WO2017098923A1 - 車両用内装材 - Google Patents

車両用内装材 Download PDF

Info

Publication number
WO2017098923A1
WO2017098923A1 PCT/JP2016/084708 JP2016084708W WO2017098923A1 WO 2017098923 A1 WO2017098923 A1 WO 2017098923A1 JP 2016084708 W JP2016084708 W JP 2016084708W WO 2017098923 A1 WO2017098923 A1 WO 2017098923A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
reinforcing rib
rib
back surface
resin
Prior art date
Application number
PCT/JP2016/084708
Other languages
English (en)
French (fr)
Inventor
関口 徹
寛男 松原
貴彦 谷口
Original Assignee
林テレンプ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林テレンプ株式会社 filed Critical 林テレンプ株式会社
Priority to JP2017555014A priority Critical patent/JP6728231B2/ja
Publication of WO2017098923A1 publication Critical patent/WO2017098923A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners

Definitions

  • the present invention relates to a vehicle interior material.
  • interior materials such as deck side trim are attached to the body panel.
  • a base material obtained by gathering thermoplastic resin fibers and press molding, a base material obtained by foaming a resin material and injection molding, or the like is used. Since these base materials contain air, they are lightweight, but the rigidity decreases as the weight is reduced. Therefore, it is conceivable to integrally form a reinforcing structure with, for example, a thermoplastic resin on the back surface of the substrate that is not visible from the interior of the automobile.
  • the reinforcing structure is molded with the thermoplastic resin on the entire back surface of the base material of the interior material, the weight of the interior material increases.
  • a linear reinforcing rib is integrally formed with a thermoplastic resin on a part of the back surface of the base material, the reinforcing rib contracts due to cooling, and the base material is warped. If the density of the base material is increased in order to suppress this warpage, the weight of the interior material increases.
  • the technique disclosed in Japanese Patent Application Laid-Open No. 2013-91288 cannot be applied to a light-weight substrate because the shrinkage of the thermoplastic resin due to cooling is not taken into consideration.
  • the above-described problem similarly exists for various vehicle interior materials such as a door trim and a roof trim.
  • the present invention has an object of providing a vehicle interior material that is lightweight and has a required rigidity.
  • the vehicle interior material of the present invention includes a molded base material, A resin-made reinforcing rib formed integrally with a part of the back surface of the base material,
  • the base material is at least one of a base material in which fibers are aggregated and a base material made of foamed resin,
  • the reinforcing rib has a form extending in a wave shape along the back surface of the base material.
  • FIG. 1 is a vertical cross-sectional view showing an example of the interior of an automobile in a state where the illustration of a side surface is omitted.
  • FIG. 2 is a side view showing an example of the interior material as seen from the outside of the vehicle.
  • FIG. 3 is a cross-sectional view schematically showing an example of a cross section of the interior material at the position A1-A1 in FIG. 4A to 4C are side views showing examples of reinforcing ribs as seen from the vehicle outer side.
  • FIGS. 5A to 5C are side views showing examples of reinforcing ribs as seen from the outside of the vehicle.
  • 6A and 6B are side views showing examples of reinforcing ribs as seen from the vehicle outer side.
  • FIG. 7 is a side view showing an example of integrally formed reinforcing ribs and bridging ribs as seen from the vehicle exterior side.
  • FIG. 8 is a diagram schematically illustrating an example of a method for manufacturing an interior material.
  • FIG. 9 is a diagram schematically illustrating an example of measuring the amount of warping of the interior material.
  • FIG. 10 is a side view showing a grid-like rib according to a comparative example as seen from the vehicle outer side.
  • FIGS. 1 to 9 are diagrams schematically showing examples. The enlargement ratios in the respective directions shown in these drawings may be different, and the drawings may not be consistent. Of course, each element of the present technology is not limited to the specific example indicated by the reference numeral.
  • the vehicle interior material 1 includes a molded base material 10 and a resin reinforcement integrally molded on a part of the back surface 10 b of the base material 10.
  • Rib 50 The base material 10 is at least one of a base material 10A in which the fibers F1 are aggregated and a base material 10B made of foamed resin.
  • the reinforcing rib 50 extends in a wave shape along the back surface 10 b of the base material 10.
  • the interior material 1 of the above aspect 1 is lightweight because the molded base material 10 is at least one of the base material 10A in which the fibers F1 are aggregated and the base material 10B made of foamed resin.
  • the resin reinforcing rib 50 formed integrally with a part of the back surface 10b of the base material 10 extends in a wave shape along the back surface 10b of the base material 10, It was found that the warpage was suppressed. From this, this aspect can provide the interior material for vehicles which is lightweight and has required rigidity.
  • the reinforcing rib 50 may have a first portion 51 and a second portion 52 that are connected to each other by a bent portion 53. As illustrated in FIGS. 4B and 4C, the reinforcing rib 50 has at least one of a transfer portion 54 and a thick portion 55 connected to the first portion 51 and the second portion 52. May be. In this aspect, since the rigidity of the reinforcing rib 50 is increased, it is possible to provide a suitable vehicle interior material that is lightweight and has the required rigidity.
  • the reinforcing rib 50 may include a first rib 61 and a second rib 62 that extend in a wave shape along the back surface 10 b of the base material 10 and are parallel to each other.
  • a resin bridging rib 70 connected to the first rib 61 and the second rib 62 may be formed integrally with the reinforcing rib 50.
  • a suitable vehicle interior material having a required rigidity can be provided.
  • the substrate 10 may have a thickness Tb (see FIG. 3) of 1 to 8 mm.
  • the basis weight of the substrate 10 may be 450 to 1200 g / m 2 .
  • the maximum bending load of the substrate 10 may be 5 to 80 N / 50 mm.
  • the bending elastic gradient of the substrate 10 may be 5 to 300 N / 50 mm / cm.
  • This aspect can provide a suitable vehicle interior material that is lightweight and has the required rigidity.
  • Min to Max means a minimum value Min or more and a maximum value Max or less.
  • FIG. 1 shows an example of the interior of an automobile in a state in which the illustration of the side portion is omitted.
  • FIG. 2 shows an example of a vehicle interior material as viewed from the outside of the vehicle. In the lower part of FIG. 3, the reinforcing rib is illustrated in an enlarged manner.
  • FIG. 3 schematically shows an example of a cross section of the vehicle interior material at the position A1-A1 in FIG.
  • FRONT, REAR, UP, and DOWN indicate front, rear, upper, and lower, respectively. The positional relationship between the left and right is based on the direction of looking forward from the automobile 100.
  • Reference sign D1 indicates the front-rear direction of the automobile 100
  • reference sign D2 indicates the vertical direction of the automobile 100
  • reference sign D3 indicates the thickness direction of the vehicle interior material 1
  • reference sign D4 indicates that the wave-shaped reinforcing rib 50 extends. Indicates direction.
  • An automobile 100 shown in FIG. 1 is a road traveling automobile designed and equipped to be used on a road.
  • a metal body panel such as a steel plate surrounds the passenger compartment SP1 and the luggage compartment SP2 and covers the vehicle body.
  • the automobile 100 shown in FIG. 1 is a wagon type passenger automobile in which a rear luggage compartment SP2 is connected to the passenger compartment SP1 and includes two rows of seats 101 (front seat and rear seat).
  • automobiles to which the present technology can be applied include automobiles other than the two-row seat type such as the three-row seat type, and also include so-called station wagons, one-box cars, etc., and sedan-type automobiles.
  • a deck side trim 111 (an example of the interior material 1) is installed on the deck side panel (an example of the vehicle body panel) on the side from the cargo compartment SP2 on the cargo compartment SP2 side.
  • a door trim 112 (an example of the interior material 1) is installed on the side of the vehicle compartment SP1 on a door panel (an example of a vehicle body panel) located on the side from the vehicle compartment SP1.
  • a pillar trim 113 (an example of the interior material 1) is installed on a side of the pillar (an example of the vehicle body panel) from the passenger compartment SP1 on the side of the passenger compartment SP1.
  • a roof trim 114 (an example of the interior material 1) is installed on the interior side (SP1, SP2) side of the roof panel (an example of the vehicle body panel) above the passenger compartment SP1 and the cargo compartment SP2.
  • FIG. 2 and 3 show an example of a deck side trim as an example of the interior material 1.
  • the deck side trim 111 shown in FIG. 3 the surface 10 a of the base material 10 formed so as to have unevenness and the backing 40 of the skin material 30 are bonded, and a resin reinforcement is applied to a part of the back surface 10 b of the base material 10.
  • the rib 50 is integrally formed.
  • the deck side trim 111 is disposed on the left and right side portions of the luggage compartment SP2, and gives a good design to the luggage compartment SP2 connected to the passenger compartment SP1.
  • the reinforcing ribs 50 are arranged near the outer periphery or on a large plane where the rigidity as the interior material is likely to be insufficient with respect to the base material 10 formed into a three-dimensional shape.
  • the reinforcing rib 50 shown in FIG. 2 includes a reinforcing rib connected to the resin-made bridging rib 70 and a reinforcing rib not connected to the bridging rib 70.
  • the vehicle interior material of the present technology may not have the skin material 30 and the backing 40. In this case, the surface 10a becomes the design surface of the vehicle interior material instead of the skin material 30.
  • the base material 10 at least one of the base material 10A in which the fibers F1 are aggregated and the base material 10B made of foamed resin can be used.
  • a fiber assembly formed by collecting the fibers F1 and including the air Ar, such as an air-permeable press-molded fiber mat, can be used.
  • press forming can be used.
  • the base material 10A may be a fiber assembly having a multilayer structure such as a fiber mat in which a design layer, a shape retaining layer, and a sound absorbing layer are laminated.
  • the fibers F1 for forming the base material 10A include synthetic resin fibers (including elastomers) such as thermoplastic resins, fibers obtained by adding additives to synthetic resins, inorganic fibers such as glass fibers and carbon fibers, and plant fibers such as kenaf.
  • thermoplastic fiber such as a thermoplastic resin fiber
  • the thermoplastic resin may be a polyolefin resin such as polypropylene (PP) resin or polyethylene resin (PE), a polyester resin such as polyethylene terephthalate (PET) resin, a polyamide (PA) resin, an acrylic (PMMA) resin, or the like.
  • the fiber F1 may include a main fiber and an adhesive fiber (binder), and may include a fiber having a conjugate structure such as a core-sheath structure or a side-by-side structure.
  • inorganic fibers such as glass fibers are mixed with thermoplastic fibers, the rigidity of the substrate can be increased.
  • the thickness Tb of the substrate 10A is preferably 1 mm or more and 8 mm or less.
  • the basis weight of the substrate 10A is preferably 450 g / m 2 or more and 1200 g / m 2 or less.
  • the maximum bending load of the base material 10A is preferably 5 N / 50 mm or more and 80 N / 50 mm or less.
  • the maximum bending load is according to JIS K7171: 2008 “Plastics – Determination of bending characteristics”.
  • One surface of a test piece having a length of 150 mm and a width of 50 mm has a distance between supporting points (L) of 50 mm.
  • the bending elastic gradient of the substrate 10A is preferably 5 N / 50 mm / cm or more and 300 N / 50 mm / cm or less.
  • the bending elastic gradient is in accordance with JIS K7171: 2008, and has two fulcrums (curvature radius of 3 mm) with one surface of a test piece having a length of 150 mm and a width of 50 mm having a fulcrum (support) distance (L) of 50 mm. 2 mm), and when the load is applied to the other surface of the test piece at a speed of 50 mm / min from the indenter (curvature radius of 3.2 mm) placed at the center position between the fulcrums, the load when the generated load becomes maximum -The linear slope of the deflection curve (unit: N / cm).
  • N / cm The linear slope of the deflection curve
  • the base material 10B made of foamed resin a foamed molded body formed by foaming a resin material and including bubbles (air Ar) can be used.
  • injection molding can be used for foam molding of the resin material.
  • the base material 10B may have a multilayer structure such as a foamed resin molded product with a skin layer left on the surface, or a molded product in which a substantially non-foamed layer is laminated on at least one surface of the foamed resin layer.
  • various synthetic resins including elastomers
  • additives may be added. From the viewpoint of ease of molding, a thermoplastic resin such as a thermoplastic resin may be used. A resin material is preferred.
  • the thermoplastic resin may be a polyolefin resin such as a PP resin or a PE resin, a polystyrene (PS) resin, a combination thereof, or the like, and may contain an additive such as a filler.
  • foaming agents for foaming resin materials include volatile foaming agents that generate hydrocarbons such as butane and pentane, organic foaming agents such as azodicarbonamide (ADCA) and hydrazodicarbonamide, and carbon dioxide gas such as ammonium carbonate.
  • An inorganic foaming agent that generates water can be used.
  • the thickness Tb of the base material 10B is preferably 1 mm or more and 8 mm or less.
  • the basis weight of the substrate 10B is preferably 450 g / m 2 or more and 1200 g / m 2 or less.
  • the maximum bending load of the substrate 10B is preferably 5 N / 50 mm or more and 80 N / 50 mm or less.
  • the bending elastic gradient of the substrate 10B is preferably 5 N / 50 mm / cm or more and 300 N / 50 mm / cm or less.
  • non-woven fabric, woven fabric, knitted fabric, carpet, synthetic resin (including elastomer), rubber, and the like can be used.
  • a backing (backing layer) 40 may be formed on the back surface of the skin material 30.
  • a synthetic resin such as a thermoplastic resin (including an elastomer) or the like can be used.
  • a low-melting-point thermoplastic resin such as low-density polyethylene or ethylene vinyl acetate can be used.
  • the resin-made reinforcing rib 50 formed integrally with a part of the back surface 10b of the base material 10 extends in a wave shape along the back surface 10b of the base material 10, as shown in FIG.
  • a plurality of first portions 51 extending along a predetermined direction D5 are included in the reinforcing rib 50, and extend along a predetermined direction D6 intersecting with the direction D5.
  • the plurality of second portions 52 are included in the reinforcing rib 50 and the first portions 51 and the second portions 52 that appear alternately are connected to each other at the bent portion 53.
  • the extending direction D4 of the reinforcing rib 50 is a direction in which the reinforcing rib 50 extends as a whole including the above-described portions 51 to 53, and is a direction connecting intermediate portions of the corrugated width Wr of the reinforcing rib 50. . Therefore, the direction D4 in which the reinforcing rib 50 extends intersects with the direction D5 in which the first portion 51 extends, and also intersects with the direction D6 in which the second portion 52 extends.
  • thermoplastic resin such as a thermoplastic resin
  • a resin material is preferred.
  • the thermoplastic resin may be a polyolefin resin such as PP resin or PE resin, acrylonitrile butadiene styrene (ABS) resin, a combination thereof, or the like, and may contain additives such as fibers.
  • ABS resin or the like having a low linear expansion coefficient is used as the resin material, warpage of the substrate can be reduced.
  • inorganic fibers such as glass fibers and carbon fibers, plant fibers such as kenaf, combinations thereof, and the like can be used.
  • inorganic fiber such as glass fiber
  • warpage of the substrate can be reduced.
  • injection molding can be used for forming the reinforcing rib 50.
  • the reinforcing rib 50 may have a trace of the gate of the injection molding machine.
  • the reinforcing ribs 50A to 50H as an example of the reinforcing rib 50 as viewed from the outside of the vehicle.
  • the reinforcing rib 50A shown in FIG. 4A extends in a triangular wave shape along the substrate back surface 10b.
  • the wavy width of the reinforcing rib 50 along the substrate back surface 10b is Wr
  • the thickness of the reinforcing rib 50 along the substrate back surface 10b is Tr
  • the corrugated reinforcing rib 50 extends in the extending direction D4.
  • the total length is La
  • the lengths of the first part 51 and the second part 52 are Lr.
  • the thickness Tr of the reinforcing rib 50 is the thickness of the first portion 51 and the thickness of the second portion 52.
  • the first part 51 and the second part 52 are linear, and have the same thickness and the same length.
  • the height of the reinforcing rib 50 from the base material back surface 10b is set to Hr.
  • the height Hr of the reinforcing rib is not particularly limited, but may be, for example, about 2 to 10 mm, may be equal to or greater than the thickness Tr, and may be higher than the thickness Tr (Hr> Tr).
  • the thickness Tr of the reinforcing rib is not particularly limited, but can be, for example, about 1 to 5 mm.
  • the length Lr of the first part 51 and the second part 52 is not particularly limited, but can be, for example, about 10 to 40 mm.
  • the angle ⁇ 1 (0 ° ⁇ 1 ⁇ 90 °) formed by the direction D4 in which the reinforcing rib extends and the direction D5 in which the first portion 51 extends is not particularly limited, but can be, for example, about 15 to 75 °. .
  • the angle ⁇ 2 (0 ° ⁇ 2 ⁇ 90 °) formed by the direction D4 in which the reinforcing rib extends and the direction D6 in which the second portion 52 extends is not particularly limited, but can be, for example, about 15 to 75 °. .
  • the reinforcing rib contracts by cooling in the extending direction D4 of the linear reinforcing rib, and the interior shown in FIG.
  • the warp on the side on which the front surface 10a swells that is, the side on which the back surface 10b is recessed occurs in the substrate 10.
  • This warp is a warp that makes the cross section along the direction D4 in which the linear reinforcing rib 90 extends curved, and is not a warp that makes the cross section along the direction D7 orthogonal to the direction D4 curved.
  • the resin reinforcing rib 50 formed integrally with a part of the substrate back surface 10b extends in a wave shape along the substrate back surface 10b, the warpage amount WP of the substrate 10 is reduced. It turned out to be less.
  • FIG. 4A shows the position of the linear reinforcing rib 90 with a two-dot chain line when it is assumed that the reinforcing rib 50 is arranged along the middle portion of the corrugated width Wr.
  • the existence range (width Wr) of the reinforcing rib 50 is wider than the existence range (thickness Tr) of the linear reinforcing rib 90 in the orthogonal direction D7. .
  • the force with which the molded reinforcing rib 50 contracts by cooling is dispersed also in the orthogonal direction D7, and the contraction in the extending direction D4 of the reinforcing rib 50 is relatively reduced, and in the cross section along the direction D4 It is presumed that the warpage is relatively small.
  • the corrugated width Wr of the reinforcing rib is preferably 2 times or more (Wr / Tr ⁇ 2), more preferably 4 times or more (Wr / Tr ⁇ 4), and 6 times or more (Wr / Tr ⁇ 6). Is more preferable.
  • the width Wr is equal to or greater than the lower limit, it is estimated that the contraction force during cooling of the formed reinforcing rib 50 is preferably dispersed in the orthogonal direction D7, and the warpage of the substrate 10 is further reduced.
  • the width Wr is preferably equal to or less than the total length La in the direction D4 in which the reinforcing rib 50 extends.
  • the width Wr is within the above range, the warpage of the substrate 10 is further reduced, and a suitable vehicle interior material having a required rigidity and a light weight can be obtained.
  • this linear reinforcement is applied to the area (referred to as Sa) of the virtual linear reinforcing rib 90 (same thickness Tr) along the intermediate portion of the wavy width Wr of the reinforcing rib 50 (thickness Tr).
  • the ratio Sol / Sa of the total area (referred to as Sol) of the overlapping portion OL between the rib 90 and the corrugated reinforcing rib 50 is defined as an area ratio Rs.
  • the area ratio Rs is 80% or less (more preferably 50% or less) as a percentage, it is presumed that the shrinkage force during cooling of the formed reinforcing rib 50 is preferably dispersed in the orthogonal direction D7.
  • the lower limit of the area ratio Rs is not particularly limited, but may be 5% (Rs ⁇ 0.05) as a percentage, for example.
  • a transfer portion 54 is added in the vicinity of the bent portion 53 of the reinforcing rib 50A shown in FIG.
  • the transfer portion 54 has an opening 53o at a portion of a minor angle (conjugate angle larger than 0 ° and smaller than 180 °) formed by the first portion 51 and the second portion 52 with the bent portion 53 as a base point. It is formed so as to surround the first part 51 and the second part 52.
  • the distance Lb from the bent portion 53 to the transfer portion 54 is not particularly limited, but is about 0.1 to 0.5 times the length Lr of the first portion 51 and the second portion 52 (more preferably 0.2 to 0). About 4 times). Due to the presence of the transfer portion 54, the shape-retaining property of the corrugated reinforcing rib is enhanced, the shrinkage in the extending direction D4 is reduced, and the warp in the cross section along the extending direction D4 of the reinforcing rib 50 is relatively Presumed to be less. Therefore, a suitable vehicle interior material having light weight and required rigidity can be obtained.
  • a thick portion 55 is added in the vicinity of the bent portion 53 of the reinforcing rib 50A shown in FIG.
  • the thick portion 55 has the first portion 51 and the second portion so as to fill a recess portion (portion corresponding to the opening 53o) formed by the first portion 51 and the second portion 52 with the bent portion 53 as a starting point. It is connected to two parts 52. Accordingly, the shape retaining property (rigidity) of the corrugated reinforcing rib is increased, the contraction in the extending direction D4 is reduced, and the warpage in the cross section along the extending direction D4 of the reinforcing rib 50 is relatively reduced. Is done. Therefore, a suitable vehicle interior material having light weight and required rigidity can be obtained.
  • both the transfer portion 54 and the thick portion 55 may be formed on the reinforcing rib 50.
  • the length Lr of the first part 51 and the second part 52 can also be lengthened or shortened.
  • the reinforcing rib 50D shown in FIG. 5A has a length Lr shorter than that of the reinforcing rib 50A shown in FIG. As a result, the reinforcing rib 50D has a smaller width Wr and a larger area ratio Rs than the reinforcing rib 50A.
  • the direction of the first part 51 (direction D5) and the direction of the second part 52 (direction D6) can be various directions.
  • a non-crossing portion 56 that does not cross the virtual linear reinforcing rib 90 is added between the first portion 51 and the second portion 52. . Therefore, the first portion 51 and the non-crossing portion 56 are connected to each other at the bent portion 53, and the non-crossing portion 56 and the second portion 52 are connected to each other at the bending portion 53.
  • the non-crossing portion 56 shown in FIGS. 5B and 5C extends linearly along the direction D4 in which the reinforcing rib extends.
  • the direction in which the non-crossing portion extends may be a direction shifted from the direction D4 in which the reinforcing rib extends.
  • the reinforcing rib 50E shown in FIG. 5B extends in an inverted trapezoidal shape, and the first portion 51 and the second portion 52 are bent at an angle larger than 90 ° and smaller than 180 ° from the non-crossing portion 56.
  • An angle ⁇ 1 (90 ° ⁇ 1 ⁇ 180 °) formed by the direction D4 in which the reinforcing rib extends and the direction D5 in which the first portion 51 extends is not particularly limited, but can be, for example, about 105 to 165 °. .
  • An angle ⁇ 2 (90 ° ⁇ 2 ⁇ 180 °) formed by the direction D4 in which the reinforcing rib extends and the direction D6 in which the second portion 52 extends is not particularly limited, but can be, for example, about 105 to 165 °. .
  • the reinforcing rib 50F shown in FIG. 5C extends in a rectangular wave shape along the substrate back surface 10b, and the first portion 51 and the second portion 52 are bent from the non-crossing portion 56 at a substantially right angle.
  • first part 51 and the second part 52 may extend in a curved shape.
  • the first part 51 and the second part 52 may have different thicknesses Tr and may have different lengths Lr.
  • the reinforcing rib 50 may extend in a wave shape without being bent, such as extending in a sine wave shape.
  • a plurality of wave-shaped reinforcing ribs 50 may be combined.
  • FIG. 6A shows that two corrugated reinforcing ribs 50G in which semicircular portions are connected in the direction D4 are combined.
  • the combined reinforcing ribs 50G and 50G have a shape in which circular portions are connected in the extending direction D4.
  • FIG. 6B shows that two reinforcing ribs 50H similar to the reinforcing rib 50E shown in FIG. 5B are combined.
  • the reinforcing rib 50 may include a first rib 61 and a second rib 62 that extend in a wave shape along the substrate back surface 10 b and are parallel to each other.
  • the first parts 51 are arranged in parallel and the second parts 52 are arranged in parallel.
  • the first rib 61 and the second rib 62 have a transfer portion 54 in the vicinity of the bent portion 53.
  • the first rib 61 and the second rib 62 that are adjacent to each other in the orthogonal direction D ⁇ b> 7 are connected by a resin-made bridging rib 70.
  • the bridging rib 70 is formed integrally with the reinforcing rib 50.
  • the bridging rib 70 shown in FIG. 7 is formed linearly along the orthogonal direction D7, and connects the bent portion 53 of the first rib 61 and the transfer portion 54 of the second rib 62.
  • a rectangular (substantially square in FIG. 10) opening OP9 is formed by the two linear ribs 91 adjacent in the orthogonal direction D7 and the two linear ribs 92 adjacent in the direction D4.
  • the base material is easily deformed so as to be recessed along the rectangular diagonal line DA1 or diagonal line DA2 of the opening OP9. May grow.
  • the dominant angle (more than 180 °).
  • a polygonal opening OP1 having a large angle is formed. Since the polygon of the opening OP1 includes a major angle, the substrate 10 is unlikely to be deformed along the diagonal line DA1 or the diagonal line DA2 of the rectangular shape of the opening OP9, and the molded ribs 50 and 70 are cooled. It is presumed that the warpage of the base material 10 due to the shrinkage is relatively small.
  • the opening OP1 is hexagonal. Since the polygon of the opening OP1 is not less than a pentagon, the substrate 10 is unlikely to be deformed along the diagonal line DA1 or diagonal line DA2 of the opening OP9, and the molded ribs 50 and 70 are contracted during cooling. It is estimated that the warpage of the substrate 10 is relatively small.
  • the plurality of first portions 51 may include first portions that are not parallel.
  • the plurality of second portions 52 may include second portions that are not parallel.
  • the plurality of bridging ribs 70 may include non-parallel bridging ribs.
  • the opening OP1 may be a pentagon or a heptagon or more. Further, the bridging rib 70 is not limited to a linear shape, and may be a curved shape or the like.
  • FIG. 8 schematically illustrates an example of a method for manufacturing the interior material 1.
  • a fiber aggregate that is, a fiber aggregate containing air Ar
  • thermoplastic resin is used as a resin material for molding the reinforcing rib 50 and the like. Resin is used.
  • a first step ST1 for setting the base material 11 before molding in the press mold 210 a second step ST2 for press molding the base material 11 before molding by the press molding machine 200, and a resulting molding base material
  • the third step ST3 for setting 10 to the injection mold 310 and the fourth step ST4 for injection molding the reinforcing rib 50 and the like on a part of the back surface 10b of the substrate 10 by the injection molding machine 300 are included.
  • the press molding machine 200 shown in FIG. 8 is provided with an upper mold 212 and a lower mold 214 constituting the mold 210 so as to be close to and away from each other.
  • the upper mold 212 is a mold having a mold surface that matches the concavo-convex shape of the interior material 1 on the luggage compartment SP2 side.
  • the lower mold 214 is a mold having a mold surface that matches the uneven shape of the back surface 10 b of the base material 10.
  • the upper mold 212 is movable and the lower mold 214 is fixed.
  • the upper mold 212 may be fixed and the lower mold 214 may be movable, or both molds 212 and 214 may be movable.
  • a movable mold 312 and a fixed mold 314 constituting the molding die 310 are provided so as to be close to and separated from each other.
  • the movable mold 312 is a mold having a mold surface that matches the concavo-convex shape of the interior material 1 on the cargo compartment SP2 side.
  • the fixed mold 314 is a mold having a mold surface that matches the uneven shape of the back surface of the interior material 1.
  • a reinforcing rib 50, and if necessary, a bridging rib 70, a clip mounting seat (a part for mounting a clip for fixing the interior material 1 to a counterpart member such as a vehicle body panel), and the like are formed on the mold surface of the fixed mold 314.
  • a recess 315 is formed.
  • the molten thermoplastic resin is injected from the injection device 320 through the gate 316.
  • the mold 312 may be a fixed mold and the mold 314 may be a movable mold, or both molds 312 and 314 may be movable.
  • the base material 11 before molding is heated above the softening point of the fiber and set between the molds 212 and 214.
  • the skin material 30 and the backing 40 as necessary are also heated and stacked on the base material 11 before molding and set between the molds 212 and 214.
  • the base material 11 and the skin material 30 and the backing 40 are integrated in a raw fabric state as necessary, they may be heated at the same time.
  • the heated base material 11 has an adhesion function, heating of the skin material 30 and the backing 40 may be omitted.
  • the substrate 11 is press-molded into a three-dimensional shape by bringing both molds 212 and 214 close to each other.
  • a laminate of the molded base material 10 (specifically, the base material 10A in which the fibers F1 shown in FIG. 3 are assembled) and the skin material 30 is obtained, and the skin material 30 and the backing 40 are stacked.
  • a laminate of the molded base material 10, the backing 40 and the skin material 30 is obtained.
  • the molds 212 and 214 are separated from each other, the molding substrate 10 or a laminate thereof is taken out, and set between the molds 312 and 314 of the injection molding machine 300.
  • molten thermoplastic resin is injected from the gate 316 with both the molds 312 and 314 closed, and the reinforcing rib 50 and a cross-link as necessary are integrally formed on a part of the substrate back surface 10b.
  • the rib 70 and the clip mounting seat are injection molded.
  • the reinforcing ribs 50 and the like are fixed to the substrate back surface 10b.
  • the manufactured interior material 1 can be taken out.
  • the obtained interior material 1 includes a corrugated reinforcing rib 50 formed integrally with a part of the back surface 10b of the base material 10 containing air Ar.
  • the base material 10B (refer FIG. 3) made from a foamed resin for the base material 10, for example, the resin material is foamed and injection-molded so as to include air bubbles (air Ar).
  • the material 10B) is set in the injection mold 310 (the third step ST3), and the reinforcing ribs 50 and the like may be injection molded on the part of the back surface 10b of the base material 10B by the injection molding machine 300 (the fourth step ST4). ).
  • the obtained interior material 1 includes a wave-shaped reinforcing rib 50 formed integrally with a part of the back surface 10b of the base material 10B containing air Ar.
  • the manufactured interior material 1 is lightweight because the molded base material 10 is at least one of the base material 10A in which the fibers F1 are aggregated and the base material 10B made of foamed resin. Moreover, since the resin-made reinforcing ribs 50 formed integrally with a part of the substrate back surface 10b extend in a wave shape along the substrate back surface 10b, warping of the substrate 10 is suppressed. Therefore, this example can provide a vehicle interior material that is lightweight and has the required rigidity.
  • the present technology is applicable to a door trim 112, a pillar trim 113, a roof trim 114, a trunk interior material, and the like.
  • the present technology can also be applied to the base material 10 in which the base material 10A in which the fibers F1 are aggregated and the base material 10B made of foamed resin are mixed.
  • the following materials were used for the substrates 10 of Examples 2, 6, 8 and Comparative Example 2.
  • a fiber aggregate having a basis weight of 800 g / m 2 mixed with PP fiber and PET fiber was used.
  • a plain knee bread nonwoven fabric integrated with low density polyethylene was used.
  • PP manufactured by Sun Allomer Co., Ltd., trade name “VM970X”
  • VM970X was used as a resin material for molding the reinforcing rib.
  • the reinforcing rib thickness Tr was 2 mm
  • the reinforcing rib height Hr was 5 mm
  • the total length La in the extending direction D4 of the reinforcing rib was 75 mm.
  • This laminate sample was set in an injection mold, PP for reinforcing ribs was injection-molded, and a corrugated reinforcing rib was integrally injection-molded on a part of the back surface of the substrate sample.
  • FIG. 9 shows a warp amount measuring instrument 400 for measuring the warp amount WP of the interior material sample 1S.
  • the warpage amount measuring instrument 400 includes a table 410 on which both edge portions 1Se and 1Se of the interior material sample 1S in the extending direction D4 are placed.
  • the warpage amount WP was the amount of depression of the back surface 10b at the intermediate position (position of length L2) in the direction D4. Further, the warpage amount WP of the example with respect to the warpage amount WP of the comparative example was defined as the warpage rate.
  • the warpage amount WP of Comparative Example 1 was 3 mm (warpage rate 100%).
  • the warpage amount WP of Comparative Example 2 was 7 mm (warpage rate 100%).
  • the warp amount WP of Example 8 in which the ratio of width to thickness Wr / Tr 6 was 4 mm (warp rate 57%).
  • Press molding machine 300 ... Injection molding machine, D1 ... front-rear direction, D2 ... vertical direction, D3 ... thickness direction, D4 ... extended direction, F1 ... fiber, OL ... overlapping part, OP1 ... opening, SP1 ... vehicle compartment, SP2 ... cargo.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

車両用内装材(1)は、成形された基材(10)と、該基材(10)の裏面(10b)の一部に一体的に成形された樹脂製の補強リブ(50)と、を備える。基材(10)は、繊維(F1)が集合した基材(10A)と発泡樹脂製の基材(10B)の少なくとも一方である。補強リブ(50)は、基材(10)の裏面(10b)に沿って波形状に延びている。基材(10)の裏面(10b)に沿った補強リブ(50)の波形状の幅をWrとし、基材(10)の裏面(10b)に沿った補強リブ(50)の厚みをTrとするとき、Wr/Tr≧2でもよい。

Description

車両用内装材
 本発明は、車両用内装材に関する。
 自動車には、デッキサイドトリム等の内装材が車体パネルに取り付けられている。内装材には、熱可塑性樹脂繊維を集合させてプレス成形した基材、樹脂材料を発泡させて射出成形した基材、等が用いられている。これらの基材は、空気を含むため、軽量である一方、軽量化するほど剛性が低くなる。そこで、基材において自動車の室内から見えない裏面に例えば熱可塑性樹脂で補強構造を一体的に成形することが考えられる。
特開2013-91288号公報
 しかし、内装材の基材の裏面全体に熱可塑性樹脂で補強構造を成形すると、内装材の重量が増加してしまう。一方、基材の裏面の一部に一体的に熱可塑性樹脂で直線状の補強リブを成形すると、冷却により補強リブが収縮して基材に反りが生じる。この反りを抑制するために基材の密度を高くすると、内装材の重量が増加してしまう。特開2013-91288号公報に示される技術は、冷却による熱可塑性樹脂の収縮が考慮されていないため、軽量の基材に適用することができない。
 尚、上述した問題は、デッキサイドトリム以外にも、ドアトリムやルーフトリム等、種々の車両用内装材について同様に存在する。
 本発明は、軽量で所要の剛性を有する車両用内装材を提供する目的を有している。
 本発明の車両用内装材は、成形された基材と、
 該基材の裏面の一部に一体的に成形された樹脂製の補強リブと、を備え、
 前記基材は、繊維が集合した基材と発泡樹脂製の基材の少なくとも一方であり、
 前記補強リブが前記基材の裏面に沿って波形状に延びている、態様を有する。
 本発明によれば、軽量で所要の剛性を有する車両用内装材を提供することができる。
図1は、自動車の内装の例を側面部の図示が省略された状態で示す垂直断面図。 図2は、内装材の例を車外側から見て示す側面図。 図3は、図2のA1-A1の位置における内装材の断面の例を模式的に示す断面図。 図4(a)~(c)は、補強リブの例を車外側から見て示す側面図。 図5(a)~(c)は、補強リブの例を車外側から見て示す側面図。 図6(a),(b)は、補強リブの例を車外側から見て示す側面図。 図7は、一体的に成形された補強リブ及び架橋リブの例を車外側から見て示す側面図。 図8は、内装材の製造方法の例を模式的に示す図。 図9は、内装材の反り量を測定する例を模式的に示す図。 図10は、比較例に係る格子状リブを車外側から見て示す側面図。
 以下、本発明の実施形態を説明する。むろん、以下の実施形態は本発明を例示するものに過ぎず、実施形態に示す特徴の全てが発明の解決手段に必須になるとは限らない。
(1)本発明に含まれる技術の概要:
 まず、図1~9に示される例を参照して本発明に含まれる技術の概要を説明する。尚、図1~9は模式的に例を示す図であり、これらの図に示される各方向の拡大率は異なることがあり、各図は整合していないことがある。むろん、本技術の各要素は、符号で示される具体例に限定されない。
[態様1]
 図2,3等に例示するように、本技術の車両用内装材1は、成形された基材10と、該基材10の裏面10bの一部に一体的に成形された樹脂製の補強リブ50と、を備える。前記基材10は、繊維F1が集合した基材10Aと発泡樹脂製の基材10Bの少なくとも一方である。前記補強リブ50は、前記基材10の裏面10bに沿って波形状に延びている。
 上記態様1の内装材1は、成形された基材10が繊維F1の集合した基材10Aと発泡樹脂製の基材10Bの少なくとも一方であるので、軽量である。実験を行ったところ、基材10の裏面10bの一部に一体的に成形される樹脂製の補強リブ50が基材10の裏面10bに沿って波形状に延びていると、基材10の反りが抑制されることが判った。このことから、本態様は、軽量で所要の剛性を有する車両用内装材を提供することができる。
[態様2]
 図4(a)等に例示するように、前記基材10の裏面10bに沿った前記補強リブ50の波形状の幅をWrとし、前記基材10の裏面10bに沿った前記補強リブ50の厚みをTrとするとき、Wr/Tr≧2でもよい。実験を行ったところ、Wr/Tr≧2にすると、基材10の反りがさらに抑制されることが判った。このことから、本態様は、軽量で所要の剛性を有する好適な車両用内装材を提供することができる。
[態様3]
 前記補強リブ50は、屈曲部53で互いに繋がった第一部位51及び第二部位52を有してもよい。図4(b),(c)等に例示するように、前記補強リブ50は、前記第一部位51と前記第二部位52とに繋がる渡し部位54と厚肉部位55の少なくとも一方を有してもよい。本態様は、補強リブ50の剛性が高くなるので、軽量で所要の剛性を有する好適な車両用内装材を提供することができる。
[態様4]
 図7等に例示するように、前記補強リブ50は、前記基材10の裏面10bに沿って波形状に延び、且つ、互いに並行する第一リブ61及び第二リブ62を含んでもよい。また、本車両用内装材1は、前記第一リブ61と前記第二リブ62とに繋がる樹脂製の架橋リブ70が前記補強リブ50と一体的に成形されてもよい。本態様も、補強リブ50の剛性が高くなるので、軽量で所要の剛性を有する好適な車両用内装材を提供することができる。
[態様5]
 前記基材10の厚みTb(図3参照。)は、1~8mmでもよい。前記基材10の目付は、450~1200g/m2でもよい。前記基材10の最大曲げ荷重は、5~80N/50mmでもよい。前記基材10の曲げ弾性勾配は、5~300N/50mm/cmでもよい。本態様は、軽量で所要の剛性を有する好適な車両用内装材を提供することができる。
 尚、本願において、「Min~Max」は、最小値Min以上、且つ、最大値Max以下を意味する。
(2)車両用内装材の具体例:
 図1は、自動車の内装の例を側面部の図示が省略された状態で示している。図2は、車両用内装材の例を車外側から見て示している。図3の下部には、補強リブを拡大して例示している。図3は、図2のA1-A1の位置における車両用内装材の断面の例を模式的に示している。これらの図中、FRONT、REAR、UP、DOWNは、それぞれ、前、後、上、下を示す。左右の位置関係は、自動車100から前を見る方向を基準とする。また、符号D1は自動車100の前後方向を示し、符号D2は自動車100の上下方向を示し、符号D3は車両用内装材1の厚み方向を示し、符号D4は波形状の補強リブ50の延びた方向を示す。
 図1に示す自動車100は、道路上で使用されるように設計及び装備された路上走行自動車とされ、例えば、鋼板製といった金属製の車体パネルが車室SP1及び荷室SP2を囲んで車体を形成している。また、図1に示す自動車100は、後部の荷室SP2が車室SP1と繋がり、2列のシート101(前席と後席)を備えるワゴンタイプの乗用自動車とされている。むろん、本技術を適用可能な自動車には、3列シートタイプといった2列シートタイプ以外の自動車も含まれ、いわゆるステーションワゴンやワンボックスカー等の他、セダンタイプ等の自動車も含まれる。
 自動車100の車体パネルには、室内(SP1,SP2)側において種々の内装材1が配置されている。荷室SP2から側方にあるデッキサイドパネル(車体パネルの例)には、荷室SP2側においてデッキサイドトリム111(内装材1の例)が設置されている。車室SP1から側方にあるドアパネル(車体パネルの例)には、車室SP1側においてドアトリム112(内装材1の例)が設置されている。同じく車室SP1から側方にあるピラー(車体パネルの例)には、車室SP1側においてピラートリム113(内装材1の例)が設置されている。車室SP1及び荷室SP2から上方にあるルーフパネル(車体パネルの例)には、室内(SP1,SP2)側においてルーフトリム114(内装材1の例)が設置されている。
 図2,3は、内装材1の例としてデッキサイドトリムの例を示している。図3に示すデッキサイドトリム111では、凹凸を有するように成形された基材10の表面10aと表皮材30のバッキング40とが接着し、基材10の裏面10bの一部に樹脂製の補強リブ50が一体的に成形されている。デッキサイドトリム111は、荷室SP2の左右の側面部に配置され、車室SP1に繋がった荷室SP2に良好な意匠を付与する。補強リブ50は、三次元形状に成形された基材10に対して、内装材としての剛性が不足しやすい外周付近や大きな平面上などに配置される。図2に示す補強リブ50には、樹脂製の架橋リブ70と繋がった補強リブもあれば、架橋リブ70に繋がっていない補強リブもある。
 尚、本技術の車両用内装材は、表皮材30とバッキング40が無くてもよい。この場合、表皮材30の代わりに表面10aが車両用内装材の意匠面となる。
 基材10には、繊維F1が集合した基材10Aと発泡樹脂製の基材10Bの少なくとも一方を用いることができる。
 繊維F1が集合した基材10Aには、通気性のあるプレス成形された繊維マット等、繊維F1を集合させて空気Arを含むように成形された繊維集合体を用いることができる。繊維F1の成形には、例えば、プレス成形を用いることができる。また、基材10Aは、意匠層と保形層と吸音層を積層した繊維マット等、多層構造の繊維集合体でもよい。
 基材10Aを形成するための繊維F1には、熱可塑性樹脂といった合成樹脂(エラストマーを含む)の繊維、合成樹脂に添加剤を添加した繊維、ガラス繊維や炭素繊維といった無機繊維、ケナフといった植物繊維、反毛繊維、これらの少なくとも一部の組合せ、等を用いることができ、熱可塑性樹脂繊維といった熱可塑性の繊維を含む繊維が好ましい。前記熱可塑性樹脂には、ポリプロピレン(PP)樹脂やポリエチレン樹脂(PE)といったポリオレフィン樹脂、ポリエチレンテレフタレート(PET)樹脂といったポリエステル樹脂、ポリアミド(PA)樹脂、アクリル(PMMA)樹脂、等を用いることができる。繊維F1には、主繊維と接着性繊維(バインダー)が含まれてもよく、芯鞘構造やサイドバイサイド構造といったコンジュゲート構造の繊維が含まれてもよい。また、熱可塑性の繊維にガラス繊維といった無機繊維を混ぜると、基材の剛性を高めることができる。
 基材10Aの厚みTbは、1mm以上、且つ、8mm以下が好ましい。基材10Aの目付は、450g/m2以上、且つ、1200g/m2以下が好ましい。基材10Aの最大曲げ荷重は、5N/50mm以上、且つ、80N/50mm以下が好ましい。ここで、最大曲げ荷重は、JIS K7171:2008「プラスチック-曲げ特性の求め方」に準じ、長さ150mm、幅50mmの試験片の一方の面を支点(支持台)間距離(L)50mmとした2つの支点(曲率半径3.2mm)で支持し、支点間の中心位置に配置した圧子(曲率半径3.2mm)から速度50mm/分で試験片の他方の面に負荷を加え、発生する荷重(単位:N)を測定したときの最大値とする。基材10Aの曲げ弾性勾配は、5N/50mm/cm以上、且つ、300N/50mm/cm以下が好ましい。ここで、曲げ弾性勾配は、JIS K7171:2008に準じ、長さ150mm、幅50mmの試験片の一方の面を支点(支持台)間距離(L)50mmとした2つの支点(曲率半径3.2mm)で支持し、支点間の中心位置に配置した圧子(曲率半径3.2mm)から速度50mm/分で試験片の他方の面に負荷を加え、発生する荷重が最大となった時の荷重-たわみ曲線の直線勾配(単位:N/cm)とする。
 以上の数値範囲にすることにより、軽量で所要の剛性を有する好適な車両用内装材が得られる。
 発泡樹脂製の基材10Bには、樹脂材料を発泡させて気泡(空気Ar)を含むように成形された発泡成形体を用いることができる。樹脂材料の発泡成形には、例えば、射出成形を用いることができる。また、基材10Bは、表面にスキン層を残した発泡樹脂成形品、発泡樹脂層の少なくとも一面に対して実質的に非発泡の層を積層した成形品、等、多層構造でもよい。
 基材10Bを形成するための樹脂材料は、種々の合成樹脂(エラストマーを含む)を用いることができ、添加剤が添加されてもよく、成形の容易性の点から熱可塑性樹脂といった熱可塑性の樹脂材料が好ましい。前記熱可塑性樹脂には、PP樹脂やPE樹脂といったポリオレフィン樹脂、ポリスチレン(PS)樹脂、これらの組合せ、等を用いることができ、充てん材等の添加剤が含まれてもよい。樹脂材料を発泡させるための発泡剤としては、ブタンやペンタンといった炭化水素を発生させる揮発性発泡剤、アゾジカルボンアミド(ADCA)やヒドラゾジカルボンアミド等といった有機系発泡剤、炭酸アンモニウムといった炭酸ガス等を発生させる無機系発泡剤、等を用いることができる。
 基材10Bの厚みTbは、1mm以上、且つ、8mm以下が好ましい。基材10Bの目付は、450g/m2以上、且つ、1200g/m2以下が好ましい。基材10Bの最大曲げ荷重は、5N/50mm以上、且つ、80N/50mm以下が好ましい。基材10Bの曲げ弾性勾配は、5N/50mm/cm以上、且つ、300N/50mm/cm以下が好ましい。
 以上の数値範囲にすることにより、軽量で所要の剛性を有する好適な車両用内装材が得られる。
 表皮材30には、不織布、織物、編物、カーペット、合成樹脂(エラストマーを含む)、ゴム、等を用いることができる。表皮材30の裏面には、バッキング(裏打ち層)40が形成されてもよい。バッキング40には、熱可塑性樹脂といった合成樹脂(エラストマーを含む)等を用いることができる。前記熱可塑性樹脂には、低密度ポリエチレン、エチレン酢酸ビニル、といった低融点の熱可塑性樹脂等を用いることができる。
 基材10の裏面10bの一部に一体的に成形された樹脂製の補強リブ50は、図2に示すように、基材10の裏面10bに沿って波形状に延びている。ここで、図4(a)に示すように、所定の方向D5に沿って延びた複数の第一部位51が補強リブ50に含まれ、前記方向D5と交叉する所定の方向D6に沿って延びた複数の第二部位52が補強リブ50に含まれ、且つ、交互に現れる第一部位51と第二部位52とが屈曲部53で互いに繋がっているとする。この場合、補強リブ50の延びた方向D4は、前述の部位51~53を含む全体として補強リブ50が延びた方向であり、補強リブ50の波形状の幅Wrの中間部分を結ぶ方向である。従って、補強リブ50の延びた方向D4は、第一部位51の延びた方向D5と交叉し、第二部位52の延びた方向D6とも交叉する。
 補強リブ50を形成するための樹脂材料は、種々の合成樹脂(エラストマーを含む)を用いることができ、添加剤が添加されてもよく、成形の容易性の点から熱可塑性樹脂といった熱可塑性の樹脂材料が好ましい。前記熱可塑性樹脂には、PP樹脂やPE樹脂といったポリオレフィン樹脂、アクリロニトリルブタジエンスチレン(ABS)樹脂、これらの組合せ、等を用いることができ、繊維等の添加剤が含まれてもよい。樹脂材料に線膨張率が低いABS樹脂等を用いると、基材の反りを少なくすることができる。前記繊維には、ガラス繊維や炭素繊維といった無機繊維、ケナフといった植物繊維、これらの組合せ、等を用いることができる。前記繊維にガラス繊維といった無機繊維を用いると、基材の反りを少なくすることができる。
 補強リブ50の成形には、例えば、射出成形を用いることができる。この場合、補強リブ50に射出成形機のゲートの跡があってもよい。
 図4~6は、補強リブ50の例として補強リブ50A~50Hを車外側から見て示している。図4(a)に示す補強リブ50Aは、基材裏面10bに沿って三角波状に延びている。ここで、基材裏面10bに沿った補強リブ50の波形状の幅をWrとし、基材裏面10bに沿った補強リブ50の厚みをTrとし、波形状の補強リブ50の延びた方向D4における全長をLaとし、第一部位51及び第二部位52の長さをLrとする。補強リブ50の厚みTrは、第一部位51の厚みであり、第二部位52の厚みでもある。尚、第一部位51と第二部位52は、直線状であり、同じ厚み、且つ、同じ長さとする。また、図3に示すように、基材裏面10bからの補強リブ50の高さをHrとする。
 補強リブの高さHrは、特に限定されないが、例えば、2~10mm程度とすることができ、厚みTr以上でもよく、厚みTrよりも高く(Hr>Tr)てもよい。補強リブの厚みTrは、特に限定されないが、例えば、1~5mm程度とすることができる。第一部位51及び第二部位52の長さLrは、特に限定されないが、例えば、10~40mm程度とすることができる。補強リブの延びた方向D4と第一部位51の延びた方向D5とのなす角度θ1(0°<θ1≦90°)は、特に限定されないが、例えば、15~75°程度とすることができる。補強リブの延びた方向D4と第二部位52の延びた方向D6とのなす角度θ2(0°<θ2≦90°)は、特に限定されないが、例えば、15~75°程度とすることができる。
 ところで、基材10の裏面10bの一部に一体的に樹脂で直線状の補強リブを成形すると、直線状の補強リブの延びた方向D4において補強リブが冷却により収縮し、図9に示す内装材サンプル1Sのように、表面10aが膨らむ側の、すなわち、裏面10bが凹む側の反りが基材10に生じる。この反りは、直線状の補強リブ90の延びた方向D4に沿った断面を曲線状にする反りであり、前記方向D4と直交する方向D7に沿った断面を曲線状にする反りではない。尚、直線状の補強リブ90の延びた方向D4における基材10の長さが所定の長さL1である場合、前記方向D4における中間位置(長さL2=L1/2の位置)の裏面10bの凹み量を反り量WPとする。
 実験を行ったところ、基材裏面10bの一部に一体的に成形される樹脂製の補強リブ50が基材裏面10bに沿って波形状に延びていると、基材10の反り量WPが少なくなることが判った。
 図4(a)には、補強リブ50の波形状の幅Wrの中間部分に沿って配置すると仮定したときの直線状の補強リブ90の位置を二点鎖線で示している。本技術の補強リブ50と直線状の補強リブ90とを比較すると、直交方向D7において、補強リブ50の存在範囲(幅Wr)が直線状の補強リブ90の存在範囲(厚みTr)よりも広い。これにより、成形された補強リブ50が冷却により収縮する力が直交方向D7にも分散し、補強リブ50の延びた方向D4への収縮が相対的に少なくなり、前記方向D4に沿った断面における反りが相対的に少なくなると推測される。
 ここで、補強リブの波形状の幅Wrは、2倍以上(Wr/Tr≧2)が好ましく、4倍以上(Wr/Tr≧4)がより好ましく、6倍以上(Wr/Tr≧6)がさらに好ましい。幅Wrを前記下限以上にすると、成形された補強リブ50の冷却時の収縮力が直交方向D7に好ましく分散されると推測され、基材10の反りがさらに少なくなる。また、幅Wrは、補強リブ50の延びた方向D4における全長La以下が好ましい。
 幅Wrを上記範囲内にすると、基材10の反りがさらに少なくなり、軽量で所要の剛性を有する好適な車両用内装材が得られる。
 また、補強リブ50(厚みTr)の波形状の幅Wrの中間部分に沿った仮想の直線状の補強リブ90(同じ厚みTr)の面積(Saとする。)に対して、この直線状補強リブ90と波形状の補強リブ50との重複部分OLの全面積(Solとする。)の比Sol/Saを面積率Rsとする。この面積率Rsは、百分率で80%以下(より好ましくは50%以下)にすると、成形された補強リブ50の冷却時の収縮力が直交方向D7に好ましく分散されると推測され、基材10の反りがさらに少なくなり、軽量で所要の剛性を有する好適な車両用内装材が得られる。面積率Rsの下限は、特に限定されないが、例えば、百分率で5%(Rs≧0.05)とすることができる。
 ところで、波形状の補強リブ50には、種々の構成要素を追加することができる。図4(b)に示す補強リブ50Bでは、図4(a)に示す補強リブ50Aの屈曲部53の近傍に渡し部位54が追加されている。この渡し部位54は、屈曲部53を基点とした第一部位51と第二部位52とで形成される劣角(0°よりも大きく180°よりも小さい共役角)の部分とで開口53oを囲むように形成され、第一部位51と第二部位52とに繋がっている。屈曲部53から渡し部位54までの距離Lbは、特に限定されないが、第一部位51及び第二部位52の長さLrの0.1~0.5倍程度(より好ましくは0.2~0.4倍程度)とすることができる。
 上記渡し部位54があることにより、波形状の補強リブの形状保持性が高まり、延びた方向D4への収縮が少なくなり、補強リブ50の延びた方向D4に沿った断面における反りが相対的に少なくなると推測される。従って、軽量で所要の剛性を有する好適な車両用内装材が得られる。
 図4(c)に示す補強リブ50Cでは、図4(a)に示す補強リブ50Aの屈曲部53の近傍に厚肉部位55が追加されている。この厚肉部位55は、屈曲部53を基点とした第一部位51と第二部位52とで形成される劣角の部分(開口53oに相当する部分)を埋めるように第一部位51と第二部位52とに繋がっている。これにより、波形状の補強リブの形状保持性(剛性)が高まり、延びた方向D4への収縮が少なくなり、補強リブ50の延びた方向D4に沿った断面における反りが相対的に少なくなると推測される。従って、軽量で所要の剛性を有する好適な車両用内装材が得られる。
 むろん、補強リブ50に渡し部位54と厚肉部位55の両方が形成されてもよい。
 第一部位51と第二部位52の長さLrも、長くしたり短くしたりすることができる。図5(a)に示す補強リブ50Dは、図4(a)で示した補強リブ50Aと比べて長さLrが短くされている。その結果、補強リブ50Dは、補強リブ50Aと比べて、幅Wrが狭く、面積率Rsが大きくなっている。
 第一部位51の向き(方向D5)と第二部位52の向き(方向D6)も、様々な向きにすることができる。図5(b),(c)に示す補強リブ50E,50Fは、第一部位51と第二部位52との間に仮想の直線状補強リブ90と交わらない非交叉部位56が追加されている。このため、第一部位51と非交叉部位56とが屈曲部53で互いに繋がり、非交叉部位56と第二部位52とが屈曲部53で互いに繋がっている。図5(b),(c)に示す非交叉部位56は、補強リブの延びた方向D4に沿って直線状に延びている。むろん、非交叉部位の延びた方向は、補強リブの延びた方向D4からずれた方向でもよい。
 図5(b)に示す補強リブ50Eは逆台形波状に延びており、第一部位51と第二部位52が非交叉部位56から90°よりも大きく180°よりも小さい角度で折れ曲がっている。補強リブの延びた方向D4と第一部位51の延びた方向D5とのなす角度θ1(90°<θ1<180°)は、特に限定されないが、例えば、105~165°程度とすることができる。補強リブの延びた方向D4と第二部位52の延びた方向D6とのなす角度θ2(90°<θ2<180°)は、特に限定されないが、例えば、105~165°程度とすることができる。
 図5(c)に示す補強リブ50Fは基材裏面10bに沿って矩形波状に延びており、第一部位51と第二部位52が非交叉部位56から略直角に折れ曲がっている。
 図示していないが、第一部位51と第二部位52の少なくとも一方は、曲線状に延びていてもよい。第一部位51と第二部位52とは、厚みTrが異なってもよいし、長さLrが異なってもよい。また、補強リブ50は、正弦波状に延びている等、折れ曲がらずに波形状に延びていてもよい。
 また、波形状の補強リブ50は、複数組み合わされてもよい。図6(a)には、半円状の部位が方向D4へ繋がった波形状の補強リブ50Gが二つ組み合わせられていることが示されている。組み合わされた補強リブ50G,50Gは、延びた方向D4へ円状の部位が繋がった形状とされている。図6(b)には、図5(b)で示した補強リブ50Eに類似する補強リブ50Hが二つ組み合わせられていることが示されている。
 さらに、図7に示すように、補強リブ50は、基材裏面10bに沿って波形状に延び、且つ、互いに並行する第一リブ61及び第二リブ62を含んでもよい。図7に示す補強リブ50では、第一部位51同士が平行に配置され、第二部位52同士が平行に配置されている。第一リブ61及び第二リブ62は、屈曲部53の近傍に渡し部位54を有している。直交方向D7において互いに隣り合う第一リブ61と第二リブ62とは、樹脂製の架橋リブ70で繋がっている。この架橋リブ70は、補強リブ50と一体的に成形されている。図7に示す架橋リブ70は、直交方向D7に沿って直線状に形成され、第一リブ61の屈曲部53と第二リブ62の渡し部位54とを繋いでいる。実験を行ったところ、成形されたリブ50,70の冷却時の収縮による基材10の反りが比較的小さくなることが判った。
 ここで、図10に示す比較例の格子状リブと比較する。図10に示す格子状リブでは、方向D4に沿った複数の直線状リブ91と、直交方向D7に沿った複数の直線状リブ92とが直角に交わっている。このため、直交方向D7において隣り合う2本の直線状リブ91と、方向D4において隣り合う2本の直線状リブ92とで、長方形(図10では略正方形)の開口OP9が形成されている。この場合、基材が開口OP9の長方形の対角線DA1又は対角線DA2に沿って凹むように変形し易く、成形された格子状リブ(91,92)の冷却時の収縮により基材の反りが比較的大きくなることがある。
 一方、図7に示す補強リブ50及び架橋リブ70では、隣り合う第一リブ61及び第二リブ62、並びに、方向D4において隣り合う2本の架橋リブ70とで、優角(180°よりも大きく360°よりも小さい角)を有する多角形の開口OP1が形成されている。開口OP1の多角形に優角が含まれているため、開口OP9の長方形の対角線DA1又は対角線DA2に沿って凹むような変形が基材10に起き難く、成形されたリブ50,70の冷却時の収縮による基材10の反りが比較的小さくなると推測される。
 また、上記開口OP1は、六角形である。開口OP1の多角形が五角形以上であるため、開口OP9の長方形の対角線DA1又は対角線DA2に沿って凹むような変形が基材10に起き難く、成形されたリブ50,70の冷却時の収縮による基材10の反りが比較的小さくなると推測される。
 尚、渡し部位54の代わりに厚肉部位55がある補強リブや、渡し部位54が無い補強リブでも、同様の効果が得られる。複数の第一部位51には、平行でない第一部位が含まれてもよい。複数の第二部位52には、平行でない第二部位が含まれてもよい。複数の架橋リブ70には、平行でない架橋リブが含まれてもよい。開口OP1は、五角形でもよいし、七角形以上でもよい。また、架橋リブ70は、直線状に限定されず、曲線状等でもよい。
(3)車両用内装材の製造方法、作用、及び、効果:
 図8は、内装材1の製造方法の例を模式的に示している。この製造方法では、成形前の基材11に熱可塑性の繊維が集合した繊維集合体(すなわち、空気Arを含む繊維集合体)を用い、補強リブ50等を成形するための樹脂材料に熱可塑性樹脂を用いている。本製造方法には、成形前の基材11をプレス成形型210にセットする第一工程ST1、成形前の基材11をプレス成形機200でプレス成形する第二工程ST2、得られる成形基材10を射出成形型310にセットする第三工程ST3、及び、基材10の裏面10bの一部に補強リブ50等を射出成形機300で射出成形する第四工程ST4が含まれる。
 図8に示すプレス成形機200は、成形型210を構成する上型212及び下型214が近接及び離隔可能に設けられている。上型212は、内装材1の荷室SP2側の凹凸形状に合わせた型面を有する金型とされている。下型214は、基材10の裏面10bの凹凸形状に合わせた型面を有する金型とされている。図8では上型212が可動型で下型214が固定型とされているが、上型212が固定型で下型214が可動型でもよいし、両型212,214が可動型でもよい。
 図8に示す射出成形機300は、成形型310を構成する可動型312及び固定型314が近接及び離隔可能に設けられている。可動型312は、内装材1の荷室SP2側の凹凸形状に合わせた型面を有する金型とされている。固定型314は、内装材1の裏面の凹凸形状に合わせた型面を有する金型とされている。固定型314の型面には、補強リブ50と、必要に応じて架橋リブ70、クリップ取付座(内装材1を車体パネルといった相手部材に固定するためのクリップを取り付ける部位)、等を形成するための凹部315が形成されている。各凹部315には、溶融した熱可塑性樹脂が射出装置320からゲート316を介して射出される。尚、型312を固定型にして型314を可動型にしてもよいし、両型312,314を可動型にしてもよい。
 上記第一工程ST1では、成形前の基材11を繊維の軟化点以上に加熱して型212,214の間にセットする。基材10に表皮材30と必要に応じてバッキング40を積層する場合、表皮材30と必要に応じてバッキング40も加熱し成形前の基材11に重ねて型212,214の間にセットする。むろん、基材11と表皮材30と必要に応じてバッキング40が原反状態で一体となっている場合、同時に加熱してもよい。加熱された基材11が接着機能を有する場合、表皮材30やバッキング40の加熱を省略してもよい。上記第二工程ST2では、両型212,214を近接させて少なくとも基材11を三次元形状にプレス成形する。表皮材30を重ねた場合には成形基材10(具体的には図3に示す繊維F1が集合した基材10A)と表皮材30の積層物が得られ、表皮材30とバッキング40を重ねた場合には成形基材10とバッキング40と表皮材30の積層物が得られる。
 上記第三工程ST3では、両型212,214を離隔させて成形基材10又はその積層物を取り出し、射出成形機300の型312,314の間にセットする。上記第四工程ST4では、両型312,314を閉じた状態でゲート316から溶融状態の熱可塑性樹脂を射出し、基材裏面10bの一部に一体的に補強リブ50と必要に応じて架橋リブ70やクリップ取付座等を射出成形する。射出された熱可塑性樹脂が冷えて固化すると、補強リブ50等が基材裏面10bに固定された状態となる。両型312,314を離隔させると、製造された内装材1を取り出すことができる。得られる内装材1は、空気Arを含む基材10の裏面10bの一部に一体的に成形された波形状の補強リブ50等を備える。
 尚、基材10に発泡樹脂製の基材10B(図3参照)を用いる場合、例えば、樹脂材料を発泡させて気泡(空気Ar)を含むように射出成形し、得られる発泡成形体(基材10B)を射出成形型310にセットし(上記第三工程ST3)、基材10Bの裏面10bの一部に補強リブ50等を射出成形機300で射出成形すればよい(上記第四工程ST4)。得られる内装材1は、空気Arを含む基材10Bの裏面10bの一部に一体的に成形された波形状の補強リブ50等を備える。
 製造される内装材1は、成形された基材10が繊維F1の集合した基材10Aと発泡樹脂製の基材10Bの少なくとも一方であるので、軽量である。また、基材裏面10bの一部に一体的に成形される樹脂製の補強リブ50が基材裏面10bに沿って波形状に延びているので、基材10の反りが抑制される。従って、本具体例は、軽量で所要の剛性を有する車両用内装材を提供することができる。
(4)変形例:
 本技術は、種々の変形例が考えられる。
 例えば、本技術は、ドアトリム112、ピラートリム113、ルーフトリム114、トランクの内装材、等に適用可能である。
 繊維F1が集合した基材10Aと発泡樹脂製の基材10Bとが混在した基材10にも、本技術を適用可能である。
(5)実施例:
 以下、実施例を示して具体的に本発明を説明するが、本発明は以下の例により限定されるものではない。
 尚、内装材サンプルの反りの定量には、図9に示す反り量測定器具400を用いた。
[反り量を測定するための内装材サンプルの作製]
 実施例1,3,4,5,7及び比較例1には、以下の材料を用いた。
 基材サンプルには、PP繊維とガラス繊維とを混合した目付800g/m2の繊維集合体を用いた。表皮材サンプルには、目付200g/m2のプレーンニーパン不織布を用いた。バッキングサンプルには、目付300g/m2の低密度ポリエチレンを用いた。補強リブを成形するための樹脂材料には、PP(サンアロマー株式会社製、商品名「VM970X」)を用いた。
 実施例2,6,8及び比較例2の基材10には、以下の材料を用いた。
 基材サンプルには、PP繊維とPET繊維とを混合した目付800g/m2の繊維集合体を用いた。表皮材サンプル及びバッキングサンプルには、低密度ポリエチレンが一体化されたプレーンニーパン不織布を用いた。補強リブを成形するための樹脂材料には、PP(サンアロマー株式会社製、商品名「VM970X」)を用いた。
 実施例1~8及び比較例1,2において、補強リブの厚みTrを2mmとし、補強リブの高さHrを5mmとし、補強リブの延びた方向D4における全長Laを75mmとした。
 また、基材サンプルとバッキングサンプルと表皮材サンプルを加熱して重ねてプレス成形し、長さL1=200mm、幅W1=50mmの矩形板状の積層物サンプルを作製した。この積層物サンプルを射出成形型にセットし、補強リブ用のPPを射出成形して、基材サンプルの裏面の一部に波形状の補強リブを一体的に射出成形した。ここで、実施例1,2の補強リブは、図4(a)において第一部位及び第二部位の長さLr=20mm、幅Wr=16mm、角度θ1=θ2=45°とした補強リブ50Aとした。実施例3の補強リブは、図5(a)において第一部位及び第二部位の長さLr=10mm、幅Wr=8mm、角度θ1=θ2=45°とした補強リブ50Dとした。実施例4の補強リブは、図5(b)において第一部位、第二部位、及び、非交叉部位の長さLr=20mm、幅Wr=18mm、角度θ1=θ2=120°とした補強リブ50Eとした。実施例5,6の補強リブは、図5(c)において第一部位及び第二部位の長さLr=20mm、幅Wr=22とした補強リブ50Fとした。実施例7,8の補強リブは、図5(c)において第一部位及び第二部位の長さLr=10mm、幅Wr=12とした補強リブ50Fとした。比較例1,2の補強リブは、図9に示すような直線状の補強リブ90とした。尚、図9において、L2=L1/2=100mm、W2=W1/2=25mmである。
[反り量の測定]
 図9は、内装材サンプル1Sの反り量WPを測定するための反り量測定器具400を示している。反り量測定器具400は、延びた方向D4における内装材サンプル1Sの両縁部1Se,1Seを載置する台410を備えている。反り量WPは、前記方向D4における中間位置(長さL2の位置)の裏面10bの凹み量とした。また、比較例の反り量WPに対する実施例の反り量WPを反り率とした。
 実施例1,3,4,5,7及び比較例1の結果を、以下に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1の反り量WPは、3mm(反り率100%)であった。これに対し、厚みに対する幅の比Wr/Tr=4にした実施例3、及び、Wr/Tr=6にした実施例7の反り量WPは、2mm(反り率67%)であった。Wr/Tr=8にした実施例1、Wr/Tr=9にした実施例4、及び、Wr/Tr=11にした実施例5の反り量WPは、0mm(反り率0%)であった。従って、幅Wrが全長La以下の範囲でWr/Trが大きくなるほど内装材サンプルの反りが少なくなることが判る。
 また、面積率Rsが小さくなると内装材サンプルの反りが少なくなることが判る。
 実施例2,6,8及び比較例2の結果を、以下に示す。
Figure JPOXMLDOC01-appb-T000002
 比較例2の反り量WPは、7mm(反り率100%)であった。これに対し、厚みに対する幅の比Wr/Tr=6にした実施例8の反り量WPは、4mm(反り率57%)であった。Wr/Tr=8にした実施例2、及び、Wr/Tr=11にした実施例6の反り量WPは、2mm(反り率29%)であった。従って、幅Wrが全長La以下の範囲でWr/Trが大きくなるほど内装材サンプルの反りが少なくなることが判る。
 また、面積率Rsが小さくなると内装材サンプルの反りが少なくなることが判る。
 以上より、空気を含む基材の裏面の一部に一体的に成形された樹脂製の補強リブが基材裏面に沿って波形状に延びていると、基材の反りが抑制され、軽量で所要の剛性を有する内装材が得られることが確認された。
(6)結び:
 以上説明したように、本発明によると、種々の態様により、軽量で所要の剛性を有する車両用内装材等の技術を提供することができる。むろん、従属請求項に係る構成要件を有しておらず独立請求項に係る構成要件のみからなる技術でも、上述した基本的な作用、効果が得られる。
 また、上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術及び上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も実施可能である。本発明は、これらの構成等も含まれる。
1…内装材、
10…基材、10A…繊維が集合した基材、10B…発泡樹脂製の基材、
10a…表面、10b…裏面、11…成形前の基材、
30…表皮材、40…バッキング、
50…補強リブ、51…第一部位、52…第二部位、53…屈曲部、
54…渡し部位、55…厚肉部位、56…非交叉部位、
61…第一リブ、62…第二リブ、
70…架橋リブ、
100…自動車、111…デッキサイドトリム、112…ドアトリム、
113…ピラートリム、114…ルーフトリム、
200…プレス成形機、300…射出成形機、
D1…前後方向、D2…上下方向、D3…厚み方向、D4…延びた方向、
F1…繊維、OL…重複部分、OP1…開口、
SP1…車室、SP2…荷室。

Claims (5)

  1.  成形された基材と、
     該基材の裏面の一部に一体的に成形された樹脂製の補強リブと、を備え、
     前記基材は、繊維が集合した基材と発泡樹脂製の基材の少なくとも一方であり、
     前記補強リブが前記基材の裏面に沿って波形状に延びている、車両用内装材。
  2.  前記基材の裏面に沿った前記補強リブの波形状の幅をWrとし、前記基材の裏面に沿った前記補強リブの厚みをTrとするとき、Wr/Tr≧2である、請求項1に記載の車両用内装材。
  3.  前記補強リブは、屈曲部で互いに繋がった第一部位及び第二部位、並びに、前記第一部位と前記第二部位とに繋がる渡し部位と厚肉部位の少なくとも一方を有する、請求項1又は請求項2に記載の車両用内装材。
  4.  前記補強リブは、前記基材の裏面に沿って波形状に延び、且つ、互いに並行する第一リブ及び第二リブを含み、
     前記第一リブと前記第二リブとに繋がる樹脂製の架橋リブが前記補強リブと一体的に成形されている、請求項1~請求項3のいずれか一項に記載の車両用内装材。
  5.  前記基材は、厚みが1~8mm、目付が450~1200g/m2、最大曲げ荷重が5~80N/50mm、曲げ弾性勾配が5~300N/50mm/cmである、請求項1~請求項4のいずれか一項に記載の車両用内装材。
PCT/JP2016/084708 2015-12-07 2016-11-24 車両用内装材 WO2017098923A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017555014A JP6728231B2 (ja) 2015-12-07 2016-11-24 車両用内装材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-238312 2015-12-07
JP2015238312 2015-12-07

Publications (1)

Publication Number Publication Date
WO2017098923A1 true WO2017098923A1 (ja) 2017-06-15

Family

ID=59013120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084708 WO2017098923A1 (ja) 2015-12-07 2016-11-24 車両用内装材

Country Status (2)

Country Link
JP (1) JP6728231B2 (ja)
WO (1) WO2017098923A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089432A (ja) * 2017-11-14 2019-06-13 トヨタ紡織株式会社 車両用ドアトリム
JP2020110934A (ja) * 2019-01-08 2020-07-27 株式会社イノアックコーポレーション 複合部材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1035372A (ja) * 1996-07-26 1998-02-10 Daikyo Inc 自動車のトリム構造
JPH10226284A (ja) * 1997-02-17 1998-08-25 Mitsubishi Motors Corp 車両用内装材
JP2009269190A (ja) * 2008-04-30 2009-11-19 Kasai Kogyo Co Ltd 自動車用内装部品の製造方法
JP2014188688A (ja) * 2013-03-26 2014-10-06 Toyota Boshoku Corp 成形構造体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1035372A (ja) * 1996-07-26 1998-02-10 Daikyo Inc 自動車のトリム構造
JPH10226284A (ja) * 1997-02-17 1998-08-25 Mitsubishi Motors Corp 車両用内装材
JP2009269190A (ja) * 2008-04-30 2009-11-19 Kasai Kogyo Co Ltd 自動車用内装部品の製造方法
JP2014188688A (ja) * 2013-03-26 2014-10-06 Toyota Boshoku Corp 成形構造体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019089432A (ja) * 2017-11-14 2019-06-13 トヨタ紡織株式会社 車両用ドアトリム
JP2020110934A (ja) * 2019-01-08 2020-07-27 株式会社イノアックコーポレーション 複合部材
JP7290944B2 (ja) 2019-01-08 2023-06-14 株式会社イノアックコーポレーション 複合部材

Also Published As

Publication number Publication date
JPWO2017098923A1 (ja) 2018-09-27
JP6728231B2 (ja) 2020-07-22

Similar Documents

Publication Publication Date Title
US9428121B2 (en) Acoustic wheel well liner
US20090255755A1 (en) Soundproofing material
CN108081926B (zh) 车门加强梁
JP6879369B2 (ja) 防音材
CN108688576B (zh) 具有热成形聚乙烯/聚丙烯纤维的可折叠地图袋
US20120299333A1 (en) Cross car beam assembly including reinforced polymerized elements
US8186748B2 (en) Energy absorber for vehicle overhead system
US10494032B2 (en) Vehicle cross-car beam
US20190168818A1 (en) Vehicle cross members and related methods
US9415728B2 (en) Dash pad for vehicle
US10315602B2 (en) Integrated knee bolster device for vehicle
JP6925082B2 (ja) 自動車用吸音材
WO2017098923A1 (ja) 車両用内装材
JP2018517601A (ja) 外部車両トリム部品
KR20130040736A (ko) 섬유 기재 및 이것을 사용한 내장재
US10384723B2 (en) Vehicle cross-car beam
JP6937185B2 (ja) 車両用内装材
KR102083902B1 (ko) 자동차용 헤드 라이닝 기재
JP2018171714A (ja) 車両用内装材の製造方法、及び、車両用内装材
JP2011136664A (ja) 車両用内装品
WO2013077003A1 (ja) 自動車用内外装材及びその製造方法
JP5630694B2 (ja) 電気自動車用フロア構造体
JPWO2018211866A1 (ja) 車両用内装材、及び、その製造方法
CN111094072A (zh) 机动车辆的折叠内衬板
US8844993B1 (en) Reinforced vehicle trim assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872823

Country of ref document: EP

Kind code of ref document: A1