WO2018053776A1 - 超声图像标识的显示方法及装置 - Google Patents

超声图像标识的显示方法及装置 Download PDF

Info

Publication number
WO2018053776A1
WO2018053776A1 PCT/CN2016/099805 CN2016099805W WO2018053776A1 WO 2018053776 A1 WO2018053776 A1 WO 2018053776A1 CN 2016099805 W CN2016099805 W CN 2016099805W WO 2018053776 A1 WO2018053776 A1 WO 2018053776A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
puncture
transparency
deflection
ultrasound
Prior art date
Application number
PCT/CN2016/099805
Other languages
English (en)
French (fr)
Inventor
黄灿
姚斌
Original Assignee
深圳华声医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华声医疗技术有限公司 filed Critical 深圳华声医疗技术有限公司
Publication of WO2018053776A1 publication Critical patent/WO2018053776A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3413Needle locating or guiding means guided by ultrasound

Definitions

  • the present invention relates to the field of ultrasonic imaging technology, and in particular, to a display method and apparatus for an ultrasound image identification.
  • Puncture enhancement technology is now widely used in medical ultrasound practice to guide doctors in puncture surgery and improve surgical efficiency and safety.
  • the puncture enhancement technique is to increase the amplitude of the needle echo by adding a frame of the probe at a large deflection angle in the conventional scanning emission sequence and making the deflection angle substantially perpendicular to the puncture needle body. Enhance and then use software algorithms to find pin-shaped areas in the image and enhance the display. In this technique, when displaying an image, it is often necessary to draw a deflection line or other marks such as a frame, area staining, etc., to remind the doctor to puncture the enhanced effective area range and to pay attention to controlling the relative position of the operation needle and the probe.
  • the marks such as the deflection lines are often attached to the image with a certain brightness, and the presence thereof actually causes some interference to the doctor's observation of the patient's tissue image, such as being too bright, distracting the doctor's attention, and the line is also Will make the continuity of the image of the organization interrupted, which will affect the doctor's diagnosis to some extent; in addition, in some cases, such as the orientation of the surgical needle is very far from the ineffective area, at this time the display of the deflection line and other marks It is actually superfluous.
  • the main object of the present invention is to provide a display method and apparatus for ultrasonic image identification, which aims to realize an adaptive display of the ultrasonic image identification, thereby enabling the doctor to naturally perceive the effective range of the penetration enhancement.
  • the present invention provides a display method for an ultrasound image identification, the method comprising the following steps:
  • the conventional spatial composite image frame and the large deflection image frame are naturally fused, and the ultrasonic image identification is displayed on the naturally fused ultrasound image according to the transparency.
  • the step of acquiring the distance from the needle body to the puncture-enhanced ineffective area, and obtaining the transparency of the ultrasound image identification based on the distance includes:
  • the transparency of the ultrasound image identification is calculated according to the shortest distance.
  • the step of calculating the transparency of the ultrasound image identifier according to the shortest distance comprises:
  • the shortest distance is mapped to a transparency of the ultrasound image identification according to a preset mapping rule.
  • the ultrasound image identifier includes a deflection line
  • the step of displaying the ultrasound image identifier on the ultrasound image after the natural fusion according to the transparency comprises:
  • the deflection line is displayed on the ultrasound image after natural fusion according to the transparency.
  • the step of performing the puncture needle body recognition according to the image data of the large deflection image frame comprises:
  • the pixel set is subjected to Hough transform processing to determine a straight line parameter of the puncture needle body in the coordinate system corresponding to the Hough transform.
  • the present invention also provides a display device for an ultrasonic image identification, the device comprising:
  • a first acquiring module configured to acquire a conventional spatial composite image frame and a large deflection image frame when the ultrasound transmitting device performs the puncture enhancement
  • a second acquiring module configured to perform a needle needle recognition according to the image data of the large deflection image frame, and acquire a distance from the needle body to the puncture enhancement invalid region, and obtain transparency of the ultrasound image identifier based on the distance, wherein The ultrasound image identifier is used to distinguish between a puncture-enhanced effective region and a puncture-enhanced ineffective region;
  • a display module configured to naturally fuse the conventional spatial composite image frame and the large deflection image frame in the vicinity of the needle body, and display the ultrasound image identifier on the natural fusion ultrasound image according to the transparency .
  • the second obtaining module includes:
  • An acquiring unit configured to acquire a shortest distance between an end of the needle body that is closer to the puncture-inhibited ineffective area to a boundary of the puncture-enhanced ineffective area;
  • a calculating unit configured to calculate a transparency of the ultrasound image identifier according to the shortest distance.
  • the calculating unit is further configured to map the shortest distance to a transparency of the ultrasound image identifier according to a preset mapping rule.
  • the ultrasound image identifier comprises a deflection line
  • the display module is further configured to display the deflection line on the ultrasound image after natural fusion according to the transparency.
  • the second obtaining module is further configured to:
  • a first processing unit configured to perform binarization processing on the image data of the large deflection image frame to determine a pixel set of the large deflection image frame that may be a puncture needle;
  • the second processing unit is configured to perform the Hough transform process on the set of pixels to determine a straight line parameter of the puncture needle body in the coordinate system corresponding to the Hough transform.
  • the invention acquires a conventional spatial composite image frame and a large deflection image frame when the ultrasonic transmitting device performs the puncture enhancement; the puncture needle body recognition is performed according to the image data of the large deflection image frame, and the needle body is obtained until the puncture enhancement is invalid a distance of the region, the transparency of the ultrasound image identification is obtained based on the distance, wherein the ultrasound image identifier is used to distinguish the puncture enhancement effective region from the puncture enhancement ineffective region; and the conventional space is compounded according to the position of the needle body
  • the image frame and the large deflection image frame are naturally fused, and the ultrasound image identification is displayed on the naturally fused ultrasound image according to the transparency.
  • the invention adopts a software algorithm to perform needle needle recognition, and assigns a certain transparency to the ultrasound image according to the distance of the puncture needle from the ineffective area of the puncture enhancement, and the ultrasound image identification will change according to a certain distance during the near and far change of the puncture needle.
  • the relationship asymptotically adaptively adjusts its transparency so that the doctor can naturally perceive the effective range of the puncture enhancement, and is not always attracted to the attention of the ultrasound image, and can pay more attention to the organization. Go inside the image itself.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for displaying an ultrasonic image identifier according to the present invention
  • FIG. 2 is a schematic diagram of a basic processing flow of ultrasonic imaging in the prior art
  • FIG. 3 is a schematic diagram showing a refinement step of obtaining a distance from the needle body to the puncture-inhibited ineffective area, and obtaining transparency of the ultrasonic image identification based on the distance;
  • FIG. 4 is a schematic flow chart showing the acquisition of a deflection line with transparency according to the present invention.
  • Figure 5 is a schematic view showing the boundary distance of the puncture needle to the ineffective area of the present invention.
  • FIG. 6 is a schematic diagram showing a refinement step of performing puncture needle body recognition according to image data of the large deflection image frame
  • FIG. 7 is a schematic diagram showing the principle of Hough transform according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of functional modules of an embodiment of a display device for ultrasonic image identification according to the present invention.
  • FIG. 9 is a schematic diagram of a refinement function module of the second acquisition module in FIG. 8;
  • FIG. 10 is a schematic diagram of another refinement function module of the second acquisition module of FIG. 8.
  • the invention provides a display method for an ultrasonic image identification.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for displaying an ultrasonic image identifier according to the present invention. The method includes the following steps:
  • step S10 when the ultrasound transmitting device performs the puncture enhancement, the conventional spatial composite image frame and the large deflection image frame are acquired.
  • the smooth surface of the puncture needle will cause the specular reflection of the needle body, so that the ultrasonic echo of the needle part is too weak, which may result in the puncture needle in the ultrasound image.
  • the display visibility is too low, which is not conducive to the doctor's operation, so many ultrasound devices are now equipped with a special puncture enhancement mode to enhance the display of the puncture needle.
  • the puncture enhancement technique it is generally achieved by adding a frame of the probe at a large deflection angle to the conventional scanning emission sequence, and making the deflection angle substantially perpendicular to the puncture needle body, thereby achieving a great enhancement of the needle echo. Then use software algorithms to find the pin-shaped area in the image and enhance the display.
  • the ultrasound transmitting device In order to remind the doctor to puncture the enhanced effective area and to control the relative position of the needle and the probe during the operation, the ultrasound transmitting device usually draws a diagonal line, ie a deflection line, on the image according to the user-specified deflection angle, indicating the large deflection. The direction of deflection of the angle, as well as the effective area of the puncture enhancement technique. It should be noted that other methods may be used to enhance the indication of the effective area. For example, the enhanced invalid area portion is superimposed with a certain color to distinguish it from the effective area, and the color area may be identified as an ultrasound image.
  • the ultrasonic transmitting apparatus includes an ultrasonic probe for transmitting and receiving ultrasonic waves, a processor for processing ultrasonic data, and a display for displaying an image of the ultrasonic scan output.
  • the ultrasound transmitting device is used for puncture enhancement
  • the conventional spatial composite image frame and the large deflection image frame acquired by the ultrasonic transmitting device are acquired, wherein the conventional spatial composite image frame is generated by the ultrasonic probe transmitting ultrasonic waves through the conventional B-mode ultrasound image.
  • the large deflection image frame is generated by ultrasonic imaging by the ultrasonic probe transmitting ultrasonic waves through a large deflection angle.
  • FIG. 2 is a schematic diagram of a basic processing flow of ultrasonic imaging in the prior art.
  • the basic processing flow of ultrasonic imaging includes five stages: the probe transmits ultrasonic waves, receives and parses echo data, image pre-processing, image buffering, image post-processing and display.
  • the basic working principle of ultrasound imaging is:
  • the piezoelectric transducer in the ultrasonic probe converts the voltage pulse excitation applied thereto into mechanical vibration, thereby emitting ultrasonic waves externally, wherein if the puncture enhanced display is performed, the ultrasonic probe also increases the ultrasonic wave with a large deflection angle;
  • Ultrasonic waves propagate in the medium (such as the human body), and generate reflected waves and scattered waves. After receiving the echo, the probe converts the vibration energy into an electrical signal, and after the modulus processing, generates corresponding image data and analyzes it;
  • the parsed image data is cached after image pre-processing operations such as spatial recombination, wherein if the puncture-enhanced display is performed, the parsed image data will further include a large deflection image;
  • the data buffer caches the processed intermediate data results for easy inspection and parameter adjustment.
  • the buffered image data is finally displayed on the display screen after image post-processing operations such as gain and dynamic range conversion. If the puncture-enhanced display is performed, the image post-processing operation needs to perform the puncture needle on the spatial composite image and the large deflection image. Fusion processing in the area to enhance the display of the needle image.
  • the basic processing flow and principle of the ultrasound imaging corresponding to the embodiment are basically the same as the prior art.
  • the biggest difference between the present embodiment and the existing puncture enhancement technology is that the ultrasonic image identification in the existing puncture enhancement technology is always The image is displayed on the ultrasound image with a fixed brightness, and in this embodiment, the ultrasound image identifier displays a certain transparency, and the transparency of the needle is automatically adjusted according to the distance from the puncture ineffective area to achieve adaptive display of the ultrasound image identification.
  • Step S20 performing puncture needle recognition according to image data of the large deflection image frame, and acquiring a distance from the needle body to the puncture enhancement invalid region, and acquiring transparency of the ultrasonic image identification based on the distance, wherein the ultrasound The image identification is used to distinguish between the puncture enhancement effective area and the puncture enhancement invalid area.
  • the ultrasound transmitting device after acquiring the large deflection image frame, the ultrasound transmitting device first performs the needle needle recognition according to the image data of the large deflection image frame.
  • the large deflection image may be sequentially subjected to binary values.
  • a software algorithm such as a processing and a Hough transform to determine the position of the needle body; then, the ultrasonic transmitting device acquires the distance from the needle body to the puncture-enhanced ineffective area, and obtains the transparency of the ultrasonic image identification based on the distance, for example, The shortest distance from the midpoint or the end point of the needle body to the puncture-enhanced ineffective area is used as the distance from the needle body to the puncture-enhanced ineffective area; when the transparency of the ultrasound image identification is obtained based on the distance, the manner of querying the preset table may be It can also be calculated by a preset algorithm to obtain the transparency of the ultrasound image identification, and can be flexibly set in the specific implementation.
  • the ultrasound image identifier is used to distinguish the puncture enhancement effective region and the puncture enhancement ineffective region, and the transparency thereof may be acquired and adjusted in real time according to the near and far change of the distance.
  • the identification should not be limited to the puncture enhancement technique of the present invention, but should also include all techniques that require indication of the characteristics of the ultrasound image, such as tissue segmentation lines in ultrasound image segmentation, such as lesion boundaries in disease diagnosis, or ultrasound. The severity of the disease in the image is displayed, etc., and is not limited to the examples cited herein.
  • Step S30 the natural spatial composite image frame and the large deflection image frame are naturally fused according to the position of the needle body, and the ultrasonic image identifier is displayed on the natural fusion ultrasound image according to the transparency. .
  • the image frame of the conventional space composite is taken out, and is naturally fused with the image frame of the large deflection angle in the straight line and the vicinity of the needle body obtained in the needle body recognition step.
  • a corresponding weight of the large deflection image and the conventional spatial composite image may be given a certain weight within a certain radius centered on the needle body, and superimposed in the radius range region, thereby ensuring a large deflection image and a regular space.
  • the naturally fused ultrasound image is displayed on the display of the ultrasound emitting device, and at the same time an ultrasound image identification with transparency is displayed on the ultrasound image.
  • the conventional spatial composite image frame and the large deflection image frame acquired by the ultrasonic transmitting device are acquired; the puncture needle body recognition is performed according to the image data of the large deflection image frame, and the a distance from the needle body to the puncture-enhanced ineffective area, the transparency of the ultrasound image identification is obtained based on the distance, wherein the ultrasound image identification is used to distinguish the puncture-enhanced effective area from the puncture-enhanced ineffective area; according to the position of the needle body,
  • the conventional spatial composite image frame and the large deflected image frame are naturally fused, and the ultrasonic image identification is displayed on the naturally fused ultrasound image according to the transparency.
  • the needle of the puncture needle is identified by a software algorithm, and the ultrasonic image is given a certain transparency according to the distance between the puncture needle and the ineffective region of the puncture enhancement, and in the process of the near and far change of the puncture needle, the ultrasonic image identifier will follow a certain distance.
  • the change relationship asymptotically adjusts its transparency so that the doctor can naturally perceive the effective range of the puncture enhancement, and will not be attracted to the attention of the ultrasound image at all times, and can pay more attention to Organize the image itself.
  • FIG. 3 is a schematic diagram of a refinement step of acquiring the distance of the needle body to the puncture-inhibiting invalid region, and acquiring the transparency of the ultrasonic image identification based on the distance.
  • the step S20 includes:
  • Step S21 obtaining a shortest distance between the end of the needle body that is closer to the puncture-inhibited invalid region to the boundary of the puncture-enhanced ineffective region;
  • Step S22 calculating transparency of the ultrasound image identifier according to the shortest distance.
  • the ultrasonic transmitting device acquires the shortest distance from the end of the needle body that is closer to the ineffective region of the puncture enhancement to the ineffective boundary of the puncture enhancement in real time, and then calculates the transparency of the ultrasonic image identification according to the shortest distance. Specifically, after identifying the position of the needle body, the position coordinates of the end of the needle body closer to the puncture-inhibiting invalid area may be acquired, and the shortest distance between the coordinates and the boundary of the puncture-enhanced invalid area is calculated, and according to the The change in the shortest distance adjusts the transparency of the ultrasound image identification in real time.
  • step S22 may include:
  • step S23 the shortest distance is mapped to the transparency of the ultrasound image identifier according to a preset mapping rule.
  • the preset rule may correspond to a preset mapping curve, which indicates a correlation between distance and transparency, and may map the distance to a certain transparency. For example, when the distance between the needle and the ineffective area is large, a higher transparency is set, and even when the distance is too large, the ultrasonic image identifier can be hidden; when the distance between the needle and the invalid area is small, a lower transparency is set to highlight the ultrasonic image identifier. .
  • the mapping curve needs a smooth gradual change, making the change of the yaw prompt softer and more natural. The appearance and disappearance of the logo are not abrupt, and there will be a process of change that makes the person feel naturally excessive.
  • the ultrasonic transmitting device can calculate the transparency according to the position of the needle body in time and display the ultrasonic image identification according to the transparency, so that the doctor can promptly remind the doctor to puncture the enhanced invalid area, and enhance the accuracy and reliability of the doctor's surgical operation.
  • the ultrasound image identifier includes a deflection line
  • the step of displaying the ultrasound image identifier according to the transparency on the naturally fused ultrasound image in step S30 may be replaced by:
  • step S40 the deflection line is displayed on the ultrasonic image after natural fusion according to the transparency.
  • the ultrasonic image identification includes a deflection line, a square, a region stain, etc., for indicating a region having a certain feature in the image of the puncture enhancement (a large deflection effective region of the needle can be found), and the ultrasound image is identified as a deflection Lines are illustrated.
  • FIG. 4 is a schematic diagram of an acquisition process of a deflection line with transparency according to the present invention. At least the spatial composite image frame of the conventional B image and the large deflection image frame are included in the puncture enhanced post-processing image buffer.
  • the acquisition process of the deflection line can be summarized as follows: the image data of the large deflection is taken out, the needle body identification step is entered, the parameter coordinates of the straight line where the needle body is located are found, and the distance between the position of the found needle and the enhanced invalid area is calculated.
  • the image frame of the conventional space composite is taken out, and it is naturally merged with the greatly deflected image frame in the straight line and the nearby area found in the previous step; according to the distance between the needle and the invalid area, a certain transparency is calculated, and the natural fusion is performed. A deflection line with transparency is drawn on the subsequent image.
  • FIG. 5 is a schematic illustration of the boundary distance of the puncture needle to the inactive area of the present invention.
  • the ultrasonic transmitting device automatically draws a deflection line according to the large deflection emission direction, and one side of the deflection line is a puncture-enhanced effective area, and the other side is a puncture-enhanced ineffective area.
  • the direction of emission of the ultrasonic waves needs to be perpendicular or nearly perpendicular to the orientation of insertion of the identified puncture needles to enhance the echoes, resulting in a sharper ultrasound image.
  • the distance of the needle from the ineffective area of the puncture enhancement is calculated, and the transparency of the ultrasonic image identification is obtained based on the distance.
  • the needle may be calculated to be closer to the ineffective area of the puncture enhancement.
  • the shortest distance from one end to the deflection line, as shown in Fig. 5, at this time, the deflection line is the boundary of the puncture-enhanced ineffective area, and the boundary distance is the end of the needle from the puncture-enhanced ineffective area to the deflection line. The shortest distance.
  • the deflection line After calculating the distance of the needle from the puncture-enhanced ineffective region and acquiring the transparency of the ultrasound image identification based on the distance, the deflection line is displayed on the natural fusion ultrasound image according to the transparency, when the boundary distance changes, The transparency of the displayed deflection line also changes, enabling adaptive display of the deflection line without manual instructions, allowing the physician to focus more on the tissue image itself.
  • FIG. 6 is a schematic diagram of a refinement step of performing puncture needle body recognition according to image data of the large deflection image frame.
  • the step of performing the puncture needle recognition according to the image data of the large deflection image frame may include:
  • Step S24 performing binarization processing on the image data of the large deflection image frame to determine a pixel set in the large deflection image frame that may be a puncture needle;
  • step S25 the pixel set is subjected to Hough transform processing to determine a straight line parameter of the puncture needle body in the coordinate system corresponding to the Hough transform.
  • the core of the puncture detection and the needle recognition is performed by the Hough transform process.
  • Hough transform is one of the basic methods for recognizing geometric shapes from images in image processing. It is mainly used to separate geometric shapes (such as lines, circles, etc.) with certain features from the image. The most basic Hough transform is available. It is to detect a straight line (or line segment) from a black and white image.
  • Figure 7 is a schematic diagram of the principle of Hough transform according to an embodiment of the present invention.
  • the parameters in the conventional linear coordinates can be mapped one-to-one to the parameters in the polar coordinates.
  • the straight line in each linear coordinate system can be uniquely determined from the distance from the origin to the line rho and the polar angle theta from the x-axis to the perpendicular, so the regular line parameter (k, b) converted to a new parameter group (rho, Theta).
  • rho Theta
  • the image is binarized in the previous step of the Hough transform to find the set of pixels most likely to be needles in the image, and after the Hough transform It is necessary to further make a series of screening judgments on all possible positions of the needle needle body found after the Hough transform, which can be determined according to the relevant parameters of the needle body, such as the length, width and straight type of the needle body.
  • Characteristic parameters, or some prior knowledge on common image processing, exclude some erroneous positional parameters in all possible positions, and position parameters without obvious problems (ie, the straight line parameters of the needle body at different emission angles) Set the probability of a real position, and finally output the linear parameter of the needle with the highest recognition probability.
  • the insertion orientation of the needle can be determined according to the linear parameter of the needle.
  • the invention also provides a display device for ultrasonic image identification.
  • FIG. 8 is a schematic diagram of functional modules of an embodiment of a display device for an ultrasonic image identification according to the present invention.
  • the device includes:
  • the first obtaining module 10 is configured to acquire a conventional spatial composite image frame and a large deflection image frame when the ultrasound transmitting device performs the puncture enhancement.
  • the smooth surface of the puncture needle will cause the specular reflection of the needle body, so that the ultrasonic echo of the needle part is too weak, which may result in the puncture needle in the ultrasound image.
  • the display visibility is too low, which is not conducive to the doctor's operation, so many ultrasound devices are now equipped with a special puncture enhancement mode to enhance the display of the puncture needle.
  • the puncture enhancement technique it is generally achieved by adding a frame of the probe at a large deflection angle to the conventional scanning emission sequence, and making the deflection angle substantially perpendicular to the puncture needle body, thereby achieving a great enhancement of the needle echo. Then use software algorithms to find the pin-shaped area in the image and enhance the display.
  • the ultrasound transmitting device In order to remind the doctor to puncture the enhanced effective area and to control the relative position of the needle and the probe during the operation, the ultrasound transmitting device usually draws a diagonal line, ie a deflection line, on the image according to the user-specified deflection angle, indicating the large deflection. The direction of deflection of the angle, as well as the effective area of the puncture enhancement technique. It should be noted that other methods may be used to enhance the indication of the effective area. For example, the enhanced invalid area portion is superimposed with a certain color to distinguish it from the effective area, and the color area may be identified as an ultrasound image.
  • the ultrasonic transmitting apparatus includes an ultrasonic probe for transmitting and receiving ultrasonic waves, a processor for processing ultrasonic data, and a display for displaying an image of the ultrasonic scan output.
  • the first acquiring module 10 acquires the conventional spatial composite image frame and the large deflection image frame acquired by the ultrasonic transmitting device, wherein the conventional spatial composite image frame is transmitted by the ultrasonic probe through the conventional B-mode ultrasonic wave. It is generated by performing ultrasonic imaging, and a large deflection image frame is generated by ultrasonic imaging by an ultrasonic probe transmitting ultrasonic waves through a large deflection angle.
  • FIG. 2 is a schematic diagram of a basic processing flow of ultrasonic imaging in the prior art.
  • the basic processing flow of ultrasonic imaging includes five stages: the probe transmits ultrasonic waves, receives and parses echo data, image pre-processing, image buffering, image post-processing and display.
  • the basic working principle of ultrasound imaging is:
  • the piezoelectric transducer in the ultrasonic probe converts the voltage pulse excitation applied thereto into mechanical vibration, thereby emitting ultrasonic waves externally, wherein if the puncture enhanced display is performed, the ultrasonic probe also increases the ultrasonic wave with a large deflection angle;
  • Ultrasonic waves propagate in the medium (such as the human body), and generate reflected waves and scattered waves. After receiving the echo, the probe converts the vibration energy into an electrical signal, and after the modulus processing, generates corresponding image data and analyzes it;
  • the parsed image data is cached after image pre-processing operations such as spatial recombination, wherein if the puncture-enhanced display is performed, the parsed image data will further include a large deflection image;
  • the data buffer caches the processed intermediate data results for easy inspection and parameter adjustment.
  • the buffered image data is finally displayed on the display screen after image post-processing operations such as gain and dynamic range conversion. If the puncture-enhanced display is performed, the image post-processing operation needs to perform the puncture needle on the spatial composite image and the large deflection image. Fusion processing in the area to enhance the display of the needle image.
  • the basic processing flow and principle of the ultrasound imaging corresponding to the embodiment are basically the same as the prior art.
  • the biggest difference between the present embodiment and the existing puncture enhancement technology is that the ultrasonic image identification in the existing puncture enhancement technology is always The image is displayed on the ultrasound image with a fixed brightness, and in this embodiment, the ultrasound image identifier displays a certain transparency, and the transparency of the needle is automatically adjusted according to the distance from the puncture ineffective area to achieve adaptive display of the ultrasound image identification.
  • the second obtaining module 20 is configured to perform a puncture needle body recognition according to the image data of the large deflection image frame, and acquire a distance from the needle body to the puncture enhancement invalid region, and obtain transparency of the ultrasonic image identifier based on the distance,
  • the ultrasound image identifier is used to distinguish between a puncture enhancement effective region and a puncture enhancement ineffective region.
  • the second acquisition module 20 first performs the needle needle recognition according to the image data of the large deflection image frame.
  • the first acquisition module 20 may The large deflection image successively performs software algorithms such as binarization processing and Hough transform to determine the position of the needle body; then, the second acquisition module 20 acquires the distance from the needle body to the puncture enhancement invalid region, and acquires the distance based on the distance.
  • the transparency of the ultrasound image identification such as the shortest distance from the midpoint or the end point of the needle body to the puncture-inhibited ineffective area as the distance from the needle body to the puncture-enhanced ineffective area; when the transparency of the ultrasound image identification is obtained based on the distance,
  • the transparency of the ultrasound image identification can be obtained by querying the preset table or by using a preset algorithm, which can be flexibly set in the specific implementation.
  • the ultrasound image identifier is used to distinguish the puncture enhancement effective region and the puncture enhancement ineffective region, and the transparency thereof may be acquired and adjusted in real time according to the near and far change of the distance.
  • the identification should not be limited to the puncture enhancement technique of the present invention, but should also include all techniques that require indication of the characteristics of the ultrasound image, such as tissue segmentation lines in ultrasound image segmentation, such as lesion boundaries in disease diagnosis, or ultrasound. The severity of the disease in the image is displayed, etc., and is not limited to the examples cited herein.
  • the display module 30 is configured to naturally fuse the conventional spatial composite image frame and the large deflection image frame according to the location of the needle body, and display the ultrasound image identifier according to the transparency after natural fusion. On the ultrasound image.
  • the image frame of the conventional space composite is taken out, and is naturally fused with the image frame of the large deflection angle in the straight line and the vicinity of the needle body obtained in the needle body recognition step.
  • a corresponding weight of the large deflection image and the conventional spatial composite image may be given a certain weight within a certain radius centered on the needle body, and superimposed in the radius range region, thereby ensuring a large deflection image and a regular space.
  • the naturally fused ultrasound image is displayed on the display of the ultrasound emitting device, and at the same time an ultrasound image identification with transparency is displayed on the ultrasound image.
  • the first acquiring module 10 acquires the conventional spatial composite image frame and the large deflection image frame; and the second acquiring module 20 performs the puncture needle according to the image data of the large deflection image frame.
  • the module 30 naturally fuses the conventional spatial composite image frame and the large deflection image frame according to the position of the needle body, and displays the ultrasound image identifier on the naturally fused ultrasound image according to the transparency.
  • the needle of the puncture needle is identified by a software algorithm, and the ultrasonic image is given a certain transparency according to the distance between the puncture needle and the ineffective region of the puncture enhancement, and in the process of the near and far change of the puncture needle, the ultrasonic image identifier will follow a certain distance.
  • the change relationship asymptotically adjusts its transparency so that the doctor can naturally perceive the effective range of the puncture enhancement, and will not be attracted to the attention of the ultrasound image at all times, and can pay more attention to Organize the image itself.
  • FIG. 9 is a schematic diagram of a refinement function module of the second acquisition module in FIG. Based on the embodiment shown in FIG. 8 , the second obtaining module 20 may include:
  • the obtaining unit 21 is configured to acquire a shortest distance between an end of the needle body that is closer to the puncture-inhibited invalid region to a boundary of the puncture-enhanced ineffective region;
  • the calculating unit 22 is configured to calculate the transparency of the ultrasound image identifier according to the shortest distance.
  • the acquiring unit 21 obtains the shortest distance from the end of the needle body closer to the puncture-inhibiting invalid region to the puncture-inhibiting invalid boundary in real time, and then the calculating unit 22 calculates the transparency of the ultrasonic image identifier according to the shortest distance. Specifically, after identifying the position of the needle body, the acquiring unit 21 can acquire the position coordinates of the end of the needle body that is closer to the puncture-inhibiting invalid area, and the calculating unit 22 calculates the shortest distance between the coordinates and the boundary of the puncture-enhanced invalid area. The distance and the transparency of the ultrasound image identification are adjusted in real time according to the change in the shortest distance.
  • the calculating unit 22 is further configured to map the shortest distance into a transparency of the ultrasound image identifier according to a preset mapping rule.
  • the preset rule may correspond to a preset mapping curve, which indicates a correlation between distance and transparency, and may map the distance to a certain transparency. For example, when the distance between the needle and the ineffective area is large, a higher transparency is set, and even when the distance is too large, the ultrasonic image identifier can be hidden; when the distance between the needle and the invalid area is small, a lower transparency is set to highlight the ultrasonic image identifier. .
  • the mapping curve needs a smooth gradual change, making the change of the yaw prompt softer and more natural. The appearance and disappearance of the logo are not abrupt, and there will be a process of change that makes the person feel naturally excessive.
  • the acquisition unit 21 acquires the shortest distance from the end of the needle body that is closer to the puncture enhancement ineffective area to the boundary of the puncture enhancement invalid area, and the calculation unit 22 calculates the ultrasonic image identifier according to the shortest distance.
  • the transparency method enables the ultrasonic transmitting device to calculate the transparency according to the position of the needle body in time and display the ultrasonic image identification according to the transparency, so that the doctor can promptly remind the doctor to puncture the enhanced ineffective area, and enhance the accuracy and reliability of the doctor's surgical operation. .
  • the ultrasound image identification includes a deflection line
  • the display module 30 is further configured to display the deflection line on the ultrasound image after natural fusion according to the transparency.
  • the ultrasonic image identification includes a deflection line, a square, a region stain, etc., for indicating a region having a certain feature in the image of the puncture enhancement (a large deflection effective region of the needle can be found), and the ultrasound image is identified as a deflection Lines are illustrated.
  • FIG. 4 is a schematic diagram of an acquisition process of a deflection line with transparency according to the present invention. At least the spatial composite image frame of the conventional B image and the large deflection image frame are included in the puncture enhanced post-processing image buffer.
  • the acquisition process of the deflection line can be summarized as follows: the image data of the large deflection is taken out, the needle body identification step is entered, the parameter coordinates of the straight line where the needle body is located are found, and the distance between the position of the found needle and the enhanced invalid area is calculated.
  • the image frame of the conventional space composite is taken out, and it is naturally merged with the greatly deflected image frame in the straight line and the nearby area found in the previous step; according to the distance between the needle and the invalid area, a certain transparency is calculated, and the natural fusion is performed. A deflection line with transparency is drawn on the subsequent image.
  • FIG. 5 is a schematic illustration of the boundary distance of the puncture needle to the inactive area of the present invention.
  • the ultrasonic transmitting device automatically draws a deflection line according to the large deflection emission direction, and one side of the deflection line is a puncture-enhanced effective area, and the other side is a puncture-enhanced ineffective area.
  • the direction of emission of the ultrasonic waves needs to be perpendicular or nearly perpendicular to the orientation of insertion of the identified puncture needles to enhance the echoes, resulting in a sharper ultrasound image.
  • the second acquisition module 20 identifies the needle body by using a software algorithm, calculates the distance of the needle body from the puncture-inhibited invalid region, and obtains the transparency of the ultrasound image identifier based on the distance.
  • the needle body can be calculated from the puncture. Enhance the shortest distance between the end of the ineffective area and the deflection line, as shown in Figure 5.
  • the deflection line is the boundary of the puncture-enhanced ineffective area, and the boundary distance is the end of the needle that is closer to the ineffective area of the puncture enhancement. The shortest distance to the deflection line.
  • the display module 30 After calculating the distance of the needle from the puncture-enhanced ineffective region and acquiring the transparency of the ultrasound image identification based on the distance, the display module 30 displays the deflection line on the ultrasound image after the natural fusion according to the transparency, when the boundary distance occurs.
  • the transparency of the displayed deflection line also changes, enabling adaptive display of the deflection line without manual instructions, allowing the doctor to focus more on the tissue image itself.
  • FIG. 10 is a schematic diagram of another refinement function module of the second acquisition module in FIG. Based on the foregoing embodiment, the second obtaining module 20 further includes:
  • a first processing unit 24 configured to perform binarization processing on image data of the large deflection image frame to determine a pixel set of the large deflection image frame that may be a puncture needle;
  • the second processing unit 25 is configured to perform the Hough transform process on the pixel set to determine a line parameter of the puncture needle body in the coordinate system corresponding to the Hough transform.
  • the core of the puncture detection and the needle recognition is performed by the Hough transform process.
  • Hough transform is one of the basic methods for recognizing geometric shapes from images in image processing. It is mainly used to separate geometric shapes (such as lines, circles, etc.) with certain features from the image. The most basic Hough transform is available. It is to detect a straight line (or line segment) from a black and white image.
  • Figure 7 is a schematic diagram of the principle of Hough transform according to an embodiment of the present invention.
  • the parameters in the conventional linear coordinates can be mapped one-to-one to the parameters in the polar coordinates.
  • the straight line in each linear coordinate system can be uniquely determined from the distance from the origin to the line rho and the polar angle theta from the x-axis to the perpendicular, so the regular line parameter (k, b) converted to a new parameter group (rho, Theta).
  • rho Theta
  • the first processing unit 24 first binarizes the image in the previous step of the Hough transform to find the pixel set most likely to be a pin in the image, and After the Hough transform, the second processing unit 25 needs to further perform a series of screening judgments on all possible positions of the puncture needle body found after the Hough transform, which may be determined according to relevant parameters of the needle body, such as a needle.
  • the straight line parameter of the needle body of the puncture needle sets a probability of being a real position, and finally outputs a linear parameter of the needle body of the puncture needle with the highest recognition probability, wherein the puncture needle can be correspondingly determined according to the linear parameter of the needle body of the puncture needle Insert orientation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声图像标识的显示方法,包括:在超声发射设备进行穿刺增强时,获取常规空间复合图像帧和大偏转图像帧(S10);根据大偏转图像帧的图像数据进行穿刺针针体识别,并获取针体到穿刺增强无效区域的距离,基于该距离获取超声图像标识的透明度,该超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域(S20);在针体附近,将常规空间复合图像帧和大偏转图像帧进行自然融合,将超声图像标识按照透明度显示在自然融合后的超声图像上(S30)。该方法能够实现超声图像标识的自适应显示,从而使医生能够方便地观察到穿刺增强的有效范围。还公开了一种超声图像标识的显示装置。

Description

超声图像标识的显示方法及装置
技术领域
本发明涉及超声成像技术领域,尤其涉及超声图像标识的显示方法及装置。
背景技术
穿刺增强技术如今广泛应用于医学超声实践中,用于引导医生进行穿刺类手术,提高手术效率与安全性。
目前,许多超声设备都配备了专门的穿刺增强模式用于增强穿刺针的显示效果,以方便医生手术操作。一般来说,穿刺增强技术都是通过在常规的扫描发射序列中增加一帧探头大偏转角度下的发射,并使其偏转角度与穿刺针体基本垂直,以此实现针体回波的极大增强,然后再利用软件算法寻找图像中的针形区域并增强显示。在这一技术中,在图像显示时,往往需要特别绘制一条偏转线或者其他标识比如框、区域染色等,用于提醒医生穿刺增强的有效区域范围和注意控制手术时针和探头的相对位置。
然而,偏转线等标识往往都是以确定的亮度附着在图像上,其存在实际上会对医生观察病人的组织图像产生一定的干扰,比如过于亮眼,分散医生的注意,同时这根线也会使得组织图像的连续性有所中断,这些都会在一定程度上影响医生的诊断;此外,在某些情况下,比如手术入针的方位离无效区域非常远,此时偏转线等标识的显示其实是多余的。
发明内容
本发明的主要目的在于提出一种超声图像标识的显示方法及装置,旨在实现超声图像标识的自适应显示,从而使医生能够自然地察觉穿刺增强的有效范围。
为实现上述目的,本发明提供一种超声图像标识的显示方法,所述方法包括如下步骤:
在超声发射设备进行穿刺增强时,获取常规空间复合图像帧和大偏转图像帧;
根据所述大偏转图像帧的图像数据进行穿刺针针体识别,并获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度,其中,所述超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域;
在所述针体附近,将所述常规空间复合图像帧和所述大偏转图像帧进行自然融合,将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上。
可选地,所述获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度的步骤包括:
获取所述针体离穿刺增强无效区域较近的一端到所述穿刺增强无效区域边界之间的最短距离;
根据所述最短距离计算得到超声图像标识的透明度。
可选地,所述根据所述最短距离计算得到超声图像标识的透明度的步骤包括:
将所述最短距离按照预设的映射规则映射为超声图像标识的透明度。
可选地,所述超声图像标识包括偏转线,所述将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上的步骤包括:
将所述偏转线按照所述透明度显示在自然融合后的超声图像上。
可选地,所述根据所述大偏转图像帧的图像数据进行穿刺针针体识别的步骤包括:
将所述大偏转图像帧的图像数据进行二值化处理,以确定所述大偏转图像帧中可能为穿刺针的像素集合;
将所述像素集合进行霍夫变换处理,以确定霍夫变换对应的坐标系下穿刺针针体所在直线参数。
此外,为实现上述目的,本发明还提供一种超声图像标识的显示装置,所述装置包括:
第一获取模块,用于在超声发射设备进行穿刺增强时,获取常规空间复合图像帧和大偏转图像帧;
第二获取模块,用于根据所述大偏转图像帧的图像数据进行穿刺针针体识别,并获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度,其中,所述超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域;
显示模块,用于在所述针体附近,将所述常规空间复合图像帧和所述大偏转图像帧进行自然融合,将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上。
可选地,所述第二获取模块包括:
获取单元,用于获取所述针体离穿刺增强无效区域较近的一端到所述穿刺增强无效区域边界之间的最短距离;
计算单元,用于根据所述最短距离计算得到超声图像标识的透明度。
可选地,所述计算单元还用于将所述最短距离按照预设的映射规则映射为超声图像标识的透明度。
可选地,所述超声图像标识包括偏转线,所述显示模块还用于将所述偏转线按照所述透明度显示在自然融合后的超声图像上。
可选地,所述第二获取模块还用于:
第一处理单元,用于将所述大偏转图像帧的图像数据进行二值化处理,以确定所述大偏转图像帧中可能为穿刺针的像素集合;
第二处理单元,用于将所述像素集合进行霍夫变换处理,以确定霍夫变换对应的坐标系下穿刺针针体所在直线参数。
本发明在超声发射设备进行穿刺增强时,获取常规空间复合图像帧和大偏转图像帧;根据所述大偏转图像帧的图像数据进行穿刺针针体识别,并获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度,其中,所述超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域;根据所述针体所在的位置,将所述常规空间复合图像帧和所述大偏转图像帧进行自然融合,将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上。本发明通过软件算法进行穿刺针针体识别,根据穿刺针离穿刺增强无效区域的远近赋予超声图像标识一定的透明度,而在穿刺针的远近变化过程中,超声图像标识将会按照一定的距离变化关系渐近地自适应地调整其透明度,从而使医生既能够自然地察觉穿刺增强有效范围,又不会时时刻刻地被超声图像标识吸引一定的注意力,能够将更多注意力放到组织图像本身中去。
附图说明
图1为本发明超声图像标识的显示方法一实施例的流程示意图;
图2为现有技术中超声成像的基本处理流程示意图;
图3为获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度的细化步骤示意图;
图4为本发明带透明度的偏转线的获取流程示意图;
图5为本发明穿刺针到无效区域的边界距离的示意图;
图6为根据所述大偏转图像帧的图像数据进行穿刺针针体识别的细化步骤示意图;
图7为本发明实施例霍夫变换的原理示意图;
图8为本发明超声图像标识的显示装置一实施例的功能模块示意图;
图9为图8中第二获取模块的细化功能模块示意图;
图10为图8中第二获取模块的另一细化功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种超声图像标识的显示方法。
参照图1,图1为本发明超声图像标识的显示方法一实施例的流程示意图。所述方法包括如下步骤:
步骤S10,在超声发射设备进行穿刺增强时,获取常规空间复合图像帧和大偏转图像帧。
医生在进行穿刺手术时,若采用常规B超模式进行超声成像,由于穿刺针的光滑表面会引起针体的镜面反射,使得针体部分的超声回波过于微弱,会导致超声图像中穿刺针的显示可见度太低,不利于医生进行操作,因而如今许多超声设备都配备了专门的穿刺增强模式用于增强穿刺针的显示效果。
在穿刺增强技术中,一般是通过在常规的扫描发射序列中增加一帧探头大偏转角度下的发射,并使其偏转角度与穿刺针体基本垂直,以此实现针体回波的极大增强,然后再利用软件算法寻找图像中的针形区域并增强显示。为了提醒医生穿刺增强的有效区域范围和注意控制手术时针和探头的相对位置,超声发射设备通常会按照用户预先指定的偏转角度,在图像上绘制一条斜线,即偏转线,用来指示大偏转角度的偏转方向,以及穿刺增强技术的有效区域。需要说明的是,增强有效区域的指示也可以采用其他方法,比如将增强无效区域部分整体叠加上一定的色彩,以跟有效区域相区别,此时可以将该色彩区域作为超声图像标识。
在本实施例中,超声发射设备包括超声探头、处理器和显示器,所述超声探头用于发射和接收超声波,所述处理器用于处理超声波数据,所述显示器用于显示超声波扫描输出的图像。在采用超声发射设备进行穿刺增强时,获取超声发射设备采集到的常规空间复合图像帧和大偏转图像帧,其中,常规空间复合图像帧由超声波探头通过常规B超模式发射超声波进行超声成像而生成,大偏转图像帧由超声波探头通过大偏转角发射超声波进行超声成像而生成。
参照图2,图2为现有技术中超声成像的基本处理流程示意图。
超声成像的基本处理流程依次包括:探头发射超声波、接收并解析回波数据、图像前处理、图像缓存、图像后处理与显示等五大处理阶段。其中,超声成像的基本工作原理是:
1. 超声探头内的压电换能器将施加在它上面的电压脉冲激励转换成机械振动,从而对外发射出超声波,其中,若进行穿刺增强显示,则超声探头还会增加发射大偏转角超声波;
2. 超声波在媒介中传播(比如人体),会产生反射波和散射波,探头接收到回波后,将振动能量变换成电信号,并经过模数处理后生成相应的图像数据并对其进行解析;
3. 解析出的图像数据经过空间复合等图像前处理操作之后进行缓存,其中,若进行穿刺增强显示,则解析出的图像数据还将包括大偏转图像;
4. 数据缓存区把处理的中间数据结果缓存下来,以方便检查和参数调节。
5. 缓存后的图像数据经过增益、动态范围变换等图像后处理操作后最终显示于显示屏幕上面,其中,若进行穿刺增强显示,则图像后处理操作还需将空间复合图像与大偏转图像进行穿刺针所在区域的融合处理以增强显示穿刺针图像。
本实施例所对应的超声成像的基本处理流程与原理与现有技术基本相同,其中,本实施例与现有穿刺增强技术最大的不同之处在于:现有穿刺增强技术中的超声图像标识始终以固定的亮度显示在超声图像上,而本实施例中超声图像标识会显示一定的透明度,并根据穿刺针离穿刺无效区域的距离自动地调整其透明度,以实现超声图像标识的自适应显示。
步骤S20,根据所述大偏转图像帧的图像数据进行穿刺针针体识别,并获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度,其中,所述超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域。
在本实施例中,超声发射设备在获取到大偏转图像帧之后,首先根据所述大偏转图像帧的图像数据进行穿刺针针体识别,具体地,可以将所述大偏转图像先后进行二值化处理和霍夫变换等软件算法,以确定针体所在位置;然后,超声发射设备获取所述针体到穿刺增强无效区域的距离,并基于所述距离获取超声图像标识的透明度,比如可以将所述针体的中点或端点到穿刺增强无效区域的最短距离作为针体到穿刺增强无效区域的距离;在基于所述距离获取超声图像标识的透明度时,可以通过查询预设表格的方式,也可以通过预设算法计算以得到超声图像标识的透明度,具体实施中可灵活设置。
需要说明的是,本实施例中超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域,其透明度可以根据所述距离的远近变化进行实时获取和调整。标识不应局限于本发明中的穿刺增强技术,还应包括所有需要指示超声图像特征的技术,比如在超声图像分割中的组织分割线,比如在疾病诊断中的病灶分界线,还可以是超声图像中的病情严重度分级显示等等,并不限于此处举出的例子。
步骤S30,根据所述针体所在的位置,将所述常规空间复合图像帧和所述大偏转图像帧进行自然融合,将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上。
在识别出针体所在位置之后,取出常规空间复合后的图像帧,将其与大偏转角的图像帧在针体识别步骤中所得到的针体所在直线及附近区域内进行自然融合。具体地,可以在以针体为中心的一定半径范围内,给大偏转图像与常规空间复合图像的对应像素各赋予一定权重,并在此半径范围区域进行叠加,从而保证大偏转图像与常规空间复合图像在整张超声图像上的自然融合。之后,在超声发射设备的显示器上显示自然融合后超声图像,并同时在所述超声图像上显示带有透明度的超声图像标识。
在本实施例中,在穿刺增强时,获取超声发射设备采集到的常规空间复合图像帧和大偏转图像帧;根据所述大偏转图像帧的图像数据进行穿刺针针体识别,并获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度,其中,所述超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域;根据所述针体所在的位置,将所述常规空间复合图像帧和所述大偏转图像帧进行自然融合,将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上。本实施例通过软件算法进行穿刺针针体识别,根据穿刺针离穿刺增强无效区域的远近赋予超声图像标识一定的透明度,而在穿刺针的远近变化过程中,超声图像标识将会按照一定的距离变化关系渐近地自适应地调整其透明度,从而使医生既能够自然地察觉穿刺增强有效范围,又不会时时刻刻地被超声图像标识吸引一定的注意力,能够将更多注意力放到组织图像本身中去。
进一步地,参照图3,图3为获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度的细化步骤示意图。基于上述图1所示的实施例,所述步骤S20包括:
步骤S21,获取所述针体离穿刺增强无效区域较近的一端到所述穿刺增强无效区域边界之间的最短距离;
步骤S22,根据所述最短距离计算得到超声图像标识的透明度。
在本实施例中,超声发射设备实时获取针体离穿刺增强无效区域较近的一端到穿刺增强无效边界的最短距离,然后再根据所述最短距离计算得到超声图像标识的透明度。具体地,在识别出针体所在位置后,可以获取针体离穿刺增强无效区域较近的一端的位置坐标,计算该坐标到所述穿刺增强无效区域边界之间的最短距离,并根据所述最短距离的变化实时调整所述超声图像标识的透明度。
进一步地,所述步骤S22可以包括:
步骤S23,将所述最短距离按照预设的映射规则映射为超声图像标识的透明度。
本实施例中预设规则可以对应一预先设置好的映射曲线,该曲线表明了距离和透明度之间的相关关系,可以将将距离映射为一定的透明度。比如在针体离无效区域距离较大时设置较高的透明度,甚至在距离过大时可以隐藏超声图像标识;在针体离无效区域距离较小时设置较低的透明度,以突出显示超声图像标识。此外,映射曲线需要平滑渐变,使偏转提示的变化更加柔和而自然,标识的显现与消逝也不是突兀的,会有一个变化过程,使人感应自然地过度。
在本实施例中,通过获取所述针体离穿刺增强无效区域较近的一端到所述穿刺增强无效区域的边界的最短距离,并根据所述最短距离计算得到超声图像标识的透明度的方式,能够使超声发射设备及时根据针体的位置计算透明度并将超声图像标识按照所述透明度进行显示,从而可以及时提醒医生穿刺增强的无效区域,增强医生手术操作的准确性和可靠性。
进一步地,基于上述的实施例,所述超声图像标识包括偏转线,所述步骤S30中将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上的步骤可以替换为:
步骤S40,将所述偏转线按照所述透明度显示在自然融合后的超声图像上。
在本实施例中,超声图像标识包括偏转线、方框、区域染色等,用于指示穿刺增强的图像中具有一定特征的区域(能找到针的大偏转有效区域),以超声图像标识为偏转线进行举例说明。
参照图4,图4为本发明带透明度的偏转线的获取流程示意图。在穿刺增强的后处理图像缓存中至少包括了常规B图像的空间复合图像帧,以及大偏转图像帧。偏转线的获取流程可以概括如下:取出大偏转的图像数据,进入针体识别步骤,找出针体所在直线的参数坐标,并计算出找到的针的位置与增强无效区域的距离。之后,取出常规空间复合后的图像帧,将其与大偏转的图像帧,在上一步找到的直线及附近区域内进行自然融合;按照针与无效区域的距离计算出一定的透明度,在自然融合后的图像上绘制出带透明度的偏转线。
参照图5,图5为本发明穿刺针到无效区域的边界距离的示意图。在穿刺增强过程中,超声发射设备根据大偏转发射方向自动绘制出偏转线,且偏转线一侧为穿刺增强有效区域,另一侧为穿刺增强无效区域。在大偏转发射角度下,需要将超声波的发射方向与所识别的穿刺针的插入取向保持垂直或近似垂直,以增强回波,从而得到更清晰的超声图像。
在利用软件算法识别出穿刺针针体之后,计算针体离穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度,具体地,可以计算所述针体离穿刺增强无效区域较近的一端到偏转线之间的最短距离,如图5所示,此时偏转线即为穿刺增强无效区域的边界,边界距离即为针体离穿刺增强无效区域较近的一端到偏转线之间的最短距离。在计算出针体离穿刺增强无效区域的距离进而基于所述距离获取超声图像标识的透明度之后,再将偏转线按照所述透明度显示在自然融合后的超声图像上,当边界距离发生变化时,显示的偏转线的透明度也会发生变化,从而实现了偏转线的自适应显示,无需人工进行指示,从而能够使医生将更多的注意力放到组织图像本身中去。
进一步地,参照图6,图6为根据所述大偏转图像帧的图像数据进行穿刺针针体识别的细化步骤示意图。基于上述的实施例,所述根据所述大偏转图像帧的图像数据进行穿刺针针体识别的步骤可以包括:
步骤S24,将所述大偏转图像帧的图像数据进行二值化处理,以确定所述大偏转图像帧中可能为穿刺针的像素集合;
步骤S25,将所述像素集合进行霍夫变换处理,以确定霍夫变换对应的坐标系下穿刺针针体所在直线参数。
在本实施例中,穿刺检测与针体识别的核心都是采用霍夫变换处理。其中,霍夫变换( Hough Transform)是图像处理中从图像中识别几何形状的基本方法之一,主要用来从图像中分离出具有某种相同特征的几何形状(如直线、圆等),现有最基本的霍夫变换就是从黑白图像中检测直线(或线段)。
参照图7,图7为本发明实施例霍夫变换的原理示意图。考虑到现有穿刺针一般都是直线形式的,因此可通过将常规直线坐标下的参数一一对应地映射为极坐标下的参数。每一条直线坐标系下的直线都可以由原点至直线的距离rho与x轴至垂线的极角theta唯一确定,因此可以将常规直线参数(k, b)转化为新的参数组(rho, theta)。而如果图像中存在直线,将对于某个参数组的数量会出现一个统计的极大值。因此可以将检测直线的过程变换为统计具有极大值的参数组的过程。
本实施例中,为了获得准确的结果,以及提高算法效率,会在霍夫变换的前一步先对图像作二值化处理,找到图像中最可能为针的像素集合,而在霍夫变换之后,需要进一步对经过霍夫变换后所找到的穿刺针针体的所有可能位置作一系列筛选判断,具体可以通过根据穿刺针针体的相关参数,比如针体的长度、宽度及直线型等其他特征参数,或者常用图像处理上的一些先验知识,排除所有可能位置中一些错误的位置参数,并对没有明显问题的位置参数(也即不同发射角度下所述穿刺针针体所在直线参数)设定一个为真实位置的概率,并最后输出识别概率最高的穿刺针针体所在直线参数,其中,根据穿刺针针体所在直线参数可相应确定穿刺针的插入取向。
本发明还提供一种超声图像标识的显示装置。
参照图8,图8为本发明超声图像标识的显示装置一实施例的功能模块示意图。所述装置包括:
第一获取模块10,用于在超声发射设备进行穿刺增强时,获取常规空间复合图像帧和大偏转图像帧。
医生在进行穿刺手术时,若采用常规B超模式进行超声成像,由于穿刺针的光滑表面会引起针体的镜面反射,使得针体部分的超声回波过于微弱,会导致超声图像中穿刺针的显示可见度太低,不利于医生进行操作,因而如今许多超声设备都配备了专门的穿刺增强模式用于增强穿刺针的显示效果。
在穿刺增强技术中,一般是通过在常规的扫描发射序列中增加一帧探头大偏转角度下的发射,并使其偏转角度与穿刺针体基本垂直,以此实现针体回波的极大增强,然后再利用软件算法寻找图像中的针形区域并增强显示。为了提醒医生穿刺增强的有效区域范围和注意控制手术时针和探头的相对位置,超声发射设备通常会按照用户预先指定的偏转角度,在图像上绘制一条斜线,即偏转线,用来指示大偏转角度的偏转方向,以及穿刺增强技术的有效区域。需要说明的是,增强有效区域的指示也可以采用其他方法,比如将增强无效区域部分整体叠加上一定的色彩,以跟有效区域相区别,此时可以将该色彩区域作为超声图像标识。
在本实施例中,超声发射设备包括超声探头、处理器和显示器,所述超声探头用于发射和接收超声波,所述处理器用于处理超声波数据,所述显示器用于显示超声波扫描输出的图像。在采用超声发射设备进行穿刺增强时,第一获取模块10获取超声发射设备采集到的常规空间复合图像帧和大偏转图像帧,其中,常规空间复合图像帧由超声波探头通过常规B超模式发射超声波进行超声成像而生成,大偏转图像帧由超声波探头通过大偏转角发射超声波进行超声成像而生成。
参照图2,图2为现有技术中超声成像的基本处理流程示意图。
超声成像的基本处理流程依次包括:探头发射超声波、接收并解析回波数据、图像前处理、图像缓存、图像后处理与显示等五大处理阶段。其中,超声成像的基本工作原理是:
1. 超声探头内的压电换能器将施加在它上面的电压脉冲激励转换成机械振动,从而对外发射出超声波,其中,若进行穿刺增强显示,则超声探头还会增加发射大偏转角超声波;
2. 超声波在媒介中传播(比如人体),会产生反射波和散射波,探头接收到回波后,将振动能量变换成电信号,并经过模数处理后生成相应的图像数据并对其进行解析;
3. 解析出的图像数据经过空间复合等图像前处理操作之后进行缓存,其中,若进行穿刺增强显示,则解析出的图像数据还将包括大偏转图像;
4. 数据缓存区把处理的中间数据结果缓存下来,以方便检查和参数调节。
5. 缓存后的图像数据经过增益、动态范围变换等图像后处理操作后最终显示于显示屏幕上面,其中,若进行穿刺增强显示,则图像后处理操作还需将空间复合图像与大偏转图像进行穿刺针所在区域的融合处理以增强显示穿刺针图像。
本实施例所对应的超声成像的基本处理流程与原理与现有技术基本相同,其中,本实施例与现有穿刺增强技术最大的不同之处在于:现有穿刺增强技术中的超声图像标识始终以固定的亮度显示在超声图像上,而本实施例中超声图像标识会显示一定的透明度,并根据穿刺针离穿刺无效区域的距离自动地调整其透明度,以实现超声图像标识的自适应显示。
第二获取模块20,用于根据所述大偏转图像帧的图像数据进行穿刺针针体识别,并获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度,其中,所述超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域。
在本实施例中,第一获取模块10在获取到大偏转图像帧之后,第二获取模块20首先根据所述大偏转图像帧的图像数据进行穿刺针针体识别,具体地,可以将所述大偏转图像先后进行二值化处理和霍夫变换等软件算法,以确定针体所在位置;然后,第二获取模块20获取所述针体到穿刺增强无效区域的距离,并基于所述距离获取超声图像标识的透明度,比如可以将所述针体的中点或端点到穿刺增强无效区域的最短距离作为针体到穿刺增强无效区域的距离;在基于所述距离获取超声图像标识的透明度时,可以通过查询预设表格的方式,也可以通过预设算法计算以得到超声图像标识的透明度,具体实施中可灵活设置。
需要说明的是,本实施例中超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域,其透明度可以根据所述距离的远近变化进行实时获取和调整。标识不应局限于本发明中的穿刺增强技术,还应包括所有需要指示超声图像特征的技术,比如在超声图像分割中的组织分割线,比如在疾病诊断中的病灶分界线,还可以是超声图像中的病情严重度分级显示等等,并不限于此处举出的例子。
显示模块30,用于根据所述针体所在的位置,将所述常规空间复合图像帧和所述大偏转图像帧进行自然融合,将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上。
在识别出针体所在位置之后,取出常规空间复合后的图像帧,将其与大偏转角的图像帧在针体识别步骤中所得到的针体所在直线及附近区域内进行自然融合。具体地,可以在以针体为中心的一定半径范围内,给大偏转图像与常规空间复合图像的对应像素各赋予一定权重,并在此半径范围区域进行叠加,从而保证大偏转图像与常规空间复合图像在整张超声图像上的自然融合。之后,在超声发射设备的显示器上显示自然融合后超声图像,并同时在所述超声图像上显示带有透明度的超声图像标识。
在本实施例中,在超声发射设备进行穿刺增强时,第一获取模块10获取常规空间复合图像帧和大偏转图像帧;第二获取模块20根据所述大偏转图像帧的图像数据进行穿刺针针体识别,并获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度,其中,所述超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域;显示模块30根据所述针体所在的位置,将所述常规空间复合图像帧和所述大偏转图像帧进行自然融合,将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上。本实施例通过软件算法进行穿刺针针体识别,根据穿刺针离穿刺增强无效区域的远近赋予超声图像标识一定的透明度,而在穿刺针的远近变化过程中,超声图像标识将会按照一定的距离变化关系渐近地自适应地调整其透明度,从而使医生既能够自然地察觉穿刺增强有效范围,又不会时时刻刻地被超声图像标识吸引一定的注意力,能够将更多注意力放到组织图像本身中去。
进一步地,参照图9,图9为图8中第二获取模块的细化功能模块示意图。基于上述图8所示的实施例,所述第二获取模块20可以包括:
获取单元21,用于获取所述针体离穿刺增强无效区域较近的一端到所述穿刺增强无效区域边界之间的最短距离;
计算单元22,用于根据所述最短距离计算得到超声图像标识的透明度。
在本实施例中,获取单元21实时获取针体离穿刺增强无效区域较近的一端到穿刺增强无效边界的最短距离,然后计算单元22再根据所述最短距离计算得到超声图像标识的透明度。具体地,在识别出针体所在位置后,获取单元21可以获取针体离穿刺增强无效区域较近的一端的位置坐标,计算单元22计算该坐标到所述穿刺增强无效区域边界之间的最短距离,并根据所述最短距离的变化实时调整所述超声图像标识的透明度。
进一步地,所述计算单元22还用于将所述最短距离按照预设的映射规则映射为超声图像标识的透明度。
本实施例中预设规则可以对应一预先设置好的映射曲线,该曲线表明了距离和透明度之间的相关关系,可以将将距离映射为一定的透明度。比如在针体离无效区域距离较大时设置较高的透明度,甚至在距离过大时可以隐藏超声图像标识;在针体离无效区域距离较小时设置较低的透明度,以突出显示超声图像标识。此外,映射曲线需要平滑渐变,使偏转提示的变化更加柔和而自然,标识的显现与消逝也不是突兀的,会有一个变化过程,使人感应自然地过度。
本实施例中,通过获取单元21获取所述针体离穿刺增强无效区域较近的一端到所述穿刺增强无效区域的边界的最短距离,计算单元22根据所述最短距离计算得到超声图像标识的透明度的方式,能够使超声发射设备及时根据针体的位置计算透明度并将超声图像标识按照所述透明度进行显示,从而可以及时提醒医生穿刺增强的无效区域,增强医生手术操作的准确性和可靠性。
进一步地,继续参照图8,所述超声图像标识包括偏转线,所述显示模块30还用于将所述偏转线按照所述透明度显示在自然融合后的超声图像上。
在本实施例中,超声图像标识包括偏转线、方框、区域染色等,用于指示穿刺增强的图像中具有一定特征的区域(能找到针的大偏转有效区域),以超声图像标识为偏转线进行举例说明。
参照图4,图4为本发明带透明度的偏转线的获取流程示意图。在穿刺增强的后处理图像缓存中至少包括了常规B图像的空间复合图像帧,以及大偏转图像帧。偏转线的获取流程可以概括如下:取出大偏转的图像数据,进入针体识别步骤,找出针体所在直线的参数坐标,并计算出找到的针的位置与增强无效区域的距离。之后,取出常规空间复合后的图像帧,将其与大偏转的图像帧,在上一步找到的直线及附近区域内进行自然融合;按照针与无效区域的距离计算出一定的透明度,在自然融合后的图像上绘制出带透明度的偏转线。
参照图5,图5为本发明穿刺针到无效区域的边界距离的示意图。在穿刺增强过程中,超声发射设备根据大偏转发射方向自动绘制出偏转线,且偏转线一侧为穿刺增强有效区域,另一侧为穿刺增强无效区域。在大偏转发射角度下,需要将超声波的发射方向与所识别的穿刺针的插入取向保持垂直或近似垂直,以增强回波,从而得到更清晰的超声图像。
第二获取模块20在利用软件算法识别出穿刺针针体之后,计算针体离穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度,具体地,可以计算所述针体离穿刺增强无效区域较近的一端到偏转线之间的最短距离,如图5所示,此时偏转线即为穿刺增强无效区域的边界,边界距离即为针体离穿刺增强无效区域较近的一端到偏转线之间的最短距离。在计算出针体离穿刺增强无效区域的距离进而基于所述距离获取超声图像标识的透明度之后,显示模块30再将偏转线按照所述透明度显示在自然融合后的超声图像上,当边界距离发生变化时,显示的偏转线的透明度也会发生变化,从而实现了偏转线的自适应显示,无需人工进行指示,从而能够使医生将更多的注意力放到组织图像本身中去。
进一步地,参照图10,图10为图8中第二获取模块的另一细化功能模块示意图。基于上述的实施例,所述第二获取模块20还包括:
第一处理单元24,用于将所述大偏转图像帧的图像数据进行二值化处理,以确定所述大偏转图像帧中可能为穿刺针的像素集合;
第二处理单元25,用于将所述像素集合进行霍夫变换处理,以确定霍夫变换对应的坐标系下穿刺针针体所在直线参数。
在本实施例中,穿刺检测与针体识别的核心都是采用霍夫变换处理。其中,霍夫变换( Hough Transform)是图像处理中从图像中识别几何形状的基本方法之一,主要用来从图像中分离出具有某种相同特征的几何形状(如直线、圆等),现有最基本的霍夫变换就是从黑白图像中检测直线(或线段)。
参照图7,图7为本发明实施例霍夫变换的原理示意图。考虑到现有穿刺针一般都是直线形式的,因此可通过将常规直线坐标下的参数一一对应地映射为极坐标下的参数。每一条直线坐标系下的直线都可以由原点至直线的距离rho与x轴至垂线的极角theta唯一确定,因此可以将常规直线参数(k, b)转化为新的参数组(rho, theta)。而如果图像中存在直线,将对于某个参数组的数量会出现一个统计的极大值。因此可以将检测直线的过程变换为统计具有极大值的参数组的过程。
本实施例中,为了获得准确的结果,以及提高算法效率,第一处理单元24会在霍夫变换的前一步先对图像作二值化处理,找到图像中最可能为针的像素集合,而第二处理单元25在霍夫变换之后,需要进一步对经过霍夫变换后所找到的穿刺针针体的所有可能位置作一系列筛选判断,具体可以通过根据穿刺针针体的相关参数,比如针体的长度、宽度及直线型等其他特征参数,或者常用图像处理上的一些先验知识,排除所有可能位置中一些错误的位置参数,并对没有明显问题的位置参数(也即不同发射角度下所述穿刺针针体所在直线参数)设定一个为真实位置的概率,并最后输出识别概率最高的穿刺针针体所在直线参数,其中,根据穿刺针针体所在直线参数可相应确定穿刺针的插入取向。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种超声图像标识的显示方法,其特征在于,所述方法包括如下步骤:
    在超声发射设备进行穿刺增强时,获取常规空间复合图像帧和大偏转图像帧;
    根据所述大偏转图像帧的图像数据进行穿刺针针体识别,并获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度,其中,所述超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域;
    根据所述针体所在的位置,将所述常规空间复合图像帧和所述大偏转图像帧进行自然融合,将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上。
  2. 如权利要求1所述的方法,其特征在于,所述获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度的步骤包括:
    获取所述针体离穿刺增强无效区域较近的一端到所述穿刺增强无效区域边界之间的最短距离;
    根据所述最短距离计算得到超声图像标识的透明度。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述最短距离计算得到超声图像标识的透明度的步骤包括:
    将所述最短距离按照预设的映射规则映射为超声图像标识的透明度。
  4. 如权利要求1所述的方法,其特征在于,所述超声图像标识包括偏转线,所述将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上的步骤包括:
    将所述偏转线按照所述透明度显示在自然融合后的超声图像上。
  5. 如权利要求2所述的方法,其特征在于,所述超声图像标识包括偏转线,所述将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上的步骤包括:
    将所述偏转线按照所述透明度显示在自然融合后的超声图像上。
  6. 如权利要求3所述的方法,其特征在于,所述超声图像标识包括偏转线,所述将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上的步骤包括:
    将所述偏转线按照所述透明度显示在自然融合后的超声图像上。
  7. 如权利要求4所述的方法,其特征在于,所述根据所述大偏转图像帧的图像数据进行穿刺针针体识别的步骤包括:
    将所述大偏转图像帧的图像数据进行二值化处理,以确定所述大偏转图像帧中可能为穿刺针的像素集合;
    将所述像素集合进行霍夫变换处理,以确定霍夫变换对应的坐标系下穿刺针针体所在直线参数。
  8. 如权利要求5所述的方法,其特征在于,所述根据所述大偏转图像帧的图像数据进行穿刺针针体识别的步骤包括:
    将所述大偏转图像帧的图像数据进行二值化处理,以确定所述大偏转图像帧中可能为穿刺针的像素集合;
    将所述像素集合进行霍夫变换处理,以确定霍夫变换对应的坐标系下穿刺针针体所在直线参数。
  9. 如权利要求6所述的方法,其特征在于,所述根据所述大偏转图像帧的图像数据进行穿刺针针体识别的步骤包括:
    将所述大偏转图像帧的图像数据进行二值化处理,以确定所述大偏转图像帧中可能为穿刺针的像素集合;
    将所述像素集合进行霍夫变换处理,以确定霍夫变换对应的坐标系下穿刺针针体所在直线参数。
  10. 一种超声图像标识的显示装置,其特征在于,所述装置包括:
    第一获取模块,用于在超声发射设备进行穿刺增强时,获取常规空间复合图像帧和大偏转图像帧;
    第二获取模块,用于根据所述大偏转图像帧的图像数据进行穿刺针针体识别,并获取所述针体到穿刺增强无效区域的距离,基于所述距离获取超声图像标识的透明度,其中,所述超声图像标识用于区分穿刺增强有效区域和穿刺增强无效区域;
    显示模块,用于根据所述针体所在的位置,将所述常规空间复合图像帧和所述大偏转图像帧进行自然融合,将所述超声图像标识按照所述透明度显示在自然融合后的超声图像上。
  11. 如权利要求10所述的装置,其特征在于,所述第二获取模块包括:
    获取单元,用于获取所述针体离穿刺增强无效区域较近的一端到所述穿刺增强无效区域边界之间的最短距离;
    计算单元,用于根据所述最短距离计算得到超声图像标识的透明度。
  12. 如权利要求11所述的装置,其特征在于,所述计算单元还用于将所述最短距离按照预设的映射规则映射为超声图像标识的透明度。
  13. 如权利要求10所述的装置,其特征在于,所述超声图像标识包括偏转线,所述显示模块还用于将所述偏转线按照所述透明度显示在自然融合后的超声图像上。
  14. 如权利要求11所述的装置,其特征在于,所述超声图像标识包括偏转线,所述显示模块还用于将所述偏转线按照所述透明度显示在自然融合后的超声图像上。
  15. 如权利要求12所述的装置,其特征在于,所述超声图像标识包括偏转线,所述显示模块还用于将所述偏转线按照所述透明度显示在自然融合后的超声图像上。
  16. 如权利要求13所述的装置,其特征在于,所述第二获取模块还包括:
    第一处理单元,用于将所述大偏转图像帧的图像数据进行二值化处理,以确定所述大偏转图像帧中可能为穿刺针的像素集合;
    第二处理单元,用于将所述像素集合进行霍夫变换处理,以确定霍夫变换对应的坐标系下穿刺针针体所在直线参数。
  17. 如权利要求14所述的装置,其特征在于,所述第二获取模块还包括:
    第一处理单元,用于将所述大偏转图像帧的图像数据进行二值化处理,以确定所述大偏转图像帧中可能为穿刺针的像素集合;
    第二处理单元,用于将所述像素集合进行霍夫变换处理,以确定霍夫变换对应的坐标系下穿刺针针体所在直线参数。
  18. 如权利要求15所述的装置,其特征在于,所述第二获取模块还包括:
    第一处理单元,用于将所述大偏转图像帧的图像数据进行二值化处理,以确定所述大偏转图像帧中可能为穿刺针的像素集合;
    第二处理单元,用于将所述像素集合进行霍夫变换处理,以确定霍夫变换对应的坐标系下穿刺针针体所在直线参数。
PCT/CN2016/099805 2016-09-21 2016-09-23 超声图像标识的显示方法及装置 WO2018053776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610839197.7A CN106388911B (zh) 2016-09-21 2016-09-21 超声图像标识的显示方法及装置
CN201610839197.7 2016-09-21

Publications (1)

Publication Number Publication Date
WO2018053776A1 true WO2018053776A1 (zh) 2018-03-29

Family

ID=57998003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099805 WO2018053776A1 (zh) 2016-09-21 2016-09-23 超声图像标识的显示方法及装置

Country Status (2)

Country Link
CN (1) CN106388911B (zh)
WO (1) WO2018053776A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113662638A (zh) * 2021-08-20 2021-11-19 成都优途科技有限公司 一种用于超声穿刺引导的超声成像方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111513823B (zh) * 2020-04-30 2023-06-23 成都思多科医疗科技有限公司 基于多任务神经网络与偏转扫描的穿刺针定位系统
CN113040878B (zh) * 2021-03-25 2022-08-02 青岛海信医疗设备股份有限公司 超声穿刺针的位置信息处理方法、超声设备及存储介质
CN113133814A (zh) * 2021-04-01 2021-07-20 上海复拓知达医疗科技有限公司 基于增强现实的穿刺手术导航装置及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216029B1 (en) * 1995-07-16 2001-04-10 Ultraguide Ltd. Free-hand aiming of a needle guide
US20120179038A1 (en) * 2011-01-07 2012-07-12 General Electric Company Ultrasound based freehand invasive device positioning system and method
CN102920476A (zh) * 2011-08-11 2013-02-13 深圳迈瑞生物医疗电子股份有限公司 一种超声成像方法及装置
CN103930041A (zh) * 2012-11-16 2014-07-16 株式会社东芝 超声波诊断装置以及图像处理方法
US20150005621A1 (en) * 2013-06-27 2015-01-01 Ge Medical Systems Global Technology Company, Llc Ultrasonic diagnostic device and control program for the same
CN105496515A (zh) * 2015-12-04 2016-04-20 深圳华声医疗技术有限公司 穿刺增强方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9226729B2 (en) * 2010-09-28 2016-01-05 Fujifilm Corporation Ultrasound diagnostic system, ultrasound image generation apparatus, and ultrasound image generation method
CN102727257B (zh) * 2011-03-31 2016-08-03 通用电气公司 穿刺针可视化方法和装置
JP6000569B2 (ja) * 2011-04-01 2016-09-28 東芝メディカルシステムズ株式会社 超音波診断装置及び制御プログラム
KR101501517B1 (ko) * 2012-03-29 2015-03-11 삼성메디슨 주식회사 초음파 영상 상에 의료용 기구를 표시하는 방법 및 장치
JP2014028125A (ja) * 2012-06-29 2014-02-13 Toshiba Corp 超音波診断装置及び制御プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216029B1 (en) * 1995-07-16 2001-04-10 Ultraguide Ltd. Free-hand aiming of a needle guide
US20120179038A1 (en) * 2011-01-07 2012-07-12 General Electric Company Ultrasound based freehand invasive device positioning system and method
CN102920476A (zh) * 2011-08-11 2013-02-13 深圳迈瑞生物医疗电子股份有限公司 一种超声成像方法及装置
CN103930041A (zh) * 2012-11-16 2014-07-16 株式会社东芝 超声波诊断装置以及图像处理方法
US20150005621A1 (en) * 2013-06-27 2015-01-01 Ge Medical Systems Global Technology Company, Llc Ultrasonic diagnostic device and control program for the same
CN105496515A (zh) * 2015-12-04 2016-04-20 深圳华声医疗技术有限公司 穿刺增强方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113662638A (zh) * 2021-08-20 2021-11-19 成都优途科技有限公司 一种用于超声穿刺引导的超声成像方法及装置
CN113662638B (zh) * 2021-08-20 2024-04-19 成都优途科技有限公司 一种用于超声穿刺引导的超声成像方法及装置

Also Published As

Publication number Publication date
CN106388911A (zh) 2017-02-15
CN106388911B (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2017092454A1 (zh) 穿刺增强方法及系统
WO2018053776A1 (zh) 超声图像标识的显示方法及装置
WO2015093724A1 (en) Method and apparatus to provide blood vessel analysis information using medical image
WO2014046513A1 (en) Ultrasound apparatus and information providing method of the ultrasound apparatus
US6755785B2 (en) Ultrasonic image generating apparatus and ultrasonic image generating method
WO2018000732A1 (zh) 危险物品检测方法和装置
WO2020209491A1 (en) Head-mounted display device and operating method of the same
WO2014209003A1 (en) Method of moving the displays of an ultrasound diagnostic device and ultrasound diagnostic device
WO2015160207A1 (en) System and method for detecting region of interest
WO2015076508A1 (en) Method and apparatus for displaying ultrasound image
WO2015080522A1 (en) Method and ultrasound apparatus for marking tumor on ultrasound elastography image
WO2017041668A1 (zh) 多普勒成像方法及装置
WO2016085073A1 (en) Ultrasound sensor and object detecting method thereof
WO2016200013A1 (ko) 광학 장치 및 깊이 정보 생성 방법
WO2015088277A1 (ko) 초음파 영상 표시 방법 및 장치
EP3071113A1 (en) Method and apparatus for displaying ultrasound image
EP3073930A1 (en) Method and ultrasound apparatus for marking tumor on ultrasound elastography image
JP5507018B1 (ja) 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム
WO2019047378A1 (zh) 星体快速识别方法、装置及望远镜
US20190328363A1 (en) Ultrasound diagnostic apparatus and ultrasound signal processing method
US10893846B2 (en) Ultrasound diagnosis apparatus
US10639003B2 (en) Ultrasound diagnosis apparatus
EP3349655A1 (en) Tomography apparatus and controlling method for the same
WO2016047867A1 (en) Ultrasound image processing method and ultrasound imaging apparatus thereof
KR100978479B1 (ko) 스캔 변환을 고속으로 수행하는 초음파 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916515

Country of ref document: EP

Kind code of ref document: A1