WO2017098570A1 - Golf play assistance system, golf play assistance method, and program - Google Patents

Golf play assistance system, golf play assistance method, and program Download PDF

Info

Publication number
WO2017098570A1
WO2017098570A1 PCT/JP2015/084335 JP2015084335W WO2017098570A1 WO 2017098570 A1 WO2017098570 A1 WO 2017098570A1 JP 2015084335 W JP2015084335 W JP 2015084335W WO 2017098570 A1 WO2017098570 A1 WO 2017098570A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
shot
player
unit
measurement result
Prior art date
Application number
PCT/JP2015/084335
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 向井
貴之 陰山
Original Assignee
楽天株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天株式会社 filed Critical 楽天株式会社
Priority to JP2017524056A priority Critical patent/JP6204635B1/en
Priority to PCT/JP2015/084335 priority patent/WO2017098570A1/en
Publication of WO2017098570A1 publication Critical patent/WO2017098570A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities

Definitions

  • the present invention relates to a golf play support system, a golf play support method, and a program.
  • Patent Document 1 discloses a first anemometer arranged near a player who shots, and a second anemometer arranged at a fixed point on a golf course in order to measure the wind in the sky.
  • a third wind direction anemometer that can be carried by a companion or the like and a system that provides the player with the wind direction and wind speed obtained by the wind direction are described.
  • the first anemometer and the third anemometer can measure only the wind near the ground, and the second anemometer measures only the wind at a fixed point. Can not do it. Since the shot distance and the target direction differ depending on the player, it is not possible to provide support according to the player only by the measurement result at a fixed point such as the second anemometer.
  • the present invention has been made in view of the above problems, and an object thereof is to support a golf play by measuring a wind at a position corresponding to a player.
  • a golf play support system is obtained by shot information acquisition means for acquiring shot information relating to a shot from a predetermined position in a golf course and the shot information acquisition means.
  • Movement instruction means for instructing the unmanned aircraft to measure wind so as to move to a position determined based on the shot information
  • measurement result acquisition means for obtaining a wind measurement result at the destination by the unmanned aircraft
  • Support information providing means for providing support information to the player for supporting the shot from the predetermined position based on the measurement result obtained by the measurement result obtaining means.
  • a golf play support method is determined based on a shot information acquisition step for acquiring shot information relating to a shot corresponding to a player from a predetermined position in a golf course, and shot information acquired in the shot information acquisition step.
  • a shot information acquisition step for acquiring shot information relating to a shot corresponding to a player from a predetermined position in a golf course, and shot information acquired in the shot information acquisition step.
  • the movement instruction step for instructing the unmanned aircraft to measure the wind so as to move to the position
  • the measurement result acquisition step for acquiring the wind measurement result at the destination by the unmanned aircraft, and the measurement result acquisition step.
  • a support information providing step of providing support information to the player based on the measurement result for supporting the shot from the predetermined position.
  • the program according to the present invention moves to a position determined based on shot information acquisition means for acquiring shot information relating to a shot according to a player from a predetermined position in the golf course, and shot information acquired by the shot information acquisition means.
  • shot information acquisition means for acquiring shot information relating to a shot according to a player from a predetermined position in the golf course
  • shot information acquisition means Based on the measurement result acquired by the movement instruction means for instructing the unmanned aircraft that measures wind, the measurement result acquisition means for acquiring the wind measurement result at the destination by the unmanned aircraft, and the measurement result acquisition means
  • the computer functions as support information providing means for providing support information to support the shot from the predetermined position to the player.
  • the information storage medium according to the present invention is a computer-readable information storage medium storing the above program.
  • the support information providing unit is configured to start from the predetermined position based on the shot information acquired by the shot information acquisition unit and the measurement result acquired by the measurement result acquisition unit.
  • Prediction means for making a prediction regarding the trajectory of the shot
  • layout information acquisition means for acquiring layout information regarding the layout of the golf course
  • a prediction result by the prediction means based on the layout information acquired by the layout information acquisition means
  • Evaluation means for evaluating the information, and providing the support information based on an evaluation result by the evaluation means.
  • the support information providing unit may perform shots that the player should perform based on the measurement result acquired by the measurement result acquisition unit when the evaluation result by the evaluation unit is less than a reference. It further includes recommended ballistic acquisition means for acquiring recommended ballistic information related to the trajectory, and the recommended ballistic information acquired by the recommended ballistic acquisition means is provided as the support information.
  • the support information providing unit instructs the unmanned aircraft to move to a position determined based on the recommended ballistic information acquired by the recommended ballistic acquisition unit. It is characterized by providing.
  • the support information providing means instructs the unmanned aircraft to stand by at a current position when the evaluation result by the evaluation means is equal to or higher than a reference, whereby the support information is provided. It is characterized by providing.
  • the golf play support system further includes a retreat instruction unit that instructs the unmanned aircraft to retreat from a current position after the support information is provided by the support information providing unit. It is characterized by including.
  • the golf play support system tells the player whether the unmanned aircraft is measuring wind at a destination or whether the support information is provided by the position of the unmanned aircraft.
  • the information processing device further includes notification means for notification.
  • the unmanned aircraft includes a sensor unit for detecting an object in the golf course, and the golf play support system is based on a detection result of the sensor of the unmanned aircraft, Obstacle determination means for determining the presence or absence of an obstacle in the golf course is further included, and the evaluation means is based on the layout information acquired by the layout information acquisition means and the determination result of the obstacle determination means. Then, the prediction result by the prediction means is evaluated.
  • the golf play support system is based on flight distance information acquisition means for acquiring flight distance information indicating the relationship between the type of golf club and the flight distance of the hit ball, and the operation of the player.
  • a type acquisition unit that acquires a type of a golf club to be used in a shot from the predetermined position, and the shot information acquisition unit includes the flight distance information acquired by the flight distance information acquisition unit, and the type The shot information related to the flight distance of the player's shot is acquired based on the type of the golf club acquired by the acquisition means.
  • the shot information acquisition means acquires the shot information related to the trajectory of the player's shot based on the operation of the player.
  • FIG. 1 is a diagram showing a state in which a golf play support system is used.
  • the golf play support system 1 includes an unmanned aircraft 10 and a player terminal 20.
  • the landing site for the unmanned aerial vehicle 10 is located about 150 yards away from the teeing ground.
  • the player terminal 20 is in a cart on which the player rides.
  • a golf course that is loose up to about 150 yards from the tee ground and goes down thereafter will be described as an example.
  • FIG. 2 is a diagram illustrating a hardware configuration of the golf play support system 1. As shown in FIG. 2, the unmanned aerial vehicle 10 and the player terminal 20 are connected to each other so that data can be transmitted and received.
  • the unmanned aerial vehicle 10 is an aircraft on which a person does not board, for example, an unmanned aircraft driven by a battery (so-called drone) or an unmanned aircraft driven by an engine.
  • the unmanned aircraft 10 includes a control unit 11, a storage unit 12, a communication unit 13, and a sensor unit 14.
  • the unmanned aerial vehicle 10 includes general hardware such as a propeller, a motor, and a battery, but is omitted here.
  • the control unit 11 includes, for example, one or a plurality of microprocessors.
  • the control unit 11 executes processing according to programs and data stored in the storage unit 12.
  • the storage unit 12 includes a main storage unit and an auxiliary storage unit.
  • the main storage unit is a volatile memory such as a RAM
  • the auxiliary storage unit is a non-volatile memory such as a flash memory.
  • the communication unit 13 includes a network card for wireless communication. The communication unit 13 performs data communication via a network.
  • the sensor unit 14 includes a wind direction wind speed sensor, an acceleration sensor, a gyro sensor, an infrared sensor, a GPS sensor, and an image sensor.
  • An arbitrary sensor may be mounted on the unmanned aircraft 10, and the sensor unit 14 may include a geomagnetic sensor, an altitude sensor, or a displacement sensor.
  • the player terminal 20 is a computer operated by the player, and is, for example, a personal computer, a portable information terminal (including a tablet computer), a mobile phone (including a smartphone), or the like.
  • the player terminal 20 includes a control unit 21, a storage unit 22, a communication unit 23, an operation unit 24, and a display unit 25.
  • the hardware configurations of the control unit 21, the storage unit 22, and the communication unit 23 are the same as those of the control unit 11, the storage unit 12, and the communication unit 13, respectively.
  • the operation unit 24 is an input device for the player to operate, and is, for example, a pointing device such as a touch panel or a mouse, a keyboard, or the like.
  • the operation unit 24 transmits the operation content by the player to the control unit 21.
  • the display unit 25 is, for example, a liquid crystal display unit or an organic EL display unit.
  • the display unit 25 displays a screen according to instructions from the control unit 21.
  • each of the unmanned aircraft 10 and the player terminal 20 may include an audio output unit such as a reading unit (for example, an optical disc drive or a memory card slot) that reads a computer-readable information storage medium and a speaker.
  • a reading unit for example, an optical disc drive or a memory card slot
  • the program and data stored in the information storage medium may be supplied to the storage unit 12 or the storage unit 22 via the reading unit.
  • the unmanned aerial vehicle 10 measures wind at a position corresponding to the flight distance of each player's shot, and provides the measurement result to the player, thereby assisting according to the player's shot. I try to do it.
  • the unmanned aerial vehicle 10 measures wind at a position corresponding to the flight distance of each player's shot, and provides the measurement result to the player, thereby assisting according to the player's shot. I try to do it.
  • details of the technology will be described.
  • FIG. 3 is a functional block diagram illustrating an example of functions realized by the golf play support system 1.
  • the movement control unit 36 is realized by the unmanned aircraft 10, and the data storage unit 30, the flight distance information acquisition unit 31, the type acquisition unit 32, the shot information acquisition unit 33, and the layout information acquisition.
  • the unit 34, the movement instruction unit 35, the measurement result acquisition unit 37, the prediction unit 38, the evaluation unit 39, the support information provision unit 40, the retraction instruction unit 41, and the notification unit 42 will be described.
  • the data storage unit 30 is realized mainly by the storage unit 22.
  • the data storage unit 30 stores data for supporting a player's golf play.
  • player data, score data, and golf course data will be described as data stored in the data storage unit 30.
  • FIG. 4 is a diagram showing an example of player data.
  • the player data is data relating to the shot characteristics of the player.
  • the player data stores a player ID that uniquely identifies the player, a player name, and flight distance information regarding the flight distance of each player's shot.
  • the flight distance information indicates the flight distance of the player for each of a plurality of types of golf clubs.
  • the flying distance may be input by the player from the operation unit 24 or may be determined in advance. If the flight distance is determined in advance, a common flight distance may be used for all players, or the flight distance may be determined for each gender and age, and the flight distance according to the gender and age input by the player May be used.
  • FIG. 5 is a diagram showing an example of score data.
  • the score data is data relating to the player's score.
  • the score data indicates the number of hits of each player for each hole.
  • Each player inputs his / her number of strokes from the operation unit 24 at the end of each hole.
  • the score data stores the input number of strokes.
  • FIG. 6 is a diagram showing an example of golf course data.
  • the golf course data is data related to the golf course.
  • the golf course data stores layout information related to the layout and basic direction information related to the launch direction from the tee ground for each hole.
  • the layout information is information indicating the topography of the golf course and the arrangement of each area such as green, pin, fairway, rough, bunker, pond, tree, obstacles, and OB.
  • the layout information is described as representing the golf course as 3D model data, but it may be two-dimensional information.
  • the basic direction information indicates the launch direction from the tee ground.
  • the basic direction information is, for example, a recommended direction designated in advance by a golf course manager or the like.
  • the data stored in the data storage unit 30 is not limited to the above example.
  • the data storage unit 30 may store data indicating the input golf club.
  • the data storage unit 30 stores associations (details will be described later) between the three-dimensional coordinates of the virtual three-dimensional space where the 3D model of the golf course is constructed, and the latitude / longitude information and altitude information of the real space. May be.
  • the flight distance information acquisition unit 31 is realized mainly by the control unit 21.
  • the flight distance information acquisition unit 31 acquires flight distance information indicating the relationship between the type of golf club and the flight distance of the hit ball.
  • the flight distance information acquisition unit 31 acquires the player data stored in the data storage unit 30. Each player may input his flight distance on the spot. In this case, the flight distance information acquisition unit 31 acquires flight distance information based on the detection signal from the operation unit 24.
  • the type acquisition unit 32 is realized mainly by the control unit 21.
  • the type acquisition unit 32 acquires the type of golf club used in a shot from a predetermined position based on the player's operation.
  • the predetermined position is a predetermined position in the golf course, and is a tee ground in the present embodiment.
  • the type acquisition unit 32 acquires the type of the golf club based on the detection signal of the operation unit 24. Note that the type of golf club may be input in advance by each player. In this case, the type acquisition unit 32 acquires the type of golf club stored in the data storage unit 30.
  • the shot information acquisition unit 33 is realized mainly by the control unit 21.
  • the shot information acquisition unit 33 acquires shot information related to a shot according to a player from a predetermined position in the golf course.
  • the shot information is information indicating the characteristics of the shot of the player, and includes, for example, the flight distance of the hit ball, the jumping direction (angle), the trajectory, the way of bending, and the highest point reached.
  • the shot information acquisition unit 33 relates to the flight distance of the player's shot based on the flight distance information acquired by the flight distance information acquisition unit 31 and the type of golf club acquired by the type acquisition unit 32. Shot information is acquired. That is, the shot information acquisition unit 33 refers to the flight distance information and acquires the flight distance associated with the type of golf club acquired by the type acquisition unit 32 as shot information.
  • the layout information acquisition unit 34 is realized mainly by the control unit 21.
  • the layout information acquisition unit 34 acquires layout information regarding the layout of the golf course.
  • the layout information acquisition unit 34 acquires the golf course data stored in the data storage unit 30.
  • the movement instruction unit 35 is realized mainly by the control unit 21.
  • the movement instructing unit 35 instructs the unmanned aircraft 10 that measures wind to move to a position (hereinafter, referred to as a measurement position) determined based on the shot information acquired by the shot information acquiring unit 33. For example, it is assumed that the association between the shot information and the measurement position is stored in the data storage unit 30. This association may be in a mathematical expression format or a table format.
  • the movement instructing unit 35 instructs the unmanned aircraft 10 to move to the measurement position associated with the shot information.
  • the measurement position is a three-dimensional position in the real space, and is specified by latitude / longitude information and altitude information in this embodiment.
  • the latitude / longitude information is information that specifies the position in the north-south direction and the position in the east-west direction on the earth, and is indicated by numerical values of degrees, minutes, and seconds, for example.
  • the altitude information is information indicating the height from a predetermined position. Here, the altitude information is described as indicating the height from the ground. However, the altitude information may indicate the sea level.
  • FIG. 7 is an explanatory diagram of a method for determining the measurement position.
  • the Xw-Yw-Zw axis in FIG. 7 is a coordinate axis in the virtual three-dimensional space (the origin is Ow).
  • a 3D model indicated by the layout information is constructed in a virtual three-dimensional space in which the coordinate axes are set.
  • the movement instruction unit 35 determines the trajectory of the player based on the flight distance of each player and the basic direction V indicated by the basic direction information. Calculate and determine the measurement position. This trajectory is determined without considering the effects of wind.
  • the movement instruction unit 35 determines the measurement position so that the longer the flight distance, the farther and higher from the tee ground, and the shorter the flight distance, the closer the position to the tee ground and lower.
  • the flying distances of the players A to D are 200 yards and 160 respectively. Yards, 280 yards and 200 yards.
  • the movement instructing unit 35 calculates the trajectory of each player so as to fly in the basic direction V from the tee ground, the trajectories 50A to 50D shown in FIG. 7 are obtained.
  • the ballistic calculation formula itself may be a formula used in a known golf simulator, for example, a calculation formula for obtaining a parabola by substituting a flight distance. In the present embodiment, this calculation formula corresponds to the association described above.
  • the movement instruction unit 35 determines the measurement positions of the players A to D based on the three-dimensional coordinates of arbitrary positions on the trajectories 50A to 50D (here, the highest reaching points 51A to 51D).
  • the data storage unit 30 stores the association between the three-dimensional coordinates of the virtual three-dimensional space, the latitude / longitude information, and the altitude information.
  • This association may be in a mathematical expression format or a table format.
  • the movement instruction unit 35 may determine the measurement positions of the players A to D by converting the three-dimensional coordinates of the highest arrival points 51A to 51D into latitude / longitude information and altitude information.
  • the movement instructing unit 35 instructs the unmanned aircraft 10 to move to the measurement position determined as described above.
  • the movement instruction unit 35 instructs the measurement position by transmitting latitude / longitude information and altitude information to the unmanned aircraft 10. This instruction may be performed by transmitting data in a predetermined format. Further, since the tee shots are performed in a predetermined order, the movement instruction unit 35 specifies the order in which each player makes a tee shot based on the score data, and moves to a measurement position corresponding to the player who will make a tee shot from now on. The unmanned aircraft 10 may be instructed to do so.
  • each player may be caused to perform a predetermined operation from the operation unit 24 every time the tee shot is completed.
  • the movement instruction unit 35 instructs the movement of the measurement position according to the next player.
  • the movement control unit 36 is realized mainly by the control unit 11.
  • the movement control unit 36 moves the unmanned aircraft 10 based on an instruction from the movement instruction unit 35.
  • the movement control unit 36 adjusts the rotation direction and the rotation speed of each propeller of the unmanned aircraft 10 so as to move toward the measurement position instructed by the movement instruction unit 35. What is necessary is just to adjust the rotation direction and rotation speed of a propeller by changing the parameter which shows these.
  • Various known methods can be applied to the method of moving the unmanned aerial vehicle 10 to the designated measurement position.
  • the movement control unit 36 reduces the rotation speed of the propeller on the traveling direction side. You can do it.
  • the movement control unit 36 uses the latitude / longitude information (that is, the measurement position) instructed by the movement instruction unit 35 from the latitude / longitude information (that is, the latitude / longitude information of the current position) determined by the reception signal of the GPS sensor of the sensor unit 14.
  • the unmanned aerial vehicle 10 is moved in a direction toward the latitude and longitude information.
  • the movement control unit 36 adjusts the altitude of the unmanned aircraft 10 so that the difference between the distance from the ground detected by the infrared sensor of the sensor unit 14 and the altitude information is less than a threshold value.
  • the movement control unit 36 moves the unmanned aerial vehicle 10 to the measurement position, the movement control unit 36 hovers on the spot. In this state, the unmanned aerial vehicle 10 measures the wind using the sensor unit 14 and transmits the measurement result to the player terminal 20.
  • the measurement result acquisition unit 37 is realized mainly by the control unit 21.
  • the measurement result acquisition unit 37 acquires the measurement result of the wind at the destination (that is, the measurement position) by the unmanned aircraft 10.
  • the measurement result acquisition unit 37 acquires at least one of the wind direction and the wind speed detected by the sensor unit 14 as a measurement result.
  • the measurement result acquisition part 37 demonstrates the case where both a wind direction and a wind speed are acquired, you may acquire only any one of a wind direction or a wind speed.
  • the prediction unit 38 is realized mainly by the control unit 21.
  • the prediction unit 38 makes a prediction regarding the trajectory of a shot from a predetermined position based on the shot information acquired by the shot information acquisition unit 33 and the measurement result acquired by the measurement result acquisition unit 37.
  • the trajectory predicted by the prediction unit 38 is a trajectory that takes into consideration the influence of the wind, and is different from the trajectory calculated by the movement instruction unit 35 (the trajectory not considering the wind).
  • a method for obtaining a trajectory in consideration of the influence of wind a method used in a known golf simulator may be used.
  • the prediction unit 38 predicts a trajectory as follows.
  • FIG. 8 is an explanatory diagram of the trajectory predicted by the prediction unit 38.
  • the prediction unit 38 changes the trajectories 50A to 50D calculated by the movement instruction unit 35 based on the wind measurement result.
  • the data storage unit 30 stores the association between the wind measurement result and the change direction and change amount of the trajectory. This association may be in a mathematical expression format or a table format.
  • the prediction unit 38 changes the trajectory calculated by the movement instruction unit 35 by the change direction and change amount associated with the wind measurement result.
  • the prediction unit 38 changes the trajectories 50A to 50D by the amount corresponding to the wind speed in the direction of the wind direction indicated by the measurement result, so that the expected trajectories 52A to 52D taking into consideration the influence of the wind are obtained. get.
  • the prediction unit 38 acquires predicted trajectories 52A, 52B, and 52D that do not change so much from the trajectories 50A, 50B, and 50D.
  • the prediction unit 38 is expected to have changed greatly from the trajectory 50C.
  • the trajectory 52C is acquired. For example, after the hit ball reaches the highest point, the speed drops and it is easy to bend due to the influence of the wind. Therefore, as shown in FIG. 8, the prediction unit 38 predicts a trajectory 50C that bends greatly in the latter half.
  • the prediction unit 38 may recalculate the trajectory from the shot information and the wind measurement result.
  • the association between the shot information and the wind measurement result and the trajectory is stored in the data storage unit 30. This association may be in a mathematical expression format or a table format.
  • the prediction unit 38 acquires the trajectory associated with the shot information and the wind measurement result as the prediction result.
  • the evaluation unit 39 is realized mainly by the control unit 21.
  • the evaluation unit 39 evaluates the prediction result by the prediction unit 38 based on the layout information acquired by the layout information acquisition unit 34. The evaluation is performed depending on whether a golf penalty occurs or a hit ball lands in a predetermined area. The penalty is determined by the golf rules, and is, for example, OB or water hazard. Predetermined areas include fairways, roughs, bunkers, and ponds.
  • the evaluation unit 39 refers to the layout information to determine whether or not there is an obstacle on the trajectory of the predicted trajectory predicted by the prediction unit 38, or the predicted trajectory landing point predicted by the prediction unit 38 is predetermined. It is judged whether it is an area.
  • ⁇ Evaluation unit 39 makes an evaluation below the standard when a penalty occurs when the expected trajectory is present, when there is an obstacle on the expected trajectory, or when the predicted trajectory is at a rough bunker or pond.
  • the evaluation unit 39 sets the evaluation to be higher than the standard.
  • the trajectories 52A, 52B, and 52D do not generate a penalty, there are no obstacles on the trajectory, and the landing point is the fairway 53. Therefore, the evaluation unit 39 uses the trajectories 52A, 52B, and 52D as the reference. The above evaluation is given.
  • the evaluation unit 39 gives the evaluation of the trajectory 52C below the standard.
  • the support information providing unit 40 is realized mainly by the control unit 21.
  • the support information providing unit 40 provides support information for supporting a shot from a predetermined position to the player based on the measurement result acquired by the measurement result acquisition unit 37.
  • the support information is information indicating the direction or position to be hit by the player.
  • the wind direction and the wind speed of the measurement position may be provided as support information, or the method of bending the hit ball ( Hook or slice) or how to hit (such as hitting the top) may be provided as support information.
  • the support information may be provided using an image or sound, but in the present embodiment, the support information is provided using the position of the unmanned aircraft 10. That is, the player takes a shot at the position where the unmanned aircraft 10 is present.
  • the support information providing unit 40 provides support information based on the evaluation result by the evaluation unit 39. For example, the support information providing unit 40 provides as support information whether it is possible to hit in the basic direction V.
  • the basic direction V is described in a course map in the cart, and each player can know the basic direction V. If the evaluation result by the evaluation unit 39 is less than the reference, the support information providing unit 40 provides support information indicating that the basic direction V should not be hit. If the evaluation result by the evaluation unit 39 is greater than or equal to the reference, Support information indicating that the player should strike in the basic direction V is provided.
  • the support information providing unit 40 includes a recommended trajectory acquisition unit 40A.
  • the recommended ballistic acquisition unit 40A acquires recommended ballistic information regarding the ballistic of the shot to be played by the player based on the measurement result acquired by the measurement result acquisition unit 37.
  • the shot launch direction may be the recommended ballistic information.
  • the recommended trajectory information is a trajectory that is evaluated more than the standard, for example, a trajectory that does not cause a penalty, a trajectory that does not have an obstacle on the trajectory, or a trajectory that has a landing point on the fairway.
  • FIG. 9 is an explanatory diagram of the processing content of the recommended trajectory acquisition unit 40A.
  • the recommended trajectory acquisition unit 40 ⁇ / b> A acquires a recommended direction U obtained by rotating the basic direction V by an angle ⁇ corresponding to the measurement result of the measurement result acquisition unit 37, and the flying distance of the player in the direction U
  • the trajectory 55C when the hit ball flies is calculated.
  • the association between the wind measurement result and the recommended direction U is stored in the data storage unit. This association may be in a mathematical expression format or a table format.
  • the recommended trajectory acquisition unit 40A acquires a recommended direction U associated with the wind measurement result, calculates a trajectory 55C, and acquires it as recommended trajectory information.
  • the recommended trajectory acquisition unit 40A may evaluate the trajectory 55C using the same evaluation method as that of the evaluation unit 39. When the evaluation is less than the reference, the recommended trajectory acquisition unit 40A may change the recommended direction U, recalculate the trajectory 55C, and acquire the recommended trajectory information until an evaluation equal to or higher than the reference is obtained.
  • the support information providing unit 40 provides the recommended ballistic information acquired by the recommended ballistic acquiring unit 40A as support information.
  • the support information providing unit 40 may provide an arbitrary position on the trajectory 55C as support information, or may provide the recommended direction U used when the trajectory 55C is calculated as support information.
  • the support information providing unit 40 moves to a position determined based on the recommended ballistic information acquired by the recommended ballistic acquisition unit 40A.
  • the support information is provided by instructing the unmanned aircraft 10.
  • the support information providing unit 40 acquires the three-dimensional coordinates of an arbitrary position (for example, the highest reaching point 56C) on the trajectory 55C, and converts the three-dimensional coordinates into latitude / longitude information and altitude information.
  • the support information providing unit 40 instructs the unmanned aircraft 10 to move to the position indicated by the latitude / longitude information and the altitude information.
  • the support information providing unit 40 provides support information by instructing the unmanned aircraft 10 to stand by at the current position when the evaluation result by the evaluation unit 39 is equal to or higher than the reference. That is, if no problem occurs even if a tee shot is made in the basic direction V, the unmanned aircraft 10 stands by at the measurement position.
  • the save instruction unit 41 is realized mainly by the control unit 21.
  • the retreat instruction unit 41 instructs the unmanned aircraft 10 to retreat from the current position after the support information is provided by the support information providing unit 40.
  • the retreat instruction unit 41 may instruct retreat when a predetermined condition is satisfied.
  • the evacuation instruction unit 41 is instructed to evacuate when a certain time has elapsed, when the player starts swinging, when the player takes a shot, or when the player performs a predetermined operation from the operation unit 24. That's fine.
  • the player's swing or shot may be detected by the detection signal of the sensor unit 14.
  • the retraction instruction unit 41 may analyze an image captured by the image sensor of the sensor unit 14 and determine whether a swing or a shot has been performed.
  • the sensor unit 14 includes a microphone
  • the retraction instruction unit 41 may determine whether a hitting sound is detected.
  • the evacuation instruction performed by the evacuation instruction unit 41 may include the evacuation direction.
  • the retreat direction may be a predetermined direction or may be determined randomly.
  • the unmanned aircraft 10 may analyze the direction of the hit ball, and the retreat direction may be determined based on the direction of the hit ball.
  • the notification unit 42 is realized mainly by the control unit 21.
  • the notification unit 42 notifies the player whether the unmanned aircraft 10 is measuring wind at the destination (measurement position) or whether support information is provided by the position of the unmanned aircraft 10.
  • the notification may be performed visually or audibly.
  • the notification unit 42 displays a predetermined image or outputs a predetermined sound.
  • the notification unit 42 may perform the notification by instructing the light to be turned on or off.
  • the notification unit 42 notifies, the player can determine whether or not the shot may be taken.
  • FIG.10 and FIG.11 is a flowchart which shows an example of the process performed in a golf play assistance system.
  • the processing illustrated in FIGS. 10 and 11 is executed by the control unit 11 operating according to the program stored in the storage unit 12 and the control unit 21 operating according to the program stored in the storage unit 22.
  • the functional blocks shown in FIG. 3 are realized by executing the processing described below.
  • the control unit 21 constructs a 3D model of a golf course from which each player will make a tee shot in a virtual three-dimensional space based on the golf course data (S1). ).
  • the control unit 21 may specify a golf course on which each player takes a tee shot by an input from the player, or a GPS sensor is mounted on the player terminal 20 and specified based on the current latitude / longitude information. Also good.
  • the control unit 21 constructs the 3D model indicated by the layout information in the storage unit 22.
  • the control unit 21 specifies the order of tee shots based on the score data (S2). In S ⁇ b> 2, the control unit 21 may specify the order so that the scores of the previous holes are in good order. Thereafter, the process for the unmanned aerial vehicle 10 to measure the wind at the measurement position corresponding to the player who will make a tee shot will be executed.
  • the control unit 21 specifies the type of golf club used by the player (S3). In S ⁇ b> 3, the control unit 21 acquires the type of golf club input from the operation unit 24.
  • the control unit 21 acquires the flight distance when the player uses the golf club specified in S3 based on the flight distance information of the player data (S4).
  • the control unit 21 calculates the trajectory of the player based on the flight distance acquired in S4 and the basic direction V indicated by the basic direction information of the golf course data (S5). In S5, the control unit 21 calculates a trajectory that does not consider the influence of the wind, based on the method described with reference to FIG.
  • the controller 21 transmits a movement instruction to the unmanned aerial vehicle 10 so as to move to the measurement position determined based on the highest point of trajectory calculated in S5 (S6).
  • S6 the control unit 21 determines the three-dimensional coordinates of the highest arrival point.
  • the latitude / longitude information and altitude information associated with is acquired as a measurement position, and a movement instruction is transmitted.
  • the control unit 11 moves the unmanned aerial vehicle 10 toward the instructed measurement position (S7).
  • the control unit 11 sets the latitude / longitude information and altitude information included in the movement instruction as a destination point, and starts the movement of the unmanned aircraft 10.
  • the control unit 11 measures the wind direction and the wind speed using the sensor unit 14 (S8). In S8, the control part 11 determines whether it moved to the measurement position using the GPS sensor of the sensor part 14, etc. When it determines with having moved to the measurement position, the control part 11 will acquire the detection result of the wind direction wind speed sensor of the sensor part 14. FIG. The control part 11 transmits the measurement result in S8 to the player terminal 20 (S9). In S ⁇ b> 9, the control unit 11 transmits information indicating the wind direction and the wind speed to the player terminal 20.
  • the control unit 21 corrects the trajectory calculated in S5 based on the measurement result, and acquires the expected trajectory (S10).
  • the control unit 21 corrects the trajectory of S5 that does not consider the effect of wind to an expected trajectory that considers the effect of wind.
  • control unit 21 evaluates the expected trajectory acquired in S10 based on the golf course data (S11). In S ⁇ b> 11, the control unit 21 performs evaluation by determining whether a penalty occurs in the predicted trajectory, whether there is an obstacle on the predicted trajectory, and the area where the predicted trajectory is landing.
  • the control unit 21 acquires a recommended trajectory based on the measurement result received in S10 (S12). In S12, the control unit 21 acquires a recommended trajectory based on the method described with reference to FIG.
  • the control unit 21 transmits a movement instruction to the unmanned aircraft 10 so as to move on the recommended trajectory acquired in S12 (S13).
  • the control unit 21 refers to the golf course data, acquires latitude / longitude information and altitude information associated with the three-dimensional coordinates of an arbitrary point on the recommended trajectory, and transmits a movement instruction. .
  • the control unit 21 outputs a predetermined sound such as “The unmanned aircraft moves on the recommended trajectory. When the unmanned aircraft stops, please shot with the unmanned aircraft as a target” (S14).
  • the control unit 11 moves toward the recommended trajectory (S15).
  • the control unit 11 retreats after hovering for a certain time (S16).
  • the control part 11 determines whether it moved on the recommended trajectory using the GPS sensor of the sensor part 14, etc. When it determines with having moved to the measurement position, the control part 11 starts time measurement using a real-time clock etc. while hovering the unmanned aircraft 10. Then, the control unit 11 retracts the unmanned aerial vehicle 10 in a predetermined direction when a certain time has elapsed.
  • the control unit 21 transmits an instruction to the unmanned aircraft 10 to hover for a certain time on the spot (S17).
  • a predetermined voice such as “Shot with unmanned aircraft as a target” is output (S18).
  • the unmanned aircraft 10 executes the process of S16 and evacuates after a certain time.
  • the control unit 21 determines whether the player has made a tee shot based on the input from the operation unit 24 (S19). When it is determined that the player has made a tee shot (S19; Y), the control unit 21 determines whether the tee shot of all the players has been completed based on the number of players stored in the score data (S20). If it is not determined that all the tee shots have been completed (S20; N), the process returns to the process of S3, and a process for assisting the player who makes the next tee shot is executed. On the other hand, when it is determined that all the tee shots have been completed (S20; Y), this process ends.
  • the golf play support system 1 since wind is measured at a measurement position corresponding to each player's shot and support information is provided, accurate support according to the player's shot characteristics can be provided. .
  • a wind direction and wind speed sensor is arranged at a fixed point on a golf course, only the wind at that location can be measured, which may not be useful information for a player who hits a shot that passes outside that location.
  • the unmanned aircraft 10 can measure the wind at an arbitrary position, it is possible to provide useful information according to the player.
  • the expected trajectory considering the wind effect at the measurement position is evaluated based on the layout information, so that support information according to the layout of the golf course can be provided to the user.
  • the golf play support system 1 when the estimated trajectory considering the influence of wind is low, the recommended trajectory considering the influence of wind is calculated and provided to the player. This can be specifically proposed to the player, and golf play support can be performed more effectively.
  • support information is provided by the unmanned aircraft 10 moving on the recommended trajectory, so that the direction in which the player should strike can be visually and easily understood.
  • the unmanned aircraft 10 When providing support information according to the position of the unmanned aircraft 10, the player shots toward the unmanned aircraft 10. However, in the golf play support system 1, the unmanned aircraft 10 evacuates after providing the support information. Therefore, it is possible to prevent the hit ball from hitting the unmanned aircraft 10.
  • the player determines whether or not the shot can be made by notifying whether the unmanned aircraft 10 is measuring the wind or telling the player the direction in which the player should hit. .
  • the golf play support system 1 determines the wind measurement position based on the flight distance according to the golf club used by the player. Thus, the accuracy of the support information can be further improved.
  • FIG. 12 is a functional block diagram of the modified example (1). As shown in FIG. 12, in the modified example described below, an obstacle determination unit 43 is realized in addition to the functions of the embodiment.
  • the obstacle determination unit 43 is realized mainly by the control unit 21.
  • the obstacle determination unit 43 determines the presence or absence of an obstacle in the golf course based on the detection result of the sensor unit 14 of the unmanned aircraft 10.
  • the unmanned aerial vehicle 10 includes a sensor for detecting an object in the golf course.
  • This sensor may be an infrared sensor or an image sensor.
  • the obstacle determination unit 43 detects an obstacle by determining whether the infrared rays emitted from the infrared sensor are reflected and returned.
  • the obstacle determination unit 43 performs pattern matching between an image captured by the image sensor and an image indicating the basic shape of the obstacle (this image is stored in the data storage unit 30 in advance). To detect obstacles.
  • the evaluation unit 39 evaluates the prediction result by the prediction unit 38 based on the layout information acquired by the layout information acquisition unit 34 and the determination result of the obstacle determination unit 43.
  • the evaluation method of the evaluation unit 39 is the same as the method described in the embodiment, but the evaluation unit 39 arranges an obstacle in the virtual three-dimensional space based on the determination result of the obstacle determination unit 43.
  • the evaluation unit 39 calculates the latitude / longitude information and altitude of the unmanned aircraft 10. Information is converted into three-dimensional coordinates in a virtual three-dimensional space.
  • the evaluation unit 39 estimates the positional relationship between the unmanned aircraft 10 and the obstacle from the detection result of the infrared sensor used for the determination by the obstacle determination unit 43 and the image of the image sensor. Determine the coordinates.
  • the evaluation unit 39 arranges a 3D model of the obstacle at the determined three-dimensional coordinates, and determines whether the obstacle is on the redundant trajectory predicted by the prediction unit 38.
  • the unmanned aircraft 10 since the unmanned aircraft 10 detects an obstacle in the golf course, the expected trajectory can be evaluated in consideration of the obstacle according to the current situation in the golf course.
  • the shot information acquisition unit 33 acquires shot information related to the trajectory of the player's shot based on the operation of the player. For example, the player may input the bending state and the jumping direction of his / her shot from the operation unit 24 on the spot, or previously input data may be stored in the player data.
  • the movement instruction unit 35 calculates the trajectory based on the bending condition and the jumping direction input by the player. As described in the embodiment, the calculation method used in a known golf simulator may be used for calculating the trajectory itself.
  • the measurement position of the unmanned aircraft 10 is not limited to one, and a plurality of measurement positions may be set based on a plurality of positions on the trajectory calculated by the movement instruction unit 35.
  • the number of unmanned aircraft 10 is not limited to one, and a plurality of unmanned aircraft 10 may be used, and the unmanned aircraft 10 may move to each of a plurality of measurement positions.
  • each unmanned aircraft 10 may be arranged so that a plurality of unmanned aircraft 10 shows a recommended trajectory.
  • the support information may be provided by executing the same processing in a scene other than the tee shot.
  • the position of each player's ball is a predetermined position.
  • the position of each player's ball may be estimated by a GPS sensor of a terminal such as a smartphone held by each player, or may be estimated by a GPS sensor of the player terminal 20.
  • the position of each player may be specified based on an image taken by the unmanned aircraft 10.
  • the player terminal 20 causes the unmanned aircraft 10 to photograph the forward direction of the player and, based on this photographed image, drives in the golf course.
  • the prohibited area may be set in the virtual three-dimensional space.
  • the support information providing unit 40 may provide that as support information.
  • the method of measuring the wind itself may be other than the method using the wind direction and wind speed sensor.
  • the golf play support system 1 may estimate the wind by detecting the distance that the unmanned aerial vehicle 10 is allowed to fall freely and flowed.
  • various known measurement methods may be used.
  • the first half is an uphill
  • the middle course and the following is a downhill golf course.
  • the golf play support system 1 is applied in a scene of supporting golf play on other various golf courses. Can do. For example, it may be applied to a short hole that can be placed on the green with a single hit, or in a dogleg golf course that bends in a predetermined direction, it can be hit in a direction that crosses an OB or valley area (shortcut)
  • the player may select whether to strike in a solid direction along the fairway and move the unmanned aircraft 10 to a measurement position corresponding to the direction.
  • the recommended trajectory acquisition unit 40A may acquire the trajectory to be shortcutted as the recommended trajectory based on the wind measurement result, or may acquire a solid direction as the recommended trajectory for the player aiming for the shortcut. Good.
  • the layout information may be created in advance by the administrator, or may be generated by the unmanned aircraft 10 shooting the sky over the golf course. Furthermore, the layout information of all holes may be generated when the unmanned aircraft 10 travels over the golf course.
  • the player terminal 20 may estimate the type of the golf club from the number of remaining yards from a predetermined position where each player takes a shot to the pin.
  • the golf club used by the player may be estimated using the flight distance information of the player data.
  • the player terminal 20 may suggest a recommended golf club to the player based on the number of remaining yards and the flight distance information.
  • the function described as being realized by the player terminal 20 may be realized by the unmanned aircraft 10.
  • the support information providing unit 40, the evacuation instruction unit 41, the notification unit 42, and the obstacle determination unit 43 may be realized by the unmanned aircraft 10.
  • the data storage unit 30 is realized mainly by the storage unit 12, and other functions are realized mainly by the control unit 11.
  • Each function described above may be realized by only the unmanned aircraft 10 or may be shared by each computer of the golf play support system 1.
  • functions other than the shot information acquisition unit 33, the movement instruction unit 35, the measurement result acquisition unit 37, and the support information provision unit 40 may be omitted.

Abstract

This golf play assistance system supports a player playing golf by measuring winds at a position corresponding to the player. The golf play support system (1) has: a shot information acquisition means (33) which acquires shot information relating to a shot by the player from a predetermined position in a golf course; a movement command means (35) which commands an unmanned aerial vehicle (10) for measuring winds to move to a position which is determined on the basis of the shot information acquired by the shot information acquisition means (33); a measurement result acquisition means (37) which acquires the measurement result of the winds by the unmanned aerial vehicle (10) at the destination; and an assistance information provision means (40) which provides to the player assistance information for assisting a shot from the predetermined position on the basis of the measurement result acquired by the measurement result acquisition means (37).

Description

ゴルフプレイ支援システム、ゴルフプレイ支援方法、及びプログラムGolf play support system, golf play support method, and program
 本発明は、ゴルフプレイ支援システム、ゴルフプレイ支援方法、及びプログラムに関する。 The present invention relates to a golf play support system, a golf play support method, and a program.
 従来、ゴルフコースにおけるプレイヤのゴルフプレイを支援する技術が知られている。例えば、特許文献1には、ショットするプレイヤの近くに配置された第1の風向風速計と、上空の風を計測するためにゴルフコース上の固定地点に配置された第2の風向風速計と、同伴者などによる持ち運びが可能な第3の風向風速計と、によって得られる風向や風速をプレイヤに提供するシステムが記載されている。 Conventionally, a technology for supporting golf play of a player on a golf course is known. For example, Patent Document 1 discloses a first anemometer arranged near a player who shots, and a second anemometer arranged at a fixed point on a golf course in order to measure the wind in the sky. In addition, a third wind direction anemometer that can be carried by a companion or the like and a system that provides the player with the wind direction and wind speed obtained by the wind direction are described.
特開2005-144003号公報JP 2005-144003 A
 ゴルフコースでは、木や斜面に囲まれていない場所は風が強いので、上空の風の情報は地面付近よりも重要になる。しかしながら、特許文献1の技術では、第1の風向風速計や第3の風向風速計は、地面付近の風しか計測することができず、第2の風向風速計は、固定地点の風しか計測することができない。プレイヤによってショットの飛距離や狙う方向は異なるため、第2の風向風速計のような固定地点の計測結果だけでは、プレイヤに応じた支援をすることができない。 On golf courses, wind is strong in places that are not surrounded by trees or slopes, so the information on the wind in the sky is more important than near the ground. However, in the technique of Patent Document 1, the first anemometer and the third anemometer can measure only the wind near the ground, and the second anemometer measures only the wind at a fixed point. Can not do it. Since the shot distance and the target direction differ depending on the player, it is not possible to provide support according to the player only by the measurement result at a fixed point such as the second anemometer.
 本発明は上記課題に鑑みてなされたものであって、その目的は、プレイヤに応じた位置の風を計測してゴルフプレイの支援をすることである。 The present invention has been made in view of the above problems, and an object thereof is to support a golf play by measuring a wind at a position corresponding to a player.
 上記課題を解決するために、本発明に係るゴルフプレイ支援システムは、ゴルフコース内の所定位置からのプレイヤに応じたショットに関するショット情報を取得するショット情報取得手段と、前記ショット情報取得手段により取得されたショット情報に基づいて定まる位置に移動するように、風を計測する無人航空機に指示する移動指示手段と、前記無人航空機による移動先での風の計測結果を取得する計測結果取得手段と、前記計測結果取得手段により取得された計測結果に基づいて、前記所定位置からのショットを支援するための支援情報を前記プレイヤに提供する支援情報提供手段と、を含むことを特徴とする。 In order to solve the above problems, a golf play support system according to the present invention is obtained by shot information acquisition means for acquiring shot information relating to a shot from a predetermined position in a golf course and the shot information acquisition means. Movement instruction means for instructing the unmanned aircraft to measure wind so as to move to a position determined based on the shot information, measurement result acquisition means for obtaining a wind measurement result at the destination by the unmanned aircraft, Support information providing means for providing support information to the player for supporting the shot from the predetermined position based on the measurement result obtained by the measurement result obtaining means.
 本発明に係るゴルフプレイ支援方法は、ゴルフコース内の所定位置からのプレイヤに応じたショットに関するショット情報を取得するショット情報取得ステップと、前記ショット情報取得ステップにおいて取得されたショット情報に基づいて定まる位置に移動するように、風を計測する無人航空機に指示する移動指示ステップと、前記無人航空機による移動先での風の計測結果を取得する計測結果取得ステップと、前記計測結果取得ステップにおいて取得された計測結果に基づいて、前記所定位置からのショットを支援するための支援情報を前記プレイヤに提供する支援情報提供ステップと、を含むことを特徴とする。 A golf play support method according to the present invention is determined based on a shot information acquisition step for acquiring shot information relating to a shot corresponding to a player from a predetermined position in a golf course, and shot information acquired in the shot information acquisition step. Acquired in the movement instruction step for instructing the unmanned aircraft to measure the wind so as to move to the position, the measurement result acquisition step for acquiring the wind measurement result at the destination by the unmanned aircraft, and the measurement result acquisition step. And a support information providing step of providing support information to the player based on the measurement result for supporting the shot from the predetermined position.
 本発明に係るプログラムは、ゴルフコース内の所定位置からのプレイヤに応じたショットに関するショット情報を取得するショット情報取得手段、前記ショット情報取得手段により取得されたショット情報に基づいて定まる位置に移動するように、風を計測する無人航空機に指示する移動指示手段、前記無人航空機による移動先での風の計測結果を取得する計測結果取得手段、前記計測結果取得手段により取得された計測結果に基づいて、前記所定位置からのショットを支援するための支援情報を前記プレイヤに提供する支援情報提供手段、としてコンピュータを機能させる。 The program according to the present invention moves to a position determined based on shot information acquisition means for acquiring shot information relating to a shot according to a player from a predetermined position in the golf course, and shot information acquired by the shot information acquisition means. Based on the measurement result acquired by the movement instruction means for instructing the unmanned aircraft that measures wind, the measurement result acquisition means for acquiring the wind measurement result at the destination by the unmanned aircraft, and the measurement result acquisition means The computer functions as support information providing means for providing support information to support the shot from the predetermined position to the player.
 また、本発明に係る情報記憶媒体は、上記のプログラムが記憶されたコンピュータ読み取り可能な情報記憶媒体である。 The information storage medium according to the present invention is a computer-readable information storage medium storing the above program.
 また、本発明の一態様では、前記支援情報提供手段は、前記ショット情報取得手段により取得されたショット情報と、前記計測結果取得手段により取得された計測結果と、に基づいて、前記所定位置からのショットの弾道に関する予想を行う予想手段と、前記ゴルフコースのレイアウトに関するレイアウト情報を取得するレイアウト情報取得手段と、前記レイアウト情報取得手段により取得されたレイアウト情報に基づいて、前記予想手段による予想結果を評価する評価手段と、を含み、前記評価手段による評価結果に基づいて、前記支援情報を提供する、ことを特徴とする。 In one aspect of the present invention, the support information providing unit is configured to start from the predetermined position based on the shot information acquired by the shot information acquisition unit and the measurement result acquired by the measurement result acquisition unit. Prediction means for making a prediction regarding the trajectory of the shot, layout information acquisition means for acquiring layout information regarding the layout of the golf course, and a prediction result by the prediction means based on the layout information acquired by the layout information acquisition means Evaluation means for evaluating the information, and providing the support information based on an evaluation result by the evaluation means.
 また、本発明の一態様では、前記支援情報提供手段は、前記評価手段による評価結果が基準未満である場合、前記計測結果取得手段により取得された計測結果に基づいて、前記プレイヤがすべきショットの弾道に関する推奨弾道情報を取得する推奨弾道取得手段を更に含み、前記推奨弾道取得手段により取得された推奨弾道情報を、前記支援情報として提供する、ことを特徴とする。 In the aspect of the present invention, the support information providing unit may perform shots that the player should perform based on the measurement result acquired by the measurement result acquisition unit when the evaluation result by the evaluation unit is less than a reference. It further includes recommended ballistic acquisition means for acquiring recommended ballistic information related to the trajectory, and the recommended ballistic information acquired by the recommended ballistic acquisition means is provided as the support information.
 また、本発明の一態様では、前記支援情報提供手段は、前記推奨弾道取得手段により取得された推奨弾道情報に基づいて定まる位置に移動するように前記無人航空機に指示することによって、前記支援情報を提供する、ことを特徴とする。 In one aspect of the present invention, the support information providing unit instructs the unmanned aircraft to move to a position determined based on the recommended ballistic information acquired by the recommended ballistic acquisition unit. It is characterized by providing.
 また、本発明の一態様では、前記支援情報提供手段は、前記評価手段による評価結果が基準以上である場合、現在の位置で待機するように前記無人航空機に指示することによって、前記支援情報を提供する、ことを特徴とする。 In one aspect of the present invention, the support information providing means instructs the unmanned aircraft to stand by at a current position when the evaluation result by the evaluation means is equal to or higher than a reference, whereby the support information is provided. It is characterized by providing.
 また、本発明の一態様では、前記ゴルフプレイ支援システムは、前記支援情報提供手段により支援情報が提供された後に、現在の位置から退避するように前記無人航空機に指示する退避指示手段、を更に含むことを特徴とする。 In one aspect of the present invention, the golf play support system further includes a retreat instruction unit that instructs the unmanned aircraft to retreat from a current position after the support information is provided by the support information providing unit. It is characterized by including.
 また、本発明の一態様では、前記ゴルフプレイ支援システムは、前記無人航空機が移動先で風を計測中であるか、前記無人航空機の位置により前記支援情報が提供されているか、を前記プレイヤに通知する通知手段を更に含む、ことを特徴とする。 Also, in one aspect of the present invention, the golf play support system tells the player whether the unmanned aircraft is measuring wind at a destination or whether the support information is provided by the position of the unmanned aircraft. The information processing device further includes notification means for notification.
 また、本発明の一態様では、前記無人航空機は、前記ゴルフコース内の物体を検出するためのセンサ部を含み、前記ゴルフプレイ支援システムは、前記無人航空機の前記センサの検出結果に基づいて、前記ゴルフコース内の障害物の有無を判定する障害物判定手段を更に含み、前記評価手段は、前記レイアウト情報取得手段により取得されたレイアウト情報と、前記障害物判定手段の判定結果と、に基づいて、前記予想手段による予想結果を評価する、ことを特徴とする。 Moreover, in one aspect of the present invention, the unmanned aircraft includes a sensor unit for detecting an object in the golf course, and the golf play support system is based on a detection result of the sensor of the unmanned aircraft, Obstacle determination means for determining the presence or absence of an obstacle in the golf course is further included, and the evaluation means is based on the layout information acquired by the layout information acquisition means and the determination result of the obstacle determination means. Then, the prediction result by the prediction means is evaluated.
 また、本発明の一態様では、前記ゴルフプレイ支援システムは、ゴルフクラブの種類と打球の飛距離との関係を示す飛距離情報を取得する飛距離情報取得手段と、前記プレイヤの操作に基づいて、前記所定位置からのショットで使用するゴルフクラブの種類を取得する種類取得手段と、を更に含み、前記ショット情報取得手段は、前記飛距離情報取得手段により取得された飛距離情報と、前記種類取得手段により取得されたゴルフクラブの種類と、に基づいて、前記プレイヤのショットの飛距離に関する前記ショット情報を取得する、ことを特徴とする。 In one embodiment of the present invention, the golf play support system is based on flight distance information acquisition means for acquiring flight distance information indicating the relationship between the type of golf club and the flight distance of the hit ball, and the operation of the player. A type acquisition unit that acquires a type of a golf club to be used in a shot from the predetermined position, and the shot information acquisition unit includes the flight distance information acquired by the flight distance information acquisition unit, and the type The shot information related to the flight distance of the player's shot is acquired based on the type of the golf club acquired by the acquisition means.
 また、本発明の一態様では、前記ショット情報取得手段は、前記プレイヤの操作に基づいて、前記プレイヤのショットの弾道に関する前記ショット情報を取得する、ことを特徴とする。 In one aspect of the present invention, the shot information acquisition means acquires the shot information related to the trajectory of the player's shot based on the operation of the player.
 本発明によれば、プレイヤに応じた位置の風を計測してゴルフプレイの支援をすることが可能になる。 According to the present invention, it is possible to support golf play by measuring the wind at a position corresponding to the player.
ゴルフプレイ支援システムが利用される様子を示す図である。It is a figure which shows a mode that a golf play assistance system is utilized. ゴルフプレイ支援システムのハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of a golf play assistance system. ゴルフプレイ支援システムで実現される機能の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of the function implement | achieved by a golf play assistance system. プレイヤデータの一例を示す図である。It is a figure which shows an example of player data. スコアデータの一例を示す図である。It is a figure which shows an example of score data. ゴルフコースデータの一例を示す図である。It is a figure which shows an example of golf course data. 計測位置を決定する方法の説明図である。It is explanatory drawing of the method of determining a measurement position. 予想部が予想する弾道の説明図である。It is explanatory drawing of the trajectory which an estimation part estimates. 推奨弾道取得部の処理内容の説明図である。It is explanatory drawing of the processing content of a recommended trajectory acquisition part. ゴルフプレイ支援システムにおいて実行される処理の一例を示すフロー図である。It is a flowchart which shows an example of the process performed in a golf play assistance system. ゴルフプレイ支援システムにおいて実行される処理の一例を示すフロー図である。It is a flowchart which shows an example of the process performed in a golf play assistance system. 変形例(1)の機能ブロック図である。It is a functional block diagram of modification (1).
[1.ゴルフプレイ支援システムのハードウェア構成]
 以下、本発明に関わるゴルフプレイ支援システムの実施形態の例を説明する。本実施形態では、ゴルフコースでプレイヤがティーショットをする場面を例に挙げて、ゴルフプレイ支援システムの構成を説明する。
[1. Golf Play Support System Hardware Configuration]
Hereinafter, an example of an embodiment of a golf play support system according to the present invention will be described. In the present embodiment, the configuration of the golf play support system will be described by taking as an example a scene where a player makes a tee shot on a golf course.
 図1は、ゴルフプレイ支援システムが利用される様子を示す図である。図1に示すように、ゴルフプレイ支援システム1は、無人航空機10及びプレイヤ端末20を含む。例えば、ティーグラウンドから150ヤード程度離れた位置に、無人航空機10の発着所があるものとする。プレイヤ端末20は、プレイヤが乗車するカート内にある。図1に示すように、ここでは、ティーグラウンドから150ヤード程度までは緩い上りであり、それ以降は下るゴルフコースを例に挙げて説明する。 FIG. 1 is a diagram showing a state in which a golf play support system is used. As shown in FIG. 1, the golf play support system 1 includes an unmanned aircraft 10 and a player terminal 20. For example, it is assumed that the landing site for the unmanned aerial vehicle 10 is located about 150 yards away from the teeing ground. The player terminal 20 is in a cart on which the player rides. As shown in FIG. 1, here, a golf course that is loose up to about 150 yards from the tee ground and goes down thereafter will be described as an example.
 図2は、ゴルフプレイ支援システム1のハードウェア構成を示す図である。図2に示すように、無人航空機10及びプレイヤ端末20は、互いにデータ送受信可能に接続される。 FIG. 2 is a diagram illustrating a hardware configuration of the golf play support system 1. As shown in FIG. 2, the unmanned aerial vehicle 10 and the player terminal 20 are connected to each other so that data can be transmitted and received.
 無人航空機10は、人が搭乗しない航空機であり、例えば、バッテリーで駆動する無人航空機(いわゆるドローン)やエンジンで駆動する無人航空機である。無人航空機10は、制御部11、記憶部12、通信部13、及びセンサ部14を含む。なお、無人航空機10は、プロペラ・モーター・バッテリーなどの一般的なハードウェアも含むが、ここでは省略している。 The unmanned aerial vehicle 10 is an aircraft on which a person does not board, for example, an unmanned aircraft driven by a battery (so-called drone) or an unmanned aircraft driven by an engine. The unmanned aircraft 10 includes a control unit 11, a storage unit 12, a communication unit 13, and a sensor unit 14. The unmanned aerial vehicle 10 includes general hardware such as a propeller, a motor, and a battery, but is omitted here.
 制御部11は、例えば、一又は複数のマイクロプロセッサを含む。制御部11は、記憶部12に記憶されたプログラムやデータに従って処理を実行する。記憶部12は、主記憶部及び補助記憶部を含む。例えば、主記憶部はRAMなどの揮発性メモリであり、補助記憶部は、フラッシュメモリなどの不揮発性メモリである。通信部13は、無線通信用のネットワークカードを含む。通信部13は、ネットワークを介してデータ通信を行う。 The control unit 11 includes, for example, one or a plurality of microprocessors. The control unit 11 executes processing according to programs and data stored in the storage unit 12. The storage unit 12 includes a main storage unit and an auxiliary storage unit. For example, the main storage unit is a volatile memory such as a RAM, and the auxiliary storage unit is a non-volatile memory such as a flash memory. The communication unit 13 includes a network card for wireless communication. The communication unit 13 performs data communication via a network.
 センサ部14は、風向風速センサ、加速度センサ、ジャイロセンサ、赤外線センサ、GPSセンサ、及びイメージセンサを含む。なお、無人航空機10には、任意のセンサが搭載されてよく、センサ部14は、地磁気センサ、高度センサ、又は変位センサを含んでもよい。 The sensor unit 14 includes a wind direction wind speed sensor, an acceleration sensor, a gyro sensor, an infrared sensor, a GPS sensor, and an image sensor. An arbitrary sensor may be mounted on the unmanned aircraft 10, and the sensor unit 14 may include a geomagnetic sensor, an altitude sensor, or a displacement sensor.
 プレイヤ端末20は、プレイヤが操作するコンピュータであり、例えば、パーソナルコンピュータ、携帯情報端末(タブレット型コンピュータを含む)、又は携帯電話機(スマートフォンを含む)等である。プレイヤ端末20は、制御部21、記憶部22、通信部23、操作部24、及び表示部25を含む。制御部21、記憶部22、及び通信部23のハードウェア構成は、それぞれ制御部11、記憶部12、及び通信部13と同様であるので説明を省略する。 The player terminal 20 is a computer operated by the player, and is, for example, a personal computer, a portable information terminal (including a tablet computer), a mobile phone (including a smartphone), or the like. The player terminal 20 includes a control unit 21, a storage unit 22, a communication unit 23, an operation unit 24, and a display unit 25. The hardware configurations of the control unit 21, the storage unit 22, and the communication unit 23 are the same as those of the control unit 11, the storage unit 12, and the communication unit 13, respectively.
 操作部24は、プレイヤが操作を行うための入力デバイスであり、例えば、タッチパネルやマウス等のポインティングデバイスやキーボード等である。操作部24は、プレイヤによる操作内容を制御部21に伝達する。表示部25は、例えば、液晶表示部又は有機EL表示部等である。表示部25は、制御部21の指示に従って画面を表示する。 The operation unit 24 is an input device for the player to operate, and is, for example, a pointing device such as a touch panel or a mouse, a keyboard, or the like. The operation unit 24 transmits the operation content by the player to the control unit 21. The display unit 25 is, for example, a liquid crystal display unit or an organic EL display unit. The display unit 25 displays a screen according to instructions from the control unit 21.
 なお、記憶部12又は記憶部22に記憶されるものとして説明するプログラム及びデータは、ネットワークを介して記憶部12又は記憶部22に供給されるようにしてもよい。また、無人航空機10及びプレイヤ端末20のハードウェア構成は、上記の例に限られず、種々のコンピュータのハードウェアを適用可能である。例えば、無人航空機10及びプレイヤ端末20の各々は、コンピュータ読み取り可能な情報記憶媒体を読み取る読取部(例えば、光ディスクドライブやメモリカードスロット)やスピーカなどの音声出力部を含んでもよい。この場合、情報記憶媒体に記憶されたプログラムやデータが読取部を介して記憶部12又は記憶部22に供給されるようにしてもよい。 Note that the program and data described as being stored in the storage unit 12 or the storage unit 22 may be supplied to the storage unit 12 or the storage unit 22 via a network. The hardware configurations of the unmanned aircraft 10 and the player terminal 20 are not limited to the above example, and various computer hardware can be applied. For example, each of the unmanned aircraft 10 and the player terminal 20 may include an audio output unit such as a reading unit (for example, an optical disc drive or a memory card slot) that reads a computer-readable information storage medium and a speaker. In this case, the program and data stored in the information storage medium may be supplied to the storage unit 12 or the storage unit 22 via the reading unit.
 本実施形態のゴルフプレイ支援システム1では、各プレイヤのショットの飛距離に応じた位置で無人航空機10が風を計測し、その計測結果をプレイヤに提供することによって、プレイヤのショットに応じた支援をするようにしている。以降、当該技術の詳細について説明する。 In the golf play support system 1 of the present embodiment, the unmanned aerial vehicle 10 measures wind at a position corresponding to the flight distance of each player's shot, and provides the measurement result to the player, thereby assisting according to the player's shot. I try to do it. Hereinafter, details of the technology will be described.
[2.ゴルフプレイ支援システムにおいて実現される機能]
 図3は、ゴルフプレイ支援システム1で実現される機能の一例を示す機能ブロック図である。図3に示すように、本実施形態では、移動制御部36が無人航空機10で実現され、データ記憶部30、飛距離情報取得部31、種類取得部32、ショット情報取得部33、レイアウト情報取得部34、移動指示部35、計測結果取得部37、予想部38、評価部39、支援情報提供部40、退避指示部41、及び通知部42がプレイヤ端末20で実現される場合を説明する。
[2. Functions realized in the golf play support system]
FIG. 3 is a functional block diagram illustrating an example of functions realized by the golf play support system 1. As shown in FIG. 3, in this embodiment, the movement control unit 36 is realized by the unmanned aircraft 10, and the data storage unit 30, the flight distance information acquisition unit 31, the type acquisition unit 32, the shot information acquisition unit 33, and the layout information acquisition. A case where the unit 34, the movement instruction unit 35, the measurement result acquisition unit 37, the prediction unit 38, the evaluation unit 39, the support information provision unit 40, the retraction instruction unit 41, and the notification unit 42 are realized by the player terminal 20 will be described.
[2-1.データ記憶部]
 データ記憶部30は、記憶部22を主として実現される。データ記憶部30は、プレイヤのゴルフプレイを支援するためのデータを記憶する。ここでは、データ記憶部30が記憶するデータとして、プレイヤデータ、スコアデータ、及びゴルフコースデータを説明する。
[2-1. Data storage unit]
The data storage unit 30 is realized mainly by the storage unit 22. The data storage unit 30 stores data for supporting a player's golf play. Here, player data, score data, and golf course data will be described as data stored in the data storage unit 30.
 図4は、プレイヤデータの一例を示す図である。図4に示すように、プレイヤデータは、プレイヤのショットの特徴に関するデータである。ここでは、プレイヤデータは、プレイヤを一意に識別するプレイヤIDと、プレイヤ名と、各プレイヤのショットの飛距離に関する飛距離情報と、が格納されている。飛距離情報は、複数種類のゴルフクラブごとに、プレイヤの飛距離を示す。飛距離は、プレイヤが操作部24から入力してもよいし、予め定められていてもよい。飛距離が予め定められている場合には、全プレイヤで共通の飛距離を用いてもよいし、性別や年齢ごとに飛距離を定めておき、プレイヤが入力した性別や年齢に応じた飛距離を用いてもよい。 FIG. 4 is a diagram showing an example of player data. As shown in FIG. 4, the player data is data relating to the shot characteristics of the player. Here, the player data stores a player ID that uniquely identifies the player, a player name, and flight distance information regarding the flight distance of each player's shot. The flight distance information indicates the flight distance of the player for each of a plurality of types of golf clubs. The flying distance may be input by the player from the operation unit 24 or may be determined in advance. If the flight distance is determined in advance, a common flight distance may be used for all players, or the flight distance may be determined for each gender and age, and the flight distance according to the gender and age input by the player May be used.
 図5は、スコアデータの一例を示す図である。図5に示すように、スコアデータは、プレイヤのスコアに関するデータである。ここでは、スコアデータは、ホールごとに、各プレイヤの打数を示している。各プレイヤは、各ホールの終了時に自分の打数を操作部24から入力する。スコアデータには、当該入力された打数が格納されることになる。 FIG. 5 is a diagram showing an example of score data. As shown in FIG. 5, the score data is data relating to the player's score. Here, the score data indicates the number of hits of each player for each hole. Each player inputs his / her number of strokes from the operation unit 24 at the end of each hole. The score data stores the input number of strokes.
 図6は、ゴルフコースデータの一例を示す図である。図6に示すように、ゴルフコースデータは、ゴルフコースに関するデータである。ここでは、ゴルフコースデータは、ホールごとに、レイアウトに関するレイアウト情報と、ティーグラウンドからの打ち出し方向に関する基本方向情報と、が格納されている。レイアウト情報は、ゴルフコースの地形、及び、グリーン・ピン・フェアウェイ・ラフ・バンカー・池・木などの障害物・OBなどの各エリアの配置を示す情報である。本実施形態では、レイアウト情報は、ゴルフコースを3Dモデルデータとして表したものとして説明するが、2次元的な情報であってもよい。基本方向情報は、ティーグラウンドからの打ち出し方向を示す。基本方向情報は、例えば、ゴルフコースの管理者などによって予め指定されたおすすめの方向である。 FIG. 6 is a diagram showing an example of golf course data. As shown in FIG. 6, the golf course data is data related to the golf course. Here, the golf course data stores layout information related to the layout and basic direction information related to the launch direction from the tee ground for each hole. The layout information is information indicating the topography of the golf course and the arrangement of each area such as green, pin, fairway, rough, bunker, pond, tree, obstacles, and OB. In the present embodiment, the layout information is described as representing the golf course as 3D model data, but it may be two-dimensional information. The basic direction information indicates the launch direction from the tee ground. The basic direction information is, for example, a recommended direction designated in advance by a golf course manager or the like.
 なお、データ記憶部30に記憶されるデータは上記の例に限られない。例えば、データ記憶部30は、ティーショットで使用するゴルフクラブをプレイヤが予め入力する場合には、当該入力されたゴルフクラブを示すデータを記憶してもよい。他にも例えば、データ記憶部30は、ゴルフコースの3Dモデルが構築される仮想3次元空間の3次元座標と、現実空間の緯度経度情報及び高度情報と、の関連付け(詳細後述)を記憶してもよい。 The data stored in the data storage unit 30 is not limited to the above example. For example, when the player inputs a golf club to be used for a tee shot in advance, the data storage unit 30 may store data indicating the input golf club. In addition, for example, the data storage unit 30 stores associations (details will be described later) between the three-dimensional coordinates of the virtual three-dimensional space where the 3D model of the golf course is constructed, and the latitude / longitude information and altitude information of the real space. May be.
[2-2.飛距離情報取得部]
 飛距離情報取得部31は、制御部21を主として実現される。飛距離情報取得部31は、ゴルフクラブの種類と打球の飛距離との関係を示す飛距離情報を取得する。本実施形態では、プレイヤデータに飛距離情報が格納されているので、飛距離情報取得部31は、データ記憶部30に記憶されたプレイヤデータを取得することになる。なお、各プレイヤは自分の飛距離をその場で入力してもよい。この場合、飛距離情報取得部31は、操作部24の検出信号に基づいて、飛距離情報を取得する。
[2-2. Flight distance information acquisition unit]
The flight distance information acquisition unit 31 is realized mainly by the control unit 21. The flight distance information acquisition unit 31 acquires flight distance information indicating the relationship between the type of golf club and the flight distance of the hit ball. In the present embodiment, since the flight distance information is stored in the player data, the flight distance information acquisition unit 31 acquires the player data stored in the data storage unit 30. Each player may input his flight distance on the spot. In this case, the flight distance information acquisition unit 31 acquires flight distance information based on the detection signal from the operation unit 24.
[2-3.種類取得部]
 種類取得部32は、制御部21を主として実現される。種類取得部32は、プレイヤの操作に基づいて、所定位置からのショットで使用するゴルフクラブの種類を取得する。所定位置とは、ゴルフコース内の予め定められた位置であり、本実施形態では、ティーグラウンドである。また、本実施形態では、各プレイヤが、自分が使用するゴルフクラブの種類をその場で操作部24から入力する場合を説明する。このため、種類取得部32は、操作部24の検出信号に基づいて、ゴルフクラブの種類を取得することになる。なお、ゴルフクラブの種類は、各プレイヤが予め入力しておくようにしてもよい。この場合、種類取得部32は、データ記憶部30に記憶されたゴルフクラブの種類を取得する。
[2-3. Type acquisition unit]
The type acquisition unit 32 is realized mainly by the control unit 21. The type acquisition unit 32 acquires the type of golf club used in a shot from a predetermined position based on the player's operation. The predetermined position is a predetermined position in the golf course, and is a tee ground in the present embodiment. Further, in the present embodiment, a case will be described in which each player inputs the type of golf club he / she uses from the operation unit 24 on the spot. For this reason, the type acquisition unit 32 acquires the type of the golf club based on the detection signal of the operation unit 24. Note that the type of golf club may be input in advance by each player. In this case, the type acquisition unit 32 acquires the type of golf club stored in the data storage unit 30.
[2-4.ショット情報取得部]
 ショット情報取得部33は、制御部21を主として実現される。ショット情報取得部33は、ゴルフコース内の所定位置からのプレイヤに応じたショットに関するショット情報を取得する。ショット情報は、プレイヤのショットの特徴を示す情報であり、例えば、打球の飛距離・飛び出し方向(角度)・軌道・曲がり方・最高到達点などである。本実施形態では、ショット情報が飛距離である場合を説明する。このため、ショット情報取得部33は、飛距離情報取得部31により取得された飛距離情報と、種類取得部32により取得されたゴルフクラブの種類と、に基づいて、プレイヤのショットの飛距離に関するショット情報を取得することになる。即ち、ショット情報取得部33は、飛距離情報を参照して、種類取得部32により取得されたゴルフクラブの種類に関連付けられた飛距離をショット情報として取得する。
[2-4. Shot information acquisition unit]
The shot information acquisition unit 33 is realized mainly by the control unit 21. The shot information acquisition unit 33 acquires shot information related to a shot according to a player from a predetermined position in the golf course. The shot information is information indicating the characteristics of the shot of the player, and includes, for example, the flight distance of the hit ball, the jumping direction (angle), the trajectory, the way of bending, and the highest point reached. In the present embodiment, a case where the shot information is a flight distance will be described. For this reason, the shot information acquisition unit 33 relates to the flight distance of the player's shot based on the flight distance information acquired by the flight distance information acquisition unit 31 and the type of golf club acquired by the type acquisition unit 32. Shot information is acquired. That is, the shot information acquisition unit 33 refers to the flight distance information and acquires the flight distance associated with the type of golf club acquired by the type acquisition unit 32 as shot information.
[2-5.レイアウト情報取得部]
 レイアウト情報取得部34は、制御部21を主として実現される。レイアウト情報取得部34は、ゴルフコースのレイアウトに関するレイアウト情報を取得する。レイアウト情報取得部34は、データ記憶部30に記憶されたゴルフコースデータを取得することになる。
[2-5. Layout information acquisition unit]
The layout information acquisition unit 34 is realized mainly by the control unit 21. The layout information acquisition unit 34 acquires layout information regarding the layout of the golf course. The layout information acquisition unit 34 acquires the golf course data stored in the data storage unit 30.
[2-6.移動指示部]
 移動指示部35は、制御部21を主として実現される。移動指示部35は、ショット情報取得部33により取得されたショット情報に基づいて定まる位置(以降、計測位置という。)に移動するように、風を計測する無人航空機10に指示する。例えば、ショット情報と計測位置との関連付けがデータ記憶部30に記憶されているものとする。この関連付けは、数式形式であってもよいし、テーブル形式であってもよい。移動指示部35は、ショット情報に関連付けられた計測位置に移動するように無人航空機10に指示する。計測位置は、現実空間における3次元的な位置であり、本実施形態では、緯度経度情報及び高度情報によって特定される。緯度経度情報は、地球上の南北方向の位置及び東西方向の位置を特定する情報であり、例えば、度・分・秒の各数値により示される。高度情報は、所定位置からの高さを示す情報であり、ここでは、地面からの高さを示すものとして説明するが、海抜を示してもよい。
[2-6. Movement instruction section]
The movement instruction unit 35 is realized mainly by the control unit 21. The movement instructing unit 35 instructs the unmanned aircraft 10 that measures wind to move to a position (hereinafter, referred to as a measurement position) determined based on the shot information acquired by the shot information acquiring unit 33. For example, it is assumed that the association between the shot information and the measurement position is stored in the data storage unit 30. This association may be in a mathematical expression format or a table format. The movement instructing unit 35 instructs the unmanned aircraft 10 to move to the measurement position associated with the shot information. The measurement position is a three-dimensional position in the real space, and is specified by latitude / longitude information and altitude information in this embodiment. The latitude / longitude information is information that specifies the position in the north-south direction and the position in the east-west direction on the earth, and is indicated by numerical values of degrees, minutes, and seconds, for example. The altitude information is information indicating the height from a predetermined position. Here, the altitude information is described as indicating the height from the ground. However, the altitude information may indicate the sea level.
 図7は、計測位置を決定する方法の説明図である。ここでは、4人のプレイヤA~Dがティーショットを打つ場合を例に挙げる。なお、図7のXw-Yw-Zw軸は、仮想3次元空間の座標軸(原点をOwとする。)である。この座標軸が設定される仮想3次元空間内に、レイアウト情報が示す3Dモデルが構築される。本実施形態では、ショット情報が飛距離である場合を説明するので、移動指示部35は、各プレイヤの飛距離と、基本方向情報が示す基本方向Vと、に基づいて、当該プレイヤの弾道を計算して計測位置を決定する。この弾道は、風の影響を考慮せずに決定される。移動指示部35は、飛距離が長いほど、ティーグラウンドから遠くかつ高くなるように計測位置を決定し、飛距離が短いほど、ティーグラウンドから近くかつ低くなるように計測位置を決定する。 FIG. 7 is an explanatory diagram of a method for determining the measurement position. Here, a case where four players A to D make a tee shot is taken as an example. Note that the Xw-Yw-Zw axis in FIG. 7 is a coordinate axis in the virtual three-dimensional space (the origin is Ow). A 3D model indicated by the layout information is constructed in a virtual three-dimensional space in which the coordinate axes are set. In this embodiment, since the case where the shot information is a flight distance will be described, the movement instruction unit 35 determines the trajectory of the player based on the flight distance of each player and the basic direction V indicated by the basic direction information. Calculate and determine the measurement position. This trajectory is determined without considering the effects of wind. The movement instruction unit 35 determines the measurement position so that the longer the flight distance, the farther and higher from the tee ground, and the shorter the flight distance, the closer the position to the tee ground and lower.
 例えば、プレイヤAは3番ウッド(3W)を使用し、プレイヤB~Dはドライバー(D)を使用する場合、図4に示すように、プレイヤA~Dの飛距離は、それぞれ200ヤード、160ヤード、280ヤード、200ヤードとなる。このため、ティーグラウンドから基本方向Vに対してこれらの飛距離だけ飛ぶように移動指示部35が各プレイヤの弾道を計算すると、図7に示す弾道50A~50Dのようになる。弾道の計算式自体は、公知のゴルフシミュレータで用いられているものを使用してよく、例えば、飛距離を代入することで放物線を求める計算式である。本実施形態では、この計算式が、上記説明した関連付けに相当する。 For example, when the player A uses 3rd wood (3W) and the players B to D use the driver (D), as shown in FIG. 4, the flying distances of the players A to D are 200 yards and 160 respectively. Yards, 280 yards and 200 yards. For this reason, when the movement instructing unit 35 calculates the trajectory of each player so as to fly in the basic direction V from the tee ground, the trajectories 50A to 50D shown in FIG. 7 are obtained. The ballistic calculation formula itself may be a formula used in a known golf simulator, for example, a calculation formula for obtaining a parabola by substituting a flight distance. In the present embodiment, this calculation formula corresponds to the association described above.
 移動指示部35は、弾道50A~50D上の任意の位置(ここでは、最高到達地点51A~51D)の3次元座標に基づいて、プレイヤA~Dの計測位置を決定する。ここでは、データ記憶部30は、仮想3次元空間の3次元座標と、緯度経度情報及び高度情報と、の関連付けを記憶しているものとする。この関連付けは、数式形式であってもよいし、テーブル形式であってもよい。移動指示部35は、当該関連付けに基づいて、最高到達地点51A~51Dの3次元座標を緯度経度情報及び高度情報に変換することによって、プレイヤA~Dの各々の計測位置を決定すればよい。 The movement instruction unit 35 determines the measurement positions of the players A to D based on the three-dimensional coordinates of arbitrary positions on the trajectories 50A to 50D (here, the highest reaching points 51A to 51D). Here, it is assumed that the data storage unit 30 stores the association between the three-dimensional coordinates of the virtual three-dimensional space, the latitude / longitude information, and the altitude information. This association may be in a mathematical expression format or a table format. Based on the association, the movement instruction unit 35 may determine the measurement positions of the players A to D by converting the three-dimensional coordinates of the highest arrival points 51A to 51D into latitude / longitude information and altitude information.
 移動指示部35は、上記のようにして決定した計測位置に移動するように、無人航空機10に指示する。例えば、移動指示部35は、緯度経度情報及び高度情報を無人航空機10に送信することによって計測位置を指示する。この指示は、所定形式のデータを送信することで行われるようにすればよい。また、ティーショットは、所定の順番で行われるので、移動指示部35は、スコアデータに基づいて各プレイヤがティーショットをする順番を特定し、これからティーショットをするプレイヤに応じた計測位置に移動するように、無人航空機10に指示すればよい。なお、移動指示部35が各プレイヤのティーショットの終了を判定するために、ティーショットを終えるたびに各プレイヤに操作部24から所定の操作をさせるようにしてもよい。あるプレイヤのティーショットが終了した場合、移動指示部35は、次のプレイヤに応じた計測位置の移動を指示することになる。 The movement instructing unit 35 instructs the unmanned aircraft 10 to move to the measurement position determined as described above. For example, the movement instruction unit 35 instructs the measurement position by transmitting latitude / longitude information and altitude information to the unmanned aircraft 10. This instruction may be performed by transmitting data in a predetermined format. Further, since the tee shots are performed in a predetermined order, the movement instruction unit 35 specifies the order in which each player makes a tee shot based on the score data, and moves to a measurement position corresponding to the player who will make a tee shot from now on. The unmanned aircraft 10 may be instructed to do so. In order for the movement instruction unit 35 to determine the end of the tee shot of each player, each player may be caused to perform a predetermined operation from the operation unit 24 every time the tee shot is completed. When the tee shot of a certain player is completed, the movement instruction unit 35 instructs the movement of the measurement position according to the next player.
[2-7.移動制御部]
 移動制御部36は、制御部11を主として実現される。移動制御部36は、移動指示部35からの指示に基づいて、無人航空機10を移動させる。例えば、移動制御部36は、移動指示部35により指示された計測位置に向けて移動するように、無人航空機10の各プロペラの回転方向や回転速度を調整する。プロペラの回転方向や回転速度は、これらを示すパラメータを変化させることによって調整すればよい。なお、無人航空機10を指定された計測位置に移動させる方法自体は、公知の種々の手法を適用可能であり、例えば、移動制御部36は、進行方向側にあるプロペラの回転数を減少させるようにすればよい。
[2-7. Movement control unit]
The movement control unit 36 is realized mainly by the control unit 11. The movement control unit 36 moves the unmanned aircraft 10 based on an instruction from the movement instruction unit 35. For example, the movement control unit 36 adjusts the rotation direction and the rotation speed of each propeller of the unmanned aircraft 10 so as to move toward the measurement position instructed by the movement instruction unit 35. What is necessary is just to adjust the rotation direction and rotation speed of a propeller by changing the parameter which shows these. Various known methods can be applied to the method of moving the unmanned aerial vehicle 10 to the designated measurement position. For example, the movement control unit 36 reduces the rotation speed of the propeller on the traveling direction side. You can do it.
 例えば、移動制御部36は、センサ部14のGPSセンサの受信信号により定まる緯度経度情報(即ち、現在位置の緯度経度情報)から、移動指示部35により指示された緯度経度情報(即ち、計測位置の緯度経度情報)に向けた方向に、無人航空機10を移動させる。また例えば、移動制御部36は、センサ部14の赤外線センサにより検出した地面からの距離と、高度情報と、のずれが閾値未満となるように、無人航空機10の高度を調整する。移動制御部36は、無人航空機10を計測位置に移動させると、その場でホバリングさせる。この状態で、無人航空機10はセンサ部14を使って風を計測し、計測結果をプレイヤ端末20に送信することになる。 For example, the movement control unit 36 uses the latitude / longitude information (that is, the measurement position) instructed by the movement instruction unit 35 from the latitude / longitude information (that is, the latitude / longitude information of the current position) determined by the reception signal of the GPS sensor of the sensor unit 14. The unmanned aerial vehicle 10 is moved in a direction toward the latitude and longitude information. In addition, for example, the movement control unit 36 adjusts the altitude of the unmanned aircraft 10 so that the difference between the distance from the ground detected by the infrared sensor of the sensor unit 14 and the altitude information is less than a threshold value. When the movement control unit 36 moves the unmanned aerial vehicle 10 to the measurement position, the movement control unit 36 hovers on the spot. In this state, the unmanned aerial vehicle 10 measures the wind using the sensor unit 14 and transmits the measurement result to the player terminal 20.
[2-8.計測結果取得部]
 計測結果取得部37は、制御部21を主として実現される。計測結果取得部37は、無人航空機10による移動先(即ち、計測位置)での風の計測結果を取得する。計測結果取得部37は、センサ部14により検出された風向及び風速の少なくとも一方を計測結果として取得する。本実施形態では、計測結果取得部37は、風向と風速の両方を取得する場合を説明するが、風向又は風速の何れか一方のみを取得してもよい。
[2-8. Measurement result acquisition unit]
The measurement result acquisition unit 37 is realized mainly by the control unit 21. The measurement result acquisition unit 37 acquires the measurement result of the wind at the destination (that is, the measurement position) by the unmanned aircraft 10. The measurement result acquisition unit 37 acquires at least one of the wind direction and the wind speed detected by the sensor unit 14 as a measurement result. In this embodiment, although the measurement result acquisition part 37 demonstrates the case where both a wind direction and a wind speed are acquired, you may acquire only any one of a wind direction or a wind speed.
[2-9.予想部]
 予想部38は、制御部21を主として実現される。予想部38は、ショット情報取得部33により取得されたショット情報と、計測結果取得部37により取得された計測結果と、に基づいて、所定位置からのショットの弾道に関する予想を行う。本実施形態では、予想部38が、弾道そのものを予想する場合を説明するが、打球の着地点のみを予想してもよい。予想部38が予想する弾道は、風の影響を考慮に入れた弾道であり、移動指示部35が計算する弾道(風を考慮しない弾道)とは異なる。風の影響を考慮した弾道を取得する方法自体は、公知のゴルフシミュレータで用いられている方法を利用してよいが、例えば、予想部38は、下記のようにして弾道を予想する。
[2-9. Expected part]
The prediction unit 38 is realized mainly by the control unit 21. The prediction unit 38 makes a prediction regarding the trajectory of a shot from a predetermined position based on the shot information acquired by the shot information acquisition unit 33 and the measurement result acquired by the measurement result acquisition unit 37. In this embodiment, the case where the prediction unit 38 predicts the trajectory itself will be described, but only the landing point of the hit ball may be predicted. The trajectory predicted by the prediction unit 38 is a trajectory that takes into consideration the influence of the wind, and is different from the trajectory calculated by the movement instruction unit 35 (the trajectory not considering the wind). As a method for obtaining a trajectory in consideration of the influence of wind, a method used in a known golf simulator may be used. For example, the prediction unit 38 predicts a trajectory as follows.
 図8は、予想部38が予想する弾道の説明図である。図8に示すように、本実施形態では、予想部38は、風の計測結果に基づいて、移動指示部35が計算した弾道50A~50Dを変化させる。例えば、風の計測結果と、弾道の変化方向及び変化量と、の関連付けがデータ記憶部30に記憶されているものとする。この関連付けは、数式形式であってもよいし、テーブル形式であってもよい。予想部38は、風の計測結果に関連付けられた変化方向及び変化量だけ、移動指示部35が計算した弾道を変化させることになる。別の言い方をすれば、予想部38は、計測結果が示す風向の方向に風速に応じた分だけ弾道50A~50Dを変化させることによって、風の影響を考慮に入れた予想弾道52A~52Dを取得する。 FIG. 8 is an explanatory diagram of the trajectory predicted by the prediction unit 38. As shown in FIG. 8, in this embodiment, the prediction unit 38 changes the trajectories 50A to 50D calculated by the movement instruction unit 35 based on the wind measurement result. For example, it is assumed that the data storage unit 30 stores the association between the wind measurement result and the change direction and change amount of the trajectory. This association may be in a mathematical expression format or a table format. The prediction unit 38 changes the trajectory calculated by the movement instruction unit 35 by the change direction and change amount associated with the wind measurement result. In other words, the prediction unit 38 changes the trajectories 50A to 50D by the amount corresponding to the wind speed in the direction of the wind direction indicated by the measurement result, so that the expected trajectories 52A to 52D taking into consideration the influence of the wind are obtained. get.
 例えば、図7に示すように、最高到達地点51A,51B,51Dに対応する計測位置は、木に囲まれており風の影響を受けにくいため、計測結果がほぼ無風を示していたとすると、図8に示すように、予想部38は、弾道50A,50B,50Dからあまり変化しない予想弾道52A,52B,52Dを取得する。一方、最高到達地点51Cに対応する計測位置は、周囲をさえぎるものがなく風の影響を受けやすいため、計測結果が強い横風を示していたとすると、予想部38は、弾道50Cから大きく変化した予想弾道52Cを取得する。例えば、打球が最高到達点に達した後は速度が落ちて風の影響のため曲がりやすいので、図8に示すように、予想部38は、後半で大きく曲がる弾道50Cを予測する。 For example, as shown in FIG. 7, since the measurement positions corresponding to the highest arrival points 51A, 51B, 51D are surrounded by trees and are not easily affected by the wind, the measurement result indicates almost no wind. As shown in FIG. 8, the prediction unit 38 acquires predicted trajectories 52A, 52B, and 52D that do not change so much from the trajectories 50A, 50B, and 50D. On the other hand, since the measurement position corresponding to the highest arrival point 51C is easily affected by the wind without any obstacles, the prediction unit 38 is expected to have changed greatly from the trajectory 50C. The trajectory 52C is acquired. For example, after the hit ball reaches the highest point, the speed drops and it is easy to bend due to the influence of the wind. Therefore, as shown in FIG. 8, the prediction unit 38 predicts a trajectory 50C that bends greatly in the latter half.
 なお、移動指示部35が計算した弾道を変化させるのではなく、予想部38は、ショット情報と風の計測結果から弾道を計算しなおしてもよい。この場合、ショット情報及び風の計測結果と、弾道と、の関連付けがデータ記憶部30に記憶されているものとする。この関連付けは、数式形式であってもよいし、テーブル形式であってもよい。予想部38は、ショット情報及び風の計測結果に関連付けられた弾道を予想結果として取得することになる。 Note that instead of changing the trajectory calculated by the movement instruction unit 35, the prediction unit 38 may recalculate the trajectory from the shot information and the wind measurement result. In this case, it is assumed that the association between the shot information and the wind measurement result and the trajectory is stored in the data storage unit 30. This association may be in a mathematical expression format or a table format. The prediction unit 38 acquires the trajectory associated with the shot information and the wind measurement result as the prediction result.
[2-10.評価部]
 評価部39は、制御部21を主として実現される。評価部39は、レイアウト情報取得部34により取得されたレイアウト情報に基づいて、予想部38による予想結果を評価する。評価は、ゴルフのペナルティが発生するか、又は、所定のエリアに打球が着地するかによって行われる。ペナルティは、ゴルフ規則で定められたものであり、例えば、OBやウォーターハザードである。所定のエリアとは、フェアウェイ・ラフ・バンカー・池などである。評価部39は、レイアウト情報を参照して、予想部38が予想した予想弾道の軌道上に障害物があるか否かをから判定したり、予想部38が予想した予想弾道の着地点が所定のエリアであるかを判定したりする。
[2-10. Evaluation Department]
The evaluation unit 39 is realized mainly by the control unit 21. The evaluation unit 39 evaluates the prediction result by the prediction unit 38 based on the layout information acquired by the layout information acquisition unit 34. The evaluation is performed depending on whether a golf penalty occurs or a hit ball lands in a predetermined area. The penalty is determined by the golf rules, and is, for example, OB or water hazard. Predetermined areas include fairways, roughs, bunkers, and ponds. The evaluation unit 39 refers to the layout information to determine whether or not there is an obstacle on the trajectory of the predicted trajectory predicted by the prediction unit 38, or the predicted trajectory landing point predicted by the prediction unit 38 is predetermined. It is judged whether it is an area.
 評価部39は、予想弾道だとペナルティが発生する場合、予想弾道上に障害物がある場合、又は、予想弾道の着地点がラフ・バンカー・池などである場合、基準未満の評価とする。一方、評価部39は、予想弾道でペナルティが発生しない場合、予想弾道上に障害物がない場合、及び、予想弾道の着地点がフェアウェイである場合、基準以上の評価とする。図8の例では、弾道52A,52B,52Dは、ペナルティが発生せず、弾道上に障害物がなく、着地点がフェアウェイ53であるので、評価部39は、弾道52A,52B,52Dは基準以上の評価を与える。一方、弾道52Cは、ペナルティが発生せず弾道上に障害物はないが、着地点がバンカー54であるので、評価部39は、弾道52Cは基準未満の評価を与える。 <Evaluation unit 39 makes an evaluation below the standard when a penalty occurs when the expected trajectory is present, when there is an obstacle on the expected trajectory, or when the predicted trajectory is at a rough bunker or pond. On the other hand, when the penalty is not generated in the expected trajectory, when there is no obstacle on the expected trajectory, and when the landing point of the expected trajectory is the fairway, the evaluation unit 39 sets the evaluation to be higher than the standard. In the example of FIG. 8, the trajectories 52A, 52B, and 52D do not generate a penalty, there are no obstacles on the trajectory, and the landing point is the fairway 53. Therefore, the evaluation unit 39 uses the trajectories 52A, 52B, and 52D as the reference. The above evaluation is given. On the other hand, there is no penalty on the trajectory 52C and there is no obstacle on the trajectory, but since the landing point is the bunker 54, the evaluation unit 39 gives the evaluation of the trajectory 52C below the standard.
[2-11.支援情報提供部]
 支援情報提供部40は、制御部21を主として実現される。支援情報提供部40は、計測結果取得部37により取得された計測結果に基づいて、所定位置からのショットを支援するための支援情報をプレイヤに提供する。
[2-11. Support information provision department]
The support information providing unit 40 is realized mainly by the control unit 21. The support information providing unit 40 provides support information for supporting a shot from a predetermined position to the player based on the measurement result acquired by the measurement result acquisition unit 37.
 本実施形態では、支援情報が、プレイヤが打つべき方向又は位置を示す情報である場合を説明するが、計測位置の風向や風速そのものが支援情報として提供されてもよいし、打球の曲げ方(フックやスライスなど)や打ち方(トップ気味に打つなど)が支援情報として提供されてもよい。また、支援情報は、画像又は音声を利用して提供されてもよいが、本実施形態では、無人航空機10の位置を利用して提供されるものとする。即ち、プレイヤは、無人航空機10がいる位置を目標にしてショットすることになる。 In the present embodiment, the case where the support information is information indicating the direction or position to be hit by the player will be described. However, the wind direction and the wind speed of the measurement position may be provided as support information, or the method of bending the hit ball ( Hook or slice) or how to hit (such as hitting the top) may be provided as support information. The support information may be provided using an image or sound, but in the present embodiment, the support information is provided using the position of the unmanned aircraft 10. That is, the player takes a shot at the position where the unmanned aircraft 10 is present.
 本実施形態では、支援情報提供部40は、評価部39による評価結果に基づいて、支援情報を提供する。例えば、支援情報提供部40は、基本方向Vで打って良いかを支援情報として提供する。なお、基本方向Vは、カート内のコースマップなどに記載されており、各プレイヤは基本方向Vを知ることができるものとする。支援情報提供部40は、評価部39による評価結果が基準未満である場合、基本方向Vで打ってはいけない旨を示す支援情報を提供し、評価部39による評価結果が基準以上である場合、基本方向Vで打つべき旨を示す支援情報を提供する。 In the present embodiment, the support information providing unit 40 provides support information based on the evaluation result by the evaluation unit 39. For example, the support information providing unit 40 provides as support information whether it is possible to hit in the basic direction V. The basic direction V is described in a course map in the cart, and each player can know the basic direction V. If the evaluation result by the evaluation unit 39 is less than the reference, the support information providing unit 40 provides support information indicating that the basic direction V should not be hit. If the evaluation result by the evaluation unit 39 is greater than or equal to the reference, Support information indicating that the player should strike in the basic direction V is provided.
 また、本実施形態では、支援情報提供部40は、推奨弾道取得部40Aを含む。推奨弾道取得部40Aは、評価部39による評価結果が基準未満である場合、計測結果取得部37により取得された計測結果に基づいて、プレイヤがすべきショットの弾道に関する推奨弾道情報を取得する。ここでは、推奨弾道情報が、弾道そのものを示す場合を説明するが、ショットの打ち出し方向が推奨弾道情報であってもよい。推奨弾道情報は、基準以上の評価となる弾道であり、例えば、ペナルティが発生しない弾道、弾道上に障害物がない弾道、又は、着地点がフェアウェイの弾道である。 In the present embodiment, the support information providing unit 40 includes a recommended trajectory acquisition unit 40A. When the evaluation result by the evaluation unit 39 is less than the reference, the recommended ballistic acquisition unit 40A acquires recommended ballistic information regarding the ballistic of the shot to be played by the player based on the measurement result acquired by the measurement result acquisition unit 37. Although the case where the recommended ballistic information indicates the trajectory itself will be described here, the shot launch direction may be the recommended ballistic information. The recommended trajectory information is a trajectory that is evaluated more than the standard, for example, a trajectory that does not cause a penalty, a trajectory that does not have an obstacle on the trajectory, or a trajectory that has a landing point on the fairway.
 図9は、推奨弾道取得部40Aの処理内容の説明図である。図9に示すように、推奨弾道取得部40Aは、計測結果取得部37の計測結果に応じた角度θだけ基本方向Vを回転させた推奨方向Uを取得し、当該方向Uにプレイヤの飛距離で打球が飛んだ場合の弾道55Cを計算する。例えば、風の計測結果と推奨方向Uとの関連付けがデータ記憶部に記憶されているものとする。この関連付けは、数式形式であってもよいし、テーブル形式であってもよい。推奨弾道取得部40Aは、風の計測結果に関連付けられた推奨方向Uを取得し、弾道55Cを計算して推奨弾道情報として取得する。 FIG. 9 is an explanatory diagram of the processing content of the recommended trajectory acquisition unit 40A. As illustrated in FIG. 9, the recommended trajectory acquisition unit 40 </ b> A acquires a recommended direction U obtained by rotating the basic direction V by an angle θ corresponding to the measurement result of the measurement result acquisition unit 37, and the flying distance of the player in the direction U The trajectory 55C when the hit ball flies is calculated. For example, it is assumed that the association between the wind measurement result and the recommended direction U is stored in the data storage unit. This association may be in a mathematical expression format or a table format. The recommended trajectory acquisition unit 40A acquires a recommended direction U associated with the wind measurement result, calculates a trajectory 55C, and acquires it as recommended trajectory information.
 なお、推奨弾道取得部40Aは、評価部39と同じ評価方法を使って、この弾道55Cを評価してもよい。基準未満の評価になった場合、基準以上の評価が得られるまで、推奨弾道取得部40Aは、推奨方向Uを変更して弾道55Cを再計算し、推奨弾道情報として取得すればよい。支援情報提供部40は、推奨弾道取得部40Aにより取得された推奨弾道情報を、支援情報として提供する。支援情報提供部40は、弾道55C上の任意の位置を支援情報として提供してもよいし、弾道55Cを計算した場合に使用した推奨方向Uを支援情報として提供してもよい。 The recommended trajectory acquisition unit 40A may evaluate the trajectory 55C using the same evaluation method as that of the evaluation unit 39. When the evaluation is less than the reference, the recommended trajectory acquisition unit 40A may change the recommended direction U, recalculate the trajectory 55C, and acquire the recommended trajectory information until an evaluation equal to or higher than the reference is obtained. The support information providing unit 40 provides the recommended ballistic information acquired by the recommended ballistic acquiring unit 40A as support information. The support information providing unit 40 may provide an arbitrary position on the trajectory 55C as support information, or may provide the recommended direction U used when the trajectory 55C is calculated as support information.
 また、本実施形態では、無人航空機10の位置を利用して支援情報を提供するので、支援情報提供部40は、推奨弾道取得部40Aにより取得された推奨弾道情報に基づいて定まる位置に移動するように無人航空機10に指示することによって、支援情報を提供する。支援情報提供部40は、弾道55C上の任意の位置(例えば、最高到達地点56C)の3次元座標を取得し、当該3次元座標を緯度経度情報及び高度情報に変換する。支援情報提供部40は、当該緯度経度情報及び高度情報が示す位置に移動するように無人航空機10に指示することになる。 In the present embodiment, since support information is provided using the position of the unmanned aircraft 10, the support information providing unit 40 moves to a position determined based on the recommended ballistic information acquired by the recommended ballistic acquisition unit 40A. Thus, the support information is provided by instructing the unmanned aircraft 10. The support information providing unit 40 acquires the three-dimensional coordinates of an arbitrary position (for example, the highest reaching point 56C) on the trajectory 55C, and converts the three-dimensional coordinates into latitude / longitude information and altitude information. The support information providing unit 40 instructs the unmanned aircraft 10 to move to the position indicated by the latitude / longitude information and the altitude information.
 また、本実施形態では、支援情報提供部40は、評価部39による評価結果が基準以上である場合、現在の位置で待機するように無人航空機10に指示することによって、支援情報を提供する。即ち、基本方向Vに向けてティーショットをしても特に問題が発生しない場合、無人航空機10は、計測位置で待機することになる。 Further, in the present embodiment, the support information providing unit 40 provides support information by instructing the unmanned aircraft 10 to stand by at the current position when the evaluation result by the evaluation unit 39 is equal to or higher than the reference. That is, if no problem occurs even if a tee shot is made in the basic direction V, the unmanned aircraft 10 stands by at the measurement position.
[2-12.退避指示部]
 退避指示部41は、制御部21を主として実現される。退避指示部41は、支援情報提供部40により支援情報が提供された後に、現在の位置から退避するように無人航空機10に指示する。退避指示部41は、所定の条件が満たされた場合に退避を指示すればよい。例えば、退避指示部41は、一定時間が経過した場合、プレイヤがスイングを開始した場合、プレイヤがショットをした場合、又は、プレイヤが操作部24から所定の操作をした場合に、退避を指示すればよい。
[2-12. Evacuation instruction section]
The save instruction unit 41 is realized mainly by the control unit 21. The retreat instruction unit 41 instructs the unmanned aircraft 10 to retreat from the current position after the support information is provided by the support information providing unit 40. The retreat instruction unit 41 may instruct retreat when a predetermined condition is satisfied. For example, the evacuation instruction unit 41 is instructed to evacuate when a certain time has elapsed, when the player starts swinging, when the player takes a shot, or when the player performs a predetermined operation from the operation unit 24. That's fine.
 なお、プレイヤのスイングやショットは、センサ部14の検出信号により検知されるようにすればよい。例えば、退避指示部41は、センサ部14のイメージセンサで撮影した画像を解析して、スイングやショットが行われたかを判定すればよい。他にも例えば、センサ部14がマイクを含む場合、退避指示部41は、打球音を検知したかを判定してもよい。退避指示部41が行う退避の指示は、退避方向が含まれていてもよい。退避方向は、予め定められた方向であってもよいし、ランダムに定まってもよい。更に、無人航空機10が打球の方向を解析し、当該打球の方向に基づいて退避方向が定まってもよい。 Note that the player's swing or shot may be detected by the detection signal of the sensor unit 14. For example, the retraction instruction unit 41 may analyze an image captured by the image sensor of the sensor unit 14 and determine whether a swing or a shot has been performed. In addition, for example, when the sensor unit 14 includes a microphone, the retraction instruction unit 41 may determine whether a hitting sound is detected. The evacuation instruction performed by the evacuation instruction unit 41 may include the evacuation direction. The retreat direction may be a predetermined direction or may be determined randomly. Furthermore, the unmanned aircraft 10 may analyze the direction of the hit ball, and the retreat direction may be determined based on the direction of the hit ball.
[2-13.通知部]
 通知部42は、制御部21を主として実現される。通知部42は、無人航空機10が移動先(計測位置)で風を計測中であるか、無人航空機10の位置により支援情報が提供されているか、をプレイヤに通知する。通知は、視覚的又は聴覚的に行われるようにすればよく、例えば、通知部42は、所定の画像を表示させたり、所定の音声を出力したりする。他にも例えば、無人航空機10がライトを搭載している場合は、通知部42は、ライトの点灯や消灯を指示することによって通知を行うようにしてもよい。通知部42が通知を行うことによって、プレイヤはショットしてもよいかどうかを判断することができる。
[2-13. Notification section]
The notification unit 42 is realized mainly by the control unit 21. The notification unit 42 notifies the player whether the unmanned aircraft 10 is measuring wind at the destination (measurement position) or whether support information is provided by the position of the unmanned aircraft 10. The notification may be performed visually or audibly. For example, the notification unit 42 displays a predetermined image or outputs a predetermined sound. In addition, for example, when the unmanned aerial vehicle 10 is equipped with a light, the notification unit 42 may perform the notification by instructing the light to be turned on or off. When the notification unit 42 notifies, the player can determine whether or not the shot may be taken.
[3.ゴルフプレイ支援システムにおいて実行される処理]
 図10及び図11は、ゴルフプレイ支援システムにおいて実行される処理の一例を示すフロー図である。図10及び図11に示す処理は、制御部11が、記憶部12に記憶されたプログラムに従って動作し、制御部21が、記憶部22に記憶されたプログラムに従って動作することによって実行される。本実施形態では、下記に説明する処理が実行されることにより、図3に示す機能ブロックが実現される。
[3. Processing executed in golf play support system]
FIG.10 and FIG.11 is a flowchart which shows an example of the process performed in a golf play assistance system. The processing illustrated in FIGS. 10 and 11 is executed by the control unit 11 operating according to the program stored in the storage unit 12 and the control unit 21 operating according to the program stored in the storage unit 22. In the present embodiment, the functional blocks shown in FIG. 3 are realized by executing the processing described below.
 図10に示すように、まず、プレイヤ端末20においては、制御部21は、ゴルフコースデータに基づいて、各プレイヤがこれからティーショットをするゴルフコースの3Dモデルを仮想3次元空間に構築する(S1)。制御部21は、各プレイヤがティーショットをするゴルフコースを、プレイヤの入力によって特定してもよいし、プレイヤ端末20にGPSセンサを搭載しておき、現在の緯度経度情報に基づいて特定してもよい。S1においては、制御部21は、レイアウト情報が示す3Dモデルを記憶部22に構築することになる。 As shown in FIG. 10, first, in the player terminal 20, the control unit 21 constructs a 3D model of a golf course from which each player will make a tee shot in a virtual three-dimensional space based on the golf course data (S1). ). The control unit 21 may specify a golf course on which each player takes a tee shot by an input from the player, or a GPS sensor is mounted on the player terminal 20 and specified based on the current latitude / longitude information. Also good. In S <b> 1, the control unit 21 constructs the 3D model indicated by the layout information in the storage unit 22.
 制御部21は、スコアデータに基づいて、ティーショットをする順番を特定する(S2)。S2においては、制御部21は、前のホールのスコアが良い順となるように、順番を特定すればよい。以降、これからティーショットをするプレイヤに応じた計測位置で無人航空機10が風を計測するための処理が実行されることなる。 The control unit 21 specifies the order of tee shots based on the score data (S2). In S <b> 2, the control unit 21 may specify the order so that the scores of the previous holes are in good order. Thereafter, the process for the unmanned aerial vehicle 10 to measure the wind at the measurement position corresponding to the player who will make a tee shot will be executed.
 制御部21は、プレイヤが使用するゴルフクラブの種類を特定する(S3)。S3においては、制御部21は、操作部24から入力されたゴルフクラブの種類を取得することになる。 The control unit 21 specifies the type of golf club used by the player (S3). In S <b> 3, the control unit 21 acquires the type of golf club input from the operation unit 24.
 制御部21は、プレイヤデータの飛距離情報に基づいて、S3で特定したゴルフクラブをプレイヤが使用した場合の飛距離を取得する(S4)。制御部21は、S4で取得した飛距離と、ゴルフコースデータの基本方向情報が示す基本方向Vと、に基づいてプレイヤの弾道を計算する(S5)。S5においては、制御部21は、図7を参照して説明した方法に基づいて、風の影響を考慮しない弾道を計算する。 The control unit 21 acquires the flight distance when the player uses the golf club specified in S3 based on the flight distance information of the player data (S4). The control unit 21 calculates the trajectory of the player based on the flight distance acquired in S4 and the basic direction V indicated by the basic direction information of the golf course data (S5). In S5, the control unit 21 calculates a trajectory that does not consider the influence of the wind, based on the method described with reference to FIG.
 制御部21は、S5で計算した弾道の最高到達地点に基づいて定まる計測位置に移動するように、無人航空機10に移動指示を送信する(S6)。ここでは、仮想3次元空間の3次元座標と、緯度経度情報及び高度情報と、の関連付けが記憶部22に記憶されているので、S6においては、制御部21は、最高到達地点の3次元座標に関連付けられた緯度経度情報及び高度情報を計測位置として取得し、移動指示を送信することになる。 The controller 21 transmits a movement instruction to the unmanned aerial vehicle 10 so as to move to the measurement position determined based on the highest point of trajectory calculated in S5 (S6). Here, since the association between the three-dimensional coordinates of the virtual three-dimensional space, the latitude / longitude information, and the altitude information is stored in the storage unit 22, in S6, the control unit 21 determines the three-dimensional coordinates of the highest arrival point. The latitude / longitude information and altitude information associated with is acquired as a measurement position, and a movement instruction is transmitted.
 無人航空機10においては、移動指示を受信すると、制御部11は、指示された計測位置に向けて無人航空機10を移動させる(S7)。S7においては、制御部11は、移動指示に含まれる緯度経度情報及び高度情報を目的地点に設定して、無人航空機10の移動を開始する。 In the unmanned aerial vehicle 10, when the movement instruction is received, the control unit 11 moves the unmanned aerial vehicle 10 toward the instructed measurement position (S7). In S <b> 7, the control unit 11 sets the latitude / longitude information and altitude information included in the movement instruction as a destination point, and starts the movement of the unmanned aircraft 10.
 制御部11は、無人航空機10が計測位置に移動すると、センサ部14を使って風向と風速を計測する(S8)。S8においては、制御部11は、センサ部14のGPSセンサ等を使って計測位置に移動したかを判定する。計測位置に移動したと判定した場合に、制御部11は、センサ部14の風向風速センサの検出結果を取得することになる。制御部11は、S8における計測結果をプレイヤ端末20に送信する(S9)。S9においては、制御部11は、風向と風速を示す情報をプレイヤ端末20に送信することになる。 When the unmanned aircraft 10 moves to the measurement position, the control unit 11 measures the wind direction and the wind speed using the sensor unit 14 (S8). In S8, the control part 11 determines whether it moved to the measurement position using the GPS sensor of the sensor part 14, etc. When it determines with having moved to the measurement position, the control part 11 will acquire the detection result of the wind direction wind speed sensor of the sensor part 14. FIG. The control part 11 transmits the measurement result in S8 to the player terminal 20 (S9). In S <b> 9, the control unit 11 transmits information indicating the wind direction and the wind speed to the player terminal 20.
 プレイヤ端末20においては、計測結果を受信すると、制御部21は、計測結果に基づいてS5で計算した弾道を修正し、予想弾道を取得する(S10)。S10においては、制御部21は、図8を参照して説明した方法に基づいて、風の影響を考慮しないS5の弾道を、風の影響を考慮した予想弾道に修正する。 In the player terminal 20, when the measurement result is received, the control unit 21 corrects the trajectory calculated in S5 based on the measurement result, and acquires the expected trajectory (S10). In S10, based on the method described with reference to FIG. 8, the control unit 21 corrects the trajectory of S5 that does not consider the effect of wind to an expected trajectory that considers the effect of wind.
 図11に移行し、制御部21は、ゴルフコースデータに基づいて、S10で取得した予想弾道を評価する(S11)。S11においては、制御部21は、予想弾道でペナルティが発生するか、予想弾道上に障害物があるか、及び予想弾道の着地点のエリアを判定することによって評価を行う。 11, the control unit 21 evaluates the expected trajectory acquired in S10 based on the golf course data (S11). In S <b> 11, the control unit 21 performs evaluation by determining whether a penalty occurs in the predicted trajectory, whether there is an obstacle on the predicted trajectory, and the area where the predicted trajectory is landing.
 予想弾道の評価が基準未満であった場合(S11;基準未満)、制御部21は、S10において受信した計測結果に基づいて、推奨弾道を取得する(S12)。S12においては、制御部21は、図9を参照して説明した方法に基づいて、推奨弾道を取得する。 When the evaluation of the expected trajectory is less than the standard (S11; less than the standard), the control unit 21 acquires a recommended trajectory based on the measurement result received in S10 (S12). In S12, the control unit 21 acquires a recommended trajectory based on the method described with reference to FIG.
 制御部21は、S12で取得した推奨弾道上に移動するように、無人航空機10に移動指示を送信する(S13)。S13においては、制御部21は、ゴルフコースデータを参照して、推奨弾道上の任意の点の3次元座標に関連付けられた緯度経度情報及び高度情報を取得して移動指示を送信することになる。制御部21は、「無人航空機が推奨弾道上に移動します。無人航空機が停止したら、無人航空機を目標にショットして下さい。」などの所定の音声を出力する(S14)。 The control unit 21 transmits a movement instruction to the unmanned aircraft 10 so as to move on the recommended trajectory acquired in S12 (S13). In S13, the control unit 21 refers to the golf course data, acquires latitude / longitude information and altitude information associated with the three-dimensional coordinates of an arbitrary point on the recommended trajectory, and transmits a movement instruction. . The control unit 21 outputs a predetermined sound such as “The unmanned aircraft moves on the recommended trajectory. When the unmanned aircraft stops, please shot with the unmanned aircraft as a target” (S14).
 無人航空機10においては、移動指示を受信すると、制御部11は、推奨弾道上に向けて移動する(S15)。制御部11は、一定時間ホバリングした後に退避する(S16)。S16においては、制御部11は、センサ部14のGPSセンサ等を使って推奨弾道上に移動したかを判定する。計測位置に移動したと判定した場合に、制御部11は、無人航空機10をホバリングさせるとともに、リアルタイムクロック等を利用して計時を開始する。そして、制御部11は、一定時間が経過した場合に、無人航空機10を所定方向に退避させる。 When the unmanned aircraft 10 receives the movement instruction, the control unit 11 moves toward the recommended trajectory (S15). The control unit 11 retreats after hovering for a certain time (S16). In S16, the control part 11 determines whether it moved on the recommended trajectory using the GPS sensor of the sensor part 14, etc. When it determines with having moved to the measurement position, the control part 11 starts time measurement using a real-time clock etc. while hovering the unmanned aircraft 10. Then, the control unit 11 retracts the unmanned aerial vehicle 10 in a predetermined direction when a certain time has elapsed.
 一方、S10において、予想弾道の評価が基準以上であった場合(S10;基準以上)、制御部21は、無人航空機10にその場で一定時間ホバリングする旨の指示を送信し(S17)、「無人航空機を目標にショットして下さい。」などの所定の音声を出力する(S18)。無人航空機10は、指示を受信すると、S16の処理を実行して、一定時間後に退避する。 On the other hand, in S10, when the evaluation of the expected trajectory is above the standard (S10; above the standard), the control unit 21 transmits an instruction to the unmanned aircraft 10 to hover for a certain time on the spot (S17). A predetermined voice such as “Shot with unmanned aircraft as a target” is output (S18). When the unmanned aircraft 10 receives the instruction, the unmanned aircraft 10 executes the process of S16 and evacuates after a certain time.
 プレイヤ端末20においては、制御部21は、操作部24からの入力に基づいて、プレイヤがティーショットしたかを判定する(S19)。プレイヤがティーショットしたと判定された場合(S19;Y)、制御部21は、スコアデータに格納されたプレイヤの人数に基づいて、全員のティーショットが終了したかを判定する(S20)。全員のティーショットが終了したと判定されない場合(S20;N)、S3の処理に戻り、次にティーショットをするプレイヤを支援するための処理が実行される。一方、全員のティーショットが終了したと判定された場合(S20;Y)、本処理は終了する。 In the player terminal 20, the control unit 21 determines whether the player has made a tee shot based on the input from the operation unit 24 (S19). When it is determined that the player has made a tee shot (S19; Y), the control unit 21 determines whether the tee shot of all the players has been completed based on the number of players stored in the score data (S20). If it is not determined that all the tee shots have been completed (S20; N), the process returns to the process of S3, and a process for assisting the player who makes the next tee shot is executed. On the other hand, when it is determined that all the tee shots have been completed (S20; Y), this process ends.
 以上説明したゴルフプレイ支援システム1によれば、各プレイヤのショットに応じた計測位置で風を計測して支援情報を提供するので、プレイヤのショットの特徴に応じた的確な支援をすることができる。例えば、ゴルフコース上の固定地点に風向風速センサを配置する場合には、その場所の風しか計測できないので、その場所以外を通るショットを打つプレイヤには有益な情報とはならない可能性があるが、ゴルフプレイ支援システム1では、無人航空機10が任意の位置の風を計測できるので、プレイヤに応じた有益な情報を提供することができる。 According to the golf play support system 1 described above, since wind is measured at a measurement position corresponding to each player's shot and support information is provided, accurate support according to the player's shot characteristics can be provided. . For example, when a wind direction and wind speed sensor is arranged at a fixed point on a golf course, only the wind at that location can be measured, which may not be useful information for a player who hits a shot that passes outside that location. In the golf play support system 1, since the unmanned aircraft 10 can measure the wind at an arbitrary position, it is possible to provide useful information according to the player.
 また、ゴルフプレイ支援システム1では、計測位置における風の影響を考慮した予想弾道をレイアウト情報に基づいて評価するので、ゴルフコースのレイアウトに応じた支援情報をユーザに提供することができる。 Also, in the golf play support system 1, the expected trajectory considering the wind effect at the measurement position is evaluated based on the layout information, so that support information according to the layout of the golf course can be provided to the user.
 また、ゴルフプレイ支援システム1では、風の影響を考慮した予想弾道の評価が低い場合は、風の影響を考慮した推奨弾道を計算してプレイヤに提供するので、どの方向にショットしたらよいかをプレイヤに具体的に提案することができ、ゴルフプレイの支援をより効果的に行うことができる。 Further, in the golf play support system 1, when the estimated trajectory considering the influence of wind is low, the recommended trajectory considering the influence of wind is calculated and provided to the player. This can be specifically proposed to the player, and golf play support can be performed more effectively.
 また、ゴルフプレイ支援システム1では、推奨弾道上に無人航空機10が移動することによって支援情報を提供するので、プレイヤが打つべき方向を視覚的に分かりやすく伝えることができる。 Also, in the golf play support system 1, support information is provided by the unmanned aircraft 10 moving on the recommended trajectory, so that the direction in which the player should strike can be visually and easily understood.
 また、ゴルフプレイ支援システム1では、風の影響を考慮した予想弾道の評価が高い場合は、無人航空機10を計測位置で待機させることによって、プレイヤが狙っている方向に向けてショットしても問題ないことを視覚的に分かりやすく伝えることができる。 Further, in the golf play support system 1, when the evaluation of the predicted trajectory in consideration of the influence of wind is high, there is a problem even if the unmanned aircraft 10 is made to wait at the measurement position and shot in the direction aimed by the player. Can communicate visually that there is nothing.
 また、無人航空機10の位置によって支援情報を提供する場合、プレイヤは無人航空機10に向かってショットすることになるが、ゴルフプレイ支援システム1では、支援情報を提供した後は無人航空機10が退避するので、打球が無人航空機10にぶつからないようにすることができる。 When providing support information according to the position of the unmanned aircraft 10, the player shots toward the unmanned aircraft 10. However, in the golf play support system 1, the unmanned aircraft 10 evacuates after providing the support information. Therefore, it is possible to prevent the hit ball from hitting the unmanned aircraft 10.
 また、ゴルフプレイ支援システム1では、無人航空機10が風を計測中なのか、プレイヤが打つべき方向を伝えているのか、を通知することによって、プレイヤはショットしてよいかどうかを判断しやすくなる。 In the golf play support system 1, it is easier for the player to determine whether or not the shot can be made by notifying whether the unmanned aircraft 10 is measuring the wind or telling the player the direction in which the player should hit. .
 また、打球の飛距離が異なれば風の影響も大きく異なることになるが、ゴルフプレイ支援システム1では、プレイヤが使用するゴルフクラブに応じた飛距離をもとに風の計測位置を決定することによって、支援情報の精度をより向上させることができる。 In addition, although the influence of the wind greatly varies depending on the flight distance of the hit ball, the golf play support system 1 determines the wind measurement position based on the flight distance according to the golf club used by the player. Thus, the accuracy of the support information can be further improved.
[4.変形例]
 なお、本発明は、以上に説明した実施の形態に限定されるものではない。本発明の趣旨を逸脱しない範囲で、適宜変更可能である。
[4. Modified example]
The present invention is not limited to the embodiment described above. Modifications can be made as appropriate without departing from the spirit of the present invention.
 (1)図12は、変形例(1)の機能ブロック図である。図12に示すように、下記に説明する変形例では、実施形態の機能に加えて、障害物判定部43が実現される。障害物判定部43は、制御部21を主として実現される。障害物判定部43は、無人航空機10のセンサ部14の検出結果に基づいて、ゴルフコース内の障害物の有無を判定する。 (1) FIG. 12 is a functional block diagram of the modified example (1). As shown in FIG. 12, in the modified example described below, an obstacle determination unit 43 is realized in addition to the functions of the embodiment. The obstacle determination unit 43 is realized mainly by the control unit 21. The obstacle determination unit 43 determines the presence or absence of an obstacle in the golf course based on the detection result of the sensor unit 14 of the unmanned aircraft 10.
 変形例(1)では、無人航空機10は、ゴルフコース内の物体を検出するためのセンサを含むものとする。このセンサは、赤外線センサやイメージセンサであってよい。例えば、障害物判定部43は、赤外線センサが発射した赤外線が反射して戻ってくるかを判定することによって障害物を検出する。また例えば、障害物判定部43は、イメージセンサで撮影した画像と、障害物の基本形状を示す画像(データ記憶部30にこの画像を予め記憶させておくものとする。)と、をパターンマッチングすることによって障害物を検出する。 In the modification (1), the unmanned aerial vehicle 10 includes a sensor for detecting an object in the golf course. This sensor may be an infrared sensor or an image sensor. For example, the obstacle determination unit 43 detects an obstacle by determining whether the infrared rays emitted from the infrared sensor are reflected and returned. For example, the obstacle determination unit 43 performs pattern matching between an image captured by the image sensor and an image indicating the basic shape of the obstacle (this image is stored in the data storage unit 30 in advance). To detect obstacles.
 評価部39は、レイアウト情報取得部34により取得されたレイアウト情報と、障害物判定部43の判定結果と、に基づいて、予想部38による予想結果を評価する。評価部39の評価方法は、実施形態で説明した方法と同様であるが、評価部39は、障害物判定部43の判定結果に基づいて、仮想3次元空間上に障害物を配置する。例えば、無人航空機10は、センサ部14のGPSセンサや赤外線センサから緯度経度情報及び高度情報(即ち、現在の飛行位置)を取得可能なので、評価部39は、無人航空機10の緯度経度情報及び高度情報を仮想3次元空間の3次元座標に変換する。そして、評価部39は、障害物判定部43が判定に使用した赤外線センサの検出結果やイメージセンサの画像から、無人航空機10と障害物との位置関係を推定することによって、障害物の3次元座標を決定する。評価部39は、当該決定した3次元座標に障害物の3Dモデルを配置して、予想部38が予想した余同弾道上に当該障害物があるかを判定することになる。 The evaluation unit 39 evaluates the prediction result by the prediction unit 38 based on the layout information acquired by the layout information acquisition unit 34 and the determination result of the obstacle determination unit 43. The evaluation method of the evaluation unit 39 is the same as the method described in the embodiment, but the evaluation unit 39 arranges an obstacle in the virtual three-dimensional space based on the determination result of the obstacle determination unit 43. For example, since the unmanned aircraft 10 can acquire latitude / longitude information and altitude information (that is, current flight position) from the GPS sensor and infrared sensor of the sensor unit 14, the evaluation unit 39 calculates the latitude / longitude information and altitude of the unmanned aircraft 10. Information is converted into three-dimensional coordinates in a virtual three-dimensional space. Then, the evaluation unit 39 estimates the positional relationship between the unmanned aircraft 10 and the obstacle from the detection result of the infrared sensor used for the determination by the obstacle determination unit 43 and the image of the image sensor. Determine the coordinates. The evaluation unit 39 arranges a 3D model of the obstacle at the determined three-dimensional coordinates, and determines whether the obstacle is on the redundant trajectory predicted by the prediction unit 38.
 変形例(1)によれば、無人航空機10がゴルフコース内の障害物を検出するので、ゴルフコース内の現在の状況に応じた障害物を考慮して予想弾道を評価することができる。 According to the modified example (1), since the unmanned aircraft 10 detects an obstacle in the golf course, the expected trajectory can be evaluated in consideration of the obstacle according to the current situation in the golf course.
 (2)また例えば、実施形態では、ショット情報が飛距離を示す場合を説明したが、ショット情報は、ショットの弾道に関するものであってもよい。この場合、ショット情報取得部33は、プレイヤの操作に基づいて、プレイヤのショットの弾道に関するショット情報を取得する。例えば、プレイヤは、自分のショットの曲がり具合や飛び出し方向をその場で操作部24から入力してもよいし、予め入力されたものがプレイヤデータに格納されていてもよい。移動指示部35は、プレイヤが入力した曲がり具合や飛び出し方向に基づいて弾道を計算することになる。実施形態で説明したように、弾道の計算自体は、公知のゴルフシミュレータで用いられている計算方法を用いてよい。 (2) For example, in the embodiment, the case where the shot information indicates the flight distance has been described, but the shot information may relate to the trajectory of the shot. In this case, the shot information acquisition unit 33 acquires shot information related to the trajectory of the player's shot based on the operation of the player. For example, the player may input the bending state and the jumping direction of his / her shot from the operation unit 24 on the spot, or previously input data may be stored in the player data. The movement instruction unit 35 calculates the trajectory based on the bending condition and the jumping direction input by the player. As described in the embodiment, the calculation method used in a known golf simulator may be used for calculating the trajectory itself.
 変形例(2)によれば、プレイヤのショットの曲がり具合や飛び出し方向などの弾道に応じた計測位置で風を計測して支援情報を提供することができる。 According to the modified example (2), it is possible to provide support information by measuring the wind at a measurement position corresponding to the trajectory such as the player's shot bending and jumping direction.
 (3)また例えば、変形例(1)と(2)を組み合わせるようにしてもよい。 (3) For example, the modifications (1) and (2) may be combined.
 また例えば、無人航空機10の計測位置は1つだけではなく、移動指示部35が計算した弾道上の複数の位置に基づいて、複数の計測位置を設定してもよい。更に、無人航空機10は、1台だけでなく、複数台であってもよく、複数の計測位置の各々に無人航空機10が移動してもよい。更に、複数台の無人航空機10が推奨弾道を示すように、各無人航空機10を配列させるようにしてもよい。 For example, the measurement position of the unmanned aircraft 10 is not limited to one, and a plurality of measurement positions may be set based on a plurality of positions on the trajectory calculated by the movement instruction unit 35. Furthermore, the number of unmanned aircraft 10 is not limited to one, and a plurality of unmanned aircraft 10 may be used, and the unmanned aircraft 10 may move to each of a plurality of measurement positions. Furthermore, each unmanned aircraft 10 may be arranged so that a plurality of unmanned aircraft 10 shows a recommended trajectory.
 また例えば、プレイヤがティーショットする場面で支援情報が提供される場合を説明したが、ティーショット以外の場面で同様の処理を実行することによって支援情報を提供するようにしてもよい。この場合、各プレイヤのボールの位置が所定位置となる。各プレイヤのボールの位置は、各プレイヤが保有するスマートフォンなどの端末のGPSセンサで推定してもよいし、プレイヤ端末20のGPSセンサで推定してもよい。他にも、無人航空機10が撮影した画像に基づいて各プレイヤの位置を特定してもよい。 For example, although the case where the support information is provided in a scene where the player makes a tee shot has been described, the support information may be provided by executing the same processing in a scene other than the tee shot. In this case, the position of each player's ball is a predetermined position. The position of each player's ball may be estimated by a GPS sensor of a terminal such as a smartphone held by each player, or may be estimated by a GPS sensor of the player terminal 20. In addition, the position of each player may be specified based on an image taken by the unmanned aircraft 10.
 また例えば、プレイヤの前方で他のグループがプレイしていることがあるので、プレイヤ端末20は、プレイヤの前方方向を無人航空機10に撮影させ、この撮影画像に基づいて、ゴルフコース内で打ち込みを禁止するエリアを仮想3次元空間内に設定するようにしてもよい。このエリア内に予測弾道が入る場合には、支援情報提供部40は、その旨を支援情報として提供してもよい。 Further, for example, since another group may be playing in front of the player, the player terminal 20 causes the unmanned aircraft 10 to photograph the forward direction of the player and, based on this photographed image, drives in the golf course. The prohibited area may be set in the virtual three-dimensional space. When the predicted trajectory enters in this area, the support information providing unit 40 may provide that as support information.
 また例えば、風を計測する方法自体は、風向風速センサを利用した方法以外であってもよい。例えば、ゴルフプレイ支援システム1は、無人航空機10を自由落下させて流された距離を検出することで風を推定してもよい。他にも例えば、公知の種々の計測方法を利用してもよい。 For example, the method of measuring the wind itself may be other than the method using the wind direction and wind speed sensor. For example, the golf play support system 1 may estimate the wind by detecting the distance that the unmanned aerial vehicle 10 is allowed to fall freely and flowed. In addition, for example, various known measurement methods may be used.
 また例えば、実施形態では、前半が上り坂で中盤以降は下り坂のゴルフコースを例に挙げたが、他の種々のゴルフコースにおけるゴルフプレイを支援する場面でゴルフプレイ支援システム1を適用することができる。例えば、1打でグリーンに乗せることが可能なショートホールに適用してもよいし、所定方向に曲がるドッグレッグのゴルフコースにおいて、OBや谷となっているエリアをまたぐ方向に打つか(ショートカットをするか)、フェアウェイに沿って堅実な方向に打つか、をプレイヤに選択させ、当該方向に応じた計測位置に無人航空機10を移動させるようにしてもよい。この場合、推奨弾道取得部40Aは、風の計測結果に基づいて、ショートカットする弾道を推奨弾道として取得してもよいし、ショートカットを狙うプレイヤに対して堅実な方向を推奨弾道として取得してもよい。 Further, for example, in the embodiment, the first half is an uphill, and the middle course and the following is a downhill golf course. However, the golf play support system 1 is applied in a scene of supporting golf play on other various golf courses. Can do. For example, it may be applied to a short hole that can be placed on the green with a single hit, or in a dogleg golf course that bends in a predetermined direction, it can be hit in a direction that crosses an OB or valley area (shortcut) In other words, the player may select whether to strike in a solid direction along the fairway and move the unmanned aircraft 10 to a measurement position corresponding to the direction. In this case, the recommended trajectory acquisition unit 40A may acquire the trajectory to be shortcutted as the recommended trajectory based on the wind measurement result, or may acquire a solid direction as the recommended trajectory for the player aiming for the shortcut. Good.
 また例えば、レイアウト情報は、予め管理者によって作成されたものであってもよいし、無人航空機10がゴルフコース上空を撮影することで生成されてもよい。更に、無人航空機10がゴルフコース上空を周遊することによって全ホールのレイアウト情報が生成されるようにしてもよい。 Also, for example, the layout information may be created in advance by the administrator, or may be generated by the unmanned aircraft 10 shooting the sky over the golf course. Furthermore, the layout information of all holes may be generated when the unmanned aircraft 10 travels over the golf course.
 また例えば、プレイヤ端末20は、各プレイヤがショットをする所定位置からピンまでの残りヤード数からゴルフクラブの種類を推定してもよい。この場合、プレイヤデータの飛距離情報を利用してプレイヤが使用するゴルフクラブを推定してもよい。更に、プレイヤ端末20は、残りヤード数と飛距離情報に基づいて推奨するゴルフクラブをプレイヤに提案してもよい。 For example, the player terminal 20 may estimate the type of the golf club from the number of remaining yards from a predetermined position where each player takes a shot to the pin. In this case, the golf club used by the player may be estimated using the flight distance information of the player data. Furthermore, the player terminal 20 may suggest a recommended golf club to the player based on the number of remaining yards and the flight distance information.
 また例えば、プレイヤ端末20で実現されるものとして説明した機能が無人航空機10で実現されてもよい。例えば、データ記憶部30、飛距離情報取得部31、種類取得部32、ショット情報取得部33、レイアウト情報取得部34、移動指示部35、計測結果取得部37、予想部38、評価部39、支援情報提供部40、退避指示部41、通知部42、及び障害物判定部43が無人航空機10で実現されてもよい。この場合、データ記憶部30は記憶部12を主として実現され、他の各機能は制御部11を主として実現される。上記説明した各機能は、無人航空機10だけで実現されるようにしてもよいし、ゴルフプレイ支援システム1の各コンピュータで分担されるようにしてもよい。更に、上記説明した各機能のうち、ショット情報取得部33、移動指示部35、計測結果取得部37、及び支援情報提供部40以外の機能は省略してもよい。 For example, the function described as being realized by the player terminal 20 may be realized by the unmanned aircraft 10. For example, the data storage unit 30, the flight distance information acquisition unit 31, the type acquisition unit 32, the shot information acquisition unit 33, the layout information acquisition unit 34, the movement instruction unit 35, the measurement result acquisition unit 37, the prediction unit 38, the evaluation unit 39, The support information providing unit 40, the evacuation instruction unit 41, the notification unit 42, and the obstacle determination unit 43 may be realized by the unmanned aircraft 10. In this case, the data storage unit 30 is realized mainly by the storage unit 12, and other functions are realized mainly by the control unit 11. Each function described above may be realized by only the unmanned aircraft 10 or may be shared by each computer of the golf play support system 1. Furthermore, among the functions described above, functions other than the shot information acquisition unit 33, the movement instruction unit 35, the measurement result acquisition unit 37, and the support information provision unit 40 may be omitted.

Claims (12)

  1.  ゴルフコース内の所定位置からのプレイヤに応じたショットに関するショット情報を取得するショット情報取得手段と、
     前記ショット情報取得手段により取得されたショット情報に基づいて定まる位置に移動するように、風を計測する無人航空機に指示する移動指示手段と、
     前記無人航空機による移動先での風の計測結果を取得する計測結果取得手段と、
     前記計測結果取得手段により取得された計測結果に基づいて、前記所定位置からのショットを支援するための支援情報を前記プレイヤに提供する支援情報提供手段と、
     を含むことを特徴とするゴルフプレイ支援システム。
    Shot information acquisition means for acquiring shot information related to a shot according to a player from a predetermined position in the golf course;
    A movement instruction means for instructing an unmanned aerial vehicle for measuring wind so as to move to a position determined based on the shot information acquired by the shot information acquisition means;
    Measurement result acquisition means for acquiring a wind measurement result at a destination by the unmanned aircraft;
    Support information providing means for providing the player with support information for supporting a shot from the predetermined position based on the measurement result obtained by the measurement result obtaining means;
    A golf play support system comprising:
  2.  前記支援情報提供手段は、
     前記ショット情報取得手段により取得されたショット情報と、前記計測結果取得手段により取得された計測結果と、に基づいて、前記所定位置からのショットの弾道に関する予想を行う予想手段と、
     前記ゴルフコースのレイアウトに関するレイアウト情報を取得するレイアウト情報取得手段と、
     前記レイアウト情報取得手段により取得されたレイアウト情報に基づいて、前記予想手段による予想結果を評価する評価手段と、
     を含み、前記評価手段による評価結果に基づいて、前記支援情報を提供する、
     ことを特徴とする請求項1に記載のゴルフプレイ支援システム。
    The support information providing means includes
    Prediction means for making a prediction regarding the trajectory of the shot from the predetermined position based on the shot information acquired by the shot information acquisition means and the measurement result acquired by the measurement result acquisition means;
    Layout information acquisition means for acquiring layout information relating to the layout of the golf course;
    Evaluation means for evaluating a prediction result by the prediction means based on the layout information acquired by the layout information acquisition means;
    And providing the support information based on the evaluation result by the evaluation means,
    The golf play support system according to claim 1.
  3.  前記支援情報提供手段は、前記評価手段による評価結果が基準未満である場合、前記計測結果取得手段により取得された計測結果に基づいて、前記プレイヤがすべきショットの弾道に関する推奨弾道情報を取得する推奨弾道取得手段を更に含み、前記推奨弾道取得手段により取得された推奨弾道情報を、前記支援情報として提供する、
     ことを特徴とする請求項2に記載のゴルフプレイ支援システム。
    When the evaluation result by the evaluation means is less than a reference, the support information providing means acquires recommended ballistic information related to the trajectory of the shot to be performed by the player based on the measurement result acquired by the measurement result acquisition means. Further including recommended ballistic acquisition means, providing recommended ballistic information acquired by the recommended ballistic acquisition means as the support information;
    The golf play support system according to claim 2.
  4.  前記支援情報提供手段は、前記推奨弾道取得手段により取得された推奨弾道情報に基づいて定まる位置に移動するように前記無人航空機に指示することによって、前記支援情報を提供する、
     ことを特徴とする請求項3に記載のゴルフプレイ支援システム。
    The support information providing means provides the support information by instructing the unmanned aircraft to move to a position determined based on the recommended ballistic information acquired by the recommended ballistic acquisition means;
    The golf play support system according to claim 3.
  5.  前記支援情報提供手段は、前記評価手段による評価結果が基準以上である場合、現在の位置で待機するように前記無人航空機に指示することによって、前記支援情報を提供する、
     ことを特徴とする請求項2~4の何れかに記載のゴルフプレイ支援システム。
    The support information providing means provides the support information by instructing the unmanned aircraft to wait at a current position when an evaluation result by the evaluation means is equal to or higher than a reference.
    The golf play support system according to any one of claims 2 to 4, wherein
  6.  前記ゴルフプレイ支援システムは、前記支援情報提供手段により支援情報が提供された後に、現在の位置から退避するように前記無人航空機に指示する退避指示手段、
     を更に含むことを特徴とする請求項4又は5に記載のゴルフプレイ支援システム。
    The golf play support system includes a retreat instruction unit that instructs the unmanned aircraft to retreat from a current position after the support information is provided by the support information providing unit.
    The golf play support system according to claim 4, further comprising:
  7.  前記ゴルフプレイ支援システムは、前記無人航空機が移動先で風を計測中であるか、前記無人航空機の位置により前記支援情報が提供されているか、を前記プレイヤに通知する通知手段を更に含む、
     ことを特徴とする請求項4~6の何れかに記載のゴルフプレイ支援システム。
    The golf play support system further includes notification means for notifying the player whether the unmanned aircraft is measuring wind at a destination or whether the support information is provided by the position of the unmanned aircraft.
    The golf play support system according to any one of claims 4 to 6, wherein
  8.  前記無人航空機は、前記ゴルフコース内の物体を検出するためのセンサ部を含み、
     前記ゴルフプレイ支援システムは、前記無人航空機の前記センサの検出結果に基づいて、前記ゴルフコース内の障害物の有無を判定する障害物判定手段を更に含み、
     前記評価手段は、前記レイアウト情報取得手段により取得されたレイアウト情報と、前記障害物判定手段の判定結果と、に基づいて、前記予想手段による予想結果を評価する、
     ことを特徴とする請求項2~7の何れかに記載のゴルフプレイ支援システム。
    The unmanned aerial vehicle includes a sensor unit for detecting an object in the golf course,
    The golf play support system further includes obstacle determination means for determining the presence or absence of an obstacle in the golf course based on a detection result of the sensor of the unmanned aircraft.
    The evaluation means evaluates the prediction result by the prediction means based on the layout information acquired by the layout information acquisition means and the determination result of the obstacle determination means;
    The golf play support system according to any one of claims 2 to 7, wherein
  9.  前記ゴルフプレイ支援システムは、
     ゴルフクラブの種類と打球の飛距離との関係を示す飛距離情報を取得する飛距離情報取得手段と、
     前記プレイヤの操作に基づいて、前記所定位置からのショットで使用するゴルフクラブの種類を取得する種類取得手段と、
     を更に含み、
     前記ショット情報取得手段は、前記飛距離情報取得手段により取得された飛距離情報と、前記種類取得手段により取得されたゴルフクラブの種類と、に基づいて、前記プレイヤのショットの飛距離に関する前記ショット情報を取得する、
     ことを特徴とする請求項1~8の何れかに記載のゴルフプレイ支援システム。
    The golf play support system includes:
    Flight distance information acquisition means for acquiring flight distance information indicating the relationship between the type of golf club and the flight distance of the hit ball;
    A type acquisition means for acquiring a type of a golf club to be used in a shot from the predetermined position based on an operation of the player;
    Further including
    The shot information acquisition means is the shot related to the shot distance of the player based on the flight distance information acquired by the flight distance information acquisition means and the type of golf club acquired by the type acquisition means. Get information,
    The golf play support system according to any one of claims 1 to 8, wherein
  10.  前記ショット情報取得手段は、前記プレイヤの操作に基づいて、前記プレイヤのショットの弾道に関する前記ショット情報を取得する、
     ことを特徴とする請求項1~9の何れかに記載のゴルフプレイ支援システム。
    The shot information acquisition means acquires the shot information related to the trajectory of the shot of the player based on the operation of the player.
    The golf play support system according to any one of claims 1 to 9, wherein
  11.  ゴルフコース内の所定位置からのプレイヤに応じたショットに関するショット情報を取得するショット情報取得ステップと、
     前記ショット情報取得ステップにおいて取得されたショット情報に基づいて定まる位置に移動するように、風を計測する無人航空機に指示する移動指示ステップと、
     前記無人航空機による移動先での風の計測結果を取得する計測結果取得ステップと、
     前記計測結果取得ステップにおいて取得された計測結果に基づいて、前記所定位置からのショットを支援するための支援情報を前記プレイヤに提供する支援情報提供ステップと、
     を含むことを特徴とするゴルフプレイ支援方法。
    A shot information acquisition step for acquiring shot information relating to a shot according to a player from a predetermined position in the golf course;
    A movement instruction step for instructing the unmanned aircraft to measure wind so as to move to a position determined based on the shot information acquired in the shot information acquisition step;
    A measurement result obtaining step for obtaining a wind measurement result at the destination by the unmanned aircraft; and
    A support information providing step of providing support information to the player for supporting a shot from the predetermined position based on the measurement result acquired in the measurement result acquisition step;
    A golf play support method comprising:
  12.  ゴルフコース内の所定位置からのプレイヤに応じたショットに関するショット情報を取得するショット情報取得手段、
     前記ショット情報取得手段により取得されたショット情報に基づいて定まる位置に移動するように、風を計測する無人航空機に指示する移動指示手段、
     前記無人航空機による移動先での風の計測結果を取得する計測結果取得手段、
     前記計測結果取得手段により取得された計測結果に基づいて、前記所定位置からのショットを支援するための支援情報を前記プレイヤに提供する支援情報提供手段、
     としてコンピュータを機能させるためのプログラム。
    Shot information acquisition means for acquiring shot information relating to a shot according to a player from a predetermined position in the golf course;
    A movement instruction means for instructing an unmanned aircraft that measures wind so as to move to a position determined based on the shot information acquired by the shot information acquisition means;
    Measurement result acquisition means for acquiring a wind measurement result at a destination by the unmanned aerial vehicle;
    Support information providing means for providing support information to the player for supporting a shot from the predetermined position based on the measurement result obtained by the measurement result obtaining means;
    As a program to make the computer function as.
PCT/JP2015/084335 2015-12-07 2015-12-07 Golf play assistance system, golf play assistance method, and program WO2017098570A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017524056A JP6204635B1 (en) 2015-12-07 2015-12-07 Golf play support system, golf play support method, and program
PCT/JP2015/084335 WO2017098570A1 (en) 2015-12-07 2015-12-07 Golf play assistance system, golf play assistance method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084335 WO2017098570A1 (en) 2015-12-07 2015-12-07 Golf play assistance system, golf play assistance method, and program

Publications (1)

Publication Number Publication Date
WO2017098570A1 true WO2017098570A1 (en) 2017-06-15

Family

ID=59013834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084335 WO2017098570A1 (en) 2015-12-07 2015-12-07 Golf play assistance system, golf play assistance method, and program

Country Status (2)

Country Link
JP (1) JP6204635B1 (en)
WO (1) WO2017098570A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175761A1 (en) * 2019-02-28 2020-09-03 주식회사 윈드위시 Electronic caddie-type golf assistance system based on weather information calculated by inputting real-time weather measurements into high-precision weather modeling
US10866065B2 (en) * 2019-03-18 2020-12-15 Daniel Baumgartner Drone-assisted systems and methods of calculating a ballistic solution for a projectile
US20200407059A1 (en) * 2018-02-28 2020-12-31 Doosan Mobility Innovation Inc. System and method for providing service on golf course using fuel cell drone
JP2022051066A (en) * 2020-09-18 2022-03-31 新明工業株式会社 Golf play supporting system
KR102513703B1 (en) * 2021-11-08 2023-03-24 주식회사 윈드위시 Apparatus and Method for Outputting Golf Ball Trajectory Information Using Local Wind Information
WO2023181419A1 (en) * 2022-03-25 2023-09-28 三菱電機株式会社 Golf assistance system, moving body, server device, golf assistance method, and golf assistance program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170275A (en) * 1986-01-20 1987-07-27 鹿島建設株式会社 Golf field
JP2005087391A (en) * 2003-09-16 2005-04-07 Kaneyo Suzuki Wind information displaying system in golf course, and wind information displaying device
JP2005144003A (en) * 2003-11-19 2005-06-09 Makoto Miyake Method and system for displaying wind state information
JP2012095914A (en) * 2010-11-04 2012-05-24 Ns Solutions Corp Golf player support system, user terminal device, method of supporting golf player, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050227791A1 (en) * 2004-03-18 2005-10-13 Hbl Ltd. Virtual caddy system and method
JP2005271781A (en) * 2004-03-25 2005-10-06 Seiko Epson Corp Information collecting robot
JP2006081696A (en) * 2004-09-15 2006-03-30 Nec Corp Player supporting system, game information management device, mobile terminal and player supporting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170275A (en) * 1986-01-20 1987-07-27 鹿島建設株式会社 Golf field
JP2005087391A (en) * 2003-09-16 2005-04-07 Kaneyo Suzuki Wind information displaying system in golf course, and wind information displaying device
JP2005144003A (en) * 2003-11-19 2005-06-09 Makoto Miyake Method and system for displaying wind state information
JP2012095914A (en) * 2010-11-04 2012-05-24 Ns Solutions Corp Golf player support system, user terminal device, method of supporting golf player, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200407059A1 (en) * 2018-02-28 2020-12-31 Doosan Mobility Innovation Inc. System and method for providing service on golf course using fuel cell drone
WO2020175761A1 (en) * 2019-02-28 2020-09-03 주식회사 윈드위시 Electronic caddie-type golf assistance system based on weather information calculated by inputting real-time weather measurements into high-precision weather modeling
US10866065B2 (en) * 2019-03-18 2020-12-15 Daniel Baumgartner Drone-assisted systems and methods of calculating a ballistic solution for a projectile
JP2022051066A (en) * 2020-09-18 2022-03-31 新明工業株式会社 Golf play supporting system
JP7090931B2 (en) 2020-09-18 2022-06-27 新明工業株式会社 Golf play support system
KR102513703B1 (en) * 2021-11-08 2023-03-24 주식회사 윈드위시 Apparatus and Method for Outputting Golf Ball Trajectory Information Using Local Wind Information
WO2023181419A1 (en) * 2022-03-25 2023-09-28 三菱電機株式会社 Golf assistance system, moving body, server device, golf assistance method, and golf assistance program

Also Published As

Publication number Publication date
JP6204635B1 (en) 2017-09-27
JPWO2017098570A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6204635B1 (en) Golf play support system, golf play support method, and program
JP6911762B2 (en) Flight equipment, mobile equipment and programs
US10684677B2 (en) Mixed-reality golf tracking and simulation
US9643092B2 (en) Apparatus and method for simulated gameplay based on a geospatial position
JP5523200B2 (en) Golf navigation system
US9914037B2 (en) Method and device for providing guiding for executing a golf swing
JP6060452B2 (en) Golf play support system and method, and program
CN108473201B (en) Unmanned aerial vehicle retraction system, unmanned aerial vehicle retraction method, and recording medium
US11497996B2 (en) Game device, control method, control program, and computer-readable recording medium having control program recorded therein
US20200360807A1 (en) Game device, control method, control program, and computer-readable recording medium having control program recorded therein
WO2022014656A1 (en) Assistant device for analysis on golf, assistant method for analysis on golf, and assistant program for analysis on golf
JP2003190352A (en) Optimum capture support system for golf course
JP2010035796A (en) Golf navigation system
US20180290018A1 (en) Robot for assisting in playing golf
JP2009291610A (en) Method to establish score database for golf players by means of global positioning system (gps)
KR102224182B1 (en) User terminal and golf information system including the same
KR100808809B1 (en) A portable apparatus for guiding golf
KR102334264B1 (en) Golf assistant method and system using augmented reality
WO2022102491A1 (en) Control apparatus and control method
JP6372933B2 (en) Golf play support system and method, and program
KR102237571B1 (en) Golf information providing system and wearable unit for thesame
KR102237251B1 (en) Golf information providing system and wearable unit for thesame
KR102224185B1 (en) Wearable unit and golf information system including the same
US20230149791A1 (en) Automatic ball machine apparatus localization
WO2023181419A1 (en) Golf assistance system, moving body, server device, golf assistance method, and golf assistance program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017524056

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910187

Country of ref document: EP

Kind code of ref document: A1