WO2017096444A1 - Aparato, sistema e método de geração de nano bolhas a partir de gases e soluções líquidas - Google Patents

Aparato, sistema e método de geração de nano bolhas a partir de gases e soluções líquidas Download PDF

Info

Publication number
WO2017096444A1
WO2017096444A1 PCT/BR2016/050266 BR2016050266W WO2017096444A1 WO 2017096444 A1 WO2017096444 A1 WO 2017096444A1 BR 2016050266 W BR2016050266 W BR 2016050266W WO 2017096444 A1 WO2017096444 A1 WO 2017096444A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gases
bubbles
water
nano bubble
Prior art date
Application number
PCT/BR2016/050266
Other languages
English (en)
French (fr)
Inventor
Samar Dos Santos STEINER
Edson Luiz DE OLIVEIRA
Marcelo BARBARA
Original Assignee
Steiner Samar Dos Santos
De Oliveira Edson Luiz
Barbara Marcelo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steiner Samar Dos Santos, De Oliveira Edson Luiz, Barbara Marcelo filed Critical Steiner Samar Dos Santos
Publication of WO2017096444A1 publication Critical patent/WO2017096444A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air

Definitions

  • This patent specification report relates to liquid solutions, gases, nano bubbles and a system and method of producing nano bubbles from gases and liquid solutions.
  • a nano bubble generator a nano bubble production system and method for high flow production of liquid and fluid solutions containing substantially high concentration of nano bubbles.
  • the nano bubble generator has a venturi coupled to its upper portion which generates, from a liquid / gas source, a liquid solution containing macro, micro and nano bubbles. This solution generated in the venturi is sent into the nano bubble generator.
  • This has a rotor that is rotated by an electric motor and is positioned longitudinally in the apparatus chamber.
  • the rotor base has been coupled with a known design propeller that rotates to produce a centrifugal inertial force in the present solution that is directed to collide with a permeable circular ring.
  • This ring has constitution that varies from ceramic material, metallic to silicon nitride, depending on the need of the generated particle size.
  • the size, density as well as the geometry of the holes have the advantages of having a solid fraction coming from the liquid solution that can pass through the holes in the ring, varying the size of holes for the passage of non-condensable fluids.
  • liquid solution By passing through the permeable ring the liquid solution produces liquid and fluid solutions of high concentration of nanobubbles with stable characteristics and paramagnetic properties.
  • the invention can be applied to any primary filtration system.
  • the nanobubble-containing solutions of the present invention are stable and may be present in the solutions for substantial periods of time.
  • Nanobubble containing solutions of the present invention may be stored or distributed for use and consumption.
  • the solution containing nanobubbles may be distributed and stored in a storage container, such as a reservoir, or reused.
  • the solution treated and optionally filtered by the system of the present invention is effective in destroying or substantially reducing the growth of cells, pathogens, viruses, bacteria, fungi, spores and molds, as well as improving the overall quality of the source liquids.
  • the nano bubble generator can be integrated with various liquid systems for treating many types of source liquid.
  • liquid systems may include water heaters, water coolers, potable water systems, water sanitation systems, water softeners, ion exchangers and the like.
  • Liquid systems incorporating a nano bubble generator can be used in the processing of food, oil, solvents and medical-scientific industries.
  • This method consists of providing the birds with a liquid solution containing nano bubbles.
  • the solutions generated in the present invention include - an increase in oxidation-reduction potential (ORP), which is relatively higher than in the source liquid used to generate the nanobubble containing solution of the present invention.
  • Solution comprising a mixture of a liquid and a gas.
  • the gaseous component of the mixture is selected from a group of substances: nitrogen, oxygen, carbon dioxide, ozone, ethanol, methanol and hydrogen.
  • Source of liquid solution originating in the nano bubble generator, systems and methods of any of the above embodiments is applicable without the use of external gases.
  • the liquid solution used in the nano bubble generator, systems and methods of any of the above applicable embodiments is devoid of micro or nano bubbles.
  • Drilling mud for drilling oil wells Drilling mud for drilling oil wells.
  • Insulating oil for transformers Insulating oil for transformers.
  • Contrast medium aiming at the improvement of the echocardiographic signal.
  • Protein for use as a food additive Protein for use as a food additive.
  • Protein for use as a food filler Protein for use as a food filler.
  • Nutritional supplements for increasing body mass are nutritional supplements for increasing body mass.
  • Nutritional supplements for general health and well-being are nutritional supplements for general health and well-being.
  • Oil based paints Oil based paints.
  • nano-bubble apparatus system and method of generating the present invention as set forth above may be incorporated into the list of green technologies as it has practical application in the following:
  • the invention has as its main feature the execution of physical changes in liquid solutions which upon passing the apparatus take on new properties which substantially increase the dissolved oxygen concentration which is of great use in the processes of treating contaminated sources or sources with needs to increase their life cycle, without any chemical additives.
  • the technology proposed by this invention promotes the optimization of water treatment systems. This fact is mainly supported by the following properties:
  • Geometric increase of the contact surface promoted by the generation of nano bubbles increased the reaction kinetics.
  • the nano bubble When purchased with macro and micro bubbles, with a maximum stability of a few hours, the nano bubble provides a much longer residence time.
  • the use of the present invention in the water treatment, industrial effluent and sewage treatment sectors meets the need to strengthen efforts to promote a more sustainable water use infrastructure by employing processes from solid and comprehensive planning to delivering projects that are cost-effective throughout their life cycle, efficient in using existing resources and consistent with community sustainability goals.
  • the use of green technologies and sustainable practices is one of the biggest challenges for the development of the future water sector and essential for the protection of human health and the environment by targeting clean and safe water.
  • green business models provide a solid foundation for creating market values.
  • the present invention allows an approach based on understanding the problem by enabling the use of solutions appropriate to the need for use, saving energy for end consumers, and encouraging a change in direction towards more sustainable behavior.
  • the environmental impacts of a green business model are variable, but generally help to improve energy efficiency, reduce the use of scarce and necessary raw materials, and promote increased use of renewable energy.
  • Gas transport means - in which a gas is forced to pass through micro pores of gas-dispersed liquid pipe.
  • Patent document WO 201 1013706 A1 entitled "Super-micro bubbie generation device” proposes a microbubble generation device that can generate microbubbles using a simple method, and can be installed in such a way that it provides a higher degree of microbubble. freedom of installation, to allow the designed device to be installed in a place where it meets functional requirements, usually at the bottom of a reaction tank.
  • the microbubble generating device consists of a compressor for supplying gas under pressure. The gas is admitted into a dispersing and bubble generating device to discharge the gas which has been delivered under pressure as microbubbles into the liquid.
  • the bubble generating medium is comprised of a high density compound which is an electrically conductive substance.
  • the microbubble generating device is also provided as a recirculating pump and a liquid jet device directed perpendicular to the discharge direction of the generated microbubbles.
  • US8186652 B2 entitled “Gas and liquid mixture generation apparatus” proposes an apparatus consisting of a simple structure and capable of generating fine air bubbles. It includes a body having a circular column-like inner space defined by a cylindrical inner surface and circular inner surfaces. At least one inner cylindrical section may be disposed within the inner space with direction outwardly of the inner cylindrical surface. A first fluid introducing section may inject the first fluid into a tubular space between the cylindrical inner surface and the inner cylindrical member in a circumferential direction. A second fluid introduction section and a gas discharge port and liquid mixture port may be arranged on the circular interior surfaces, respectively. The components of this equipment are static.
  • the present invention aims to use the cavitation principle obtained by means of an apparatus which promotes flow velocity variations providing shear between two fluids.
  • oxidizing / reducing gases such as effluent treatment, reuse water treatment, remediation of areas contaminated with environmentally harmful fluids ( hydrocarbons, alcohols, among others), pisciculture for water oxygenation, food disinfection.
  • This mass transfer characteristic increases the ability to oxidize and reduce the contaminants in the medium to be treated.
  • the stability of the nanobubble provides the adsorption of contaminants on its surface. They also offer a high data transfer rate. oxygen in aeration ponds and effluent treatment plants.
  • the invention consists of a nano bubble generating apparatus and a method of nano bubble generation which, through the use of a hydrodynamic cavitator coupled to the upper part of said apparatus, conducts the fluid to a chamber having a rotor in the upper part. lower body capable of rotating a propeller of known design which by centrifugal force collides the fluid with a mesh coupled within a chamber.
  • a hydrodynamic cavitator coupled to the upper part of said apparatus, conducts the fluid to a chamber having a rotor in the upper part.
  • lower body capable of rotating a propeller of known design which by centrifugal force collides the fluid with a mesh coupled within a chamber.
  • Such screen has controlled sized holes that can vary from micrometer to nanometric (depending on the application), with concave geometry on the inner face, plane-parallel constriction and convex geometry on the outer face, thus generating nanometric bubbles on its output.
  • Microbubble generation has already been tested in different processes of the application areas cited in this report, notably in wastewater treatment, water reuse and environmental decontamination of soils and groundwater, where microbubble generation technology or Ultrafine bubbles have the function of increasing the contact surface between reagents, improving the chemical kinetics and increasing the stability of these reagents in the treatment processes.
  • the microbubble apparatus is a hydrodynamic cavitator which, by means of Venturi, performs a process of raising the gas-liquid mixture turbulence, causing the macrobubbles to collapse into microbubbles, increasing stability with increasing surface tension of the microbubbles. generated structures.
  • Hydrodynamic cavitation is known to occur when the pressure at a point in a liquid is momentarily reduced below its vapor pressure due to the high flow velocity. Based on Henry's Law, the fraction of gas dissolved in water at a temperature is proportional to the gas partial pressure. Thus, the increase in pressure causes an increase in gas solubility in liquid (BOUATFI et al., 2001).
  • Composition of saturated air can reduce the amount of saturated air.
  • Gaseous cores can be generated according to the principles of cavitation by strong shear, or high turbulence, and high velocity of fluid. These phenomena occur in flow constrictors, which create necessary pressure fluctuations within the liquid so that at some points the local pressure decreases to the water vapor pressure value (ZHOU et al., 1994 apud FAN et al. ., 2010).
  • the critical size of the microbubble coalescence is in the order of 50 to 65 ⁇ .
  • the shear and turbulence generated by the apparatus reduces bubbles to macrobubbles increasing their concentration in the fluid medium.
  • the claimed invention has the most overriding advantages:
  • the nanobubble generator makes the effluent treatment, water treatment for reuse and remediation of contaminated areas more flexible, regardless of the volume to be treated, simply by installing other generation units.
  • the nano bubble generator enables the decontamination of the medium without the need to interrupt the productive and / or commercial processes.
  • the nano bubble generator has high mass transfer capacity of nano bubbles generated, avoiding the hydraulic effect of dislocation of contaminant plume, a fact common in conventional in situ remediation processes where liquid injection occurs.
  • the nano bubble generator automatically mixes solutions, varying concentrations and formulations in real time according to the operational needs of the wastewater treatment process, reuse water and contaminated areas.
  • the nano bubble generator allows automated flow control of chemicals, liquids, gases as well as the measurement of quickly correcting process parameters such as such as pressure, temperature, dissolved gases, reductions caused by reactions of reagents with contaminants.
  • the nano bubble generator allows the application of any kind of solutions
  • Figure: 1 Perspective view of the nano bubble generator apparatus illustrating the main components.
  • Figure 2 Side sectional view of the nano bubble generator apparatus illustrating the inlet and outlet (section A-A and B-B).
  • FIG. 3 Detail of section BB illustrating the hydrodynamic cavitation stage
  • Figure 5 Side view of perforated static element with enlarged detail of the screen holes with the flow direction.
  • the claimed invention as illustrated in Figure 1 relates to a nanobubble generating apparatus comprising a first cavitation stage (1), an electric motor (2) driving the second hydrodynamic cavitation stage (3). ), and output of gas / liquid mixture (3A) for use in wastewater treatment processes, water for reuse and remediation of areas contaminated with environmentally hazardous products, which have a higher technical, operational and economic efficiency related to processes. treatment and aeration processes in the process of decontamination of domestic wastewater and industrial processes in wastewater treatment plants.
  • Figure 2 shows the process comprising two stages of hydrodynamic cavitation.
  • a device for hydrodynamic cavitation (1) provides a pressure differential between the liquid inlet point (1 A) and the air and / or gas inlet point (1 B).
  • the tubular bundle (1 C) has tubes with geometry that generate micro turbulence in the fluid and collapse of bubbles and microbubbles formed in the previous stage, accelerating the process of gas nucleation.
  • the second stage of hydrodynamic cavitation comprises a static body (3) housing a rotary finned device (4), which promotes helical and centrifugal acceleration effect of the fluid being driven by the motor (2).
  • the section of figure 3 shows a venturi element (7) for inlet liquid fluid through the inlet (1 A). Gaseous fluid is admitted through the inlet (1 B) into a restriction region of the water injector.
  • the variation in pressure and velocity between two fluids within the device provides the effect of hydrodynamic cavitation and as a consequence the formation of bubbles, macrobubbles, microbubbles and a portion of nanobubbles. This hydrodynamic effect, as already commented, is governed by the Bernoulli equation.
  • the shear effect between two fluids is enhanced in the tubular bundle (8), which, governed by the same Bernoulli Equation Law, generates micro turbulence in the gas / liquid fluid collapsing the bubbles and microbubbles formed in the anterior stage to smaller dimensions.
  • the second stage of hydrodynamic cavitation (3) comprises a helical accelerator (4) which is an apparatus composed of an electric motor (2) which drives the rotor (9) of the said helical accelerator. (4), in which its mechanical design forces centrifugal fluid flow against perforated fins (5) which are arranged vertically to the stator.
  • the design of the rotor (8) provides a helical direction to the flow.
  • the centrifugal force caused by the rotor (8) accelerates the bubbles contained in the fluid by forcing them against the perforated fins (5) of the stator. This physical effect causes bubble and microbubble to collapse. Nanobubble formation and stabilization is achieved in a perforated static element (6) disposed just after the fins, where flow is forced through the small holes where the second stage of hydrodynamic cavitation occurs, reducing the particles to nanometric levels.
  • Figure 5 illustrates the perforated static element (6) consisting of a cylindrical web of varying thickness and with holes (6A) of geometry that provide velocity and pressure variation at each bore of the cylindrical web. This effect on each The hole causes shear between liquid and gaseous fluids at the screen outlet, collapsing bubbles with a high degree of dimensional stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)

Abstract

Propõe um aparato compacto de geração de nanobolhas que apresenta maior eficiência de ordem técnica, operacional e econômica para utilização em processos de todas as aplicações citadas. O aparato possui um eficiente gerador / estabilizador de nanobolhas, capaz de manter os reagentes durante mais tempo na massa de contaminantes pelo efeito de nucleação gasosa. As nanobolhas são caracterizadas por possuírem núcleo gasoso e diâmetros nanométricos. Por sua natureza, nanobolhas possuem uma elevada área de superfície específica e alta eficiência de transferência de massa. A geração de nanobolhas no aparato ocorre em dois estágios de cavitação hidrodinâmica. No primeiro estágio ocorre a mistura do fluido líquido com o ar ou gases oxidantes, formando macrobolhas, bolhas e bolhas ultrafinas. No segundo estágio de cavitação, um motor elétrico aciona um rotor que força os fluidos contra um dispositivo estático e perfurado, provocando colapso da bolhas e formação e estabilização dimensional das nanobolhas.

Description

APARATO, SISTEMA E MÉTODO DE GERAÇÃO DE NANO BOLHAS A PARTIR DE GASES E SOLUÇÕES LÍQUIDAS
Campo da Invenção e Breve Apresentação
[0001 ] O presente relatório descritivo de Patente de Invenção refere-se a soluções líquidas, gases, nano bolhas e a um sistema e um método de produção de nano bolhas a partir de gases e soluções líquidas.
[0002] um gerador de nano bolhas, um sistema e um método de produção de nano bolhas para produção em alta vazão de soluções líquidas e fluidos, contendo substancialmente elevada concentração de nano bolhas.
[0003] O gerador de nano bolhas possui um venturi acoplado à sua porção superior que gera, a partir de uma fonte líquida/ gasosa, uma solução líquida contendo macro, micro e nano bolhas. Esta solução gerada no venturi é enviada ao interior do gerador de nano bolhas. Este possui um rotor que é girado por um motor elétrico e está posicionado longitudinalmente na câmara do aparato. A base do rotor há acoplado uma hélice de desenho conhecido que ao girar produz uma força inercial centrífuga na solução presente que é direcionada para colidir contra um anel circular permeável.
[0004] Este anel possui constituição que varia de material cerâmico, metálico a nitreto de silício, dependendo da necessidade da dimensão da partícula gerada. O tamanho, a densidade, bem como a a geometria dos orifícios traz as vantagens de poder haver presença fração sólida proveniente da solução líquida que podem transpassar os orifícios do anel, variando a dimensão de orifícios para a passagem de fluidos não condensáveis.
[0005] A solução líquida ao transpassar pelo anel permeável produz soluções líquidas e fluidas de elevada concentração de nano bolhas com características estáveis e propriedades paramagnéticas.
Campo de Aplicação
[0006] A invenção pode ser aplicada a todo e qualquer sistema primário de filtragem. As soluções contendo nano bolhas da presente invenção são estáveis e podem estar presentes nas soluções durante períodos de tempo substanciais.
[0007] Exemplos não limitativos de aplicações específicas: As soluções contendo nano bolhas da presente invenção podem ser armazenadas ou distribuídas para utilização e consumo.
A solução contendo nano bolhas pode ser distribuída e armazenada em um recipiente de armazenamento, tal como um reservatório, ou reuso.
A solução tratada e opcionalmente filtrada pelo sistema da presente invenção é eficaz na destruição ou redução substancial do crescimento de células, agentes patogênicos, vírus, bactérias, fungos, esporos e moldes, assim como melhora a qualidade global dos líquidos de origem.
O gerador de nano bolha pode ser integrado com vários sistemas de líquidos para o tratamento de muitos tipos de líquido fonte.
Estes sistemas de líquido podem incluir aquecedores de água, refrigeradores de água, sistemas de água potável, sistemas de saneamento de água, amaciadores de água, trocadores iónicos e congéneres.
Sistemas líquidos que incorporam um gerador nano bolha podem ser utilizados no processamento de alimentos, petróleo, solventes e indústrias médico- científicas.
Método de redução do teor de amónia no estrume de aves e outros animais. Este método consiste em proporcionar as aves uma solução líquida contendo nano bolhas.
Método de remoção de metais pesados a partir de uma solução de entrada no aparato, sistema.
As soluções geradas na presente invenção incluem - um aumento no potencial de oxidação-redução (ORP), que é relativamente mais elevado do que no líquido fonte usado para gerar a solução contendo nano bolhas da presente invenção. Solução compreendendo uma mistura de um líquido e um gás. O aspecto da solução contendo nano bolhas da presente invenção, a componente gasosa da mistura é selecionada a partir de um grupo de substâncias: azoto, oxigénio, dióxido de carbono, ozônio, etanol, metanol e hidrogénio.
Fonte de solução líquida originária no gerador de nano bolhas, sistemas e métodos de qualquer uma das formas de realização acima é aplicável sem a utilização de gases externos. A solução líquida utilizada no gerador de nano bolhas, sistemas e métodos de qualquer uma das formas de realização aplicáveis acima é desprovida de micro ou nano bolhas.
Chuveiros residenciais e industriais de nano bolhas que produzem 70% de
Figure imgf000005_0001
economia de água, obtidos pelo aumento da superfície de contato com a pele ou outra superfície.
[0008] Exemplos não limitativos de aplicações gerais:
A) Indústria da água
Água engarrafada.
Água com gás.
Água aromatizada.
Unidades de preparação de água.
Refrigerantes.
Água para banhos (spas, Jacuzzis, piscinas, unidades de filtragem).
Água para uso em irrigação de hortaliças, plantas, árvores, culturas em geral. Água utilizada na fabricação de detergentes.
Água utilizada na criação de gado e animais em geral.
Figure imgf000005_0002
Água para agricultura.
B) Laticínios e relacionados:
Leite.
Queijo.
Creme.
Manteiga.
Figure imgf000005_0003
Sorvete.
C) Indústria de bebidas alcoólicas:
Cervejaria.
Cocktails.
Figure imgf000005_0004
Destiladas.
D) Produção de etanol e açúcar
E) Indústria de gelo e relacionados:
Cubos de gelo.
Gelo embalagem.
Figure imgf000005_0005
Figure imgf000006_0001
Gelo industrial.
F) Indústria Frigorífica e relacionados:
Carne bovina.
Carne suína.
Peixe.
Aves.
Carne congelada.
Carne defumada.
Carne em conserva.
Figure imgf000006_0002
G) Higiene pessoal:
Creme dental.
Enxaguantes.
Gel.
Lavagens dentários.
Preparações para limpeza de dentadura.
Figure imgf000006_0003
Água para utilização em consultório odontológico.
H) Cosméticos e relacionados:
Lava olhos.
Água para fabricação de produtos cosméticos.
Água para fabricação de produtos farmacêuticos e medicinais.
Figure imgf000006_0004
I) Vapor e relacionados:
Geradores de vapor.
Água para utilização na fabricação de vapor.
Serviços de drenagem por gravidade assistida por vapor.
Água para saneamento de vapor e de limpeza a vapor.
Figure imgf000006_0005
Vapor para uso na extração de óleos de depósitos de petróleo.
J) Limpeza e relacionados:
Todas as preparações para propósito de limpeza.
Máquinas para limpeza de superfícies com água de lata pressão. Máquinas de lavar louças.
Limpeza de carpetes e tapetes.
Limpeza de edifícios.
Figure imgf000006_0006
Máquinas de lavar roupas.
Limpeza de pele, cuidados e reparação.
Limpeza de jóias.
Limpeza de couros.
Limpeza de piscinas.
Limpeza de veículos em geral (carros, motocicletas, caminhões, ônibus, trens,
Figure imgf000007_0001
navios, aviões)
L) Óleos e relacionados:
Antiferrugem/ petróleo.
Óleo de bebê.
Óleo de banho.
Catalisadores para utilização no processamento de petróleo.
Aditivos químicos para fluido de perfuração de poço de petróleo.
Óleo de cozinha.
Fluidos para perfuração de poços de petróleo.
Lama de perfuração para perfuração de poços de petróleo.
Fluidos auxiliares para abrasivos na indústria do petróleo.
Sistema de jateamento de água de alta pressão para a indústria de gás e petróleo.
Óleo comestível.
Aumento da octanagem do óleo combustível com consequente redução do consumo.
Óleo de aquecimento.
Óleo industrial.
Óleo isolante para transformadores.
Óleo mineral.
Óleo de motor.
Aditivos de óleo de motor.
Óleo para ser utilizado na fabricação de velas.
Óleo para utilização na fabricação de produtos cosméticos.
Óleo para utilização na fabricação de tintas.
Óleo para madeira.
Figure imgf000007_0002
Combustível diesel.
Combustível para aviação.
Aditivos para combustíveis.
Figure imgf000008_0001
Combustível para aquecimento doméstico.
M) Relacionados à saúde:
Meio de contraste visando a melhoria do sinal ecocardiográfico.
Proteína para utilização como um aditivo alimentar.
Proteína para utilização como um material de enchimento alimentar.
Água para utilização na purificação de proteínas.
Suplementos nutricionais para aumento da massa corpórea.
Suplementos nutricionais para a saúde geral e bem-estar.
Processados em água, proteína animal e vegetal.
Aumento de oxigenação na cura do câncer.
Fabricação de tintas e pigmentos.
Tintas a base de óleo.
Tintas a base de água.
Água para utilização na fabricação de solventes.
Figure imgf000008_0002
Água para utilização na fabricação de tintas.
N) Serviços:
Remediação ambiental de solos e águas subterrâneas.
Serviços de tratamento de águas residuais.
Gestão da água e esgoto.
Reuso de água e tratamento de efluentes.
Serviços de controle de qualidade da água.
Serviços relacionados com a administração de estratégias de purificação de água.
Locação de equipamentos de purificação de água.
Arrendamento de equipamentos de purificação de água.
Serviços de consulta de saneamento de alimentos.
Figure imgf000008_0003
Engenharia de saneamento.
O) Toda a cadeia de papel e celulose.
P) Indústria de aeração e aumento de oxigénio dissolvido na água. Convencimento
[0009] O aparato, sistema e método de geração de nano bolhas da presente invenção conforme fartamente exposto acima pode ser enquadrado no rol de tecnologias verdes, pois tem aplicação prática nos seguimentos abaixo:
Tratamento de águas residuais e ou esgoto.
Materiais para tratamento de líquidos poluentes.
Remoção de poluentes de águas a céu aberto.
Figure imgf000009_0001
[0010] A invenção possui como característica principal a execução de mudanças físicas em soluções líquidas que ao passarem pelo aparato tomam novas propriedades que aumentam substancialmente a concentração de oxigénio dissolvido, que se apresenta de grande utilidade nos processos de tratamento de fontes contaminadas ou fontes com necessidades de aumento do seu ciclo de vida, isso sem nenhuma aditivação química.
[001 1 ] A tecnologia proposta por meio desta invenção promove a otimização de sistemas de tratamento de água. Este fato é apoiado principalmente nas seguintes propriedades:
Aumento geométrico da superfície de contato promovido pela geração de nano bolhas incrementado a cinética da reação.
Geração de nano bolhas com composição de diferentes gases e líquidos, promovendo uma eficiência química muita mais agressiva.
Quando comprada com macro e micro bolhas, com estabilidade de no máximo algumas horas, a nano bolha propicia um tempo muito superior de permanência
Figure imgf000009_0002
no meio. Esta característica permite um tratamento de água bem mais eficiente e eficaz.
[0012] Neste contexto, a utilização da presente invenção nos setores de tratamento de água, efluentes industriais e tratamento de esgoto vem de encontro à necessidade de reforçar os esforços para a promoção de uma infraestrutura mais sustentável no tocante ao uso da água, empregando processos de planejamento sólido e abrangente para entrega de projetos que sejam rentáveis ao longo do seu ciclo de vida, eficiente na utilização dos recursos existentes e coerente com os objetivos de sustentabilidade da comunidade. [0013] O uso de tecnologias verdes e práticas sustentáveis é um dos maiores desafios para o desenvolvimento do futuro setor da água e essencial para a proteção da saúde humana e do ambiente ao ter como metas a obtenção de água limpa e segura. Sendo assim, os modelos de negócios verdes promovem bases sólidas para criação de valores de mercado.
[0014] A presente invenção permite uma abordagem baseada no entendimento do problema, ao possibilitar a utilização de soluções apropriadas à necessidade de uso, economia de energia para os consumidores finais, e incentivo na mudança de direção a um comportamento mais sustentável.
[0015] Os impactos ambientais de um modelo de negócio verde são variáveis, mas de forma geral ajudam a melhorar a eficiência energética, diminuem a utilização de matérias-primas necessárias e escassas, bem como promovem o aumento da utilização de energia renovável.
[0016] As mudanças que ocorrem nas soluções que passam pela invenção promovem um tratamento com a otimização de recursos (químicos el ou infraestrutura), contribuindo com a economia nos custos de tratamento presente e futuro, trazendo um tratamento mais eficiente, eficaz e seguro, desta forma se enquadrando perfeitamente no tripé de sustentabilidade como uma tecnologia que traz benefícios tanto económicos, como sociais e ambientais.
Antecedentes da Técnica
[0017] No atual estado da técnica já foram propostos vários métodos para gerar microbolhas, bolhas ultra finas e nano bolhas, entre eles:
[0018] Meios de transporte de gás - em que um gás é forçado a passar através de micro poros de tubo de dispersão de gás em líquido.
[0019] Métodos em que uma vibração com uma frequência não superior a 1 kHz é aplicada a um corpo poroso, enquanto um gás é conduzido para um líquido através do corpo poroso.
[0020] Métodos de geração de bolhas que utilizam ultrassons.
[0021 ] Métodos por agitação em que as bolhas são geradas por cisalhamento, agitando um líquido e um gás.
[0022] Métodos em que um gás sob pressão é dissolvido num líquido, seguido de redução de pressão, a fim de gerar bolhas de gás dissolvido e supersaturado. [0023] Métodos de formação de espuma química na qual as bolhas são criadas através da geração de um gás num líquido por uma reação química (ver, por exemplo, em Clift, R. et al., "Bolhas. Gotas, e partículas", Academic Press (1978), e Hideki Takushoku, "Progress em Engenharia Química. 16 Bolha, Gota, e Dispersão Engineering", Maki Shoten. 1 (1982)).
[0024] No entanto, estes métodos, excluindo métodos que geram microbolhas e bolhas ultrafinas utilizando micro-ondas, não só têm dificuldade de produção de bolhas muito finas com diâmetros de bolhas na ordem nanômetros, mas também sofrem com o problema de estabilidade prejudicada devido a um diâmetro das bolhas não uniforme. Além disso, é também extremamente difícil nos métodos supracitados, ajustar livremente o diâmetro da bolha.
[0025] No documento de patente WO 2013183891 intitulado "Ultrafine bubbie generating device" - esta patente refere-se a um dispositivo de geração de bolha ultrafina para o tratamento biológico de águas contaminadas, que utiliza o efeito de elevação de ar para difundir água contaminada misturada com microbolhas ao longo de um tanque de reação, de modo a fornecer oxigénio dissolvido para as bactérias que decompõem a matéria orgânica e prevenir o acúmulo de lodo no fundo do tanque de reação. Além disso, é utilizado um método de cavitação, em que o fluido é acelerado a fim de gerar mais microbolhas usando uma pequena quantidade de energia. A porção de microbolhas gerada entra em atrito com a água contaminada em uma superfície lisa feita de materiais duráveis, de modo a ser vantajoso em termos de controle de manutenção.
[0026] O documento de patente WO 201 1013706 A1 intitulado "Super-micro bubbie generation device", propõe um dispositivo de geração de microbolhas que pode gerar microbolhas usando um método simples, e pode ser instalado de forma que proporciona um grau mais elevado de liberdade de instalação, para permitir que o dispositivo concebido possa ser instalado em um lugar onde satisfaça as exigências funcionais, normalmente no fundo de um tanque de reação. O dispositivo de geração de microbolhas é composto por um compressor para fornecimento de gás sob pressão. O gás é admitido em um dispositivo de dispersão e geração de bolhas para descarregar o gás, que tem sido entregue sob pressão, como microbolhas no líquido. O meio de geração de bolhas é constituído por um composto de alta densidade que é uma substância eletricamente condutora. O dispositivo de geração de microbolhas também é fornecido como uma bomba de recirculação e um dispositivo de jato de líquido direcionado perpendicularmente à direção de descarga das microbolhas geradas.
[0027] O documento de patente US8186652 B2 intitulado "Gas and liquid mixture generation apparatus", propõe um aparelho constituído de uma estrutura simples e capaz de gerar finas bolhas de ar. Inclui um corpo que tem um espaço interno tipo coluna circular definida por uma superfície interior cilíndrica e as superfícies interiores circulares. Pelo menos uma seção cilíndrica interna pode ser disposta no interior do espaço interno com direcionamento para fora da superfície interna cilíndrica. Uma primeira seção de introdução de fluido pode injetar o primeiro fluido para dentro de um espaço tubular entre a superfície interior cilíndrica e o membro cilíndrico interno para uma direção circunferencial. Uma segunda seção de introdução de fluido e uma porta de descarga de gás e mistura de líquido pode ser disposta nas superfícies interiores circulares, respectivamente. Os componentes deste equipamento são estáticos.
Objetivos da Invenção
[0028] Tendo em vista superar as dificuldades supracitadas, a presente invenção tem por objetivo utilizar o princípio da cavitação obtido por meio de um aparato que promove variações de velocidade do fluxo propiciando cisalhamento entre dois fluidos.
[0029] Também é objetivo da invenção promover a nucleação de uma variedade de gases oxidantes/ redutores que podem ser utilizados para diversas finalidades, tais como: tratamento de efluentes, tratamento de águas para reuso, remediação de áreas contaminadas por fluidos nocivos ao ambiente (hidrocarbonetos, álcoois, entre outros), piscicultura para oxigenação de água, desinfeção de alimentos.
[0030] É objetivo da invenção propor uma eficaz transferência de massa no meio contaminado, uma vez que as nano bolhas geradas possuem elevada área superficial. Esta característica de transferência de massa aumenta a capacidade de oxidação el ou redução dos elementos contaminantes existentes no meio a ser tratado. A estabilidade da nano bolha proporciona a adsorção dos contaminantes sobre sua superfície. Também oferecem uma elevada taxa de transferência de oxigénio nas lagoas de aeração e nas plantas de tratamento de efluentes.
[0031 ] É objetivo da invenção proporcionar a geração de bolhas nanométricas com tamanhos bastante uniformes, alta concentração e alto fluxo de geração, possibilitando vantagens de uso em comparação aos processos tradicionais e conhecidos do estado da técnica. Isto é propiciado pela geometria de um compartimento responsável pela nucleação e estabilização do tamanho das bolhas geradas.
[0032] Por fim, é objetivo da invenção provocar a nucleação gasosa, a qual possibilita a utilização de uma vasta variedade de oxidantes e / ou redutores na forma de gás, com elevada eficiência de dissolução ao meio contaminado.
Descrição Resumida da Invenção
[0033] A invenção consiste de um aparato gerador de nano bolhas e um método de geração de nano bolhas, que através da utilização de um cavitador hidrodinâmico acoplado à parte superior do aludido aparato, conduz o fluido para uma câmara que possui um rotor na parte inferior capaz de girar uma hélice, de desenho conhecido, que por força centrífuga colide o fluido com uma tela acoplada no interior de uma câmara. Tal tela possui orifícios de dimensões controladas que podem variar de micrométricas a nanométricas (dependendo da aplicação), com geometria côncava na face interna, constrição plano-paralela e geometria convexa na face externa, gerando assim as bolhas nanométricas em sua saída.
[0034] A geração de microbolhas já foi testada em diferentes processos das áreas de aplicação citadas neste relatório, notadamente nos processos de tratamento de efluentes, reuso de águas e descontaminação ambiental de solos e águas subterrâneas, em que a tecnologia de geração de microbolhas ou bolhas ultrafinas tem como função o aumento da superfície de contato entre reagentes, melhorando a cinética química e aumentando a estabilidade destes reagentes nos processos de tratamento.
[0035] O aparato de microbolhas é um cavitador hidrodinâmico que por meio de Venturi realiza um processo de elevação da turbulência da mistura gás-líquido, provocando o colapso de macrobolhas transformando-as em microbolhas, aumentando a estabilidade com o aumento da tensão superficial das estruturas geradas. [0036] É sabido que cavitação hidrodinâmica ocorre quando a pressão num ponto em um líquido é momentaneamente reduzida abaixo da sua pressão de vapor devido a alta velocidade de fluxo. Com base na Lei de Henry, a fração de gás dissolvido em água a uma temperatura é proporcional à pressão parcial do gás. Então, o aumento na pressão causa um aumento na solubilidade de gases em líquido (BOUATFI et al., 2001 ).
[0037] A cavitação hidrodinâmica está bem descrita pela equação de Bernoulli:
Onde:
Figure imgf000014_0001
C = constante
P= pressão do ponto
P= densidade
V= velocidade no ponto
Onde se indica que a pressão será negativa quando a velocidade do fluxo de água (v) exceder a:
Figure imgf000014_0002
[0038] Assim, tendo reduzida a pressão o excesso de ar se precipita na forma de microbolhas e bolhas ultrafinas. O volume de ar que pode ser precipitado por volume de água depende alguns fatores:
Características físicas e forma de operação do equipamento saturador que interfere na eficiência da saturação.
Composição do ar saturado. Maior pressão parcial do nitrogénio no ar pode reduzir a quantidade de ar saturado.
Figure imgf000014_0003
Da eficiência da liberação do ar.
[0039] As cavidades ou núcleos gasosos formados requerem tempo para atingir o tamanho de microbolhas após a pressão ser reduzida na constrição (RIKAART, 1995 apud FAN et. al, 2010). Sendo assim, é possível afirmar que o processo de formação das microbolhas envolve duas etapas: a nucleação e o crescimento. Ainda segundo RIKAART (1995), o fenómeno de "dessorção" do gás dissolvido com formação de bolhas é frequentemente chamado cavitação ou nucleação.
[0040] Núcleos gasosos (cavidades) podem ser gerados de acordo com os princípios de cavitação, por um forte cisalhamento, ou alta turbulência, e alta velocidade de fluido. Estes fenómenos ocorrem em constritores de fluxo, os quais criam flutuações de pressão necessárias no seio do líquido para que, em alguns pontos, a pressão local diminua até o valor de pressão de vapor de água (ZHOU et al., 1994 apud FAN et al., 2010).
[0041 ] O tamanho crítico da coalescência das microbolhas é da ordem de 50 a 65 μ. O cisalhamento e a turbulência, gerada pelo aparato, reduz bolhas a macrobolhas aumentando sua concentração no meio fluídico.
Vantagens da Invenção
[0042] Em suma, a invenção pleiteada apresenta como vantagens mais preponderantes:
Geração de nanobolhas em alta concentração e alto fluxo e vazão.
Facilidade de acoplamento de tecnologias químicas e aeração em lagoas de efluentes; tratamento de águas para reuso; remediação de áreas contaminadas; na oxigenação de ambientes de piscicultura, dentre as demais aplicações.
O gerador de nanobolhas flexibiliza o tratamento de efluentes, tratamento de águas para reuso e remediação de áreas contaminadas, independente de volume a ser tratado, bastando instalar outras unidades de geração.
Por ser um sistema compacto, o gerador de nano bolhas viabiliza a descontaminação do meio sem a necessidade de interrupção dos processos produtivos e/ ou comerciais.
O gerador de nano bolhas possui elevada capacidade de transferência de massa de nano bolhas geradas, evitando o efeito hidráulico de deslocamento da pluma de contaminantes, fato comum em processos convencionais de remediação in situ em que ocorre a injeção de líquidos.
O gerador de nano bolhas permite a mistura de soluções automaticamente, variando concentrações e formulações em tempo real conforme a necessidade operacional do processo de tratamento do efluente, águas para reuso e áreas contaminadas.
O gerador de nano bolhas permite o controle automatizado de vazão dos agentes químicos, líquidos, gases, bem como a medição das variáveis resultantes da
Figure imgf000015_0001
aplicação, permitindo rapidamente a correção dos parâmetros de processo tais como pressão, temperatura, gases dissolvidos, oxirredução provocados pelas reações dos reagentes com os contaminantes.
O gerador de nano bolhas permite a aplicação de quaisquer tipos de soluções,
Figure imgf000016_0001
quais sejam elas líquidas como fina camada de nanobolhas el ou gasosas na forma de nucleação do reagente gasoso por uma fina camada líquida na formação e nanobolhas, e desta forma obtém-se a efetividade no tratamento de águas contaminadas.
Descrição das Figuras
[0043] Para um melhor entendimento da invenção, ora proposta, faz-se referência às figuras em anexo, onde estão demonstradas de forma ilustrativa e não limitativa: Figura: 1 : Vista em perspectiva do aparato gerador de nano bolhas ilustrando os principais componentes.
Figura 2: Vista em corte lateral do aparato gerador de nano bolhas ilustrando a entrada e a saída (corte A-A e B-B).
Figura 3: Detalhe do corte B-B ilustrando o estágio de cavitação hidrodinâmica
Figure imgf000016_0002
mostrando os elementos internos, o venturi e o feixe tubular.
Figura 4: Detalhe do corte A-A ilustrando o estágio de cavitação hidrodinâmica
Figure imgf000016_0003
mostrando os elementos internos.
Figura 5: Vista lateral do elemento estático perfurado com detalhe ampliado dos furos da tela com o sentido de fluxo.
Descrição Detalhada de Realizações Preferenciais da Invenção
[0044] Mais particularmente, a invenção reivindicada conforme ilustrado na figura 1 se refere a um aparato gerador de nanobolhas, que compreende um primeiro estágio de cavitação (1 ), um motor elétrico (2) de acionamento do segundo estágio de cavitação hidrodinâmica (3), e saída da mistura gás/ líquida (3A) para utilização em processos de tratamento de efluentes, águas para reuso e remediação de áreas com água contaminada por produtos nocivos ao ambiente, que maior eficiência na ordem técnica, operacional e económica relacionado aos processos atuais de tratamento e de aeração em processo de descontaminação de águas residuárias domésticas e de processos industriais em estações de tratamentos de efluentes.
[0045] A figura 2 mostra o processo que compreende dois estágios de cavitação hidrodinâmica. No primeiro estágio, um dispositivo para cavitação hidrodinâmica (1 ) proporciona um diferencial de pressão entre o ponto de entrada do líquido (1 A) e da admissão de ar e/ ou gases (1 B). O feixe tubular (1 C) possui tubos com geometria que geram micro turbulência no fluido e colapso das bolhas e microbolhas formadas no estágio anterior, acelerando o processo de nucleação gasosa. O segundo estágio de cavitação hidrodinâmica compreende um corpo estático (3) que aloja um dispositivo rotativo com aletas (4), que promovem efeito de aceleração helicoidal e centrífugo do fluido sendo acionado pelo motor (2).
[0046] O corte da figura 3 mostra um elemento venturi (7) de admissão de fluido líquido pela entrada (1 A). O fluido gasoso é admitido pela entrada (1 B) em uma região de restrição do injetor de água. A variação de pressão e velocidade entre dois fluidos dentro do dispositivo proporciona o efeito de cavitação hidrodinâmica e como consequência a formação de bolhas, macrobolhas, microbolhas e uma parcela de nanobolhas. Este efeito hidrodinâmico, como já comentado, é regido pela equação de Bernoulli. O efeito de cisalhamento entre dois fluidos é potencializado no feixe tubular (8), que, regido pela mesma Lei da equação de Bernoulli, gera micro turbulência no fluido gás/ líquido colapsando as bolhas e microbolhas formadas no estágio anterior para dimensões menores.
[0047] O segundo estágio de cavitação hidrodinâmico (3), mostrado em corte na figura 4, compreende um acelerador helicoidal (4) que é um aparato composto por um motor (2) elétrico que aciona o rotor (9) do aludido acelerador helicoidal (4), em que seu desenho mecânico força o fluxo do fluido, por efeito centrífugo, contra aletas perfuradas (5) que estão dispostas verticalmente ao estator. O desenho do rotor (8) propicia um sentido helicoidal ao fluxo. A força centrífuga provocada pelo rotor (8) acelera as bolhas contidas no fluido forçando-as contra as aletas perfuradas (5) do estator. Este efeito físico provoca colapso das bolhas e microbolhas. A formação e estabilização de nanobolhas é obtida em um elemento estático perfurado (6) disposto logo após as aletas, onde o fluxo é forçado a passar pelos pequenos furos onde ocorre o segundo estágio de cavitação hidrodinâmica, reduzindo as partículas a níveis nanométricas.
[0048] A figura 5 ilustra o elemento estático perfurado (6) que consiste de uma tela cilíndrica com diferentes espessuras e com furos (6 A) de geometria que proporcione variação de velocidade e pressão em cada furo da tela cilíndrica. Este efeito em cada furo provoca cisalhamento entre os fluidos líquidos e gasosos na saída da tela, colapsando bolhas com alto grau de estabilidade dimensional.

Claims

REIVINDICAÇÕES
1 . APARATO, SISTEMA E MÉTODO DE GERAÇÃO DE NANO BOLHAS A PARTIR DE GASES E SOLUÇÕES LÍQUIDAS, caracterizado por compreender um dispositivo para cavitação hidrodinâmica (1 ) que proporciona um diferencial de pressão entre o ponto de entrada do líquido (1 A) e da admissão de ar e/ ou gases (1 B), promovendo variações de velocidade e pressão no seu interior provocando cisalhamento entre os fluidos gerando micro turbulência no fluido e colapso das bolhas e microbolhas acelerando o processo de nucleação gasosa; o segundo estágio de cavitação hidrodinâmica compreende um equipamento contendo rotor (9) e estator compreendendo dois elementos estáticos (5 e 6) que juntamente com o primeiro estágio gera nanobolhas com alta concentração e alta vazão por efeito de cavitação; e uma saída (3 A).
2. APARATO, SISTEMA E MÉTODO DE GERAÇÃO DE NANO BOLHAS A PARTIR DE GASES E SOLUÇÕES LÍQUIDAS, de acordo com a reivindicação 1 , caracterizado por possuir elemento venturi (7) e feixe tubular (8) com geometria dos tubos que promovem micro turbulência no fluido gás / líquido.
3. APARATO, SISTEMA E MÉTODO DE GERAÇÃO DE NANO BOLHAS A PARTIR DE GASES E SOLUÇÕES LÍQUIDAS, de acordo com a reivindicação 1 , caracterizado por possuir um rotor que propicia aceleração helicoidal e a força centrífuga que obrigam o gás/ líquido a passar por elementos estáticos (5 e 6) no estator.
4. APARATO, SISTEMA E MÉTODO DE GERAÇÃO DE NANO BOLHAS A PARTIR DE GASES E SOLUÇÕES LÍQUIDAS, de acordo com a reivindicação 1 , caracterizado por conter dispositivos estáticos perfurados (5) alocados verticalmente à linha de centro do eixo do rotor (9).
5. APARATO, SISTEMA E MÉTODO DE GERAÇÃO DE NANO BOLHAS A PARTIR DE GASES E SOLUÇÕES LÍQUIDAS, de acordo com a reivindicações 1 e 2, caracterizado por conter uma tela perfurada (6) em que os furos (6 A) possuem geometria que provoca cisalhamento do fluido gás / líquido, colapsando bolhas e macrobolhas para tamanhos de nanobolhas.
6. APARATO, SISTEMA E MÉTODO DE GERAÇÃO DE NANO BOLHAS A PARTIR DE GASES E SOLUÇÕES LÍQUIDAS, de acordo com a reivindicações 1 e 2, caracterizado por conter uma tela perfurada feita de materiais como cerâmicas, metais e nitreto de silício (Si3N4) com diâmetros de alguns nanometros até alguns milímetros de acordo com a aplicação; os orifícios exibem fluxo molecular no intervalo de pressão de vácuo de até 10 kPa.
PCT/BR2016/050266 2015-12-10 2016-10-21 Aparato, sistema e método de geração de nano bolhas a partir de gases e soluções líquidas WO2017096444A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020150309848 2015-12-10
BR102015030984A BR102015030984A2 (pt) 2015-12-10 2015-12-10 aparato, sistema e método de geração de nano bolhas a partir de gases e soluções líquidas

Publications (1)

Publication Number Publication Date
WO2017096444A1 true WO2017096444A1 (pt) 2017-06-15

Family

ID=55587659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2016/050266 WO2017096444A1 (pt) 2015-12-10 2016-10-21 Aparato, sistema e método de geração de nano bolhas a partir de gases e soluções líquidas

Country Status (2)

Country Link
BR (1) BR102015030984A2 (pt)
WO (1) WO2017096444A1 (pt)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433676A (zh) * 2019-07-19 2019-11-12 中北大学 一种超重力微气泡发生装置及使用方法
WO2020026089A1 (en) * 2018-08-03 2020-02-06 Chemical Empowering Ag Cavitation apparatus, configured to perform multiple simultaneous cavitations
EP3747534A1 (en) 2019-06-03 2020-12-09 Watermax AG Device and method for generating nanobubbles
WO2021096892A1 (en) * 2019-11-14 2021-05-20 Richard Marcelin Wambsgans Fluid treatment device
US11567999B2 (en) 2016-05-13 2023-01-31 Tibco Software Inc. Using a B-tree to store graph information in a database

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112028171A (zh) * 2020-09-09 2020-12-04 哈尔滨理工大学 一种环锥形间隙可调节的空化器
CN116447522B (zh) * 2023-06-12 2023-09-19 河北燕山钢铁集团有限公司 一种湿式氢氧混合调节装置及其工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676011A1 (fr) * 1991-05-02 1992-11-06 Denis Renoux Philippe Dispositif de production de bulles contenant de l'helium ou de l'air chaud a applications d'irrigation, de lutte contre le feu, et de traitements.
FR2765500A1 (fr) * 1997-07-03 1999-01-08 Philippe Leopold Denis Renoux Dispositif generateur de bulles dispose a distance de ses alimentations et ses applications a la prevention et au traitement des pollutions de l'atmosphere et a la realisation d'effets visuels
JP2005124765A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd ドラム式洗濯機
JP2006136777A (ja) * 2004-11-11 2006-06-01 Maruwa Biochemical Co Ltd 微細気泡の混合装置
KR20090027006A (ko) * 2007-09-11 2009-03-16 삼성전자주식회사 세탁기
KR101304212B1 (ko) * 2012-07-04 2013-09-10 이춘우 드럼식 세탁기
CN204661420U (zh) * 2015-03-31 2015-09-23 重庆阳正环保科技有限公司 带有碎泡设备的文丘里射流器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676011A1 (fr) * 1991-05-02 1992-11-06 Denis Renoux Philippe Dispositif de production de bulles contenant de l'helium ou de l'air chaud a applications d'irrigation, de lutte contre le feu, et de traitements.
FR2765500A1 (fr) * 1997-07-03 1999-01-08 Philippe Leopold Denis Renoux Dispositif generateur de bulles dispose a distance de ses alimentations et ses applications a la prevention et au traitement des pollutions de l'atmosphere et a la realisation d'effets visuels
JP2005124765A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd ドラム式洗濯機
JP2006136777A (ja) * 2004-11-11 2006-06-01 Maruwa Biochemical Co Ltd 微細気泡の混合装置
KR20090027006A (ko) * 2007-09-11 2009-03-16 삼성전자주식회사 세탁기
KR101304212B1 (ko) * 2012-07-04 2013-09-10 이춘우 드럼식 세탁기
CN204661420U (zh) * 2015-03-31 2015-09-23 重庆阳正环保科技有限公司 带有碎泡设备的文丘里射流器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11567999B2 (en) 2016-05-13 2023-01-31 Tibco Software Inc. Using a B-tree to store graph information in a database
WO2020026089A1 (en) * 2018-08-03 2020-02-06 Chemical Empowering Ag Cavitation apparatus, configured to perform multiple simultaneous cavitations
EP3747534A1 (en) 2019-06-03 2020-12-09 Watermax AG Device and method for generating nanobubbles
CN110433676A (zh) * 2019-07-19 2019-11-12 中北大学 一种超重力微气泡发生装置及使用方法
WO2021096892A1 (en) * 2019-11-14 2021-05-20 Richard Marcelin Wambsgans Fluid treatment device

Also Published As

Publication number Publication date
BR102015030984A2 (pt) 2016-03-15

Similar Documents

Publication Publication Date Title
WO2017096444A1 (pt) Aparato, sistema e método de geração de nano bolhas a partir de gases e soluções líquidas
US10598447B2 (en) Compositions containing nano-bubbles in a liquid carrier
KR101150740B1 (ko) 나노버블 함유 액체 제조 장치 및 나노버블 함유 액체 제조 방법
US6702949B2 (en) Diffuser/emulsifier for aquaculture applications
CN102665885B (zh) 微小气泡发生器和微小气泡发生装置
US20160257588A1 (en) Systems and methods for diffusing gas into a liquid
JPH02502085A (ja) 液相の中に気体を分散させる装置及び液相中に気相を移動させるための処理の実行への該装置の適用
CN201058829Y (zh) 一种高效污水处理混气装置
US10189000B2 (en) Apparatus for increasing gas components in a fluid
US8740195B2 (en) Systems and methods for diffusing gas into a liquid
JP2003117368A (ja) 気−液または液−液の混合器、混合装置、混合液製造法および微細気泡含有液製造法
JP2018521855A (ja) 液体中に気泡を生成する装置および方法
KR101824240B1 (ko) 미세기포 발생용 기체용해장치를 포함한 고밀도 미세기포 발생장치
BR202015030984Y1 (pt) disposição aplicada em aparato de tela para formação de nano bolhas a partir de gases e soluções líquidas
CN105836872A (zh) 可提高水体臭氧微气泡传质效率的电晕等离子体活化法
CA2932183A1 (en) A method and apparatus for increasing the saturation of a gas in a fluid
PL243000B1 (pl) Układ do nasycania cieczy gazem i sposób nasycania cieczy gazem z wykorzystaniem tego układu
CN101138710A (zh) 气液混合装置、液体净化器及其水体净化方法
WO2019036784A1 (pt) Dispositivo oxigenador de meios aquosos
Liu et al. New Methodology for Design of Nanobubble Generator and Nanobubble Flotation
JPH07241592A (ja) 汚水の処理装置
WO2020245811A1 (es) Sistema de tratamiento de aguas residuales
TR2022000673T2 (tr) Sivilarin gazla doygun hale geti̇ri̇lmesi̇ne yöneli̇k bi̇r si̇stem ve bu si̇stem kullanilarak sivilarin gazla doygun hale geti̇ri̇lmesi̇ne yöneli̇k bi̇r yöntem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16871834

Country of ref document: EP

Kind code of ref document: A1