WO2017094895A1 - α-グルカン混合物とその製造方法並びに用途 - Google Patents

α-グルカン混合物とその製造方法並びに用途 Download PDF

Info

Publication number
WO2017094895A1
WO2017094895A1 PCT/JP2016/085946 JP2016085946W WO2017094895A1 WO 2017094895 A1 WO2017094895 A1 WO 2017094895A1 JP 2016085946 W JP2016085946 W JP 2016085946W WO 2017094895 A1 WO2017094895 A1 WO 2017094895A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucan
glucan mixture
starch
molecular weight
film
Prior art date
Application number
PCT/JP2016/085946
Other languages
English (en)
French (fr)
Inventor
誠一郎 岸下
祥子 金嶋
学 宮田
山本 拓生
克彦 日野
西本 友之
Original Assignee
株式会社林原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社林原 filed Critical 株式会社林原
Priority to JP2017554207A priority Critical patent/JP6986448B2/ja
Priority to EP16870830.3A priority patent/EP3399046A4/en
Priority to US15/780,706 priority patent/US11408019B2/en
Publication of WO2017094895A1 publication Critical patent/WO2017094895A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/269Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of microbial origin, e.g. xanthan or dextran
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • A23L29/35Degradation products of starch, e.g. hydrolysates, dextrins; Enzymatically modified starches
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/109Types of pasta, e.g. macaroni or noodles
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/10Coating with edible coatings, e.g. with oils or fats
    • A23P20/105Coating with compositions containing vegetable or microbial fermentation gums, e.g. cellulose or derivatives; Coating with edible polymers, e.g. polyvinyalcohol
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/10Moulding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B5/00Preservation of eggs or egg products
    • A23B5/06Coating eggs with a protective layer; Compositions or apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01094Glucan 1,6-alpha-isomaltosidase (3.2.1.94)

Definitions

  • the present invention relates to an ⁇ -glucan mixture and a production method and use thereof, and more particularly to an ⁇ -glucan mixture excellent in suitability as an edible film material, and a production method and use thereof.
  • Eatable films are mainly used for the purpose of maintaining the quality of food (especially freshness) and the convenience of handling.
  • the edible film materials that are actually used are starch and its derivatives, alginic acid. , Carbohydrates such as pectin and gum arabic, and proteins such as gelatin, casein, soy protein, milk protein, gluten and zein. Other than these, lipids such as paraffin, carnauba wax, beeswax, candelilla wax, polyethylene wax, monoglycerides of various fatty acids, and resins such as shellac, rosin, and copal may be used.
  • Typical edible films include wafers made from starch, sausage casings made from collagen, perfume microcapsules, soft capsules made from gelatin, and the like. Also, relatively new edible films include pullulan film and carrageenan film.
  • Oblate which has been widely used as an edible film, is a gelatinized starch obtained by gelatinizing potato starch, which has been used as an auxiliary product for wrapping and drinking medicine. .
  • oblate uses a highly viscous gelatinized starch, so that it is necessary to reduce the starch concentration at the time of film preparation, and there is a problem that the resulting film is thin and lacks strength.
  • gelatinized starch is water-soluble without reducing the molecular weight of the raw material starch, and can take advantage of the adhesiveness and thickening of starch, but it has high viscosity as described above, and handling In addition to this, there is a problem that it forms an insoluble precipitate which is easily aged.
  • the partially decomposed starch (dextrin) is hydrolyzed by acid, alkali and enzyme in the process of production, and has a low molecular weight. Although its solubility in water increases, its viscosity decreases and it has strength. There is a problem that it is difficult to form into a film, and since the reducing power is increased by hydrolysis, there is also a problem of coloring by Maillard reaction when heating with mixing with protein or amino acid. It was.
  • starch-based edible films are often manufactured by blending plasticizers such as glycerol, sorbitol, and sorbitol esters in order to improve brittleness at low temperatures and increase flexibility.
  • plasticizers such as glycerol, sorbitol, and sorbitol esters
  • the strength of the film may be significantly reduced (see Patent Document 1).
  • the present invention has an appropriate molecular weight, an appropriate viscosity, and cold water solubility, and when formed into a film, an edible material that can provide a transparent, excellent strength and water-soluble film without adding a plasticizer, and its It is an object to provide a manufacturing method and use.
  • the present inventors have gelatinized waxy starch and acted on a small amount of amylase to liquefy it, which has an unprecedented excellent molecular weight range and viscosity. It has been found that an ⁇ -glucan mixture can be obtained, and that if this ⁇ -glucan mixture is used, a transparent edible film having excellent strength and water solubility can be produced at low cost without adding a plasticizer. The invention has been completed.
  • the present invention relates to an ⁇ -glucan mixture obtained by a production method including a step of gelatinizing waxy starch and allowing amylase to act to liquefy, wherein the ⁇ -glucan mixture has the following characteristics (1) and (2):
  • the above problem is solved by providing: (1) The weight average molecular weight (Mw) is in the range of 150 kDa to 3,000 kDa; and (2) The value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn) is 35.1. It is as follows.
  • the present invention provides an ⁇ -glucan mixture having the characteristics of (1) and (2) above, and further containing an ⁇ -glucan having an isomaltose structure at the non-reducing end. This also solves the above problem.
  • the present invention solves the above problems by providing an edible film obtained by molding and drying the above ⁇ -glucan mixture without adding a plasticizer.
  • Edible films of such invention the piercing strength tests performed using the test adapter piercing of the cross-sectional area 1 mm 2, the excellent feature that shows a 2.0 N / mm 2 or more piercing strength at break Have.
  • the present invention solves the above problems by providing foods, cosmetics, pharmaceuticals, and industrial products containing the ⁇ -glucan mixture.
  • the ⁇ -glucan mixture of the present invention has the advantages of having an appropriate molecular weight and viscosity, high solubility in water, and excellent handling.
  • a film is prepared using the ⁇ -glucan mixture of the present invention as a raw material, an edible film having transparency, strength and water solubility can be obtained without adding a plasticizer. It can be advantageously used as a material for edible films for food applications.
  • the ⁇ -glucan mixture of the present invention is also useful as a food material, industrial material, cosmetic material and pharmaceutical material.
  • the ⁇ -glucan mixture of the present invention containing ⁇ -glucan having an isomaltose structure at the non-reducing end has remarkable aging resistance in addition to the above physical properties and suitability as an edible film raw material. Therefore, it can be more advantageously used as a raw material for edible films and as a raw material for foods, industrial raw materials, cosmetic raw materials, and pharmaceutical raw materials.
  • starch In general, starch (starch) is composed of amylose having a structure in which glucose, which is a constituent sugar, is linked in a straight chain via ⁇ -1,4 bonds, and ⁇ -1,6 bonds at the location of glucose inside the amylose. It is known that it is in a mixed form with amylopectin having a structure branched via a.
  • “Waxy starch” as used herein refers to a plant of waxy (rice cake) variety, for example, waxy rice (rice), barley, wheat, wheat, corn, millet, whey, corn Means starch. Waxy starch has almost no amylose and has only amylopectin. Waxy corn starch is a starch obtained from waxy corn and is easy to gelatinize. Transparent gel has excellent storage stability. Therefore, it is most widely used and is suitable as a raw material for the ⁇ -glucan mixture of the present invention.
  • gelatinization means a phenomenon in which, when starch granules are heated in the presence of water, the hydrogen bonds of the starch granules are broken and the grains irreversibly swell (or hydrate or dissolve). Starch loses crystallinity and birefringence with gelatinization, increases in viscosity, and reacts rapidly with enzymes (amylases) and chemicals. Gelatinization is also called alpha.
  • “Liquefaction” as used in the present specification means liquefaction by causing amylase to act on gelatinized starch and partially hydrolyzing it.
  • the liquefied starch ( ⁇ -glucan mixture) obtained by liquefying the gelatinized starch becomes lower in molecular weight as the degree of hydrolysis increases, and exhibits a lower molecular weight and lower viscosity.
  • Mw / Mn weight average molecular weight / number average molecular weight
  • Mw / Mn is an index representing the spread (dispersion degree) of the molecular weight distribution. The larger the value, the wider the molecular species range, and the closer the value, the more uniform the molecular species in molecular weight. Means.
  • Mw / Mn is subjected to gel filtration high performance liquid chromatography (gel filtration HPLC), and its chromatogram is analyzed by molecular weight distribution analysis software to obtain weight average molecular weight (Mw) and number average molecular weight (Mn). It can be calculated by
  • cold water solubility means that a test sample is added to deionized water so as to have a solid concentration of 20% by mass, and stirred at a liquid temperature of 30 ° C. to visually determine the degree of dissolution. Sometimes means the property of completely dissolving within 15 minutes to give a homogeneous solution.
  • An ⁇ -glucan mixture having cold water solubility has an advantage that it is easy to handle because it does not need to be dissolved by heating when blended in various compositions.
  • gelatinized starch pregelatinized starch
  • liquefied starch changes to a water-insoluble state like natural starch over time. Aging is a state change in which starch molecules naturally associate and partially move into a densely assembled state, and the association of molecules is thought to be mainly due to hydrogen bonding by hydroxyl groups (OH groups) of glucose residues.
  • OH groups hydroxyl groups
  • a phenomenon in which an aqueous solution of gelatinized starch or liquefied starch becomes clouded over time is observed, but this occurs because gelatinized starch or liquefied starch is aged and insolubilized.
  • starch is composed of amylose and amylopectin, it is known that linear amylose that is not branched is more likely to age.
  • film as used in the present specification means a thin film-like material molded from a high molecular weight polysaccharide, especially starch or ⁇ -glucan mixture, and can maintain a thin film structure even after molding. Pointing. The thickness is generally said to indicate a thickness of 250 ⁇ m or less. “Film” is often delivered in the form of a roll obtained by winding a long product, and even if it is the same product, a thin film or a roll of “film” A thick material or a material cut into an appropriate size may be referred to as a “sheet”.
  • a test sample is dissolved in deionized water to form an aqueous solution with a solid concentration of 30% by mass, and an appropriate amount is placed on a polyethylene terephthalate (PET) flat plate with a baker applicator (YBA type, manufactured by Yoshimitsu Seiki Co., Ltd.). ) was applied and stretched, and dried overnight at room temperature to prepare a film sample containing no plasticizer.
  • PET polyethylene terephthalate
  • “puncture breaking strength” means the stress measured when a film is subjected to a piercing strength test using a rheometer and a rupture occurs.
  • the film sample cut into a circle having a diameter of 20 mm, after humidified by kept overnight under a relative humidity of 52.8% at room temperature, as a device, piercing of the cross-sectional area 1 mm 2
  • a “Rheometer CR-500DX” manufactured by San Kagaku Co., Ltd.
  • the adapter was pressed vertically at the center of the film sample fixed to the apparatus at a speed of 50 mm / min, causing breakage.
  • the time stress was measured 10 times for each film sample to be measured, and the average value was defined as the puncture break strength of the film sample.
  • ⁇ -Glucosyltransferase refers to an enzyme that acts on a partially degraded starch and has an activity to transfer ⁇ -1,6 glucosyl to its non-reducing terminal glucose residue. By allowing the ⁇ -glucosyltransferase to act on the ⁇ -glucan mixture, an ⁇ -glucan mixture containing ⁇ -glucan having an isomaltose structure at the non-reducing end can be obtained.
  • the ⁇ -glucosyltransferase include ⁇ -glucosidase, ⁇ -glucosyltransferase, dextrin dextranase and the like.
  • isomaltodextranase digestion means that isomaltdextranase is allowed to act on an aqueous solution of a test sample to hydrolyze the bond on the reducing end side of the isomaltose structure in the test sample. To do. If isomaltdextranase (EC 3.2.1.94) is a glucan having an isomaltose structure at the non-reducing end, such as dextran, the bond adjacent to the reducing end of the isomaltose structure is ⁇ -1,2, ⁇ -1,3, ⁇ -1,4, and ⁇ -1,6 linkages are enzymes that have hydrolytic activity.
  • the test sample contains ⁇ -glucan having an isomaltose structure at the non-reducing end by subjecting the digestion product to HPLC analysis and examining whether or not isomaltose is observed in the sugar composition. It can be confirmed whether or not.
  • the test sample is an aqueous solution having a concentration of 1 w / v%, and isomaltdextranase derived from Arthrobacter globiformis (produced by Hayashibara Co., Ltd.) per gram of the test sample solid. 100 units were added and allowed to act at 50 ° C. and pH 5.0 for 16 hours. The obtained digest was subjected to sugar composition analysis HPLC under the following conditions to quantitate isomaltose.
  • Glucose equivalent (DE) is an index indicating the degree of hydrolysis in starch sugar (starch partially decomposed product) obtained by hydrolyzing starch using an acid or an enzyme. It means the numerical value expressed by the formula.
  • the glucose equivalent (DE) is a relative scale when the reducing power of D-glucose (dextrose, glucose) is 100, and the closer to 0, the lower the degree of hydrolysis and the closer to starch. , The closer to 100, the higher the degree of hydrolysis and the closer to glucose.
  • the amount of reducing sugar is determined according to the conventional modified Park-Johnson method (see Takusaku et al., “Carbohydrate Research”, Vol. 94, pages 205 to 213 (1981)). Quantify glucose as standard. The total amount of solids is determined by a conventional drying method.
  • amylose content can be used as one of the indices for specifying the starch species.
  • “amylose content” refers to starch or a partially decomposed product ( ⁇ -glucan mixture) of amylase, or starch such as ⁇ -glucan mixture obtained by allowing ⁇ -glucosyltransferase to act on them.
  • ⁇ -glucan mixture partially decomposed product of amylase
  • starch such as ⁇ -glucan mixture obtained by allowing ⁇ -glucosyltransferase to act on them.
  • amylose content of the sample measured based on the color reaction of amylose and iodine according to the amylose content measurement method shown in the Ministry of Agriculture, Forestry and Fisheries Notification No.
  • Standard Measurement Method Specifically, (1) 1 mL of ethanol and 9 mL of 1M sodium hydroxide reagent solution are added to 100 mg of an analysis sample, heated in boiling water for 10 minutes, and water is added to prepare exactly 100 mL of the sample solution; (2) Next, 5 mL of the sample solution and 1 mL of 1M acetic acid test solution are mixed, then 2 mL of iodine / potassium iodide test solution is added and mixed, and then water is added to make exactly 100 mL to obtain a measurement solution; (3) After adjusting the temperature by holding the measurement solution at 27 ° C.
  • the absorbance at a wavelength of 620 nm is measured using a spectrophotometer; (4) The absorbance and an amylose standard separately prepared using reagent grade amylose The amylose content in the analytical sample is obtained based on a calibration curve measured and prepared in the same manner for the solution, and the amylose content is calculated.
  • the ⁇ -glucan mixture of the present invention is an ⁇ -glucan mixture obtained by a production method including a step of gelatinizing waxy starch and allowing amylase to act and liquefy, and the following (1) And having the characteristics of (2): (1)
  • the weight average molecular weight (Mw) is in the range of 150 kDa to 3,000 kDa; and (2)
  • the value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn) is 35.1. It is as follows.
  • the ⁇ -glucan mixture of the present invention is characterized by being obtained by a production method including a step of gelatinizing waxy starch and allowing amylase to act and liquefy.
  • Waxy starch is a starch that is substantially free of amylose, which is a linear ⁇ -1,4 glucan, and is composed only of an amylopectin having a substantially branched structure. Compared with starch containing amylose other than waxy starch, It has the property of being easily aging and not inherently aging, and the same applies to the decomposition products. Waxy starch is also superior in film-forming properties (film forming ability) compared to starch containing amylose other than waxy starch.
  • As a method for liquefying gelatinized starch there is a method using an acid, but amylase has an advantage that the degree of hydrolysis can be controlled more easily than acid.
  • the ⁇ -glucan mixture of the present invention is characterized in that (1) the weight average molecular weight (Mw) is in the range of 150 kDa to 3,000 kDa, and more preferably in the range of 200 kDa to 3,000 kDa.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) is less than 150 kDa, the proportion of molecules having a small molecular weight increases, the viscosity and film-forming property (film forming ability) decrease, and the reduction power increases.
  • the weight average molecular weight exceeds 3,000 kDa, it is difficult to dissolve in water, and since it exhibits a high viscosity, it is difficult to handle and difficult to use.
  • it when formed into a film, it lacks transparency and water solubility.
  • the ⁇ -glucan mixture of the present invention is characterized in that (2) a value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn) is 35.1 or less.
  • Mw / Mn a value obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn) is 35.1 or less.
  • Mw / Mn can be kept low, and is usually less than 10, preferably less than 8, and more preferably less than 6. Can do.
  • Mw weight average molecular weight
  • the ⁇ -glucan mixture of the present invention in a more preferred example, has the characteristics of (1) and (2) above, and contains ⁇ -glucan having an isomaltose structure at the non-reducing end. It is.
  • Such an ⁇ -glucan mixture can be obtained by further acting an ⁇ -glucosyltransferase that acts on a partially degraded starch and has an activity of transferring ⁇ -1,6 glucosyl to the non-reducing terminal glucose residue. .
  • the ⁇ -glucan mixture containing an ⁇ -glucan having an isomaltose structure at the non-reducing end of the present invention has an isomaltose content of more than 3% by mass and less than 22% by mass by digestion with isomaltextranase. It is characterized by generating.
  • the ⁇ -glucan mixture of the present invention containing an ⁇ -glucan having an isomaltose structure at the non-reducing end has an ⁇ -glucan structure having a special structure that does not inherently exist in the hydrolyzate of starch called the non-reducing end isomaltose structure. Because it contains glucan, it is remarkable compared to ⁇ -glucan mixture (partially decomposed starch) as a raw material and linear ⁇ -1,4 glucan in which glucose is linked through ⁇ -1,4 bonds. It is difficult to age.
  • the ⁇ -glucan mixture producing isomaltose has an aging resistance such that the solution does not become cloudy even when kept at 6 ° C. for 1 week as an aqueous solution having a solid concentration of 30% by mass. Therefore, it has an advantage that it can be stored in the form of a relatively high concentration aqueous solution prior to use.
  • an ⁇ -glucan mixture containing an ⁇ -glucan having an isomaltose structure at the non-reducing end it is produced by further acting an ⁇ -glucosyltransferase in addition to amylase. Since the difference in molecular structure between molecules becomes more prominent, it is inevitable that the value of Mw / Mn increases. Therefore, in the case of an ⁇ -glucan mixture produced by further acting an ⁇ -glucosyltransferase in addition to amylase, the value of Mw / Mn is usually 35.1 or less, preferably less than 25. desirable. When the value of Mw / Mn exceeds 35.1, the proportion of low molecules increases, which causes troubles in forming into a film.
  • the glucose equivalent (DE) of the ⁇ -glucan mixture of the present invention is not particularly limited, the glucose equivalent (DE) is used as an indicator of the degree of decomposition of waxy starch and also as an indicator of the weight molecular weight (Mw) defined above. can do.
  • Mw weight molecular weight
  • the ⁇ -glucan mixture does not easily cause coloring or browning due to the Maillard reaction or the like when heated by mixing with protein or amino acid. In such a case, it is desirable that the glucose equivalent (DE) of the ⁇ -glucan mixture is low.
  • the glucose equivalent (DE) can be kept low and is usually less than 1.0, preferably 0.8 or less, more preferably 0. .62 or less.
  • the weight average molecular weight (Mw) is less than 150 kDa, which makes it difficult to form into a film.
  • the glucose equivalent (DE) is usually 2.0 or less, preferably 1.8 or less, Preferably it is 1.6 or less.
  • the weight average molecular weight (Mw) is maintained at 300 kDa or more even when the glucose equivalent (DE) exceeds 2.0. ing.
  • the glucose equivalent (DE) exceeds 2.0
  • the Mw / Mn disersion degree
  • the waxy starch for obtaining the ⁇ -glucan mixture of the present invention is not limited by the plant from which the ⁇ -glucan mixture having the desired properties is obtained, but it is mass-produced and readily available.
  • a widely used waxy corn starch is preferably used.
  • Waxy starch is generally said to contain substantially no amylose, which is a linear molecule in which glucose is linearly linked via ⁇ -1,4 bonds. In the measurement method of the amylose content based on the above, a value of 15% by mass or less is usually shown.
  • amylose content of the ⁇ -glucan mixture of the present invention obtained by using a waxy starch as a raw material and degrading reaction with amylase or ⁇ -glucosyl transfer reaction after decomposing reaction with amylase may vary depending on the type of waxy starch used as a raw material However, in the said measuring method, the value of 15 mass% or less is shown normally.
  • the ⁇ -glucan mixture of the present invention has cold water solubility, and when it is added to deionized water so as to have a solid concentration of 20% by mass and stirred at a temperature of 30 ° C., it is completely within 15 minutes. It can be dissolved to make a uniform solution.
  • the ⁇ -glucan mixture of the present invention is suitable as a raw material for an edible film, and can be formed into a film by an ordinary method without using a plasticizer using the aqueous solution.
  • the film obtained using the ⁇ -glucan mixture of the present invention as a raw material is excellent in transparency and water solubility, and the film adjusted to a thickness of 40 ⁇ m or more is pierced using a piercing test adapter having a cross-sectional area of 1 mm 2. in the strength test, usually, 2.0 N / mm 2 or more, more preferably 2.5 N / mm 2 or more, and more preferably, it shows a 3.0 N / mm 2 or more piercing breaking strength.
  • This puncture breaking strength is equivalent to the strength of a film having the same thickness obtained by molding pullulan, which is widely used as an edible film material in this field, in the same method and under the same conditions, as will be described later in the experimental section. To a lesser extent, this means that the ⁇ -glucan mixture of the present invention can be used in similar applications as pullulan.
  • the method for producing an ⁇ -glucan mixture of the present invention is based on ⁇ -glucan having a weight average molecular weight (Mw) in the range of 150 kDa to 3,000 kDa.
  • the weight average molecular weight (Mw) is in the range of 150 kDa to 3,000 kDa; and (2)
  • the value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn) is 35.1 or less.
  • the method of gelatinizing the raw waxy starch can be performed by a conventional method of heating a waxy starch aqueous suspension. Specifically, for example, a method in which a waxy starch water suspension is placed in a jacketed reactor and heated indirectly, a method in which steam is mixed with the waxy starch water suspension and heated directly, a hot roll of a drum dryer The method of heating above is mentioned.
  • the gelatinized waxy starch is liquefied by adding amylase and hydrolyzing.
  • amylase is added to starch milk (starch suspension) in advance, and the gelatinization and liquefaction proceed simultaneously by heating the starch.
  • a conventional method may be selected as appropriate, and it is usually carried out by either a batch method or a continuous method.
  • a commercially available heat-resistant liquefied ⁇ -amylase is preferably used as the amylase for liquefying the gelatinized starch.
  • Examples of commercially available heat-resistant liquefied ⁇ -amylase include “Spitase HK” manufactured by Nagase ChemteX Corporation, “Tamamyl 60L” (manufactured by Novozyme Japan Co., Ltd.), “Amylase AD“ Amano ”” (Amano Enzyme Co., Ltd.) Company-made), “Christase T10S” (manufactured by Amano Enzyme Co., Ltd.), and “Sumiteam L” (manufactured by Shin Nippon Chemical Industry Co., Ltd.).
  • the feed concentration of the raw waxy starch, the amylase used for liquefaction (partial decomposition), the addition amount of the amylase, the reaction temperature and reaction time for gelatinization and liquefaction, the termination of the reaction The temperature, the reaction method (batch method, continuous method) and the like may be appropriately selected according to the physical properties required for the ⁇ -glucan mixture of the present invention to be produced.
  • the feed concentration of the raw waxy starch is usually 10% by mass or more, preferably about 20 to 50% by mass, more preferably 30 to 35% by mass.
  • the waxy starch is partially decomposed by adjusting the amount of amylase added as described above, and the waxy starch liquefied product ( It is necessary to control the weight average molecular weight (Mw) of the ⁇ -glucan mixture) in the range of 150 kDa to 3,000 kDa.
  • the weight average molecular weight (Mw) of the liquefied product can be measured by gel filtration HPLC, the correlation between the weight average molecular weight of the liquefied product and glucose equivalent (DE) is preliminarily determined, and the weight average molecular weight of the liquefied product is The correlation with the viscosity of the liquefied liquid can be examined and grasped by measuring the glucose equivalent (DE) of the liquefied product, the viscosity of the liquefied liquid, etc., instead of the weight average molecular weight measurement.
  • the DE is usually less than 1.0, preferably 0.62 or less. Good.
  • the gelatinization and liquefaction reaction should be terminated in as short a time as possible.
  • the gelatinization and liquefaction methods are based on starch suspension. The continuous method in which the liquid (starch milk) can be heated more uniformly and rapidly is more preferable than the batch method.
  • the ⁇ -glucan mixture containing ⁇ -glucan having an isomaltose structure at the non-reducing end of the present invention acts on a partial degradation product of starch, and transfers glucose to ⁇ -1,6 to the non-reducing end glucose residue.
  • An active ⁇ -glucosyltransferase can be produced by acting on an ⁇ -glucan mixture obtained by partially decomposing the waxy starch.
  • the ⁇ -glucosyltransferase is limited by its origin, physicochemical properties, etc., as long as it has an activity to act on starch partial degradation products and transfer ⁇ -1,6 glucose to the non-reducing terminal glucose residue. is not.
  • ⁇ -glucosyltransferase having the above-mentioned activity examples include, for example, transglucosidase derived from Aspergillus niger ( ⁇ -glucosidase), dextrin dextranase derived from Acetobacter capsuratam, International Publication No. WO2008 / “ ⁇ -glucosyltransferase” derived from Bacillus or Arthrobacter microorganisms disclosed in US Pat. No. 136331, or Bacillus or Al disclosed in International Publication No. WO 02/010361 by the same applicant as the present application.
  • Examples include “ ⁇ -isomaltosylglucosaccharide-producing enzyme” derived from microorganisms belonging to the genus Slobacter, and in particular, ⁇ -glucosyltransferase and ⁇ -isomaltosylglucose derived from microorganisms belonging to the genus Bacillus or Arthrobacter. More sugar-generating enzymes It can be used to apply.
  • the ⁇ -glucosyltransferase disclosed in International Publication No. WO2008 / 136331 pamphlet acts on a maltose and / or ⁇ -1,4 glucan having a glucose polymerization degree of 3 or more as a substrate and other non-reducing terminal glucose residues.
  • ⁇ -1,4 or ⁇ -1,6 glucosyl transfer mainly to the non-reducing terminal glucose residue of the ⁇ -1,4-glucan of -It has an activity to produce bound glucan, and it is complicated from maltose and / or ⁇ -1,4 glucan having a degree of glucose polymerization of 3 or more by acting the ⁇ -glucosyltransferase and repeating the glucosyltransferase reaction.
  • a branched ⁇ -glucan mixture having a simple branched structure can be produced.
  • the ⁇ -glucosyltransferase is ⁇ -1,3 glucosyltransferase or ⁇ -1,4 linked to ⁇ -1,6 linked glucose residues in the interior of glucan, although it is less frequently.
  • 1,3-glucosyl transfer it also has the activity of producing an ⁇ -glucan mixture having ⁇ -1,3 bonds, ⁇ -1,4,6 bonds and ⁇ -1,3,6 bonds. ing.
  • an isomaltose structure can be introduced into the non-reducing end, and an ⁇ -glucan mixture containing ⁇ -glucan having an isomaltose structure at the non-reducing end can be produced.
  • the ⁇ -glucosyltransferase derived from the genus Bacillus or Arthrobacter disclosed in the pamphlet of International Publication No. WO2008 / 136331 has the following properties (A) to (F).
  • B Molecular weight In SDS-polyacrylamide gel electrophoresis, 90,000 ⁇ 10,000 daltons;
  • ⁇ -Isomaltosylglucosaccharide-forming enzyme disclosed in the pamphlet of International Publication No. WO02 / 010361, that is, ⁇ -glucosyltransferase has ⁇ -1 having a maltose and / or glucose polymerization degree of 3 or more as a substrate.
  • 4-glucan and the non-reducing terminal glucose residue is transferred to the non-reducing terminal glucose residue of other ⁇ -1,4-glucan by ⁇ -1,6-glucosyl transfer, thereby It has an activity to produce glucan in which glucose is ⁇ -linked to a hydroxyl group.
  • this ⁇ -glucosyltransferase has no activity to transfer glucose further to a glucan having an isomaltose structure at the non-reducing end once produced, the branched ⁇ having a complex branching enzyme as described above -Although glucan cannot be produced, even with this ⁇ -glucosyltransferase, an isomaltose structure can be introduced at its non-reducing end without significantly changing Mw / Mn (dispersity), and isomaltose at the non-reducing end An ⁇ -glucan mixture containing ⁇ -glucan having a structure can be produced.
  • the “ ⁇ -isomaltosylglucosaccharide-forming enzyme” derived from the microorganisms of the genus Bacillus or Arthrobacter disclosed in the pamphlet of International Publication No. WO02 / 010361 has the following properties (G) to (M). is doing.
  • (G) Action As a non-reducing end-binding mode, a glucose having a degree of polymerization of ⁇ -1,4 glucosyl bonds of 2 or more undergoes ⁇ -glucosyl transfer without substantially increasing the reducing power.
  • H molecular weight having a molecular weight in the range of about 74,000 to 160,000 daltons by SDS-gel electrophoresis;
  • I isoelectric point having an isoelectric point in the range of pI of about 3.8 to 7.8 by an ampholine-containing electrophoresis method;
  • J Optimal temperature, having an optimal temperature in the range of about 40 to 50 ° C.
  • the ⁇ -glucan mixture containing ⁇ -glucan having an isomaltose structure at the non-reducing end obtained by the action of ⁇ -glucosyltransferase has a Mw / Mn value as compared with the ⁇ -glucan mixture used as a raw material. Although it may increase and the glucose equivalent (DE) may increase slightly, the Mw / Mn obtained by adjusting the amount of action of ⁇ -glucosyltransferase is 35.1 as shown in the experimental section described later.
  • An ⁇ -glucan mixture having a glucose equivalent (DE) of less than 2.8 in the following range is an excellent edible film material that can be formed into a film and used without any problems.
  • the solution containing the ⁇ -glucan mixture of the present invention obtained by the enzyme reaction can be directly used as an ⁇ -glucan mixture product, but is generally used after further purification.
  • a purification method a normal method used for sugar purification may be appropriately employed. For example, decolorization with activated carbon, desalting with H-type or OH-type ion exchange resin, fractionation with an organic solvent such as alcohol and acetone, and the like.
  • One or more purification methods such as separation by a membrane having separation performance can be appropriately employed.
  • the ⁇ -glucan mixture of the present invention is in the form of a mixture of ⁇ -glucan having a relatively large molecular weight and contains almost no low-molecular oligosaccharide. Therefore, the obtained reaction product is separated by means such as column chromatography. Although it is not particularly necessary to perform painting, it is optional to perform further fractionation according to the purpose such as use. When ion exchange chromatography is employed for fractionation, for example, column chromatography using a strongly acidic cation exchange resin disclosed in JP-A-58-23799 and JP-A-58-72598 is advantageously used. Can be used. At this time, it is optional to adopt any of a fixed floor method, a moving floor method, and a simulated moving floor method.
  • the ⁇ -glucan mixture of the present invention thus obtained can be used as a solution, it is advantageous for storage and dried for use in some applications to make an ⁇ -glucan mixture powder. Is desirable.
  • a dryer such as a drum dryer, a spray dryer (spray dryer), a hot air dryer, a vacuum dryer, a flash dryer, a freeze dryer, a fluidized bed dryer, or the like can be used.
  • a drum dryer or a spray dryer it is preferable to use a drum dryer or a spray dryer.
  • the dried product can be pulverized into a powder, or the powder can be screened or granulated to adjust to a specific particle size range.
  • ⁇ -glucan mixture of the present invention is excellent in film suitability, so it is processed into a film having an appropriate size and thickness by an appropriate method without adding a plasticizer. And can be advantageously used as a raw material for edible films. In addition, the ⁇ -glucan mixture of the present invention has excellent puncture strength when formed into a film, and excellent use resistance as a film having good transparency and water solubility. It can be advantageously used as a raw material for films, sheets and coatings used in the fields of pharmaceuticals and industrial products. It is also possible to advantageously carry out a film by combining the ⁇ -glucan mixture of the present invention and a conventionally known plasticizer. When the ⁇ -glucan mixture of the present invention is formed into a film or the like, a nonionic surfactant such as sucrose fatty acid ester can be used as a release agent.
  • a nonionic surfactant such as sucrose fatty acid ester can be used as a release agent.
  • a film having a thickness of 40 to 50 ⁇ m prepared using the ⁇ -glucan mixture of the present invention is based on pullulan that has been widely used as a raw material for edible films. As a raw material, it has a puncture break strength comparable to that of pullulan film of the same thickness prepared by the same method and under the same conditions.
  • the powder of the ⁇ -glucan mixture of the present invention is white and excellent in fluidity and exhibits good solubility in water, it can be used for various purposes other than the above-mentioned use as an edible film material. Can do.
  • the ⁇ -glucan mixture of the present invention has properties such as adhesiveness, osmotic pressure controllability, shaping, shine imparting, moisture retention, viscosity imparting, and other sugar crystallization preventive properties.
  • As an improver, stabilizer, excipient, etc. it can be advantageously used in various compositions such as foods, foods, feeds, feeds, cosmetics, pharmaceuticals, and industrial products.
  • the ⁇ -glucan mixture of the present invention may contain other materials such as polysaccharides, extenders, excipients, fillers, thickeners, surfactants, foaming agents, antifoaming agents, pH, depending on the application.
  • materials such as polysaccharides, extenders, excipients, fillers, thickeners, surfactants, foaming agents, antifoaming agents, pH, depending on the application.
  • the ⁇ -glucan mixture of the present invention includes, for example, flour koji, glucose, fructose, isomerized sugar, sugar, maltose, trehalose, honey, maple sugar, sorbitol, maltitol, dihydrochalcone, stevioside, ⁇ -glycosyl stevioside, lacanca sweet Glycyrrhizin, thaumatin, sucralose, L-aspartylphenylalanine methyl ester, sweeteners such as saccharin, glycine, alanine, etc. and also mixed with bulking agents such as dextrin, starch, pullulan, dextran, lactose, etc. It can also be used.
  • the ⁇ -glucan mixture of the present invention is used as it is or mixed with a bulking agent, excipient, binder, etc., as necessary, into various shapes such as granules, spheres, short bars, plates, cubes, etc. It is optional to use it after molding.
  • ⁇ -glucan mixture of the present invention or intermediate products thereof are usually used in the fields of foods, cosmetics, pharmaceuticals and the like as needed for the purpose of further improving flexibility and strength.
  • Other polymeric substances to be used, appropriate excipients, or other components such as plasticizers may be used in combination, and in moldings mainly composed of other excipients, ⁇ It is also possible to use glucan mixtures as binders.
  • excipients include polysaccharides such as pullulan, carrageenan, xanthan gum, carboxymethylcellulose, cellulose, hemicellulose, gum arabic, guar gum, pectin, chitin, agarose, dextrin, amylose and starch containing modified starch, or derivatives thereof, Polymers such as proteins such as gelatin or casein, sorbitol, mannitol, maltitol, sucrose, maltose, lactose, ⁇ , ⁇ -trehalose, ⁇ , ⁇ -trehalose, gum arabic, corn starch, crystalline cellulose, hydroxylated Aluminum, calcium hydroxide, magnesium hydroxide, barium hydroxide, calcium sulfate, calcium sulfite, calcium carbonate, silica, calcium silicate, basic magnesium carbonate, kaolin, talc, etc.
  • polysaccharides such as pullulan, carrageenan, xanthan gum, carboxymethylcellulose,
  • ⁇ , ⁇ -trehalose can be advantageously used as a stabilizer because it has the action of suppressing the denaturation of active ingredients due to oxidative degradation and keeping the activity stable.
  • plasticizer polyhydric alcohols such as sorbitol, maltitol, trehalose, glycerol, polyvinyl alcohol, polyethylene glycol or propylene glycol can be used.
  • the ⁇ -glucan mixture of the present invention can be used particularly advantageously as a food material.
  • Use in food is not particularly limited, and using the binding property of the ⁇ -glucan mixture of the present invention, molded snacks, molded cheese, molded dried fruit, fish meat molded products, fish egg molded products, fish meat foods, livestock meat foods It can be used for pseudo meat foods, molded delicacy foods and the like. Moreover, it can also be used for food loosening agents, food anti-sticking agents, processed rice, etc. by utilizing the film-forming (coating) property.
  • the ⁇ -glucan mixture of the present invention can be used for improving the texture and improving the storage stability of food by containing it in bread, confectionery and noodle strip products.
  • a preferred method of using the ⁇ -glucan mixture of the present invention for foods is to mix and knead with other raw materials such as flour, salt, sugar, water, and knead to form and cook the dough To do.
  • the blending ratio in the food is the ratio at the time of making the dough, and is 20% by mass or less, preferably 10% by mass or less, particularly preferably 5% by mass or less in terms of anhydride. Since the ⁇ -glucan mixture of the present invention uses waxy starch as a raw material, it can impart a texture such as a moist, sticky, soft, crisp and crisp texture to bread, confectionery and noodle strip products. it can.
  • confectionery it can be used mainly for baking, steaming, frying, drying, etc. after preparing the dough, for example, buns, rice cakes, rice crackers, dumplings, fertilization, in the middle, dorayaki, kintsuba, Japanese sweets such as Imakawa-yaki, biscuits, cookies, crackers, wafers, sponge cakes (roll cake, castella), butter cakes (pound cake, madeleine, gateau chocolat, financier), cream puff, baumkuchen, muffin, souffle, pie, tart Western confectionery such as Chinese confectionery such as moon cake.
  • noodle band products include noodles such as udon, Chinese noodles and soba noodles, pasta such as spaghetti, linguine,riseni, fettuccine, penne, conchiglie and macaroni, and skins such as wonton, gyoza and shumai.
  • the ⁇ -glucan mixture of the present invention has both good solubility in water and high strength when formed into a film and the like, and the molecular weight distribution of the ⁇ -glucan itself contained is a specific one. Since it is within the range, when this is used for a molded product, it can be expected that the molded product always has a constant strength, dissolution rate, and disintegration rate. Therefore, the ⁇ -glucan mixture of the present invention can be used not only for foods but also for cosmetics, pharmaceuticals, quasi-drugs, etc., in which the pharmacokinetics of active ingredients are always required to be constant. Excipients, binders, coatings, etc. in the form of molded articles such as capsules, microcapsules, fibers used in gauze, surgical threads, etc. Can be used as
  • various components commonly used in the respective fields may be appropriately blended in the molded product produced using the ⁇ -glucan mixture of the present invention as at least a part of the raw material. it can.
  • the molded product is a cosmetic or an intermediate product thereof, it can be in the form of a pack, a mask, a bath preparation, a refreshing film in the mouth, such as paraoxybenzoate, benzalkonium chloride, pentanediol, etc.
  • Preservatives whitening agents such as arbutin, ellagic acid, tetrahydrocurcuminoid, vitamin P, anti-inflammatory agents such as glycyrrhizic acid, licorice extract, cells such as lactoferrin, chondroitin sulfate, hyaluronic acid, photosensitizer 101, photosensitizer 301, etc.
  • moisturizer such as elastin, keratin, urea, ceramide, oil agent such as squalane, petrolatum, cetyl tri-2-ethylhexanoate, water-soluble polymer such as carrageenan, carboxymethylcellulose, locust bean gum, carboxyvinyl polymer, 1,3-butylene Recall, polyethylene glycol, propylene glycol, sorbitol, alcohols such as maltitol and the like, one or more, respectively, may be formulated alone or in combination as appropriate.
  • oil agent such as squalane, petrolatum, cetyl tri-2-ethylhexanoate
  • water-soluble polymer such as carrageenan, carboxymethylcellulose, locust bean gum, carboxyvinyl polymer, 1,3-butylene Recall, polyethylene glycol, propylene glycol, sorbitol, alcohols such as maltitol and the like, one or more, respectively, may be formulated alone or in combination
  • the molded product when it is a pharmaceutical product, quasi-drug or intermediate product thereof, it can be in the form of granules, tablets, sugar-coated tablets, etc., for example, azathioprine, cyclosporine, cyclophosphamide, methotrexate, tacrolimus Hydrates, immunosuppressants such as busulfan, capecitabine, rituximab, trastuzumab, bevacizumab, docetaxel, imatinib mesylate, 5-fluorouracil, anastrozole, taxol, tamoxifen, dotetaxel, hydroxycarbamide and other anticancer agents, abacavir Antiviral agents such as sulfate, zarcitabine, didanosine, famciclovir, ribavirin, amoxicillin, tarampicillin, cefixime, sulfamitisol, levofloxacin hydrate, cefcapen
  • the ⁇ -glucan mixture of the present invention can also be used as a material for industrial products.
  • Industrial products here include agricultural chemicals, fertilizers, feeds, paper products, abrasives, adhesives (binders), gelling agents, paints, dyes, pigments, inks, detergents, toiletries, biodegradable resins (bioplastics) ) And gas barrier resin.
  • agricultural chemicals and fertilizers they can be used as excipients when granulating and tableting agricultural chemicals and fertilizers.
  • the papermaking field it can be used as a surface coating agent or a reinforcing agent for paper products by utilizing the binding property and film forming ability of an ⁇ -glucan mixture, and as a non-woven fabric material and packaging material. it can. Furthermore, it can also be used as a substitute for polyvinyl alcohol (PVA), a substitute for carboxymethyl cellulose (CMC), a gypsum board, cement, a binder for battery separators, and the like.
  • PVA polyvinyl alcohol
  • CMC carboxymethyl cellulose
  • cement a binder for battery separators, and the like.
  • a commercially available waxy corn starch (trade name “Waxy Corn Starch Y”, manufactured by J-Oil Mills Co., Ltd.) is suspended in deionized water to a solid concentration of 30% by mass, and calcium chloride is adjusted to a concentration of 0.1% by mass. After the addition, the pH was adjusted to 6.0 to obtain a waxy corn starch suspension.
  • Heat-resistant ⁇ -amylase (trade name “Spitase HK”, manufactured by Nagase ChemteX Corporation) was added to this waxy corn starch suspension at 0 (no addition), 0.001, 0.002, 0.004 per waxy corn starch solid. , 0.008 or 0.02% by mass, heated at pH 6.5, 100 ° C.
  • ⁇ -glucan mixture powder was set by setting the disk rotation speed at 18,000 rpm and the raw material supply speed at 23 kg / hour and spray drying. It was prepared by about 2kg each was a test specimen 1-6.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are the same chromatogram of the test sample based on a calibration curve prepared based on a gel filtration HPLC chromatogram of a pullulan standard product for molecular weight measurement (manufactured by Hayashibara Co., Ltd.). Was obtained by analyzing with molecular weight distribution analysis software.
  • test samples 1 to 6 glucose equivalent (DE) was measured as an index for knowing the degree of hydrolysis. Further, each of the test samples 1 to 6 was dissolved in deionized water so as to have a solid concentration of 20% by mass, and the solubility in cold water was determined. Furthermore, the test samples 1 to 6 were made into aqueous solutions with a solid concentration of 30% by mass, and the viscosity of each solution was measured at 35 ° C. using a dynamic viscoelastic rheometer (MCR102 type, manufactured by Anton Pearl Japan Co., Ltd.). did. The viscosity of an aqueous solution having a solid concentration of 30% by mass was expressed as a shear viscosity under conditions of 35 ° C. and a shear rate of 10.8 / sec. The results are summarized in Table 1.
  • test sample 1 that is, the gelatinized waxy corn starch not treated with thermostable ⁇ -amylase, has a viscosity of 26,700 mPa ⁇ S showed high viscosity and had difficulty in handling.
  • pretreatment for high molecular weight distribution analysis by gel filtration HPLC could not be performed, and weight average molecular weight (Mw) and number average molecular weight (Mn) could not be measured.
  • test sample 1 was inferior in water solubility and did not have cold water solubility.
  • test samples 2 to 5 prepared by the action of a small amount of thermostable ⁇ -amylase, as the amount of amylase increases, the degree of degradation of gelatinized waxy corn starch increases, and the weight average molecular weight (Mw), The number average molecular weight (Mn) decreased and Mw / Mn decreased.
  • Test samples 2 to 5 have a weight average molecular weight (Mw) in the range of 2,560 to 183 kDa and Mw / Mn in a range of 3.95 to 8.09. Unlike test sample 1, the test samples 2 to 5 have cold water solubility. Was.
  • the viscosity of the aqueous solution having a solid concentration of 30% by mass in the test samples 2 to 5 shows a lower value as the amount of amylase acting increases, that is, as the degree of hydrolysis increases, 2,330 to 220 mPa ⁇ s. Met.
  • the test sample 6 had a small weight average molecular weight (Mw) of 39.1 kDa and a large value of Mw / Mn of 35.9.
  • ⁇ Experiment 2 Suitability of various ⁇ -glucan mixtures as edible film materials> Using the test samples 1 to 6 obtained in Experiment 1 as raw materials, each was formed into a film without adding a plasticizer, and the properties of the obtained film were examined. As an edible film material for various ⁇ -glucan mixtures The suitability (film suitability) of was examined.
  • test samples 1 to 6 obtained in Experiment 1 were uniformly dissolved in deionized water so that the solid concentration would be 30% by mass, and defoamed by centrifugation (3,000 rpm, 10 minutes).
  • a film was formed by applying and stretching on a flat plate made of polyethylene terephthalate (PET) using a baker applicator (YBA type, manufactured by Yoshimitsu Seiki Co., Ltd.) and naturally drying at room temperature for one night or more, test sample 6 As for, because of the low viscosity of the aqueous solution, the film-forming property was poor and it was difficult to form into a film.
  • a film having a thickness of about 40 ⁇ m was prepared from each of the test samples 1 to 5 as film samples 1 to 5.
  • film sample 1 prepared from test sample 1 simply gelatinized waxy corn starch is a film with uneven surface and lack of transparency, and has a piercing break strength of 2.66 N / mm 2. Although it showed a large value, it was not completely dissolved in the water solubility test and was poor in water solubility.
  • film samples 2 to 5 were films having a uniform thickness, a smooth surface, excellent transparency and water solubility, and their piercing break strength was as high as 2.0 N / mm 2 or more.
  • the test sample 6 as it was mentioned above, it was difficult to shape
  • test samples 2 to 5 have suitability as a material for preparing a good edible film without using a plasticizer, while test samples 1 and 6 lack suitability. Met.
  • an ⁇ -glucan mixture obtained by allowing amylase to act on waxy starch and partially decomposing it has a weight average molecular weight (Mw) in the range of 150 kDa to 3,000 kDa and Mw / Mn is less than 10. Is excellent in cold water solubility and has a property of maintaining an appropriate viscosity, and by molding the ⁇ -glucan mixture, it is uniform, transparent and excellent in water solubility, and has a puncture and breaking strength of 2.0 N. / Mm 2 It was judged that an edible film of 2 or more was obtained.
  • Mw weight average molecular weight
  • the amount of heat-resistant ⁇ -amylase (trade name “Spitase HK”, manufactured by Nagase ChemteX Corporation) per waxy corn starch solid was 0.002 mass%, and the other operations were the same as in Experiment 1.
  • An ⁇ -glucan mixture-containing solution was obtained.
  • a purified preparation of the ⁇ -glucosyltransferase derived from Bacillus circulans PP710 disclosed in the pamphlet of International Publication No. WO2008 / 136331 by the same applicant as the present application is added to the solid product of ⁇ -glucan mixture.
  • reaction was stopped by adding 0.25, 0.5, 2.5, 10 or 25 units per gram, acting at pH 6.0, 50 ° C. for 24 hours and heating at 140 ° C. for 10 minutes.
  • about 2 kg each of ⁇ -glucan mixture was prepared by spray drying using a disk type spray drying apparatus (manufactured by Niro Co., Ltd.), and used as test samples 7 to 11.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and Mw / Mn were determined in the same manner as in Experiment 1.
  • the above-described isomalt-dextranase digestion test was carried out using a 1 w / v% aqueous solution of test samples 7-11. The isomaltose content in the obtained digest was measured.
  • test samples 7 to 11 obtained by allowing 0.002% by mass of thermostable ⁇ -amylase to act on waxy corn starch and further causing ⁇ -glucosyltransferase to act on the isomaltodextranase Digestion confirmed that 1.57% to 25.4% by weight of isomaltose was produced per solid of digested material, and although the degree was different, all of them had an isomaltose structure at the non-reducing end. It was confirmed to be an ⁇ -glucan mixture containing ⁇ -glucan having
  • test samples 7-11 the greater the amount of action of ⁇ -glucosyltransferase, the greater the Mw / Mn (dispersity) of the obtained test sample, and the test sample with the largest amount of action of 25 units / g-substrate. In the case of 11, it increased to 62.3.
  • Mw weight average molecular weight
  • Mw / Mn was clearly increased by the action of ⁇ -glucosyltransferase, and the ⁇ -glucan mixture Variation in the molecular weight of the molecular species occurred.
  • the viscosities of the aqueous solutions of test samples 7 to 11 having a solid concentration of 30% by mass were 990 to 651 mPa ⁇ s, which were slightly lower than those of test sample 3 to which no ⁇ -glucosyltransferase was allowed to act. I could't.
  • the test sample 7 showed white turbidity in the aging resistance test in which an aqueous solution with a solid concentration of 30% by mass was held at 6 ° C. for 1 week. Although no aging property was observed, it was found in the same aging resistance test that the test samples 8 to 11 had remarkable aging resistance that maintained the state of a transparent aqueous solution at the time of storage for 1 week.
  • An ⁇ -glucan mixture containing an ⁇ -glucan having an isomaltose structure at the non-reducing end was prepared from an ⁇ -glucan mixture having a weight average molecular weight (Mw) smaller than that in Experiment 3, and examined in the same manner as in Experiment 3. It was.
  • Mw weight average molecular weight
  • ⁇ -glucan mixture having a further reduced molecular weight was obtained in the same manner as in Experiment 1 except that the amount of thermostable ⁇ -amylase used per waxy corn starch solid was changed to 0.004% by mass.
  • a purified preparation of the Bacillus circulans PP710-derived ⁇ -glucosyltransferase is added to the ⁇ -glucan mixture in the same manner as described above at 0.5, 1.0, 2.5 or 1 5.0 units were added, the reaction was stopped by heating at 140 ° C. for 10 minutes by reacting at pH 6.0 and 50 ° C. for 24 hours.
  • about 2 kg each of ⁇ -glucan mixture was prepared by spray drying using a disk type spray drying apparatus (manufactured by Niguchi Co., Ltd.), and used as test samples 12 to 15.
  • Test Samples 12 to 15 as in Experiment 3, the weight average molecular weight (Mw), number average molecular weight (Mn), Mw / Mn, isomaltose content in isomaltdextranase digest, glucose equivalent (DE) was measured, and the viscosity and aging resistance of a solution with solubility in cold water and a solid concentration of 30% by mass were evaluated.
  • the results are summarized in Table 4.
  • the results of Test Sample 4 prepared by adding 0.004% by mass of heat-resistant ⁇ -amylase per waxy corn starch solid to the waxy corn starch suspension obtained in Experiment 1 are also shown in Table 4 as a control.
  • test samples 12 to 15 obtained by allowing 0.004% by mass of thermostable ⁇ -amylase to act on waxy corn starch and further causing ⁇ -glucosyltransferase to act on the isomaltodextranase Since it was confirmed that the digestion produced 1.5% to 20.6% by mass of isomaltose per solid of the digested product, the same as in the case of test samples 7 to 11 obtained in Experiment 3 In addition, it was confirmed that both were ⁇ -glucan mixtures containing ⁇ -glucan having an isomaltose structure at the non-reducing end.
  • the weight average molecular weight (Mw) is 449 to 365 kDa, which is about 1/3 that of Test Samples 7 to 11 obtained in Experiment 3, and ⁇ -glucan having a lower molecular weight. It was confirmed to be a mixture. Mw / Mn of test samples 12 to 15 showed values of 8.3 to 37.5. Although the test samples 12 to 15 did not change much in the weight average molecular weight (Mw) as compared to the test sample 4, Mw / Mn was clearly increased as the amount of action of ⁇ -glucosyltransferase increased. The glucose equivalent (DE) of the test samples 12 to 15 was in the range of 0.45 to 2.76.
  • the viscosity of the aqueous solution of test samples 12 to 15 having a solid concentration of 30% by mass was 525 to 294 mPa ⁇ s, which was not significantly different from test sample 4 in which ⁇ -glucosyltransferase was not allowed to act.
  • the test sample 12 showed white turbidity in the aging resistance test in which an aqueous solution having a solid concentration of 30% by mass was maintained at 6 ° C. for 1 week. Although no aging property was observed, it was found in the same aging resistance test that the test samples 13 to 15 had remarkable aging resistance that maintained the state of a transparent aqueous solution at the time of storage for 1 week.
  • isomaltose content per solid of isomalt dextranase digestion is as low as 1.57% by mass or 1.50% by mass, that is, ⁇ having an isomaltose structure at the non-reducing end.
  • Test sample 7 and test sample 12 with low glucan content do not have aging resistance, and test samples 8 to 11 and test samples 13 to 15 whose isomaltose content is 3.83% by mass or more are aging resistance.
  • ⁇ Experiment 5 Suitability of ⁇ -glucan mixture containing ⁇ -glucan having isomaltose structure at non-reducing end as edible film material> Films having a thickness of about 40 to 50 ⁇ m were prepared using test samples 7 to 15 obtained in Experiments 3 and 4 as raw materials in the same manner as in Experiment 2, and designated as film samples 7 to 15, respectively. Next, as in Experiment 2, the film samples 7 to 15 were evaluated for appearance (film suitability), transparency, and water solubility, and puncture breaking strength was measured.
  • Film samples 7 to 10 were excellent in transparency and water solubility, and pierced and rupture strength was similar to film sample 3 prepared using an ⁇ -glucan mixture obtained by partially decomposing waxy corn starch with amylase. It had a strong excellent property of 0 N / mm 2 or more.
  • test sample 11 that is, the film sample 11 prepared from the ⁇ -glucan mixture in which the value of Mw / Mn is increased to 62.3 by the action of ⁇ -glucosyltransferase, becomes very brittle and obtains a film. It was difficult.
  • Film samples 12 to 14 were excellent in transparency and water solubility, and pierced and rupture strength was similar to film sample 4 prepared using an ⁇ -glucan mixture obtained by partially decomposing waxy corn starch with amylase. It was strong at 0 N / mm 2 or more and had excellent properties.
  • test sample 15 that is, the film sample 15 prepared from the ⁇ -glucan mixture in which the value of Mw / Mn is increased to 37.5 by the action of ⁇ -glucosyltransferase, becomes very brittle and obtains a film. It was difficult.
  • the weight average molecular weight (Mw) is in the range of 150 kDa to 3,000 kDa, and Mw / Mn is 35.1. If the ⁇ -glucan mixture described below is used as a raw material, it has excellent transparency and water solubility without adding a plasticizer, has a puncture strength of 2.0 N / mm 2 or more, and is difficult to crack. It was found that a film was obtained.
  • the pullulan As the pullulan, a commercially available pullulan (trade name “Pullan”, sold by Hayashibara Co., Ltd.) was used, and as the dextrin, a commercially available dextrin (trade name “Paindex # 100”, sold by Matsutani Chemical Industry Co., Ltd.) was used.
  • the roasted starch was prepared by the following method. That is, while adding a solution of 0.008 mol / kg of magnesium chloride hexahydrate dissolved in 110 mL of water to 500 g of commercially available waxy corn starch, the mixture was mixed for about 30 minutes in a mortar to obtain a wet mixture.
  • This wet mixed solution was spread on a stainless steel vat to a thickness of about 1 cm and heat-treated for 3 hours in an air circulation thermostat adjusted to 135 ° C. to obtain a roasted sample.
  • This roasted sample is suspended in water to 30% by mass, and gelatinized while stirring at 160 ° C. for 15 minutes at 95 ° C. with a rapid visco analyzer (RVA-4 type, Newport Scientific).
  • RVA-4 type rapid visco analyzer
  • the pullulan had a weight average molecular weight (Mw) of 399 kDa and Mw / Mn of 37.8.
  • Pullulan has a problem that the viscosity of an aqueous solution having a solids concentration of 30% by mass is as high as 35,700 mPa ⁇ s and difficult to handle, but it is not so difficult to form a film, and has a thickness of 40 ⁇ m.
  • the film formed in this way was a strong film having a puncture and breaking strength as large as 3.03 N / mm 2 .
  • the roasted starch had a weight average molecular weight (Mw) of 1,170 kDa and was equivalent to the test samples 7 to 10 obtained in Experiment 3, but the Mw / Mn (dispersity) was compared with 41.9.
  • the aqueous solution having a solid concentration of 30% by mass did not exhibit aging resistance.
  • a film having a thickness of 40 ⁇ m obtained using the roasted starch was pierced and showed a breaking strength of 1.55 N / mm 2 and was a low strength film.
  • dextrin has a low viscosity of 87 mPa ⁇ s in an aqueous solution with a solid concentration of 30% by mass, and although it was attempted to form a film, it was extremely brittle, and the film could not be substantially prepared. .
  • the ⁇ -glucan mixture of the present invention that is, the ⁇ -glucan mixture obtained by the production method including the steps of gelatinizing waxy starch and allowing amylase to act and liquefy (1) the weight average molecular weight (Mw) is in the range of 150 kDa to 3,000 kDa; and (2) the weight average molecular weight (Mw) divided by the number average molecular weight (Mn) (Mw / Mn) is 35.
  • the ⁇ -glucan mixture having the characteristics of 1 or less is a pullulan widely used as an edible film material in that it is excellent in transparency, water solubility, and can be suitably used as a material for an edible film having strength. It became clear that it was not inferior to that.
  • amylose content of commercially available corn starch (trade name “Showa Corn Starch”, manufactured by Shikishima Starch Co., Ltd.) and high amylose corn starch (trade name “starch corn derived”, code number: S4180, manufactured by Sigma Aldrich) It measured similarly about.
  • amylose content of each sample was measured based on the color reaction of amylose and iodine according to the amylose content measurement method shown in the Ministry of Agriculture, Forestry and Fisheries Notification No. 332, Standard Measurement Method.
  • a reagent grade amylose (trade name “Potatoamylose Type III”, manufactured by Sigma-Aldrich) was used to prepare an amylose standard solution and prepare a calibration curve. The results are shown in Table 8.
  • the amylose content (mass%) of the waxy corn starch and the ⁇ -glucan mixture obtained in Example 4 was measured as 13.4 mass% and 10.3 mass%, respectively, in this measurement method. It was.
  • the amylose content of commercially available corn starch and high amylose corn starch was measured to be 35.9% by mass and 46.9% by mass, respectively.
  • the amylose content is said to be higher in the order of high amylose corn starch> corn starch> waxy corn starch, and the above measured values support this conventional knowledge.
  • the waxy starch is partially decomposed with amylase, or the waxy starch is partially decomposed with amylase, and then ⁇ -glucosyltransferase is allowed to act to form an isomaltose structure at the non-reducing end. It is produced by producing ⁇ -glucan having it. Since amylase and ⁇ -glucosyltransferase are not enzymes that degrade the branched structure through ⁇ -1,6 bonds in waxy starch like starch debranching enzyme, the action of amylase and ⁇ -glucosyltransferase Does not produce linear amylose from waxy starch and does not increase the amylose content in the reaction product.
  • the ⁇ -glucan mixture of the present invention showed an amylose content equal to or lower than that of waxy corn starch. This is because the ⁇ -glucan mixture of the present invention was produced using waxy corn starch as a raw material. Tells the story. In other words, an ⁇ -glucan mixture having a weight average molecular weight (Mw) of 150 kDa or more and having an amylose content of less than 15% by mass according to the present measurement method gelatinizes waxy starch and causes amylase to act and liquefy.
  • Mw weight average molecular weight
  • waxy corn starch (trade name “waxy corn starch Y”, manufactured by J-Oil Mills Co., Ltd.) was suspended in deionized water to a solid concentration of 30% by mass, and calcium chloride was added to a concentration of 0.1% by mass. After that, the pH was adjusted to 6.0 to obtain a waxy corn starch suspension.
  • Heat-resistant ⁇ -amylase (trade name “Spitase HK”, manufactured by Nagase ChemteX Corporation) is added to this waxy corn starch suspension at 0.002% by mass per waxy corn starch solid, and heated at 100 ° C. for 20 minutes. Then, gelatinization and liquefaction were performed, the reaction was stopped by heating at 140 ° C. for 10 minutes, and the mixture was supplied to a drum dryer and dried at 135 ° C. The dried product was pulverized through a pulverizer to obtain a powdery ⁇ -glucan mixture.
  • This ⁇ -glucan mixture had a weight average molecular weight (Mw) of 980 kDa, Mw / Mn of 7.9, was soluble in cold water, and the viscosity of an aqueous solution having a concentration of 30% by mass was 960 mPa ⁇ s.
  • Mw weight average molecular weight
  • This product can be suitably used as a raw material for edible films, a thickener for foods, cosmetics, pharmaceuticals or industrial products, a binder, and the like.
  • waxy corn starch (trade name “waxy corn starch Y”, manufactured by J-Oil Mills Co., Ltd.) was suspended in deionized water to a solid concentration of 35% by mass, and calcium chloride was added to a concentration of 0.1% by mass. After that, the pH was adjusted to 6.0 to obtain a waxy corn starch suspension.
  • Heat-resistant ⁇ -amylase (trade name “Termamyl 60L”, manufactured by Novozymes Japan Co., Ltd.) is added to this waxy corn starch suspension in an amount of 0.004% by mass per waxy corn starch solid, and heated at 100 ° C. for 20 minutes. Then, gelatinization and liquefaction were performed, the reaction was stopped by heating at 140 ° C. for 15 minutes, and the mixture was supplied to a spray dryer and spray-dried by a conventional method to obtain a powdery ⁇ -glucan mixture.
  • This ⁇ -glucan mixture had a weight average molecular weight (Mw) of 351 kDa, Mw / Mn of 4.6, was soluble in cold water, and the viscosity of an aqueous solution having a concentration of 30% by mass was 445 mPa ⁇ s.
  • This product can be suitably used as a raw material for edible films, a thickener for foods, cosmetics, pharmaceuticals or industrial products, a binder, and the like.
  • waxy corn starch Y manufactured by J-Oil Mills Co., Ltd.
  • ⁇ derived from Bacillus circulans PP710 strain disclosed in International Publication No. WO2008 / 136331 Pamphlet -By performing the same operation as in Example 1 except that 1.0 unit of glucosyltransferase was added per 1 g of starch and allowed to act at pH 6.0 and 50 ° C for 24 hours, An ⁇ -glucan mixture containing ⁇ -glucan having a maltose structure was obtained.
  • the present ⁇ -glucan mixture had a weight average molecular weight (Mw) of 1,270 kDa, Mw / Mn of 22.1, was soluble in cold water, and the viscosity of an aqueous solution having a concentration of 30% by mass was 896 mPa ⁇ s.
  • the isomaltose content of the digest obtained by allowing isomaltdextranase to act on the ⁇ -glucan mixture was 9.3% by mass.
  • This ⁇ -glucan mixture is an ⁇ -glucan mixture containing ⁇ -glucan having an isomaltose structure at the non-reducing end, and in an aging resistance test in which an aqueous solution having a solid concentration of 30% by mass is maintained at 6 ° C.
  • This product can be suitably used as a raw material for edible films, a thickener for foods, cosmetics, pharmaceuticals or industrial products, a binder, and the like.
  • a commercially available waxy corn starch (trade name “waxy corn starch Y”, manufactured by J-Oil Mills Co., Ltd.) was gelatinized and liquefied in the same manner as in Example 2, and then further disclosed in the pamphlet of International Publication No. WO2008 / 136331.
  • a powder was obtained by performing the same operation as in Example 1 except that 1.0 unit of ⁇ -glucosyltransferase derived from Circulance PP710 strain was added per 1 g of starch and allowed to act at pH 6.0 and 50 ° C. for 20 hours.
  • An ⁇ -glucan mixture containing an ⁇ -glucan having an isomaltose structure at the non-reducing end was obtained.
  • the ⁇ -glucan mixture had a weight average molecular weight (Mw) of 566 kDa, Mw / Mn of 13.2, was soluble in cold water, and the viscosity of an aqueous solution having a concentration of 30% by mass was 483 mPa ⁇ s.
  • the isomaltose content of the digest obtained by allowing isomaltdextranase to act on this ⁇ -glucan mixture was 7.0% by mass.
  • This ⁇ -glucan mixture is an ⁇ -glucan mixture containing ⁇ -glucan having an isomaltose structure at the non-reducing end, and in an aging resistance test in which an aqueous solution having a solid concentration of 30% by mass is maintained at 6 ° C. for 1 week.
  • This product When stored for 1 week, it had aging resistance that showed no turbidity due to aging.
  • This product can be suitably used as a raw material for edible films, a thickener for foods, cosmetics, pharmaceuticals or industrial products, a binder, and the like.
  • ⁇ -glucosyltransferase derived from Arthrobacter globiformis PP349 strain disclosed in International Publication No. WO2008 / 136331 pamphlet was further added to 2.5 per gram of starch.
  • ⁇ -glucan containing ⁇ -glucan having an isomaltose structure at the non-reducing end was obtained.
  • -A glucan mixture was obtained.
  • This ⁇ -glucan mixture had a weight average molecular weight (Mw) of 1,360 kDa, Mw / Mn of 22.4, was soluble in cold water, and the viscosity of an aqueous solution having a concentration of 30% by mass was 840 mPa ⁇ s.
  • the isomaltose content of the digest obtained by allowing isomaltdextranase to act on this ⁇ -glucan mixture was 17.5% by mass.
  • the present ⁇ -glucan mixture is an ⁇ -glucan mixture containing ⁇ -glucan having an isomaltose structure at the non-reducing end, and an aging resistance capable of holding an aqueous solution having a solid concentration of 30% by mass at 6 ° C.
  • This product can be suitably used as a raw material for edible films, a thickener for foods, cosmetics, pharmaceuticals or industrial products, a binder, and the like.
  • ⁇ Edible film> The ⁇ -glucan mixture obtained in Example 1 was suspended in deionized water and stirred to obtain a solution having a solid concentration of 30% by mass, then degassed under reduced pressure, and cast on a PET film. It was dried in an environment with a relative humidity of 33% to obtain an edible film made of an ⁇ -glucan mixture having a thickness of 80 ⁇ m.
  • the obtained edible film contains 5.2% by mass of water, has high strength against breaking stress, has good water solubility, and exhibits a stable dissolution rate with little variation for each production lot. It can be advantageously used for foods, cosmetics, pharmaceuticals, etc.
  • ⁇ Edible film> The ⁇ -glucan mixture obtained in Example 2 was suspended in deionized water and stirred to obtain a solution having a solid concentration of 25% by mass, degassed under reduced pressure, and cast on a PET film at a temperature of 35 ° C. The film was dried in an environment with a relative humidity of 33% to obtain an edible film made of an ⁇ -glucan mixture having a thickness of 60 ⁇ m.
  • the obtained edible film contains 4.6% by mass of water, has high strength against breaking stress, has good water solubility, and exhibits a stable dissolution rate with little variation for each production lot. It can be advantageously used for foods, cosmetics, pharmaceuticals, etc.
  • ⁇ Edible film> The ⁇ -glucan mixture containing ⁇ -glucan having an isomaltose structure at the non-reducing end obtained in Example 3 was suspended in deionized water and stirred to obtain a solution having a solid concentration of 30% by mass, and then reduced in pressure.
  • An edible film made of the mixture was obtained.
  • the obtained edible film contains 4.1% by mass of water, has high strength against breaking stress, has good water solubility, and exhibits a stable dissolution rate with little variation for each production lot. It can be advantageously used for foods, cosmetics, pharmaceuticals, etc.
  • ⁇ Edible film> The ⁇ -glucan mixture containing ⁇ -glucan having an isomaltose structure at the non-reducing end obtained in Example 4 was suspended in deionized water and stirred to obtain a solution having a solid concentration of 25% by mass. ⁇ -glucan defoamed, cast on PET film, dried in an environment of 35 ° C. and 33% relative humidity, and containing ⁇ -glucan having a thickness of 50 ⁇ m and having an isomaltose structure at the non-reducing end An edible film made of the mixture was obtained. The obtained edible film contains 4.8% by mass of moisture, has high strength against breaking stress, has good water solubility, and exhibits a stable dissolution rate with little variation for each production lot. It can be advantageously used for foods, cosmetics, pharmaceuticals, etc.
  • ⁇ In-mouth refreshing film> in 69.25 parts by weight of deionized water, 22 parts by weight of the ⁇ -glucan mixture prepared by the method of Example 1, 1 part by weight of carrageenan, 0.15 parts by weight of xanthan gum, 0.15 parts by weight of locust bean gum Parts, maltitol 0.8 parts by mass, sugar-transferred hesperidin (trade name “Hayashibara Hesperidin S”, sold by Hayashibara Co., Ltd.), emulsified mint oil 2.6 parts by mass, sucralose 0.3 parts by mass, and citric acid Add 0.25 parts by weight, dissolve by stirring at 90 ° C.
  • a film-like molded product having a length of 10 m, a water content of about 8%, and a mass per 100 cm 2 of about 2.2 g was obtained. This film was cut into 1 ⁇ 2 cm and filled into a portable container by 20 sheets to prepare a mouth-cooling film.
  • This product is an edible film that has moderate strength and dissolves quickly in the mouth, and since it contains sugar-transferred hesperidin, it can be used to maintain and enhance oral health. It is.
  • this product is manufactured using the ⁇ -glucan mixture of the present invention having a substantially constant carbohydrate composition as a raw material with little variation among production lots, the dissolution rate in the mouth is almost constant, It is an edible film in which the rate of dissolution of active ingredients such as transglycosyl hesperidin is always stable.
  • the noodles that had been surface-treated with the noodle loosening improver contained no stickiness between the noodles, and the taste and texture were uncomfortable compared to the control noodles that were not sprayed with the noodle loosening improver.
  • the noodle surface was glossy and the noodle surface was also good in appearance.
  • the buns with food adhesive had significantly less sesame peeling and the adhesiveness of the food adhesive was good.
  • aqueous solution prepared by the method of Example 3 was prepared by dissolving 1 part by mass of an ⁇ -glucan mixture containing ⁇ -glucan having an isomaltose structure at the non-reducing end and 0.2 part by mass of gum arabic in 100 parts by mass of water. did. A fresh chicken egg within 10 hours after egg laying in this ⁇ -glucan mixture-containing aqueous solution is immersed for 30 seconds and then taken out and dried at a temperature of 30 ° C. for 2 hours to form a coating film of the ⁇ -glucan mixture on the eggshell surface. Formed.
  • the eggs formed with this coating film were stored at room temperature (15 to 25 ° C.), and the edible period was compared with that of a control untreated egg (no coating film).
  • the edible period of the eggs with the coating film extended was about 5 times that of the untreated eggs (without the coating film).
  • This ⁇ -glucan mixture-coated membrane can be advantageously used to preserve chicken eggs for use as raw materials in the food industry and the like.
  • ⁇ Tablets> 450 parts by mass of ethenamide, 300 parts by mass of acetaminophen, 50 parts by mass of caffeine, 25 parts by mass of maltitol, 25 parts by mass of ⁇ , ⁇ -trehalose, 200 parts by mass of sucrose, 400 parts by mass of xylitol, 500 parts by mass of corn starch Part, polyethylene glycol 20 parts by weight, 6 parts by weight ⁇ -glucan mixture containing ⁇ -glucan having an isomaltose structure at the non-reducing end, 6 parts by weight gum arabic, ⁇ -glucosyl stevioside, prepared by the method of Example 4 (Product name “ ⁇ G-sweet”, sold by Toyo Seika Co., Ltd.) After mixing 1 part by mass, 40 mL of water was added and kneaded, and tableting was performed with a tableting machine to obtain a tablet (about 300 mg / tablet).
  • This product has no cracking at the time of tableting, has moderate strength, shows good solubility in water, and can be used as a sublingual cold medicine that can be ingested while dissolved in the oral cavity.
  • this product has an almost constant binding force brought about by the ⁇ -glucan mixture. By compressing certain components under certain conditions, it is possible to always make tablets with a stable shape and strength. Tablets.
  • this product is a tablet that has a substantially constant dissolution rate in the oral cavity, stabilizes the dissolution rate of active ingredients such as etenzamide and acetaminophen, and allows them to act with high efficiency.
  • This product is easy to handle, has strength suitable for full-layer fertilization, and can adjust the elution rate of fertilizer components by changing the blending ratio.
  • blending plant hormones, agricultural chemicals, soil improvers, and the like into this fertilizer pile can also be carried out advantageously.
  • the ⁇ -glucan mixture of the present invention exhibits an appropriate molecular weight range, is excellent in cold water solubility, and maintains an appropriate viscosity, so that it can be used without limitation in use in food, cosmetics, pharmaceuticals and industrial products. . Furthermore, among foods, in particular, it can be suitably used as a raw material for edible films, a binder for food materials, a texture improving agent for breads, confectionery, etc., a flaw improving agent for noodle strip products, and a shelf life improving agent. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Materials Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

適度な分子量範囲を有するα-グルカン混合物であって、さらに、可食性フィルムに成形した場合、可塑剤を添加しなくとも、透明で、強度及び水溶性に優れるフィルムが得られるα-グルカン混合物とその用途を提供することを課題とし、ワキシースターチを糊化し、アミラーゼを作用させ液化する工程を含む製造方法により得られるα-グルカン混合物であって、下記(1)及び(2)の特徴を有するα-グルカン混合物とその用途を提供することにより上記課題を解決する: (1)重量平均分子量(Mw)が150kDa乃至3,000kDaの範囲にある;及び (2)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が35.1以下である。

Description

α-グルカン混合物とその製造方法並びに用途
 本発明は、α-グルカン混合物とその製造方法並びに用途、より詳細には、可食性フィルムの素材としての適性に優れたα-グルカン混合物とその製造方法並びに用途に関する。
 食べられるフィルム(可食性フィルム)は、主として食品の品質保持(特に鮮度)と取り扱いの利便性を目的として使用されており、実際に使われている可食性フィルム素材としては澱粉及びその誘導体、アルギン酸、ペクチン、アラビアガムなどの炭水化物、ゼラチン、カゼイン、大豆タンパク、乳タンパク、グルテン、ツェインなどのタンパク質がある。この他には、パラフィン、カルナバワックス、ミツロウ、キャンデリラワックス、ポリエチレンワックス各種脂肪酸のモノグリセライド等の脂質及びセラック、ロジン、コーパルなどの樹脂が用いられる場合もある。代表的な可食性フィルムとしては、澱粉から製造されるオブラート、コラーゲンから製造されるソーセージのケーシング、香料のマイクロカプセル、ゼラチンから製造されるソフトカプセルなどが挙げられる。また、比較的新しい可食性フィルムとしてはプルランフィルム、カラギーナンフィルムなどがある。
 従来、可食性フィルムとして汎用されているオブラートは、馬鈴薯澱粉を糊化(アルファ化)して得られる糊化澱粉を薄膜状にしたもので、薬を包み飲むための補助製品として使われてきた。しかしながら、オブラートは、高粘性の糊化澱粉を使用することから、フィルム調製時の澱粉濃度を薄くする必要があり、得られるフィルムが薄く、強度に欠けるという問題がある。また、糊化澱粉は、原料澱粉を低分子化することなく水溶性を持たせたものであり、澱粉の持つ接着性、増粘性を生かすことができるものの、上述のとおり高粘度であり、ハンドリングし難い上に、老化し易く不溶性の沈澱を形成するという問題がある。
 一方、澱粉部分分解物(デキストリン)は、その製造の過程で原料が酸、アルカリや酵素により加水分解され低分子化しており、水への溶解性は高くなるものの粘度が低下し、強度のあるフィルムに成形することが困難であるという問題があり、また、加水分解により還元力が増加することから、タンパク質やアミノ酸などと混合して加熱する場合には、メイラード反応により着色するという問題もあった。
 また、澱粉系の可食性フィルムは、低温での脆弱性を改善し、柔軟性を増大させる目的で、グリセロール、ソルビトールや、ソルビトールエステル等の可塑剤を配合し製造される場合が多いものの、多価アルコール等の可塑剤を添加すると、フィルムの強度が著しく低下する場合があるとされている(特許文献1を参照)。
 このような状況下、糊化澱粉とデキストリンの両者の利点、すなわち、適度な分子量、適度な粘度、冷水可溶性を併せ持ち、フィルムに成形した場合、可塑剤を添加しなくとも、透明で、強度及び水溶性に優れるフィルムが得られる可食性の素材が提供できれば極めて有用である。
特開2008-79525号公報
 本発明は、適度な分子量、適度な粘度、冷水可溶性を併せ持ち、フィルムに成形した場合、可塑剤を添加しなくとも、透明で、強度及び水溶性に優れるフィルムが得られる可食性の素材とその製造方法並びに用途を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ワキシースターチを糊化し、少量のアミラーゼを作用させて液化すると、適度な分子量範囲、粘度を有するこれまでにない優れたα-グルカン混合物が得られること、さらに当該α-グルカン混合物を用いれば、透明で、強度、水溶性に優れる可食性フィルムを、可塑剤を添加することなく、低コストで製造できることを見出し、本発明を完成するに至った。
 即ち、本発明は、ワキシースターチを糊化し、アミラーゼを作用させ液化する工程を含む製造方法により得られるα-グルカン混合物であって、下記(1)及び(2)の特徴を有するα-グルカン混合物を提供することにより上記課題を解決するものである:
  (1)重量平均分子量(Mw)が150kDa乃至3,000kDaの範囲にある;及び
  (2)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が35.1以下である。
 さらに、本発明者らは、上記α-グルカン混合物に、澱粉部分分解物に作用しその非還元末端グルコース残基にα-1,6グルコシル転移する活性を有する酵素をさらに作用させると、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物が得られ、このα-グルカン混合物は、上記可食性フィルム素材としての有用な特性に加えて、顕著な耐老化性を示すという利点を有することを見出した。
 すなわち、本発明は、上記(1)及び(2)の特徴を有するα-グルカン混合物であって、さらに、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物を提供することによっても上記課題を解決するものである。
 また、本発明は、上記のα-グルカン混合物を、可塑剤を添加することなく成形、乾燥することにより得られる可食性フィルムを提供することにより上記課題を解決するものである。斯かる本発明の可食性フィルムは、断面積1mmの突刺し試験用アダプターを用いて行われる突刺し強度試験において、2.0N/mm以上の突刺し破断強度を示すという優れた特徴を有している。
 さらに、本発明は上記α-グルカン混合物を含有してなる食品、化粧品、医薬品、工業用品を提供することにより上記課題を解決するものである。
 本発明のα-グルカン混合物は、適度な分子量及び粘度を有し、水への溶解性が高く、且つ、ハンドリングに優れるという利点を有する。また、本発明のα-グルカン混合物を原材料としてフィルムを調製すると、透明で、強度、水溶性に優れる可食性フィルムが可塑剤を添加することなく得られることから、本発明のα-グルカン混合物は食品用途向けの可食性フィルムの素材として有利に利用することができる。さらに、本発明のα-グルカン混合物は、食品原料、工業原料、化粧品原料及び医薬品原料としても有用である。
 また、非還元末端にイソマルトース構造を有するα-グルカンを含有する本発明のα-グルカン混合物は、上記の物性及び可食性フィルムの原材料としての適性に加え、顕著な耐老化性をも有していることから、可食性フィルムの素材として、また、食品原料、工業原料、化粧品原料及び医薬品原料として、より有利に利用することができる。
1.用語の定義
 本明細書において以下の用語は以下の意味を有している。
<ワキシースターチ>
 澱粉(スターチ)は、一般に、構成糖であるグルコースがα-1,4結合を介して直鎖状に連なった構造を有するアミロースと、アミロースがその内部のグルコースのところどころでα-1,6結合を介して分岐した構造を有するアミロペクチンとが混合した形態にあることが知られている。本明細書でいう「ワキシースターチ」とは、ワキシー(もち(糯))種の植物、例えば、ワキシー種の稲(米)、大麦、小麦、はと麦、トウモロコシ、きび、あわ、もろこしから得られる澱粉を意味する。ワキシースターチは、アミロースを殆ど含まず、ほぼアミロペクチンのみからなるという特徴を有しており、中でもワキシーコーンスターチは、ワキシーコーンから得られる澱粉で、糊化しやすく、透明なゲルは保存安定性に優れていることから最も汎用されており、本発明のα-グルカン混合物の原料として好適である。
<糊化>
 本明細書でいう「糊化」とは、澱粉粒を水の存在下で加熱すると、澱粉粒の水素結合が破壊され粒が不可逆的に膨潤(又は水和、溶解)する現象を意味する。澱粉は糊化とともに結晶性、複屈折性を失い、粘度が上昇し、酵素(アミラーゼ)や化学薬品に対する反応性が急激に増大する。糊化は別名アルファ化とも呼ばれる。
<液化>
 本明細書でいう「液化」とは、糊化澱粉にアミラーゼを作用させ、部分的に加水分解することにより、液状化することを意味する。糊化澱粉を液化して得られる液化澱粉(α-グルカン混合物)は、加水分解の程度が大きいほど低分子化し、低い分子量、低い粘度を示す。
<Mw/Mn(重量平均分子量/数平均分子量)>
 本明細書でいう「Mw/Mn」とは、重量平均分子量(Mw)を数平均分子量(Mn)で除した値を意味する。なお、Mw/Mnは分子量分布の拡がり(分散度)を表わす指標であり、値が大きいほど分子種が幅広い分子量範囲に及んでおり、値が1に近いほど分子種が分子量において均一であることを意味する。因みに、Mw/Mnは被験試料をゲル濾過高速液体クロマトグラフィー(ゲル濾過HPLC)に供し、そのクロマトグラムを分子量分布解析ソフトウェアにより解析し、重量平均分子量(Mw)と数平均分子量(Mn)を求めることによって算出することができる。
<冷水可溶性>
 本明細書でいう「冷水可溶性」とは、被験試料を固形物濃度20質量%となるよう脱イオン水に添加し、液温30℃の条件下で攪拌して溶解の程度を目視で判定した時、15分間以内に完全に溶解して均一な溶液を与える性質を意味する。冷水可溶性を有するα-グルカン混合物は、各種組成物に配合する際などに加熱溶解する必要がないため、取扱いが容易であるという利点がある。
<老化>
 本明細書でいう「老化(retrogradation)」とは、糊化澱粉(アルファ化澱粉)又は液化澱粉が時間の経過とともに天然澱粉のように水に不溶性の状態に変化することを意味する。老化は澱粉分子が自然に会合し、部分的に密な集合状態に移行する状態変化であり、分子の会合は主にグルコース残基の水酸基(OH基)による水素結合によると考えられている。糊化澱粉又は液化澱粉の水溶液は時間の経過により白濁する現象が認められるが、これは、糊化澱粉又は液化澱粉が老化し不溶化するために起こるものである。なお、澱粉はアミロースとアミロペクチンとで構成されているが、枝分かれしていない直鎖状のアミロースの方が老化し易いことが知られている。
<フィルム>
 本明細書でいう「フィルム」とは、高分子多糖、とりわけ、澱粉又はα-グルカン混合物を原材料として成形した薄い膜状物を意味し、成形後もそれ単体で薄膜状の構造が維持できるものを指している。厚みとしては、一般的には、250μm以下のものを指すと言われている。「フィルム」は、長い製造品を巻き取ったロール状で供出される場合が多く、同一の製造品であっても、厚さの薄いもの、ロール状にしたものを「フィルム」、厚さが厚いもの、適当な大きさに切り出したものを「シート」とそれぞれ呼称する場合もある。後述する実験の項では、被験試料を脱イオン水に溶解して固形物濃度30質量%の水溶液とし、適量をポリエチレンテレフタレート(PET)製の平板上にベーカーアプリケーター(YBA型、ヨシミツ精機株式会社製)を用いて、塗布、延伸させ、室温にて一夜乾燥させて可塑剤を含まないフィルム試料を調製した。
<突刺し破断強度>
 本明細書でいう「突刺し破断強度」とは、フィルムをレオメーターを用いた突刺し強度試験に供し、破断を生じた時に測定される応力を意味する。後述する実験の項では、フィルム試料を、直径20mmの円形に切り取り、室温で相対湿度52.8%の条件下で一晩保持して調湿した後、装置として、断面積1mmの突刺し試験用アダプターを装着した『レオメーター CR-500DX』(株式会社サン科学製)を用い、装置に固定した上記フィルム試料の中心部にアダプターを50mm/分の速度で垂直に押し付け、破断を生じた時の応力を測定対象とするフィルム試料についてそれぞれ10回測定し、その平均値をそのフィルム試料の突刺し破断強度とした。
<α-グルコシル転移酵素>
 本明細書でいう「α-グルコシル転移酵素」とは、澱粉部分分解物に作用し、その非還元末端グルコース残基にα-1,6グルコシル転移する活性を有する酵素を意味する。当該α-グルコシル転移酵素をα-グルカン混合物に作用させることにより、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物を得ることができる。当該α-グルコシル転移酵素としては、例えば、α-グルコシダーゼ、α-グルコシルトランスフェラーゼ、デキストリンデキストラナーゼなどが挙げられる。
<イソマルトデキストラナーゼ消化>
 本明細書でいう「イソマルトデキストラナーゼ消化」とは、被験試料の水溶液にイソマルトデキストラナーゼを作用させ、被験試料中のイソマルトース構造の還元末端側の結合を加水分解することを意味する。イソマルトデキストラナーゼ(EC 3.2.1.94)は、デキストランなどの、非還元末端にイソマルトース構造を有するグルカンであれば、当該イソマルトース構造の還元末端側に隣接する結合が、α-1,2、α-1,3、α-1,4及びα-1,6結合のいずれの結合であっても加水分解する活性を有する酵素であることから、被験試料にイソマルトデキストラナーゼを作用させ、得られる消化物をHPLC分析に供し、糖組成中にイソマルトースが認められるか否かを調べることにより、被験試料が非還元末端にイソマルトース構造を有するα-グルカンを含有するか否かを確認することができる。後述する実験の項では、具体的には、被験試料を濃度1w/v%の水溶液とし、アルスロバクター・グロビホルミス由来のイソマルトデキストラナーゼ(株式会社林原製)を被験試料固形物1グラム当たり100単位加え、50℃、pH5.0で16時間作用させ、得られた消化物を下記条件による糖組成分析用HPLCに供してイソマルトースを定量した。
(糖組成分析用HPLC条件)
カラム:MCI GEL CK04SS(株式会社三菱化学製造)を2本連結
溶離液:水
カラム温度:80℃
流 速:0.4mL/分
検 出:示差屈折計RID-10A(株式会社島津製作所製造)
<グルコース当量(Dextrose Equivalent,DE)>
 本明細書でいう「グルコース当量(DE)」とは、澱粉を酸又は酵素を用いて加水分解して得られる澱粉糖(澱粉部分分解物)における加水分解の進行程度を示す指標であり、次式で表わされる数値を意味する。なお、グルコース当量(DE)はD-グルコース(デキストロース、ブドウ糖)の還元力を100とした場合の相対的な尺度であり、0に近いものほど加水分解の程度が低く澱粉に近い特性を有し、100に近いものほど加水分解の程度が高くグルコースに近い特性を有することとなる。
Figure JPOXMLDOC01-appb-M000001
 なお、上記還元糖量は、常法である改良Park-Johnson法(檜作ら、「カーボハイドレートリサーチ(Carbohydrate Research)」、第94巻、205乃至213頁(1981年)を参照)により、D-グルコースを標準物質として定量する。全固形物量は、常法の乾燥法にて求める。
<アミロース含有率>
 澱粉は、コーンスターチ、ポテトスターチ、タピオカスターチなど種類が異なれば、それぞれアミロースの含有率が異なっているため、「アミロース含有率」は、澱粉種を特定する指標の一つとして使用することができる。本明細書でいう「アミロース含有率」とは、澱粉若しくはそのアミラーゼによる部分分解物(α-グルカン混合物)、又は、それらにα-グルコシル転移酵素を作用させて得られるα-グルカン混合物などの澱粉質試料において、農林水産省告示第332号、標準計測方法に示されているアミロース含有率測定法に準じてアミロースとヨウ素の呈色反応に基づき測定される、試料のアミロース含有率を意味する。当該測定法は、具体的には、(1)分析試料100mgに、エタノール1mLと1M水酸化ナトリウム試液9mLを加え沸騰水中で10分間加熱し、水を加え正確に100mLとして試料液を調製する;(2)次いで、当該試料液5mLと1M酢酸試液1mLを混合し、次にヨウ素・ヨウ化カリウム試液2mLを加え混合した後に、水を加えて正確に100mLとして測定液とする;(3)当該測定液を27℃で30分間保持することにより温度調整した後、分光光度計を用いて波長620nmの吸光度を測定する;(4)当該吸光度と、別途、試薬級アミロースを用いて調製したアミロース標準溶液について同様に測定し作成した検量線に基づき、分析試料中のアミロース含量を求め、アミロース含有率を算出する;という方法である。
2.本発明のα-グルカン混合物
 本発明のα-グルカン混合物は、ワキシースターチを糊化し、アミラーゼを作用させ液化する工程を含む製造方法により得られるα-グルカン混合物であって、且つ、下記(1)及び(2)の特徴を有するものである:
  (1)重量平均分子量(Mw)が150kDa乃至3,000kDaの範囲にある;及び
  (2)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が35.1以下である。
 本発明のα-グルカン混合物は、ワキシースターチを糊化し、アミラーゼを作用させ液化する工程を含む製造方法により得られることを特徴とする。ワキシースターチは、直鎖状のα-1,4グルカンであるアミロースを実質的に含まず、ほぼ分岐構造を有するアミロペクチンのみで構成される澱粉であり、ワキシースターチ以外のアミロースを含む澱粉に比べ糊化し易く本来的に老化し難い性質を有しており、その分解物についても同様である。また、ワキシースターチは、ワキシースターチ以外のアミロースを含む澱粉に比べると造膜性(フィルム形成能)にも優れている。糊化澱粉を液化する方法としては酸を用いる方法もあるものの、アミラーゼの方が酸に比べ加水分解の程度をコントロールし易いという利点がある。
 本発明のα-グルカン混合物は、(1)重量平均分子量(Mw)が150kDa乃至3,000kDaの範囲にあることを特徴とし、200kDa乃至3,000kDaの範囲にあるものがより好ましい。重量平均分子量(Mw)が150kDa未満になると、分子量の小さい分子の割合が増加して、粘度や造膜性(フィルム形成能)が低下し、また、還元力の増加の原因となる。重量平均分子量が3,000kDa超になると、水に溶解し難く、高粘度を示すためハンドリングが悪く使用が困難となる。また、フィルムに成形した場合、透明性、水溶性に欠けるものとなる。
 また、本発明のα-グルカン混合物は、(2)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が35.1以下にあることを特徴とする。Mw/Mnの値が35.1超になると、低分子の割合が増加し、造膜性に劣るものとなる。
 ワキシースターチをアミラーゼで部分分解して得られるα-グルカン混合物の場合には、Mw/Mnの値を低く抑えることができ、通常、10未満、好ましくは8未満、更に好ましくは6未満とすることができる。その一方で、後述する実験の項でも示すように、重量平均分子量(Mw)が150kDaを下回り、Mw/Mnが35.1超となるまで分解したものは、フィルムへの成形が困難となる。
 また、本発明のα-グルカン混合物は、より好適な一例において、上記(1)及び(2)の特徴を有するとともに、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物である。そのようなα-グルカン混合物は、澱粉部分分解物に作用しその非還元末端グルコース残基にα-1,6グルコシル転移する活性を有するα-グルコシル転移酵素をさらに作用させることによって得ることができる。
 α-グルカン混合物が、非還元末端にイソマルトース構造を有するα-グルカンを含有しているか否かは、当該α-グルカン混合物を水溶液とし、イソマルトデキストラナーゼを作用させて消化し、その消化物中にイソマルトースが含まれるか否かを調べることにより確認することができる。本発明の、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物は、イソマルトデキストラナーゼ消化により、消化物の固形物当たりイソマルトースを3質量%超22質量%未満生成することを特徴とする。
 非還元末端にイソマルトース構造を有するα-グルカンを含有する本発明のα-グルカン混合物は、非還元末端のイソマルトース構造という澱粉の加水分解物に本来的に存在しない特殊な構造を有するα-グルカンを含有するがゆえに、その原料となるα-グルカン混合物(澱粉部分分解物)や、グルコースがα-1,4結合を介して連結した直鎖状のα-1,4グルカンに比べ、顕著に老化し難い性質を有している。本発明の、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物であって、イソマルトデキストラナーゼ消化において、消化物の固形物当たり3質量%超22質量%未満のイソマルトースを生成するα-グルカン混合物は、固形物濃度30質量%の水溶液として6℃で1週間保持した場合でも老化による溶液の白濁が認められないほどの耐老化性を有する。したがって、使用に先立ち予め比較的高濃度の水溶液の形態で保存しておくことができるという利点を有する。
 実験の項で後述するとおり、ワキシースターチにアミラーゼを作用させて得られるα-グルカン混合物であっても、イソマルトデキストラナーゼ消化物の固形物当たりのイソマルトース含量が3質量%以下を示すα-グルカン混合物は、非還元末端にイソマルトース構造を有しないα-グルカン混合物と比較した場合、耐老化性に顕著な差はなく、22質量%以上を示すものは、耐老化性は向上しているものの、Mw/Mn(分散度)が35.1超となり、造膜性が低下しフィルムへの加工が困難になる傾向がある。非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物の場合には、アミラーゼに加えてα-グルコシル転移酵素をさらに作用させて製造することから、含まれる個々のα-グルカン分子同士で分子構造の違いがより顕著になるので、Mw/Mnの値が増加することは避けられない。したがって、アミラーゼに加えてα-グルコシル転移酵素をさらに作用させて製造されるα-グルカン混合物の場合には、Mw/Mnの値を、通常、35.1以下、好ましくは25未満とするのが望ましい。Mw/Mnの値が35.1超となると、低分子の割合が増加し、フィルムへの成形に支障が生じることとなる。
 本発明のα-グルカン混合物のグルコース当量(DE)は特に限定されないものの、グルコース当量(DE)はワキシースターチの分解程度の指標として、また、上記で規定した重量分子量(Mw)の指標としても使用することができる。なお、α-グルカン混合物の用途によっては、タンパク質やアミノ酸などと混合して加熱する場合にメイラード反応などによる着色、褐変を起こし難いものが望まれる。そのような場合には、α-グルカン混合物のグルコース当量(DE)は低い方が望ましい。ワキシースターチをアミラーゼで部分分解して得られるα-グルカン混合物の場合には、グルコース当量(DE)を低く抑えることができ、通常、1.0未満、好ましくは0.8以下、さらに好ましくは0.62以下とすることができる。後述する実験の項でも示すように、グルコース当量(DE)が1.0超となるまで分解したものは、重量平均分子量(Mw)が150kDaを下回り、フィルムへの成形が困難となる。一方、ワキシースターチをアミラーゼで部分分解し、さらにα-グルコシル転移酵素を作用させて得られる、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物の場合には、α-グルコシル転移酵素をさらに作用させて製造することから、グルコース当量(DE)が若干増加することが避けられない。したがって、アミラーゼに加えてα-グルコシル転移酵素をさらに作用させて製造されるα-グルカン混合物の場合には、グルコース当量(DE)を、通常、2.0以下、好ましくは1.8以下、さらに好ましくは1.6以下とするのが望ましい。非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物の場合には、グルコース当量(DE)が2.0超を示す場合でも重量平均分子量(Mw)は300kDa以上を維持している。しかしながら、グルコース当量(DE)が2.0超となると、Mw/Mn(分散度)が35.1超となり、結果的にフィルムへの成形に支障が生じることとなる
 本発明のα-グルカン混合物を得るためのワキシースターチとしては、目的とする性質を有するα-グルカン混合物が得られる限り、その由来植物によって限定されるものではないが、大量製造され、入手し易く汎用されているワキシーコーンスターチが好適に用いられる。ワキシースターチは、一般に、グルコースがα-1,4結合を介して直鎖状に連結した、直鎖状分子であるアミロースを実質的に含有しないと言われているものの、前記したヨウ素呈色法に基づくアミロース含有率の測定法においては、通常、15質量%以下の値を示す。ワキシースターチを原料とし、アミラーゼによる分解反応又はアミラーゼによる分解反応後にα-グルコシル転移反応させて得られる本発明のα-グルカン混合物のアミロース含有率は、原料とするワキシースターチの種類によって異なる場合があるものの、当該測定法において、通常、15質量%以下の値を示す。
 本発明のα-グルカン混合物は、冷水可溶性を有しており、固形物濃度20質量%となるよう脱イオン水に添加し、温度30℃の条件下で攪拌した場合、15分間以内に完全に溶解し、均一な溶液とすることができる。
 本発明のα-グルカン混合物は、可食性フィルムの原材料として好適であり、その水溶液を用いて、可塑剤を用いることなく、常法によりフィルムに成形することができる。本発明のα-グルカン混合物を原材料として得られるフィルムは、透明性、水溶性に優れ、厚さ40μm以上に調整したフィルムは、断面積1mmの突刺し試験用アダプターを用いて行われる突刺し強度試験において、通常、2.0N/mm以上、より好適には2.5N/mm以上、さらに好適には、3.0N/mm以上の突刺し破断強度を示す。この突刺し破断強度は、実験の項で後述するように、斯界において可食性フィルム素材として汎用されているプルランを同じ方法、同じ条件で成形して得られる同じ厚さのフィルムの強度と同等若しくは僅かに低い程度であり、このことは、本発明のα-グルカン混合物がプルランと同様の用途に使用できることを意味している。
3.本発明のα-グルカン混合物の製造方法
 本発明のα-グルカン混合物の製造方法は、ワキシースターチを糊化し、アミラーゼを作用させ、重量平均分子量(Mw)が150kDa乃至3,000kDaの範囲のα-グルカン混合物とする工程を含むことを特徴とし、下記(1)及び(2)の特徴を有するα-グルカン混合物が得られる限り、ワキシースターチの由来、糊化の条件、アミラーゼの種類や由来によって特に限定されるものではない:
  (1)重量平均分子量(Mw)が150kDa乃至3,000kDaの範囲にある;及び、
  (2)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が35.1以下である。
 原料のワキシースターチを糊化する方法は、ワキシースターチ水懸濁液を加熱する常法で行うことができる。具体的には、例えば、ワキシースターチ水懸濁液をジャケット付反応器に入れて間接的に加熱する方法、ワキシースターチ水懸濁液に蒸気を混合して直接加熱する方法、ドラムドライヤーのホットロール上で加熱する方法などが挙げられる。糊化したワキシースターチは、アミラーゼを加えて加水分解することにより液化される。今日では、アミラーゼを予め澱粉乳(澱粉懸濁液)に添加しておき、これを加熱することにより、糊化と液化を同時に進行させる方法が一般に行われている。糊化・液化は慣用の方法を適宜選択すればよく、通常、バッチ方式または連続方式のいずれかで行われる。
 糊化澱粉を液化するためのアミラーゼとしては、市販の耐熱性液化型α-アミラーゼが好適に用いられる。市販の耐熱性液化型α-アミラーゼとしては、例えば、『スピターゼ HK』ナガセケムテックス株式会社製)、『ターマミル 60L』(ノボザイム・ジャパン株式会社製)、『アミラーゼAD“アマノ”』(天野エンザイム株式会社製)、『クライスターゼ T10S』(天野エンザイム株式会社製)、『スミチーム L』(新日本化学工業株式会社製)などが挙げられる。
 本発明のα-グルカン混合物の製造において、原料のワキシースターチの仕込み濃度、液化(部分分解)に使用するアミラーゼ、当該アミラーゼの添加量、糊化及び液化の反応温度及び反応時間、当該反応の停止温度、当該反応の方式(バッチ方式、連続方式)等は、製造する本発明のα-グルカン混合物に求める物性に応じ、適宜選択すればよい。原料のワキシースターチの仕込み濃度は、通常、10質量%以上、望ましくは、約20乃至50質量%、より望ましくは30乃至35質量%とするのが好適である。本発明のα-グルカン混合物を製造するためには、後述の実験の項でも示すとおり、上述したアミラーゼの添加量を調節することによりワキシースターチを部分分解し、反応液中のワキシースターチ液化物(α-グルカン混合物)の重量平均分子量(Mw)を150kDa乃至3,000kDaの範囲にコントロールする必要がある。液化物の重量平均分子量(Mw)は、ゲル濾過HPLCにて測定することもできるものの、予備的に液化物の重量平均分子量とグルコース当量(DE)の相関性や、液化物の重量平均分子量とその液化液の粘度との相関性を調べておき、重量平均分子量測定に代えて、液化物のグルコース当量(DE)や液化液の粘度などを測定することで把握することができる。後述する実験の項でも示すように、ワキシースターチ液化物の重量平均分子量(Mw)を150kDa以上とするには、そのDEを、通常、1.0未満、好ましくは0.62以下に抑えればよい。ワキシースターチ液化物のDEを、比較的低い1.0未満に抑えるためには、糊化、液化の反応をできる限り短時間で終結させるのがよく、糊化、液化の方式は、澱粉懸濁液(澱粉乳)をより均一、急激に加熱昇温させることのできる連続方式の方がバッチ方式よりもより望ましい。
 本発明の、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物は、澱粉部分分解物に作用し、その非還元末端グルコース残基にグルコースをα-1,6転移する活性を有するα-グルコシル転移酵素を、上記のワキシースターチを部分分解して得られるα-グルカン混合物に作用させることにより製造することができる。当該α-グルコシル転移酵素は、澱粉部分分解物に作用し、その非還元末端グルコース残基にグルコースをα-1,6転移する活性を有する限り、その由来、理化学的性質などによって限定されるものではない。上記の活性を有するα-グルコシル転移酵素としては、例えば、アスペルギルス・ニガー由来のトランスグルコシダーゼ(α-グルコシダーゼ)、アセトバクター・カプスラタム由来のデキストリンデキストラナーゼ、本願と同じ出願人による国際公開第WO2008/136331号パンフレットに開示されたバチルス属又はアルスロバクター属微生物由来の「α-グルコシル転移酵素」や、同じく、本願と同じ出願人による国際公開第WO02/010361号パンフレットに開示されたバチルス属又はアルスロバクター属微生物由来の「α-イソマルトシルグルコ糖質生成酵素」などが挙げられ、とりわけ、バチルス属又はアルスロバクター属微生物由来の、α-グルコシル転移酵素、及び、α-イソマルトシルグルコ糖質生成酵素がより好適に使用できる。
 国際公開第WO2008/136331号パンフレットに開示されたα-グルコシル転移酵素は、基質としてマルトース及び/又はグルコース重合度が3以上のα-1,4グルカンに作用し、非還元末端グルコース残基を他のα-1,4グルカンの非還元末端グルコース残基に主としてα-1,4又はα-1,6グルコシル転移することにより、非還元末端グルコース残基の4位又は6位水酸基にグルコースがα-結合したグルカンを生成する活性を有しており、当該α-グルコシル転移酵素を作用させグルコシル転移反応を繰り返すことにより、マルトース及び/又はグルコース重合度が3以上のα-1,4グルカンから複雑な分岐構造を有する分岐α-グルカン混合物を製造することができる。また、当該α-グルコシル転移酵素は、さらに、頻度は低いながらも、α-1,3グルコシル転移やグルカンの内部にあるα-1,6結合したグルコース残基に対するα-1,4又はα-1,3グルコシル転移を触媒することにより、α-1,3結合、α-1,4,6結合及びα-1,3,6結合をも有するα-グルカン混合物を生成する活性をも有している。このα-グルコシル転移酵素を用いれば、その非還元末端にイソマルトース構造を導入でき、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物を製造することができる。
 因みに、国際公開第WO2008/136331号パンフレットに開示されたバチルス属又はアルスロバクター属由来のα-グルコシル転移酵素は、下記(A)乃至(F)の性質を有している。
(A)作用
 マルトース及び/又はグルコース重合度3以上のα-1,4グルカンに作用し、主としてα-1,4グルコシル転移又はα-1,6グルコシル転移を触媒し、非還元末端グルコース残基の4位又は6位水酸基にグルコースを転移する;
(B)分子量
 SDS-ポリアクリルアミドゲル電気泳動法において、90,000±10,000ダルトン;
(C)至適温度
 pH6.0、30分間反応の条件下で、約50℃;
(D)至適pH
 40℃、30分間反応の条件下で約6.0;
(E)温度安定性
 pH6.0、60分間保持の条件下で40℃まで安定;及び
(F)pH安定性
 4℃、24時間保持の条件下でpH4.0乃至8.0の範囲で安定。
 国際公開第WO02/010361号パンフレットに開示された「α-イソマルトシルグルコ糖質生成酵素」、すなわち、α-グルコシル転移酵素は、基質としてマルトース及び/又はグルコース重合度が3以上のα-1,4グルカンに作用し、非還元末端グルコース残基を他のα-1,4グルカンの非還元末端グルコース残基にα-1,6グルコシル転移することにより、非還元末端グルコース残基の6位水酸基にグルコースがα-結合したグルカンを生成する活性を有している。このα-グルコシル転移酵素は、一旦生成した、非還元末端にイソマルトース構造を有するグルカンにさらにグルコースを転移する活性を有していないため、前記した酵素のように複雑な分岐酵素を有する分岐α-グルカンを製造することはできないものの、このα-グルコシル転移酵素によっても、Mw/Mn(分散度)を大きく変えることなく、その非還元末端にイソマルトース構造を導入でき、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物を製造することができる。
 因みに、国際公開第WO02/010361号パンフレットに開示されたバチルス属又はアルスロバクター属微生物由来の「α-イソマルトシルグルコ糖質生成酵素」は、下記(G)乃至(M)の性質を有している。
(G)作用
 非還元末端の結合様式としてα-1,4グルコシル結合を有するグルコース重合度が2以上の糖質から、還元力を実質的に増加することなくα-グルコシル転移することによって、非還元末端の結合様式としてα-1,6グルコシル結合を有し、この非還元末端以外の結合様式としてα-1,4グルコシル結合を有するグルコース重合度が3以上の糖質を生成する;
(H)分子量
 SDS-ゲル電気泳動法により、約74,000乃至160,000ダルトンの範囲内に分子量を有する;
(I)等電点
 アンフォライン含有電気泳動法により、pI約3.8乃至7.8の範囲内に等電点を有する;
(J)至適温度
 pH6.0、60分間反応で、約40乃至50℃の範囲内に至適温度を有する;
 pH6.0、60分間反応で、1mMCa2+存在下、約45乃至55℃の範囲内に至適温度を有する;
 pH8.4、60分間反応で、60℃に至適温度を有する;又は、
 pH8.4、60分間反応で1mMCa2+存在下、65℃に至適温度を有する。
(K)至適pH
 35℃、60分間反応で、pH約6.0乃至8.4の範囲内に至適pHを有する。
(L)温度安定性
 pH6.0、60分間保持する条件で、約45℃以下に温度安定域を有する;
 pH6.0、60分間保持する条件で、1mMCa2+存在下、約50℃以下に温度安定域を有する;
 pH8.0、60分間保持する条件で、約55℃以下に温度安定域を有する;又は
 pH8.0、60分間保持する条件で、1mMCa2+存在下、約60℃以下に温度安定域を有する;
(M)pH安定性
4℃、24時間保持する条件で、pH約4.5乃至10.0の範囲内に安定pH域を有する。
 なお、α-グルコシル転移酵素を作用させて得られる、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物は、原料としたα-グルカン混合物に比べMw/Mnの値が大きくなり、またグルコース当量(DE)が若干増大する場合があるけれども、後述する実験の項でも示すように、α-グルコシル転移酵素の作用量を調節して得られる、Mw/Mnが35.1以下の範囲、グルコース当量(DE)が2.8未満にあるα-グルカン混合物は、フィルムに成形して問題なく使用することができる優れた可食性フィルム素材である。
 酵素反応によって得られた本発明のα-グルカン混合物を含有する溶液は、そのままα-グルカン混合物製品とすることもできるものの、一般的にはさらに精製して用いられる。精製方法としては、糖の精製に用いられる通常の方法を適宜採用すればよく、例えば、活性炭による脱色、H型、OH型イオン交換樹脂による脱塩、アルコール及びアセトンなど有機溶媒による分別、適度な分離性能を有する膜による分離などの1種又は2種以上の精製方法が適宜採用できる。
 本発明のα-グルカン混合物は、比較的分子量が大きいα-グルカンの混合物の形態にあり、低分子オリゴ糖をほとんど含有していないので、得られる反応生成物をカラムクロマトグラフィーなどの手段で分画する必要は特にないものの、用途など目的に応じてさらに分画することも随意である。分画にイオン交換クロマトグラフィーを採用する場合、例えば、特開昭58-23799号公報、特開昭58-72598号公報などに開示されている強酸性カチオン交換樹脂を用いるカラムクロマトグラフィーを有利に用いることができる。この際、固定床方式、移動床方式、擬似移動床方式のいずれの方式を採用することも随意である。
 このようにして得られた本発明のα-グルカン混合物は溶液のままでも利用できるものの、保存に有利で、且つ、用途によっては利用しやすいように、乾燥し、α-グルカン混合物粉末とするのが望ましい。乾燥には、例えば、ドラムドライヤー、噴霧乾燥機(スプレードライヤー)、熱風乾燥機、真空乾燥機、気流乾燥機、凍結乾燥機、流動層乾燥機などの乾燥機を使用することができる。生産性、コストを考慮すれば、ドラムドライヤー又は噴霧乾燥機を用いるのが好ましい。乾燥物は、必要に応じて、粉砕し粉末とすることも、また、粉末を篩別又は造粒して、特定粒度の範囲に整えることも有利に実施できる。
4.本発明のα-グルカン混合物の用途
 本発明のα-グルカン混合物は、フィルム適性に優れているので、可塑剤を添加することなく、適宜の方法で適宜のサイズ、厚さを有するフィルムに加工することが容易であり、可食性フィルムの原料として有利に利用できる。また、本発明のα-グルカン混合物は、フィルムに成形した場合に突刺し破断強度に優れ、良好な透明性、水溶性を有するフィルムとしての使用耐性に優れたものであるので、食品、化粧品、医薬品、及び工業用品等の分野において用いられるフィルム、シートやコーティングの原材料として有利に利用できる。なお、本発明のα-グルカン混合物と、従来公知の可塑剤を組合せてフィルムとすることも有利に実施できる。また、本発明のα-グルカン混合物をフィルム等に成形する場合、剥離剤としてショ糖脂肪酸エステルなどの非イオン系界面活性剤を用いることもできる。
 なお、実験の項(比較実験例)で後述するとおり、本発明のα-グルカン混合物を用いて調製した厚さ40乃至50μmのフィルムは、従来、可食性フィルムの原料として汎用されてきたプルランを原材料として、同じ方法、同じ条件で調製した同じ厚さのプルランフィルムと比較しても遜色のない突刺し破断強度を有している。
 本発明のα-グルカン混合物の粉末は、白色で流動性に優れ、水に対して良好な溶解性を示しているので、上記の可食性フィルム素材としての用途以外にも種々の用途に用いることができる。本発明のα-グルカン混合物は、接着性、浸透圧調節性、賦形性、照り付与性、保湿性、粘度付与性、他の糖の結晶防止性などの性質を具備しているので、品質改良剤、安定剤、賦形剤などとして、食品、嗜好物、飼料、餌料、化粧品、医薬品、工業用品などの各種組成物に有利に利用できる。
 本発明のα-グルカン混合物は、その用途に応じて、その他の材料、例えば、多糖類、増量剤、賦形剤、充填剤、増粘剤、界面活性剤、発泡剤、消泡剤、pH調節剤、安定剤、難燃剤、離形剤、抗菌剤、着色剤、着香剤、栄養物、嗜好物、呈味物、薬効物質及び生理活性物質から選ばれる1種又は2種以上の、食品、化粧品、医薬品及び工業用品の分野で一般に使用される成分と混合して使用することも随意である。
 本発明のα-グルカン混合物は、例えば、粉飴、ブドウ糖、果糖、異性化糖、砂糖、麦芽糖、トレハロース、蜂蜜、メープルシュガー、ソルビトール、マルチトール、ジヒドロカルコン、ステビオシド、α-グリコシルステビオシド、ラカンカ甘味物、グリチルリチン、ソーマチン、スクラロース、L-アスパラチルフェニルアラニンメチルエステル、サッカリン、グリシン、アラニンなどのような甘味料と、また、デキストリン、澱粉、プルラン、デキストラン、乳糖などのような増量剤と混合して使用することもできる。また、本発明のα-グルカン混合物は、そのままで、又は必要に応じて、増量剤、賦形剤、結合剤などと混合して、顆粒、球状、短棒状、板状、立方体など各種形状に成形して使用することも随意である。
 本発明のα-グルカン混合物を含有してなる各種成形物又はその中間製品には、柔軟性や強度をさらに改善することを目的として、必要に応じて、食品、化粧品及び医薬品などの分野で通常使用される他の高分子物質、適宜の賦形剤、又は、可塑剤等の他の成分を併用することも随意であり、他の賦形剤を主体とする成形物においては本発明のα-グルカン混合物を結着剤として用いることも可能である。他の賦形剤としては、プルラン、カラギーナン、キサンタンガム、カルボキシメチルセルロース、セルロース、ヘミセルロース、アラビアガム、グァーガム、ペクチン、キチン、アガロース、デキストリン、アミロース及び化工澱粉を含む澱粉などの多糖類又はそれらの誘導体、ゼラチン又はカゼインなどの蛋白質などの高分子、ソルビトール、マンニトール、マルチトール、スクロース、マルトース、ラクトース、α,α-トレハロース、α,β-トレハロース、アラビアゴム、コーンスターチ、結晶セルロースなどの糖質、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化バリウム、硫酸カルシウム、亜硫酸カルシウム、炭酸カルシウム、シリカ、ケイ酸カルシウム、塩基性炭酸マグネシウム、カオリン、タルクなどの無機物が挙げられる。とりわけ、α,α-トレハロースは、有効成分の酸化分解などによる変性を抑制し、活性を安定に保つ作用を有するので、安定化剤としても有利に利用できる。可塑剤としては、ソルビトール、マルチトール、トレハロース、グリセロール、ポリビニルアルコール、ポリエチレングリコール又はプロピレングリコールなどの多価アルコールを用いることができる。
 本発明のα-グルカン混合物は、とりわけ、食品素材として有利に利用できる。食品への使用は特に限定されず、本発明のα-グルカン混合物の結着性を利用して、成形スナック菓子、成形チーズ、成形ドライフルーツ、魚肉成形物、魚卵成形物、魚肉食品、畜肉食品、疑似肉食品、成形珍味食品などに用いることができる。また、造膜(コーティング)性を利用して、食品ほぐれ剤、食品用粘着防止剤、加工米などに用いることもできる。
 また、本発明のα-グルカン混合物は、パン、菓子、麺帯製品に含有させることによって、食感の改善、食品の保存性向上に用いることができる。本発明のα-グルカン混合物の食品への好適な使用方法としては、小麦粉、食塩、砂糖、水など他の原料素材と混合し、混練することで生地を作成して、その生地を成形、調理することが挙げられる。食品中への配合割合は、生地作成時の割合で、無水物換算で、20質量%以下、好ましくは10質量%以下、特に好ましくは5質量%以下である。本発明のα-グルカン混合物は、ワキシースターチを原料としているので、パン、菓子、麺帯製品にしっとり感、もちもち感、やわらかさ、口どけの良さ、歯切れ良さなどの食感を付与することができる。
 菓子としては、主に生地を調製後、焼く、蒸す、揚げる、乾燥するなどして製造されるものに利用でき、例えば、饅頭、餅、煎餅、団子、求肥、最中、どら焼き、きんつば、今川焼きなどの和菓子、ビスケット、クッキー、クラッカー、ウエハース、スポンジケーキ類(ロールケーキ、カステラ)、バターケーキ類(パウンドケーキ、マドレーヌ、ガトーショコラ、フィナンシェ)、シュークリーム、バウムクーヘン、マフィン、スフレ、パイ、タルトなどの洋菓子、月餅などの中華菓子などが挙げられる。
 麺帯製品としては、例えば、うどん、中華麺、蕎麦などの麺類、スパゲッティ、リングイネ、ブカティーニ、フェットチーネ、ペンネ、コンキリエ、マカロニなどのパスタ類、ワンタン、ギョウザ、シューマイなどの皮などが挙げられる。
 また、本発明のα-グルカン混合物は、上記のとおり、水に対する良好な溶解性とフィルム等に成形されたときの高い強度とを併せ持ち、しかも、含まれるα-グルカン自体の分子量分布が特定の範囲内にあるので、これを成形物に用いる場合には、当該成形物に常に一定した強度や溶解速度、崩壊速度をもたらすことが期待できる。したがって、本発明のα-グルカン混合物は、食品のみならず化粧品、有効成分の体内動態が常に一定であることが要求される医薬品、医薬部外品などに用いることができ、フィルムはもとより、シート、カプセル、マイクロカプセル、ガーゼや手術糸などに用いられる繊維などの成形物として、或いは、錠剤、顆粒剤、用事溶解型の固形製剤を調製する際の賦形剤、結着剤又はコーティング剤などとして用いることができる。
 本発明のα-グルカン混合物を少なくとも原料の一部に用いて製造される成形物には、本発明のα-グルカン混合物以外に、それぞれの分野で汎用されている各種成分を適宜配合することができる。上記成形物が化粧品又はその中間製品である場合には、パック、マスク、浴用剤、口中清涼フィルムなどの形態とすることができ、例えば、パラオキシ安息香酸エステル、塩化ベンザルコニウム、ペンタンジオールなどの防腐剤、アルブチン、エラグ酸、テトラヒドロクルクミノイド、ビタミンPなどの美白剤、グリチルリチン酸、カンゾウ抽出物などの抗炎症剤、ラクトフェリン、コンドロイチン硫酸、ヒアルロン酸、感光素101号、感光素301号などの細胞賦活剤、エラスチン、ケラチン、尿素、セラミドなどの保湿剤、スクワラン、ワセリン、トリ-2-エチルヘキサン酸セチルなどの油剤、カラギーナン、カルボキシメチルセルロース、ローカストビーンガム、カルボキシビニルポリマーなどの水溶性高分子、1,3-ブチレングリコール、ポリエチレングリコール、プロピレングリコール、ソルビトール、マルチトールなどのアルコール類などを、それぞれ1種又は2種以上、単独又は適宜組み合わせて配合することができる。
 また、上記成形物が医薬品又は医薬部外品或いはその中間製品である場合には、顆粒、錠剤、糖衣錠などの形態とすることができ、例えば、アザチオプリン、シクロスポリン、シクロフォスファミド、メソトレキサート、タクロリムス水和物、ブスルファンなどの免疫抑制剤、カペシタビン、リツキシマブ、トラスツズマブ、ベバシズマブ、ドセタキセル、イマチニブメシル酸塩、5-フルオロウラシル、アナストロゾール、タキソール、タモキシフェン、ドテタキセル、ヒドロキシカルバミドなどの抗がん剤、アバカビル硫酸塩、ザルシタビン、ジダノシン、ファムシクロビル、リバビリンなどの抗ウイルス剤、アモキシシリン、タランピシリン、セフィキシム、スルファミチゾール、レボフロキサシン水和物、セフカペンピボキシル塩酸塩水和物、セフシトレンピボキシル、クラリスロマイシンなどの抗生物質、アセトアミノフェン、アスピリン、エテンザミド、サリチル酸メチルなどの解熱鎮痛剤、プレドニゾロン、デキサメサゾン、ベタメサゾンなどのステロイド剤、インターフェロン-α、-β、インスリン、オキシトシン、ソマトロピン、などの蛋白又はペプチド、BCGワクチン、日本脳炎ワクチン、はしかワクチン、ポリオワクチン、痘苗、破傷風トキソイド、ハブ抗毒素、ヒト免疫グロブリンなどの生物学的製剤、レチノール、チアミン、リボフラビン、ピリドキシン、シアノコバラミン、L-アスコルビン酸、カロチノイド、エルゴステロール、トコフェロール、ビオチン、カルシトニン、コエンザイムQ、α-リポ酸、ニコチン酸、メナキノン、ユビキノン、ピロロキノンキノリンなどのビタミン剤やそれらの誘導体、高麗人参エキス、アロエエキス、プロポリスエキス、カンゾウエキス、ケイヒエキス、センブリエキスなどの生薬エキスなどを、それぞれ1種又は2種以上、単独又は適宜組み合わせて配合することができる。
 本発明のα-グルカン混合物は、工業用品の素材として使用することもできる。ここでいう工業用品とは、農薬、肥料、飼料、紙工品、研磨剤、接着剤(バインダー)、ゲル化剤、塗料、染料、顔料、インク、洗剤、トイレタリー製品、生分解性樹脂(バイオプラスチック)、ガスバリアー樹脂などを指す。例えば、農薬、肥料などの分野では、農薬、肥料を造粒、錠剤化する際の賦形剤として使用することができる。また、例えば、製紙分野では、α-グルカン混合物の結着性や皮膜形成能を利用して紙工品の表面塗工剤、増強剤として、また、不織布の材料、包装材料としても使用することができる。さらに、ポリビニルアルコール(PVA)の代替品、カルボキシメチルセルロース(CMC)の代替品、石膏ボード、セメント、電池セパレーター用のバインダーなどとしても使用することができる。
 以下、実験により本発明を詳細に説明する。
<実験1:ワキシースターチを原料とした分解度が異なる各種α-グルカン混合物の調製>
 ワキシースターチとしてワキシーコーンスターチを用い、加水分解の程度が種々異なる各種α-グルカン混合物を調製し、その物性を調べた。
 市販のワキシーコーンスターチ(商品名「ワキシーコーンスターチ Y」、株式会社J-オイルミルズ製)を固形物濃度30質量%になるよう脱イオン水に懸濁し、塩化カルシウムを濃度0.1質量%になるよう添加した後、pH6.0に調製し、ワキシーコーンスターチ懸濁液を得た。このワキシーコーンスターチ懸濁液に耐熱性α-アミラーゼ(商品名『スピターゼHK』、ナガセケムテックス株式会社製)をワキシーコーンスターチ固形物当たり0(無添加)、0.001、0.002、0.004、0.008又は0.02質量%添加し、pH6.5、100℃で20分間加熱することにより、糊化及び液化を行い、140℃で30分間加熱することにより反応を停止させ、活性炭処理による脱色、イオン交換樹脂による脱塩、メンブランフィルターによるろ過を行った後、ディスク型噴霧乾燥装置(ニ口社製)を用い入口温度205℃、出口温度103℃、風量12.4m/分、ディスク回転数18,000rpm、原料供給速度23kg/時間になるように設定し、噴霧乾燥することによりα-グルカン混合物粉末をそれぞれ約2kgずつ調製し、被験試料1~6とした。
 被験試料1~6について、それぞれ約20μgを下記条件によるゲル濾過HPLCに供し、重量平均分子量(Mw)及び数平均分子量(Mn)を測定するとともに、Mw/Mnを求めた。なお、重量平均分子量(Mw)と数平均分子量(Mn)は、分子量測定用プルラン標準品(株式会社林原製)のゲル濾過HPLCクロマトグラムに基づき作成した検量線に基づき、被験試料の同クロマトグラムを、分子量分布解析ソフトウェアで解析することにより求めた。
(ゲル濾過HPLC条件)
カラム:TSK GEL α-M(東ソー株式会社製)を2本連結
溶離液:10mM リン酸緩衝液(pH7.0)
流 速:0.3mL/分
カラム温度:40℃
検出器:示差屈折計(RID10A、株式会社島津製作所製)
解析ソフトウェア:データ解析ソフトウェア(『LCソリューションGPCソフトウェア』、株式会社島津製作所社製)
 また、被験試料1~6について、加水分解の程度を知るための指標としてグルコース当量(DE)を測定した。さらに、被験試料1~6をそれぞれ固形物濃度20質量%になるよう脱イオン水に溶解し、冷水可溶性を判定した。またさらに、被験試料1~6を固形物濃度30質量%の水溶液とし、それぞれの溶液について、動的粘弾性レオメーター(MCR102型、株式会社アントンパールジャパン製)を用いて35℃で粘度を測定した。なお、固形物濃度30質量%の水溶液の粘度は、35℃、せん断速度10.8/秒の条件下でのせん断粘度として表わした。結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000002
 表1に見られるとおり、被験試料1、すなわち、耐熱性α-アミラーゼを作用させていない、ワキシーコーンスターチを単に糊化したものは、固形物濃度30質量%の糊化液の粘度が26,700mPa・sと高粘度を示し、ハンドリングに難があった。また、高粘度でゲル濾過HPLCによる分子量分布分析に供するための前処理が行えず、重量平均分子量(Mw)、数平均分子量(Mn)を測定することはできなかった。さらに、被験試料1は水溶性に劣り、冷水可溶性を有していなかった。
 一方、耐熱性α-アミラーゼを少量作用させて調製した被験試料2~5においては、アミラーゼの作用量が多くなるにつれて、糊化ワキシーコーンスターチの分解の程度が大きくなり、重量平均分子量(Mw)、数平均分子量(Mn)が低下し、Mw/Mnが小さくなった。また、被験試料2~5は、重量平均分子量(Mw)が2,560~183kDa、Mw/Mnが3.95~8.09の範囲を示し、被験試料1の場合とは異なり冷水可溶性を有していた。さらに、被験試料2~5の固形物濃度30質量%の水溶液の粘度は、アミラーゼの作用量が多いもの、すなわち、加水分解の程度が大きいものほど低い値を示し、2,330~220mPa・sであった。一方、被験試料6は重量平均分子量(Mw)が39.1kDaと小さく、Mw/Mnが35.9と大きい値を示した。
<実験2:各種α-グルカン混合物の可食性フィルム素材としての適性>
 実験1で得た被験試料1乃至6を原材料として、可塑剤を添加することなくそれぞれをフィルムに成形し、得られたフィルムの性質を調べることにより、各種α-グルカン混合物の可食性フィルム素材としての適性(フィルム適性)を調べた。
 実験1で得た被験試料1~6を、それぞれ固形物濃度30質量%となるよう脱イオン水に均一に溶解し、遠心分離(3,000rpm、10分)して脱泡した後、適量をポリエチレンテレフタレート(PET)製の平板上にベーカーアプリケーター(YBA型、ヨシミツ精機株式会社製)を用いて塗布、延伸させ、室温で1夜以上自然乾燥させる方法でフィルム化を試みたところ、被験試料6については、水溶液の粘度が低いためか造膜性が悪く、フィルムに成形することが困難であった。一方、被験試料1~5はフィルム成形が可能であったことから、それぞれから厚さ約40μmのフィルムを調製し、フィルム試料1~5とした。
 得られたフィルム試料1~5について、それぞれ、その外観を目視にて観察し、(○):厚さが均一で表面が滑らかな良好なフィルム;、及び、(×):厚さが不均一で表面にむらがあるフィルム;の2段階でフィルム適性を評価した。また、各フィルム試料について透明性を目視にて観察し、(○):透明;及び(×):濁りあり;の2段階で評価した。さらに、各フィルム試料について1cm角に裁断したフィルムを30℃に保持した200mLの脱イオン水に投入し、撹拌下、フィルムが目視で完溶するまでの時間を測定し、(○):撹拌下で1分間以内に完溶する;及び(×):撹拌下で1分間保持しても溶け残りがある;の2段階でフィルムの水溶性を評価した。結果を表2に示す。
 また、フィルム試料1~5から、直径20mmの円形に切り取ったものをそれぞれ10枚ずつ調製し、各10枚を前記した突刺し破断強度試験に供し、各フィルム試料の突刺し破断強度の平均値を求めた。結果を表2に併せて示した。
Figure JPOXMLDOC01-appb-T000003
 表2に見られるとおり、ワキシーコーンスターチを単に糊化した被験試料1から調製したフィルム試料1は、表面にむらがあり透明性に欠けたフィルムであり、突刺し破断強度が2.66N/mmと大きい値を示したものの、上記水溶性試験で完溶せず、水溶性に劣るものであった。一方、フィルム試料2~5は、厚さが均一で表面が滑らかな、透明性、水溶性に優れるフィルムであり、その突刺し破断強度も2.0N/mm以上と大きい値を示した。なお、被験試料6については、上述のとおり、フィルムに成形すること自体が困難でフィルム試料6は得られなかった。
 以上のとおり、被験試料2~5は、可塑剤を用いることなく良好な可食性フィルムを調製するための素材としての適性を有しており、一方、被験試料1及び6はその適性に欠けるものであった。
 実験1及び2の結果から、ワキシースターチにアミラーゼを作用させ部分分解することにより得られる、重量平均分子量(Mw)が150kDa乃至3,000kDaの範囲、Mw/Mnが10未満であるα-グルカン混合物は、冷水可溶性に優れ、適度の粘度を保持する性質を有しており、また、当該α-グルカン混合物を成形することにより、均一、透明で水溶性に優れ、突刺し破断強度が2.0N/mm以上の可食性フィルムが得られると判断された。
<実験3:非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物の調製(その1)>
 本実験及び実験4では、上記α-グルカン混合物に、さらに優れた性質を付与することを目的として、α-グルカン混合物に糖転移酵素をさらに作用させ、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物を調製した。
 すなわち、ワキシーコーンスターチ固形物当たりの耐熱性α-アミラーゼ(商品名『スピターゼHK』、ナガセケムテックス株式会社製)の使用量を0.002質量%とし、それ以外の操作は実験1と同様にしてα-グルカン混合物含有溶液を得た。このα-グルカン混合物含有溶液に、本願と同じ出願人による国際公開第WO2008/136331号パンフレットにおいて開示したバチルス・サーキュランスPP710株由来α-グルコシル転移酵素の精製標品をα-グルカン混合物の固形物1グラム当たり0.25、0.5、2.5、10又は25単位添加し、pH6.0、50℃で24時間作用させ140℃で10分間加熱することにより反応を停止させた。実験1と同様に精製した後、ディスク型噴霧乾燥装置(ニロ社製)を用いて噴霧乾燥することによりα-グルカン混合物をそれぞれ約2kgずつ調製し、被験試料7乃至11とした。
 被験試料7~11について、実験1と同様に重量平均分子量(Mw)、数平均分子量(Mn)、Mw/Mnを求めた。また、各被験試料において、非還元末端にイソマルトース構造を有するα-グルカンを含有する程度を評価するため、被験試料7~11の濃度1w/v%水溶液を前記したイソマルトデキストラナーゼ消化試験に供し、得られた消化物中のイソマルトース含量を測定した。さらに、被験試料7~11のグルコース当量(DE)、冷水可溶性を評価し、それぞれから調製した固形物濃度30質量%の溶液について、粘度を実験1と同様に評価した。加えて、被験試料7~11について耐老化性を評価した。耐老化性については、それぞれ固形物濃度30質量%の水溶液を6℃で1週間保存し、(×):保存1週間の時点で水溶液に老化による白濁が認められる;(○):保存1週間の時点で透明な水溶液の状態を維持している;の2段階で評価した。結果を表3にまとめた。なお、実験1で得た、ワキシーコーンスターチ懸濁液に耐熱性α-アミラーゼをワキシーコーンスターチ固形物当たり0.002質量%添加して調製した被験試料3の結果を対照として表3に併記した。
Figure JPOXMLDOC01-appb-T000004
 表3に見られるとおり、ワキシーコーンスターチに0.002質量%の耐熱性α-アミラーゼを作用させ、さらにα-グルコシル転移酵素を作用させて得た被験試料7~11は、そのイソマルトデキストラナーゼ消化により、消化物の固形物当たり1.57質量%~25.4質量%イソマルトースが生成していることが確認できたことから、その程度こそ異なるものの、いずれも非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物であることが確認された。
 被験試料7~11においては、α-グルコシル転移酵素の作用量が多くなるほど、得られる被験試料のMw/Mn(分散度)は増加し、作用量が25単位/g-基質と最も多い被験試料11の場合には62.3まで増加した。被験試料7~11は、その重量平均分子量(Mw)において、被験試料3と比べ大きな変化はなかったものの、α-グルコシル転移酵素の作用により、Mw/Mnが明らかに増加し、α-グルカン混合物における分子種の分子量のばらつきが生じていた。被験試料7~11の固形物濃度30質量%の水溶液の粘度は、990~651mPa・sと、α-グルコシル転移酵素を作用させていない被験試料3のそれより若干低かったものの、大きな変動は認められなかった。また、被験試料7~11の内、被験試料7は被験試料3と同様に、固形物濃度30質量%の水溶液を6℃で1週間保持する耐老化性試験において、水溶液に白濁が認められ耐老化性が認められなかったものの、被験試料8乃至11は、同耐老化性試験において、保存1週間の時点で透明な水溶液の状態を維持する顕著な耐老化性を有することが判明した。
<実験4:非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物の調製(その2)>
 実験3の場合よりも重量平均分子量(Mw)が小さいα-グルカン混合物を原料として非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物を調製し、実験3と同様に調べた。
 ワキシーコーンスターチ固形物当たりの耐熱性α-アミラーゼの使用量を0.004質量%とした以外は実験1と同様に処理し、より分子量が低下したα-グルカン混合物を得た。このα-グルカン混合物に、上記と同様にバチルス・サーキュランスPP710株由来α-グルコシル転移酵素の精製標品をα-グルカン混合物の固形物1グラム当たり0.5、1.0、2.5又は5.0単位添加し、pH6.0、50℃で24時間作用させ140℃で10分間加熱することにより反応を停止させた。実験3と同様に精製した後、ディスク型噴霧乾燥装置(ニ口社製)を用いて噴霧乾燥することによりα-グルカン混合物をそれぞれ約2kgずつ調製し、被験試料12乃至15とした。
 また、被験試料12~15についても実験3と同様に重量平均分子量(Mw)、数平均分子量(Mn)、Mw/Mn、イソマルトデキストラナーゼ消化物中のイソマルトース含量、グルコース当量(DE)を測定し、冷水可溶性、固形物濃度30質量%の溶液についての粘度及び耐老化性を評価した。結果を表4にまとめた。なお、実験1で得た、ワキシーコーンスターチ懸濁液に耐熱性α-アミラーゼをワキシーコーンスターチ固形物当たり0.004質量%添加して調製した被験試料4の結果を対照として表4に併記した。
Figure JPOXMLDOC01-appb-T000005
 表4にみられるとおり、ワキシーコーンスターチに0.004質量%の耐熱性α-アミラーゼを作用させ、さらにα-グルコシル転移酵素を作用させて得た被験試料12~15は、そのイソマルトデキストラナーゼ消化により、消化物の固形物当たり1.5質量%~20.6質量%のイソマルトースが生成していることが確認できたことから、実験3で得た被験試料7~11の場合と同様に、いずれも非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物であることが確認された。
 また、被験試料12~15においては、重量平均分子量(Mw)が449~365kDaを示し、実験3で得た被験試料7~11の約1/3の値を示し、より低分子のα-グルカン混合物であることが確認された。被験試料12~15のMw/Mnは、8.3~37.5の値を示した。被験試料12~15は、その重量平均分子量(Mw)において、被験試料4と比べ大きな変化はなかったものの、α-グルコシル転移酵素の作用量が多くなるとMw/Mnが明らかに増加した。なお、被験試料12~15のグルコース当量(DE)は0.45~2.76の範囲を示した。被験試料12~15の固形物濃度30質量%の水溶液の粘度は、525~294mPa・sと、α-グルコシル転移酵素を作用させていない被験試料4と大きな変動は認められなかった。また、被験試料12~15の内、被験試料12は被験試料4と同様に、固形物濃度30質量%の水溶液を6℃で1週間保持する耐老化性試験において水溶液に白濁が認められ、耐老化性が認められなかったものの、被験試料13乃至15は、同耐老化性試験において、保存1週間の時点で透明な水溶液の状態を維持する顕著な耐老化性を有することが判明した。
 実験3及び4の結果から、イソマルトデキストラナーゼ消化物の固形物当たりのイソマルトース含量が1.57質量%又は1.50質量%と低い、すなわち、非還元末端にイソマルトース構造を有するα-グルカンの含量が低い被験試料7及び被験試料12が耐老化性を有さず、当該イソマルトース含量が3.83質量%以上を示す被験試料8~11及び被験試料13~15が耐老化性を有していたことから、上記実験結果は、α-グルカン混合物にα-グルコシル転移酵素を作用させることにより、非還元末端にイソマルトース構造を有するα-グルカンを一定量以上含有させれば、原料としたα-グルカン混合物が有する性質を維持しつつ、さらに耐老化性を付与することができることを物語っている。
<実験5:非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物の可食性フィルム素材としての適性>
 実験3及び4で得た被験試料7~15を原材料として実験2と同様の操作により厚さ約40~50μmのフィルムをそれぞれ調製し、フィルム試料7~15とした。次いで、実験2と同様に、フィルム試料7~15について、外観(フィルム適性)、透明性、水溶性を評価するとともに、突刺し破断強度を測定した。重量平均分子量(Mw)が1,210kDa以上のα-グルカン混合物を原料としたフィルム試料7~11の結果を表5に、重量平均分子量(Mw)が500kDa未満のα-グルカン混合物を原料としたフィルム試料12~15の結果を表6に、それぞれまとめた。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表5に見られるとおり、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物であって、重量平均分子量(Mw)が1,210kDa以上のα-グルカン混合物を用いて調製したフィルム試料7~10は、ワキシーコーンスターチをアミラーゼで部分分解して得たα-グルカン混合物を用いて調製したフィルム試料3と同様に、透明性、水溶性に優れ、突刺し破断強度が2.0N/mm以上と強い優れた性質を有していた。しかしながら、被験試料11、すなわち、α-グルコシル転移酵素を作用させることによりMw/Mnの値が62.3まで増加したα-グルカン混合物から調製したフィルム試料11は、非常に脆いものとなりフィルムを得ることが困難であった。
 また、表6に見られるとおり、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物であって、重量平均分子量(Mw)が500kDa未満のα-グルカン混合物を用いて調製したフィルム試料12~14は、ワキシーコーンスターチをアミラーゼで部分分解して得たα-グルカン混合物を用いて調製したフィルム試料4と同様に、透明性、水溶性に優れ、突刺し破断強度が2.0N/mm以上と強く、優れた性質を有していた。しかしながら、被験試料15、すなわち、α-グルコシル転移酵素を作用させることによりMw/Mnの値が37.5まで増加したα-グルカン混合物から調製したフィルム試料15は、非常に脆いものとなりフィルムを得ることが困難であった。
 実験3、4及び5の結果から、ワキシーコーンスターチを糊化し、アミラーゼを作用させて得たα-グルカン混合物に、さらにα-グルコシル転移酵素を作用させ、そのイソマルトデキストラナーゼ消化物におけるイソマルトース含量が3質量%超を示す程度に非還元末端にイソマルトース構造を有するα-グルカンを含有させたα-グルカン混合物は、顕著な耐老化性を有するものとなることが分かった。また、実験1、2から得られた結果と実験3、4及び5で得られた結果とを総合すると、重量平均分子量(Mw)が150kDa乃至3,000kDaの範囲、Mw/Mnが35.1以下である当該α-グルカン混合物を原材料とすれば、可塑剤を添加することなく、透明性、水溶性に優れ、突刺し破断強度2.0N/mm以上の強度を有し、ひび割れし難いフィルムが得られることが判明した。
<参考実験例1:プルラン、焙焼澱粉及びデキストリンとの比較>
 本発明のα-グルカン混合物との比較対象として、プルラン、焙焼澱粉及びデキストリンを用いて実験1と同様に性質をそれぞれ測定し、また、実験2及び5と同様に可塑剤を添加することなくフィルムを調製し、それぞれの性質を調べた。
 プルランとしては、市販のプルラン(商品名『プルラン』、株式会社林原販売)を、デキストリンとしては、市販のデキストリン(商品名『パインデックス#100』、松谷化学工業株式会社販売)をそれぞれ用いた。また、焙焼澱粉は以下の方法で調製した。すなわち、市販ワキシーコーンスターチ500gに、水110mLに塩化マグネシウム6水塩を0.008mol/kg溶解した溶液を加えながら、乳鉢で約30分間混合して湿混合液を得た。この湿混合液をステンレスバットに約1cmの厚みに広げ、135℃に調整した送風循環式恒温器中で3時間加熱処理し、焙焼試料を得た。この焙焼試料を30質量%になるよう水に懸濁し、ラピッドビスコアナライザー(RVA-4型、ニューポートサイエンティフィック社製)により95℃で15分、160rpmで撹拌しながら糊化を行うことで焙焼澱粉を得た。プルラン、焙焼澱粉及びデキストリンを、実験2と同様の操作によりそれぞれフィルムに成形し、得られたフィルムの性質を実験2と同様に評価した。結果を表7にまとめた。
Figure JPOXMLDOC01-appb-T000008
 表7に見られるとおり、プルランは、重量平均分子量(Mw)が399kDa、Mw/Mnが37.8であった。プルランは、固形物濃度30質量%の水溶液の粘度が35,700mPa・sと高粘度を示し、ハンドリングが難しいという問題があったが、フィルム成形に困難を生じるほどではなく、厚さ40μmの厚さに成形したフィルムは、突刺し破断強度が3.03N/mmと大きく、強度のあるフィルムであった。
 また、焙焼澱粉は、重量平均分子量(Mw)が1,170kDaを示し、実験3で得た被験試料7~10と同等であったが、Mw/Mn(分散度)が41.9と比較的大きく、固形物濃度30質量%の水溶液は耐老化性を示さなかった。当該焙焼澱粉を用いて得た厚さ40μmのフィルムは、突刺し破断強度が1.55N/mmを示し、強度の低いフィルムであった。
 一方、デキストリンは、固形物濃度30質量%の水溶液の粘度が87mPa・sと低粘度を示し、フィルムの成形を試みたものの極度に脆いものとなり、実質的にフィルムを調製することはできなかった。
 実験1~5及び参考実験例1の結果から、本発明のα-グルカン混合物、すなわち、ワキシースターチを糊化し、アミラーゼを作用させ液化する工程を含む製造方法により得られるα-グルカン混合物であって、(1)重量平均分子量(Mw)が150kDa乃至3,000kDaの範囲にある;及び(2)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が35.1以下である;という特徴を有するα-グルカン混合物は、透明性、水溶性に優れ、強度を有する可食性フィルムの素材として好適に使用できるという点で、可食性フィルム素材として汎用されているプルランと比較して遜色ないものであることが判明した。
<参考実験例2:α-グルカン混合物のアミロース含有率>
 実験1、3及び4においてα-グルカン混合物の原料として用いたワキシーコーンスターチ(商品名「ワキシーコーンスターチ Y」、株式会社J-オイルミルズ製)と、後述する実施例4で得たα-グルカン混合物、すなわち、重量平均分子量(Mw)が566kDa、Mw/Mnが13.2、そのイソマルトデキストラナーゼ消化物におけるイソマルトース含量が7.0質量%であるα-グルカン混合物についてアミロース含有率を測定し比較した。さらに、参考値として、市販のコーンスターチ(商品名「昭和コーンスターチ」、敷島スターチ株式会社製)及びハイアミロースコーンスターチ(商品名「デンプン トウモロコシ由来」、コード番号:S4180、シグマアルドリッチ社製)のアミロース含有率についても同様に測定した。
 各試料のアミロース含有率は、前述のとおり、農林水産省告示第332号、標準計測方法に示されているアミロース含有率測定法に準じ、アミロースとヨウ素の呈色反応に基づき測定した。なお、本実験例では、試薬級アミロース(商品名『ポテトアミロース Type III』、シグマアルドリッチ社製)を用い、アミロース標準溶液を調製し、検量線を作成した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000009
 表8に見られるとおり、ワキシーコーンスターチ及び実施例4で得たα-グルカン混合物のアミロース含有率(質量%)は、本測定法においてそれぞれ、13.4質量%及び10.3質量%と測定された。一方、市販のコーンスターチ及びハイアミロースコーンスターチのアミロース含有率は、それぞれ、35.9質量%及び46.9質量%と測定された。一般に、アミロース含有率は、ハイアミロースコーンスターチ>コーンスターチ>ワキシーコーンスターチの順に高いと言われており、上記の測定値はこの従来からの知見を裏付けるものであった。
 因みに、本発明のα-グルカン混合物は、ワキシースターチをアミラーゼで部分分解するか、又は、ワキシースターチをアミラーゼで部分分解した後、α-グルコシル転移酵素を作用させ、非還元末端にイソマルトース構造を有するα-グルカンを生成させることにより製造されるものである。アミラーゼ及びα-グルコシル転移酵は、いずれも澱粉枝切り酵素のようにワキシースターチにおけるα-1,6結合を介した分岐構造を分解する酵素ではないことから、アミラーゼ及びα-グルコシル転移酵素の作用によりワキシースターチから直鎖状のアミロースが生成することはなく、反応産物においてアミロース含有率が増加することはない。したがって、本測定法において、本発明のα-グルカン混合物がワキシーコーンスターチと同等レベル以下のアミロース含有率を示したことは、本発明のα-グルカン混合物がワキシーコーンスターチを原料として製造されたものであることを物語っている。言い換えれば、重量平均分子量(Mw)が150kDa以上のα-グルカン混合物であって、本測定方法によりアミロース含有率が15質量%未満を示すものは、ワキシースターチを糊化し、アミラーゼを作用させ液化する工程を含む製造方法によるか、或いはワキシースターチを糊化し、アミラーゼを作用させ、さらにα-グルコシル転移酵素を作用させる工程を含む製造方法により得られたものであるということができる。
 以下、実施例により本発明をさらに詳細に説明するものの、本発明はこれらの実施例によって何ら限定されるものではない。
 市販ワキシーコーンスターチ(商品名「ワキシーコーンスターチ Y」、株式会社J-オイルミルズ製)を固形物濃度30質量%になるよう脱イオン水に懸濁し、塩化カルシウムを濃度0.1質量%になるよう添加した後、pH6.0に調製し、ワキシーコーンスターチ懸濁液を得た。このワキシーコーンスターチ懸濁液に耐熱性α-アミラーゼ(商品名『スピターゼ HK』、ナガセケムテックス株式会社製)をワキシーコーンスターチ固形物当たり0.002質量%添加し、100℃で20分間加熱することにより、糊化及び液化を行い、140℃で10分間加熱することにより反応を停止させ、ドラムドライヤーに供給して135℃で乾燥した。乾燥品は粉砕機に通して粉砕を行って、粉末状のα-グルカン混合物を得た。
 本α-グルカン混合物は、重量平均分子量(Mw)が980kDa、Mw/Mnが7.9を示し、冷水可溶性を有し、濃度30質量%の水溶液の粘度は960mPa・sであった。本品は可食性フィルムの原材料、食品、化粧品、医薬品又は工業用品の増粘剤、バインダー等として好適に利用できる。
 市販ワキシーコーンスターチ(商品名「ワキシーコーンスターチ Y」、株式会社J-オイルミルズ製)を固形物濃度35質量%になるよう脱イオン水に懸濁し、塩化カルシウムを濃度0.1質量%になるよう添加した後、pH6.0に調製し、ワキシーコーンスターチ懸濁液を得た。このワキシーコーンスターチ懸濁液に耐熱性α-アミラーゼ(商品名『ターマミル 60L』、ノボザイムズ・ジャパン株式会社製)をワキシーコーンスターチ固形物当たり0.004質量%添加し、100℃で20分間加熱することにより、糊化及び液化を行い、140℃で15分間加熱することにより反応を停止させ、スプレードライヤーに供給して常法により噴霧乾燥し、粉末状のα-グルカン混合物を得た。
 本α-グルカン混合物は、重量平均分子量(Mw)が351kDa、Mw/Mnが4.6を示し、冷水可溶性を有し、濃度30質量%の水溶液の粘度は445mPa・sであった。本品は可食性フィルムの原材料、食品、化粧品、医薬品又は工業用品の増粘剤、バインダー等として好適に利用できる。
 市販ワキシーコーンスターチ(商品名「ワキシーコーンスターチ Y」、株式会社J-オイルミルズ製)を糊化及び液化した後、さらに、国際公開第WO2008/136331号パンフレットに開示したバチルス・サーキュランスPP710株由来のα-グルコシル転移酵素を澱粉1g当たり1.0単位添加し、pH6.0、50℃で24時間作用させた以外は実施例1と同様の操作を行うことにより、粉末状の、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物を得た。
 本α-グルカン混合物は、重量平均分子量(Mw)が1,270kDa、Mw/Mnが22.1を示し、冷水可溶性を有し、濃度30質量%の水溶液の粘度は896mPa・sであった。本α-グルカン混合物にイソマルトデキストラナーゼを作用させて得た消化物のイソマルトース含量は9.3質量%を示した。本α-グルカン混合物は、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物であり、固形物濃度30質量%の水溶液を6℃で1週間保持する耐老化性試験において、保存1週間の時点で老化による白濁を全く示さない耐老化性を有していた。本品は可食性フィルムの原材料、食品、化粧品、医薬品又は工業用品の増粘剤、バインダー等として好適に利用できる。
 市販ワキシーコーンスターチ(商品名「ワキシーコーンスターチ Y」、株式会社J-オイルミルズ製)を実施例2と同様の方法で糊化及び液化した後、さらに、国際公開第WO2008/136331号パンフレットに開示したバチルス・サーキュランスPP710株由来のα-グルコシル転移酵素を澱粉1g当たり1.0単位添加し、pH6.0、50℃で20時間作用させた以外は実施例1と同様の操作を行うことにより、粉末状の、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物を得た。
 本α-グルカン混合物は、重量平均分子量(Mw)が566kDa、Mw/Mnが13.2を示し、冷水可溶性を有し、濃度30質量%の水溶液の粘度は483mPa・sであった。本α-グルカン混合物にイソマルトデキストラナーゼを作用させて得た消化物のイソマルトース含量は7.0質量%を示した。本α-グルカン混合物は、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物であり、固形物濃度30質量%の水溶液を6℃で1週間保持する耐老化性試験において、保存1週間の時点で老化による白濁を全く示さない耐老化性を有していた。本品は可食性フィルムの原材料、食品、化粧品、医薬品又は工業用品の増粘剤、バインダー等として好適に利用できる。
 ワキシーコーンスターチをワキシーライススターチに換え、糊化及び液化した後、さらに、国際公開第WO2008/136331号パンフレットに開示したアルスロバクター・グロビホルミス PP349株由来のα-グルコシル転移酵素を澱粉1g当たり2.5単位添加し、pH6.0、50℃で24時間作用させた以外は実施例2と同様の操作を行うことにより、粉末状の、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物を得た。
 本α-グルカン混合物は、重量平均分子量(Mw)が1,360kDa、Mw/Mnが22.4を示し、冷水可溶性を有し、濃度30質量%の水溶液の粘度は840mPa・sであった。本α-グルカン混合物にイソマルトデキストラナーゼを作用させて得た消化物のイソマルトース含量は17.5質量%を示した。また、本α-グルカン混合物は、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物であり、固形物濃度30質量%の水溶液を6℃で1週間保持する耐老化性試験において、保存1週間の時点で老化による白濁を全く示さない耐老化性を有していた。本品は可食性フィルムの原材料、食品、化粧品、医薬品又は工業用品の増粘剤、バインダー等として好適に利用できる。
<可食性フィルム>
 実施例1で得たα-グルカン混合物を脱イオン水に懸濁、撹拌し、固形物濃度30質量%の溶液とした後、減圧脱泡し、PETフィルム上に流延し、温度35℃、相対湿度33%の環境下で乾燥させ、厚さ80μmのα-グルカン混合物からなる可食性フィルムを得た。得られた可食性フィルムは、5.2質量%の水分を含有し、破断応力に対し高い強度を有するとともに、水溶性も良好で、製造ロットごとにばらつきの少ない安定した溶解速度を示すので、食品、化粧品、医薬品等に有利に利用できる。
<可食性フィルム>
 実施例2で得たα-グルカン混合物を脱イオン水に懸濁、撹拌し、固形物濃度25質量%の溶液とした後、減圧脱泡し、PETフィルム上に流延し、温度35℃、相対湿度33%の環境下で乾燥させ、厚さ60μmのα-グルカン混合物からなる可食性フィルムを得た。得られた可食性フィルムは、4.6質量%の水分を含有し、破断応力に対し高い強度を有するとともに、水溶性も良好で、製造ロットごとにばらつきの少ない安定した溶解速度を示すので、食品、化粧品、医薬品等に有利に利用できる。
<可食性フィルム>
 実施例3で得た、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物を脱イオン水に懸濁、撹拌し、固形物濃度30質量%の溶液とした後、減圧脱泡し、PETフィルム上に流延し、温度35℃、相対湿度33%の環境下で乾燥させ、厚さ50μmの、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物からなる可食性フィルムを得た。得られた可食性フィルムは、4.1質量%の水分を含有し、破断応力に対し高い強度を有するとともに、水溶性も良好で、製造ロットごとにばらつきの少ない安定した溶解速度を示すので、食品、化粧品、医薬品等に有利に利用できる。
<可食性フィルム>
 実施例4で得た、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物を脱イオン水に懸濁、撹拌し、固形物濃度25質量%の溶液とした後、減圧脱泡し、PETフィルム上に流延し、温度35℃、相対湿度33%の環境下で乾燥させ、厚さ50μmの、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物からなる可食性フィルムを得た。得られた可食性フィルムは、4.8質量%の水分を含有し、破断応力に対し高い強度を有するとともに、水溶性も良好で、製造ロットごとにばらつきの少ない安定した溶解速度を示すので、食品、化粧品、医薬品等に有利に利用できる。
<口中清涼フィルム>
 常法にしたがって、脱イオン水69.25質量部に、実施例1の方法で調製したα-グルカン混合物22質量部、カラギーナン1質量部、キサンタンガム0.15質量部、ローカストビーンガム0.15質量部、マルチトール0.8質量部、糖転移ヘスペリジン(商品名「林原ヘスペリジンS」、株式会社林原販売)3質量部、乳化ミントオイル2.6質量部、スクラロース0.3質量部、及びクエン酸0.25質量部を加え、90℃で3時間撹拌して溶解し、2×10mのステンレス板上に均質に流延し、60℃で4時間乾燥して、厚さ約200μm、幅約200cm、長さ10m、水分含量約8%、100cm2当たりの質量が約2.2gのフィルム状成形物を得た。このフィルムを1×2cmに裁断して、20枚ずつ携帯用の容器に充填し、口中清涼フィルムを調製した。
 本品は、適度な強度を有すると共に口中で速やかに溶解する可食性のフィルムであり、糖転移ヘスペリジンを含有することから、口腔の健康の維持・増進を目的に使用することができる口中清涼フィルムである。また、本品は、製造ロットごとのばらつきの少ない糖質組成のほぼ一定した本発明のα-グルカン混合物を原料に用いて製造されているので、口中での溶解速度がほぼ一定しており、糖転移ヘスペリジンなどの有効成分の溶け出す速度が常に安定した可食性フィルムである。
<麺類ほぐれ改良剤>
 脱イオン水90質量部に、実施例1で調製したα-グルカン混合物を10質量部溶解して、麺類ほぐれ改良剤とした。素麺を茹で、ざるで水を軽く切った後、100質量部の麺に対して、麺類ほぐれ改良剤を5質量部からめた。得られた素麺を、80mm×70mm×高さ45mmのプラスチック製容器に入れて蓋をし、6℃で保存し、48時間保存後の素麺のほぐれ性を評価したところ、本α-グルカン混合物を含む麺類ほぐれ改良剤で表面処理した麺は、麺類ほぐれ改良剤を噴霧しなかった対照の素麺に比べ、麺同士のくっつきがなく、食味や食感には違和感がなかった。加えて、麺表面につやがあり、外観上も良好な麺であった。
<食品用接着剤>
 脱イオン水95質量部に、実施例2で調製したα-グルカン混合物を5質量部溶解し、食品用接着剤とした。調理生地玉バンズ用のパン生地45gを直径8cmに成形したものに食品用接着剤0.2gを刷毛にて塗布した。これにゴマをふりかけ、最終発酵(35℃、相対湿度80%、50分)させ、焼成(上火185℃、下火180℃、9分)して、バンズを調製した。食品用接着剤を使用したバンズと、使用していない対照のバンズとを比較したところ、食品用接着剤を使用したバンズの方がゴマの剥離量が顕著に少なく、食品用接着剤の接着性は良好であった。
<被覆膜>
 実施例3の方法で製造した、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物1質量部及びアラビアガム0.2質量部を水100質量部に溶解した水溶液を調製した。このα-グルカン混合物含有水溶液に産卵後10時間以内の新鮮な鶏卵を30秒間浸漬した後、取り出して、30℃の温度で2時間乾燥して卵殻表面上にα-グルカン混合物の被覆膜を形成させた。
 この被覆膜を形成させた鶏卵を、室温(15~25℃)で保存して、その可食期間を対照の無処理鶏卵(被覆膜無し)と比較したところ、α-グルカン混合物で被覆膜を形成させた鶏卵の可食期間は、無処理鶏卵(被覆膜無し)の約5倍に延長された。このα-グルカン混合物被覆膜は、食品工業などの原材料に用いるための鶏卵を保存するのに有利に利用できる。
<固状接着剤>
 実施例2で調製したα-グルカン混合物7質量部、ジメチルスルホキシド30質量部、水25質量部、プルラン3質量部、及び、ジベンジリデンキシリット2質量部の混合物を、温度90℃にて1時間撹拌し、溶解せしめた後、これを直径14mm、高さ50mmの円筒状容器に注入して室温で放冷し、固形状接着剤を製造した。本接着剤は薄く均一に塗布することができ、初期接着力も充分であった。本接着剤は、温度変化に伴う硬度変化が比較的小さく、常に良好な塗布と接着が可能であった。
<錠剤>
 常法により、エテンザミド450質量部、アセトアミノフェン300質量部、カフェイン50質量部、マルチトール25質量部、α,α-トレハロース25質量部、スクロース200質量部、キシリトール400質量部、コーンスターチ500質量部、ポリエチレングリコール20質量部、実施例4の方法で調製した、非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物6質量部、アラビアガム6質量部、α-グルコシルステビオシド(商品名「αG-スイート」、東洋精糖株式会社販売)1質量部を混合した後、水を40mL加えて混練し、打錠機により打錠して錠剤(約300mg/錠)を得た。
 本品は、打錠時のひび割れもなく、適度な強度を有するとともに水に対する良好な溶解性を示し、口腔内で溶解させながら摂取することができる舌下剤型の風邪薬として用いることができる。また、本品は、α-グルカン混合物によってもたらされる結着力がほぼ一定しており、一定の成分を一定の条件で打錠することによって、常に安定した形状及び強度の錠剤とすることができる優れた錠剤である。さらに、本品は、口腔内での溶解速度がほぼ一定しており、エテンザミドやアセトアミノフェンなどの有効成分の溶け出す速度が安定し、それらを高効率で作用させることができる錠剤である。
<肥料杭>
 配合肥料(窒素14%、リン酸8%、カリウム12%)、実施例3の方法で製造した非還元末端にイソマルトース構造を有するα-グルカンを含有するα-グルカン混合物、硫酸カルシウム及び水をそれぞれ質量比70:10:15:5とし、充分混合した後、押出機(L/D=20、圧縮比=1.8、ダイスの口径=30mm)で80℃に加熱して肥料杭を製造した。 
本品は、取扱い容易であり、全層施肥に適した強度を有し、更に、配合割合を変えることにより肥料成分の溶出速度を調節できるものである。また、必要に応じ、この肥料杭に植物ホルモン、農業用薬剤及び土壌改良剤などを配合することも有利に実施できる。
 本発明のα-グルカン混合物は、適度な分子量範囲を示し、冷水可溶性に優れ、適度な粘度を保持しているので、食品、化粧品、医薬品及び工業用品の各分野において使用制限なく用いることができる。さらに食品のうち、特に、可食性フィルムの原材料、食品材料の結着剤、パン、菓子などの食感改善剤、麺帯製品のほぐれ改善剤、保存性向上剤などとして好適に用いることができる。
 

Claims (12)

  1.  ワキシースターチを糊化し、アミラーゼを作用させ液化する工程を含む製造方法により得られるα-グルカン混合物であって、下記(1)及び(2)の特徴を有するα-グルカン混合物:
      (1)重量平均分子量(Mw)が150kDa乃至3,000kDaの範囲にある;及び
      (2)重量平均分子量(Mw)を数平均分子量(Mn)で除した値(Mw/Mn)が35.1以下である。
  2.  さらに非還元末端にイソマルトース構造を有するα-グルカンを含有する請求項1記載のα-グルカン混合物。
  3.  イソマルトデキストラナーゼ(EC 3.2.1.94)消化により、消化物の固形物当たりイソマルトースを3質量%超22質量%未満生成することを特徴とする請求項2記載のα-グルカン混合物。
  4.  ワキシースターチが、ワキシーコーンスターチである請求項1乃至3のいずれかに記載のα-グルカン混合物。
  5.  α-グルカン混合物を、可塑剤を添加することなく成形、乾燥して得た厚さ40乃至50μmのフィルムが、断面積1mmの突刺し試験用アダプターを用いて行われる突刺し強度試験において、2.0N/mm以上の突刺し破断強度を示すことを特徴とする請求項1乃至4のいずれかに記載のα-グルカン混合物。 
  6. 固形物濃度20質量%となるよう脱イオン水に添加し、30℃で15分間撹拌した時、完全に溶解して均一な溶液を与える請求項1乃至5のいずれかに記載のα-グルカン混合物。
  7.  固形物濃度20質量%以上のワキシースターチ懸濁液を加熱により糊化させ、アミラーゼを作用させ重量平均分子量(Mw)が150kDa乃至3,000kDaの範囲のα-グルカン混合物とする工程を含んでなる請求項1記載のα-グルカン混合物の製造方法。
  8.  さらに、澱粉部分分解物に作用しその非還元末端グルコース残基にα-1,6グルコシル転移する活性を有するα-グルコシル転移酵素を作用させる工程を含んでなる請求項7記載のα-グルカン混合物の製造方法。
  9.  α-グルコシル転移酵素が、バチルス属又はアルスロバクター属微生物由来の、下記(A)乃至(F)の性質を有する酵素である、請求項8記載のα-グルカン混合物の製造方法:
    (A)作用
     マルトース及び/又はグルコース重合度3以上のα-1,4グルカンに作用し、主としてα-1,4グルコシル転移又はα-1,6グルコシル転移を触媒し、非還元末端グルコース残基の4位又は6位水酸基にグルコースを転移する;
    (B)分子量
     SDS-ポリアクリルアミドゲル電気泳動法において、90,000±10,000ダルトン;
    (C)至適温度
     pH6.0、30分間反応の条件下で、約50℃;
    (D)至適pH
     40℃、30分間反応の条件下で約6.0;
    (E)温度安定性
     pH6.0、60分間保持の条件下で40℃まで安定;及び
    (F)pH安定性
     4℃、24時間保持の条件下でpH4.0乃至8.0の範囲で安定。
  10.  請求項1乃至6のいずれかに記載のα-グルカン混合物を、可塑剤を添加することなく成形、乾燥することにより得られる、断面積1mmの突刺し試験用アダプターを用いて行われる突刺し強度試験において、2.0N/mm以上の突刺し破断強度を示すことを特徴とする可食性フィルム。
  11.  請求項1乃至6のいずれかに記載のα-グルカン混合物を含有してなる食品、化粧品又は医薬品。
  12.  請求項1乃至6のいずれかに記載のα-グルカン混合物を含有してなる工業用品。
     
PCT/JP2016/085946 2015-12-04 2016-12-02 α-グルカン混合物とその製造方法並びに用途 WO2017094895A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017554207A JP6986448B2 (ja) 2015-12-04 2016-12-02 α−グルカン混合物とその製造方法並びに用途
EP16870830.3A EP3399046A4 (en) 2015-12-04 2016-12-02 A-GLUCAN MIXTURE, PROCESS FOR PRODUCING THE MIXTURE, AND APPLICATION OF SAID MIXTURE
US15/780,706 US11408019B2 (en) 2015-12-04 2016-12-02 Alpha-glucan mixture, its preparation and uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-237947 2015-12-04
JP2015237947 2015-12-04

Publications (1)

Publication Number Publication Date
WO2017094895A1 true WO2017094895A1 (ja) 2017-06-08

Family

ID=58797460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085946 WO2017094895A1 (ja) 2015-12-04 2016-12-02 α-グルカン混合物とその製造方法並びに用途

Country Status (5)

Country Link
US (1) US11408019B2 (ja)
EP (1) EP3399046A4 (ja)
JP (1) JP6986448B2 (ja)
TW (1) TWI754623B (ja)
WO (1) WO2017094895A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190310A1 (ja) * 2017-04-11 2018-10-18 株式会社林原 品質改善剤並びにその用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3050072A1 (en) * 2017-01-20 2018-07-26 Nutri Co., Ltd. Highly dispersible dextrin and production method therefor
CN114317639B (zh) * 2021-12-09 2024-03-01 江南大学 一种低渗簇状结构糖链的加工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044586A1 (fr) * 2006-10-06 2008-04-17 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Article moulé contenant de l'amidon ramifié
WO2008044588A1 (fr) * 2006-10-06 2008-04-17 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Dérivé d'amidon ramifié, procédé d'obtention et article moulé contenant le dérivé d'amidon ramifié
WO2008136331A1 (ja) * 2007-04-26 2008-11-13 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 分岐α-グルカン及びこれを生成するα-グルコシル転移酵素とそれらの製造方法並びに用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155969A (en) * 1981-03-20 1982-09-27 Nikken Kagaku Kk Method for making food glossy
US5482560A (en) * 1994-07-27 1996-01-09 American Maize Technology, Inc. Beta-limit dextrin from dull waxy starch
EP1214441A1 (en) * 1999-09-01 2002-06-19 Novozymes A/S Maltogenic amylase-modified starch derivatives
FR2840612B1 (fr) 2002-06-06 2005-05-06 Roquette Freres Polymeres solubles de glucose hautement branches et leur procede d'obtention
CA2514551A1 (en) * 2003-01-28 2004-08-12 Purdue Research Foundation Slowly digestible starch
JP4893980B2 (ja) * 2005-04-08 2012-03-07 株式会社林原生物化学研究所 分岐澱粉とその製造方法並びに用途
JP2008079525A (ja) 2006-09-27 2008-04-10 Ina Food Ind Co Ltd 可食性フィルム
US9963581B2 (en) * 2009-08-18 2018-05-08 Glico Nutrition Co., Ltd. Food product containing starch gel, starch granule, production method and use thereof
RU2617366C2 (ru) * 2011-11-18 2017-04-24 Рокетт Фрер Меловальные краски на основе частично растворимых высокомолекулярных декстринов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044586A1 (fr) * 2006-10-06 2008-04-17 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Article moulé contenant de l'amidon ramifié
WO2008044588A1 (fr) * 2006-10-06 2008-04-17 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Dérivé d'amidon ramifié, procédé d'obtention et article moulé contenant le dérivé d'amidon ramifié
WO2008136331A1 (ja) * 2007-04-26 2008-11-13 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo 分岐α-グルカン及びこれを生成するα-グルコシル転移酵素とそれらの製造方法並びに用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENPUN KARA KOSO NO CHIKARA DE TSUKURU ATARASHII SUIYOSEI SHOKUBUTSU SEN'I 'ISOMALTODEXTRIN, 2016, Retrieved from the Internet <URL:https://www.alic.go.jp/joho-d/joho08_000580.html> [retrieved on 20170217] *
See also references of EP3399046A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190310A1 (ja) * 2017-04-11 2018-10-18 株式会社林原 品質改善剤並びにその用途

Also Published As

Publication number Publication date
JP6986448B2 (ja) 2021-12-22
US11408019B2 (en) 2022-08-09
TWI754623B (zh) 2022-02-11
US20180346949A1 (en) 2018-12-06
EP3399046A1 (en) 2018-11-07
EP3399046A4 (en) 2019-07-24
TW201731939A (zh) 2017-09-16
JPWO2017094895A1 (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
US8168778B2 (en) Highly-branched starch, its production and uses
JP5166224B2 (ja) 焼き菓子類
WO2018190310A1 (ja) 品質改善剤並びにその用途
JP7411558B2 (ja) 耐性エンドウデキストリンの製造方法
Wurzburg Modified starches
JP2001294601A (ja) 高度分岐澱粉と該高度分岐澱粉の製造方法
JP5166207B2 (ja) 焼き菓子類
KR20050022960A (ko) 사고계 겔 전분
JP6986448B2 (ja) α−グルカン混合物とその製造方法並びに用途
KR20130065651A (ko) 에리스리톨 및 이소말트의 로젠지
Sudheesh et al. Role of starch in gluten-free breads
EP3128860B1 (en) Carbohydrate composition and process for making a carbohydrate composition
JP7285052B2 (ja) 澱粉分解物、並びに該澱粉分解物を用いた飲食品用組成物、及び飲食品
KR20150001057A (ko) 즉석 편이식 제조를 위한 효소압출팽화미분의 제조방법
EP3636673A1 (en) Gelatinized starch
Srikaeo Starch: Introduction and Structure–Property Relationships
KR20160076470A (ko) 전분 호화 반죽용 경화촉진제
Hosseini et al. Spray drying of starches and gums
Paul et al. Starch in Food Applications
JP2022167684A (ja) 物性安定化剤
US20180263271A1 (en) Carbohydrate composition and process for making a carbohydrate composition
JP2018174764A (ja) 澱粉含有食品及び澱粉含有食品用の改質剤
JP2017184635A (ja) 麺類とその製造方法
WO2016121885A1 (ja) 澱粉質の老化抑制方法
BRPI0710867B1 (pt) Inulina com comprimento de cadeia muito elevado, seus usos e seu processo de obtenção, gênero alimentício, suplemento alimentar, preparação cosmética, e pasta aquosa e seu uso

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016870830

Country of ref document: EP