WO2017092527A1 - 电力系统运行备用安全裕度在线评估方法 - Google Patents

电力系统运行备用安全裕度在线评估方法 Download PDF

Info

Publication number
WO2017092527A1
WO2017092527A1 PCT/CN2016/103729 CN2016103729W WO2017092527A1 WO 2017092527 A1 WO2017092527 A1 WO 2017092527A1 CN 2016103729 W CN2016103729 W CN 2016103729W WO 2017092527 A1 WO2017092527 A1 WO 2017092527A1
Authority
WO
WIPO (PCT)
Prior art keywords
active
power system
steady
power
node
Prior art date
Application number
PCT/CN2016/103729
Other languages
English (en)
French (fr)
Inventor
徐泰山
汪际锋
唐卓尧
鲍颜红
黄河
苏寅生
郑亮
刘韶峰
任先成
周海锋
Original Assignee
国电南瑞科技股份有限公司
中国南方电网有限责任公司
南京南瑞集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司, 中国南方电网有限责任公司, 南京南瑞集团公司 filed Critical 国电南瑞科技股份有限公司
Priority to JP2018548255A priority Critical patent/JP6569014B2/ja
Publication of WO2017092527A1 publication Critical patent/WO2017092527A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Definitions

  • the invention belongs to the technical field of power system operation and control. Specifically, the present invention relates to an online quantitative evaluation method for frequency control capability suitable for taking into account safety and stability constraints for operation of a power system after a predetermined failure.
  • the power system operation standby is mainly set for the expected frequency (including generator output fluctuation, load fluctuation, short circuit, trip and DC blocking, etc.) to ensure the system frequency quality requirements after the occurrence of the power system. Therefore, it is necessary to continuously operate the power system during operation. Standby for monitoring and assessing its actual ability to guarantee system frequency quality.
  • the existing operational standby online monitoring and evaluation method adopts the difference between the total maximum power generation output, the total minimum power generation output and the total load according to the current operating state, respectively, to indicate the operating standby capacity and the control power system for controlling the steady state frequency drop of the power system.
  • the operational standby capacity of the steady-state frequency rise reflects the operational standby safety margin in proportion to the running spare capacity in the total load or the total power generation output.
  • the existing method is to consider the expected fault to its own influence on the power system power balance.
  • this method cannot be used to accurately reflect the operational standby safety margin that considers the expected fault and meets the requirements of the safe and stable operation constraints of the power system. To do this, you need to address different expected faults.
  • the time domain simulation can obtain the stable operation state after the expected fault, and then based on the operating state, consider the constraints of the transmission equipment overload limit and the transmission channel safety stability limit to calculate the maximum available operational standby capacity.
  • the operational backup safety margin is quantitatively evaluated in combination with the power frequency static characteristic coefficient of the operating state and the upper and lower limits of the system steady-state frequency quality requirement.
  • the object of the present invention is to uniformly consider the impact of the expected fault on the power balance of the power system for the existing operational standby online monitoring and evaluation method, and different impacts on the power system caused by different expected faults having the same power variation.
  • the lack of consideration of the overload limit of the transmission equipment and the safety and stability limit of the transmission channel considering the dynamic behavior of the primary and secondary equipment of the power system after the expected failure, taking into account the overload of the transmission equipment in the standby operation under the stable operation state after the expected failure
  • Limiting the limits of the safety and stability limits of the transmission channel an online evaluation method for the standby safety margin of the power system operation considering the expected failure is proposed to meet the actual requirements of the dispatch operation control.
  • the technical principle adopted by the invention is as follows: it is expected that after a fault occurs, it needs to undergo a transient and dynamic process before transitioning to a stable operating state, and the equipment such as generator excitation/speed regulation system, protection, and self-installation device may be in the transition process. Action, therefore, it is necessary to consider the time domain simulation of the dynamic behavior of the primary and secondary equipment for the expected fault to obtain the closest stable operating state after the expected fault. In order to improve the speed of obtaining a stable running state, the time domain simulation is terminated early in the dynamic process when the calculation node frequency fluctuation amplitude is less than the set value.
  • the calculated maximum reserve of the operational standby is the actual operational standby capacity.
  • the present invention is implemented by the following technical solutions, including the following steps:
  • step 1 1) Based on the current operating state of the power system, the time domain simulation considering the protection and the operation of the self-contained device is performed for the expected fault until the difference between the maximum value and the minimum value of the adjacent dynamic frequency of the simulation node is less than When the value is ⁇ , the time domain simulation is terminated, and the frequency dynamic process of each computing node and the active dynamic process of each injection node and the power transmission device are obtained, and the process proceeds to step 2);
  • the injection node includes a generator node, a load node, and an equivalent injection node;
  • the power transmission device includes a line and a transformer
  • step 2) For each computing node, respectively take the average value of the maximum value and the minimum value at the end of the node frequency dynamic process in step 1) as the steady-state frequency of each computing node after considering the expected fault, and then all the computing nodes The average value of the steady-state frequency is taken as the steady-state frequency f a of the power system after considering the expected fault;
  • the average value of the maximum value and the minimum value of the step 1) injected into the node active dynamic process respectively is taken as the steady state active of the injection node after considering the expected fault;
  • the average value of the maximum value and the minimum value at the end of the active dynamic process of the power transmission equipment in step 1) is taken as the steady state active power of the power transmission equipment after considering the expected fault, and then used for safety and stability for each power transmission device.
  • the monitored transmission channel respectively takes the steady state active sum of all the transmission devices in the transmission channel as the steady state active of the transmission channel after considering the expected failure, and proceeds to step 3);
  • step 4 According to the network topology and model and parameters of the power system after considering the steady state active and expected faults of each injection node after the expected failure, form the DC power flow equation of the power system, and proceed to step 4);
  • step 5 Based on the DC power flow equation of the power system, for each active controllable node preset in the injection node, respectively calculate the sensitivity of the active controllable node to the active power of each power transmission device in the power system, and proceed to step 5);
  • step 6 If f a is less than or equal to the difference between the rated frequency f r and ⁇ /2 of the power system, calculate the active injection change that can be used to improve the steady-state frequency of the power system after the expected fault is solved by solving the optimization function represented by equation (1).
  • the amount ⁇ P in proceeds to step 6);
  • the expected fault can be used after
  • I is the total number of active controllable nodes in the injection node
  • ⁇ P i is the active injection variation of the i-th node in the active control node
  • P i.0 is the active power after considering the expected fault.
  • the steady-state active injection amount of the i-th node in the controllable node, P i.max is the controllable interval of the steady-state active injection amount of the i-th node in the active controllable node after considering the expected fault within the set duration ⁇ t
  • the upper limit, P i.min is the lower limit of the controllable interval of the steady-state active injection amount of the i-th node in the active controllable node after considering the expected fault in the set duration ⁇ t
  • J is the total number of transmission channels for safe and stable monitoring.
  • K j is the total number of transmission devices in the jth transmission channel for safe and stable monitoring
  • s jki is the active injection of the i-th node in the active controllable node
  • the jth is in the transmission channel for safe and stable monitoring.
  • ⁇ P jk is the energy change of the kth power transmission equipment in the jth transmission channel for safe and stable monitoring
  • P jk0 is the jth transmission power for safety and stability monitoring after considering the expected fault Steady state active power of the kth power transmission device in the channel
  • P j kLMT is the steady-state active limit of the kth power transmission equipment in the jth transmission channel for safety and stability monitoring
  • ⁇ P Tj is the change of the active power transmission channel of the jth for safety and stability monitoring
  • P Tj0 is the expected fault
  • P TjLMT is the positive safety stability limit of the jth transmission channel for safe and stable monitoring after considering the expected fault
  • P′ TjLMT is after considering the expected fault
  • the reverse safety stability limit of the jth transmission channel for safe and stable monitoring, the set of transmission equipment except the transmission equipment in the transmission channel for safe and stable monitoring is recorded as B, and L
  • s bli is the active input of the ith node of the active controllable node to the active power of the first transmission device in B
  • ⁇ P bl is the change of the active power of the first transmission device in B
  • P bl0 is after considering the expected fault
  • the steady state active power of the lth transmission device in B, and P blLMT is the steady state active limit of the lth transmission device in B;
  • step 5 the total amount of active injection change ⁇ P in which can be used to improve the steady-state frequency of the power system after the expected fault is calculated according to step 5), and the power frequency static characteristic coefficient k pf of the power system after considering the expected fault, by formula ( 3)
  • formula ( 3) Calculate the change amount ⁇ f in of the steady-state frequency of the power system after considering the implementation of ⁇ P in , and then calculate the standby safety margin ⁇ of the power system operation considering the expected fault by formula (4), and end the method;
  • f d is the lower limit of the safe range of the steady state frequency of the power system
  • step 5 the total amount of active injection change ⁇ P de that can be used to reduce the steady-state frequency of the power system after the expected fault is calculated according to step 5), and the power frequency static characteristic coefficient k pf of the power system after considering the expected fault, by formula ( 5)
  • formula ( 5) Calculate the change amount ⁇ f de of the steady-state frequency of the power system after considering the implementation of ⁇ P de , and then calculate the standby safety margin ⁇ of the power system operation considering the expected fault by formula (6), and end the method;
  • f u is the upper limit of the steady-state frequency safety interval of the power system
  • the total amount of active injection change ⁇ P in which can be used to increase the steady-state frequency of the power system after the expected fault is calculated according to step 5), and the power frequency static characteristic coefficient k pf of the power system after considering the expected fault, by formula ( 7)
  • Calculate the amount of change ⁇ f in the steady-state frequency of the power system after the implementation of ⁇ P in and calculate the total amount of active injection change ⁇ P de that can be used to reduce the steady-state frequency of the power system after the expected fault calculated in step 5), and consider the expected after the power failure power system frequency static characteristic coefficient k pf, is calculated by the equation (8) account for variations in the amount ⁇ f de ⁇ P de embodiment after steady state frequency of the power system, then equation (9) is calculated considering contingency power system Running the backup safety margin ⁇ to end the method;
  • f d is the lower limit of the safe range of the steady-state frequency of the power system
  • f u is the upper limit of the safe range of the steady-state frequency of the power system.
  • all the above processes can be processed by the cluster calculation method, that is, for each expected fault in the expected fault set, the clustering calculation is adopted as an example by taking the online evaluation of the standby safety margin of the power system considering a single expected fault as an example.
  • the clustering calculation is adopted as an example by taking the online evaluation of the standby safety margin of the power system considering a single expected fault as an example.
  • all the examples are processed in parallel, and the standby safety margin of the power system operation considering each of the expected faults is obtained.
  • the present invention achieves the following technical effects: by considering the time domain simulation of the dynamic behavior of the primary and secondary devices for the expected failure, the most stable stable operation state after the expected failure can be obtained, and the existing existing
  • the operation of the standby online monitoring and evaluation method ignores the transient and dynamic processes, determines the stable operating state after the expected fault according to the steady state analysis technique, and is unrealistic.
  • the calculation node frequency fluctuation amplitude is less than the set value, and the early termination time domain simulation is used to improve the speed of obtaining the stable operation state after the expected failure.
  • the calculated maximum reserve of the operation standby reflects the operational reserve capacity that can be implemented.
  • the online safety margin assessment of the power system operation considering the expected fault is realized, which satisfies the dispatching operation control. Actual demand.
  • Figure 1 is a flow chart of the method of the present invention.
  • Step 1 in Figure 1 Based on the current operating state of the power system, the time domain simulation considering the protection and the operation of the self-contained device is performed for the expected fault until the maximum and minimum values adjacent to each other in the dynamic process of the computing nodes are simulated. When the difference is less than the set value ⁇ (usually set to 0.02 Hz), the time domain simulation is terminated, and the frequency dynamic process of each computing node and the active dynamic process of each injection node and the power transmission device are obtained, and the process proceeds to step 2);
  • usually set to 0.02 Hz
  • the injection node includes a generator node, a load node, and an equivalent injection node (eg, an equivalent generator node, an equivalent load node).
  • the power transmission device includes a line and a transformer.
  • Step 2 in Figure 1 For each computing node, respectively, the average value of the maximum value and the minimum value at the end of the node frequency dynamic process of step 1) is taken as the steady-state frequency of the computing node after considering the expected fault, and then The average of the steady-state frequencies of all compute nodes is taken as the steady-state frequency f a of the power system after considering the expected fault.
  • the average value of the maximum value and the minimum value of the step 1) injected into the node active dynamic process respectively is taken as the steady state active of the injection node after considering the expected fault.
  • the average value of the maximum value and the minimum value at the end of the active dynamic process of the power transmission equipment in step 1) is taken as the steady state active power of the power transmission equipment after considering the expected fault, and then used for safety and stability monitoring for each.
  • the transmission channel respectively takes the steady-state active sum of all the transmission devices in the transmission channel as the steady-state active power of the transmission channel after considering the expected failure, and proceeds to step 3).
  • Step 3 in Figure 1 According to the network topology and model and parameters of the power system after considering the steady-state active and expected faults of each injection node after the expected fault, the DC power flow equation of the power system is formed, and the process proceeds to step 4).
  • Step 4 in Figure 1 Based on the DC power flow equation of the power system, calculate the sensitivity of the active controllable node to the active power of each power transmission device in the power system for each active controllable node preset in the injection node, and proceed to step 5).
  • Step 5 in Figure 1 If f a is less than or equal to the difference between the rated frequency f r and ⁇ /2 of the power system, the optimal function represented by equation (1) is used to calculate the steady-state frequency of the power system after the expected fault is calculated.
  • the active injection changes the total amount ⁇ P in and proceeds to step 6).
  • the expected fault can be used after
  • I is the total number of active controllable nodes in the injection node
  • ⁇ P i is the active injection variation of the i-th node in the active controllable node
  • P i.0 is the active after considering the expected fault.
  • the steady-state active injection amount of the i-th node in the controllable node P i.max is the steady-state active injection amount of the i-th node in the active controllable node after considering the expected fault at the set duration ⁇ t (usually set to 3)
  • the upper limit of the controllable interval in minutes) P i.min is the lower limit of the controllable interval of the steady-state active injection amount of the i-th node in the active controllable node after considering the expected fault in the set duration ⁇ t
  • J is used for The total number of transmission channels for safe and stable monitoring
  • K j is the total number of transmission devices in the jth transmission channel for safe and stable monitoring
  • s jki is the active injection of the i-th node in the active controllable node.
  • the sensitivity of the kth power transmission equipment in the stable monitoring transmission channel ⁇ P jk is the change of the active power of the kth power transmission equipment in the jth transmission channel for safe and stable monitoring
  • P jk0 is the jth after considering the expected fault
  • ⁇ P Tj is the j th for monitoring the security and stability of the active transmission channel
  • P Tj0 is the steady-state active power of the jth transmission channel for safe and stable monitoring after considering the expected fault.
  • P TjLMT is the forward safety stability limit of the jth transmission channel for safe and stable monitoring after considering the expected fault
  • P' TjLMT is to consider the reverse safety stability limit of the jth transmission channel for safe and stable monitoring after the expected fault
  • the set of transmission equipment other than the transmission equipment in the transmission channel for safety and stability monitoring is recorded as B
  • L is The total number of transmission equipment in B
  • s bli is the active injection of the ith node of the active controllable node to the active power of the first transmission device in B
  • ⁇ P bl is the variation of the active power of the first transmission device in B
  • P Bl0 is the steady state active power of the lth transmission device in B after considering the expected fault
  • P blLMT is the steady state active limit of the lth transmission device in B.
  • the tie profile is treated as a transmission channel for safe and stable monitoring, wherein the P TjLMT is used for the tie line Replace the active upper limit of the section, and replace P' TjLMT with the opposite of the lower limit of the active section of the tie line.
  • P TjLMT is used for the tie line Replace the active upper limit of the section, and replace P' TjLMT with the opposite of the lower limit of the active section of the tie line.
  • the calculation method of the steady-state active power limit of the power transmission device is as follows: if the ratio of the current and the current limit in the current operating state of the power system is greater than the set value (usually set to 10%), the power transmission device is maintained in the power system. Under the current operating state, the terminal voltage is constant and the power factor is unchanged. The active power of the transmission equipment current is calculated as the steady-state active power limit of the transmission equipment. Otherwise, the transmission equipment remains set. The power factor (usually set to 0.95) is constant and the terminal voltage in the current operating state of the power system is unchanged. The active power of the power transmission device when the current limit is reached is calculated as the steady-state active power limit of the power transmission device.
  • Step 6 in Figure 1 First, the total amount of active injection change ⁇ P in that can be used to increase the steady-state frequency of the power system after the expected fault according to step 5), and the power frequency static characteristic coefficient k pf of the power system after considering the expected fault (When the voltage of the power system is constant, the ratio of the total active change of the system to the change of the steady-state frequency of the system), calculate the change amount ⁇ f in of the steady-state frequency of the power system after the implementation of ⁇ P in by formula (3).
  • the power safety operation standby safety margin ⁇ considering the expected fault is calculated by the formula (4), and the method is terminated:
  • f d is the lower limit of the safety range of the steady-state frequency of the power system.
  • Step 7 in Figure 1 First, the total amount of active injection change ⁇ P de that can be used to reduce the steady-state frequency of the power system after the expected fault calculated according to step 5), and the power frequency static characteristic coefficient k pf of the power system after considering the expected fault Calculate the change amount ⁇ f de of the steady-state frequency of the power system after the implementation of ⁇ P de by formula (5), and then calculate the standby safety margin ⁇ of the power system operation considering the expected fault by formula (6), and end the method:
  • f u is the upper limit of the steady-state frequency safety interval of the power system
  • Step 8 in Figure 1 First, the total amount of active injection change ⁇ P in that can be used to increase the steady-state frequency of the power system after the expected fault according to step 5), and the power frequency static characteristic coefficient k pf of the power system after considering the expected fault Calculate the amount of change ⁇ f in the steady-state frequency of the power system after the implementation of ⁇ P in by equation (7), and calculate the total amount of active injection change ⁇ P de that can be used to reduce the steady-state frequency of the power system after the expected fault calculated in step 5) And considering the static frequency characteristic coefficient k pf of the power system after the fault is expected, the variation ⁇ f de of the steady-state frequency of the power system after the implementation of ⁇ P de is calculated by the formula (8), and the consideration is calculated by the formula (9).
  • the faulty power system runs an alternate safety margin ⁇ , ending the method:
  • f d is the lower limit of the safe range of the steady-state frequency of the power system
  • f u is the upper limit of the safe range of the steady-state frequency of the power system.
  • all the above processes can be processed by the cluster calculation method, that is, for each expected fault in the expected fault set, the clustering calculation is adopted as an example by taking the online evaluation of the standby safety margin of the power system considering a single expected fault as an example.
  • the clustering calculation is adopted as an example by taking the online evaluation of the standby safety margin of the power system considering a single expected fault as an example.
  • all the examples are processed in parallel, and the standby safety margin of the power system operation considering each of the expected faults is obtained.

Abstract

一种电力系统运行备用安全裕度在线评估方法,属于电力系统运行与控制技术领域。通过考虑保护和安自装置动作的时域仿真得到故障后系统稳定运行状态,基于该状态的直流潮流方程计算出运行备用对输电设备和输电通道的有功灵敏度,通过求解考虑运行备用可控区间、输电设备过载限额和输电通道安全稳定限额约束,以运行备用最大为目标的优化函数,得到实际可用于控制稳态频率的运行备用容量最大值,结合功率频率静态特性系数,计算出稳态频率的最大可控量,实现了考虑故障的运行备用安全裕度在线评估。

Description

电力系统运行备用安全裕度在线评估方法 技术领域
本发明属于电力系统运行与控制技术领域,具体地说,本发明涉及一种适用于计及安全稳定约束对预想故障后电力系统运行备用的频率控制能力在线量化评估方法。
背景技术
电力系统运行备用主要是针对预想故障(包括发电机出力波动、负荷波动、短路、跳闸和直流闭锁等)发生后保障系统频率质量要求而设置的,因此,需要在电力系统运行中不断地对运行备用进行监视,并评估其保障系统频率质量的实际能力。
现有的运行备用在线监视与评估方法采用的是根据当前运行状态总最大发电出力、总最小发电出力与总负荷的差值来分别表示控制电力系统稳态频率下降的运行备用容量和控制电力系统稳态频率上升的运行备用容量,以运行备用容量占总负荷或总发电出力的比例反映运行备用安全裕度。
现有的方法是将预想故障以其自身对电力系统电力平衡的影响大小统一考虑的,存在两个方面的不足:一方面,没有区分功率变化量相同的不同预想故障对电力系统造成的影响不同,例如输送功率相同的不同直流线路双极闭锁后,因暂态和动态过程不同可能出现切机、切负荷后引起的功率缺额不同,即使引起的功率缺额相同,也可能引起的潮流分布不同;另一方面,也没有考虑运行备用是否会因输电设备过载限额和输电通道安全稳定限额的约束而不可用,存在该方法给出的运行备用容量不能完全用于控制电力系统稳态频率变化的运行工况。因此,采用该方法不能得到真实反映考虑预想故障、满足电力系统安全稳定运行约束要求的运行备用安全裕度。为此,需要针对不同的预想故障,通 过考虑一、二次设备动态行为的时域仿真得到预想故障后的稳定运行状态,再基于该运行状态,考虑输电设备过载限额和输电通道安全稳定限额的约束计算出实际可用的最大运行备用容量,结合该运行状态的功率频率静态特性系数和系统稳态频率质量要求的上、下限,对运行备用安全裕度进行量化评估。
发明内容
本发明的目的是:针对现有的运行备用在线监视与评估方法将预想故障以其对电力系统电力平衡的影响大小统一考虑、没有区分功率变化量相同的不同预想故障对电力系统造成的影响不同,以及没有考虑输电设备过载限额和输电通道安全稳定限额的约束的不足,考虑预想故障后电力系统一、二次设备的动态行为,计及预想故障后稳定运行状态下运行备用调整中输电设备过载限额和输电通道安全稳定限额的约束,提出一种考虑预想故障的电力系统运行备用安全裕度在线评估方法,以满足调度运行控制的实际需求。
本发明所采用的技术原理为:预想故障发生后需要经历暂态、动态过程后才能过渡到稳定的运行状态,在过渡过程中发电机励磁/调速系统、保护、安自装置等设备可能会动作,因此,必须针对预想故障进行考虑一、二次设备动态行为的时域仿真才能得到预想故障后最接近实际的稳定运行状态。为了提高获得稳定运行状态的速度,以动态过程中计算节点频率波动幅度小于设定值为判据提前终止时域仿真。计及预想故障后稳定运行状态下运行备用调整中输电设备过载限额和输电通道安全稳定限额的约束,计算出的运行备用最大可调量才是真正可以实施的运行备用容量。结合预想故障后稳定运行状态下系统的功率频率静态特性系数和系统稳态频率质量要求的上、下限,即可实现对考虑预想故障的电力系统运行备用安全裕度在线评估。
具体地说,本发明采用以下的技术方案来实现的,包括下列步骤:
1)基于电力系统当前运行状态,针对预想故障进行考虑保护和安自装置动作的时域仿真,直至仿真到各个计算节点频率动态过程中相邻的极大值与极小值之差都小于设定值ε时,终止时域仿真,得到各个计算节点的频率动态过程以及各个注入节点和输电设备的有功动态过程,进入步骤2);
所述注入节点包括发电机节点、负荷节点和等值注入节点;
所述输电设备包括线路和变压器;
2)针对各个计算节点,分别将步骤1)节点频率动态过程结束时的极大值与极小值二者的平均值作为考虑预想故障后各个计算节点的稳态频率,再将所有计算节点的稳态频率的平均值作为考虑预想故障后电力系统的稳态频率fa
针对各个注入节点,分别将步骤1)注入节点有功动态过程结束时的极大值与极小值二者的平均值分别作为考虑预想故障后该注入节点的稳态有功;
针对各个输电设备,分别将步骤1)输电设备有功动态过程结束时的极大值与极小值二者的平均值作为考虑预想故障后该输电设备的稳态有功,再针对各个用于安全稳定监视的输电通道,分别将输电通道中所有输电设备的稳态有功之和作为考虑预想故障后该输电通道的稳态有功,进入步骤3);
3)根据考虑预想故障后各个注入节点的稳态有功和预想故障后电力系统的网络拓扑及模型与参数,形成电力系统的直流潮流方程,进入步骤4);
4)基于电力系统的直流潮流方程,针对注入节点中预先设置的各个有功可控节点,分别计算出有功可控节点对电力系统中各个输电设备有功的灵敏度,进入步骤5);
5)若fa小于等于电力系统额定频率fr与ε/2之差,则通过求解公式(1)表示的优化函数,计算出预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin,进入步骤6);
若fa大于等于fr与ε/2之和,则通过求解公式(2)表示的优化函数,计算出预想故障后可用于降低电力系统稳态频率的有功注入变化总量ΔPde,进入步骤7);
若fa大于fr与ε/2之差且fa小于fr与ε/2之和,则分别通过求解公式(1)和公式(2)表示的优化函数,计算出预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin和可用于降低电力系统稳态频率的有功注入变化总量ΔPde,进入步骤8);
Figure PCTCN2016103729-appb-000001
Figure PCTCN2016103729-appb-000002
公式(1)和(2)中,I为注入节点中有功可控节点的总数,ΔPi为有功可 控节点中第i个节点的有功注入变化量,Pi.0为考虑预想故障后有功可控节点中第i个节点的稳态有功注入量,Pi.max为考虑预想故障后有功可控节点中第i个节点的稳态有功注入量在设定的时长Δt内可控区间的上限,Pi.min为考虑预想故障后有功可控节点中第i个节点的稳态有功注入量在设定的时长Δt内可控区间的下限,J为用于安全稳定监视的输电通道总数,Kj为第j个用于安全稳定监视的输电通道中输电设备的总数,sj.k.i为有功可控节点中第i个节点的有功注入对第j个用于安全稳定监视的输电通道中第k个输电设备有功的灵敏度,ΔPj.k为第j个用于安全稳定监视的输电通道中第k个输电设备有功的变化量,Pj.k.0为考虑预想故障后第j个用于安全稳定监视的输电通道中第k个输电设备的稳态有功,Pj.k.LMT为第j个用于安全稳定监视的输电通道中第k个输电设备的稳态有功限额,ΔPT.j为第j个用于安全稳定监视的输电通道有功的变化量,PT.j.0为考虑预想故障后第j个用于安全稳定监视的输电通道的稳态有功,PT.j.LMT为考虑预想故障后第j个用于安全稳定监视的输电通道的正向安全稳定限额,P′T.j.LMT为考虑预想故障后第j个用于安全稳定监视的输电通道的反向安全稳定限额,将除用于安全稳定监视的输电通道中输电设备之外的输电设备的集合记为B,L为B中输电设备的总数,sb.l.i为有功可控节点中第i个节点的有功注入对B中第l个输电设备有功的灵敏度,ΔPb.l为B中第l个输电设备有功的变化量,Pb.l.0为考虑预想故障后B中第l个输电设备的稳态有功,Pb.l.LMT为B中第l个输电设备的稳态有功限额;
6)首先,根据步骤5)计算出的预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin,以及考虑预想故障后电力系统的功率频率静态特性系数kpf,通过公式(3)计算出考虑ΔPin实施后电力系统稳态频率的变化量Δfin,再通过公式(4)计算出考虑预想故障的电力系统运行备用安全裕度η,结束本方法;
Figure PCTCN2016103729-appb-000003
Figure PCTCN2016103729-appb-000004
式中,fd为电力系统稳态频率安全区间的下限;
7)首先,根据步骤5)计算出的预想故障后可用于降低电力系统稳态频率的有功注入变化总量ΔPde,以及考虑预想故障后电力系统的功率频率静态特性系数kpf,通过公式(5)计算出考虑ΔPde实施后电力系统稳态频率的变化量Δfde,再通过公式(6)计算出考虑预想故障的电力系统运行备用安全裕度η,结束本方法;
Figure PCTCN2016103729-appb-000005
Figure PCTCN2016103729-appb-000006
式中,fu为电力系统稳态频率安全区间的上限;
8)首先,根据步骤5)计算出的预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin,以及考虑预想故障后电力系统的功率频率静态特性系数kpf,通过公式(7)计算出考虑ΔPin实施后电力系统稳态频率的变化量Δfin,据步骤5)计算出的预想故障后可用于降低电力系统稳态频率的有功注入变化总量ΔPde,以及考虑预想故障后电力系统的功率频率静态特性系数kpf,通过公式(8)计算出考虑ΔPde实施后电力系统稳态频率的变化量Δfde,再通过公式(9)计算出考虑预想故障的电力系统运行备用安全裕度η,结束本方法;
Figure PCTCN2016103729-appb-000007
Figure PCTCN2016103729-appb-000008
Figure PCTCN2016103729-appb-000009
式中,fd为电力系统稳态频率安全区间的下限,fu为电力系统稳态频率安全区间的上限。
为了提高运算效率,可以通过集群计算方法来处理上述全部过程,即针对预想故障集中的各个预想故障,通过将考虑单个预想故障的电力系统运行备用安全裕度在线评估作为一个算例,采用集群计算的方式,按上述全部过程对各个算例进行并行处理,得到分别考虑各个预想故障的电力系统运行备用安全裕度。
通过采用上述技术方案,本发明取得了下述技术效果:通过针对预想故障进行考虑一、二次设备动态行为的时域仿真可以得到预想故障后最接近实际的稳定运行状态,克服了现有的运行备用在线监视与评估方法忽略暂态和动态过程、依据稳态分析技术确定预想故障后的稳定运行状态、不切实际的不足。以动态过程中计算节点频率波动幅度小于设定值为判据提前终止时域仿真,提高了获得预想故障后稳定运行状态的速度。通过计及预想故障后稳定运行状态下运行备用调整中输电设备过载限额和输电通道安全稳定限额的约束,计算出的运行备用最大可调量,反映了真正可以实施的运行备用容量。结合预想故障后稳定运行状态下系统的功率频率静态特性系数和系统稳态频率质量要求的上、下限,实现了对考虑预想故障的电力系统运行备用安全裕度在线评估,满足了调度运行控制的实际需求。
附图说明
图1是本发明方法的流程图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
图1中步骤1:基于电力系统当前运行状态,针对预想故障进行考虑保护和安自装置动作的时域仿真,直至仿真到各个计算节点频率动态过程中相邻的极大值与极小值之差都小于设定值ε(通常设置为0.02Hz)时,终止时域仿真,得到各个计算节点的频率动态过程以及各个注入节点和输电设备的有功动态过程,进入步骤2);
所述注入节点包括发电机节点、负荷节点和等值注入节点(例如等值发电机节点、等值负荷节点)。所述输电设备包括线路和变压器。
图1中步骤2:针对各个计算节点,分别将步骤1)节点频率动态过程结束时的极大值与极小值二者的平均值作为考虑预想故障后该计算节点的稳态频率,再将所有计算节点的稳态频率的平均值作为考虑预想故障后电力系统的稳态频率fa
针对各个注入节点,分别将步骤1)注入节点有功动态过程结束时的极大值与极小值二者的平均值分别作为考虑预想故障后该注入节点的稳态有功。
针对各个输电设备,分别将步骤1)输电设备有功动态过程结束时极大值与极小值二者的平均值作为考虑预想故障后该输电设备的稳态有功,再针对各个用于安全稳定监视的输电通道,分别将输电通道中所有输电设备的稳态有功之和作为考虑预想故障后该输电通道的稳态有功,进入步骤3)。
图1中步骤3:根据考虑预想故障后各个注入节点的稳态有功和预想故障后电力系统的网络拓扑及模型与参数,形成电力系统的直流潮流方程,进入步骤4)。
图1中步骤4:基于电力系统的直流潮流方程,针对注入节点中预先设置的各个有功可控节点,分别计算出有功可控节点对电力系统中各个输电设备有功的灵敏度,进入步骤5)。
图1中步骤5:若fa小于等于电力系统额定频率fr与ε/2之差,则通过求解公 式(1)表示的优化函数,计算出预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin,进入步骤6)。
若fa大于等于fr与ε/2之和,则通过求解公式(2)表示的优化函数,计算出预想故障后可用于降低电力系统稳态频率的有功注入变化总量ΔPde,进入步骤7)。
若fa大于fr与ε/2之差且fa小于fr与ε/2之和,则分别通过求解公式(1)和公式(2)表示的优化函数,计算出预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin和可用于降低电力系统稳态频率的有功注入变化总量ΔPde,进入步骤8);
Figure PCTCN2016103729-appb-000010
Figure PCTCN2016103729-appb-000011
公式(1)和(2)中,I为注入节点中有功可控节点的总数,ΔPi为有功可控节点中第i个节点的有功注入变化量,Pi.0为考虑预想故障后有功可控节点中第i个节点的稳态有功注入量,Pi.max为考虑预想故障后有功可控节点中第i个节点的稳态有功注入量在设定的时长Δt(通常设置为3分钟)内可控区间的上限,Pi.min为考虑预想故障后有功可控节点中第i个节点的稳态有功注入量在设定的时长Δt内可控区间的下限,J为用于安全稳定监视的输电通道总数,Kj为第j个用于安全稳定监视的输电通道中输电设备的总数,sj.k.i为有功可控节点中第i个节点的有功注入对第j个用于安全稳定监视的输电通道中第k个输电设备有功的灵敏度,ΔPj.k为第j个用于安全稳定监视的输电通道中第k个输电设备有功的变化量,Pj.k.0为考虑预想故障后第j个用于安全稳定监视的输电通道中第k个输电设备的稳态有功,Pj.k.LMT为第j个用于安全稳定监视的输电通道中第k个输电设备的稳态有功限额,ΔPT.j为第j个用于安全稳定监视的输电通道有功的变化量,PT.j.0为考虑预想故障后第j个用于安全稳定监视的输电通道的稳态有功,PT.j.LMT为考虑预想故障后第j个用于安全稳定监视的输电通道的正向安全稳定限额,P′T.j.LMT为考虑预想故障后第j个用于安全稳定监视的输电通道的反向安全稳定限 额,将除用于安全稳定监视的输电通道中输电设备之外的输电设备的集合记为B,L为B中输电设备的总数,sb.l.i为有功可控节点中第i个节点的有功注入对B中第l个输电设备有功的灵敏度,ΔPb.l为B中第l个输电设备有功的变化量,Pb.l.0为考虑预想故障后B中第l个输电设备的稳态有功,Pb.l.LMT为B中第l个输电设备的稳态有功限额。
若在用于稳态频率控制的有功调整中需要考虑区域之间联络线断面的有功约束,则将联络线断面作为用于安全稳定监视的输电通道来处理,其中,将PT.j.LMT用该联络线断面有功上限来替代,将P′T.j.LMT用该联络线断面有功下限的相反数来替代,其它参数不变,即可实现。
其中,输电设备的稳态有功限额的计算方法如下:若输电设备在电力系统当前运行状态下电流与电流限额的比值大于设定值(通常设置为10%),则以输电设备保持在电力系统当前运行状态下的端电压不变和功率因数不变为条件,计算出输电设备电流达到电流限额时的有功,将其作为输电设备的稳态有功限额,否则,则以输电设备保持设定的功率因数(通常设置为0.95)不变和在电力系统当前运行状态下的端电压不变为条件,计算出输电设备电流达到电流限额时的有功,将其作为输电设备的稳态有功限额。
图1中步骤6:首先,根据步骤5)计算出的预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin,以及考虑预想故障后电力系统的功率频率静态特性系数kpf(当电力系统电压不变时,系统总注入有功变化量与系统稳态频率变化量的比值),通过公式(3)计算出考虑ΔPin实施后电力系统稳态频率的变化量Δfin,再通过公式(4)计算出考虑预想故障的电力系统运行备用安全裕度η,结束本方法:
Figure PCTCN2016103729-appb-000012
Figure PCTCN2016103729-appb-000013
式中,fd为电力系统稳态频率安全区间的下限。
图1中步骤7:首先,根据步骤5)计算出的预想故障后可用于降低电力系统稳态频率的有功注入变化总量ΔPde,以及考虑预想故障后电力系统的功率频率静态特性系数kpf,通过公式(5)计算出考虑ΔPde实施后电力系统稳态频率的变化量Δfde,再通过公式(6)计算出考虑预想故障的电力系统运行备用安全裕度η,结束本方法:
Figure PCTCN2016103729-appb-000014
Figure PCTCN2016103729-appb-000015
式中,fu为电力系统稳态频率安全区间的上限;
图1中步骤8:首先,根据步骤5)计算出的预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin,以及考虑预想故障后电力系统的功率频率静态特性系数kpf,通过公式(7)计算出考虑ΔPin实施后电力系统稳态频率的变化量Δfin,据步骤5)计算出的预想故障后可用于降低电力系统稳态频率的有功注入变化总量ΔPde,以及考虑预想故障后电力系统的功率频率静态特性系数kpf,通过公式(8)计算出考虑ΔPde实施后电力系统稳态频率的变化量Δfde,再通过公式(9)计算出考虑预想故障的电力系统运行备用安全裕度η,结束本方法:
Figure PCTCN2016103729-appb-000016
Figure PCTCN2016103729-appb-000017
Figure PCTCN2016103729-appb-000018
式中,fd为电力系统稳态频率安全区间的下限,fu为电力系统稳态频率安全区间的上限。
为了提高运算效率,可以通过集群计算方法来处理上述全部过程,即针对预想故障集中的各个预想故障,通过将考虑单个预想故障的电力系统运行备用安全裕度在线评估作为一个算例,采用集群计算的方式,按上述全部过程对各个算例进行并行处理,得到分别考虑各个预想故障的电力系统运行备用安全裕度。
虽然本发明已以较佳实施例公开如上,但实施例并不是用来限定本发明的。在不脱离本发明之精神和范围内,所做的任何等效变化或润饰,同样属于本发明之保护范围。因此本发明的保护范围应当以本申请的权利要求所界定的内容为标准。

Claims (3)

  1. 电力系统运行备用安全裕度在线评估方法,其特征在于,包括如下步骤:
    1)基于电力系统当前运行状态,针对预想故障进行考虑保护和安自装置动作的时域仿真,直至仿真到各个计算节点频率动态过程中相邻的极大值与极小值之差都小于设定值ε时,终止时域仿真,得到各个计算节点的频率动态过程以及各注入节点和各输电设备的有功动态过程,进入步骤2);
    所述注入节点包括发电机节点、负荷节点和等值注入节点;
    所述输电设备包括线路和变压器。
    2)针对各个计算节点,分别将步骤1)节点频率动态过程结束时的极大值与极小值二者的平均值作为考虑预想故障后各个计算节点的稳态频率,再将所有计算节点的稳态频率的平均值作为考虑预想故障后电力系统的稳态频率fa
    针对各个注入节点,分别将步骤1)注入节点有功动态过程结束时的极大值与极小值二者的平均值分别作为考虑预想故障后该注入节点的稳态有功;
    针对各个输电设备,分别将步骤1)输电设备有功动态过程结束时的极大值与极小值二者的平均值作为考虑预想故障后该输电设备的稳态有功,再针对各个用于安全稳定监视的输电通道,分别将输电通道中所有输电设备的稳态有功之和作为考虑预想故障后该输电通道的稳态有功,进入步骤3);
    3)根据考虑预想故障后各个注入节点的稳态有功和预想故障后电力系统的网络拓扑及模型与参数,形成电力系统的直流潮流方程,进入步骤4);
    4)基于电力系统的直流潮流方程,针对注入节点中预先设置的各个有功可控节点,分别计算出有功可控节点对电力系统中各个输电设备有功的灵敏度,进入步骤5);
    5)若fa小于等于电力系统额定频率fr与ε/2之差,则通过求解公式(1)表 示的优化函数,计算出预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin,进入步骤6);
    若fa大于等于fr与ε/2之和,则通过求解公式(2)表示的优化函数,计算出预想故障后可用于降低电力系统稳态频率的有功注入变化总量ΔPde,进入步骤7);
    若fa大于fr与ε/2之差且fa小于fr与ε/2之和,则分别通过求解公式(1)和公式(2)表示的优化函数,计算出预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin和可用于降低电力系统稳态频率的有功注入变化总量ΔPde,进入步骤8);
    Figure PCTCN2016103729-appb-100001
    Figure PCTCN2016103729-appb-100002
    公式(1)和(2)中,I为注入节点中有功可控节点的总数,ΔPi为有功可控节点中第i个节点的有功注入变化量,Pi.0为考虑预想故障后有功可控节点中第i个节点的稳态有功注入量,Pi.max为考虑预想故障后有功可控节点中第i个节点的稳态有功注入量在设定的时长Δt内可控区间的上限,Pi.min为考虑预想故障后有功可控节点中第i个节点的稳态有功注入量在设定的时长Δt内可控区间的下限,J为用于安全稳定监视的输电通道总数,Kj为第j个用于安全稳定监视的输电通道中输电设备的总数,sj.k.i为有功可控节点中第i个节点的有功注入对第j个用于安全稳定监视的输电通道中第k个输电设备有功的灵敏度,ΔPj.k为第j个用于安全稳定监视的输电通道中第k个输电设备有功的变化量,Pj.k.0为考虑预想故障后第j个用于安全稳定监视的输电通道中第k个输电设备的稳态有功,Pj.k.LMT为第j个用于安全稳定监视的输电通道中第k个输电设备的稳态有功限额,ΔPT.j为第j个用于安全稳定监视的输电通道有功的变化量,PT.j.0为考虑预想故障后第j个用于安全稳定监视的输电通道的稳态有功,PT.j.LMT为考虑预想故障后第j个用于安全稳定监视的输电通道的正向安全稳定限额,P'T.j.LMT为考虑预想故障 后第j个用于安全稳定监视的输电通道的反向安全稳定限额,将除用于安全稳定监视的输电通道中输电设备之外的输电设备的集合记为B,L为B中输电设备的总数,sb.l.i为有功可控节点中第i个节点的有功注入对B中第l个输电设备有功的灵敏度,ΔPb.l为B中第l个输电设备有功的变化量,Pb.l.0为考虑预想故障后B中第l个输电设备的稳态有功,Pb.l.LMT为B中第l个输电设备的稳态有功限额;
    6)首先,根据步骤5)计算出的预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin,以及考虑预想故障后电力系统的功率频率静态特性系数kpf,通过公式(3)计算出考虑ΔPin实施后电力系统稳态频率的变化量Δfin,再通过公式(4)计算出考虑预想故障的电力系统运行备用安全裕度η,结束本方法;
    Figure PCTCN2016103729-appb-100003
    Figure PCTCN2016103729-appb-100004
    式中,fd为电力系统稳态频率安全区间的下限;
    7)首先,根据步骤5)计算出的预想故障后可用于降低电力系统稳态频率的有功注入变化总量ΔPde,以及考虑预想故障后电力系统的功率频率静态特性系数kpf,通过公式(5)计算出考虑ΔPde实施后电力系统稳态频率的变化量Δfde,再通过公式(6)计算出考虑预想故障的电力系统运行备用安全裕度η,结束本方法;
    Figure PCTCN2016103729-appb-100005
    Figure PCTCN2016103729-appb-100006
    式中,fu为电力系统稳态频率安全区间的上限;
    8)首先,根据步骤5)计算出的预想故障后可用于提高电力系统稳态频率的有功注入变化总量ΔPin,以及考虑预想故障后电力系统的功率频率静态特性系数kpf,通过公式(7)计算出考虑ΔPin实施后电力系统稳态频率的变化量Δfin,据步骤5)计算出的预想故障后可用于降低电力系统稳态频率的有功注入变化总量ΔPde,以及考虑预想故障后电力系统的功率频率静态特性系数kpf,通过公式(8)计算出考虑ΔPde实施后电力系统稳态频率的变化量Δfde,再通过公式(9)计算出考虑预想故障的电力系统运行备用安全裕度η,结束本方法;
    Figure PCTCN2016103729-appb-100007
    Figure PCTCN2016103729-appb-100008
    Figure PCTCN2016103729-appb-100009
    式中,fd为电力系统稳态频率安全区间的下限,fu为电力系统稳态频率安全区间的上限。
  2. 根据权利要求1所述的电力系统运行备用安全裕度在线集群评估方法,其特征在于,在步骤5)中,若在用于稳态频率控制的有功调整中需要考虑区域之间联络线断面的有功约束,则将联络线断面作为用于安全稳定监视的输电通道来处理,其将PT.j.LMT用该联络线断面有功上限来替代,将P'T.j.LMT用该联络线断面有功下限的相反数来替代。
  3. 根据权利要求1或2所述的电力系统运行备用安全裕度在线集群评估方法,其特征在于,针对预想故障集中的各个预想故障,通过将考虑单个预想故障的电力系统运行备用安全裕度在线评估作为一个算例,采用集群计算的方式, 按权利要求1所述的方法对各个算例进行并行处理,得到分别考虑各个预想故障的电力系统运行备用安全裕度。
PCT/CN2016/103729 2015-12-02 2016-10-28 电力系统运行备用安全裕度在线评估方法 WO2017092527A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018548255A JP6569014B2 (ja) 2015-12-02 2016-10-28 電力系統の運転予備力の安全マージンに対するオンライン評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510874414.1A CN105656024B (zh) 2015-12-02 2015-12-02 电力系统运行备用安全裕度在线评估方法
CN201510874414.1 2015-12-02

Publications (1)

Publication Number Publication Date
WO2017092527A1 true WO2017092527A1 (zh) 2017-06-08

Family

ID=56482199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103729 WO2017092527A1 (zh) 2015-12-02 2016-10-28 电力系统运行备用安全裕度在线评估方法

Country Status (3)

Country Link
JP (1) JP6569014B2 (zh)
CN (1) CN105656024B (zh)
WO (1) WO2017092527A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092260A (zh) * 2017-11-30 2018-05-29 中国电力科学研究院有限公司 一种多通道受电断面振荡解列控制措施的仿真评估方法
CN110247437A (zh) * 2019-06-17 2019-09-17 国网河南省电力公司 计及分区断面安全约束的大功率缺失下频率快速控制方法
CN110492473A (zh) * 2019-07-17 2019-11-22 中国电力科学研究院有限公司 一种多直流矫正特高压环网热稳问题的控制方法及系统
CN110556843A (zh) * 2019-09-17 2019-12-10 国电南瑞科技股份有限公司 一种新能源场站的暂态功角稳定性能指标设计方法及系统
CN110826228A (zh) * 2019-11-07 2020-02-21 国网四川省电力公司电力科学研究院 一种地区电网运行品质极限评估方法
CN110912122A (zh) * 2019-12-02 2020-03-24 国网河北省电力有限公司电力科学研究院 一种电力系统安全稳定水平量化评估方法
CN111276967A (zh) * 2020-02-20 2020-06-12 中国电力科学研究院有限公司 一种电力系统的弹性能力评估方法和装置
CN111509752A (zh) * 2019-01-31 2020-08-07 国网河南省电力公司 一种交直流混联电网动态电压安全评估方法和系统
CN111680894A (zh) * 2020-05-26 2020-09-18 国网宁夏电力有限公司 电网安全稳定评价方法、装置及系统
CN112310980A (zh) * 2020-11-11 2021-02-02 国网山东省电力公司电力科学研究院 交直流混联电网直流闭锁频率安全稳定评估方法及系统
CN112600219A (zh) * 2020-12-31 2021-04-02 国网河南省电力公司南阳供电公司 一种交直流电网动态无功备用优化方法
CN112668157A (zh) * 2020-12-14 2021-04-16 河北电力交易中心有限公司 基于节点停电风险不变的节点备用容量快速评估方法
CN113237746A (zh) * 2020-12-29 2021-08-10 中国航空工业集团公司西安飞机设计研究所 舵面操纵试验台架及铁鸟台架舵面模拟装置强度分析方法
CN113595051A (zh) * 2020-04-30 2021-11-02 南京理工大学 一种电流潮流控制器分步选址与多目标优化定容方法
CN114243730A (zh) * 2022-02-09 2022-03-25 广东电网有限责任公司 一种风电并网后的电源一次调频备用容量配置方法及装置
CN113644657B (zh) * 2021-06-24 2023-08-25 国网浙江省电力有限公司杭州供电公司 一种考虑分时交换功率的电网充裕度计算方法及装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656024B (zh) * 2015-12-02 2018-05-15 国电南瑞科技股份有限公司 电力系统运行备用安全裕度在线评估方法
CN106960262B (zh) * 2017-03-29 2022-09-02 中国电力科学研究院有限公司 特高压直流线路预想故障有功备用容量评估方法和装置
CN107633271B (zh) * 2017-09-30 2020-10-30 电子科技大学 电力系统稳态可用度非精确概率计算方法
CN108512219B (zh) * 2018-03-14 2020-08-28 国家电网公司华中分部 一种电压稳定约束下的多通道受端系统受电能力评估方法
CN108900368B (zh) * 2018-04-12 2019-10-29 广东电网有限责任公司佛山供电局 一种调控系统与安自系统间双向数据校对方法
CN109696901B (zh) * 2018-11-30 2021-05-11 红云红河烟草(集团)有限责任公司 一种卷接包设备运行状态评价及预测方法
CN109995054B (zh) * 2019-03-26 2020-12-18 国网浙江省电力有限公司电力科学研究院 一种电网频率安全开机裕量计算方法及开机方法
CN110728426A (zh) * 2019-09-10 2020-01-24 贵州电网有限责任公司 基于极限热功率的架空线路安全裕度评估方法及评估系统
CN111555269B (zh) * 2020-04-14 2021-12-14 南方电网科学研究院有限责任公司 电网备用容量的分析方法、装置、终端设备及存储介质
CN113452017B (zh) * 2021-06-24 2022-05-10 广东电网有限责任公司 一种机组有效备用容量分析方法、系统、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290528A (ja) * 1997-04-14 1998-10-27 Hitachi Ltd 電圧無効電力監視制御装置
CN102623990A (zh) * 2011-08-09 2012-08-01 国网电力科学研究院 自适应电网运行方式的低频减载参数在线校核方法
CN103715721A (zh) * 2013-07-31 2014-04-09 南京南瑞集团公司 交直流混合电网联合实时调峰方法
CN103762590A (zh) * 2014-01-13 2014-04-30 国家电网公司 电力系统低频减载基本轮减载量在线整定方法
CN104578048A (zh) * 2014-08-11 2015-04-29 国家电网公司 枚举组合相继故障集的暂态安全稳定在线快速评估方法
CN105656024A (zh) * 2015-12-02 2016-06-08 国电南瑞科技股份有限公司 电力系统运行备用安全裕度在线评估方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270477A (ja) * 1999-03-17 2000-09-29 Fuji Electric Co Ltd 電力系統の想定事故解析における並列処理方法
JP2007129859A (ja) * 2005-11-04 2007-05-24 Toshiba Corp 周波数安定化システムと方法、およびプログラム
JP4727566B2 (ja) * 2006-12-27 2011-07-20 財団法人電力中央研究所 周波数制御装置および周波数制御方法
JP5436958B2 (ja) * 2009-07-10 2014-03-05 株式会社日立製作所 事後補正機能付き系統安定化システム
JP2012143061A (ja) * 2010-12-28 2012-07-26 Central Japan Railway Co 2重ループ構造
CN103401232B (zh) * 2013-04-24 2015-09-16 南京南瑞集团公司 电力系统暂态安全稳定在线紧急控制策略的集群计算方法
CN103514512B (zh) * 2013-09-11 2016-09-07 国家电网公司 电力系统在线孤岛并网快速辅助决策方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290528A (ja) * 1997-04-14 1998-10-27 Hitachi Ltd 電圧無効電力監視制御装置
CN102623990A (zh) * 2011-08-09 2012-08-01 国网电力科学研究院 自适应电网运行方式的低频减载参数在线校核方法
CN103715721A (zh) * 2013-07-31 2014-04-09 南京南瑞集团公司 交直流混合电网联合实时调峰方法
CN103762590A (zh) * 2014-01-13 2014-04-30 国家电网公司 电力系统低频减载基本轮减载量在线整定方法
CN104578048A (zh) * 2014-08-11 2015-04-29 国家电网公司 枚举组合相继故障集的暂态安全稳定在线快速评估方法
CN105656024A (zh) * 2015-12-02 2016-06-08 国电南瑞科技股份有限公司 电力系统运行备用安全裕度在线评估方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA, MING ET AL.: "On-Line Auxiliary Decision-Making for Overload Control of Power Transmission Equipment and Sections", POWER SYSTEM AND CLEAN ENERGY, vol. 31, no. 6, 30 June 2015 (2015-06-30) *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092260A (zh) * 2017-11-30 2018-05-29 中国电力科学研究院有限公司 一种多通道受电断面振荡解列控制措施的仿真评估方法
CN111509752A (zh) * 2019-01-31 2020-08-07 国网河南省电力公司 一种交直流混联电网动态电压安全评估方法和系统
CN110247437A (zh) * 2019-06-17 2019-09-17 国网河南省电力公司 计及分区断面安全约束的大功率缺失下频率快速控制方法
CN110247437B (zh) * 2019-06-17 2023-02-03 国网河南省电力公司 计及分区断面安全约束的大功率缺失下频率快速控制方法
CN110492473A (zh) * 2019-07-17 2019-11-22 中国电力科学研究院有限公司 一种多直流矫正特高压环网热稳问题的控制方法及系统
CN110492473B (zh) * 2019-07-17 2022-11-25 中国电力科学研究院有限公司 一种多直流矫正特高压环网热稳问题的控制方法及系统
CN110556843B (zh) * 2019-09-17 2022-08-19 国电南瑞科技股份有限公司 一种新能源场站的暂态功角稳定性能指标设计方法及系统
CN110556843A (zh) * 2019-09-17 2019-12-10 国电南瑞科技股份有限公司 一种新能源场站的暂态功角稳定性能指标设计方法及系统
CN110826228A (zh) * 2019-11-07 2020-02-21 国网四川省电力公司电力科学研究院 一种地区电网运行品质极限评估方法
CN110912122A (zh) * 2019-12-02 2020-03-24 国网河北省电力有限公司电力科学研究院 一种电力系统安全稳定水平量化评估方法
CN110912122B (zh) * 2019-12-02 2023-04-07 国网河北省电力有限公司电力科学研究院 一种电力系统安全稳定水平量化评估方法
CN111276967A (zh) * 2020-02-20 2020-06-12 中国电力科学研究院有限公司 一种电力系统的弹性能力评估方法和装置
CN111276967B (zh) * 2020-02-20 2022-07-01 中国电力科学研究院有限公司 一种电力系统的弹性能力评估方法和装置
CN113595051A (zh) * 2020-04-30 2021-11-02 南京理工大学 一种电流潮流控制器分步选址与多目标优化定容方法
CN111680894A (zh) * 2020-05-26 2020-09-18 国网宁夏电力有限公司 电网安全稳定评价方法、装置及系统
CN111680894B (zh) * 2020-05-26 2023-04-07 国网宁夏电力有限公司 电网安全稳定评价方法、装置及系统
CN112310980A (zh) * 2020-11-11 2021-02-02 国网山东省电力公司电力科学研究院 交直流混联电网直流闭锁频率安全稳定评估方法及系统
CN112668157A (zh) * 2020-12-14 2021-04-16 河北电力交易中心有限公司 基于节点停电风险不变的节点备用容量快速评估方法
CN113237746A (zh) * 2020-12-29 2021-08-10 中国航空工业集团公司西安飞机设计研究所 舵面操纵试验台架及铁鸟台架舵面模拟装置强度分析方法
CN113237746B (zh) * 2020-12-29 2024-04-09 中国航空工业集团公司西安飞机设计研究所 舵面操纵试验台架及铁鸟台架舵面模拟装置强度分析方法
CN112600219A (zh) * 2020-12-31 2021-04-02 国网河南省电力公司南阳供电公司 一种交直流电网动态无功备用优化方法
CN113644657B (zh) * 2021-06-24 2023-08-25 国网浙江省电力有限公司杭州供电公司 一种考虑分时交换功率的电网充裕度计算方法及装置
CN114243730A (zh) * 2022-02-09 2022-03-25 广东电网有限责任公司 一种风电并网后的电源一次调频备用容量配置方法及装置
CN114243730B (zh) * 2022-02-09 2024-04-23 广东电网有限责任公司 一种风电并网后的电源一次调频备用容量配置方法及装置

Also Published As

Publication number Publication date
JP6569014B2 (ja) 2019-08-28
CN105656024B (zh) 2018-05-15
CN105656024A (zh) 2016-06-08
JP2018536382A (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
WO2017092527A1 (zh) 电力系统运行备用安全裕度在线评估方法
CN106099906B (zh) 一种电力系统安全稳定在线综合防御方法
WO2017028631A1 (zh) 多故障协调的静态安全综合辅助决策方法及存储介质
CN102347613B (zh) 电力系统暂稳紧急控制在线策略与离线策略自动选择方法
CN103248051B (zh) 一种评估风电场功率波动影响电网运行安全风险的方法
CN103514364B (zh) 计及负荷转供措施的电网设备过载辅助决策计算方法
CN103501007B (zh) 一种计及负荷综合调节特性的低频低压减负荷控制方法
WO2017084404A1 (zh) 一种计及风电场脱网约束的电网风电送出能力评估方法
CN103259267A (zh) 一种用于风电场集群的分模式电压控制方法
CN104934971A (zh) 基于潮流转移比的动态断面控制方法
CN108400597B (zh) 计及安控和一次调频特性的直流故障静态安全分析方法
CN106953320B (zh) 一种基于upfc的输电线路过载控制方法
CN104300531B (zh) 一种电力系统安稳控制策略整定方法
CN107611979A (zh) 一种基于概率潮流计算的电力系统运行校正控制方法
Parniani et al. SCADA based under frequency load shedding integrated with rate of frequency decline
CN109787266A (zh) 特高压直流复杂故障在线分析决策方法及系统
CN104331849B (zh) 一种电力系统风险分级方法及应用
CN103178554A (zh) 基于多重约束的大区电网间交换容量极限评估方法
CN103078347B (zh) 降低电压越限风险的冲击负荷消纳方法
CN107834586A (zh) 一种考虑系统频率可接受能力的送端多直流闭锁策略优化方法
Shun et al. Dynamic optimization of adaptive under-frequency load shedding based on WAMS
CN107046289A (zh) 计及安控策略和一次调频特性的电网稳态频率估算方法
Chengbi et al. Power flow analysis of distribution network containing distributed generation based on sequence operation
CN105356457A (zh) 一种电网事故恢复备用容量充裕度评估方法
Fan et al. Steady frequency prediction algorithm for power system with governor deadband

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018548255

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869837

Country of ref document: EP

Kind code of ref document: A1