WO2017096726A1 - 促进红外激光对陶瓷吸收能力的涂覆液及制备方法和应用 - Google Patents

促进红外激光对陶瓷吸收能力的涂覆液及制备方法和应用 Download PDF

Info

Publication number
WO2017096726A1
WO2017096726A1 PCT/CN2016/075752 CN2016075752W WO2017096726A1 WO 2017096726 A1 WO2017096726 A1 WO 2017096726A1 CN 2016075752 W CN2016075752 W CN 2016075752W WO 2017096726 A1 WO2017096726 A1 WO 2017096726A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating liquid
infrared laser
ceramic
ceramics
promoting
Prior art date
Application number
PCT/CN2016/075752
Other languages
English (en)
French (fr)
Inventor
赵裕兴
张凯
Original Assignee
苏州德龙激光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州德龙激光股份有限公司 filed Critical 苏州德龙激光股份有限公司
Publication of WO2017096726A1 publication Critical patent/WO2017096726A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/463Organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/502Water

Definitions

  • the invention relates to a coating liquid for promoting the absorption capacity of an infrared laser to a ceramic, a preparation method and an application thereof, and is suitable for laser marking and cutting of ceramics (aluminum oxide, zirconium oxide and aluminum nitride), and can also be processed as other materials.
  • a protective agent When using a protective agent.
  • the inside of the laser excites other photons by a photon, so that a large number of photons are emitted together in the form of a beam, and are concentrated by focusing into a small spot, which can interact with the material without direct contact.
  • the laser beam is transmitted through the surface of the material, the energy is sometimes not completely absorbed by the material, there is a possibility that part of the energy is reflected, part of the energy is absorbed, and part of it is transmitted, depending on the type of material and the wavelength of the laser. Of the light energy reaching the surface of the material, the portion of the energy absorbed by the material is useful for material processing.
  • the interactions between materials and materials are basically similar, different materials such as metals, ceramics, glass, and plastic have their own characteristics.
  • CO2 laser cutting can only be suitable for some ordinary ceramic cutting, for some higher requirements ceramics can not be unconstrained by its own large spot size and low processing efficiency.
  • CO 2 laser itself has some defects, such as high maintenance cost and cutting edge. Although it is not smooth, although the absorption rate of ceramics in the mid-infrared is high, with the advancement of technology and the development of the market, the processing requirements of the products are more demanding, making it incapable of the current fine processing.
  • fiber lasers in the near-infrared band have emerged as the times require, because of the small spot size, high photoelectric conversion efficiency, and high power stability, they are gradually applied in the ceramic processing industry.
  • the absorption rate of ceramics in the near-infrared region is low, and laser-processed ceramics have low absorption rate, light-breaking, and low processing efficiency.
  • the object of the present invention is to overcome the deficiencies of the prior art, to provide a coating liquid, a preparation method and an application thereof for promoting the absorption capability of an infrared laser to a ceramic, and to solve the problem of insufficient absorption rate of a near-infrared laser processing ceramic.
  • a coating liquid for promoting the absorption capacity of an infrared laser to a ceramic characterized in that the coating liquid contains the following components by weight:
  • the above coating liquid for promoting the absorption capacity of the infrared laser to the ceramic wherein the weight percentage of the components is:
  • the above coating liquid for promoting absorption of infrared ceramics to ceramics, wherein the plausible red is 6-hydroxy-5-(2-methoxy-4-sulfonic acid-5-tolyl)azo Naphthalene-2-sulfonic acid disodium salt.
  • the above coating liquid for promoting the absorption capacity of the infrared laser to the ceramic wherein the carmine is 1-(4'-sulfonate-1'-naphthylazo)-2-naphthol-6, 8-disulfonic acid trisodium salt.
  • the above coating liquid for promoting the absorption capability of the infrared laser to the ceramic wherein the solvent is water or alcohol.
  • the invention discloses a method for preparing a coating liquid for promoting the absorption capacity of an infrared laser to a ceramic.
  • the carmine red and the plausible red are uniformly mixed and stirred according to a group distribution ratio; then, the mixed powder is put into a vessel, and a solvent is added to the vessel. The mixture is uniformly mixed; then, the vessel is added to the magnet and placed on a magnetic stirrer, and the powder is uniformly dissolved by heating and magnetron stirring to form a coating solution.
  • the above method for preparing a coating liquid for promoting the absorption capability of an infrared laser to ceramics wherein the magnetic stirrer has a heating temperature control device, and the heating temperature of the solution is 40 to 50 °C.
  • the above method for preparing a coating liquid for promoting absorption of an infrared laser to a ceramic wherein the plausible red is 6-hydroxy-5-(2-methoxy-4-sulfonic acid-5-tolyl a disodium naphthalene-2-sulfonic acid disodium salt; the carmine is 1-(4'-sulfonyl-1'-naphthylazo)-2-naphthol-6,8-disulfonic acid trisodium a salt; the solvent is water or alcohol.
  • the invention promotes the application of the infrared laser to the coating liquid of the absorption capacity of the ceramic.
  • the substrate is placed on the stage with the adsorption hole, the ceramic plate is fixed thereon, and the surface of the ceramic plate is coated by using the dust-free cloth to extract the coating liquid. .
  • the coating solution prepared by the invention is applied to ceramic laser processing, directly coated on the ceramic surface, promotes the absorption of the infrared laser to the ceramic, and has high absorption rate in the near-infrared band, avoiding phenomenon such as light breakage and leakage, and high processing efficiency;
  • the components used in the coating solution are non-toxic, environmentally-friendly food grade powders, which are easily obtained from the market, are easy to prepare, and are easily soluble in water;
  • the magnetic stirrer used has a certain temperature rise and temperature control function, and the internal magnets rotate at different speeds, which can accelerate the dissolution of the coating solvent powder and provide the ratio efficiency;
  • Suitable for laser marking and cutting ceramics can also be used as a protective agent for other materials processing, can be widely used in COB, LED lighting, Processing fields such as automotive electronics.
  • Figure 1 Schematic diagram of the absorption length-wavelength curve of the examples.
  • the coating liquid which promotes the absorption capability of the infrared laser to the ceramic, the weight percentage of the component is: 20 to 40% of carmine, 1 to 5% of temptation red, and 55 to 75% of solvent. Ideal to distribute ratio: carmine red 35%, temptation red 5%, solvent 60%.
  • carmine is 1-(4'-sulfonyl-1'-naphthylazo)-2-naphthol-6,8-disulfonic acid trisodium salt;
  • clue red is 6-hydroxy-5-(2 -Methoxy-4-sulfonic acid-5-methylphenyl)azonaphthalene-2-sulfonic acid disodium salt;
  • the solvent is water or alcohol.
  • the specific preparation process is as follows: firstly, the carmine red and the plausible red are uniformly mixed and mixed according to the group distribution ratio; then, the mixed powder is put into the vessel, and the solvent is added to the vessel for formulation, the solvent is water or alcohol, and the mixture is evenly mixed; Then, the vessel is added to the magnet and placed on the magnetic stirrer.
  • the magnetic stirrer has a heating temperature control device. The heating temperature is 40-50 ° C by heating and magnetron stirring, so that the powder is uniformly dissolved to form a coating. Solution.
  • the alumina substrate is placed on the stage with the adsorption holes, the ceramic plate is fixed thereon, and the surface of the ceramic plate is coated by using the dust-free cloth to extract the coating liquid. cover.
  • the carmine red 24% and the temptation red 1% are uniformly mixed according to the group distribution ratio; then, the mixed powder is put into the vessel, 75% water is added to the vessel for mixing, and the mixture is evenly mixed; then, the vessel is added to the magnetic
  • the magnetic stirrer is placed on a magnetic stirrer.
  • the magnetic stirrer has a heating temperature control device. The heating temperature is 40-50 ° C by heating and magnetron stirring, so that the solid powder is better uniformly dissolved to form a coating solution.
  • the magnetic stirrer is placed on a magnetic stirrer.
  • the magnetic stirrer has a heating temperature control device. The heating temperature is 40-50 ° C by heating and magnetron stirring, so that the solid powder is better uniformly dissolved to form a coating solution.
  • the magnetic stirrer is placed on a magnetic stirrer.
  • the magnetic stirrer has a heating temperature control device. The heating temperature is 40-50 ° C by heating and magnetron stirring, so that the solid powder is better uniformly dissolved to form a coating solution.
  • the coating solutions prepared in the above Examples 1 to 3 were respectively used for coating a ceramic plate during laser processing, and the white alumina substrate was sequentially placed on a glass stage with an adsorption hole, and the upper layer solution was taken using a dust-free cloth.
  • the surface of the ceramic is unidirectionally coated; the coated substrate is processed by laser system for cutting, scribing, etc., and there is no phenomenon such as light breakage or leakage.
  • the processed sample is cleaned to remove the powder of the ceramic surface layer.
  • the coating solution on the ceramic surface is cleaned and the powder generated by the laser and the material is vibrated away from the ceramic surface, because the coating solution is hydrophilic and processed.
  • the ceramic is rinsed with water to remove the coating liquid from the surface layer, which is easy to remove, non-toxic and harmless, and can reach food grade and high environmental performance.
  • the ceramic substrate to be processed is fixed by a coating stage, and the surface thereof is colored.
  • the coating stage can be designed with an adsorption function to prevent the substrate from shaking during the application process. After the application is completed, it can be left to stand for about 1 minute. After the substrate is dried by itself, it can be taken up and stacked to avoid the substrate being wet. When two pieces are superimposed, it causes whiteness.
  • alcohol as a solvent, the volatile properties of alcohol can be used to remove the sheets directly after application.
  • the fixture for placing the substrate is designed, and the coated substrate sheet and the sheet are spaced apart to promote the drying of the substrate, prevent the substrate from being scratched, and the liquid coated on the surface of the ceramic substrate is contaminated.
  • IPG-QCW fiber laser Using 1064nm near-infrared IPG-QCW fiber laser, it has high peak power and long pulse width compared with ordinary continuous laser, especially through instantaneous high peak power heat and lower duty cycle when working with materials. High temperature ablation of the material with the material can greatly reduce the heat affected zone; good edge effect can be obtained; the slag on the back side of the ceramic is relatively soft. It is used for batch processing of ceramic samples of different specifications and different types, and then used to verify whether there is still light leakage, jumper and inconsistent processing after the ceramic surface is coated.
  • the ultrasonic foaming cleaning tank is mainly used for cleaning the ceramic substrate to be processed by the laser system, and removing the ceramic coating liquid on the surface layer and the dust generated by the contact between the laser and the material layer.
  • the ultrasonically cleaned ceramic substrate is placed in an oven for a short time to remove the moisture of the ceramic surface layer, and the drying time is generally 2-3 minutes, and the package is quickly packaged after drying.
  • the coating solution of the invention is applied to ceramic laser processing, directly coated on the ceramic surface, promotes the absorption of the infrared laser to the ceramic, and has high absorption rate in the near-infrared band, avoiding phenomenon such as light breakage and leakage, and high processing efficiency.
  • the components used in the coating solution are non-toxic, environmentally-friendly food grade powders, which are easily obtained from the market, are simple to manufacture, and are easily soluble in water.
  • the magnetic stirrer has a certain temperature rise and temperature control function, and the internal magnets rotate at different speeds, which can accelerate the dissolution of the coating solvent powder and provide the ratio efficiency.
  • Laser processing system processing ceramics has the characteristics of fast processing speed and good processing quality, and also has the condition of accepting whether there is crack in the substrate. It is suitable for laser marking and cutting ceramics (aluminum oxide, zirconia, aluminum nitride). It can also be used as a protective agent for other materials. It can be widely used in COB, LED lighting, automotive electronics and other processing fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种促进红外激光对陶瓷吸收能力的涂覆液及制备方法和应用,组分为:胭脂红20~40%,诱惑红1~5%,溶剂55~75%;制备时,先将诱惑红和胭脂红混合搅拌均匀;将混合粉体投入到器皿中,加入溶剂进行调配,混合均匀;将器皿加入磁子,放在磁力搅拌器上,通过加热和磁子旋转搅拌方式,使粉体均匀溶解,形成涂覆溶液。使用无尘布蘸取涂覆液对陶瓷板表面进行涂覆。涂覆溶液应用于陶瓷激光加工,促进红外激光对陶瓷吸收,近红外波段的吸收率高,避免出现断光、漏线等现象,效率高。

Description

促进红外激光对陶瓷吸收能力的涂覆液及制备方法和应用 技术领域
本发明涉及一种促进红外激光对陶瓷吸收能力的涂覆液及制备方法和应用,适合激光对陶瓷类(氧化铝、氧化锆、氮化铝)划线和切割使用,亦可作为其他材料加工时的保护剂使用。
背景技术
激光作为一种新型的加工方式逐步取代一些传统机械加工方式,加工方向延伸到整个社会的各个领域,朝向高精尖的加工模式发展,既满足粗放型加工,又能兼顾精细类型的加工。
激光器内部通过一个光子激发其他光子,使大量光子以光束的形式一起发射出去,通过聚焦汇聚成一个很小的光斑,无需直接接触,即可与材料发生相互作用。当激光束透射在材料表面时,能量有时并不能完全被材料吸收,存在部分能量被反射,部分能量被吸收,部分被传递出去的可能,具体情况取决于材料类型和激光波长。在到达材料表面的光能中,被材料吸收的那部分能量对材料加工是有用的。尽管材料与材料间的相互作用基本相似,但不同材料如金属、陶瓷、玻璃和塑料各有各的特点。
目前加工陶瓷使用的红外波段的激光基本上有两种,中红外波长为10.6um的CO2激光器和近红外波长为1.06um的光纤激光器。因二氧化碳激光切割只能适合一些普通陶瓷切割,对于一些更高要求的陶瓷受到其本身光斑大,加工效率低的制约而无法展开,CO2激光器本身还存在一些缺陷,比如维护成本高,切割边缘不光滑等,虽然陶瓷在中红外的吸收率较高,但是随着科技进步和市场发展,加工的产品要求更加苛刻,使得无法 胜任当前的精细加工。在这种背景下,近红外波段的光纤激光器应运而生,因光斑小,光电转化效率高,功率稳定等高性能,逐渐应用在陶瓷加工行业方面。陶瓷在近红外波段的吸收率较低,激光加工陶瓷出现吸收率低、断光、加工效率低下等情况。
发明内容
本发明的目的是克服现有技术存在的不足,提供一种促进红外激光对陶瓷吸收能力的涂覆液及制备方法和应用,旨在解决近红外激光加工陶瓷吸收率不足的问题。
本发明的目的通过以下技术方案来实现:
促进红外激光对陶瓷吸收能力的涂覆液,特点是:所述涂覆液含有以下重量百分比的组分:
胭脂红     20~40%;
诱惑红     1~5%;
溶剂       55~75%。
进一步地,上述的促进红外激光对陶瓷吸收能力的涂覆液,其中,组分的重量百分比为:
胭脂红     35%;
诱惑红     5%;
溶剂       60%;
更进一步地,上述的促进红外激光对陶瓷吸收能力的涂覆液,其中,所述诱惑红为6-羟基-5-(2-甲氧基-4-磺酸-5-甲苯基)偶氮萘-2-磺酸二钠盐。
更进一步地,上述的促进红外激光对陶瓷吸收能力的涂覆液,其中,所述胭脂红为1-(4’-磺酸基-1’-萘偶氮)-2-萘酚-6,8-二磺酸三钠盐。
更进一步地,上述的促进红外激光对陶瓷吸收能力的涂覆液,其中,所述溶剂为水或者酒精。
本发明促进红外激光对陶瓷吸收能力的涂覆液的制备方法,首先,将胭脂红和诱惑红按照组分配比混合搅拌均匀;然后,将混合粉体投入到器皿中,向器皿中加入溶剂进行调配,混合均匀;继而,将器皿加入磁子,放在磁力搅拌器上,通过加热和磁子旋转搅拌方式,使粉体均匀溶解,形成涂覆溶液。
再进一步地,上述的促进红外激光对陶瓷吸收能力的涂覆液的制备方法,其中,所述磁力搅拌器具有加热温控装置,溶液的加热温度为40~50℃。
再进一步地,上述的促进红外激光对陶瓷吸收能力的涂覆液的制备方法,其中,所述诱惑红为6-羟基-5-(2-甲氧基-4-磺酸-5-甲苯基)偶氮萘-2-磺酸二钠盐;所述胭脂红为1-(4’-磺酸基-1’-萘偶氮)-2-萘酚-6,8-二磺酸三钠盐;所述溶剂为水或者酒精。
本发明促进红外激光对陶瓷吸收能力的涂覆液的应用,基板平放在具有吸附孔的载台上,陶瓷板固定其上,使用无尘布蘸取涂覆液对陶瓷板表面进行涂覆。
本发明技术方案突出的实质性特点和显著的进步主要体现在:
①本发明制备的涂覆溶液应用于陶瓷激光加工,直接涂覆在陶瓷表面,促进红外激光对陶瓷吸收,近红外波段的吸收率高,避免出现断光、漏线等现象,加工效率高;
②涂覆溶液所采用的成分均为无毒、环保食品级的粉体,容易从市场上获取,制备简便,并且易溶于水;
③涂覆溶液制备时,采用的磁力搅拌器具有一定的升温温控功能,内部有磁子以不同速度转动,能够起到加速涂覆溶剂粉体溶解,提供配比效率;
④适合激光对陶瓷类(氧化铝、氧化锆、氮化铝)划线和切割使用,亦可作为其他材料加工时的保护剂使用,可广泛用于COB、LED照明、 汽车电子等加工领域。
附图说明
下面结合附图对本发明技术方案作进一步说明:
图1:实施例的吸收长度-波长曲线示意图。
具体实施方式
本发明促进红外激光对陶瓷吸收能力的涂覆液,组分的重量百分比为:胭脂红20~40%,诱惑红1~5%,溶剂55~75%。理想成分配比:胭脂红35%,诱惑红5%,溶剂60%。其中,胭脂红为1-(4’-磺酸基-1’-萘偶氮)-2-萘酚-6,8-二磺酸三钠盐;诱惑红为6-羟基-5-(2-甲氧基-4-磺酸-5-甲苯基)偶氮萘-2-磺酸二钠盐;溶剂为水或者酒精。
具体的制备工艺为:首先,将胭脂红、诱惑红按照组分配比混合搅拌均匀;然后,将混合粉体投入到器皿中,向器皿中加入溶剂进行调配,溶剂为水或者酒精,混合均匀;继而,将器皿加入磁子,放在磁力搅拌器上,磁力搅拌器具有加热温控装置,通过加热和磁子旋转搅拌方式,加热温度为40~50℃,使粉体均匀溶解,形成涂覆溶液。
促进红外激光对陶瓷吸收能力的涂覆液具体应用时,氧化铝基板平放在具有吸附孔的载台上,陶瓷板固定其上,使用无尘布蘸取涂覆液对陶瓷板表面进行涂覆。
实施例1
首先,将胭脂红24%、诱惑红1%按照组分配比混合搅拌均匀;然后,将混合粉体投入到器皿中,向器皿中加入75%水进行调配,混合均匀;继而,将器皿加入磁子,放在磁力搅拌器上,磁力搅拌器具有加热温控装置,通过加热和磁子旋转搅拌方式,加热温度为40~50℃,使得固体粉末更好的均匀溶解,形成涂覆溶液。
实施例2
首先,将胭脂红20%、诱惑红5%按照组分配比混合搅拌均匀;然后,将混合粉体投入到烧杯中,向烧杯中加入75%酒精进行调配,混合均匀;继而,将烧杯加入磁子,放在磁力搅拌器上,磁力搅拌器具有加热温控装置,通过加热和磁子旋转搅拌方式,加热温度为40~50℃,使得固体粉末更好的均匀溶解,形成涂覆溶液。
实施例3
首先,将胭脂红35%、诱惑红5%按照组分配比混合搅拌均匀;然后,将混合粉体投入到烧杯中,向烧杯中加入60%酒精进行调配,混合均匀;继而,将烧杯加入磁子,放在磁力搅拌器上,磁力搅拌器具有加热温控装置,通过加热和磁子旋转搅拌方式,加热温度为40~50℃,使得固体粉末更好的均匀溶解,形成涂覆溶液。
上述实施例1~3制得的涂覆溶液分别用于激光加工时涂覆陶瓷板,将白色氧化铝基板依次平放在带有吸附孔玻璃载台上,使用无尘布蘸取上层溶液对陶瓷表面进行单向涂覆;涂覆好的基板采用激光系统对其进行切割、划线等方面的加工,未出现断光、漏线等现象。对加工完成的样品进行清洗,去除陶瓷表层的粉体。
从图1的吸收长度-波长曲线,可以表明增加诱惑红和胭脂红在溶液中的比重能够提高红外波长对其吸收度,促进红外激光对吸收剂涂抹后的吸收性能。
涂覆后的陶瓷采用激光系统加工完成后,陶瓷表面的涂覆溶液清洗干净并将激光与材料作用产生的粉体以振动的方式脱离陶瓷表面,因涂覆溶液是亲水性,加工完成的陶瓷使用清水冲洗即可将表层的涂覆液去掉,易于去除,无毒无害,可达到食品级,环保性能高。
由涂覆载台固定所要用于加工的陶瓷基板,对其表面进行着色。涂覆载台可设计为带有吸附功能,防止在涂抹过程中基板晃动。涂抹完成后可静置1分钟左右,待基板自行晾干后方可拿走堆叠到一起,避免基板潮湿 时两片叠加引起露白。使用酒精作为溶剂,借助酒精易挥发的特性,涂抹完成后可直接将片子取出叠放。设计放置基板的治具,涂覆好的基板片与片之间都有间隔,促进基板干燥,防止基板划伤,以及陶瓷基板表面涂覆好均与的液体被污染。
采用1064nm近红外IPG-QCW光纤激光器,与普通的连续激光器相比,具有很高的峰值功率和比较长的脉宽,尤其是在和材料作用时通过瞬间高峰值功率热,较低占空比与材料发生高温烧蚀了去除物质,使用这种方式可以极大地减小热影响区域;可以获得很好的边缘效果;陶瓷背面挂渣比较松软。用于批量加工不同规格,不同型号的陶瓷样品,进而用于验证陶瓷表面被涂覆以后是否还存在漏光,跳线,加工不一致的问题。
采用超声起泡清洗池,主要作用是用于清洗待激光系统加工完成的陶瓷基板,去除表层的陶瓷涂覆液和表层因激光与材料接触产生的粉尘。
将超声清洗完成的陶瓷基板放进烘箱内进行短时间去除陶瓷表层的水分,干燥时间一般2-3分钟即可,干燥完成后快速打包封装。
本发明涂覆溶液应用于陶瓷激光加工,直接涂覆在陶瓷表面,促进红外激光对陶瓷吸收,近红外波段的吸收率高,避免出现断光、漏线等现象,加工效率高。涂覆溶液所采用的成分均为无毒,环保食品级的粉体,容易从市场上获取,制作简单,并且易溶于水。涂覆溶液制备时,采用磁力搅拌器具有一定的升温温控功能,内部有磁子以不同速度转动,能够起到加速涂覆溶剂粉体溶解,提供配比效率。激光加工系统加工陶瓷具有加工速度快、加工质量好的特点,还具备验收基板是否存在裂纹的情况。适合激光对陶瓷类(氧化铝、氧化锆、氮化铝)划线和切割使用,亦可作为其他材料加工时的保护剂使用,可广泛用于COB、LED照明、汽车电子等加工领域。
需要理解到的是:以上所述仅是本发明的优选实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若 干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 促进红外激光对陶瓷吸收能力的涂覆液,其特征在于:所述涂覆液含有以下重量百分比的组分:
    胭脂红   20~40%;
    诱惑红   1~5%;
    溶剂     55~75%。
  2. 根据权利要求1所述的促进红外激光对陶瓷吸收能力的涂覆液,其特征在于:组分的重量百分比为:
    胭脂红   35%;
    诱惑红   5%;
    溶剂     60%。
  3. 根据权利要求1或2所述的促进红外激光对陶瓷吸收能力的涂覆液,其特征在于:所述诱惑红为6-羟基-5-(2-甲氧基-4-磺酸-5-甲苯基)偶氮萘-2-磺酸二钠盐。
  4. 根据权利要求1或2所述的促进红外激光对陶瓷吸收能力的涂覆液,其特征在于:所述胭脂红为1-(4’-磺酸基-1’-萘偶氮)-2-萘酚-6,8-二磺酸三钠盐。
  5. 根据权利要求1或2所述的促进红外激光对陶瓷吸收能力的涂覆液,其特征在于:所述溶剂为水或者酒精。
  6. 权利要求1所述的促进红外激光对陶瓷吸收能力的涂覆液的制备方法,其特征在于:首先,将胭脂红和诱惑红按照组分配比混合搅拌均匀;然后,将混合粉体投入到器皿中,向器皿中加入溶剂进行调配,混合均匀;继而,将器皿加入磁子,放在磁力搅拌器上,通过加热和磁子旋转搅拌方式使粉体均匀溶解,形成涂覆溶液。
  7. 根据权利要求6所述的促进红外激光对陶瓷吸收能力的涂覆液的制备方法,其特征在于:所述磁力搅拌器具有加热温控装置,溶液的加热温度为40~50℃。
  8. 根据权利要求6所述的促进红外激光对陶瓷吸收能力的涂覆液的制备方法,其特征在于:所述诱惑红为6-羟基-5-(2-甲氧基-4-磺酸-5-甲苯基)偶氮萘-2-磺酸二钠盐;所述胭脂红为1-(4’-磺酸基-1’-萘偶氮)-2-萘酚-6,8-二磺酸三钠盐。
  9. 根据权利要求6所述的促进红外激光对陶瓷吸收能力的涂覆液的制备方法,其特征在于:所述溶剂为水或者酒精。
  10. 权利要求1~5任意一项促进红外激光对陶瓷吸收能力的涂覆液的应用,其特征在于:基板平放在具有吸附孔的载台上,陶瓷板固定其上,使用无尘布蘸取涂覆液对陶瓷板表面进行涂覆。
PCT/CN2016/075752 2015-12-08 2016-03-07 促进红外激光对陶瓷吸收能力的涂覆液及制备方法和应用 WO2017096726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510895819.3A CN105481473B (zh) 2015-12-08 2015-12-08 促进红外激光对陶瓷吸收能力的涂覆液及制备方法和应用
CN201510895819.3 2015-12-08

Publications (1)

Publication Number Publication Date
WO2017096726A1 true WO2017096726A1 (zh) 2017-06-15

Family

ID=55668798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075752 WO2017096726A1 (zh) 2015-12-08 2016-03-07 促进红外激光对陶瓷吸收能力的涂覆液及制备方法和应用

Country Status (2)

Country Link
CN (1) CN105481473B (zh)
WO (1) WO2017096726A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107903673A (zh) * 2017-12-04 2018-04-13 南充三环电子有限公司 一种促进陶瓷基板对红外激光吸收的染料
CN110734660A (zh) * 2018-07-18 2020-01-31 江西昊光科技有限公司 一种增强氧化铝陶瓷对光纤激光能量吸收的涂料及制备方法
CN113714647A (zh) * 2020-05-26 2021-11-30 Oppo广东移动通信有限公司 壳体组件、制备方法和电子设备
CN114466538A (zh) * 2020-11-09 2022-05-10 Oppo广东移动通信有限公司 壳体及其制作方法、电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106192A (ja) * 1993-09-30 1995-04-21 Taiyo Yuden Co Ltd レーザ加工用セラミックグリーンシート及び積層セラミック電子部品の製造方法
CN1470578A (zh) * 2003-06-13 2004-01-28 贵州工业大学 激光热处理用吸光涂料及其制作方法
CN103192199A (zh) * 2013-04-18 2013-07-10 苏州光韵达光电科技有限公司 一种用于光纤激光切割陶瓷的吸收剂
CN104014940A (zh) * 2014-05-29 2014-09-03 深圳市大族激光科技股份有限公司 陶瓷基板的涂覆钻孔方法、涂层溶胶及涂覆装置
CN104646824A (zh) * 2015-01-26 2015-05-27 武汉华工激光工程有限责任公司 用于陶瓷激光切割的吸收剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106192A (ja) * 1993-09-30 1995-04-21 Taiyo Yuden Co Ltd レーザ加工用セラミックグリーンシート及び積層セラミック電子部品の製造方法
CN1470578A (zh) * 2003-06-13 2004-01-28 贵州工业大学 激光热处理用吸光涂料及其制作方法
CN103192199A (zh) * 2013-04-18 2013-07-10 苏州光韵达光电科技有限公司 一种用于光纤激光切割陶瓷的吸收剂
CN104014940A (zh) * 2014-05-29 2014-09-03 深圳市大族激光科技股份有限公司 陶瓷基板的涂覆钻孔方法、涂层溶胶及涂覆装置
CN104646824A (zh) * 2015-01-26 2015-05-27 武汉华工激光工程有限责任公司 用于陶瓷激光切割的吸收剂及其制备方法

Also Published As

Publication number Publication date
CN105481473A (zh) 2016-04-13
CN105481473B (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2017096726A1 (zh) 促进红外激光对陶瓷吸收能力的涂覆液及制备方法和应用
KR20140085302A (ko) 레이저 가공 방법 및 미립자층 형성제
CN102916081B (zh) 一种薄膜太阳能电池的清边方法
US9090783B2 (en) Protective film agent for laser dicing and wafer processing method using the protective film agent
CN109954966A (zh) 通过飞秒激光进行金属表面处理的方法
CN209109750U (zh) 湿式激光清洗系统
CN105414804B (zh) 激光焊接增强涂层和波形在铜、铝焊接中的应用
CN108787636A (zh) 一种激光清洗去除复合材料表面漆层的方法
TW200849634A (en) Method and device for ablating thin-films on the edges of a plane thin-film coated substrate
CN107983389A (zh) 一种光催化复合材料的制备方法及制备的光催化复合材料
CN107999111A (zh) 一种光催化复合材料及其制备改性pvdf膜的方法
CN102437234A (zh) 一种太阳能电池片印刷返工次品的处理方法
CN107914082A (zh) 用以形成作为皮秒激光加工的保护层的溶液与其制造方法
JP6341666B2 (ja) レーザー加工方法
CN104646824B (zh) 用于陶瓷激光切割的吸收剂及其制备方法
CN106564858B (zh) 一种纳米级硅藻壳颗粒单层阵列及其制备方法
JP2011218384A (ja) 透明材料のレーザー加工方法
CN104371732A (zh) 一种采用疏水性半导体量子点制成荧光凝胶玻璃的方法
CN107903673A (zh) 一种促进陶瓷基板对红外激光吸收的染料
CN106635454A (zh) 光学玻璃清洗剂及其制备方法
CN102896431B (zh) 一种避免夹渣的提高铝合金激光吸光率的激光焊接方法
CN108405487A (zh) 一种无损激光清洗方法
CN110799687A (zh) 非织造制品及其制备方法
CN108102642B (zh) 一种紫外荧光粉膜层及其制备方法
CN207808757U (zh) 用于感光油墨加工的预热烘干装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16871933

Country of ref document: EP

Kind code of ref document: A1