical film and process for production thereof
JP2012171996A (en) * 2011-02-18 2012-09-10 Nof Corp Optical film
EP2880475B1 (en) * 2012-07-30 2023-10-18 3M Innovative Properties Company UV STABLE ASSEMBLIES COMPRISING MULTI-LAYER OPTICAL FILMs
KR101582783B1 (en) * 2013-02-27 2016-01-05 미쓰이 가가쿠 가부시키가이샤 Optical material, composition for use therein, and use thereof
TWI522441B (en) * 2014-02-19 2016-02-21 博威電子股份有限公司 Film struture
CN105824191A (en) * 2015-01-09 2016-08-03 日本化药株式会社 Photo-curable coloring composition, solidification object and article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099016A1 (en) * 2015-12-08 2017-06-15 東レ株式会社 Layered film
JP2017165941A (en) * 2015-12-25 2017-09-21 日東電工株式会社 Adhesive composition for organic el display device, adhesive layer for organic el display device, polarizing film with adhesive layer for organic el display device, and organic el display device
JP2017187619A (en) * 2016-04-06 2017-10-12 東レ株式会社 Optical film

Also Published As

Publication number Publication date
JP7320926B2 (en) 2023-08-04
JP2019008292A (en) 2019-01-17
KR20200019236A (en) 2020-02-21
TWI844515B (en) 2024-06-11
TW201910823A (en) 2019-03-16
CN110799865B (en) 2022-06-10
CN110799865A (en) 2020-02-14
KR102603487B1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
KR101496506B1 (en) Adhesive for polarizing plate and polarizing plate comprising the same
JP6906895B2 (en) Polarizer
KR20130040725A (en) Adhesive for polarizing plate and polarizing plate comprising the same
JP6977110B2 (en) Polarizer
WO2012133163A1 (en) Polarizing plate and laminated optical member
JP7250827B2 (en) optical laminate
TWI826672B (en) Adhesive composition
KR101620188B1 (en) Polarizing plate and image display apparatus comprising the same
TW201927938A (en) Polarizing plate and image display device comprising the same
JP7320926B2 (en) optical film
TWI820319B (en) Adhesive composition
WO2024024119A1 (en) Optical laminate
WO2024024890A1 (en) Optical laminate
JP2024018945A (en) optical laminate
JP2024018946A (en) Circularly polarizing plate
CN117471595A (en) Circular polarizing plate
CN116500717A (en) Polarizing plate and image display device
CN117471598A (en) Optical laminate and method for producing same
TW202409620A (en) Circularly polarizing plate
CN117471601A (en) Optical laminate and method for producing same
JP2024019046A (en) optical laminate
TW202405536A (en) Optical laminate
JP2023169633A (en) optical laminate
TW202141087A (en) Method for producing polarizing plate with retardation layer
JP2022110684A (en) optical laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207002414

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18823290

Country of ref document: EP

Kind code of ref document: A1