WO2017096866A1 - 高动态范围图像的生成方法和装置 - Google Patents

高动态范围图像的生成方法和装置 Download PDF

Info

Publication number
WO2017096866A1
WO2017096866A1 PCT/CN2016/088996 CN2016088996W WO2017096866A1 WO 2017096866 A1 WO2017096866 A1 WO 2017096866A1 CN 2016088996 W CN2016088996 W CN 2016088996W WO 2017096866 A1 WO2017096866 A1 WO 2017096866A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
brightness
image
images
underexposure
Prior art date
Application number
PCT/CN2016/088996
Other languages
English (en)
French (fr)
Inventor
吴凯
Original Assignee
乐视控股(北京)有限公司
乐视移动智能信息技术(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐视控股(北京)有限公司, 乐视移动智能信息技术(北京)有限公司 filed Critical 乐视控股(北京)有限公司
Priority to EP16767124.7A priority Critical patent/EP3200446A4/en
Priority to JP2016559906A priority patent/JP2018504790A/ja
Priority to US15/243,396 priority patent/US20170163902A1/en
Publication of WO2017096866A1 publication Critical patent/WO2017096866A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10144Varying exposure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20208High dynamic range [HDR] image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Definitions

  • Embodiments of the present disclosure relate to the field of smart terminal technologies, for example, to a method and apparatus for generating a high dynamic range image.
  • the HDR feature improves the quality of your photos and gives you more detail in your photos.
  • the shooting process of the related art HDR image is generally performed by using the same photographing device for multiple shots, and then the images obtained by multiple photographing are merged.
  • three photos are taken in order to compose one, which means that the shooting time of HDR images is several times that of other normal images.
  • the long shooting time of HDR is easy to cause the camera to be blurred and the camera takes a long time.
  • the HDR function of the software can only be used for photographing, and the HDR function cannot be realized during preview.
  • embodiments of the present disclosure provide a method and apparatus for generating a high dynamic range image, which can reduce the shooting response time of a high dynamic range image.
  • an embodiment of the present disclosure provides a method for generating a high dynamic range image, the method comprising:
  • the at least two images are fused according to brightness to form an HDR image of the photographic subject.
  • an embodiment of the present disclosure further provides a high dynamic range image generating apparatus, where the apparatus includes:
  • An image acquisition module configured to set different photographing devices through at least two exposure amounts configured on the terminal, and simultaneously acquire at least two images of the photographing target;
  • the fusion module is configured to fuse the at least two images according to brightness to form an HDR image of the photographic subject.
  • a method and apparatus for generating a high dynamic range image provided by an embodiment of the present disclosure, by simultaneously acquiring a plurality of images of a shooting target from a plurality of shooting devices having different exposure amounts, performing the plurality of images according to brightness of the plurality of images Fusion, thus avoiding multiple shots in the current high dynamic range image acquisition process, effectively reducing the shooting time of high dynamic range images.
  • FIG. 1 is a flowchart of a method for generating a high dynamic range image according to a first embodiment of the present disclosure
  • FIG. 2 is a flowchart of a fusion operation in a method for generating a high dynamic range image according to a second embodiment of the present disclosure
  • FIG. 3 is a structural diagram of a device for generating a high dynamic range image according to a third embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a hardware of a terminal according to an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a method for generating a high dynamic range image according to a first embodiment of the present disclosure.
  • the method of generating the high dynamic range image is performed by the generating device of the high dynamic range image.
  • the generating device of the high dynamic range image is integrated in an electronic device for capturing a high dynamic range image.
  • the electronic device can be a tablet or a smartphone.
  • the electronic device includes an image signal processor (ISP).
  • ISP image signal processor
  • the method for generating a high dynamic range image includes: step S110 and step S120.
  • step S110 different photographing devices are set by at least two exposure amounts configured on the terminal while acquiring at least two images of the photographing target.
  • the photographing device may be a digital camera or a camera.
  • the number of the photographing devices is at least two.
  • the number of the photographing devices is an odd number.
  • the number of the photographing devices is three.
  • the communication connection can be a variety of connections within the computing device.
  • the communication connection may also be a variety of communication buses external to the computing device, such as a USB bus.
  • the photographing devices are respectively set to different exposure amount parameters.
  • the exposure amount of one of the three shooting devices can be set to EV0, the exposure amount of the other shooting device is set to EV+1, and the third exposure amount is set to EV. -1.
  • each shooting device By using each shooting device to simultaneously shoot a shooting target such as a person, it is possible to simultaneously obtain a plurality of images having different exposure amounts. Since the shooting device is set on the terminal at the same time, the difference in the captured image due to the position difference is extremely small and can be ignored.
  • step S120 the at least two images are fused according to the brightness to form a high dynamic range image of the photographic subject.
  • the images acquired by different photographing devices differ in the extent to which the details of the image are included in different frequency bands. For example, an image acquired by a shooting device with an exposure setting of EV+1 contains more detail in the low frequency portion, and an image obtained by a shooting device with an exposure amount set to EV-1 contains more details in the high frequency portion. .
  • an overexposed block and an underexposed block in the reference image may be identified by using one of the plurality of images as a reference image. Then, the image data of the other two images are merged according to the identified overexposure block and underexposure block, and finally the HDR image is generated.
  • HDR high dynamic range
  • different shooting devices are set by at least two exposure amounts configured on the terminal, at least two images of the target are simultaneously captured, and the at least two images are fused according to the brightness to form a high of the shooting target.
  • the dynamic range image effectively reduces the shooting time of high dynamic range images.
  • the method further includes: displaying the HDR image in preview. That is, the formed HDR image can be set as a preview display, which also solves the problem that the preview cannot be performed when the software implements the HDR function.
  • FIG. 2 is a flowchart of a method for generating a high dynamic range image according to a second embodiment of the present disclosure. This embodiment provides an implementation manner of the fusion operation in the method for generating a high dynamic range image based on the above embodiment of the present disclosure.
  • the method includes: steps S201-207.
  • step S201 different photographing devices are set by at least two exposure amounts configured on the terminal, and at least two images of the photographing target are acquired at the same time;
  • the merging the at least two images according to the brightness to form an HDR image of the photographic subject performs the following steps:
  • step S202 each of the images is partitioned.
  • each image is partitioned by the same partition rule, and the positions of the blocks in each image correspond to each other.
  • each image acquired from different photographing devices can be partitioned by 16 rows and 12 columns on average. After performing the above partitioning, each original image is divided into 192 blocks.
  • step S203 one of the at least two images is selected as a reference image according to an exposure amount
  • step S204 determining an under-exposed block and an over-exposed block in the reference image according to brightness of each block in the reference image;
  • each block has a difference in brightness
  • the under-exposed block and the over-exposed block can be distinguished from each other according to a preset rule.
  • preset rules There are a variety of preset rules. There are two options:
  • the first mode according to the brightness of each block in the reference image, the block whose block brightness is greater than the overexposure brightness threshold is determined as an overexposed block, and the block whose block brightness is less than the underexposure brightness threshold is determined as owed An exposure block, wherein the overexposure brightness threshold and the underexposure brightness threshold are determined according to the average value of the reference image brightness;
  • overexposure and underexposure can be divided directly by the average of the brightness of the reference image.
  • the average brightness is the average of the brightness of each block.
  • the brightness of each block can be obtained by identifying the RGB three-color brightness and then averaging.
  • the reference image brightness average value is directly used as the overexposure brightness threshold and the underexposure brightness threshold
  • the blocks in the reference image are divided into underexposure blocks and overexposed blocks.
  • the floating setting threshold is used as the overexposure brightness threshold
  • the floating setting threshold is used as the underexposure brightness threshold. It is also possible to substitute the reference image brightness average value into the setting formula to calculate the overexposure brightness threshold and the underexposure brightness threshold. This allows underexposure blocks, normal blocks, and overexposed blocks to be included in the reference image.
  • the blocks are sorted according to the brightness of each block in the reference image, and the set number of blocks are respectively selected as the over-exposed block and the under-exposed block according to the sorting.
  • the blocks are sorted according to the order of brightness from large to small, and then the set number blocks ranked first are selected as over-exposed blocks, and the set number of blocks after sorting is selected as the under-exposure area. Piece. Of course, you can also choose according to the ratio.
  • the number of overexposed and underexposed blocks can vary.
  • step S205 the actual use block of the HDR image at the underexposure block position is selected according to the brightness of the corresponding block in the different images in the underexposure block.
  • the image block with the highest brightness may be selected as the actual use block of the HDR image at the underexposure block position according to the brightness of the corresponding block in the different images in the underexposure block.
  • the first block in the reference image is compared with the brightness of the first block of other images, and the first block with the highest brightness in other images is selected for actual use.
  • the captured image block has a high brightness and can be set to replace the underexposed block in the reference image.
  • step S206 an actual use block of the HDR image at the overexposed block position is selected according to the brightness of the corresponding block in the different images in the overexposed block.
  • an image block with the lowest brightness may be selected as the actual use block of the HDR image at the overexposed block position according to the brightness of the corresponding block in the different images in the overexposed block.
  • the second block in the reference image is compared with the brightness of the second block of the other image, and the second block with the lowest brightness in the other images is selected for practical use.
  • Block Generally, a shooting device with a small exposure amount has a small brightness of the image block, and can be set to replace the over-exposed block in the reference image.
  • step S207 the HDR image is generated according to an actual use block of the HDR image at the underexposure block position and an actual use block of the HDR image at the overexposed block position.
  • the actual use blocks are stitched together, that is, the HDR image is generated.
  • one of the at least two images is selected as a reference image according to an exposure amount, and the under-exposed block and the over-exploded block are identified, according to different positions of the under-exposed block.
  • Selecting the brightness of the image, selecting an actual use block of the HDR image on the underexposure block, and selecting the HDR image on the overexposed block according to brightness of different images on the overexposed block position Actually using the block, generating the HDR image according to an actual use block of the HDR image on the underexposure block, and an actual use block of the HDR image on the overexposed block, The generation of HDR images is achieved.
  • the method further includes:
  • Sorting the exposure amounts of the respective photographing devices respectively determining that the images other than the reference image are overexposed images and underexposed images;
  • the block whose block brightness is greater than the brightness of the corresponding block of the reference image is deleted;
  • the block whose block brightness is smaller than the brightness of the corresponding block of the reference image is deleted.
  • the above process is to filter the overexposed image and the underexposed image before selecting the actual use block, and filtering out the block in which it is impossible to become the actual use block, thus reducing the subsequent comparison operation.
  • the block whose brightness is greater than the brightness of the reference image block is filtered out, similarly, In the underexposed image, the block whose block brightness is smaller than the brightness of the reference image block is filtered out.
  • FIG. 3 is a schematic structural diagram of a device for generating a high dynamic range image according to a third embodiment of the present disclosure.
  • the apparatus for generating a high dynamic range image includes: an image acquisition module 31 and a fusion module 32.
  • the image acquisition module 31 is configured to set different photographing devices by at least two exposure amounts configured on the terminal while acquiring at least two images of the photographing target.
  • the blending module 32 is configured to fuse the at least two images according to brightness to form an HDR image of the photographing target.
  • the fusion module 32 includes: a partitioning unit 321, a reference image determining unit 322, a block distinguishing unit 323, an underexposure selecting unit 324, an overexposure selecting unit 325, and an image fusing unit 326.
  • the partitioning unit 321 is configured to partition each of the images; the reference image determining unit 322 is configured to select one of the at least two images as a reference image according to an exposure amount; the block distinguishing unit 323 is configured to The brightness of each block in the reference image is determined, and the under-exposed block and the over-exposed block in the reference image are determined; the under-exposure selecting unit 324 is configured to set the brightness of the corresponding block according to the under-exposed block in different images.
  • the overexposure selection unit 325 is configured to select the HDR according to the brightness of the corresponding block in the different images in the overexposed block
  • an image fusing unit 326 configured to actually use the block according to the HDR image at the underexposed block position, and the HDR image is in the The HDR image is generated by referring to the actual use block at the location of the exposed block.
  • the block distinguishing unit 323 is configured to:
  • the blocks are sorted according to the brightness of each block in the reference image, and the set number of blocks are respectively selected as over-exposed blocks and under-exposed blocks according to the sorting.
  • the fusion module 32 further includes: a dual pass filter unit 327, configured to select one of the at least two images as a reference image according to an exposure amount, and sequentially determine the reference according to the exposure amount of each photographing device.
  • the images other than the image are overexposed images and underexposed images; in the overexposed images, the blocks whose block brightness is greater than the brightness of the corresponding block of the reference image are deleted; in the underexposed image, the block brightness is smaller than the reference image.
  • the block corresponding to the block brightness is deleted.
  • the underexposure selection unit 324 is configured to: select, according to the brightness of the corresponding block in the different images, the image block with the highest brightness as the HDR image in the underexposure block. The actual use block at the location.
  • the overexposure selection unit 325 is configured to select an image block with the lowest brightness as the HDR image in the overexposed block according to the brightness of the corresponding block in the different images in the overexposed block. The actual use block at the location.
  • the apparatus may further include a preview module 33 configured to merge the at least two images according to brightness to form an HDR image of the photographing target, and then display the HDR image in preview.
  • a preview module 33 configured to merge the at least two images according to brightness to form an HDR image of the photographing target, and then display the HDR image in preview.
  • the apparatus for generating a high dynamic range image provided by the embodiment of the present disclosure can perform the method for generating a high dynamic range image provided by the embodiment of the present disclosure, and has corresponding functions and beneficial effects.
  • the above technical solution can be implemented by using three or more camera modules, and each module can take a photo at the same time, which can save the shooting time of other photos, and can also realize preview real-time HDR, greatly improving The HDR shooting experience.
  • modules or steps of the present disclosure described above may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computer device, so that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or multiple modules thereof Or the steps are made into a single integrated circuit module.
  • the present disclosure is not limited to any specific combination of hardware and software.
  • FIG. 4 is a schematic structural diagram of a hardware of a terminal (for example, a function mobile phone) according to an embodiment of the present disclosure. As shown in FIG. 4, the terminal includes:
  • One or more processors 501 and memory 502, one processor 501 is taken as an example in FIG.
  • the terminal may further include: an input device 503 and an output device 504.
  • the processor 501, the memory 502, the input device 503, and the output device 504 in the terminal may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 502 is a non-volatile computer readable storage medium that can be configured to store non-volatile software programs, non-volatile computer-executable programs, and modules, such as high dynamic range HDR images in embodiments of the present application.
  • a program instruction/module corresponding to the method is generated (for example, the image acquisition module 31 and the fusion module 32 shown in FIG. 3).
  • the processor 501 executes various functional applications of the server and data processing by executing non-volatile software programs, instructions, and modules stored in the memory 502, that is, a method of generating a high dynamic range HDR image.
  • the memory 502 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; and the storage data area may store the creation according to the use of the high dynamic range HDR image generation method. Data, etc.
  • memory 502 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 502 can optionally include a memory that is remotely located relative to processor 501.
  • Input device 503 can be configured to receive input numeric or character information, as well as user settings and key signal inputs related to function control.
  • Output device 504 can include a display device such as a display screen.
  • the one or more modules are stored in the memory 502, and when executed by the one or more processors 501, perform a method of generating a high dynamic range HDR image in any of the above method embodiments.
  • Embodiments of the present disclosure provide a non-volatile storage medium storing computer-executable instructions configured to perform a method of generating a high dynamic range HDR image in any of the embodiments of the present disclosure.
  • a method and apparatus for generating a high dynamic range image provided by an embodiment of the present disclosure, by simultaneously acquiring a plurality of images of a shooting target from a plurality of shooting devices having different exposure amounts, performing the plurality of images according to brightness of the plurality of images Fusion, thus avoiding multiple shots in the current high dynamic range image acquisition process, effectively reducing the shooting time of high dynamic range images.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

本公开实施例公开了一种高动态范围图像的生成方法和装置。所述方法包括:通过曝光量设置不同的拍摄设备,同时获取拍摄目标的不同图像;根据亮度将从不同拍摄设备获取的图像融合,获取所述拍摄目标的高动态范围HDR图像。本公开实施例提供的高动态范围图像的生成方法和装置降低了高动态范围图像的拍摄时间。

Description

高动态范围图像的生成方法和装置
本申请要求在2015年12月8日提交中国专利局、申请号为201510896312.X、发明名称为“高动态范围图像的生成方法和装置”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及智能终端技术领域,例如涉及一种高动态范围图像的生成方法和装置。
背景技术
随着数码相机、各种配备摄像头的移动终端的普及,拍摄数码照片在人们的生活中已经是司空见惯的事情。时下智能手机风靡全球,拍照功能成了主要卖点,但是为了适应市场,手机越做越薄,必须限制拍摄设备(camera)的厚度才能保证整机厚度。理论上拍摄设备传感器的感光面积越大才能提供更好的画质,单颗摄像头增大感光面积就得搭配更厚的镜头,但这无法满足结构和外观的设计需求。
在拍摄数码照片时,常常会遇到拍摄目标物逆光的情况。在这种情况下拍摄的照片常常会因为在图像的高亮部分或者阴暗部分的细节缺失而使得图像的质量大打折扣。如果采用高动态范围(High dynamic range,HDR)拍照模式则可以很好的解决上述问题。
HDR功能可以提高拍照的画质,让照片中的细节更多。在实现本申请过程中,发明人发现:相关技术的HDR图像的拍摄过程一般是使用同一个拍摄设备进行多次拍摄,再对通过多次拍摄获得的图像进行融合。通常是连拍出三张照片才能合成出一张,这就意味着,HDR图像的拍摄时间是其他普通图像拍摄时间的数倍。HDR的拍摄时间较长容易造成拍照模糊而且拍照用时较长,并且,软件实现HDR功能只能用于拍照后,在预览时候不能实现HDR功能。
发明内容
有鉴于此,本公开实施例提出一种高动态范围图像的生成方法和装置,可以降低高动态范围图像的拍摄响应时间。
一方面,本公开实施例提供了一种高动态范围图像的生成方法,所述方法包括:
通过终端上配置的至少两个曝光量设置不同的拍摄设备,同时获取拍摄目标的至少两个图像;以及
根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的HDR图像。
另一方面,本公开实施例还提供了一种高动态范围图像的生成装置,所述装置包括:
图像获取模块,设置为通过终端上配置的至少两个曝光量设置不同的拍摄设备,同时获取拍摄目标的至少两个图像;以及
融合模块,设置为根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的HDR图像。
本公开实施例提供的高动态范围图像的生成方法和装置,通过从曝光量不同的多个拍摄设备同时获取拍摄目标的多个图像,根据所述多个图像的亮度对所述多个图像进行融合,从而避免了目前高动态范围图像获取过程中的多次拍摄,有效的降低了高动态范围图像的拍摄时间。
附图说明
图1是本公开第一实施例提供的高动态范围图像的生成方法的流程图;
图2是本公开第二实施例提供的高动态范围图像的生成方法中融合操作的流程图;
图3是本公开第三实施例提供的高动态范围图像的生成装置的结构图;以及
图4是本公开实施例提供的一种终端的硬件结构示意图。
实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的实施例仅用于解释本公开,而非对本公开的限定。另外还需要说明 的是,为了便于描述,附图中仅示出了与本公开相关的部分而非全部内容。
第一实施例
图1为本公开第一实施例提供的高动态范围图像的生成方法的流程图。在该技术方案中,所述高动态范围图像的生成方法由所述高动态范围图像的生成装置执行。并且,所述高动态范围图像的生成装置集成在用于拍摄高动态范围图像的电子设备中。该电子设备可以是平板电脑或者智能手机等。并且,该电子设备包括图像信号处理器(Image signal processor,ISP)。
参见图1,所述高动态范围图像的生成方法包括:步骤S110和步骤S120。
在步骤S110中,通过终端上配置的至少两个曝光量设置不同的拍摄设备,同时获取拍摄目标的至少两个图像。
所述拍摄设备可以是数码相机,也可以是摄像头。所述拍摄设备的数量至少是两个。可选的,所述拍摄设备的数量为奇数个。可选的,所述拍摄设备的数量是三个。
各个拍摄设备与所述ISP通信连接。所述通信连接可以是所述计算设备内部的各种连接。所述通信连接还可以是所述计算设备外部的各种通信总线,例如USB总线。
所述拍摄设备分别被设置为不同的曝光量参数。可选的,以拍摄设备的数量是三个为例,可以将三个拍摄设备中一个的曝光量设置为EV0,另一个的曝光量设置为EV+1,第三个的曝光量设置为EV-1。
采用各个拍摄设备同时对拍摄目标,例如人,进行拍摄,能够同时得到曝光量不同的多张图像。拍摄设备由于同时设置在终端上,其由于位置差距而产生的拍摄图像的差别极为微小,可以忽略不计。
在步骤S120中,根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的高动态范围图像。
由于不同拍摄设备的曝光量参数的设置不同,所以由不同的拍摄设备获取到的图像在不同频段包含图像的细节部分的程度不同。比如说,曝光量设置为EV+1的拍摄设备获取到的图像在低频部分包含更多的细节,而曝光量设置为EV-1的拍摄设备获取到的图像在高频部分包含更多的细节。
为了能够生成所述高动态范围(High dynamic range,HDR)图像,可以以多幅图像中的一幅为基准图像,识别所述基准图像中的过曝区块和欠曝区块。 然后根据识别的过曝区块和欠曝区块融合其他两幅图像的图像数据,最终生成所述HDR图像。
本实施例通过在终端上配置的至少两个曝光量设置不同的拍摄设备,同时拍摄目标的至少两个图像,以及根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的高动态范围图像,有效的降低了高动态范围图像的拍摄时间。
在上述方案的基础上,根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的HDR图像之后,还包括:将所述HDR图像进行预览显示。即,所形成的HDR图像可以设置为预览显示,这也解决了采用软件实现HDR功能时无法进行预览的问题。
第二实施例
图2为本公开第二实施例提供的高动态范围图像的生成方法的流程图。本实施例以本公开上述实施例为基础,提供了高动态范围图像的生成方法中融合操作的一种实现方式。
参见图2,该方法包括:步骤S201-207。
在步骤S201中,通过终端上配置的至少两个曝光量设置不同的拍摄设备,同时获取拍摄目标的至少两个图像;
本实施例中,假设通过曝光量分别设置为EV-1、EV0、EV+1的拍摄设备获取三张图像。
前述实施例中,根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的HDR图像的操作执行如下步骤:
在步骤S202中,将各所述图像分区。
可选的,将各图像采用相同的分区规则进行分区,则各图像中区块的位置相互对应。例如,可以将从不同拍摄设备获取到的各个图像以16行,12列平均进行分区。执行上述分区之后,各个原始图像被分为192个区块。
在步骤S203中,根据曝光量从所述至少两个图像中选择一个作为基准图像;
以从奇数个拍摄设备获取图像为例,选择基准图像时,优选选择曝光量设置为中间值的一幅图像作为所述基准图像。而在前文所举的三个拍摄设备获取图像的例子中,选择将所述曝光量设置为EV0的一幅图像作为所述基准图像。
在步骤S204中,根据所述基准图像中各区块的亮度,确定所述基准图像中的欠曝区块和过曝区块;
在基准图像中,各区块存在亮度差异,可按照预设规则从中区分出欠曝区块和过曝区块。预设规则可以为多种,可选的有如下两种方式:
第一种方式:根据所述基准图像中各区块的亮度,将区块亮度大于过曝亮度阈值的区块确定为过曝区块,将区块亮度小于欠曝亮度阈值的区块确定为欠曝区块,其中,所述过曝亮度阈值和欠曝亮度阈值根据所述基准图像亮度平均值确定;
在上述方式中,可以直接用基准图像亮度平均值来划分过曝和欠曝。亮度平均值是每个区块的亮度平均值。每个区块的亮度可以是识别RGB三色亮度再求均值而获得。当直接采用基准图像亮度平均值作为过曝亮度阈值和欠曝亮度阈值时,则基准图像中的区块被划分为欠曝区块和过曝区块。优选是,可在基准图像亮度平均值的基础上,上浮设定阈值作为过曝亮度阈值,下浮设定阈值作为欠曝亮度阈值。还可以将基准图像亮度平均值代入设定公式来计算过曝亮度阈值和欠曝亮度阈值。这样使得在基准图像中可包括欠曝区块、正常区块和过曝区块。
第二种方式:根据所述基准图像中各区块的亮度对区块进行排序,按照排序分别选择设定数量的区块作为过曝区块和欠曝区块。
上述方式中,按照亮度从大到小的顺序将区块进行排序,然后选取排序靠前的设定数量区块作为过曝区块,选取排序靠后的设定数量的区块作为欠曝区块。当然,也可以按照比例来选择。过曝区块和欠曝区块的数量可以不同。
本领域技术人员可以理解,在基准图像中识别欠曝区块和过曝区块的方式不限于上述两种。
在步骤S205中,根据所述欠曝区块在不同图像中对应区块的亮度,选择所述HDR图像在所述欠曝区块位置上的实际使用区块。
具体的,可以根据所述欠曝区块在不同图像中对应区块的亮度,选择亮度最高的图像区块作为所述HDR图像在所述欠曝区块位置上的实际使用区块。
例如,假设第一区块为欠曝区块,则将基准图像中的第一区块与其他图像的第一区块的亮度进行比较,选择其他图像中亮度最高的第一区块作为实际使用区块。通常曝光量较大的拍摄设备,拍摄的图像区块亮度较高,可设置为代替基准图像中的该欠曝区块。
在步骤S206中,根据所述过曝区块在不同图像中对应区块的亮度,选择所述HDR图像在所述过曝区块位置上的实际使用区块。
可选的,可以根据所述过曝区块在不同图像中对应区块的亮度,选择亮度最低的图像区块作为所述HDR图像在所述过曝区块位置上的实际使用区块。
例如,假设第二区块为过曝区块,则将基准图像中的第二区块与其他图像的第二区块的亮度进行比较,选择其他图像中亮度最低的第二区块作为实际使用区块。通常曝光量较小的拍摄设备,拍摄的图像区块亮度较小,可设置为代替基准图像中的该过曝区块。
在步骤S207中,根据所述HDR图像在所述欠曝区块位置上的实际使用区块,以及所述HDR图像在所述过曝区块位置上的实际使用区块,生成所述HDR图像。
完成了所述HDR图像的各个实际使用区块的选择之后,将所述实际使用区块拼合,即生成所述HDR图像。
本实施例通过将各所述图像分区,根据曝光量从所述至少两个图像中选择一个作为基准图像,并识别欠曝区块及过爆区块,根据所述欠曝区块位置上不同图像的亮度,选择所述HDR图像在所述欠曝区块上的实际使用区块,根据所述过曝区块位置上不同图像的亮度,选择所述HDR图像在所述过曝区块上的实际使用区块,根据所述HDR图像在所述欠曝区块上的实际使用区块,以及所述HDR图像在所述过曝区块上的实际使用区块,生成所述HDR图像,实现了HDR图像的生成。
在本实施例的基础上,可选的,根据曝光量从所述至少两个图像中选择一个作为基准图像之后,还包括:
根据各拍摄设备的曝光量排序,分别确定所述基准图像之外的其他图像为过曝图像和欠曝图像;
在过曝图像中,将区块亮度大于基准图像对应区块亮度的区块删除;
在欠曝图像中,将区块亮度小于基准图像对应区块亮度的区块删除。
上述过程即在选择实际使用区块之前,先对过曝图像和欠曝图像进行滤波,滤除当中不可能成为实际使用区块的区块,这样减少后续的比对操作。
例如,EV+1对应的图像为过曝图像,EV-1对应的图像为过曝图像,则在过曝图像中,将区块亮度大于基准图像区块亮度的区块滤除,类似的,在欠曝图像中,将区块亮度小于基准图像区块亮度的区块滤除。
第三实施例
图3为本公开第三实施例提供的高动态范围图像的生成装置的结构示意图。 在该技术方案中,所述高动态范围图像的生成装置包括:图像获取模块31以及融合模块32。
所述图像获取模块31设置为通过终端上配置的至少两个曝光量设置不同的拍摄设备,同时获取拍摄目标的至少两个图像。
所述融合模块32设置为根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的HDR图像。
可选的,所述融合模块32包括:分区单元321、基准图像确定单元322、区块区分单元323、欠曝选择单元324、过曝选择单元325和图像融合单元326。
其中,分区单元321,设置为将各所述图像分区;基准图像确定单元322,设置为根据曝光量从所述至少两个图像中选择一个作为基准图像;区块区分单元323,设置为根据所述基准图像中各区块的亮度,确定所述基准图像中的欠曝区块和过曝区块;欠曝选择单元324,设置为根据所述欠曝区块在不同图像中对应区块的亮度,选择所述HDR图像在所述欠曝区块位置上的实际使用区块;过曝选择单元325,设置为根据所述过曝区块在不同图像中对应区块的亮度,选择所述HDR图像在所述过曝区块位置上的实际使用区块;图像融合单元326,设置为根据所述HDR图像在所述欠曝区块位置上的实际使用区块,以及所述HDR图像在所述过曝区块位置上的实际使用区块,生成所述HDR图像。
可选的是,所述区块区分单元323设置为:
根据所述基准图像中各区块的亮度,将区块亮度大于过曝亮度阈值的区块确定为过曝区块,将区块亮度小于欠曝亮度阈值的区块确定为欠曝区块,其中,所述过曝亮度阈值和欠曝亮度阈值根据所述基准图像亮度平均值确定;或
根据所述基准图像中各区块的亮度对区块进行排序,按照排序分别选择设定数量的区块作为过曝区块和欠曝区块。
并且,所述融合模块32还包括:双通过滤单元327,设置为根据曝光量从所述至少两个图像中选择一个作为基准图像之后,根据各拍摄设备的曝光量排序,分别确定所述基准图像之外的其他图像为过曝图像和欠曝图像;在过曝图像中,将区块亮度大于基准图像对应区块亮度的区块删除;在欠曝图像中,将区块亮度小于基准图像对应区块亮度的区块删除。
可选的,所述欠曝选择单元324设置为:根据所述欠曝区块在不同图像中对应区块的亮度,选择亮度最高的图像区块作为所述HDR图像在所述欠曝区块位置上的实际使用区块。
可选的,所述过曝选择单元325设置为:根据所述过曝区块在不同图像中对应区块的亮度,选择亮度最低的图像区块作为所述HDR图像在所述过曝区块位置上的实际使用区块。
该装置还可以包括:预览模块33,设置为根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的HDR图像之后,将所述HDR图像进行预览显示。
本公开实施例所提供的高动态范围图像的生成装置,可执行本公开实施例所提供的高动态范围图像的生成方法,具备相应的功能和有益效果。
上述技术方案,为了缩小HDR拍照时间,可以采用三个或多个摄像头模组实现,每个模组同时拍一张照片可以省去其他照片的拍摄时间,同时还可以实现预览实时HDR,大大提升了HDR的拍摄体验。
本领域普通技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个计算装置上,或者分布在多个计算装置所组成的网络上,可选地,他们可以用计算机装置可执行的程序代码来实现,从而可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件的结合。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间的相同或相似的部分互相参见即可。
图4为本申请实施例提供的一种终端(例如功能手机)的硬件结构示意图,如图4所示,该终端包括:
一个或多个处理器501以及存储器502,图4中以一个处理器501为例。
终端还可以包括:输入装置503和输出装置504。
终端中的处理器501、存储器502、输入装置503和输出装置504可以通过总线或者其他方式连接,图4中以通过总线连接为例。
存储器502作为一种非易失性计算机可读存储介质,可设置为存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的高动态范围HDR图像的生成方法对应的程序指令/模块(例如,附图3所示的图像获取模块31以及融合模块32)。处理器501通过运行存储在存储器502中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现高动态范围HDR图像的生成方法。
存储器502可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据高动态范围HDR图像的生成方法的使用所创建的数据等。此外,存储器502可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器502可选包括相对于处理器501远程设置的存储器。
输入装置503可设置为接收输入的数字或字符信息,以及用户设置以及功能控制有关的键信号输入。输出装置504可包括显示屏等显示设备。
所述一个或者多个模块存储在所述存储器502中,当被所述一个或者多个处理器501执行时,执行上述任意方法实施例中的高动态范围HDR图像的生成方法。
本公开实施例提供了一种非易失性存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行本公开任一实施例中的高动态范围HDR图像的生成方法。
以上所述仅为本公开的优选实施例,并不用于限制本公开,对于本领域技术人员而言,本公开可以有各种改动和变化。凡在本公开的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供的高动态范围图像的生成方法和装置,通过从曝光量不同的多个拍摄设备同时获取拍摄目标的多个图像,根据所述多个图像的亮度对所述多个图像进行融合,从而避免了目前高动态范围图像获取过程中的多次拍摄,有效的降低了高动态范围图像的拍摄时间。

Claims (12)

  1. 一种高动态范围HDR图像的生成方法,包括:
    通过终端上配置的至少两个曝光量设置不同的拍摄设备,同时获取拍摄目标的至少两个图像;以及
    根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的HDR图像。
  2. 根据权利要求1所述的方法,其中,根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的HDR图像包括:
    将各所述图像分区;
    根据曝光量从所述至少两个图像中选择一个作为基准图像;
    根据所述基准图像中各区块的亮度,确定所述基准图像中的欠曝区块和过曝区块;
    根据所述欠曝区块在不同图像中对应区块的亮度,选择所述HDR图像在所述欠曝区块位置上的实际使用区块;
    根据所述过曝区块在不同图像中对应区块的亮度,选择所述HDR图像在所述过曝区块位置上的实际使用区块;以及
    根据所述HDR图像在所述欠曝区块位置上的实际使用区块,以及所述HDR图像在所述过曝区块位置上的实际使用区块,生成所述HDR图像。
  3. 根据权利要求2所述的方法,其中,根据所述基准图像中各区块的亮度,确定所述基准图像中的欠曝区块和过曝区块包括:
    根据所述基准图像中各区块的亮度,将区块亮度大于过曝亮度阈值的区块确定为过曝区块,将区块亮度小于欠曝亮度阈值的区块确定为欠曝区块,其中,所述过曝亮度阈值和欠曝亮度阈值根据所述基准图像亮度平均值确定;或
    根据所述基准图像中各区块的亮度对区块进行排序,按照排序分别选择设定数量的区块作为过曝区块和欠曝区块。
  4. 根据权利要求2所述的方法,其中,根据曝光量从所述至少两个图像中选择一个作为基准图像之后,还包括:
    根据各拍摄设备的曝光量排序,分别确定所述基准图像之外的其他图像为过曝图像和欠曝图像;
    在过曝图像中,将区块亮度大于基准图像对应区块亮度的区块删除;
    在欠曝图像中,将区块亮度小于基准图像对应区块亮度的区块删除。
  5. 根据权利要求2-4任一所述的方法,其中:
    根据所述欠曝区块在不同图像中对应区块的亮度,选择所述HDR图像在所 述欠曝区块位置上的实际使用区块包括:根据所述欠曝区块在不同图像中对应区块的亮度,选择亮度最高的图像区块作为所述HDR图像在所述欠曝区块位置上的实际使用区块;
    根据所述过曝区块在不同图像中对应区块的亮度,选择所述HDR图像在所述过曝区块位置上的实际使用区块包括:根据所述过曝区块在不同图像中对应区块的亮度,选择亮度最低的图像区块作为所述HDR图像在所述过曝区块位置上的实际使用区块。
  6. 根据权利要求1所述的方法,其中,根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的HDR图像之后,还包括:
    将所述HDR图像进行预览显示。
  7. 一种高动态范围HDR图像的生成装置,包括:
    图像获取模块,设置为通过终端上配置的至少两个曝光量设置不同的拍摄设备,同时获取拍摄目标的至少两个图像;以及
    融合模块,设置为根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的HDR图像。
  8. 根据权利要求7所述的装置,其中,所述融合模块包括:
    分区单元,设置为将各所述图像分区;
    基准图像确定单元,设置为根据曝光量从所述至少两个图像中选择一个作为基准图像;
    区块区分单元,设置为根据所述基准图像中各区块的亮度,确定所述基准图像中的欠曝区块和过曝区块;
    欠曝选择单元,设置为根据所述欠曝区块在不同图像中对应区块的亮度,选择所述HDR图像在所述欠曝区块位置上的实际使用区块;
    过曝选择单元,设置为根据所述过曝区块在不同图像中对应区块的亮度,选择所述HDR图像在所述过曝区块位置上的实际使用区块;以及
    图像融合单元,设置为根据所述HDR图像在所述欠曝区块位置上的实际使用区块,以及所述HDR图像在所述过曝区块位置上的实际使用区块,生成所述HDR图像。
  9. 根据权利要求8所述的装置,其中,所述区块区分单元设置为:
    根据所述基准图像中各区块的亮度,将区块亮度大于过曝亮度阈值的区块确定为过曝区块,将区块亮度小于欠曝亮度阈值的区块确定为欠曝区块,其中, 所述过曝亮度阈值和欠曝亮度阈值根据所述基准图像亮度平均值确定;或
    根据所述基准图像中各区块的亮度对区块进行排序,按照排序分别选择设定数量的区块作为过曝区块和欠曝区块。
  10. 根据权利要求8所述的装置,其中,所述融合模块还包括:
    双通过滤单元,设置为根据曝光量从所述至少两个图像中选择一个作为基准图像之后,根据各拍摄设备的曝光量排序,分别确定所述基准图像之外的其他图像为过曝图像和欠曝图像;在过曝图像中,将区块亮度大于基准图像对应区块亮度的区块删除;在欠曝图像中,将区块亮度小于基准图像对应区块亮度的区块删除。
  11. 根据权利要求8-10任一所述的装置,其中:
    所述欠曝选择单元设置为:根据所述欠曝区块在不同图像中对应区块的亮度,选择亮度最高的图像区块作为所述HDR图像在所述欠曝区块位置上的实际使用区块;
    所述过曝选择单元设置为:根据所述过曝区块在不同图像中对应区块的亮度,选择亮度最低的图像区块作为所述HDR图像在所述过曝区块位置上的实际使用区块。
  12. 根据权利要求7所述的装置,其中,还包括:
    预览模块,设置为根据亮度将所述至少两个图像进行融合,以形成所述拍摄目标的HDR图像之后,将所述HDR图像进行预览显示。
PCT/CN2016/088996 2015-12-08 2016-07-06 高动态范围图像的生成方法和装置 WO2017096866A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16767124.7A EP3200446A4 (en) 2015-12-08 2016-07-06 Method and apparatus for generating high dynamic range image
JP2016559906A JP2018504790A (ja) 2015-12-08 2016-07-06 ハイダイナミックレンジ画像の生成方法及び装置
US15/243,396 US20170163902A1 (en) 2015-12-08 2016-08-22 Method and electronic device for generating high dynamic range image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510896312.X 2015-12-08
CN201510896312.XA CN105872393A (zh) 2015-12-08 2015-12-08 高动态范围图像的生成方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/243,396 Continuation US20170163902A1 (en) 2015-12-08 2016-08-22 Method and electronic device for generating high dynamic range image

Publications (1)

Publication Number Publication Date
WO2017096866A1 true WO2017096866A1 (zh) 2017-06-15

Family

ID=56624305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088996 WO2017096866A1 (zh) 2015-12-08 2016-07-06 高动态范围图像的生成方法和装置

Country Status (4)

Country Link
EP (1) EP3200446A4 (zh)
JP (1) JP2018504790A (zh)
CN (1) CN105872393A (zh)
WO (1) WO2017096866A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822426A (zh) * 2020-12-30 2021-05-18 上海掌门科技有限公司 一种用于生成高动态范围图像的方法与设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108205796B (zh) * 2016-12-16 2021-08-10 大唐电信科技股份有限公司 一种多曝光图像的融合方法及装置
CN106657783A (zh) * 2016-12-22 2017-05-10 努比亚技术有限公司 图片拍摄的装置及方法
JP6712362B2 (ja) * 2017-04-25 2020-06-17 富士フイルム株式会社 画像処理装置、撮像装置、画像処理方法、およびプログラム
CN107395898B (zh) * 2017-08-24 2021-01-15 维沃移动通信有限公司 一种拍摄方法及移动终端
CN107483836B (zh) * 2017-09-27 2019-11-29 维沃移动通信有限公司 一种拍摄方法及移动终端
CN107809582A (zh) * 2017-10-12 2018-03-16 广东欧珀移动通信有限公司 图像处理方法、电子装置和计算机可读存储介质
US10609299B1 (en) * 2018-09-17 2020-03-31 Black Sesame International Holding Limited Method of measuring light using dual cameras
CN111050143B (zh) 2018-10-11 2021-09-21 华为技术有限公司 一种图像拍摄方法和终端设备
CN109005367B (zh) * 2018-10-15 2020-10-13 Oppo广东移动通信有限公司 一种高动态范围图像的生成方法、移动终端及存储介质
CN109688334A (zh) * 2018-11-23 2019-04-26 成都西纬科技有限公司 拍摄方法、装置、电子设备、计算机可读存储介质
CN109639996B (zh) * 2019-01-23 2023-06-06 努比亚技术有限公司 高动态场景成像方法、移动终端及计算机可读存储介质
CN110033421B (zh) * 2019-04-09 2021-08-24 Oppo广东移动通信有限公司 图像处理方法、装置、存储介质及电子设备
CN110213503A (zh) * 2019-06-28 2019-09-06 Oppo广东移动通信有限公司 图像处理方法、装置、存储介质及电子设备
CN110278375B (zh) * 2019-06-28 2021-06-15 Oppo广东移动通信有限公司 图像处理方法、装置、存储介质及电子设备
CN111083389B (zh) * 2019-12-27 2021-11-16 维沃移动通信有限公司 一种拍摄图像的方法和装置
CN111988540A (zh) * 2020-08-20 2020-11-24 合肥维信诺科技有限公司 图像采集方法、系统及显示面板
CN112188082A (zh) * 2020-08-28 2021-01-05 努比亚技术有限公司 高动态范围图像拍摄方法、拍摄装置、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052100A (zh) * 2007-03-29 2007-10-10 上海交通大学 多曝光图像增强方法
CN101227562A (zh) * 2007-01-19 2008-07-23 华晶科技股份有限公司 亮度的修正方法
CN101399924A (zh) * 2007-09-25 2009-04-01 展讯通信(上海)有限公司 基于亮度直方图的自动曝光方法和装置
CN103098456A (zh) * 2010-07-08 2013-05-08 株式会社理光 图像处理单元、图像处理方法和图像处理程序
CN103986875A (zh) * 2014-05-29 2014-08-13 宇龙计算机通信科技(深圳)有限公司 一种图像获取装置、方法、终端及视频获取方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100060140A (ko) * 2008-11-27 2010-06-07 삼성전자주식회사 영상 처리 장치에서의 광역 역광 보정 영상 획득 장치 및 방법
JP2010278890A (ja) * 2009-05-29 2010-12-09 Canon Inc 画像形成装置、画像形成方法
US8515137B2 (en) * 2010-05-03 2013-08-20 Microsoft Corporation Generating a combined image from multiple images
JP5713752B2 (ja) * 2011-03-28 2015-05-07 キヤノン株式会社 画像処理装置、及びその制御方法
CN102739949A (zh) * 2011-04-01 2012-10-17 张可伦 多镜头相机和多镜头装置的控制方法
US9270875B2 (en) * 2011-07-20 2016-02-23 Broadcom Corporation Dual image capture processing
JP6031670B2 (ja) * 2011-12-09 2016-11-24 パナソニックIpマネジメント株式会社 撮像装置
US20130242057A1 (en) * 2012-03-16 2013-09-19 Research In Motion Limited Methods and devices for producing an enhanced image
EP2860957B1 (en) * 2012-06-11 2020-11-18 Sony Interactive Entertainment Inc. Image capturing device, image capturing method and computer-readable recording medium
KR101437898B1 (ko) * 2012-12-05 2014-09-15 중앙대학교 산학협력단 단일 영상을 이용한 hdr 영상 생성 장치 및 방법
JP6246629B2 (ja) * 2014-03-14 2017-12-13 株式会社東芝 監視装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227562A (zh) * 2007-01-19 2008-07-23 华晶科技股份有限公司 亮度的修正方法
CN101052100A (zh) * 2007-03-29 2007-10-10 上海交通大学 多曝光图像增强方法
CN101399924A (zh) * 2007-09-25 2009-04-01 展讯通信(上海)有限公司 基于亮度直方图的自动曝光方法和装置
CN103098456A (zh) * 2010-07-08 2013-05-08 株式会社理光 图像处理单元、图像处理方法和图像处理程序
CN103986875A (zh) * 2014-05-29 2014-08-13 宇龙计算机通信科技(深圳)有限公司 一种图像获取装置、方法、终端及视频获取方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200446A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822426A (zh) * 2020-12-30 2021-05-18 上海掌门科技有限公司 一种用于生成高动态范围图像的方法与设备

Also Published As

Publication number Publication date
EP3200446A1 (en) 2017-08-02
JP2018504790A (ja) 2018-02-15
EP3200446A4 (en) 2017-08-02
CN105872393A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2017096866A1 (zh) 高动态范围图像的生成方法和装置
TWI530911B (zh) 動態曝光調整方法及其電子裝置
CN111684788A (zh) 一种图像处理的方法和装置
TWI538512B (zh) 調整對焦位置的方法及電子裝置
US9013589B2 (en) Digital image processing apparatus and digital image processing method capable of obtaining sensibility-based image
JP6267502B2 (ja) 撮像装置、撮像装置の制御方法、及び、プログラム
US11570376B2 (en) All-in-focus implementation
JP2016506707A (ja) 撮影方法、装置、および端末
US20170163902A1 (en) Method and electronic device for generating high dynamic range image
KR102207633B1 (ko) 촬영 장치 및 그 제어 방법
TWI486057B (zh) 影像擷取裝置及其影像合成方法
WO2017047012A1 (ja) 撮像装置および撮像装置とサーバとを含むシステム
WO2019214574A1 (zh) 图像拍摄方法、装置及电子终端
WO2021169686A1 (zh) 一种拍摄控制方法、装置及计算机可读存储介质
TWI543615B (zh) 影像處理方法及其電子裝置
US9674496B2 (en) Method for selecting metering mode and image capturing device thereof
WO2016082347A1 (zh) 亮度补偿方法、装置和计算机存储介质
CN111586308B (zh) 图像处理方法、装置及电子设备
CN106303243A (zh) 一种拍照方法、装置及终端
CN111095912B (zh) 摄像装置、摄像方法及记录介质
WO2016123850A1 (zh) 终端拍照控制方法及终端
CN107180417B (zh) 照片处理方法、装置、计算机可读存储介质及电子设备
CN116308992A (zh) 图像处理方法和装置、电子设备、计算机可读存储介质
WO2016074414A1 (zh) 一种图像的处理方法和装置
US20150254856A1 (en) Smart moving object capture methods, devices and digital imaging systems including the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016559906

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016767124

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016767124

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE