WO2017092454A1 - 穿刺增强方法及系统 - Google Patents

穿刺增强方法及系统 Download PDF

Info

Publication number
WO2017092454A1
WO2017092454A1 PCT/CN2016/097878 CN2016097878W WO2017092454A1 WO 2017092454 A1 WO2017092454 A1 WO 2017092454A1 CN 2016097878 W CN2016097878 W CN 2016097878W WO 2017092454 A1 WO2017092454 A1 WO 2017092454A1
Authority
WO
WIPO (PCT)
Prior art keywords
puncture
puncture needle
needle
ultrasonic wave
different emission
Prior art date
Application number
PCT/CN2016/097878
Other languages
English (en)
French (fr)
Inventor
黄灿
朱利华
姚斌
李瑞军
Original Assignee
深圳华声医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55705086&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017092454(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 深圳华声医疗技术有限公司 filed Critical 深圳华声医疗技术有限公司
Publication of WO2017092454A1 publication Critical patent/WO2017092454A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3413Needle locating or guiding means guided by ultrasound

Definitions

  • the present invention relates to the field of ultrasonic imaging technology, and in particular to a puncture enhancement method and system.
  • Puncture enhancement technology is now widely used in medical ultrasound practice to guide doctors in puncture surgery and improve surgical efficiency and safety.
  • the main working mode of the puncture enhancement technology is to appropriately enhance the visibility of the puncture needle by using specially equipped hardware and software algorithms to improve the visibility.
  • it is generally required to increase the ultrasonic image formed by the ultrasonic wave emitted by the probe at a large deflection angle to ensure that the ultrasonic emission direction is as perpendicular as possible to the puncture needle body (the echo reflection effect of the puncture needle body is optimal).
  • the probe deflection angle will also preset some gear positions, which are selected by the operator according to the actual operation. In this way, the echo reflection of the needle can be greatly enhanced, and then the software algorithm is used to find the needle-shaped area in the image and enhance the display.
  • the current technology is to give the user the choice of the large deflection angle (that is, the operator), so that the user needs to judge what deflection angle is.
  • the corresponding puncture needle has the best display effect, but it also increases the difficulty of the user.
  • the operator is the user himself, it is difficult for the general operator to accurately determine the insertion angle of the puncture needle.
  • the best large deflection angle, and thus the image of the puncture needle is often not as perfect as the design.
  • it can be used with the puncture frame to limit the insertion direction of the puncture needle, it will greatly reduce the flexibility of the doctor's surgical procedure. If the operation needs to constantly adjust the angle, it will increase the complexity of the operation.
  • the main object of the present invention is to provide a puncture enhancement method and system, aiming at how to conveniently and accurately adjust the large deflection angle of the ultrasonic probe to obtain the most puncture needle without restricting the insertion direction of the puncture needle and increasing the operation complexity.
  • the technical problem of enhancing the display effect is to provide a puncture enhancement method and system, aiming at how to conveniently and accurately adjust the large deflection angle of the ultrasonic probe to obtain the most puncture needle without restricting the insertion direction of the puncture needle and increasing the operation complexity.
  • the orientation is vertical or approximately vertical.
  • the specific waveform ultrasonic wave includes at least a plane wave or an approximately planar wide beam that emits a plane whose sound field is in a range of the ultrasonic detection range.
  • the specific waveform ultrasonic wave when transmitted for scanning, the specific waveform ultrasonic wave is emitted only once at the same emission angle, wherein when the image frame corresponding to the specific waveform ultrasonic wave is generated, the image frame is generated at one time. All ultrasonic scanning lines.
  • the determining the insertion orientation of the puncture needle according to the scanned image frame data corresponding to the specific waveform ultrasonic wave at a plurality of different emission angles comprises:
  • the puncture detection process is respectively performed to identify the insertion orientation of the puncture needle, wherein the insertion orientation of the puncture needle having the highest recognition probability corresponding to different emission angles is adopted. As the insertion orientation of the actual puncture needle.
  • the puncture detection process comprises at least:
  • the pixel sets corresponding to different emission angles are respectively subjected to Hough transform processing to determine a line parameter of the needle body of the coordinate system corresponding to the Hough transform;
  • the recognition probability of the linear parameter of the needle body of the puncture needle under different emission angles is calculated, and the linear parameter of the needle body of the puncture needle with the highest recognition probability is output, wherein the line parameter according to the needle body of the puncture needle can be Determine the insertion direction of the puncture needle.
  • the present invention also provides a puncture augmentation system comprising a plurality of ultrasonic probes, a puncture needle, a display for transmitting and receiving ultrasonic waves, and a display for displaying an ultrasonic scan output image
  • the puncture augmentation system further includes a puncture enhancement device; wherein the puncture enhancement device comprises:
  • Adding a transmitting module configured to scan a specific waveform ultrasonic wave of a plurality of different emission angles when the ultrasonic probe of the present round emits a large deflection angle ultrasonic wave to enhance the display of the image of the puncture needle;
  • a puncture needle identification module configured to identify an insertion orientation of the puncture needle according to scan image frame data corresponding to the specific waveform ultrasonic wave at a plurality of different emission angles
  • a large deflection angle adjustment module configured to adjust, according to the identified insertion orientation of the puncture needle, a large deflection angle corresponding to the next round of the ultrasonic probe transmitting a large deflection angle ultrasonic wave, wherein, under the large deflection angle, The direction of emission of the ultrasonic waves is perpendicular or approximately perpendicular to the identified insertion orientation of the puncture needle.
  • the current ultrasonic probe emits a large deflection angle ultrasonic wave to enhance the display of the image of the puncture needle
  • the identification of the insertion orientation of the puncture needle is easily and quickly completed, and further There is no need to fix the insertion angle of the puncture needle, which increases the flexibility of the doctor to perform the puncture operation.
  • the corresponding adjustment of the next ultrasonic probe to the large deflection angle ultrasonic wave is realized.
  • the angle of deflection reduces the complexity of the puncture-enhanced manipulation and maintains the optimal enhanced display of the ultrasound image corresponding to the puncture needle.
  • FIG. 1 is a schematic diagram of functional modules of an embodiment of a puncture augmentation system of the present invention
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of a puncture augmentation system according to the present invention
  • FIG. 3 is a schematic diagram of a basic processing flow of ultrasonic imaging in the prior art
  • Figure 5 is a scanned image corresponding to a specific waveform ultrasonic wave in the puncture augmentation system of the present invention
  • FIG. 6 is a schematic diagram of a refinement function module of an embodiment of the puncture enhancement device of FIG. 1;
  • FIG. 7 is a schematic diagram of ultrasonic waves emitted in a conventional B-mode in a conventional puncture enhancement technique
  • FIG. 8 is a schematic diagram of beam synthesis of ultrasonic waves in the prior puncture enhancement technique
  • Figure 9 is a schematic view showing a specific waveform ultrasonic wave emitted in the puncture augmentation system of the present invention.
  • FIG. 10 is a schematic diagram of beam synthesis of a specific waveform ultrasonic wave emitted in a puncture augmentation system of the present invention
  • FIG. 11 is a schematic view showing a process flow for identifying an insertion orientation of a puncture needle by using specific waveform ultrasonic image data in the puncture augmentation system of the present invention
  • FIG. 12 is a schematic diagram of a refinement function module of the puncture needle recognition module of FIG. 1;
  • Figure 13 is a schematic diagram of coordinate transformation of Hough transform processing
  • FIG. 14 is a schematic flow chart of an embodiment of a puncture enhancement method according to the present invention.
  • FIG. 15 is a schematic diagram showing the refinement flow of step S20 in FIG. 14.
  • the present invention provides a puncture augmentation system.
  • Figure 1 is a schematic diagram of functional modules of an embodiment of a puncture enhancement system.
  • the puncture augmentation system includes a plurality of ultrasonic probes 10, a puncture needle 20, and a display 30.
  • the ultrasonic probe 10 is used to transmit and receive ultrasonic waves, and the display 30 is used to display an ultrasonic scan output image, as shown in FIG. Schematic diagram of an application scenario of an embodiment of the puncture enhancement system.
  • the type and number of the ultrasonic probes 10 are not limited, and are specifically set according to actual needs.
  • the puncture needle 20 is specifically a straight type puncture needle that is used in the same actual puncture operation.
  • the configuration and use of the ultrasonic probe 10, the puncture needle 20, and the display 30 are the same as those in the prior art, and thus will not be described in detail.
  • the ultrasonic probe 10 is generally composed of a plurality of elongated piezoelectric transducers of the same size (each individual piezoelectric transducer is called an array element), or the array elements are arranged in a two-dimensional matrix shape.
  • the large deflection angle, the large deflection image, and the large deflection angle are all the terms in the puncture enhancement technology, and the specific meanings thereof are the same as those in the prior art, and therefore will not be described too much.
  • FIG. 3 is a schematic diagram showing the basic processing flow of ultrasonic imaging in the prior art.
  • the basic processing flow of ultrasonic imaging includes five stages: the probe transmits ultrasonic waves, receives and parses echo data, image pre-processing, image buffering, image post-processing and display.
  • the basic working principle of ultrasound imaging is:
  • the piezoelectric transducer in the ultrasonic probe converts the voltage pulse excitation applied thereto into mechanical vibration, thereby emitting ultrasonic waves externally, wherein if the puncture enhanced display is performed, the ultrasonic probe also increases the ultrasonic wave with a large deflection angle;
  • Ultrasonic waves propagate in the medium (such as the human body), and generate reflected waves and scattered waves. After receiving the echo, the probe converts the vibration energy into an electrical signal, and after the modulus processing, generates corresponding image data and analyzes it;
  • the parsed image data is cached after image pre-processing operations such as spatial recombination, wherein if the puncture-enhanced display is performed, the parsed image data will further include a large deflection image;
  • the data buffer caches the processed intermediate data results for easy inspection and parameter adjustment.
  • the buffered image data is finally displayed on the display screen after image post-processing operations such as gain and dynamic range conversion. If the puncture-enhanced display is performed, the image post-processing operation needs to perform the puncture needle on the spatial composite image and the large deflection image. Fusion processing in the area to enhance the display of the needle image.
  • the basic processing flow and principle of the ultrasound imaging corresponding to the present embodiment are basically the same as the prior art.
  • the biggest difference between the present embodiment and the existing puncture enhancement technology is that the existing puncture enhancement technology needs to be judged by the user.
  • the large deflection angle of the probe is manually adjusted, and in this embodiment, the judgment and adjustment of the large deflection angle of the ultrasonic probe are automatically completed, so that the optimal display effect of the puncture enhancement is always maintained, specifically by the puncture enhancement system in this embodiment.
  • the included puncture enhancement device 40 is implemented.
  • the puncture enhancement device 40 further includes:
  • the transmitting module 401 is configured to scan a specific waveform ultrasonic wave that emits a plurality of different emission angles when the ultrasonic probe of the present round emits a large deflection angle ultrasonic wave to enhance the display of the image of the puncture needle;
  • the puncture needle identification module 402 is configured to identify the insertion orientation of the puncture needle according to the scanned image frame data corresponding to the specific waveform ultrasonic wave at a plurality of different emission angles;
  • a large deflection angle adjustment module 403 configured to adjust, according to the identified insertion orientation of the puncture needle, a large deflection angle corresponding to the next round of the ultrasonic probe transmitting a large deflection angle ultrasonic wave, wherein, under the large deflection angle The direction of emission of the ultrasonic wave is perpendicular or approximately perpendicular to the identified insertion orientation of the puncture needle.
  • the ultrasonic probes 10 all periodically emit large deflection angle ultrasonic waves, wherein the specific setting of the emission period is not limited, and how to automatically complete the judgment of the large deflection angle of the next period ultrasonic probe 10, this embodiment
  • the implementation principle is specifically to capture and recognize the insertion orientation during the puncture operation of the current puncture needle 20 (it is required to further shorten the emission period of the ultrasonic wave for displaying the puncture-enhanced image in real time), and then according to The relationship between the direction in which the ultrasonic wave is emitted at a large deflection angle and the direction of insertion of the identified puncture needle 20 is reversed, and the large deflection angle of the ultrasonic probe 10 in the next cycle is reversed.
  • a large deflection image is generally added, as shown in FIG.
  • the ultrasonic probe 10 of the present round emits a large deflection angle ultrasonic wave to enhance the image of the display puncture needle 20
  • a specific waveform ultrasonic wave emitting a plurality of different emission angles is added by the transmission module 401 for the puncture needle recognition module.
  • 402 identifies the insertion orientation of the puncture needle, as shown in FIG. 5, it should be noted that, in this embodiment, the identification mode of the insertion orientation of the puncture needle 20 and the emission time point of the specific waveform ultrasonic wave are not limited, for example, the ultrasound probe 10 emits a large amount.
  • the yaw angle is ultrasonically transmitted and then emitted simultaneously, or simultaneously with the large deflection angle ultrasonic wave.
  • the ultrasonic probe that emits a specific waveform ultrasonic wave may be the same as the ultrasonic probe that emits the large deflection angle ultrasonic wave, or may be different, and is specifically set according to actual conditions.
  • the specific waveform ultrasonic wave includes at least a plane wave or an approximately planar wide beam that emits a plane of the sound field in the ultrasonic detection range, wherein the wide beam specifically refers to the emission.
  • the sound field has limited beam contraction in the ultrasonic detection range and there is no apparently focused beam.
  • the large deflection angle adjustment module 403 ensures that after each round of image processing is completed, the large deflection angle corresponding to the next round of ultrasonic probe 10 transmitting the large deflection angle ultrasonic wave is automatically adjusted, thereby further The continuous optimization of the enhanced display of the puncture needle 20 is ensured, and the emission angle of the large deflection angle ultrasonic wave emitted by the conventional conventional puncture enhancement mode is fixed, so that the ultrasonic emission direction cannot be perpendicular to the insertion orientation of the puncture needle body, thereby enhancing the display. The effect is poor.
  • the ultrasonic probe 10 of the first round emits a large deflection.
  • the large deflection angle corresponding to the ultrasonic wave can also be determined by the user himself, and subsequently, since the puncture needle 20 has entered the human body tissue, it is necessary to adjust the puncture angle by ultrasonic imaging as an image of the puncture operation, wherein The insertion orientation of the puncture needle can avoid certain tissues and organs in the human body, and adjusting the insertion orientation of the puncture needle requires reference to the image of the next wave of ultrasound, and at this time, the puncture augmentation device 40 actually emits the next round of large deflection.
  • a specific waveform ultrasonic wave emitting a plurality of different emission angles is added, thereby pre-capturing and recognizing the insertion orientation of the current puncture needle 20, and further determining the ultrasonic wave corresponding to the direction perpendicular or approximately perpendicular to the insertion orientation of the current puncture needle 20.
  • the launch angle is the next round of ultrasound probe 10 launch The deflection angle corresponding to the large deflection angle of the ultrasonic wave.
  • the emission direction of the ultrasonic wave is approximately perpendicular to the insertion orientation of the identified puncture needle, and is specifically determined by the emission deflection angle actually supported by the ultrasonic system device, if the emission direction of the ultrasonic wave can be combined with the puncture needle
  • the insertion orientation is vertical, it is adjusted to a direction perpendicular to the insertion orientation of the puncture needle, and if not, it is adjusted to a direction approximately perpendicular to the insertion orientation of the puncture needle.
  • the insertion orientation of the puncture needle 20 is simply and quickly completed by increasing the specific waveform ultrasonic wave that emits several different emission angles.
  • the identification further eliminates the need to fix the insertion angle of the puncture needle 20, thereby improving the flexibility of the doctor to perform the puncture operation.
  • the automatic adjustment of the next ultrasonic probe 10 to emit a large deflection angle ultrasonic wave is realized. Corresponding large deflection angles reduce the complexity of the puncture-enhanced manipulation and maintain the optimal enhanced display of the ultrasound image corresponding to the puncture needle 10.
  • FIG. 6 is a schematic diagram of a refinement function module of an embodiment of the puncture enhancement device of FIG. Based on the above embodiment, in the embodiment, the puncture enhancement device 40 further includes:
  • the image frame generation module 404 is configured to generate an image frame corresponding to the specific waveform ultrasonic wave and generate an entire ultrasonic scan line of the image frame at a time when the image frame corresponding to the specific waveform ultrasonic wave is generated.
  • each specific waveform ultrasonic wave (such as a plane wave) is detected for a specific angle of the puncture needle 20
  • the specific waveform ultrasonic scanning of each angle only needs to transmit ultrasonic waves by a part of the array elements on the ultrasonic probe 10. And it only needs to be transmitted once, without the need for overlapping emission as in conventional B-mode imaging, which greatly reduces the time for transmitting ultrasonic waves and improves image processing speed. That is, as shown in FIG. 9, in the embodiment, when the transmission module 401 transmits the specific waveform ultrasonic wave (such as a plane wave) for scanning, the specific waveform ultrasonic wave is emitted only once at the same emission angle.
  • the human tissue and the puncture needle 20 will scatter or reflect the ultrasonic wave back to the ultrasonic probe 10, and then the echo data of the array element on the ultrasonic probe 10 converts the echo data into an electrical signal, which is amplified and converted into a digital signal. Processing and parsing to obtain echo data for each of the transmitted lines of the generated image frame.
  • the image frame generation module 404 synthesizes the beam line to generate the image frame corresponding to the specific waveform ultrasonic wave, the entire scan line of the image frame is generated at one time, that is, it is not required to be normal B. In the mode, the accumulation of the beam lines is required, as shown in FIG.
  • the specific waveform ultrasonic wave is only used to determine the large deflection angle corresponding to the next round of the large deflection angle ultrasonic wave. Therefore, it is only necessary to ensure the processing speed when the insertion needle is inserted into the orientation. However, there is no need to make a high requirement for the sharpness of the scanned image formed by transmitting the specific waveform ultrasonic wave, and the enhanced display of the puncture needle is specifically displayed by the scanned image corresponding to the large deflection angle ultrasonic wave.
  • the puncture needle identification module 402 is specifically configured to:
  • the insertion orientation of the puncture needle 20 serves as the actual insertion orientation of the puncture needle 20.
  • the image buffer in the image buffer processing stage, includes a spatial composite image frame of a normal B-mode image, a large deflection image frame, and an image frame corresponding to a specific waveform ultrasonic wave of increasing a plurality of angles of the present invention.
  • the gain and dynamic range transformation in the image post-processing stage of the ultrasonic imaging processing flow only the image frames of the spatial composite and the large deflection portion are processed, and the image frames corresponding to the fixed waveform ultrasound are not processed, as shown in FIG. Shown.
  • the image data of the specific waveform ultrasonic wave is taken out, and the puncture detection step is entered.
  • the puncture needle recognition module 402 performs puncture detection on the specific waveform ultrasonic image frames of the plurality of different angles to identify the puncture.
  • the insertion orientation of the needle finally results in the insertion orientation of the puncture needle 20 having the highest recognition probability corresponding to the different emission angles as the insertion orientation of the actual puncture needle 20.
  • the large deflection angle of the ultrasonic probe 10 can be adjusted by the large deflection angle adjustment module 403, and then the large deflection angle adjustment module 403 can adjust the large deflection angle of the ultrasonic probe 10 before the next round of large deflection angle ultrasonic waves.
  • the direction of emission is perpendicular to or as close as possible to the calculated orientation of the puncture needle 20 to obtain an optimal enhanced display effect of the puncture needle 20.
  • the deflection prompt line of the ultrasound probe 10 may be further drawn when displaying the next frame of the ultrasound image.
  • the processing of the image data of the specific waveform ultrasonic wave After the processing of the image data of the specific waveform ultrasonic wave is completed, it is necessary to take out the large deflection angle image data of the round buffered in the image buffer, and enter the needle body recognition step of the puncture needle.
  • the needle recognition step is consistent with the algorithm core of the puncture detection step, that is, the line parameter of the needle body of the puncture needle is found from the large deflection angle image data.
  • the image frame after the conventional space combination is taken out, and the image frame with the large deflection angle is naturally fused in the straight line and the vicinity of the needle body obtained in the needle recognition step.
  • the corresponding pixels of the large deflection image and the conventional spatial composite image are given a certain weight, and are superimposed in the radius range region.
  • the enhancement effect of the current entire ultrasound image frame can be given a certain weight and averaged with the weight of the previous whole ultrasound image frame, so that the continuous whole ultrasound
  • the display of the image is smoother and less abrupt, improving the display of the image.
  • FIG. 12 is a schematic diagram of a refinement function module of the puncture needle recognition module of FIG. Based on the above embodiment, in the embodiment, the puncture needle identification module 402 includes at least:
  • the binarization processing unit 4021 is configured to separately perform binarization processing on the image frame data at different transmission angles to determine a pixel set that may be the puncture needle in the image frame data corresponding to different transmission angles. ;
  • the probability of capturing the sound waves returned by the puncture needle 20 can be improved. Since the pixel area occupied by the puncture needle 20 is very small in the pixels of the image data of the specific waveform ultrasonic wave, in order to shorten the range of the puncture detection to increase the speed of the puncture detection, in this embodiment, the binarization processing unit is adopted.
  • the image data of the specific waveform ultrasonic wave at different emission angles is separately binarized to determine a pixel set which may be the puncture needle 20 in the image data corresponding to different emission angles, wherein the pixel of the puncture needle 20 may be
  • the set may also include a collection of pixels corresponding to some body tissue, and therefore, further identification of the set of pixels that may be the puncture needle 20 is needed.
  • the Hough transform processing unit 4022 is configured to perform Hough transform processing on the pixel sets corresponding to different emission angles to determine a line parameter of the puncture needle body in a coordinate system corresponding to the Hough transform;
  • the Hough transform processing unit 4022 performs Hough transform processing on the pixel sets corresponding to the puncture needle 20 corresponding to different emission angles to determine the puncture needle 20 in the coordinate system corresponding to the Hough transform.
  • the core of the puncture detection and the needle recognition is processed by Hough transform.
  • Hough transform is one of the basic methods for recognizing geometric shapes from images in image processing. It is mainly used to separate geometric shapes (such as lines, circles, etc.) with certain features from the image. The most basic Hough transform is available. It is to detect a straight line (or line segment) from a black and white image.
  • the parameters in the conventional linear coordinates can be mapped one-to-one to the parameters in the polar coordinates.
  • the straight line in each linear coordinate system can be uniquely determined from the distance from the origin to the line rho and the polar angle theta from the x-axis to the perpendicular, so the regular line parameter (k, b) converted to a new parameter group (rho, Theta), as shown in Figure 13.
  • the process of detecting a straight line can be transformed into a process of counting a parameter set having a maximum value.
  • the output unit 4023 is configured to calculate, according to the relevant parameters of the puncture needle body, a recognition probability of a linear parameter of the puncture needle body under different emission angles, and output a linear parameter of the puncture needle body with the highest recognition probability
  • the insertion orientation of the puncture needle can be determined according to a linear parameter of the needle body of the puncture needle.
  • the linear parameter of the needle body can only be one
  • a series of screening judgments are made, and the output unit 4023 excludes all possible factors according to the relevant parameters of the needle of the puncture needle 20, such as the length, width and straightness of the needle body, or some prior knowledge of common image processing.
  • the highest puncture needle 20 is in the straight line parameter of the needle body, wherein the insertion orientation of the puncture needle 20 can be determined correspondingly according to the linear parameter of the needle body of the puncture needle 20.
  • the present invention also provides a puncture enhancement method.
  • the basic processing flow of ultrasonic imaging includes five stages: the probe transmits ultrasonic waves, receives and parses echo data, image pre-processing, image buffering, image post-processing and display.
  • the basic working principle of ultrasound imaging is:
  • the piezoelectric transducer in the ultrasonic probe converts the voltage pulse excitation applied thereto into mechanical vibration, thereby emitting ultrasonic waves externally, wherein if the puncture enhanced display is performed, the ultrasonic probe also increases the ultrasonic wave with a large deflection angle;
  • Ultrasonic waves propagate in the medium (such as the human body), and generate reflected waves and scattered waves. After receiving the echo, the probe converts the vibration energy into an electrical signal, and after the modulus processing, generates corresponding image data and analyzes it;
  • the parsed image data is cached after image pre-processing operations such as spatial recombination, wherein if the puncture-enhanced display is performed, the parsed image data will further include a large deflection image;
  • the data buffer caches the processed intermediate data results for easy inspection and parameter adjustment.
  • the buffered image data is finally displayed on the display screen after image post-processing operations such as gain and dynamic range conversion. If the puncture-enhanced display is performed, the image post-processing operation needs to perform the puncture needle on the spatial composite image and the large deflection image. Fusion processing in the area to enhance the display of the needle image.
  • the basic processing flow and principle of the ultrasound imaging corresponding to the present embodiment are basically the same as the prior art.
  • the biggest difference between the present embodiment and the existing puncture enhancement technology is that the existing puncture enhancement technology needs to be judged by the user.
  • the large deflection angle of the probe is manually adjusted, and in this embodiment, the judgment and adjustment of the large deflection angle of the ultrasonic probe are automatically completed, so that the optimal display effect of the puncture enhancement is always maintained, specifically by the puncture enhancement system of the present invention.
  • the puncture enhancement device 40 is implemented. Referring to the flowchart of the embodiment of the puncture enhancement method of the present invention shown in FIG. 14, the method includes:
  • Step S10 when the current ultrasonic probe emits a large deflection angle ultrasonic wave to scan to enhance the display of the puncture needle image, a specific waveform ultrasonic wave emitting a plurality of different emission angles is scanned;
  • Step S20 identifying the insertion orientation of the puncture needle according to the scanned image frame data corresponding to the specific waveform ultrasonic wave at a plurality of different emission angles;
  • Step S30 adjusting a large deflection angle corresponding to the next round of the ultrasonic probe to emit the large deflection angle ultrasonic wave according to the inserted insertion orientation of the puncture needle, wherein the ultrasonic radiation direction and the identified puncture are performed under the large deflection angle
  • the insertion orientation of the needle is vertical or approximately vertical.
  • the ultrasonic probes 10 all periodically emit large deflection angle ultrasonic waves, wherein the specific setting of the emission period is not limited, and how to automatically complete the judgment of the large deflection angle of the next period ultrasonic probe 10, this embodiment
  • the implementation principle is specifically to capture and recognize the insertion orientation during the puncture operation of the current puncture needle 20 (it is required to further shorten the emission period of the ultrasonic wave for displaying the puncture-enhanced image in real time), and then according to The relationship between the direction in which the ultrasonic wave is emitted at a large deflection angle and the direction of insertion of the identified puncture needle 20 is reversed, and the large deflection angle of the ultrasonic probe 10 in the next cycle is reversed.
  • a large deflection image is generally added, as shown in FIG.
  • the ultrasonic probe 10 of the present round emits a large deflection angle ultrasonic wave to enhance the image of the display puncture needle 20
  • a specific waveform ultrasonic wave emitting a plurality of different emission angles is added by the transmission module 401 for the puncture needle recognition module.
  • 402 identifies the insertion orientation of the puncture needle, as shown in FIG.
  • the emission time point of the specific waveform ultrasonic wave is not limited, for example, after the ultrasonic probe 10 emits a large deflection angle ultrasonic wave, or is transmitted, or The large deflection angle ultrasonic wave is simultaneously emitted.
  • the ultrasonic probe that emits the specific waveform ultrasonic wave may be the same as the ultrasonic probe that emits the large deflection angle ultrasonic wave, or may be different, and is specifically set according to the actual situation.
  • the specific waveform ultrasonic wave includes at least a plane wave or an approximately planar wide beam that emits a plane of the sound field in the ultrasonic detection range, wherein the wide beam specifically refers to the emission.
  • the sound field has limited beam contraction in the ultrasonic detection range and there is no apparently focused beam.
  • the large deflection angle adjustment module 403 ensures that after each round of image processing is completed, the large deflection angle corresponding to the next round of ultrasonic probe 10 transmitting the large deflection angle ultrasonic wave is automatically adjusted, thereby further The continuous optimization of the enhanced display of the puncture needle 20 is ensured, and the emission angle of the large deflection angle ultrasonic wave emitted by the conventional conventional puncture enhancement mode is fixed, so that the ultrasonic emission direction cannot be perpendicular to the insertion orientation of the puncture needle body, thereby enhancing the display. The effect is poor.
  • the ultrasonic probe 10 of the first round emits a large deflection.
  • the large deflection angle corresponding to the ultrasonic wave can also be determined by the user himself, and subsequently, since the puncture needle 20 has entered the human body tissue, it is necessary to adjust the puncture angle by ultrasonic imaging as an image of the puncture operation, wherein The insertion orientation of the puncture needle can avoid certain tissues and organs in the human body, and adjusting the insertion orientation of the puncture needle requires reference to the image of the next wave of ultrasound, and at this time, the puncture augmentation device 40 actually emits the next round of large deflection.
  • a specific waveform ultrasonic wave emitting a plurality of different emission angles is added, thereby pre-capturing and recognizing the insertion orientation of the current puncture needle 20, and further determining the emission angle of the ultrasonic wave corresponding to the direction perpendicular to the insertion orientation of the current puncture needle 20. That is, the next round of ultrasonic probe 10 emits a large deflection angle. When the wave corresponding to a wide deflection angle.
  • the insertion orientation of the puncture needle 20 is simply and quickly completed by increasing the specific waveform ultrasonic wave that emits several different emission angles.
  • the identification further eliminates the need to fix the insertion angle of the puncture needle 20, thereby improving the flexibility of the doctor to perform the puncture operation.
  • the automatic adjustment of the next ultrasonic probe 10 to emit a large deflection angle ultrasonic wave is realized. Corresponding large deflection angles reduce the complexity of the puncture-enhanced manipulation and maintain the optimal enhanced display of the ultrasound image corresponding to the puncture needle 10.
  • the step S20 includes:
  • the puncture detection process is respectively performed to identify the insertion orientation of the puncture needle, wherein the insertion orientation of the puncture needle having the highest recognition probability corresponding to different emission angles is adopted. As the insertion orientation of the actual puncture needle.
  • the image buffer in the image buffer processing stage, includes a spatial composite image frame of a normal B-mode image, a large deflection image frame, and an image frame corresponding to a specific waveform ultrasonic wave of increasing a plurality of angles of the present invention.
  • the gain and dynamic range transformation in the image post-processing stage of the ultrasonic imaging processing flow only the image frames of the spatial composite and the large deflection portion are processed, and the image frames corresponding to the specific waveform ultrasonic waves are not processed, as shown in FIG. Shown.
  • the image data of the specific waveform ultrasonic wave is taken out, and the puncture detection step is entered.
  • the puncture needle recognition module 402 performs puncture detection on the specific waveform ultrasonic image frames of the plurality of different angles to identify the puncture.
  • the insertion orientation of the needle finally results in the insertion orientation of the puncture needle 20 having the highest recognition probability corresponding to the different emission angles as the insertion orientation of the actual puncture needle 20.
  • the large deflection angle of the ultrasonic probe 10 can be adjusted by the large deflection angle adjustment module 403, and then the large deflection angle adjustment module 403 can adjust the large deflection angle of the ultrasonic probe 10 before the next round of large deflection angle ultrasonic waves.
  • the direction of emission is perpendicular to the calculated orientation of the puncture needle 20 or as perpendicular as possible to obtain an optimal enhanced display of the puncture needle 20.
  • the deflection prompt line of the ultrasound probe 10 may be further drawn when displaying the next frame of the ultrasound image.
  • the processing of the image data of the specific waveform ultrasonic wave After the processing of the image data of the specific waveform ultrasonic wave is completed, it is necessary to take out the large deflection angle image data of the round buffered in the image buffer, and enter the needle body recognition step of the puncture needle.
  • the needle recognition step is consistent with the algorithm core of the puncture detection step, that is, the line parameter of the needle body of the puncture needle is found from the large deflection angle image data.
  • the image frame after the conventional space combination is taken out, and the image frame with the large deflection angle is naturally fused in the straight line and the vicinity of the needle body obtained in the needle recognition step.
  • the corresponding pixels of the large deflection image and the conventional spatial composite image are given a certain weight, and are superimposed in the radius range region.
  • the enhancement effect of the current entire ultrasound image frame can be given a certain weight and averaged with the weight of the previous whole ultrasound image frame, so that the continuous whole ultrasound
  • the display of the image is smoother and less abrupt, improving the display of the image.
  • FIG. 15 is a schematic flowchart of the refinement of step S20 in FIG. Based on the above embodiment, in the embodiment, the foregoing step S20 includes:
  • Step S201 Perform binarization processing on the image frame data at different transmission angles to determine a pixel set that may be a puncture needle in the image frame data corresponding to different transmission angles;
  • the probability of capturing the sound waves returned by the puncture needle 20 can be improved. Since the pixel area occupied by the puncture needle 20 is very small in the pixels of the image data of the specific waveform ultrasonic wave, in order to shorten the range of the puncture detection to increase the speed of the puncture detection, in this embodiment, the binarization processing unit is adopted.
  • the image data of the specific waveform ultrasonic wave at different emission angles is separately binarized to determine a pixel set which may be the puncture needle 20 in the image data corresponding to different emission angles, wherein the pixel of the puncture needle 20 may be
  • the set may also include a collection of pixels corresponding to some body tissue, and therefore, further identification of the set of pixels that may be the puncture needle 20 is needed.
  • Step S202 performing the Hough transform processing on the pixel sets corresponding to different emission angles to determine a line parameter of the needle body of the coordinate system corresponding to the Hough transform;
  • the Hough transform processing unit 4022 performs Hough transform processing on the pixel sets corresponding to the puncture needle 20 corresponding to different emission angles to determine the puncture needle 20 in the coordinate system corresponding to the Hough transform.
  • the line parameter of the needle body is the line parameter of the needle body.
  • Hough transform is one of the basic methods for recognizing geometric shapes from images in image processing. It is mainly used to separate geometric shapes (such as lines, circles, etc.) with certain features from the image. The most basic Hough transform is available. It is to detect a straight line (or line segment) from a black and white image.
  • the parameters in the conventional linear coordinates can be mapped one-to-one to the parameters in the polar coordinates.
  • the straight line in each linear coordinate system can be uniquely determined from the distance from the origin to the line rho and the polar angle theta from the x-axis to the perpendicular, so the regular line parameter (k, b) converted to a new parameter group (rho, Theta), as shown in Figure 13.
  • the process of detecting a straight line can be transformed into a process of counting a parameter set having a maximum value.
  • Step S203 according to the relevant parameters of the needle body of the puncture needle, set the recognition probability of the linear parameter of the needle body of the puncture needle under different emission angles, and output the linear parameter of the needle body of the puncture needle with the highest recognition probability, wherein, according to the needle body of the puncture needle
  • the line parameter can determine the insertion direction of the needle.
  • the linear parameter of the needle body can only be one
  • the relevant parameters of the needle of the puncture needle 20 such as the length, width and linear type of the needle body, or some prior knowledge of common image processing, all possible Some wrong position parameters in the position, and set a probability of being a true position for the position parameter without obvious problem (that is, the straight line parameter of the needle needle at different emission angles), and outputting the recognition probability through the output unit 4023
  • the highest puncture needle 20 is in the straight line parameter of the needle body, wherein the insertion orientation of the puncture needle 20 can be determined correspondingly according to the linear parameter of the needle body of the puncture needle 20.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种穿刺增强方法包括:在本轮超声探头(10)发射大偏转角超声波进行扫描以增强显示穿刺针(20)图像时,发射若干不同发射角度的特定波形超声波进行扫描;根据若干不同发射角度下所述特定波形超声波所对应的扫描图像帧数据,识别穿刺针(20)的插入取向;根据所识别的穿刺针(20)的插入取向调整下一轮超声探头(10)发射大偏转角超声波时所对应的大偏转角度,在所述大偏转角度下,超声波的发射方向与所识别的穿刺针(20)的插入取向垂直或近似垂直。还公开了一种穿刺增强系统。本方法和系统可以快速检测穿刺针的插入取向,从而无需固定穿刺针的插入方向,同时通过自动调整超声探头的大偏转角度降低了穿刺增强操控的复杂度,以使穿刺增强图像始终保持最佳显示效果。

Description

穿刺增强方法及系统
技术领域
本发明涉及超声成像技术领域,尤其涉及穿刺增强方法及系统。
背景技术
穿刺增强技术如今广泛应用于医学超声实践中,用于引导医生进行穿刺类手术,提高手术效率与安全性。目前,穿刺增强技术的主要工作方式是通过采用专门配套的硬件与软件算法对穿刺针的区域进行适当增强,以提高可视度。现有技术中通常需要增加一帧探头大偏转角度下发射超声波所形成的超声图像,以保证超声波发射方向与穿刺针体尽可能地垂直(此时穿刺针针体的回波反射效果最佳)。一般来说,探头偏转角也会预设一些档位,由操作医师根据实际手术时的情况进行选择。通过这种方式确实能极大的增强针体的回波反射,然后再利用软件算法来寻找图像中的针形区域并加以增强显示。
尽管采用大偏转角度的方式本身是很不错的,但由于目前的技术都是将大偏转角度的选择权交给了用户自己(也即操作医师),这样就需要用户自己判断什么偏转角度下所对应的穿刺针的显示效果最佳,但这样却又同时增加了用户使用的难度。虽然操作者是用户自己,但一般操作者却很难精确地判断穿刺针的插入角度,同时,由于操作时穿刺针不可能始终保持一个穿刺角度不变,因而导致穿刺过程中用户难以确定超声探头的最佳大偏转角度,进而致使穿刺针图像的显示效果往往不如设计的那么完美,虽然可以搭配穿刺架来限制穿刺针的插入方向,但这样又将使得医生手术过程的灵活度大为下降,而若操作中需要不断调整角度,则又会增加操作的复杂度。
发明内容
本发明的主要目的在于提供一种穿刺增强方法及系统,旨在如何在不限制穿刺针插入方向以及增加操作复杂度的情况下,便捷精准地调整超声探头的大偏转角度以得到穿刺针的最佳增强显示效果的技术问题。
为实现上述目的,本发明提供一种穿刺增强方法,包括:
在本轮超声探头发射大偏转角超声波进行扫描以增强显示穿刺针图像时,发射若干不同发射角度的特定波形超声波进行扫描;
根据若干不同发射角度下所述特定波形超声波所对应的扫描图像帧数据,识别穿刺针的插入取向;
根据所识别的穿刺针的插入取向调整下一轮超声探头发射大偏转角超声波时所对应的大偏转角度,其中,在所述大偏转角度下,超声波的发射方向与所识别的穿刺针的插入取向垂直或近似垂直。
优选地,所述特定波形超声波至少包括发射声场在超声波探测范围内波面呈平面的平面波或者近似平面的宽波束。
优选地,在发射所述特定波形超声波进行扫描时,同一发射角度下仅发射一次所述特定波形超声波,其中,在生成所述特定波形超声波所对应的图像帧时,一次性生成该图像帧的全部超声波扫描线。
优选地,所述根据若干不同发射角度下所述特定波形超声波所对应的扫描图像帧数据,识别穿刺针的插入取向包括:
根据若干不同发射角度下所述特定波形超声波所对应的图像帧数据,分别进行穿刺检测处理以识别穿刺针的插入取向,其中,将不同发射角度下所对应的识别概率最高的穿刺针的插入取向作为真实的穿刺针的插入取向。
优选地,所述穿刺检测处理至少包括:
将不同发射角度下所述图像帧数据分别进行二值化处理,以确定不同发射角度下所对应的所述图像帧数据中可能为穿刺针的像素集合;
将不同发射角度下所对应的所述像素集合分别进行霍夫变换处理,以确定霍夫变换所对应坐标系下穿刺针针体所在直线参数;
根据穿刺针针体的相关参数,计算不同发射角度下穿刺针针体所在直线参数的识别概率,并输出识别概率最高的穿刺针针体所在直线参数,其中,根据穿刺针针体所在直线参数可确定穿刺针插入取向。
进一步地,为实现上述目的,本发明还提供一种穿刺增强系统,包括若干超声探头、穿刺针、显示器,所述超声探头用于发射和接收超声波,所述显示器用于显示超声波扫描输出图像,其特征在于,所述穿刺增强系统还包括穿刺增强装置;其中,所述穿刺增强装置包括:
增加发射模块,用于在本轮所述超声探头发射大偏转角超声波进行扫描以增强显示穿刺针图像时,发射若干不同发射角度的特定波形超声波进行扫描;
穿刺针识别模块,用于根据若干不同发射角度下所述特定波形超声波所对应的扫描图像帧数据,识别所述穿刺针的插入取向;
大偏转角调整模块,用于根据所识别的所述穿刺针的插入取向调整下一轮所述超声探头发射大偏转角超声波时所对应的大偏转角度,其中,在所述大偏转角度下,超声波的发射方向与所识别的所述穿刺针的插入取向垂直或近似垂直。
本发明中,在本轮超声探头发射大偏转角超声波以增强显示穿刺针图像的情况下,通过增加发射若干不同发射角度的特定波形超声波,从而简便快速完成对穿刺针的插入取向的识别,进而无需固定穿刺针的插入角度方向,提高了医生进行穿刺手术操作的灵活度。同时,根据所识别的穿刺针的插入取向以及大偏转角度下超声波的发射方向与所识别的穿刺针的插入取向垂直关系,实现自动调整下一轮超声探头发射大偏转角超声波时所对应的大偏转角度,从而降低了穿刺增强操控的复杂度,并使穿刺针所对应的超声图像始终保持最佳增强显示效果。
附图说明
图1为本发明穿刺增强系统一实施例的功能模块示意图;
图2为本发明穿刺增强系统一实施例的应用场景示意图;
图3为现有技术中超声成像的基本处理流程示意图;
图4为现有穿刺增强技术中大偏转角超声波所对应的大偏转图像;
图5为本发明穿刺增强系统中特定波形超声波所对应的扫描图像;
图6为图1中穿刺增强装置一实施例的细化功能模块示意图;
图7为现有穿刺增强技术中常规B超模式下发射的超声波示意图;
图8为现有穿刺增强技术中超声波的波束合成示意图;
图9为本发明穿刺增强系统中所发射的特定波形超声波示意图;
图10为本发明穿刺增强系统中所发射的特定波形超声波的波束合成示意图;
图11为本发明穿刺增强系统中通过特定波形超声波图像数据识别穿刺针插入取向一实施例的处理流程示意图;
图12为图1中穿刺针识别模块的细化功能模块示意图;
图13为霍夫变换处理的坐标变换示意图;
图14为本发明穿刺增强方法一实施例的流程示意图;
图15为图14中步骤S20的细化流程示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
众所周知,在常规B超模式下进行超声成像时,由于穿刺针的光滑表面会引起针体的镜面反射,从而导致针体部分的超声回波过于微弱,因而使得穿刺针在超声图像中的显示可见度过低而不利于医生参照超声图像进行穿刺操作。因而需要增强穿刺针在超声图像中的显示效果以提高穿刺针的可视度。
本发明提供一种穿刺增强系统。
参照图1,图1为穿刺增强系统一实施例的功能模块示意图。
本实施例中,穿刺增强系统包括若干超声探头10、穿刺针20、显示器30,所述超声探头10用于发射和接收超声波,所述显示器30用于显示超声波扫描输出图像,如图2所示的穿刺增强系统一实施例的应用场景示意图。本实施例中,对超声探头10的类型及数量都不限定,具体根据实际需要进行设置。穿刺针20具体为与现实穿刺操作中使用相同的直线型穿刺针。此外, 本实施例中,超声探头10、穿刺针20、显示器30的结构设置及用途均与现有技术相同,因此不做过多赘述。其中,超声探头10一般由若干大小相同的长条形压电换能器(每单个压电换能器称为阵元)等间隔排列组成或者各阵元排列成二维矩阵形状。
另外需要进一步说明的是,本实施例中,大偏转角、大偏转图像以及大偏转角度都为穿刺增强技术中的专业名词,其具体含义与现有技术相同,因此也不做过多赘述。
图3为现有技术中超声成像的基本处理流程示意图。
超声成像的基本处理流程依次包括:探头发射超声波、接收并解析回波数据、图像前处理、图像缓存、图像后处理与显示等五大处理阶段。其中,超声成像的基本工作原理是:
1. 超声探头内的压电换能器将施加在它上面的电压脉冲激励转换成机械振动,从而对外发射出超声波,其中,若进行穿刺增强显示,则超声探头还会增加发射大偏转角超声波;
2. 超声波在媒介中传播(比如人体),会产生反射波和散射波,探头接收到回波后,将振动能量变换成电信号,并经过模数处理后生成相应的图像数据并对其进行解析;
3. 解析出的图像数据经过空间复合等图像前处理操作之后进行缓存,其中,若进行穿刺增强显示,则解析出的图像数据还将包括大偏转图像;
4. 数据缓存区把处理的中间数据结果缓存下来,以方便检查和参数调节。
5. 缓存后的图像数据经过增益、动态范围变换等图像后处理操作后最终显示于显示屏幕上面,其中,若进行穿刺增强显示,则图像后处理操作还需将空间复合图像与大偏转图像进行穿刺针所在区域的融合处理以增强显示穿刺针图像。
本实施例所对应的超声成像的基本处理流程与原理与现有技术基本相同,其中,本实施例与现有穿刺增强技术最大的不同之处在于:现有穿刺增强技术中需要由用户判断超声探头的大偏转角度并手动进行调节,而本实施例中则自动完成对超声探头的大偏转角度的判断与调节,从而始终保持穿刺增强的最佳显示效果,具体通过本实施例中穿刺增强系统所包括的穿刺增强装置40进行实现。
其中,所述穿刺增强装置40进一步包括:
增加发射模块401,用于在本轮所述超声探头发射大偏转角超声波进行扫描以增强显示穿刺针图像时,发射若干不同发射角度的特定波形超声波进行扫描;
穿刺针识别模块402,用于根据若干不同发射角度下所述特定波形超声波所对应的扫描图像帧数据,识别所述穿刺针的插入取向;
大偏转角调整模块403,用于根据所识别的所述穿刺针的插入取向调整下一轮所述超声探头发射大偏转角超声波时所对应的大偏转角度,其中,在所述大偏转角度下,超声波的发射方向与所识别的所述穿刺针的插入取向垂直或近似垂直。
本实施例中,超声探头10都是周期性地发射大偏转角超声波,其中发射周期的具体设置不限,而对于如何自动完成对下一周期超声探头10的大偏转角度的判断,本实施例的实现原理具体为通过先捕捉并识别出当前穿刺针20进行穿刺操作过程中的插入取向(需要说明的是,为更实时显示穿刺增强图像,可以进一步缩短超声波的发射周期时长),进而再根据大偏转角度下超声波的发射方向与所识别的穿刺针20的插入取向垂直的关系,反推出下一周期超声探头10的大偏转角度。
在现有的穿刺增强模式下一般会增加一帧大偏转图像,如图4所示。本实施例中,在本轮所述超声探头10发射大偏转角超声波以增强显示穿刺针20图像的情况下,通过增加发射模块401增加发射若干不同发射角度的特定波形超声波以供穿刺针识别模块402识别穿刺针的插入取向,如图5所示,需要说明的是,本实施例中并不限定穿刺针20插入取向的识别方式以及特定波形超声波的发射时间点,比如在超声探头10发射大偏转角超声波后再发射,或者与大偏转角超声波同时发射,另外,发射特定波形超声波的超声探头可以与发射大偏转角超声波的超声探头相同,也可以不同,具体根据实际情况进行设置。
进一步可选的,在本发明穿刺增强系统一实施例中,所述特定波形超声波至少包括发射声场在超声波探测范围内波面呈平面的平面波或者近似平面的宽波束,其中,宽波束具体是指发射声场在超声波探测范围内波束收缩有限且没有明显聚焦的波束。
另外,本实施例中,通过大偏转角调整模块403,保证了在每一轮图像处理过程完成之后都会自动调整下一轮超声探头10发射大偏转角超声波时所对应的大偏转角度,从而进一步保证了穿刺针20增强显示的持续优化,而现有常规穿刺增强模式下所发射的大偏转角超声波的发射角度固定,因而无法保证超声波发射方向与穿刺针针体的插入取向垂直,因而增强显示效果较差。
本实施例中,由于穿刺针20的初始插入取向是可以由用户自身确定的(也即刚开始进行穿刺手术时医生所选择的插入角度),因此,对于第一轮的超声探头10发射大偏转超声波时所对应的大偏转角度也是同样可以由用户自身确定的,而后续,由于穿刺针20已经进入人体组织内部,因此,需要通过超声波成像作为穿刺操作的图像参照调整穿刺角度,其中,通过调整穿刺针的插入取向可以避开人体内的某些组织器官,而调整穿刺针的插入取向需要参照下一轮超声波的成像图像,此时,通过穿刺增强装置40在实际发射下一轮的大偏转角超声波前,增加发射若干不同发射角度的特定波形超声波,从而预先捕捉并识别到当前穿刺针20的插入取向,进而可以确定与当前穿刺针20的插入取向垂直或近似垂直的方向所对应的超声波的发射角度即为下一轮超声探头10发射大偏转角超声波时所对应的大偏转角度。
其中,需要进一步说明的是,超声波的发射方向与所识别的穿刺针的插入取向近似垂直具体是由超声波系统设备实际所支持的发射偏转角度所确定的,若超声波的发射方向能够与穿刺针的插入取向垂直,则将其调整为与穿刺针的插入取向垂直的方向,而若不能,则将其调整为与穿刺针的插入取向最佳的近似垂直的方向。
本实施例中,在本轮超声探头10发射大偏转角超声波以增强显示穿刺针20图像的情况下,通过增加发射若干不同发射角度的特定波形超声波,从而简便快速完成对穿刺针20的插入取向的识别,进而无需固定穿刺针20的插入角度方向,提高了医生进行穿刺手术操作的灵活度。同时,根据所识别的穿刺针20的插入取向以及大偏转角度下超声波的发射方向与所识别的穿刺针20的插入取向垂直关系,实现自动调整下一轮超声探头10发射大偏转角超声波时所对应的大偏转角度,从而降低了穿刺增强操控的复杂度,并使穿刺针10所对应的超声图像始终保持最佳增强显示效果。
参照图6,图6为图1中穿刺增强装置一实施例的细化功能模块示意图。基于上述实施例,本实施例中,所述穿刺增强装置40进一步还包括:
图像帧生成模块404,用于生成所述特定波形超声波所对应的图像帧以及在生成所述特定波形超声波所对应的图像帧时,一次性生成该图像帧的全部超声波扫描线。
现有B超模式成像时需要发射多次超声波以形成超声波发射线的重叠,如图7所示,进而在合成波束线时能够进行累加,如图8所示,以达到在生成超声波所对应的图像帧时能够增强显示该图像帧的扫描线,也即使得扫描图像更为清晰。
本实施例中,由于每一个特定波形超声波(如平面波)针对的是特定角度的穿刺针20检测,因此每个角度的特定波形超声波扫描只需要超声探头10上的部分阵元发射超声波即可,并且仅仅只需发射一次,而无需像常规B超模式成像时一样需要重叠发射,从而极大地减少了发射超声波的时间,提高了图像处理速度。也即如图9所示,在本实施例中,所述增加发射模块401在发射所述特定波形超声波(如平面波)进行扫描时,同一发射角度下仅发射一次所述特定波形超声波。
此外,超声波发射以后,人体组织以及穿刺针20会把超声波散射或者反射回超声探头10,再由超声探头10上的各阵元把回波数据转换成电信号,经过放大再转换为数字信号进行处理与解析,从而得到生成图像帧的每条发射线的回波数据。其中,本实施例中,通过图像帧生成模块404在每一次合成波束线以生成所述特定波形超声波所对应的图像帧时,一次性生成该图像帧的全部扫描线,也即无需像正常B模式下在合成波束线时需要进行累加,如图10所示。
需要进一步说明的是,本实施例中,发射特定波形超声波仅用于确定下一轮发射大偏转角超声波时所对应的大偏转角度,因此,只需保证识别穿刺针插入取向时的处理速度即可,而对于发射特定波形超声波所形成的扫描图像的清晰度要求无需做过高要求,穿刺针的增强显示具体由大偏转角超声波所对应的扫描图像所显示出来。
本实施例中,由于需要预先捕捉并识别穿刺针20穿刺过程中的插入取向,因此,需要保证超声波扫描以及图像处理速度,从而能够快速调整下一轮发射大偏转角图像所对应的大偏转角度,以提高穿刺增强显示的实时性。具体通过一次发射特定波形超声波(如平面波)即合成完整图像所需的所有扫描线,从而极大地提高了超声图像的处理速度,进而可以实现不同发射角度下对穿刺针20的快速扫描。
进一步可选的,在本发明穿刺增强系统一实施例中,基于上述实施例,本实施例中,所述穿刺针识别模块402具体用于:
根据若干不同发射角度下所述特定波形超声波所对应的图像帧数据,分别进行穿刺检测处理以识别所述穿刺针20的插入取向,其中,将不同发射角度下所对应的识别概率最高的所述穿刺针20的插入取向作为真实的所述穿刺针20的插入取向。
本实施例中,在图像缓存处理阶段,图像缓存中包括了常规B模式图像的空间复合图像帧、大偏转图像帧以及本发明中增加发射的多个角度的特定波形超声波所对应的图像帧,但在超声成像处理流程的图像后处理阶段中的增益与动态范围变换中,只对空间复合与大偏转部分的图像帧进行处理,而不对定波形超声波所对应的图像帧进行处理,如图11所示。
在完成了增益与动态范围变换处理之后,取出特定波形超声波的图像数据,进入穿刺检测步骤,通过穿刺针识别模块402在多个不同角度的特定波形超声波图像帧中分别进行穿刺检测以识别确定穿刺针的插入取向,最终将不同发射角度下所对应的识别概率最高的穿刺针20的插入取向作为真实的穿刺针20的插入取向。
此外,还可进一步通过输出穿刺针的取向参数,进而通过大偏转角调整模块403使相关硬件能在下一轮发射大偏转角超声波之前调整好超声探头10的大偏转角度,从而使大偏转角超声波的发射方向与计算出的穿刺针20的取向垂直或尽可能地接近垂直以得到穿刺针20的最佳增强显示效果。此外,为便于用户参照,还可进一步在显示下一帧超声图像时绘制出超声探头10的偏转提示线。
当完成了对特定波形超声波的图像数据的处理后,需要取出图像缓存中所缓存的这一轮的大偏转角图像数据,并进入穿刺针的针体识别步骤。其中,针体识别步骤与穿刺检测步骤的算法核心一致,也即从大偏转角图像数据中找出穿刺针的针体所在直线参数。最后,再取出常规空间复合后的图像帧,将其与大偏转角的图像帧在针体识别步骤中所得到的针体所在直线及附近区域内进行自然融合。此外,当获得针体所在直线参数后,在此直线一定半径范围内,给大偏转图像与常规空间复合图像的对应像素各赋予一定权重,并在此半径范围区域进行叠加。从而保证大偏转图像与常规空间复合图像在整张超声图像上的自然融合。同时为了保证图像在实时连续显示时的连贯性,还可将当前整张超声图像帧的增强效果赋予一定的权重并与上一整张超声图像帧的权重作平均,从而使得连续的整张超声图像的显示更加平滑而不突兀,提升图像的显示效果。
参照图12,图12为图1中穿刺针识别模块的细化功能模块示意图。基于上述实施例,在本实施例中,所述穿刺针识别模块402至少包括:
二值化处理单元4021,用于将不同发射角度下所述图像帧数据分别进行二值化处理,以确定不同发射角度下所对应的所述图像帧数据中可能为所述穿刺针的像素集合;
本实施例中,通过发射多个不同角度的超声波,可以提高捕捉到穿刺针20所返回的声波的概率。由于在特定波形超声波的图像数据的像素中,穿刺针20所占的像素区域非常小,因此,为缩短穿刺检测的范围以相应提高穿刺检测的速度,本实施例中,通过二值化处理单元4021以将不同发射角度下特定波形超声波的图像数据分别进行二值化处理,以确定不同发射角度下所对应的图像数据中可能为穿刺针20的像素集合,其中,可能为穿刺针20的像素集合还可能包括有一些人体组织所对应的像素集合,因此,需要进一步对可能为穿刺针20的像素集合进行识别。
霍夫变换处理单元4022,用于将不同发射角度下所对应的所述像素集合分别进行霍夫变换处理,以确定霍夫变换所对应坐标系下所述穿刺针针体所在直线参数;
本实施例中,具体通过霍夫变换处理单元4022以将不同发射角度下所对应的可能为穿刺针20的像素集合分别进行霍夫变换处理,以确定霍夫变换所对应坐标系下穿刺针20针体所在直线参数。本实施例中,穿刺检测与针体识别的核心都是采用霍夫变换处理。其中,霍夫变换(Hough Transform)是图像处理中从图像中识别几何形状的基本方法之一,主要用来从图像中分离出具有某种相同特征的几何形状(如直线、圆等),现有最基本的霍夫变换就是从黑白图像中检测直线(或线段)。
考虑到现有穿刺针20一般都是直线形式的,因此可通过将常规直线坐标下的参数一一对应地映射为极坐标下的参数。每一条直线坐标系下的直线都可以由原点至直线的距离rho与x轴至垂线的极角theta唯一确定,因此可以将常规直线参数(k, b)转化为新的参数组(rho, theta),如图13所示。而如果图像中存在直线,将对于某个参数组的数量会出现一个统计的极大值。因此可以将检测直线的过程变换为统计具有极大值的参数组的过程。
输出单元4023,用于根据所述穿刺针针体的相关参数,计算不同发射角度下所述穿刺针针体所在直线参数的识别概率,并输出识别概率最高的所述穿刺针针体所在直线参数,其中,根据所述穿刺针针体所在直线参数可确定所述穿刺针的插入取向。
本实施例中,为获得更为准确的结果(实际上穿刺针针体所在直线参数只能为一个),因此,需要进一步对经过霍夫变换后所找到的穿刺针20针体的所有可能位置作一系列筛选判断,具体通过输出单元4023根据穿刺针20针体的相关参数,比如针体的长度、宽度及直线型等其他特征参数,或者常用图像处理上的一些先验知识,排除所有可能位置中一些错误的位置参数,并对没有明显问题的位置参数(也即不同发射角度下所述穿刺针针体所在直线参数)设定一个为真实位置的概率,并通过输出单元4023输出识别概率最高的穿刺针20针体所在直线参数,其中,根据穿刺针20针体所在直线参数即可相应确定穿刺针20的插入取向。
进一步地,基于上述本发明所提供的一种穿刺增强系统,本发明还提供一种穿刺增强方法。
如图3所示的超声成像的基本处理流程示意图。超声成像的基本处理流程依次包括:探头发射超声波、接收并解析回波数据、图像前处理、图像缓存、图像后处理与显示等五大处理阶段。其中,超声成像的基本工作原理是:
1. 超声探头内的压电换能器将施加在它上面的电压脉冲激励转换成机械振动,从而对外发射出超声波,其中,若进行穿刺增强显示,则超声探头还会增加发射大偏转角超声波;
2. 超声波在媒介中传播(比如人体),会产生反射波和散射波,探头接收到回波后,将振动能量变换成电信号,并经过模数处理后生成相应的图像数据并对其进行解析;
3. 解析出的图像数据经过空间复合等图像前处理操作之后进行缓存,其中,若进行穿刺增强显示,则解析出的图像数据还将包括大偏转图像;
4. 数据缓存区把处理的中间数据结果缓存下来,以方便检查和参数调节。
5. 缓存后的图像数据经过增益、动态范围变换等图像后处理操作后最终显示于显示屏幕上面,其中,若进行穿刺增强显示,则图像后处理操作还需将空间复合图像与大偏转图像进行穿刺针所在区域的融合处理以增强显示穿刺针图像。
本实施例所对应的超声成像的基本处理流程与原理与现有技术基本相同,其中,本实施例与现有穿刺增强技术最大的不同之处在于:现有穿刺增强技术中需要由用户判断超声探头的大偏转角度并手动进行调节,而本实施例中则自动完成对超声探头的大偏转角度的判断与调节,从而始终保持穿刺增强的最佳显示效果,具体通过本发明穿刺增强系统所包括的穿刺增强装置40进行实现,具体参照图14中所示的本发明穿刺增强方法一实施例的流程示意图,包括:
步骤S10,在本轮超声探头发射大偏转角超声波进行扫描以增强显示穿刺针图像时,发射若干不同发射角度的特定波形超声波进行扫描;
步骤S20,根据若干不同发射角度下所述特定波形超声波所对应的扫描图像帧数据,识别穿刺针的插入取向;
步骤S30,根据所识别的穿刺针的插入取向调整下一轮超声探头发射大偏转角超声波时所对应的大偏转角度,其中,在所述大偏转角度下,超声波的发射方向与所识别的穿刺针的插入取向垂直或近似垂直。
本实施例中,超声探头10都是周期性地发射大偏转角超声波,其中发射周期的具体设置不限,而对于如何自动完成对下一周期超声探头10的大偏转角度的判断,本实施例的实现原理具体为通过先捕捉并识别出当前穿刺针20进行穿刺操作过程中的插入取向(需要说明的是,为更实时显示穿刺增强图像,可以进一步缩短超声波的发射周期时长),进而再根据大偏转角度下超声波的发射方向与所识别的穿刺针20的插入取向垂直的关系,反推出下一周期超声探头10的大偏转角度。
在现有的穿刺增强模式下一般会增加一帧大偏转图像,如图4所示。本实施例中,在本轮所述超声探头10发射大偏转角超声波以增强显示穿刺针20图像的情况下,通过增加发射模块401增加发射若干不同发射角度的特定波形超声波以供穿刺针识别模块402识别穿刺针的插入取向,如图5所示,需要说明的是,本实施例中并不限定特定波形超声波的发射时间点,比如在超声探头10发射大偏转角超声波后再发射,或者与大偏转角超声波同时发射,另外,发射特定波形超声波的超声探头可以与发射大偏转角超声波的超声探头相同,也可以不同,具体根据实际情况进行设置。
进一步可选的,在本发明穿刺增强方法一实施例中,所述特定波形超声波至少包括发射声场在超声波探测范围内波面呈平面的平面波或者近似平面的宽波束,其中,宽波束具体是指发射声场在超声波探测范围内波束收缩有限且没有明显聚焦的波束。
另外,本实施例中,通过大偏转角调整模块403,保证了在每一轮图像处理过程完成之后都会自动调整下一轮超声探头10发射大偏转角超声波时所对应的大偏转角度,从而进一步保证了穿刺针20增强显示的持续优化,而现有常规穿刺增强模式下所发射的大偏转角超声波的发射角度固定,因而无法保证超声波发射方向与穿刺针针体的插入取向垂直,因而增强显示效果较差。
本实施例中,由于穿刺针20的初始插入取向是可以由用户自身确定的(也即刚开始进行穿刺手术时医生所选择的插入角度),因此,对于第一轮的超声探头10发射大偏转超声波时所对应的大偏转角度也是同样可以由用户自身确定的,而后续,由于穿刺针20已经进入人体组织内部,因此,需要通过超声波成像作为穿刺操作的图像参照调整穿刺角度,其中,通过调整穿刺针的插入取向可以避开人体内的某些组织器官,而调整穿刺针的插入取向需要参照下一轮超声波的成像图像,此时,通过穿刺增强装置40在实际发射下一轮的大偏转角超声波前,增加发射若干不同发射角度的特定波形超声波,从而预先捕捉并识别到当前穿刺针20的插入取向,进而可以确定与当前穿刺针20的插入取向垂直的方向所对应的超声波的发射角度即为下一轮超声探头10发射大偏转角超声波时所对应的大偏转角度。
本实施例中,在本轮超声探头10发射大偏转角超声波以增强显示穿刺针20图像的情况下,通过增加发射若干不同发射角度的特定波形超声波,从而简便快速完成对穿刺针20的插入取向的识别,进而无需固定穿刺针20的插入角度方向,提高了医生进行穿刺手术操作的灵活度。同时,根据所识别的穿刺针20的插入取向以及大偏转角度下超声波的发射方向与所识别的穿刺针20的插入取向垂直关系,实现自动调整下一轮超声探头10发射大偏转角超声波时所对应的大偏转角度,从而降低了穿刺增强操控的复杂度,并使穿刺针10所对应的超声图像始终保持最佳增强显示效果。
进一步可选的,在本发明穿刺增强方法一实施例中,基于上述实施例,本实施例中,上述步骤S20具体包括:
根据若干不同发射角度下所述特定波形超声波所对应的图像帧数据,分别进行穿刺检测处理以识别穿刺针的插入取向,其中,将不同发射角度下所对应的识别概率最高的穿刺针的插入取向作为真实的穿刺针的插入取向。
本实施例中,在图像缓存处理阶段,图像缓存中包括了常规B模式图像的空间复合图像帧、大偏转图像帧以及本发明中增加发射的多个角度的特定波形超声波所对应的图像帧,但在超声成像处理流程的图像后处理阶段中的增益与动态范围变换中,只对空间复合与大偏转部分的图像帧进行处理,而不对特定波形超声波所对应的图像帧进行处理,如图12所示。
在完成了增益与动态范围变换处理之后,取出特定波形超声波的图像数据,进入穿刺检测步骤,通过穿刺针识别模块402在多个不同角度的特定波形超声波图像帧中分别进行穿刺检测以识别确定穿刺针的插入取向,最终将不同发射角度下所对应的识别概率最高的穿刺针20的插入取向作为真实的穿刺针20的插入取向。
此外,还可进一步通过输出穿刺针的取向参数,进而通过大偏转角调整模块403使相关硬件能在下一轮发射大偏转角超声波之前调整好超声探头10的大偏转角度,从而使大偏转角超声波的发射方向与计算出的穿刺针20的取向垂直或尽可能地垂直以得到穿刺针20的最佳增强显示效果。此外,为便于用户参照,还可进一步在显示下一帧超声图像时绘制出超声探头10的偏转提示线。当完成了对特定波形超声波的图像数据的处理后,需要取出图像缓存中所缓存的这一轮的大偏转角图像数据,并进入穿刺针的针体识别步骤。其中,针体识别步骤与穿刺检测步骤的算法核心一致,也即从大偏转角图像数据中找出穿刺针的针体所在直线参数。最后,再取出常规空间复合后的图像帧,将其与大偏转角的图像帧在针体识别步骤中所得到的针体所在直线及附近区域内进行自然融合。
此外,当获得针体所在直线参数后,在此直线一定半径范围内,给大偏转图像与常规空间复合图像的对应像素各赋予一定权重,并在此半径范围区域进行叠加。从而保证大偏转图像与常规空间复合图像在整张超声图像上的自然融合。同时为了保证图像在实时连续显示时的连贯性,还可将当前整张超声图像帧的增强效果赋予一定的权重并与上一整张超声图像帧的权重作平均,从而使得连续的整张超声图像的显示更加平滑而不突兀,提升图像的显示效果。
参照图15,图15为图14中步骤S20的细化流程示意图。基于上述实施例,本实施例中,上述步骤S20包括:
步骤S201,将不同发射角度下所述图像帧数据分别进行二值化处理,以确定不同发射角度下所对应的所述图像帧数据中可能为穿刺针的像素集合;
本实施例中,通过发射多个不同角度的超声波,可以提高捕捉到穿刺针20所返回的声波的概率。由于在特定波形超声波的图像数据的像素中,穿刺针20所占的像素区域非常小,因此,为缩短穿刺检测的范围以相应提高穿刺检测的速度,本实施例中,通过二值化处理单元4021以将不同发射角度下特定波形超声波的图像数据分别进行二值化处理,以确定不同发射角度下所对应的图像数据中可能为穿刺针20的像素集合,其中,可能为穿刺针20的像素集合还可能包括有一些人体组织所对应的像素集合,因此,需要进一步对可能为穿刺针20的像素集合进行识别。
步骤S202,将不同发射角度下所对应的所述像素集合分别进行霍夫变换处理,以确定霍夫变换所对应坐标系下穿刺针针体所在直线参数;
本实施例中,具体通过霍夫变换处理单元4022以将不同发射角度下所对应的可能为穿刺针20的像素集合分别进行霍夫变换处理,以确定霍夫变换所对应坐标系下穿刺针20针体所在直线参数。
本实施例中,穿刺检测与针体识别的核心都是采用霍夫变换处理。其中,霍夫变换(Hough Transform)是图像处理中从图像中识别几何形状的基本方法之一,主要用来从图像中分离出具有某种相同特征的几何形状(如直线、圆等),现有最基本的霍夫变换就是从黑白图像中检测直线(或线段)。
考虑到现有穿刺针20一般都是直线形式的,因此可通过将常规直线坐标下的参数一一对应地映射为极坐标下的参数。每一条直线坐标系下的直线都可以由原点至直线的距离rho与x轴至垂线的极角theta唯一确定,因此可以将常规直线参数(k, b)转化为新的参数组(rho, theta),如图13所示。而如果图像中存在直线,将对于某个参数组的数量会出现一个统计的极大值。因此可以将检测直线的过程变换为统计具有极大值的参数组的过程。
步骤S203,根据穿刺针针体的相关参数,设定不同发射角度下穿刺针针体所在直线参数的识别概率,并输出识别概率最高的穿刺针针体所在直线参数,其中,根据穿刺针针体所在直线参数可确定穿刺针插入取向。
本实施例中,为获得更为准确的结果(实际上穿刺针针体所在直线参数只能为一个),因此,需要进一步对经过霍夫变换后所找到的穿刺针20针体的所有可能位置作一系列筛选判断,具体通过输出单元4023根据穿刺针20针体的相关参数,比如针体的长度、宽度及直线型等其他特征参数,或者常用图像处理上的一些先验知识,排出所有可能位置中一些错误的位置参数,并对没有明显问题的位置参数(也即不同发射角度下所述穿刺针针体所在直线参数)设定一个为真实位置的概率,并通过输出单元4023输出识别概率最高的穿刺针20针体所在直线参数,其中,根据穿刺针20针体所在直线参数即可相应确定穿刺针20的插入取向。

Claims (18)

  1. 一种穿刺增强方法,其特征在于,所述穿刺增强方法包括:
    在本轮超声探头发射大偏转角超声波进行扫描以增强显示穿刺针图像时,发射若干不同发射角度的特定波形超声波进行扫描;
    根据若干不同发射角度下所述特定波形超声波所对应的扫描图像帧数据,识别穿刺针的插入取向;
    根据所识别的穿刺针的插入取向调整下一轮超声探头发射大偏转角超声波时所对应的大偏转角度,其中,在所述大偏转角度下,超声波的发射方向与所识别的穿刺针的插入取向垂直或近似垂直。
  2. 如权利要求1所述的穿刺增强方法,其特征在于,所述特定波形超声波至少包括发射声场在超声波探测范围内波面呈平面的平面波或者近似平面的宽波束。
  3. 如权利要求2所述的穿刺增强方法,其特征在于,在发射所述特定波形超声波进行扫描时,同一发射角度下仅发射一次所述特定波形超声波,其中,在生成所述特定波形超声波所对应的图像帧时,一次性生成该图像帧的全部超声波扫描线。
  4. 如权利要求1所述的穿刺增强方法,其特征在于,所述根据若干不同发射角度下所述特定波形超声波所对应的扫描图像帧数据,识别穿刺针的插入取向包括:
    根据若干不同发射角度下所述特定波形超声波所对应的图像帧数据,分别进行穿刺检测处理以识别穿刺针的插入取向,其中,将不同发射角度下所对应的识别概率最高的穿刺针的插入取向作为真实的穿刺针的插入取向。
  5. 如权利要求2所述的穿刺增强方法,其特征在于,所述根据若干不同发射角度下所述特定波形超声波所对应的扫描图像帧数据,识别穿刺针的插入取向包括:
    根据若干不同发射角度下所述特定波形超声波所对应的图像帧数据,分别进行穿刺检测处理以识别穿刺针的插入取向,其中,将不同发射角度下所对应的识别概率最高的穿刺针的插入取向作为真实的穿刺针的插入取向。
  6. 如权利要求3所述的穿刺增强方法,其特征在于,所述根据若干不同发射角度下所述特定波形超声波所对应的扫描图像帧数据,识别穿刺针的插入取向包括:
    根据若干不同发射角度下所述特定波形超声波所对应的图像帧数据,分别进行穿刺检测处理以识别穿刺针的插入取向,其中,将不同发射角度下所对应的识别概率最高的穿刺针的插入取向作为真实的穿刺针的插入取向。
  7. 如权利要求4所述的穿刺增强方法,其特征在于,所述穿刺检测处理至少包括:
    将不同发射角度下所述图像帧数据分别进行二值化处理,以确定不同发射角度下所对应的所述图像帧数据中可能为穿刺针的像素集合;
    将不同发射角度下所对应的所述像素集合分别进行霍夫变换处理,以确定霍夫变换所对应坐标系下穿刺针针体所在直线参数;
    根据穿刺针针体的相关参数,计算不同发射角度下穿刺针针体所在直线参数的识别概率,并输出识别概率最高的穿刺针针体所在直线参数,其中,根据穿刺针针体所在直线参数可确定穿刺针插入取向。
  8. 如权利要求5所述的穿刺增强方法,其特征在于,所述穿刺检测处理至少包括:
    将不同发射角度下所述图像帧数据分别进行二值化处理,以确定不同发射角度下所对应的所述图像帧数据中可能为穿刺针的像素集合;
    将不同发射角度下所对应的所述像素集合分别进行霍夫变换处理,以确定霍夫变换所对应坐标系下穿刺针针体所在直线参数;
    根据穿刺针针体的相关参数,计算不同发射角度下穿刺针针体所在直线参数的识别概率,并输出识别概率最高的穿刺针针体所在直线参数,其中,根据穿刺针针体所在直线参数可确定穿刺针插入取向。
  9. 如权利要求6所述的穿刺增强方法,其特征在于,所述穿刺检测处理至少包括:
    将不同发射角度下所述图像帧数据分别进行二值化处理,以确定不同发射角度下所对应的所述图像帧数据中可能为穿刺针的像素集合;
    将不同发射角度下所对应的所述像素集合分别进行霍夫变换处理,以确定霍夫变换所对应坐标系下穿刺针针体所在直线参数;
    根据穿刺针针体的相关参数,计算不同发射角度下穿刺针针体所在直线参数的识别概率,并输出识别概率最高的穿刺针针体所在直线参数,其中,根据穿刺针针体所在直线参数可确定穿刺针插入取向。
  10. 一种穿刺增强系统,包括若干超声探头、穿刺针、显示器,所述超声探头用于发射和接收超声波,所述显示器用于显示超声波扫描输出图像,其特征在于,所述穿刺增强系统还包括穿刺增强装置;其中,所述穿刺增强装置包括:
    增加发射模块,用于在本轮所述超声探头发射大偏转角超声波进行扫描以增强显示穿刺针图像时,发射若干不同发射角度的特定波形超声波进行扫描;
    穿刺针识别模块,用于根据若干不同发射角度下所述特定波形超声波所对应的扫描图像帧数据,识别所述穿刺针的插入取向;
    大偏转角调整模块,用于根据所识别的所述穿刺针的插入取向调整下一轮所述超声探头发射大偏转角超声波时所对应的大偏转角度,其中,在所述大偏转角度下,超声波的发射方向与所识别的所述穿刺针的插入取向垂直或近似垂直。
  11. 如权利要求10所述的穿刺增强系统,其特征在于,所述特定波形超声波至少包括发射声场在超声波探测范围内波面呈平面的平面波或者近似平面的宽波束。
  12. 如权利要求11所述的穿刺增强系统,其特征在于,所述增加发射模块在发射所述特定波形超声波进行扫描时,同一发射角度下仅发射一次所述特定波形超声波;
    所述穿刺增强装置还包括:
    图像帧生成模块,用于生成所述特定波形超声波所对应的图像帧以及在生成所述特定波形超声波所对应的图像帧时,一次性生成该图像帧的全部超声波扫描线。
  13. 如权利要求10所述的穿刺增强系统,其特征在于,所述穿刺针识别模块具体用于:
    根据若干不同发射角度下所述特定波形超声波所对应的图像帧数据,分别进行穿刺检测处理以识别所述穿刺针的插入取向,其中,将不同发射角度下所对应的识别概率最高的所述穿刺针的插入取向作为真实的所述穿刺针的插入取向。
  14. 如权利要求11所述的穿刺增强系统,其特征在于,所述穿刺针识别模块具体用于:
    根据若干不同发射角度下所述特定波形超声波所对应的图像帧数据,分别进行穿刺检测处理以识别所述穿刺针的插入取向,其中,将不同发射角度下所对应的识别概率最高的所述穿刺针的插入取向作为真实的所述穿刺针的插入取向。
  15. 如权利要求12所述的穿刺增强系统,其特征在于,所述穿刺针识别模块具体用于:
    根据若干不同发射角度下所述特定波形超声波所对应的图像帧数据,分别进行穿刺检测处理以识别所述穿刺针的插入取向,其中,将不同发射角度下所对应的识别概率最高的所述穿刺针的插入取向作为真实的所述穿刺针的插入取向。
  16. 如权利要求13所述的穿刺增强系统,其特征在于,所述穿刺针识别模块至少包括:
    二值化处理单元,用于将不同发射角度下所述图像帧数据分别进行二值化处理,以确定不同发射角度下所对应的所述图像帧数据中可能为所述穿刺针的像素集合;
    霍夫变换处理单元,用于将不同发射角度下所对应的所述像素集合分别进行霍夫变换处理,以确定霍夫变换所对应坐标系下所述穿刺针针体所在直线参数;
    输出单元,用于根据所述穿刺针针体的相关参数,计算不同发射角度下所述穿刺针针体所在直线参数的识别概率,并输出识别概率最高的所述穿刺针针体所在直线参数,其中,根据所述穿刺针针体所在直线参数可确定所述穿刺针的插入取向。
  17. 如权利要求14所述的穿刺增强系统,其特征在于,所述穿刺针识别模块至少包括:
    二值化处理单元,用于将不同发射角度下所述图像帧数据分别进行二值化处理,以确定不同发射角度下所对应的所述图像帧数据中可能为所述穿刺针的像素集合;
    霍夫变换处理单元,用于将不同发射角度下所对应的所述像素集合分别进行霍夫变换处理,以确定霍夫变换所对应坐标系下所述穿刺针针体所在直线参数;
    输出单元,用于根据所述穿刺针针体的相关参数,计算不同发射角度下所述穿刺针针体所在直线参数的识别概率,并输出识别概率最高的所述穿刺针针体所在直线参数,其中,根据所述穿刺针针体所在直线参数可确定所述穿刺针的插入取向。
  18. 如权利要求15所述的穿刺增强系统,其特征在于,所述穿刺针识别模块至少包括:
    二值化处理单元,用于将不同发射角度下所述图像帧数据分别进行二值化处理,以确定不同发射角度下所对应的所述图像帧数据中可能为所述穿刺针的像素集合;
    霍夫变换处理单元,用于将不同发射角度下所对应的所述像素集合分别进行霍夫变换处理,以确定霍夫变换所对应坐标系下所述穿刺针针体所在直线参数;
    输出单元,用于根据所述穿刺针针体的相关参数,计算不同发射角度下所述穿刺针针体所在直线参数的识别概率,并输出识别概率最高的所述穿刺针针体所在直线参数,其中,根据所述穿刺针针体所在直线参数可确定所述穿刺针的插入取向
PCT/CN2016/097878 2015-12-04 2016-09-02 穿刺增强方法及系统 WO2017092454A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510888869.9 2015-12-04
CN201510888869.9A CN105496515B (zh) 2015-12-04 2015-12-04 穿刺增强方法及系统

Publications (1)

Publication Number Publication Date
WO2017092454A1 true WO2017092454A1 (zh) 2017-06-08

Family

ID=55705086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097878 WO2017092454A1 (zh) 2015-12-04 2016-09-02 穿刺增强方法及系统

Country Status (2)

Country Link
CN (1) CN105496515B (zh)
WO (1) WO2017092454A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11020143B2 (en) * 2015-07-20 2021-06-01 Edan Instruments, Inc. Adaptive steering adjustment for needle visualization
CN105496515B (zh) * 2015-12-04 2018-07-17 深圳华声医疗技术股份有限公司 穿刺增强方法及系统
CN106308895A (zh) * 2016-09-20 2017-01-11 深圳华声医疗技术有限公司 穿刺增强方法、装置及系统
CN106388911B (zh) * 2016-09-21 2019-02-15 深圳华声医疗技术股份有限公司 超声图像标识的显示方法及装置
US10932749B2 (en) * 2016-11-09 2021-03-02 Fujifilm Sonosite, Inc. Ultrasound system for enhanced instrument visualization
CN109310397A (zh) * 2017-04-26 2019-02-05 深圳迈瑞生物医疗电子股份有限公司 超声成像设备、超声图像增强方法及引导穿刺显示方法
CN108416818A (zh) * 2018-02-09 2018-08-17 沈阳东软医疗系统有限公司 重建图像的处理方法、装置及系统、设备
CN111093512A (zh) * 2018-04-25 2020-05-01 深圳迈瑞生物医疗电子股份有限公司 超声成像方法以及超声成像设备
CN111513823B (zh) * 2020-04-30 2023-06-23 成都思多科医疗科技有限公司 基于多任务神经网络与偏转扫描的穿刺针定位系统
CN111956309B (zh) * 2020-08-28 2022-06-24 深圳开立生物医疗科技股份有限公司 一种图像获取方法、装置、设备和介质
CN113662638B (zh) * 2021-08-20 2024-04-19 成都优途科技有限公司 一种用于超声穿刺引导的超声成像方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133168A1 (en) * 2002-12-23 2004-07-08 Salcudean Septimiu E. Steerable needle
CN102727250A (zh) * 2011-04-01 2012-10-17 株式会社东芝 超声波诊断装置以及控制方法
US20120321154A1 (en) * 2010-03-03 2012-12-20 Hendrikus Hubertus Maria Korsten Needle detection in medical image data
CN102920476A (zh) * 2011-08-11 2013-02-13 深圳迈瑞生物医疗电子股份有限公司 一种超声成像方法及装置
CN103889337A (zh) * 2012-10-23 2014-06-25 株式会社东芝 超声波诊断装置以及超声波诊断装置控制方法
CN104434273A (zh) * 2014-12-16 2015-03-25 深圳市开立科技有限公司 一种穿刺针增强显示方法、装置及其系统
CN105496515A (zh) * 2015-12-04 2016-04-20 深圳华声医疗技术有限公司 穿刺增强方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133168A1 (en) * 2002-12-23 2004-07-08 Salcudean Septimiu E. Steerable needle
US20120321154A1 (en) * 2010-03-03 2012-12-20 Hendrikus Hubertus Maria Korsten Needle detection in medical image data
CN102727250A (zh) * 2011-04-01 2012-10-17 株式会社东芝 超声波诊断装置以及控制方法
CN102920476A (zh) * 2011-08-11 2013-02-13 深圳迈瑞生物医疗电子股份有限公司 一种超声成像方法及装置
CN103889337A (zh) * 2012-10-23 2014-06-25 株式会社东芝 超声波诊断装置以及超声波诊断装置控制方法
CN104434273A (zh) * 2014-12-16 2015-03-25 深圳市开立科技有限公司 一种穿刺针增强显示方法、装置及其系统
CN105496515A (zh) * 2015-12-04 2016-04-20 深圳华声医疗技术有限公司 穿刺增强方法及系统

Also Published As

Publication number Publication date
CN105496515B (zh) 2018-07-17
CN105496515A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2017092454A1 (zh) 穿刺增强方法及系统
US6755785B2 (en) Ultrasonic image generating apparatus and ultrasonic image generating method
JP6000569B2 (ja) 超音波診断装置及び制御プログラム
US20210330293A1 (en) Ultrasound diagnostic device, ultrasound diagnostic method, and ultrasound diagnostic program
WO2018053776A1 (zh) 超声图像标识的显示方法及装置
US10687786B2 (en) Ultrasound inspection apparatus, ultrasound inspection method and recording medium
WO2017041668A1 (zh) 多普勒成像方法及装置
JPWO2012043569A1 (ja) 超音波画像生成装置、超音波画像生成方法およびプログラム
US20160157830A1 (en) Ultrasonic diagnostic device and ultrasonic image generation method
JPWO2017033502A1 (ja) 超音波診断装置および超音波診断装置の制御方法
KR101183003B1 (ko) 마스크에 기초하여 초음파 공간 합성 영상을 제공하는 초음파 시스템 및 방법
US10143444B2 (en) Ultrasonic signal processing device and ultrasonic signal processing method
US9895134B2 (en) Ultrasound diagnostic apparatus and data processing method
US10788459B2 (en) Ultrasound diagnostic apparatus, ultrasound image generation method, and recording medium
JP2012217583A (ja) 超音波診断装置及び画像生成制御プログラム
US20180246194A1 (en) Ultrasonic image processing apparatus and ultrasonic image processing method
US9168024B2 (en) Ultrasound diagnostic apparatus and method of producing ultrasound image
JP4383732B2 (ja) 超音波画像生成装置
US11484295B2 (en) Ultrasound diagnostic technique for setting virtual origins of acoustic lines for trapezoidal scanning
US9291601B2 (en) Ambient sound velocity obtaining method and apparatus
JPWO2017037781A1 (ja) 走査型観察装置
WO2013073514A1 (ja) 超音波診断装置及び方法
JP2018139686A (ja) 超音波画像処理装置及び超音波画像処理方法
JP5781203B2 (ja) 超音波診断装置及び画像生成制御プログラム
US20240000439A1 (en) Ultrasound diagnostic apparatus and control method for ultrasound diagnostic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869765

Country of ref document: EP

Kind code of ref document: A1