WO2017095188A1 - 반도체 스위치를 사용한 아크억제형 직류차단기 - Google Patents

반도체 스위치를 사용한 아크억제형 직류차단기 Download PDF

Info

Publication number
WO2017095188A1
WO2017095188A1 PCT/KR2016/014121 KR2016014121W WO2017095188A1 WO 2017095188 A1 WO2017095188 A1 WO 2017095188A1 KR 2016014121 W KR2016014121 W KR 2016014121W WO 2017095188 A1 WO2017095188 A1 WO 2017095188A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switch
switch
relay
contact
turned
Prior art date
Application number
PCT/KR2016/014121
Other languages
English (en)
French (fr)
Inventor
김효성
이구
김병만
Original Assignee
공주대학교 산학협력단
주식회사 에스에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공주대학교 산학협력단, 주식회사 에스에너지 filed Critical 공주대학교 산학협력단
Publication of WO2017095188A1 publication Critical patent/WO2017095188A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle

Definitions

  • the present invention relates to a DC circuit breaker, and more particularly, to an arc suppression type DC circuit breaker using a semiconductor switch capable of suppressing an arc when the DC power is interrupted.
  • semiconductor switches such as power field effect transistors (FETs), insulated gate bipolar mode transistors (IGBTs), or integrated gate-commutated thyristors (IGCTs) are turned on and turned off. Due to the inherent characteristics of semiconductor switches, arc current or arc current does not occur when the circuit is interrupted because the current slope is limited. However, since the semiconductor switch can be easily destroyed against overcurrent and overvoltage, a protective measure is required, and moreover, there is a problem in that the power loss due to the voltage drop generated in the mechanical contact switch during conduction is large.
  • FETs power field effect transistors
  • IGBTs insulated gate bipolar mode transistors
  • IGCTs integrated gate-commutated thyristors
  • the technical problem to be achieved by the present invention is to provide an arc suppression type DC circuit breaker using a semiconductor switch that can safely suppress the arc generated when the DC power is cut off.
  • Another technical problem to be achieved by the present invention is to provide an arc suppression type DC circuit breaker using a semiconductor switch capable of detecting a current when a failure occurs due to a load short circuit or an overcurrent, and blocking the current and protecting the semiconductor switch.
  • the semiconductor switch is turned on or off to supply or cut off the DC power;
  • a mechanical contact switch connected in parallel with the semiconductor switch;
  • the mechanical contact switch is turned on after the first set time elapses after the semiconductor switch is turned on according to the selection of the first push switch, and the mechanical contact switch is turned off after the first set time elapses according to the selection of the second push switch.
  • the DC switch is turned on or off according to sequential control of the sequential controller so that the semiconductor switch is turned on and off, and when the load current of the load is sensed to be higher than a threshold value, the mechanical contact switch and the semiconductor switch are sequentially turned off.
  • An arc suppression type DC circuit breaker using a semiconductor switch including a main controller for controlling the sequential controller is provided.
  • the main controller may include: a voltage regulator configured to supply the DC power by reducing the DC power to the DC voltage for the main controller when the first push switch is selected; An RS latch set after the first set time elapses after the voltage is supplied from the voltage regulator; An inverter for inverting the polarity of the sensed load current; And a comparator for resetting the RS latch so that the semiconductor switch is turned off when the second push switch is selected or when the inverted load current is greater than or equal to the threshold value.
  • the main controller may further include a low pass filter for removing noise of the inverted load current.
  • the sequential controller may include: a first relay configured to apply an excitation coil to apply the DC power to the main controller so that the semiconductor switch is turned on when the first push switch is selected; A first timer configured to set the RS latch after the first set time has elapsed when the first push switch is selected; When the RS latch is set, the excitation coil is excited to turn on the mechanical contact switch, and when the RS latch is reset, the excitation coil is demagnetized to turn off the mechanical contact switch. Contact A of the second relay; And a second timer configured to excite the excitation coil so that the semiconductor switch is turned off when the second push switch is selected to cut off the DC power supplied to the voltage regulator after the second set time has elapsed. It may include.
  • the first relay includes three A contacts, the excitation coil of the first relay is connected in series with the first push switch, and one of the A contacts of the first relay is connected to the DC power supply.
  • the voltage regulator is connected in series with the voltage regulator or the output terminal of the voltage regulator, and the other of the contact A of the first relay is connected in series with the excitation coil of the second timer through the contact B of the second relay, Another one of the contact A of the relay is connected in series with the contact B of the second timer, and the series connection with the contact B of the second timer is connected in parallel with the first push switch, and the excitation coil of the first relay is connected. And can be connected in series.
  • the second relay may include one A contact and one B contact, and the excitation coil of the second relay may be connected in series to an output terminal of the RS latch.
  • the first timer includes a single contact A, and the excitation coil of the first timer is connected in parallel with the excitation coil of the first relay, and the contact A of the first timer is connected to the voltage regulator. It may be connected between the RS latch.
  • the arc suppression type DC circuit breaker using the semiconductor switch is connected in parallel to both ends of the DC power supply and is composed of a diode and a resistor, and when the semiconductor switch is turned off, suppresses back EMF generated from an inductive load. It may further include a reflux circuit unit.
  • the semiconductor switch when the DC power supply is cut off, the semiconductor switch is turned off before the mechanical contact switch is turned off, thereby suppressing the generation of the blocking arc to safely cut off the circuit, and ensure the stability of the user.
  • the DC power supply can be effectively cut off in case of a failure due to a load short circuit or overcurrent. In addition, it is possible to prevent an accident in advance and to extend the life of the semiconductor switch by protecting it.
  • FIG. 1 is a schematic block diagram of an arc suppression type DC circuit breaker using a semiconductor switch according to an exemplary embodiment of the present invention.
  • FIG. 2 is a block diagram showing the detailed configuration of the arc suppression type DC circuit breaker using a semiconductor switch according to an embodiment of the present invention.
  • FIG. 3 is a timing diagram for a normal on-off process of the arc suppression type DC circuit breaker using a semiconductor switch according to an embodiment of the present invention.
  • FIG. 4 is a timing diagram of an accident blocking process by an overcurrent of an arc suppression type DC circuit breaker using a semiconductor switch according to an exemplary embodiment of the present invention.
  • the present invention is based on a semiconductor switch as a main switch, and a mechanical contact switch is used in parallel as an auxiliary switch in order to reduce the conduction loss of the semiconductor switch.
  • the mechanical contact switch may be a relay contact.
  • the present invention continuously monitors the current flowing through the semiconductor switch using a shunt resistor (R S ) or a current detector having an equivalent effect, and overcurrent or
  • a controller is configured to immediately turn off the semiconductor switch to protect the load facility and the semiconductor switch.
  • the present invention by turning on or off the semiconductor switch to supply power through the semiconductor switch at the time of starting supply or interruption of the DC power supply, the occurrence of inrush current or breaking arc is suppressed in advance, and the normal and continuous power In a situation where the supply of power supply is performed, supply of electric power through a mechanical contact switch provided in parallel can suppress generation of conduction loss caused by the semiconductor switch.
  • the mechanical contact switch installed in parallel is turned off first and then the semiconductor switch is turned off as soon as possible, thereby protecting the semiconductor switch and at the same time. It is possible to prevent the breaking arc from occurring in the switch.
  • FIG. 1 is a schematic block diagram of an arc suppression type DC circuit breaker using a semiconductor switch according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a detailed configuration of an arc suppression type DC circuit breaker using a semiconductor switch according to an embodiment of the present invention. It is also.
  • an arc suppression type DC circuit breaker using a semiconductor switch according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • the arc suppression type DC circuit breaker 100 using a semiconductor switch is a sequential controller 110, the main controller 120, a semiconductor switch 130, and mechanical Contact switch 110c.
  • the sequential controller 110 turns on the mechanical contact switch 110c after the first set time elapses after the semiconductor switch 130 is turned on.
  • the mechanical contact switch 110c is turned off and the semiconductor switch 130 is sequentially turned off after the second set time elapses.
  • the first push switch 110a and the second push switch 110b are temporarily turned on and off when selected, and may be, for example, pushbutton switches.
  • the main controller 120 turns on the semiconductor switch 130 when DC power V DC is applied according to sequential control of the sequential controller 110, and turns on the semiconductor switch 130 when DC power V DC is cut off. Turn it off.
  • the main controller 120 detects the load current flowing through the load (L, R L ) and controls the sequential controller 110 so that the mechanical contact switch 110c and the semiconductor switch 130 are sequentially turned off when the threshold value is greater than or equal to the threshold value. do.
  • the semiconductor switch 130 is connected in series between the negative electrode (-) of the DC power supply (V DC ) and the load (R L ), and sequentially according to the selection of the first push switch 110a and the second push switch 110b. It is turned on and off by the controller 110 and the master controller 120.
  • the semiconductor switch 130 may supply or cut off the DC power supply V DC to the loads L and R L as it is turned on and off by the control of the sequential controller 110 and the main controller 120.
  • the semiconductor switch 130 may be a power semiconductor switch such as a power field effect transistor (FET), an insulated gate bipolar mode transistor (IGBT), or an integrated gate-commutated thyristor (IGCT).
  • FET power field effect transistor
  • IGBT insulated gate bipolar mode transistor
  • IGCT integrated gate-commutated thyristor
  • the mechanical contact switch 110c is connected in parallel with the semiconductor switch 130.
  • the mechanical contact switch 110c may be short-circuited after the first set time elapses.
  • the mechanical contact switch 110c may be opened and turned off when the selection of the second push switch 110b or the load current is greater than or equal to a threshold value.
  • the mechanical contact switch 110c may be configured as, for example, a relay contact Ry2-a.
  • the arc suppression type DC circuit breaker 100 using the semiconductor switch 130 may further include a reflux circuit unit 140.
  • the reflux circuit unit 140 may be connected in parallel to both ends of the DC power supply (V DC ).
  • the reflux circuit unit 150 may include a diode D F and a dummy resistor R D.
  • the reflux circuit 140 is a diode with a semiconductor switch 130 when turned off, the inductive load a counter electromotive force is generated that is generated in the (L) side, the current corresponding to the counter electromotive force is dummy resistor (R D) (D The feedback flows back to F ) to suppress the back EMF, thereby preventing overvoltage that may be applied to both ends of the semiconductor switch 130.
  • the sequential controller 110 may include a first push switch 110a, a second push switch 110b, a first relay, a second relay, a first timer, and a second timer.
  • Such a sequential controller 110 is represented by a symbol according to the display rules of the general sequential controller in FIG.
  • Ry1 (or 112) and Ry2 (or 118) represent the excitation coils of the first and second relays, respectively
  • T1 (or 114) and T2 (or 116) represent the first timer and the second, respectively.
  • the excitation coil of the timer is displayed.
  • Ry1-a1, Ry1-a2, and Ry1-a3 mean an A contact (Make contact) operated by the first relay excitation coil 112, and Ry2-a is defined by the second relay excitation coil 118.
  • the A contact (Make contact) to operate, Ry2-b refers to the B contact (Break contact) operated by the excitation coil of the second relay.
  • T1-a means an A contact (Make contact) that operates after the first set time elapses after the first timer excitation coil 114 is excited, and T2-b indicates a second timer excitation coil 116. After contacting), it means B contact (Break contact) that operates after the second set time has elapsed.
  • the contact A (Make contact) is short-circuited when the excitation coil 114 is excited, and opened and turned off when the excitation coil is demagnetized.
  • the contact B (Break contact) is opened and turned off when the excitation coil 116 is excited, and shorted on when the excitation coil is demagnetized.
  • the first push switch 110a is connected between the positive pole (+) of the DC power supply (V DC ) and the first relay excitation coil 112, and the second push switch 110b is the comparator 128 of the main controller 120. It can be connected between the inverting input terminal (-) of the () and the ground.
  • the first relay when the first push switch 110a is selected, the excitation coil 112 is excited so that the semiconductor switch 130 is turned on to apply DC power (V DC ) to the main controller 120.
  • the first relay may include a first relay excitation coil 112 and three A contacts, that is, the first A to third A contacts Ry1-a1, Ry1-a2, and Ry1-a3.
  • one end of the first relay excitation coil 112 may be connected in series with the first push switch 110a, and the other end thereof may be connected to the negative electrode ( ⁇ ) of the DC power supply (V DC ).
  • first relay 1A contact Ry1-a1 may be connected to a positive terminal (+) of a DC power supply V DC , and the other end thereof may be connected to a second timer B contact T2-b in series.
  • first connection of the first relay contact point (Ay1-a1) and the second timer B contact (T2-b) is connected in parallel with the first push switch (110a), and the first relay excitation coil 112 Can be connected in series.
  • first relay 2A contact Ry1-a2 is connected to the anode (+) of the DC power supply V DC , and the other end thereof is connected to the second timer through the second relay B contact Ry2-b.
  • the excitation coil 116 may be connected in series.
  • first relay 3A contact (Ry1-a3) is connected to the positive terminal (+) of the DC power supply (V DC ), and the other end thereof is the input terminal (In) of the voltage regulator 122 of the main controller 120. Can be connected to.
  • the other end of the first relay 3A contact Ry1-a3 may be connected in series to an output terminal Out of the voltage regulator 122.
  • the first timer may excite the first timer exciting coil 114 to set the RS latch 129 after the first set time elapses.
  • the first timer may include a first timer excitation coil 114 and one A contact T1-a.
  • the first timer excitation coil 114 may be connected in parallel with the first relay excitation coil 112.
  • the first timer A contact T1-a may be connected between the output terminal Out of the voltage regulator 122 and the RS latch 129.
  • the first timer A contact T1-a is not directly connected to the set terminal S of the RS latch 129, but is a differential circuit Ct and Rt connected to the set terminal S of the RS latch 129. It is connected to the indirectly connected to the set terminal (S) of the RS latch 129.
  • the second timer when the second push switch 110b is selected and turned on, the second timer excitation coil 116 is excited to turn off the semiconductor switch 130 so that the first relay is decompressed after the second set time elapses.
  • the DC power supply V DC supplied to the input terminal In of the regulator 122 may be cut off.
  • the second timer may include a second timer excitation coil 116 and one B contact T2-b.
  • one end of the second timer excitation coil 116 may be connected in series with the second relay B contact Ry2-b, and the other end thereof may be connected to the negative electrode ( ⁇ ) of the DC power supply V DC .
  • the second timer B contact T2-b is connected in series between the first relay first A contact Ry1-a1, the first relay excitation coil 112, and the first timer excitation coil 114, and one end thereof. Is connected to the other end of the first relay 1A contact Ry1-a1, and the other end thereof may be connected to one end of the first relay excitation coil 112 and the first timer excitation coil 114.
  • the second relay excites the second relay exciting coil 118 to turn on the mechanical contact switch 110c.
  • the second relay exciting coil 118 is reset. This element turns off the mechanical contact switch 110c.
  • the second relay may include a second relay excitation coil 118, one A contact Ry2-a and one B contact Ry2-b.
  • the second relay A contact Ry2-a may be a mechanical contact switch 110c.
  • the second relay exciting coil 118 may be connected in series between the output terminal Q of the RS latch 129 and ground.
  • the second relay B contact Ry2-b is connected in series between the first relay 2A contact Ry1-a2 and the second timer excitation coil 116, and one end thereof is connected to the first relay 2A contact Ry1. It is connected to the other end of -a2) and the other end thereof may be connected to one end of the second timer excitation coil 116.
  • the sequential controller 110 has been described as being composed of a relay and a timer, but is not limited thereto.
  • the sequential controller 110 may be configured of a microprocessor, a logic array (PLA), a program, or the like. .
  • the semiconductor switch 130 is turned on, the mechanical contact switch 110c is turned on after the first set time elapses, the mechanical switch switch 110c is turned off, and the semiconductor switch 130 is turned off after the second set time elapses. You can configure the microprocessor, logic array, or program to turn it off.
  • Main controller 120 includes voltage regulator 122, inverter 124, comparator 128, low pass filter 126, comparator 128, RS latch 129 and differential circuits Ct, Rt. can do.
  • the main controller 120 may protect the load (L, R L) side of the over-current or short-circuit failure with respect to the block by making the semiconductor switch 130, a load (L, R L) and a power plant.
  • the voltage regulator 122 may be connected to the DC power supply V DC through the third A contact Ry1-a3 of the first relay.
  • the voltage regulator 122 is short-circuited by the third A contact Ry1-a3 of the first relay as the first push switch 110a is selected and turned on, thereby directing the DC power supply V DC to the main controller 120.
  • the pressure is reduced to the voltage Vcc and supplied to the main controller 120.
  • the voltage regulator 122 receives the DC power supply (V DC ) through the input terminal (In), and decompresses the DC voltage (Vcc) necessary for the main controller 120 to the main controller 120 through the output terminal (Out). Supply.
  • the third A contact Ry1-a3 of the first relay is installed at the input terminal In of the voltage regulator 122 in order to reduce the consumption of standby power, but the present invention is not limited thereto.
  • the third A contact Ry1-a3 of the first relay is the output terminal (Out) of the voltage regulator 122.
  • the contacts Ry1-a3 may be connected.
  • the inverter 124 may invert the polarity of the load current (-i Lsense ) sensed by the shunt resistor R S.
  • the inverter 124 since the load current (-i Lsense ) detected from the shunt resistor (R S ) has a negative value, the inverter 124 inverts the detected load current (-i Lsense ) and thus positive load current (i). Lsense ).
  • the inverter 124 inputs the converted load current i Lsense to the low pass filter 126 and passes through the low pass filter 126 to the non-inverting input terminal (+) of the comparator 128.
  • the low pass filter 126 removes the noise of the load current i Lsense inverted by the inverter 124 and outputs the noise to the non-inverting input terminal (+) of the comparator 128.
  • the low pass filter 126 prevents the semiconductor switch 130 from being cut off when the load current i Lsense temporarily exceeds a threshold value by noise introduced from the outside.
  • the comparator 128 When the second push switch 110b is selected, the comparator 128 has a threshold current i Limit which is a threshold value for the comparison operation of the comparator 128 to zero by a pull-down resistor R b . Value, the low level signal is input to the non-inverting input terminal (+) through ground (G) and compared with the signal (i.e., voltage) corresponding to the inverted load current (i Lsense ). The result is output to the reset terminal R of the RS latch 129.
  • i Limit is a threshold value for the comparison operation of the comparator 128 to zero by a pull-down resistor R b .
  • the low level signal is input to the non-inverting input terminal (+) through ground (G) and compared with the signal (i.e., voltage) corresponding to the inverted load current (i Lsense ). The result is output to the reset terminal R of the RS latch 129.
  • the comparator 128 compares the signal corresponding to the inverted load current i Lsense with the signal corresponding to the threshold current i Limit (ie, voltage), and compares the result with the reset terminal of the RS latch 129. Can be output as (R).
  • a signal corresponding to the threshold current (i Limit ) is input to the inverting input terminal ( ⁇ ) of the comparator 128.
  • the comparator 128 may output a low level signal when the magnitude of the load current i Lsense is smaller than that of the threshold current i Limit as a steady state.
  • the comparator 128 when the magnitude of the load current i Lsense is greater than or equal to the threshold current i Limit as an abnormal state caused by a failure such as an overload or a load short circuit, the comparator 128 outputs a high level signal to the RS latch 129.
  • the RS latch 129 is reset to turn off the semiconductor switch 130 by inputting to the reset terminal R of.
  • the RS latch 129 is set after the first set time elapses after the voltage Vcc is supplied from the voltage regulator 122, and it is determined by the comparator 128 that the load current i Lsense is greater than the threshold i Limit . If reset.
  • the RS latch 129 inputs a positive pulse generated by a differential circuit composed of a resistor Rt and a capacitor Ct to the set terminal S, and the output signal of the comparator 128 is reset. Since it is input to the terminal R, the signal corresponding to the current state is output through the output terminal (Q).
  • the RS latch 129 contacts the first timer A contact after the first set time elapses.
  • the power supply Vcc supplied by the voltage regulator 122 is input to the set terminal S through the differential circuits Ct and Rt, and is set to output the output terminal Q. Outputs a high level signal.
  • the RS latch 129 maintains the set state until the load current i Lsense becomes equal to or greater than the threshold i Limit .
  • the comparator 128 In this state, when the load current i Lsense increases abnormally above the threshold i Limit , the comparator 128 outputs a high level signal, and the RS latch 129 is reset to the output terminal Q. Outputs a low level signal through Here, once reset, the RS latch 129 outputs a low level signal in a reset state without changing the state of the output terminal Q unless a positive pulse is applied to the set terminal S again.
  • the RS latch 129 when the RS latch 129 outputs a low level signal through the output terminal Q, the second relay excitation coil 118 is demagnetized, and the mechanical contact switch 110c which is the second relay A contact Ry2-a. ) Is open and off.
  • the RS latch 129 short-circuits the mechanical contact switch 110c and turns it on or off by maintaining the set state or reset state.
  • the semiconductor switch 130 is turned on and off in response to a voltage applied through a gate driving resistor R G connected in series between an output terminal Out of the voltage regulator 122 and a control terminal of the semiconductor switch 130.
  • the semiconductor switch 130 may be turned on and off as the first relay 3A contact Ry1-a3 is shorted or opened. At this time, the turn-on time of the semiconductor switch 130 may be adjusted by adjusting the value of the gate driving resistor R G. That is, as the value of the gate driving resistor R G increases, the turn-on time of the semiconductor switch 130 may be relatively long.
  • the semiconductor switch according to the embodiment of the present invention will be described. The operation of the arc suppression type DC circuit breaker used will be described.
  • FIG. 3 is a timing diagram for a normal on-off process of the arc suppression type DC circuit breaker using a semiconductor switch according to an embodiment of the present invention.
  • the first relay excitation coil 112 (Ry1) is in a self-holding state.
  • the excited state is maintained unless the two-timer contact B (T2-b) is opened and turned off.
  • the second timer B contact T2-b is a contact B and the second timer excitation coil 116 has not yet been excited, and thus is an initial short-circuit state (i.e., an on state) (Fig. 3 (i)). .
  • the voltage regulator 122 is supplied with the DC power supply V DC to the input terminal In through the first relay 3A contact Ry1-a3 and is suitable for the main controller 120.
  • the voltage is reduced to Vcc to supply power of the corresponding size to the main controller 120 through the output terminal Out.
  • the first timer exciting coil 114 (T1) connected in parallel to the first relay excitation coil 112 is also simultaneously excited, and thus the first setting is performed.
  • the time T1 elapses the first timer A contact T1-a is short-circuited (Fig. 3 (d)).
  • the control power supply Vcc is applied to the differential circuits Rt and Ct so that a positive pulse is generated by the operation of the differential circuits Rt and Ct to generate an RS latch. It is input to the set terminal S of 129 (Fig. 3 (e)). For this reason, the RS latch 129 outputs a high level signal through the output terminal Q (Fig. 3 (g)).
  • the threshold current i Limit input to the inverting input terminal (-) of the comparator 128 is pulled down. Since the value is zero by the resistor R b , the output signal of the comparator 128 is in a high level regardless of the signal of the load current i Lsense output from the inverter 124. A high level signal is input to the reset terminal R (FIG. 3 (f)), and the output terminal Q of the RS latch 129 outputs a low level signal in the reset state (FIG. 3G).
  • the output terminal state does not change and remains in the reset state unless a positive pulse is applied to the set terminal S again.
  • the second relay excitation coil 118 is demagnetized so that the second relay A contact Ry2-a is in an open state (the initial state). Namely, off state) (Fig. 3 (g)).
  • the current flow to the first relay excitation coil 112 (Ry1) is interrupted by the off operation of the second timer B contact T2-b, so that the first relay excitation coil 112 (Ry1) is demagnetized.
  • the self-holding state of the first relay excitation coil 112 (Ry1) is released, and the first to third contact points Ry1-a1 to Ry1-a3 are shorted and turned off (Fig. 3 (c)). .
  • the semiconductor switch 130 may stop the operation of the second relay after the second set time T2. Immediately off.
  • the second relay A contact Ry2-a which is the mechanical contact switch 110c, is first turned off.
  • the load current (i L) after being kept in a flowing state through the semiconductor switch 130, in accordance with the second timer, the second predetermined time (T2) after, by turning off the semiconductor switch 130, a mechanical contact switch (110c) of Arc generation can be prevented in advance.
  • FIG. 4 is a timing diagram of an accident blocking process by an overcurrent of an arc suppression type DC circuit breaker using a semiconductor switch according to an exemplary embodiment of the present invention.
  • the load current (-i Lsense ) detected from the shunt resistor R S has a negative value, it is inverted by the inverter 124 to be positively loaded with the current load (i Lsense ).
  • the load current i Lfilter which is converted and the noise is removed through the low pass filter 126 is input to the non-inverting input terminal (+) of the comparator 128.
  • the signal corresponding to the threshold current (i Limit ) is input to the inverting input terminal (-) of the comparator 128 through the pull-down resistor (R b ), the signal of the filtered load current (i Lfilter ) becomes the threshold current (i).
  • the output signal of the comparator 128 is a low level state.
  • the load current i Lfilter is an abnormal state in which the threshold current is larger than the i limit [FIG. 3 (j) and (k). )].
  • the output state of the comparator 128 becomes a high level state to inform the RS latch 129 of a failure (Fig. 3 (i)). That is, when a high level signal is input to the reset terminal R of the RS latch 129 as shown in FIG. 3 (i), the operating state of the RS latch 129 is reset, and the output terminal Q is at a low level. Outputs the signal of.
  • the RS latch 129 maintains the output state of the reset state unless a positive pulse is applied to the set terminal S.
  • the second timer B contact T2-b is opened and turned off (Fig. 3 (h)). Accordingly, the first relay excitation coil 112 is demagnetized to release the self-holding state of the first relay, and the first relay 3A contact Ry1-a3 is shorted and turned off to stop operation of all relays and timers.
  • the voltage regulator 122 also does not supply the control power supply Vcc so that the semiconductor switch 130 is immediately turned off (Fig. 3 (c)).
  • the second relay A contact Ry2-a which is the mechanical contact switch 110c
  • the second relay A contact Ry2-a is first opened to turn off the semiconductor switch 130 as the main switch due to an abnormal state such as an overload or a load short circuit. Therefore, the load current i L is maintained in the state flowing through the semiconductor switch 130. Then, by turning off the semiconductor switch 130 after the second preset time T2 of the second timer, arc generation at the mechanical contact switch 110c can be prevented in advance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

반도체 스위치를 사용한 아크억제형 직류차단기가 제공된다. 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기는 직류전원을 부하로 공급하거나 차단하도록 온오프되는 반도체 스위치; 상기 반도체 스위치와 병렬로 연결되는 기계적 접점 스위치; 제1누름 스위치의 선택에 따라 상기 반도체 스위치가 온되고 제1설정 시간 경과 후에 상기 기계적 접점 스위치가 온되고, 제2누름 스위치의 선택에 따라 상기 기계적 접점 스위치가 오프되고 제2설정 시간 경과 후에 상기 반도체 스위치가 오프되도록 순차적으로 제어하는 순차제어기; 및 상기 순차제어기의 순차 제어에 따라 상기 직류전원이 인가되거나 차단되어 상기 반도체 스위치가 온오프되고, 상기 부하의 부하전류를 감지하여 임계값 이상인 경우 상기 기계적 접점 스위치 및 상기 반도체 스위치가 순차적으로 오프되도록 상기 순차제어기를 제어하는 주제어기를 포함한다.

Description

반도체 스위치를 사용한 아크억제형 직류차단기
본 발명은 직류차단기에 관한 것으로, 특히, 직류전원의 차단 시 아크를 억제할 수 있는 반도체 스위치를 사용한 아크억제형 직류차단기에 관한 것이다.
일반적으로, 교류전류의 경우 매 반사이클 마다 전류가 제로로 되는 점이 발생하므로 부하전류의 차단이 비교적 용이하지만, 직류전류의 경우 정상적인 상태에서 전류가 제로로 되는 점이 존재하지 않으므로 전류의 흐름을 강제적으로 억제하기 위하여 차단기가 높은 아크전압을 발생시켜야 한다.
이때, 차단기간 중에 상당한 아크 에너지가 방출되므로 직류전류는 교류전류에 비하여 상대적으로 차단이 어렵다. 즉, 교류차단기에서 사용하는 방식의 단순한 기계적 접점을 직류회로의 차단에 사용하는 경우, 차단 시 접점 사이에 매우 높은 아크전압이 발생하여 지속적인 아크전류가 흐르기 때문에 경우에 따라서는 화재로 발전하여 대형사고로 이어질 수 있다.
이에 비하여 전력용 FET(field effect transistor), IGBT(insulated gate bipolar mode transistor), 또는 IGCT(integrated gate-commutated thyristor) 등의 반도체 스위치(Semiconductor switch)는 턴온(Turn on) 및 턴오프(Turn off) 시 반도체 스위치의 고유한 특성으로 인하여 전류의 기울기를 제한하기 때문에 회로 차단 시 아크전압이나 아크전류가 발생하지 않는다. 그러나 반도체 스위치는 과전류 및 과전압에 대하여 쉽게 파괴될 수 있기 때문에 이에 대한 보호대책이 필요하고, 더욱이, 도통 시에 기계적 접점 스위치에서 발생하는 전압강하로 인한 전력손실이 크다는 문제가 있다.
[선행기술문헌]
JP 2012-064419 A
따라서 본 발명이 이루고자 하는 기술적 과제는 직류전원의 차단 시 발생하는 아크를 안전하게 억제할 수 있는 반도체 스위치를 사용한 아크억제형 직류차단기를 제공하고자 한다.
본 발명이 이루고자 하는 다른 기술적 과제는 부하단락 또는 과전류 등에 의한 고장 발생시 이를 감지하여 전류를 차단하는 동시에 반도체 스위치를 보호할 수 있는 반도체 스위치를 사용한 아크억제형 직류차단기를 제공하고자 한다.
위와 같은 과제를 해결하기 위한 본 발명의 일 측면에 따르면, 직류 전원을 부하로 공급하거나 차단하도록 온오프되는 반도체 스위치; 상기 반도체 스위치와 병렬로 연결되는 기계적 접점 스위치; 제1누름 스위치의 선택에 따라 상기 반도체 스위치가 온되고 제1설정 시간 경과 후에 상기 기계적 접점 스위치가 온되고, 제2누름 스위치의 선택에 따라 상기 기계적 접점 스위치가 오프되고 제2설정시간 경과 후에 상기 반도체 스위치가 오프되도록 순차적으로 제어하는 순차제어기; 및 상기 순차제어기의 순차 제어에 따라 상기 직류전원이 인가되거나 차단되어 상기 반도체 스위치가 온오프되고, 상기 부하의 부하전류를 감지하여 임계값 이상인 경우 상기 기계적 접점 스위치 및 상기 반도체 스위치가 순차적으로 오프되도록 상기 순차제어기를 제어하는 주제어기를 포함하는 반도체 스위치를 사용한 아크억제형 직류차단기가 제공된다.
일 실시예에서, 상기 주제어기는, 상기 제1누름 스위치가 선택됨에 따라 상기 직류전원을 상기 주제어기용 직류 전압으로 감압하여 공급하는 전압 레귤레이터; 상기 전압 레귤레이터로부터 전압이 공급된 후 상기 제1설정 시간 경과 후에 세트되는 RS 래치; 상기 감지된 부하전류의 극성을 반전시키는 반전기; 및 상기 제2누름 스위치가 선택되는 경우, 또는 상기 반전된 부하전류가 상기 임계값 이상인 경우, 상기 반도체 스위치가 오프되도록 상기 RS 래치를 리셋시키는 비교기를 포함할 수 있다.
일 실시예에서, 상기 주제어기는 상기 반전된 부하전류의 잡음을 제거하는 저역통과필터를 더 포함할 수 있다.
일 실시예에서, 상기 순차제어기는, 상기 제1누름 스위치가 선택되면 상기 반도체 스위치가 온되도록 해당 여자코일이 여자되어 상기 주제어기에 상기 직류전원을 인가하는 제1릴레이; 상기 제1누름 스위치가 선택되면 해당 여자코일이 여자되어 상기 제1설정 시간 경과 후에 상기 RS 래치를 세트시키는 제1타이머; 상기 RS 래치가 세트되면 해당 여자코일이 여자되어 상기 기계적 접점 스위치를 온시키고, 상기 RS 래치가 리셋되면 상기 해당 여자코일이 소자되어 상기 기계적 접점 스위치를 오프시키는 제2릴레이 -상기 기계적 접점 스위치는 상기 제2릴레이의 A접점임 -; 및 상기 제2누름 스위치가 선택되면 상기 반도체 스위치가 오프되도록 해당 여자코일이 여자되어 상기 제2설정 시간 경과 후에 상기 제1릴레이를 소자시켜 상기 전압 레귤레이터로 공급되는 상기 직류전원을 차단하는 제2타이머를 포함할 수 있다.
일 실시예에서, 상기 제1릴레이는 3개의 A접점을 포함하며, 상기 제1릴레이의 여자코일은 상기 제1누름 스위치와 직렬 연결되고, 상기 제1릴레이의 A접점 중 하나는 상기 직류전원과 상기 전압 레귤레이터 사이 또는 상기 전압 레귤레이터의 출력단에 직렬 연결되며, 상기 제1릴레이의 A접점 중 다른 하나는 상기 제2릴레이의 B접점을 통하여 상기 제2타이머의 여자코일과 직렬 연결되고, 상기 제1릴레이의 A접점 중 또 다른 하나는 상기 제2타이머의 B접점과 직렬 연결되며, 상기 제2타이머의 B접점과의 직렬 연결은 상기 제1누름 스위치와 병렬 연결되고, 상기 제1릴레이의 여자코일과 직렬 연결될 수 있다.
일 실시예에서, 상기 제2릴레이는 하나의 A접점 및 하나의 B접점을 포함하고, 상기 제2릴레이의 여자코일은 상기 RS 래치의 출력단에 직렬 연결될 수 있다.
일 실시예에서, 상기 제1타이머는 하나의 A접점을 포함하고, 상기 제1타이머의 여자코일은 상기 제1릴레이의 여자코일과 병렬 연결되며, 상기 제1타이머의 A접점은 상기 전압 레귤레이터와 상기 RS 래치 사이에 연결될 수 있다.
일 실시예에서, 상기 반도체 스위치를 사용한 아크억제형 직류차단기는 상기 직류전원의 양단에 병렬로 연결되며 다이오드 및 저항으로 이루어지고, 상기 반도체 스위치가 오프되는 경우, 유도성 부하에서 발생되는 역기전력을 억제하는 환류 회로부를 더 포함할 수 있다.
이러한 특징에 따르면, 직류전원을 차단할 때, 기계적 접점 스위치의 오프 이전에 반도체 스위치가 오프됨으로써, 차단 아크의 발생을 억제하여 안전하게 회로를 차단시킬 수 있고, 사용자의 안정성을 보장할 수 있다.
또한, 기계적 접점 스위치와 반도체 스위치를 병렬로 구성하고, 반도체 스위치가 온된 후에 기계적 접점 스위치를 온시킴으로써, 신속한 온동작이 가능하면서도 반도체 스위치에 의한 전력 소모의 손실이 거의 없고 고효율의 동작이 가능하다.
이에 더하여, 부하전류가 일정값 이상인지를 감지하여 일정값 이상인 경우, 기계적 접점 스위치를 오프시킨 후 일정 시간 경과 후 반도체 스위치를 오프시킴으로써, 부하단락 또는 과전류 등에 의한 고장시에 직류전원을 효과적으로 차단할 수 있고, 사고를 미연에 방지할 수 있는 동시에 반도체 스위치를 보호하여 수명을 연장시킬 수 있다.
도 1은 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기의 개략적 블록도이다.
도 2는 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차 단기의 세부 구성을 나타낸 블록도이다.
도 3은 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기의 정상적인 온-오프 과정에 대한 타이밍도이다.
도 4는 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기의 과전류에 의한 사고 차단 과정에 대한 타이밍도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
본 발명은 주스위치(Main switch)로서 반도체 스위치(Semiconductor switch)를 기본으로 하며, 상기 반도체 스위치의 도통손실을 줄이기 위하여 보조스위치(Auxiliary switch)로서 기계적 접점 스위치를 병렬로 사용한다. 여기서, 기계적 접점 스위치는 릴레이 접점일 수 있다.
이때, 상기 반도체 스위치는 과전류에 취약하므로, 본 발명은 션트 저항(shunt registor)(RS) 또는 이와 동등의 효과를 갖는 전류검출기를 사용하여 상기 반도체 스위치에 흐르는 전류를 지속적으로 감시하며, 과전류 또는 부하단락 등의 사고상황이 발생하면 상기 반도체 스위치를 즉시에 오프시켜서 부하설비 및 상기 반도체 스위치를 보호하도록 제어기(Controller)가 구성된다.
따라서, 본 발명은 직류전원의 공급이나 차단을 개시하는 시점에서는 상기 반도체 스위치를 통하여 전력을 공급하도록 반도체 스위치를 온 또는 오프함으로써, 돌입전류나 차단아크의 발생을 사전에 억제하며, 정상적이고 지속적인 전력의 공급이 이루어지는 상황에서는 병렬로 설치된 기계적 접점 스위치를 통하여 전력을 공급하도록 함으로써, 상기 반도체 스위치에 의한 도통손실의 발생을 억제할 수 있다.
또한, 본 발명은 과전류 또는 부하단락 등의 이상 상태가 발생하는 경우에는 가능한 신속하게 병렬로 설치된 기계적 접점 스위치를 먼저 오프시킨 후에 상기 반도체 스위치를 오프시킴으로써, 상기 반도체 스위치를 보호함과 동시에 상기 기계적 접점 스위치에서 차단아크가 발생하지 않도록 할 수 있다.
도 1은 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기의 개략적 블록도이고, 도 2는 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기의 세부 구성을 나타낸 블록도이다. 이하에서는 도면을 참조하여 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기를 보다 상세히 설명하도록 한다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기(100)는 순차제어기(110), 주제어기(120), 반도체 스위치(130), 및 기계적 접점 스위치(110c)를 포함한다.
상기 순차제어기(110)는 제1누름 스위치(110a)의 선택에 따라 반도체 스위치(130)가 온되고 제1설정 시간 경과 후에 기계적 접점 스위치(110c)가 온되고, 제2누름 스위치(110b)의 선택에 따라 기계적 접점 스위치(110c)가 오프되고 제2설정 시간 경과 후에 반도체 스위치(130)가 오프되도록 순차적으로 제어한다. 여기서, 제1누름 스위치(110a) 및 제2누름 스위치(110b)는 선택시 일시적으로 온된 후 오프되며, 예를 들면, 푸시버튼 스위치일 수 있다.
주제어기(120)는 순차제어기(110)의 순차 제어에 따라 직류전원(VDC)이 인가되면, 반도체 스위치(130)를 온시키고, 직류전원(VDC)이 차단되면 반도체 스위치(130)를 오프시킨다. 또한, 주제어기(120)는 부하(L, RL)를 흐르는 부하전류를 감지하여 임계값 이상인 경우 기계적 접점 스위치(110c) 및 반도체 스위치(130)가 순차적으로 오프되도록 순차제어기(110)를 제어한다.
반도체 스위치(130)는 직류전원(VDC)의 음극(-)과 부하(RL) 사이에 직렬로 연결되며, 제1누름 스위치(110a) 및 제2누름 스위치(110b)의 선택에 따라 순차제어기(110) 및 주제어기(120)에 의해 온오프된다.
이와 같이 반도체 스위치(130)는 순차제어기(110) 및 주제어기(120)의 제어에 의해 온오프 됨에 따라 직류전원(VDC)을 부하(L, RL)로 공급하거나 차단할 수 있다.
즉, 반도체 스위치(130)가 오프 상태인 경우, 직류전원(VDC)과 부하(L, RL)의 연결이 차단되어 직류전원(VDC)을 부하(L, RL)로 공급하지 않는다.
또한, 반도체 스위치(130)가 온 상태인 경우, 직류전원(VDC)과 부하(L, RL)가 연결되어 직류전원(VDC)을 부하(L, RL)로 공급한다. 여기서, 반도체 스위치(130)는 전력용 FET(field effect transistor), IGBT(insulated gate bipolar mode transistor) 또는 IGCT(integrated gate-commutated thyristor) 등의 전력용 반도체 스위치일 수 있다.
기계적 접점 스위치(110c)는 반도체 스위치(130)와 병렬로 연결된다. 이러한 기계적 접점 스위치(110c)는 제1누름 스위치(110a)의 선택에 따라 반도체 스위치(130)가 턴온되는 경우, 제1설정 시간 경과 후 단락되어 턴온될 수 있다.
또한, 기계적 접점 스위치(110c)는 제2누름 스위치(110b)의 선택 또는 부하전류가 임계값 이상인 경우 개방되어 턴오프될 수 있다. 여기서, 기계적 접점 스위치(110c)는 예를 들면, 릴레이 접점(Ry2-a)으로 구성될 수 있다.
이러한 반도체 스위치(130)를 사용한 아크억제형 직류차단기(100)는 환류 회로부(140)를 더 포함할 수 있다.
이러한 환류 회로부(140)는 직류전원(VDC)의 양단에 병렬로 연결될 수 있다. 이러한 환류 회로부(150)는 다이오드(DF) 및 더미저항(RD)으로 이루어질 수 있다.
이때, 환류 회로부(140)는 반도체 스위치(130)가 오프되는 경우, 유도성 부하(L)측에서 발생되는 역기전력이 발생되며, 역기전력에 해당하는 전류는 더미저항(RD)을 통해 다이오드(DF) 쪽으로 피드백되어 흘러 역기전력을 억제함으로써, 반도체 스위치(130)의 양단에 가해질 수 있는 과전압을 방지한다.
이러한 구성에 의해, 직류전원(VDC)의 공급이나 차단을 개시하는 시점에서는 반도체 스위치(130)를 통하여 전력을 공급하도록 함으로써, 돌입전류나 차단아크의 발생을 사전에 억제하며, 정상적이고 지속적인 전력의 공급이 이루어지는 상황에서는 병렬로 설치된 기계적 접점 스위치(110c)를 통하여 전력을 공급하도록 함으로써, 반도체 스위치(130)에 의한 도통손실의 발생을 억제할 수 있다.
도 2를 참조하여 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기(100)의 순차제어기(110) 및 주제어기(120)의 구현 예를 상세히 설명한다.
순차제어기(110)는 제1누름 스위치(110a), 제2누름 스위치(110b), 제1릴레이, 제2릴레이, 제1타이머 및 제2타이머를 포함할 수 있다.
이러한 순차제어기(110)는 도 2에서 일반적인 순차제어기의 표시규칙에 따른 기호로 표시된다.
예를 들면, Ry1(또는 112) 및 Ry2(또는 118)는 각각 제1릴레이 및 제2릴레이의 여자코일을 표시하며, T1(또는 114) 및 T2(또는 116)는 각각 제1타이머 및 제2타이머의 여자코일을 표시한다.
또한, Ry1-a1, Ry1-a2 및 Ry1-a3은 제1릴레이 여자코일(112)에 의해 동작하는 A접점(Make접점)을 의미하며, Ry2-a는 제2릴레이 여자코일(118)에 의해 동작하는 A접점(Make접점)을 의미하며, Ry2-b는 제2릴레이의 여자코일에 의해 동작하는 B접점(Break접점)을 의미한다.
타이머의 접점으로서, T1-a는 제1타이머 여자코일(114)이 여자된 후 제1설정 시간 경과 후 동작하는 A접점(Make접점)을 의미하며, T2-b는 제2타이머 여자코일(116)이 여자된 후 제2설정 시간 경과 후 동작하는 B접점(Break접점)을 의미한다.
여기서, A접점(Make접점)은 해당 여자코일(114)이 여자되는 경우, 단락되어 온되고, 해당 여자코일이 소자(demagnetize)되는 경우, 개방되어 오프된다. 이와 반대로, B접점(Break접점)은 해당 여자코일(116)이 여자되는 경우, 개방되어 오프되고, 해당 여자코일이 소자되는 경우, 단락되어 온된다.
제1누름 스위치(110a)는 직류전원(VDC)의 양극(+)과 제1릴레이 여자코일(112) 사이에 연결되고, 제2누름 스위치(110b)는 주 제어기(120)의 비교기(128)의 반전 입력단자(-)와 접지 사이에 연결될 수 있다.
상기 제1릴레이는 제1누름 스위치(110a)가 선택되면, 반도체 스위치(130)가 온되도록 해당 여자코일(112)이 여자되어 주제어기(120)에 직류전원(VDC)을 인가할 수 있다. 이러한 제1릴레이는 제1릴레이 여자코일(112) 및 3개의 A접점인 제1A접점 내지 제3A접점(Ry1-a1, Ry1-a2, Ry1-a3)을 포함할 수 있다.
여기서, 제1릴레이 여자코일(112)은 그 일단은 제1누름 스위치(110a)와 직렬 연결되고, 그 타단은 직류전원(VDC)의 음극(-)에 연결될 수 있다.
또한, 제1릴레이 제1A접점(Ry1-a1)은 그 일단은 직류전원(VDC)의 양극(+)에 연결되고, 그 타단은 제2타이머 B접점(T2-b)에 직렬 연결될 수 있다. 이때, 제1릴레이 제1A접점(Ry1-a1)과 제2타이머 B접점(T2-b)의 직렬 연결은 제1누름 스위치(110a)와 병렬 연결되는 동시에, 제1릴레이 여자코일(112)과 직렬 연결될 수 있다.
또한, 제1릴레이 제2A접점(Ry1-a2)은 그 일단은 직류전원(VDC)의 양극(+)에 연결되고, 그 타단은 제2릴레이 B접점(Ry2-b)을 통하여 제2타이머 여자코일(116)과 직렬 연결될 수 있다.
또한, 제1릴레이 제3A접점(Ry1-a3)은 그 일단은 직류전원(VDC)의 양극(+)에 연결되고 그 타단은 주제어기(120)의 전압 레귤레이터(122)의 입력단(In)에 연결될 수 있다. 대안적으로, 제1릴레이 제3A접점(Ry1-a3)의 타단은 전압 레귤레이터(122)의 출력단(Out)에 직렬 연결될 수 있다.
상기 제1타이머는 제1누름 스위치(110a)가 선택되면 제1타이머 여자코일(114)이 여자되어 제1설정 시간 경과 후에 RS 래치(129)를 세트(set)시킬 수 있다. 이러한 제1타이머는 제1타이머 여자코일(114) 및 하나의 A접점(T1-a)을 포함할 수 있다.
여기서, 제1타이머 여자코일(114)은 제1릴레이 여자코일(112)과 병렬 연결될 수 있다. 또한, 제1타이머 A접점(T1-a)은 전압 레귤레이터(122)의 출력단(Out)과 RS 래치(129) 사이에 연결될 수 있다. 이때, 제1타이머 A접점(T1-a)은 RS 래치(129)의 셋트 단자(S)에 직접 연결되지 않고 RS 래치(129)의 세트단자(S)에 연결되는 미분회로(Ct, Rt)에 연결되어 RS 래치(129)의 셋트 단자(S)에 간접적으로 연결될 수 있다.
상기 제2타이머는 제2누름 스위치(110b)가 선택되어 온되면 반도체 스위치(130)가 오프되도록 제2타이머 여자코일(116)이 여자되어 제2설정 시간 경과 후에 상기 제1릴레이를 소자시켜 전압 레귤레이터(122)의 입력단(In)으로 공급되는 직류전원(VDC)을 차단할 수 있다. 이러한 제2타이머는 제2타이머 여자코일(116) 및 하나의 B접점(T2-b)을 포함할 수 있다.
여기서, 제2타이머 여자코일(116)은 그 일단이 제2릴레이 B접점(Ry2-b)과 직렬 연결되고, 그 타단이 직류전원(VDC)의 음극(-)에 연결될 수 있다. 또한, 제2타이머 B접점(T2-b)은 제1릴레이 제1A접점(Ry1-a1)과 제1릴레이 여자코일(112) 및 제1타이머 여자코일(114) 사이에 직렬 연결되어, 그 일단은 제1릴레이 제1A접점(Ry1-a1)의 타단에 연결되어 있고 그 타단은 제1릴레이 여자코일(112)과 제1타이머 여자코일(114)의 일단에 연결될 수 있다.
상기 제2릴레이는 RS 래치(129)가 세트되면 제2릴레이 여자코일(118)이 여자되어 기계적 접점 스위치(110c)를 온시키고, RS 래치(129)가 리셋되면 제2릴레이 여자코일(118)이 소자되어 기계적 접점 스위치(110c)를 오프시킨다.
이러한 제2릴레이는 제2릴레이 여자코일(118), 하나의 A접점(Ry2-a) 및 하나의 B접점(Ry2-b)을 포함할 수 있다. 이때, 제2릴레이 A접점(Ry2-a)은 기계적 접점 스위치(110c)일 수 있다.
여기서, 제2릴레이 여자코일(118)은 RS 래치(129)의 출력단(Q)과 접지 사이에 직렬 연결될 수 있다. 또한, 제2릴레이 B접점(Ry2-b)은 제1릴레이 제2A접점(Ry1-a2)과 제2타이머 여자코일(116) 사이에 직렬 연결되어, 그 일단은 제1릴레이 제2A접점(Ry1-a2)의 타단에 연결되어 있고 그 타단은 제2타이머 여자코일(116)의 일단에 연결될 수 있다.
본 명세서에는 순차제어기(110)가 릴레이 및 타이머로 구성되는 것으로 설명하였으나, 이에 한정되지 않고, 마이크로프로세서(Microprocessor), 로직어레이(PLA; Programmable Logic Array) 또는 프로그램(Program) 등으로 구성될 수 있다.
예를 들면, 반도체 스위치(130)가 온되고, 제1설정 시간 경과 후에 기계적 접점 스위치(110c)를 온시키며, 기계적 접점 스위치(110c)가 오프되고 제2설정 시간 경과 후에 반도체 스위치(130)를 오프시키도록 마이크로프로세서, 로직어레이 또는 프로그램을 설정할 수 있다.
주제어기(120)는 전압 레귤레이터(122), 반전기(124), 비교기(128), 저역통과필터(126), 비교기(128), RS 래치(129) 및 미분회로(Ct, Rt)를 포함할 수 있다. 이러한 주제어기(120)는 부하(L, RL)측의 과전류 또는 단락사고에 대하여 반도체 스위치(130)를 차단하도록 함으로써, 부하(L, RL)와 전원설비를 보호하게 할 수 있다.
전압 레귤레이터(122)는 제1릴레이의 제3A접점(Ry1-a3)을 통하여 직류전원(VDC)에 연결될 수 있다. 이러한 전압 레귤레이터(122)는 제1누름 스위치(110a)가 선택되어 온됨에 따라 제1릴레이의 제3A접점(Ry1-a3)이 단락됨으로써, 직류전원(VDC)을 주제어기(120)용 직류 전압(Vcc)으로 감압하여 주제어기(120)에 공급한다.
이때, 전압 레귤레이터(122)는 입력단(In)을 통하여 직류전원(VDC)을 입력받고 주제어기(120)에 필요한 직류 전압(Vcc)으로 감압하여 출력단(Out)을 통하여 주제어기(120)로 공급한다.
본 실시예에서는, 대기전력(Stand-by power)의 소모를 줄이기 위하여 제1릴레이의 제3A접점(Ry1-a3)이 전압 레귤레이터(122)의 입력단(In)에 설치된 것으로 하였으나, 이에 한정되지 않고, 제1릴레이의 제3A접점(Ry1-a3)이 온될 때 전압 레귤레이터(122)의 과도현상이 심한 경우는 제1릴레이의 제3A접점(Ry1-a3)은 전압 레귤레이터(122)의 출력단(Out)에 설치될 수 있다. 따라서, 이 경우, 전압 레귤레이터(122)의 입력단(In)은 직류 전원(VDC)의 양극(+)에 연결되고 출력단(Out)과 비교기(120)의 전원단 사이에 제1릴레이의 제3A접점(Ry1-a3)이 연결될 수 있다.
반전기(124)는 션트저항(RS)에 의해 감지된 부하전류(-iLsense)의 극성을 반전시킬 수 있다. 여기서, 션트저항(RS)으로부터 검출된 부하전류(-iLsense)는 음의 값을 갖고 있으므로, 반전기(124)는 검출된 부하전류(-iLsense)를 반전시켜 양의 부하전류(iLsense)로 변환시킨다. 이때, 반전기(124)는 변환된 양의 부하전류(iLsense)를 저역통과필터(126)로 입력하여, 저역통과필터(126)를 거쳐 비교기(128)의 비반전 입력단자(+)로 출력한다.
저역통과필터(126)는 반전기(124)에 의해 반전된 부하전류(iLsense)의 잡음을 제거하여 비교기(128)의 비반전 입력단자(+)로 출력한다. 이러한 저역통과필터(126)는 외부로부터 유입되는 잡음에 의해 부하전류(iLsense)가 순간적으로 임계값 이상으로 되는 경우에 반도체 스위치(130)가 차단되는 것을 방지한다.
비교기(128)는 제2누름 스위치(110b)가 선택되어 온되는 경우, 비교기(128)의 비교 동작을 위한 기준값이 되는 임계값인 임계전류(iLimit)는 풀다운저항(Rb)에 의하여 제로값이 되므로, 접지(G)를 통하여 로-레벨(low level)의 신호가 비반전 입력단자(+)로 입력되어 반전된 부하전류(iLsense)에 해당하는 신호(즉, 전압)와 비교하여 그 결과를 RS 래치(129)의 리셋단자(R)로 출력한다.
이때, 반전된 부하전류(iLsense)에 해당하는 신호는 0보다 크기 때문에, 비교기(128)는 고레벨(high level)의 신호를 출력하므로, 반도체 스위치(130)를 오프시키도록 RS 래치(129)를 리셋시킨다.
또한, 비교기(128)는 반전된 부하전류(iLsense)에 해당하는 신호를 임계전류(iLimit)에 해당하는 신호(즉, 전압)와 비교하여, 그 결과를 RS 래치(129)의 리셋단자(R)로 출력할 수 있다. 여기서, 비교기(128)의 반전 입력단자(-)에는 임계전류(iLimit)에 해당하는 신호가 입력된다.
이때, 비교기(128)는 정상 상태로서 부하전류(iLsense)의 크기가 임계전류(iLimit)의 크기보다 작으면 로레벨의 신호를 출력할 수 있다. 또한, 과부하 또는 부하 단락 등과 같이 고장에 의한 비정상 상태로서 부하전류(iLsense)의 크기가 임계전류(iLimit)의 크기 이상이면, 비교기(128)는 고레벨의 신호를 출력하여 RS 래치(129)의 리셋단자(R)로 입력하여 반도체 스위치(130)를 오프시키도록 RS 래치(129)를 리셋시킨다.
RS 래치(129)는 전압 레귤레이터(122)로부터 전압(Vcc)이 공급되고 제1설정 시간 경과 후에 세트되고, 비교기(128)에 의해 부하전류(iLsense)가 임계값(iLimit)보다 크다고 결정된 경우 리셋된다.
여기서, RS 래치(129)는 저항(Rt)과 커패시터(Ct)로 구성되는 미분회로에 의하여 발생되는 정(+)의 펄스가 세트단자(S)로 입력되고 비교기(128)의 출력 신호가 리셋단자(R)로 입력되므로, 출력단자(Q)를 통하여 현재의 상태에 해당하는 신호를 출력한다.
보다 구체적으로 설명하면, RS 래치(129)는 최초 제1누름 스위치(110a)가 선택되어 온됨에 따라 제1타이머 여자코일(114)이 여자되면, 제1설정 시간 경과 후, 제1타이머 A접점(T1-a)이 단락되어 온됨으로써, 전압 레귤레이터(122)에 의해 공급되는 전원(Vcc)을 미분회로(Ct, Rt)를 통하여 셋트 단자(S)로 입력받아 세트되어 출력단자(Q)를 통해 고레벨의 신호를 출력한다. 이때, RS 래치(129)는 부하전류(iLsense)가 임계값(iLimit) 이상이 될 때까지 세트 상태를 유지하게 된다.
이와 같이, RS 래치(129)가 출력단자(Q)를 통하여 고레벨의 신호를 출력하면, 제2릴레이 여자코일(118)이 여자되고, 따라서, 제2릴레이 A접점(Ry2-a)인 기계적 접점 스위치(110c)는 단락되어 온된다.
이와 같은 상태에서, 부하전류(iLsense)가 임계값(iLimit) 이상으로 비정상으로 증가하게 되면 비교기(128)는 고레벨 신호를 출력하여, RS 래치(129)는 리셋 상태로 되어 출력단자(Q)를 통하여 저레벨의 신호를 출력한다. 여기서, 한번 리셋된 RS 래치(129)는 세트단자(S)에 다시 정의 펄스를 가하지 않는 한 출력단자(Q)의 상태가 바뀌지 않고 리셋 상태인 저레벨의 신호를 출력하게 된다.
이와 같이, RS 래치(129)가 출력단자(Q)를 통하여 저레벨의 신호를 출력하면, 제2릴레이 여자코일(118)이 소자되어 제2릴레이 A접점(Ry2-a)인 기계적 접점 스위치(110c)는 개방되어 오프된다.
이와 같이, RS 래치(129)는 세트 상태 또는 리셋 상태를 유지함에 따라 기계적 접점 스위치(110c)를 단락시켜 온시키거나, 개방시켜 오프시키게 된다.
반도체 스위치(130)는 전압 레귤레이터(122)의 출력단(Out)와 반도체 스위치(130)의 제어단자 사이에 직렬 연결된 게이트 구동저항(RG)을 통하여 인가된 전압에 따라 온오프된다.
즉, 반도체 스위치(130)는 제1릴레이 제3A접점(Ry1-a3)이 단락되거나 개방됨에 따라 온오프될 수 있다. 이때, 게이트 구동저항(RG)의 값을 조정함으로써, 반도체 스위치(130)의 턴온 시간을 조정할 수 있다. 즉, 게이트 구동저항(RG)의 값이 커질수록 상대적으로 반도체 스위치(130)의 턴온 시간이 길어질 수 있다.이하, 도 3 및 도 4를 참조하여, 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기의 동작을 설명한다.
도 3은 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기의 정상적인 온-오프 과정에 대한 타이밍도이다.
먼저, 도 3을 참조하여, 정상적인 상황에서 주 스위치인 반도체 스위치(130)를 온시키는 과정을 설명한다.
사용자가 온용 제1누름 스위치(110a)(PBON)를 선택하여 누르면[도 3의 (a)], 제1릴레이 여자코일(112)(Ry1)이 여자되어 제1릴레이 제1 내지 제3A접점(Ry1-a1, Ry1-a2, Ry1-a2)이 단락(온)되므로, 제1 릴레이가 동작된다[도 3의 (c)].
이때, 제1릴레이 제1A접점(Ry1-a1)은 온용 제1누름 스위치(110a)(PBON)와 병렬로 접속되므로, 제1릴레이 여자코일(112)(Ry1)은 자기 유지 상태로 되어 제2타이머 B접점(T2-b)이 개방되어 오프되지 않는 한 여자 상태를 계속 유지한다. 여기서, 제2타이머 B접점(T2-b)은 B접점이고 아직 제2타이머 여자코일(116)이 여자되지 않았으므로, 초기 상태인 단락 상태(즉 온상태)이다[도 3의 (i)].
이러한 제1 릴레이의 동작에 의해, 전압 레귤레이터(122)는 제1릴레이 제3A접점(Ry1-a3)을 통하여 입력단(In)으로 직류전원(VDC)이 인가되고, 주제어기(120)에 적합한 전압(Vcc)으로 감압하여 출력단(Out)을 통하여 해당 크기의 전원을 주 제어기(120)에 공급한다.
이와 같은 제어용 전원(Vcc)이 공급되면, 게이트 구동저항(RG)을 통하여 반도체 스위치(130)의 제어단자인 게이트 단자에 전압이 인가되어[도 3의 (c)] 반도체 스위치(130)는 즉각 온되어, 도 3의 (k)와 저역통과필터(126)를 거쳐 해당 상태의 신호(ILfilter)가 비교기(128)의 비반전 입력단자(+)로 인가된다.
한편, 사용자가 제1누름 스위치(110a)(PBON)를 선택하여 누르면, 제1릴레이 여자코일(112)에 병렬 연결된 제1타이머 여자코일(114)(T1)도 동시에 여자되므로, 제1설정 시간(T1)이 경과하면, 제1타이머 A접점(T1-a)이 단락되어 온된다[도 3의 (d)].
이러한 제1타이머 A접점(T1-a)의 온 동작에 의해, 제어용 전원(Vcc)은 미분회로(Rt, Ct)로 인가되어 미분회로(Rt, Ct)의 동작으로 정의 펄스가 생성되어 RS 래치(129)의 세트단자(S)로 입력된다[도 3의 (e)]. 이로 인해, RS 래치(129)는 출력단자(Q)를 통해 고레벨의 신호를 출력한다[도 3의 (g)].
따라서, RS 래치(129)의 출력단자(Q)에 연결된 제2릴레이 여자코일(118)이 여자되어 제2릴레이 A접점(Ry2-a)이 단락되어 온되므로[도 3의 (g)], 반도체 스위치(130)를 통하여 흐르던 부하전류(iL)는 기계적 접점 스위치(110c)인 제2릴레이 A접점(Ry2-a)을 통하여 바이패스 되어 흐르게 된다.
이와 같은 동작에 의해, 도 3의 (k)처럼, 주스위치인 반도체 스위치(130)를 온시키는 초기 과도시간에는 부하전류(iL)가 반도체 스위치(130)를 통하여 흘러서 과도문제를 방지할 수 있고, 제1타이머에 의해 설정된 시간(T1) 후에는 제2릴레이 A접점(Ry2-a)(110c)을 통하여 부하전류(iL)가 흐르게 됨으로써, 반도체 스위치(130)에 의한 전력손실을 저감시킬 수 있다.
다음으로, 정상적인 상황에서 주스위치인 반도체 스위치(130)를 오프시키는 과정을 설명한다.
사용자가 오프용 제2누름 스위치(110b)(PBOFF)를 선택하여 누르면[도 3의 (a)], 비교기(128)의 반전 입력단자(-)에 입력되는 임계전류(iLimit)는 풀다운저항(Rb)에 의하여 제로값이 되므로, 반전기(124)에서 출력되는 부하전류(iLsense)의 신호와 상관없이 비교기(128)의 출력 신호는 고레벨 상태가 되고, RS 래치(129)의 리셋단자(R)로 고레벨 신호가 입력되어[도 3의 (f)] RS 래치(129)의 출력단자(Q)는 리셋 상태인 저레벨 상태의 신호를 출력한다[도 3의 (g)].
이미 설명한 것처럼, RS 래치(129)는 한번 리셋 상태가 되면 세트 단자(S)에 다시 정의 펄스가 인가되지 않는 한 출력단자의 상태가 바뀌지 않고 계속 리셋 상태를 유지한다.
이처럼, RS 래치(129)의 출력단자(Q)로 저레벨 상태의 신호가 출력됨에 따라 제2릴레이 여자코일(118)은 소자되어 제2릴레이 A접점(Ry2-a)은 초기 상태인 개방 상태(즉, 오프 상태)가 된다[도 3의 (g)].
또한, 제2 릴레이 여자코일(118)의 소자에 의해, 제2릴레이 A접점(Ry2-a)이 개방됨과 동시에 제2릴레이 B접점(Ry2-b)은 단락 상태인 온되므로[도 3의 (h)] 온 상태를 유지하고 있는 제1 릴레이 제2A접점(Ry1-a2)과 함께 제2타이머 여자코일(116)(T2)을 여자시킨다.
이처럼, 제2타이머 여자코일(116)(T2)이 여자됨에 따라 제2설정 시간(T2)이 경과하면, 제2타이머 B접점(T2-b)은 개방되어 오프된다[도 3의 (i)].
따라서, 제2타이머 B접점(T2-b)의 오프 동작에 의해, 제1릴레이 여자코일(112)(Ry1)로의 전류 흐름이 차단되어 제1릴레이 여자코일(112)(Ry1)이 소자됨에 따라 제1릴레이 여자코일(112)(Ry1)의 자기유지 상태가 해제되고, 제1릴레이 제1 내지 제3A접점(Ry1-a1~Ry1-a3)이 단락되어 오프된다[도 3의 (c)].
이로 인해, 모든 릴레이(즉, 제1 및 제2 릴레이)와 타이머(제1 및 제2 타이머)의 동작이 정지되고, 반도체 스위치(130)의 양단에 연결된 제2 릴레이 A접점(Ry2-a)는 오프 상태가 됨에 따라 제2 릴레이 A접점(Ry2-a)가 오프되면 부하전류(iL)은 반도체 스위치(130)를 통해 흐른다.
또한, 전압 레귤레이터(122)(Vtg. Reg.)도 제어용 전원전압(Vcc)을 출력하지 않게 되므로, 반도체 스위치(130)는 제2 릴레이의 동작이 중지된 후 제2 설정시간(T2) 이후에 즉각 오프된다.
이와 같이, 도 3의 (k)에 도시한 것처럼, 주스위치인 반도체 스위치(130)를 오프시키기 위한 동작 초기에는 기계적 접점 스위치(110c)인 제2릴레이 A접점(Ry2-a)이 먼저 오프되어 부하전류(iL)가 반도체 스위치(130)를 통하여 흐르는 상태를 유지한 후, 제2타이머의 제2설정 시간(T2) 후에 반도체 스위치(130)를 오프시킴으로써, 기계적 접점 스위치(110c)에서의 아크발생을 미연에 방지할 수 있다.
도 4는 본 발명의 실시예에 따른 반도체 스위치를 사용한 아크억제형 직류차단기의 과전류에 의한 사고 차단 과정에 대한 타이밍도이다.
여기서, 반도체 스위치(130) 및 기계적 접점 스위치(110c)가 온되는 과정은 도 3과 동일하므로 그에 대한 설명은 생략하고, 반도체 스위치(130)와 기계적 접점 스위치(110c) 모두가 온되어 정상적으로 기계적 접점 스위치(110c)를 통하여 직류전원(VDC)이 부하(L, RL)에 공급되는 상태부터 설명한다.
이미 설명한 것처럼, 이때, 션트저항(RS)으로부터 검출한 부하전류(-iLsense)는 음(-)의 값을 갖고 있으므로 반전기(124)에 의해 반전하여 양의 부하전류(iLsense)로 변환되고, 저역통과필터(126)를 거쳐 잡음이 제거된 부하전류(iLfilter)는 비교기(128)의 비반전 입력단자(+)로 입력된다.
이때, 비교기(128)의 반전 입력단자(-)에는 풀다운저항(Rb)을 통하여 임계전류(iLimit)에 해당하는 신호가 입력되므로 필터링된 부하전류(iLfilter)의 신호가 임계전류(iLimit)의 신호보다 작은 정상적인 상태일 때, 비교기(128)의 출력 신호는 저레벨 상태이다.
이때, 과부하나 부하단락 등의 이상이 발생하여(도 4에서 과전류로 표시된 시점) 부하전류(iLfilter)가 임계전류(iLimit)보다 커지는 비정상적인 상태일 때[도 3의 (j) 및 (k)], 비교기(128)의 출력 상태는 고레벨 상태가 되어 RS 래치(129)에 고장을 알려준다[도 3의 (i)]. 즉, 도 3의 (i)처럼 RS 래치(129)의 리셋단자(R)로 고레벨 상태의 신호가 입력되면, RS 래치(129)의 동작 상태는 리셋 상태로 되어 출력단자(Q)는 저레벨 상태의 신호를 출력한다. 이미 설명한 것처럼, RS래치(129)는 세트단자(S)에 정의 펄스가 인가되지 않는 한 리셋 상태의 출력 상태를 유지한다.
이와 같이, RS 래치(129)의 출력단자(Q)로 저레벨 상태의 신호가 출력되면 제2 릴레이 여자코일(118)이 소자되어 제2릴레이 A접점(Ry2-a)은 개방되어 오프된다[도 3의 (f)].
이때, 제2릴레이 A접점(Ry2-a)이 개방됨과 동시에, 제2릴레이 B접점(Ry2-b)은 단락되어 온되므로[도 3의 (g)]. 순차제어기(110)의 제2타이머 여자코일(116)이 여자된다. 여기서, 제1릴레이 여자코일(112)은 여전히 자기유지된 상태이다.
이와 같이, 제2타이머 여자코일(116)이 여자되면서 제2설정 시간(T2)이 경과하면, 제2타이머 B접점(T2-b)이 개방되어 오프된다[도 3의 (h)]. 따라서, 제1릴레이 여자코일(112)이 소자되어 제1릴레이의 자기유지 상태가 해제되고, 제1릴레이 제3A접점(Ry1-a3)이 단락되어 오프됨으로써, 모든 릴레이와 타이머의 동작이 정지되며, 전압 레귤레이터(122)도 제어용 전원(Vcc)을 공급하지 않게 되어 반도체 스위치(130)는 즉각 오프된다[도 3의 (c)].
이와 같이, 과부하 또는 부하단락 등의 이상 상태가 발생하여 주스위치인 반도체 스위치(130)를 오프시키기 위한 초기에는 기계적 접점 스위치(110c)인 제2릴레이 A접점(Ry2-a)이 먼저 개방되어 오프되므로, 부하전류(iL)가 반도체 스위치(130)를 통하여 흐르는 상태를 유지한다. 그 다음, 제2타이머의 제2설정 시간(T2) 후에 반도체 스위치(130)를 오프시킴으로써, 기계적 접점 스위치(110c)에서의 아크 발생을 미연에 방지할 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (8)

  1. 직류전원을 부하로 공급하거나 차단하도록 온오프되는 반도체 스위치;
    상기 반도체 스위치와 병렬로 연결되는 기계적 접점 스위치;
    제1누름 스위치의 선택에 따라 상기 반도체 스위치가 온되고 제1설정 시간 경과 후에 상기 기계적 접점 스위치가 온되고, 제2누름 스위치의 선택에 따라 상기 기계적 접점 스위치가 오프되고 제2설정 시간 경과 후에 상기 반도체 스위치가 오프되도록 순차적으로 제어하는 순차제어기; 및
    상기 순차제어기의 순차 제어에 따라 상기 직류전원이 인가되거나 차단되어 상기 반도체 스위치가 온오프되고, 상기 부하의 부하전류를 감지하여 임계값 이상인 경우 상기 기계적 접점 스위치 및 상기 반도체 스위치가 순차적으로 오프되도록 상기 순차제어기를 제어하는 주제어기
    를 포함하는 반도체 스위치를 사용한 아크억제형 직류차단기.
  2. 제1항에 있어서,
    상기 주제어기는,
    상기 제1누름 스위치가 선택됨에 따라 상기 직류전원을 상기 주제어기용 직류 전압으로 감압하여 공급하는 전압 레귤레이터;
    상기 전압 레귤레이터로부터 전압이 공급된 후 상기 제1설정 시간 경과 후에 세트되는 RS 래치;
    상기 감지된 부하전류의 극성을 반전시키는 반전기; 및
    상기 제2누름 스위치가 선택되는 경우, 또는 상기 반전된 부하전류가 상기 임계값 이상인 경우, 상기 반도체 스위치가 오프되도록 상기 RS 래치를 리셋시키는 비교기
    를 포함하는 반도체 스위치를 사용한 아크억제형 직류차단기.
  3. 제2항에 있어서,
    상기 주제어기는 상기 반전된 부하전류의 잡음을 제거하는 저역통과필터를 더 포함하는 반도체 스위치를 사용한 아크억제형 직류차단기.
  4. 제2항에 있어서,
    상기 순차제어기는,
    상기 제1누름 스위치가 선택되면 상기 반도체 스위치가 온되도록 해당 여자 코일이 여자되어 상기 주제어기에 상기 직류전원을 인가하는 제1릴레이;
    상기 제1누름 스위치가 선택되면 해당 여자코일이 여자되어 상기 제1설정 시간 경과 후에 상기 RS 래치를 세트시키는 제1타이머;
    상기 RS 래치가 세트되면 해당 여자코일이 여자되어 상기 기계적 접점 스위치를 온시키고, 상기 RS 래치가 리셋되면 상기 해당 여자코일이 소자되어 상기 기계적 접점 스위치를 오프시키는 제2릴레이 -상기 기계적 접점 스위치는 상기 제2릴레이의 A접점임-; 및
    상기 제2누름 스위치가 선택되면 상기 반도체 스위치가 오프되도록 해당 여자코일이 여자되어 상기 제2설정 시간 경과 후에 상기 제1릴레이를 소자시켜 상기 전압 레귤레이터로 공급되는 상기 직류전원을 차단하는 제2타이머
    를 포함하는 반도체 스위치를 사용한 아크억제형 직류차단기.
  5. 제4항에 있어서,
    상기 제1릴레이는 3개의 A접점을 포함하며,
    상기 제1릴레이의 여자코일은 상기 제1누름 스위치와 직렬 연결되고,
    상기 제1릴레이의 A접점 중 하나는 상기 직류전원과 상기 전압 레귤레이터 사이 또는 상기 전압 레귤레이터의 출력단에 직렬 연결되고,
    상기 제1릴레이의 A접점 중 다른 하나는 상기 제2릴레이의 B접점을 통하여 상기 제2타이머의 여자코일과 직렬 연결되며,
    상기 제1릴레이의 A접점 중 또 다른 하나는 상기 제2타이머의 B접점과 직렬 연결되고, 상기 제2타이머의 B접점과의 직렬 연결은 상기 제1누름 스위치와 병렬 연결되며, 상기 제1릴레이의 여자코일과 직렬 연결되는
    반도체 스위치를 사용한 아크억제형 직류차단기.
  6. 제5항에 있어서,
    상기 제2릴레이는 하나의 A접점 및 하나의 B접점을 포함하고,
    상기 제2릴레이의 여자코일은 상기 RS 래치의 출력단에 직렬 연결되는 반도체 스위치를 사용한 아크억제형 직류차단기.
  7. 제6항에 있어서,
    상기 제1타이머는 하나의 A접점을 포함하고,
    상기 제1타이머의 여자코일은 상기 제1릴레이의 여자코일과 병렬 연결되고,
    상기 제1타이머의 A접점은 상기 전압 레귤레이터와 상기 RS 래치 사이에 연결되는 반도체 스위치를 사용한 아크억제형 직류차단기.
  8. 제1항에 있어서,
    상기 직류전원의 양단에 병렬로 연결되며 다이오드 및 저항으로 이루어지고, 상기 반도체 스위치가 오프되는 경우, 유도성 부하에서 발생되는 역기전력을 억제하는 환류 회로부를 더 포함하는 반도체 스위치를 사용한 아크억제형 직류차단기.
PCT/KR2016/014121 2015-12-02 2016-12-02 반도체 스위치를 사용한 아크억제형 직류차단기 WO2017095188A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0170909 2015-12-02
KR1020150170909A KR101809944B1 (ko) 2015-12-02 2015-12-02 반도체 스위치를 사용한 아크억제형 직류차단기

Publications (1)

Publication Number Publication Date
WO2017095188A1 true WO2017095188A1 (ko) 2017-06-08

Family

ID=58797336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014121 WO2017095188A1 (ko) 2015-12-02 2016-12-02 반도체 스위치를 사용한 아크억제형 직류차단기

Country Status (2)

Country Link
KR (1) KR101809944B1 (ko)
WO (1) WO2017095188A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015117087A1 (en) 2014-01-31 2015-08-06 Dana-Farber Cancer Institute, Inc. Uses of diazepane derivatives
WO2022012626A1 (zh) * 2020-07-15 2022-01-20 全球能源互联网研究院有限公司 一种控制器、控制方法和包括控制器的快速机械开关
CN114884020A (zh) * 2022-05-25 2022-08-09 陕西航空电气有限责任公司 一种硬件过压冗余保护自锁电路
CN117438241A (zh) * 2023-12-15 2024-01-23 霍立克电气有限公司 一种真空断路器合闸控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102099944B1 (ko) * 2019-10-30 2020-04-10 이종배 차량용 직류 전원 차단용 릴레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022525A (ja) * 2002-06-20 2004-01-22 Sumitomo Electric Ind Ltd Dc遮断機
KR20060062552A (ko) * 2004-12-03 2006-06-12 대성전기공업 주식회사 누설 전류 차단기
KR20090102916A (ko) * 2008-03-27 2009-10-01 정광희 스파크 방지 회로
KR101214007B1 (ko) * 2011-12-19 2012-12-20 공주대학교 산학협력단 아크 소호 장치를 사용한 직류 차단기
KR20150040490A (ko) * 2013-10-07 2015-04-15 한국전기연구원 고압 직류 전류 차단 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022525A (ja) * 2002-06-20 2004-01-22 Sumitomo Electric Ind Ltd Dc遮断機
KR20060062552A (ko) * 2004-12-03 2006-06-12 대성전기공업 주식회사 누설 전류 차단기
KR20090102916A (ko) * 2008-03-27 2009-10-01 정광희 스파크 방지 회로
KR101214007B1 (ko) * 2011-12-19 2012-12-20 공주대학교 산학협력단 아크 소호 장치를 사용한 직류 차단기
KR20150040490A (ko) * 2013-10-07 2015-04-15 한국전기연구원 고압 직류 전류 차단 장치 및 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015117087A1 (en) 2014-01-31 2015-08-06 Dana-Farber Cancer Institute, Inc. Uses of diazepane derivatives
WO2022012626A1 (zh) * 2020-07-15 2022-01-20 全球能源互联网研究院有限公司 一种控制器、控制方法和包括控制器的快速机械开关
CN114884020A (zh) * 2022-05-25 2022-08-09 陕西航空电气有限责任公司 一种硬件过压冗余保护自锁电路
CN117438241A (zh) * 2023-12-15 2024-01-23 霍立克电气有限公司 一种真空断路器合闸控制方法
CN117438241B (zh) * 2023-12-15 2024-03-15 霍立克电气有限公司 一种真空断路器合闸控制方法

Also Published As

Publication number Publication date
KR20170064890A (ko) 2017-06-12
KR101809944B1 (ko) 2017-12-18

Similar Documents

Publication Publication Date Title
WO2017095188A1 (ko) 반도체 스위치를 사용한 아크억제형 직류차단기
CA2849437C (en) Dc current switching apparatus, electronic device, and method for switching an associated dc circuit
WO2015102383A1 (ko) 고전압 dc 차단기
JP2016213179A (ja) 直流回路遮断器および使用方法
CA2178356C (en) A high voltage electric power line current limiter
JPH104637A (ja) 充放電制御回路と充電式電源装置
WO2014030914A1 (ko) 전기 자동차용 파워 릴레이 어셈블리 및 파워 릴레이 어셈블리가 구비된 전기자동차용 에너지 시스템의 작동 방법
WO2014025087A1 (ko) 누전 차단 장치
US6178077B1 (en) Electronic branch switching device
JP2017527067A (ja) 直流遮断用遮断スイッチ
WO2020130258A1 (ko) 과전류 보호 전원 절체 스위치
WO2022211269A1 (ko) 배터리 보호 장치 및 그 배터리 보호 장치의 제어 방법
US3887860A (en) Fuseless inverter
JP2005051901A (ja) 電力変換装置
CN111727487B (zh) 直流电断路器
JP2000201429A (ja) 過電圧保護回路
JP3114001B2 (ja) 限流遮断装置
US3571659A (en) Switching device for power supply circuit
JPH06245485A (ja) インバータ装置
JPH09284994A (ja) 過電圧保護回路
WO2019078510A1 (ko) 직류 보호 장치 및 그의 제어 방법
WO2020045889A1 (ko) 양방향 반도체 차단기
WO2018117591A2 (ko) 진공 갭 스위치를 이용한 역전류 주입형 직류 전류 차단 장치 및 방법
JP2003007178A (ja) 直流遮断器
AU2020307052A1 (en) Circuit breaker for direct currents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16871084

Country of ref document: EP

Kind code of ref document: A1