WO2017092395A1 - 安检设备和射线探测方法 - Google Patents

安检设备和射线探测方法 Download PDF

Info

Publication number
WO2017092395A1
WO2017092395A1 PCT/CN2016/093889 CN2016093889W WO2017092395A1 WO 2017092395 A1 WO2017092395 A1 WO 2017092395A1 CN 2016093889 W CN2016093889 W CN 2016093889W WO 2017092395 A1 WO2017092395 A1 WO 2017092395A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
radiation
tested
transmission
ray
Prior art date
Application number
PCT/CN2016/093889
Other languages
English (en)
French (fr)
Inventor
崔锦
林东
胡斌
谭贤顺
王虹
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to JP2017567657A priority Critical patent/JP6572326B2/ja
Priority to US15/740,814 priority patent/US10823874B2/en
Priority to DE112016002675.7T priority patent/DE112016002675T5/de
Publication of WO2017092395A1 publication Critical patent/WO2017092395A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/222Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays measuring scattered radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/12Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/224Multiple energy techniques using one type of radiation, e.g. X-rays of different energies

Definitions

  • the invention relates to the field of security inspection, in particular to a security inspection device and a radiation detection method.
  • the X-ray backscattering technology can detect low-density materials very well.
  • the flywheel of the existing X-ray backscattering inspection equipment rotates around the target of the ray source to form a pen bundle, and the pen beam falls on the object to be inspected to form a fly. point.
  • the backscatter detector collects the X-ray backscattered rays at any time, and after processing, obtains the material information. After continuous scanning, it can process and obtain the internal information of the entire tested object, especially the atomic number of explosives, drugs, etc. Lower material information.
  • the imaging principle of the device is to absorb backscattered X-rays and image, the effect of detecting explosives and drugs hidden behind the secret substance is poor, and the explosive is placed on a steel plate, backscattered X-rays. Blocked by the steel plate, can not reach the backscatter detector; the display effect on metal weapons is not good.
  • the one-sided backscatter imaging result is less effective for observing the internal information of the opposite side of the object to be inspected. If the two sides of the object to be inspected are to be effectively observed, two flaw detections are required, which is cumbersome.
  • a security device comprising: a radiation emitting device; a radiation detector; wherein the radiation detector comprises: a front scattering detector located on the opposite side of the object to be tested with respect to the radiation emitting device;
  • the device also includes: a backscatter detector, Located between the ray emitting device and the object to be tested; and/or the transmissive detector, located on the opposite side of the object to be tested relative to the ray emitting device.
  • the ray emitting device is configured to emit a fan beam and a spot beam.
  • the ray emitting device comprises: a ray source located at the center of the ray emitting device; a spatial modulator located between the ray source and the backscattering detector, including a fixed shielding plate, and between the object to be tested and the fixed shielding plate Rotating shield.
  • the rotating shield includes more than one slit and more than one through hole.
  • the transmission detector comprises a plurality of detector modules, the angle of placement of each detector module being adapted to the direction of incidence of the radiation, depending on the position of each detector module at the position of the transmission detector.
  • the mounting angle of the detector module is adapted to the incident direction of the radiation, and the detection surface of the detector module is perpendicular to the incident direction of the radiation.
  • the transmission detector comprises a plurality of detector units consisting of a plurality of predetermined detector modules arranged in parallel; according to the position of each detector module in the position of the transmission detector, the mounting angle of each detector module and the incidence of the radiation
  • the orientation is adapted to: according to the position of each detector unit in the position of the transmission detector, the direction of the detection surface of each detector unit is adapted to the direction of incidence of the radiation.
  • the transmission detector is in the shape of a flat plate or a curved surface convex toward the opposite side of the object to be tested.
  • a vehicle is also included for carrying and moving the radiation emitting device and the radiation detector.
  • a cantilever is further provided, one end of the cantilever is connected to the transmissive detector and the front scatter detector, and the other end is connected to the vehicle; the inside of the vehicle carries the ray emitting device, and the side of the vehicle is connected to the backscattering detector.
  • the cantilever includes a folding mechanism and a rotating mechanism for folding and rotating the cantilever.
  • a processor is further included, configured to receive the detection signals from the front scatter detector, the back scatter detector, and the transmission detector, and analyze the object to be tested.
  • a controller is also included for controlling the folding and rotation of the cantilever.
  • Such a security device has a front scatter detector, which can be used together with a backscatter detector to reduce the detection dead angle and optimize the detection of the internal information of the opposite side of the ray source;
  • the detector can be used together to detect high-density and low-density materials.
  • the front-scattering detector, back-scattering detector and transmission detector can be used together to reduce the detection of dead angles while achieving high density and low density.
  • the detection of the density material further optimizes the detection effect of the object to be measured and improves the accuracy of the detection.
  • a ray detecting method comprising: transmitting a fan beam beam and a flying spot ray beam to an object to be measured by using a ray emitter; acquiring the detecting data by the detector, comprising: acquiring the detecting by the front scatter detector Pre-scattering data of the object to be tested; further comprising: acquiring transmission data of the object to be tested by the transmission detector; and/or acquiring backscatter data of the object to be tested by the backscattering detector; according to the backscattering data, and the back The scatter data and/or the transmission data acquires the probe information.
  • the fan beam and the spot beam are emitted to the object to be tested by using the ray emitter to emit radiation to the object to be tested by using a ray emitter that alternately emits the fan beam and the spot beam.
  • the method further includes: displaying the detected image according to the detection information;
  • the method further includes: marking, according to the detection information, a prohibited object or an alarm in the object to be tested.
  • obtaining front scatter data and backscatter data can reduce the detection dead angle and optimize the detection of the internal information of the opposite side of the ray source; and obtaining the front scatter data together with the transmission detector can achieve simultaneous high density and low density.
  • FIG. 1 is a schematic view of one embodiment of a security inspection apparatus of the present invention.
  • Figure 2 is a schematic illustration of one embodiment of a radiation emitting device in a security inspection device of the present invention Figure.
  • 3A is a schematic illustration of one embodiment of a transmission detector of the present invention.
  • 3B is a schematic illustration of another embodiment of a transmission detector of the present invention.
  • Figure 3C is a schematic illustration of yet another embodiment of a transmission detector of the present invention.
  • Figure 3D is a schematic illustration of still another embodiment of a transmission detector of the present invention.
  • FIG. 4 is a schematic view of another embodiment of the security inspection apparatus of the present invention.
  • Fig. 5 is a schematic view showing still another embodiment of the security inspection apparatus of the present invention.
  • Figure 6 is a flow chart of one embodiment of a radiation detecting method of the present invention.
  • FIG. 1 is a radiation emitting device, and emits a ray 6 to the object 5 to be tested.
  • the ray detector of the security device includes a front scatter detector 4 located on the opposite side of the object 5 to be measured relative to the ray emitting device 1, capable of acquiring forward scatter data.
  • the ray detector may further comprise a transmission detector 4 located on the opposite side of the object to be tested relative to the ray emitting device, capable of acquiring transmission data.
  • the ray detector may further comprise a backscatter detector 2 between the object to be tested 5 and the ray emitting device 1 for acquiring backscatter data.
  • Such a security device has a front scatter detector, which can be used together with a backscatter detector to reduce the detection dead angle and optimize the detection of the internal information of the opposite side of the ray source. Together with the transmission detector, it can simultaneously achieve high density and low density substances.
  • the detection of the front scatter detector, the back scatter detector and the transmission detector can simultaneously detect the high-density and low-density substances while reducing the detection dead angle, and further optimize the detection effect of the object to be measured. Improve the accuracy of the detection.
  • the radiation emitting device is capable of emitting a fan beam and a flying beam.
  • the fan beam passes through the object to be measured and reaches the transmission detector so that the transmission detector acquires the transmission data.
  • the flying spot beam is scattered by the object to be measured and reaches the front scatter detector and the back scatter detector to obtain front scatter data and back scatter data.
  • Such a security device can emit two kinds of radiation beams for obtaining a transmission detector and a scattering detector to obtain transmission data and scattering data, thereby improving the detection speed and optimizing the detection effect.
  • FIG. 11 is a radiation source, which is located in the center of the radiation emitting device and emits radiation in the direction of the object to be measured.
  • the ray-emitting device further includes a spatial modulator located between the ray source and the backscatter detector to adjust the radiation emitted by the ray source 11 to control the radiation emitted by the ray emitting device.
  • the spatial modulator includes a fixed shield 12 and a rotating shield 13.
  • the fixed shielding plate 12 causes the radiation generated by the radiation source 11 to be emitted toward the predetermined direction at a predetermined angle, and the predetermined angle may be 120 degrees;
  • the rotating shielding body is located between the object to be tested and the fixed shielding plate.
  • the rotating shield has a slit 15 and a through hole 14, and the rotating shield rotates at a predetermined rate. When the ray passes through the through hole 14, a beam of flying spot rays is formed; when the ray passes through the slit 15, a fan beam is formed.
  • the radiation emitted by the radiation emitting device changes with time.
  • the rotating shield has at least one slit and at least one through hole, and the number of slits and through holes can be set as needed.
  • Such a security device has a ray emitting device capable of periodically forming a fan beam and a flying spot beam for transmission detection and scatter detection, respectively, and can realize emission of two types of beams using a single ray emitting device, thereby reducing security inspection equipment.
  • the volume creates the conditions for simultaneous acquisition of transmitted and scattered data.
  • the transmission detector of the present invention includes a plurality of detector modules, the angle of placement of each detector module being adapted to the direction of incidence of the radiation, depending on the location of each detector module at the location of the transmission detector.
  • the detection surface of the adjustment detector module is perpendicular to the direction of incidence of the radiation.
  • a schematic of a transmission detector is shown in Figure 3A.
  • the flat-shaped transmission detector 3 includes a plurality of detector modules 31, and the rays 6 pass through the object to be measured to reach the transmission detector 3.
  • the inclination angle of each of the detector modules 31 differs depending on the height and the position.
  • Such a transmission detector has a generally flat shape for easy installation and an internal detector The module adjusts the angle for the unit to minimize the detection dead angle.
  • a schematic of the transmission detector is shown in Figure 3B.
  • the transmission detector 3 comprises a plurality of detector units 32 consisting of a plurality of detector modules 31 arranged in parallel.
  • the inclination angles of the detector modules 31 in each detector unit 32 are the same, but the inclination angle of each detector unit is different depending on the position and height of the detector unit.
  • the overall shape of such a transmission detector is a flat plate shape, which is convenient for installation, and the inside is adjusted in angle by the detector unit, which is convenient for installation and adjustment.
  • a schematic of the transmission detector is shown in Figure 3C.
  • the transmission detector 3 has an overall shape of a curved surface and is convex toward the opposite side of the object to be tested, and the interior includes a plurality of detector modules 31.
  • Such a transmission detector can reduce the distance difference between the radiation passing through the surface of the transmission detector and the detector module, and improve the accuracy of detection.
  • a schematic of the transmission detector is shown in Figure 3D.
  • the transmission detector 3 has an overall shape of a curved surface and is convex toward the opposite side of the object to be tested, and the interior includes a plurality of detector units 32 which are arranged in parallel by a plurality of detector modules 31.
  • the inclination angles of the detector modules 31 in each detector unit 32 are the same, but the inclination angle of each detector unit is different depending on the position and height of the detector unit.
  • Such a transmission detector can reduce the distance difference between the radiation passing through the transmission detector and the detector module, and improve the accuracy of the detection.
  • the angle is adjusted internally by the detector unit, which is convenient for installation and adjustment.
  • FIG. 1 A schematic diagram of another embodiment of the security device of the present invention is shown in FIG.
  • the front scatter detector 2 and the ray launcher are mounted or mounted on the transport 7.
  • Such security inspection equipment has a small footprint, is easy to transport, is more flexible and flexible, and can be flexibly scheduled for some emergencies.
  • FIG. 8 A schematic diagram of yet another embodiment of the security device of the present invention is shown in FIG.
  • the security device also includes a cantilever 8 having one end connected to the transmission detector and the front scatter detector and the other end connected to the vehicle, the interior of the vehicle carrying the ray emitting device, and the side facing the device to be tested having a backscattering detector.
  • Such security inspection equipment is completely carried by the transportation vehicle, which is more convenient for transportation and flexible scheduling.
  • the object to be tested can be detected by moving the transportation means, thereby reducing the volume of the security inspection equipment. And expanded The usage scenario of the device.
  • the cantilever 8 includes a folding mechanism and a rotating mechanism for folding and rotating the cantilever.
  • the security inspection device can fold and rotate the cantilever to the direction of traveling with the vehicle when the device is moved, and is convenient for transportation and secondary deployment.
  • the telescopic length of the cantilever can be adjusted according to the use scene, and the security inspection is expanded.
  • Such security inspection equipment is suitable for the deployment of important large, medium and small security inspection sites and temporary sites. It can continuously scan multiple objects to be tested over a long distance. The throughput is high and the detection speed is fast. It can flexibly schedule some emergency events and simultaneously detect them.
  • a variety of contraband items including metal weapons, explosives, and drugs.
  • the security device can include a controller that can control the rotation and folding of the cantilever.
  • the controller can be located in the transport device to control the rotation and folding of the cantilever by wired or wireless signals.
  • Such a security device can control the rotation and folding of the cantilever by the controller, making the operation more convenient and friendly.
  • the security device further includes a processor capable of processing the probe data of the front scatter detector, the back scatter detector, and the transmission detector.
  • the processor can generate a detection image according to the detection data and display it to the staff; the processor can also confirm the dangerous substance according to the detection result, and perform corresponding labeling or alarm.
  • the processor can be a computer.
  • the processor can be installed in a transportation vehicle to acquire the detection data of the radiation detector through a wired signal or a wireless signal.
  • Such security devices have a processor that can process the detected data in real time, thereby enabling the detection of dangerous and prohibited items more quickly and improving security.
  • FIG. 1 A flow chart of one embodiment of the radiation detecting method of the present invention is shown in FIG.
  • step 601 a fan beam and a spot beam are emitted to the object to be measured by the ray emitter.
  • the probe data is acquired by the ray detector.
  • the probe data includes forward scatter data and also includes one or both of backscatter data and transmission data.
  • the probe information is acquired by analyzing the forward scatter data, as well as the backscatter data and the transmission data.
  • obtaining front scatter data and backscatter data can reduce the temptation Measuring the dead angle, optimizing the detection of the internal information of the opposite side of the ray source; acquiring the front scatter data together with the transmission detector, enabling simultaneous detection of high-density and low-density materials; integrating front scatter data, backscatter data, and transmission data It is considered that simultaneous detection of high-density and low-density substances can be achieved while reducing the dead angle of detection. In this way, the detection effect of the object to be measured is optimized, and the accuracy of the detection is improved.
  • radiation is emitted to the object to be measured using a ray emitter that alternately emits a fan beam and a spot beam.
  • a ray emitter that alternately emits a fan beam and a spot beam.
  • the detection image can be displayed according to the detection information, and the prohibited object in the object to be tested can be marked according to the detection information or the staff can be alerted by the alarm.
  • the staff can control the command at the remote end and monitor the detected image. In this way, the detection result can be processed in real time and displayed in time, which is convenient for the use of the staff and improves the safety.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

提供一种安检设备和射线探测方法,涉及安检领域。其中,所述安检设备包括射线发射装置(1)和射线探测器;该射线探测器包括:前散射探测器(4),位于待测物体(5)相对于射线发射装置(1)的对侧;射线探测器还包括:背散射探测器(2),位于射线发射装置(1)与待测物体(5)之间;和/或透射探测器(3),位于待测物体(5)相对于射线发射装置(1)的对侧。

Description

安检设备和射线探测方法 技术领域
本发明涉及安检领域,特别是一种安检设备和射线探测方法。
背景技术
随着科学技术的发展,目前安全检查设备被广泛应用于机场、海关、地铁等部门。针对公路安检方面,利用X射线透射设备扫描物品比较多见,X射线源出射的X射线通过准直器形成扫描扇面,探测器接收到照射被检物品的X射线,通过处理,得到被检物品的内部信息。这种安检方式使用广泛,结构简单,易操作,但是由于利用的是X射线透射原理成像,很难检测的出密度较低的物质,比如炸药,毒品等。
而X射线背散射技术能够很好的检查出低密度的物质,现有X射线背散射检查设备的飞轮绕射线源靶心旋转,形成笔行束,笔行束落在被检查物体上,形成飞点。背散射探测器收集任一时刻的X射线背散射射线,经处理,得到物质信息,连续扫描后,就能处理并得到整个被检物品的内部信息,尤其是可以突出显示炸药、毒品等原子序数较低的物质信息。在该发明中,由于该装置的成像原理是吸收背散射的X射线后成像,因此,对于隐藏在保密物质后的炸药、毒品检测效果不佳,炸药被放置于一钢板之后,背散射X射线被钢板阻断,不能到达背散射探测器;对金属武器的显示效果也不佳。同时,这种单侧的背散射成像结果对于观察被检物品对侧的内部信息效果较差,若要有效观察被检物品两侧,需要进行两趟检测,比较繁琐。
发明内容
本发明的一个目的在于提供一种更加可靠的安检设备。
根据本发明的一个方面,提出一种安检设备,包括:射线发射装置;射线探测器;其中,射线探测器包括:前散射探测器,位于待测物体相对于射线发射装置的对侧;射线探测器还包括:背散射探测器, 位于射线发射装置与待测物体之间;和/或透射探测器,位于待测物体相对于射线发射装置的对侧。
可选地,射线发射装置用于发射出扇形射线束和飞点射线束。
可选地,射线发射装置包括:射线源,位于射线发射装置的中央;空间调制器,位于射线源与背散射探测器之间,包括固定屏蔽板,和位于待测物体与固定屏蔽板之间的旋转屏蔽体。
可选地,旋转屏蔽体上包括一个以上缝隙和一个以上通孔。
可选地,透射探测器包括多个探测器模块,根据每个探测器模块在透射探测器的位置的不同,每个探测器模块的安放角度与射线入射方向相适应。
可选地,探测器模块的安放角度与射线入射方向相适应包括:探测器模块的探测面垂直于射线入射方向。
可选地,透射探测器包括多个由预定个探测器模块平行排列组成的探测器单元;根据每个探测器模块在透射探测器的位置的不同,每个探测器模块的安放角度与射线入射方向相适应为:根据每个探测器单元在透射探测器的位置的不同,每个探测器单元的探测面方向与射线入射方向相适应。
可选地,透射探测器为平板形或向待测物体对侧凸起的弧面形。
可选地,还包括运输工具,用于承载和移动射线发射装置和射线探测器。
可选地,还包括悬臂,悬臂的一端连接透射探测器和前散射探测器,另一端与运输工具连接;运输工具内部承载射线发射装置,且运输工具侧面连接背散射探测器。
可选地,悬臂包括折叠机构和旋转机构,用于折叠和旋转悬臂。
可选地,还包括处理器,用于接收来自前散射探测器、背散射探测器和透射探测器的探测信号,分析待测物体。
可选地,还包括控制器,用于控制悬臂的折叠和旋转。
这样的安检设备具有前散射探测器,配合背散射探测器一起使用能够减少探测死角,优化对射线源对侧内部信息的探测;配合透射探 测器一起使用,能够实现同时对高密度和低密度物质的探测;将前散射探测器、背散射探测器以及透射探测器一同使用,能够在减少探测死角的同时,实现同时对高密度和低密度物质的探测,进一步优化了对待测物体的探测效果,提高了探测的准确度。
根据本发明的另一个方面,提出一种射线探测方法,包括:利用射线发射器向待测物体发射扇形射线束和飞点射线束;通过探测器获取探测数据,包括:通过前散射探测器获取探测待测物体的前散射数据;还包括:通过透射探测器获取探测待测物体的透射数据;和/或,通过背散射探测器获取探测待测物体的背散射数据;根据前散射数据,以及背散射数据和/或透射数据获取探测信息。
可选地,利用射线发射器向待测物体发射扇形射线束和飞点射线束为:利用交替发射扇形射线束和飞点射线束的射线发射器,向待测物体发射射线。
可选地,还包括:根据探测信息显示探测图像;
可选地,还包括:根据所述探测信息标注待测物体中的违禁物体或告警。
通过这样的方法,获取前散射数据配合背散射数据,能够减少探测死角,优化对射线源对侧内部信息的探测;获取前散射数据配合透射探测器一起使用,能够实现同时对高密度和低密度物质的探测;将前散射数据、背散射数据和透射数据综合考虑,能够在减少探测死角的同时,实现同时对高密度和低密度物质的探测。通过这样的方式,优化了对待测物体的探测效果,提高了探测的准确度。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的安检设备的一个实施例的示意图。
图2为本发明的安检设备中射线发射装置的一个实施例的示意 图。
图3A为本发明的透射探测器的一个实施例的示意图。
图3B为本发明的透射探测器的另一个实施例的示意图。
图3C为本发明的透射探测器的又一个实施例的示意图。
图3D为本发明的透射探测器的再一个实施例的示意图。
图4为本发明的安检设备的另一个实施例的示意图。
图5为本发明的安检设备的又一个实施例的示意图。
图6为本发明的射线探测方法的一个实施例的流程图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
本发明的安检设备的一个实施例的示意图如图1所示。其中,1为射线发射装置,向待测物体5发出射线6。安检设备的射线探测器包括前散射探测器4,位于待测物体5相对于射线发射装置1的对侧,能够获取前散射数据。射线探测器还可以包括透射探测器4,位于待测物体相对于射线发射装置的对侧,能够获取透射数据。射线探测器还可以包括背散射探测器2,位于待测物体5与射线发射装置1之间,能够获取背散射数据。
这样的安检设备具有前散射探测器,配合背散射探测器一起使用能够减少探测死角,优化对射线源对侧内部信息的探测;配合透射探测器一起使用,能够实现同时对高密度和低密度物质的探测;将前散射探测器、背散射探测器以及透射探测器一同使用,能够在减少探测死角的同时,实现同时对高密度和低密度物质的探测,进一步优化了对待测物体的探测效果,提高了探测的准确度。
在一个实施例中,射线发射装置能够发出扇形射线束和飞点射线束。扇形射线束穿过待测物体到达透射探测器,以便透射探测器获取透射数据。飞点射线束经待测物体散射后到达前散射探测器、背散射探测器,以便获取前散射数据、背散射数据。
这样的安检设备能够发出两种射线束,分别供获取透射探测器和散射探测器获取透射数据和散射数据,提高了检测速度,优化了探测效果。
本发明安检设备的射线发射装置的示意图如图2所示。其中,11为射线源,位于射线发射装置的中央,向待测物体方向发射射线。射线发射装置还包括空间调制器,位于射线源与背散射探测器之间,能够调整射线源11发射出的射线,从而控制射线发射装置发射出的射线。在一个实施例中,空间调制器包括固定屏蔽板12和旋转屏蔽体13。其中,固定屏蔽板12使射线源11产生的射线以预定角度朝预定方向发射,预定角度可以为120度;旋转屏蔽体位于待测物体与固定屏蔽板之间。旋转屏蔽体上具有缝隙15和通孔14,且旋转屏蔽体以预定速率旋转。当射线通过通孔14时,形成飞点射线束;当射线通过缝隙15时,形成扇形射线束。射线发射装置发射出的射线随时间变化。在一个实施例中,旋转屏蔽体上具有至少一个缝隙和至少一个通孔,可以根据需要设置缝隙和通孔的数量。
这样的安检设备,其射线发射装置能够周期性的形成扇形射线束和飞点射线束,分别用于透射探测和散射探测,可以使用单个射线发射装置实现两种射线束的发射,减小了安检设备的体积,且为同时获取透射数据和散射数据创造了条件。
在一个实施例中,本发明的透射探测器包括多个探测器模块,根据每个探测器模块在透射探测器的位置的不同,每个探测器模块的安放角度与射线入射方向相适应。在一个实施例中,调整探测器模块的探测面垂直于射线入射方向。这样的透射探测器与以往的探测器模块规整平行的排列不同,不同的探测器模块的安放角度不同,以便更好的接收穿过待测物体的射线,从而能够减少探测死角。
在一个实施例中,透射探测器的示意图如图3A所示。平板形的透射探测器3中包括多个探测器模块31,射线6穿过待测物体到达透射探测器3,每个探测器模块31的倾斜角度因高度、位置的不同而不同。这样的透射探测器总体形状为平板形,便于安装,内部以探测器 模块为单位调整角度,使探测死角尽量减少。
在一个实施例中,透射探测器的示意图如图3B所示。透射探测器3包括多个由若干探测器模块31平行排列组成的探测器单元32。每个探测器单元32中的探测器模块31的倾斜角度相同,但根据探测器单元位置、高度的不同,每个探测器单元的倾斜角度不同。这样的透射探测器总体形状为平板形,便于安装,内部以探测器单元为单位调整角度,便于安装调节。
在一个实施例中,透射探测器的示意图如图3C所示。透射探测器3整体形状为弧面形,向待测物体对侧凸起,内部包括多个探测器模块31。这样的透射探测器能够减少射线穿过透射探测器表面到达探测器模块的距离差,提高探测的准确度。
在一个实施例中,透射探测器的示意图如图3D所示。透射探测器3整体形状为弧面形,向待测物体对侧凸起,内部包括多个由若干探测器模块31平行排列组成的探测器单元32。每个探测器单元32中的探测器模块31的倾斜角度相同,但根据探测器单元位置、高度的不同,每个探测器单元的倾斜角度不同。这样的透射探测器能够减少射线穿过透射探测器到达探测器模块的距离差,提高探测的准确度,内部以探测器单元为单位调整角度,便于安装调节。
本发明的安检设备的另一个实施例的示意图如图4所示。前散射探测器2和射线发射装置安装或安放于运输工具7。这样的安检设备占地面积小,便于运输,更加的机动灵活,能够针对一些突发事件灵活调度。
本发明的安检设备的又一个实施例的示意图如图5所示。安检设备还包括悬臂8,悬臂的一端与透射探测器和前散射探测器连接,另一端与运输工具连接,运输工具内部承载了射线发射装置,侧面面向待测设备的一面具有背散射探测器。
这样的安检设备完全由运输工具承载,更加便于运输和灵活调度;针对一些大型、难以移动的待测物体,能够通过移动运输工具的方式对待测物体进行检测,从而能够减小安检设备的体积,且扩展了 设备的使用场景。
在一个实施例中,悬臂8上包括折叠机构和旋转机构,用于折叠和旋转悬臂。安检设备通过这样的结构,一方面在设备移动时能够将悬臂折叠和旋转至与车行驶的方向一致,便于运输和二次部署,另一方面可以根据使用场景调节悬臂的伸缩长度,扩展了安检设备的使用场景。这样的安检设备适用于重要的大中小型安检场所和临时场所的部署,能够较长距离连续扫描多个待测物体,通过量高且检测速度快,对一些突发事件灵活调度,能同时检测出包括金属武器、炸药、毒品在内的多种违禁品。
在一个实施例中,安检设备可以包括控制器,能够控制悬臂的旋转和折叠。控制器可以位于运输设备,通过有线信号或无线信号来控制悬臂的旋转和折叠。这样的安检设备能够通过控制器控制悬臂的旋转和折叠,使操作更加方便友好。
在一个实施例中,安检设备还包括处理器,能够处理前散射探测器、背散射探测器和透射探测器的探测数据。处理器可以根据探测数据生成探测图像,向工作人员展示;处理器还可以根据探测结果确认危险物质,进行对应的标注或告警。在一个实施例中,处理器可以为计算机。处理器可以安装在运输工具中,通过有线信号或无线信号获取射线探测器的探测数据。这样的安检设备具有处理器,能够实时处理探测数据,从而能够更加迅速的探测出危险、违禁物品,提高了安全性。
本发明的射线探测方法的一个实施例的流程图如图6所示。
在步骤601中,利用射线发射器向待测物体发射扇形射线束和飞点射线束。
在步骤602中,通过射线探测器获取探测数据。探测数据包括前散射数据,还包括背散射数据和透射数据中的一种或两种。
在步骤603中,通过分析前散射数据,以及背散射数据、透射数据,获取探测信息。
通过这样的方法,获取前散射数据配合背散射数据,能够减少探 测死角,优化对射线源对侧内部信息的探测;获取前散射数据配合透射探测器一起使用,能够实现同时对高密度和低密度物质的探测;将前散射数据、背散射数据和透射数据综合考虑,能够在减少探测死角的同时,实现同时对高密度和低密度物质的探测。通过这样的方式,优化了对待测物体的探测效果,提高了探测的准确度。
在一个实施例中,利用交替发射扇形射线束和飞点射线束的射线发射器,向待测物体发射射线。这样的方法一方面可以使用单个射线发射装置实现两种射线束的发射,减小了安检设备的体积,另一方面能够同时获取透射数据和散射数据,提高了检测速度,从而优化了探测效果。
在一个实施例中,能够根据探测信息显示探测图像,还可以根据探测信息标注待测物体中的违禁物体或通过告警来提醒工作人员。在检测过程中,工作人员可以在远端操控指挥,监测探测图像,通过这样的方法能够实时处理和及时显示探测结果,方便了工作人员的使用,且提高了安全性。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (16)

  1. 一种安检设备,其特征在于,包括:
    射线发射装置;
    射线探测器;
    其中,所述射线探测器包括:
    前散射探测器,位于所述待测物体相对于所述射线发射装置的对侧;
    所述射线探测器还包括:
    背散射探测器,位于射线发射装置与待测物体之间;和/或
    透射探测器,位于所述待测物体相对于所述射线发射装置的对侧。
  2. 根据权利要求1所述的安检设备,其特征在于,所述射线发射装置用于发射出扇形射线束和飞点射线束。
  3. 根据权利要求2所述的安检设备,其特征在于,所述射线发射装置包括:
    射线源,位于所述射线发射装置的中央;
    空间调制器,位于所述射线源与所述背散射探测器之间,包括固定屏蔽板,和位于所述待测物体与所述固定屏蔽板之间的旋转屏蔽体。
  4. 根据权利要求3所述的安检设备,其特征在于,所述旋转屏蔽体上包括一个以上缝隙和一个以上通孔。
  5. 根据权利要求1所述的安检设备,其特征在于,所述透射探测器包括多个探测器模块,根据每个所述探测器模块在所述透射探测器的位置的不同,每个所述探测器模块的安放角度与射线入射方向相适应。
  6. 根据权利要求5所述的安检设备,其特征在于,所述探测器模块的安放角度与射线入射方向相适应包括:所述探测器模块的探测面垂直于射线入射方向。
  7. 根据权利要求5所述的安检设备,其特征在于,
    所述透射探测器包括多个由预定个探测器模块平行排列组成的探测器单元;
    所述根据每个所述探测器模块在所述透射探测器的位置的不同,每个所述探测器模块的安放角度与射线入射方向相适应为:根据每个所述探测器单元在所述透射探测器的位置的不同,每个所述探测器单元的探测面方向与射线入射方向相适应。
  8. 根据权利要求5所述的安检设备,其特征在于,所述透射探测器为平板形或向待测物体对侧凸起的弧面形。
  9. 根据权利要求1所述的安检设备,其特征在于,还包括运输工具,用于承载和移动所述射线发射装置和射线探测器。
  10. 根据权利要求9所述的安检设备,其特征在于,还包括悬臂,所述悬臂的一端连接所述透射探测器和所述前散射探测器,另一端与所述运输工具连接;
    所述运输工具内部承载所述射线发射装置,且所述运输工具侧面连接所述背散射探测器。
  11. 根据权利要求10所述的安检设备,其特征在于,所述悬臂包括折叠机构和旋转机构,用于折叠和旋转所述悬臂。
  12. 根据权利要求1所述的安检设备,其特征在于,还包括处理器,用于接收来自前散射探测器、背散射探测器和透射探测器的探测信号,分析待测物体。
  13. 根据权利要求11所述的安检设备,其特征在于,还包括控制器,用于控制所述悬臂的折叠和旋转。
  14. 一种射线探测方法,其特征在于,包括:
    利用射线发射器向待测物体发射扇形射线束和飞点射线束;
    通过射线探测器获取探测数据,包括:
    通过前散射探测器获取探测所述待测物体的前散射数据;
    还包括:通过透射探测器获取探测所述待测物体的透射数据;
    和/或,通过背散射探测器获取探测所述待测物体的背散射数据;
    根据所述前散射数据,以及所述背散射数据和/或所述透射数据 获取探测信息。
  15. 根据权利要求14所述的方法,其特征在于,利用射线发射器向待测物体发射扇形射线束和飞点射线束为:
    利用交替发射扇形射线束和飞点射线束的射线发射器,向所述待测物体发射射线。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    根据所述探测信息显示探测图像;和/或
    根据所述探测信息标注所述待测物体中的违禁物体或告警。
PCT/CN2016/093889 2015-12-04 2016-08-08 安检设备和射线探测方法 WO2017092395A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017567657A JP6572326B2 (ja) 2015-12-04 2016-08-08 セキュリティ検査機器及び放射線検出方法
US15/740,814 US10823874B2 (en) 2015-12-04 2016-08-08 Security inspection equipment and radiation detection method
DE112016002675.7T DE112016002675T5 (de) 2015-12-04 2016-08-08 Sicherheitsprüfausrüstung und Strahlungsdetektionsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510885398.6 2015-12-04
CN201510885398.6A CN105301669B (zh) 2015-12-04 2015-12-04 安检设备和射线探测方法

Publications (1)

Publication Number Publication Date
WO2017092395A1 true WO2017092395A1 (zh) 2017-06-08

Family

ID=55199144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093889 WO2017092395A1 (zh) 2015-12-04 2016-08-08 安检设备和射线探测方法

Country Status (6)

Country Link
US (1) US10823874B2 (zh)
JP (1) JP6572326B2 (zh)
CN (1) CN105301669B (zh)
DE (1) DE112016002675T5 (zh)
HK (1) HK1218164A1 (zh)
WO (1) WO2017092395A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280084A (zh) * 2021-12-23 2022-04-05 中国民航大学 一种基于射频信号的机场安检辅助方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301669B (zh) * 2015-12-04 2019-01-04 同方威视技术股份有限公司 安检设备和射线探测方法
CN106093089B (zh) * 2016-08-05 2019-03-01 同方威视技术股份有限公司 安检设备和方法
CN108109455A (zh) * 2016-11-24 2018-06-01 同方威视技术股份有限公司 安检模拟培训装置、方法及系统
CN107655906A (zh) * 2017-09-26 2018-02-02 同方威视技术股份有限公司 车辆安检系统、方法和控制器
CN109324069A (zh) * 2018-11-20 2019-02-12 中国原子能科学研究院 一种用于x射线透射与背散射一体成像系统的扫描器
CN113805241A (zh) * 2020-05-29 2021-12-17 同方威视技术股份有限公司 辐射检查设备
CN115793078B (zh) * 2021-09-09 2024-05-21 同方威视技术股份有限公司 射线防护装置和辐射检查系统
US11696011B2 (en) 2021-10-21 2023-07-04 Raytheon Company Predictive field-of-view (FOV) and cueing to enforce data capture and transmission compliance in real and near real time video
US11792499B2 (en) * 2021-10-21 2023-10-17 Raytheon Company Time-delay to enforce data capture and transmission compliance in real and near real time video
US11700448B1 (en) 2022-04-29 2023-07-11 Raytheon Company Computer/human generation, validation and use of a ground truth map to enforce data capture and transmission compliance in real and near real time video of a local scene

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064440A (en) * 1976-06-22 1977-12-20 Roder Frederick L X-ray or gamma-ray examination device for moving objects
US7505556B2 (en) * 2002-11-06 2009-03-17 American Science And Engineering, Inc. X-ray backscatter detection imaging modules
CN202870001U (zh) * 2012-11-19 2013-04-10 四川大学 U形结构的单源x射线透射与康普顿散射安检装置
CN202929217U (zh) * 2012-08-21 2013-05-08 同方威视技术股份有限公司 可监测人体携带放射性物质的背散射人体安检系统
CN103604819A (zh) * 2013-11-25 2014-02-26 东北大学 一种利用双能透射及低能散射进行物质识别的装置及方法
CN103808739A (zh) * 2014-01-20 2014-05-21 北京睿思厚德辐射信息科技有限公司 一种透射成像和背散射成像一体化的安全检查装置
CN105301669A (zh) * 2015-12-04 2016-02-03 同方威视技术股份有限公司 安检设备和射线探测方法
CN205374342U (zh) * 2015-12-04 2016-07-06 同方威视技术股份有限公司 安检设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472822A (en) * 1980-05-19 1984-09-18 American Science And Engineering, Inc. X-Ray computed tomography using flying spot mechanical scanning mechanism
US4799247A (en) * 1986-06-20 1989-01-17 American Science And Engineering, Inc. X-ray imaging particularly adapted for low Z materials
JPH02218990A (ja) * 1989-02-20 1990-08-31 Shimadzu Corp 放射線検出素子アレイおよび放射線画像撮影装置
US5022062A (en) * 1989-09-13 1991-06-04 American Science And Engineering, Inc. Automatic threat detection based on illumination by penetrating radiant energy using histogram processing
US5764683B1 (en) * 1996-02-12 2000-11-21 American Science & Eng Inc Mobile x-ray inspection system for large objects
US6453007B2 (en) * 1998-11-30 2002-09-17 American Science And Engineering, Inc. X-ray inspection using co-planar pencil and fan beams
US6661867B2 (en) * 2001-10-19 2003-12-09 Control Screening, Llc Tomographic scanning X-ray inspection system using transmitted and compton scattered radiation
CN101162206B (zh) * 2006-10-13 2011-01-05 同方威视技术股份有限公司 移动式车辆检查系统
CA2665872C (en) * 2006-10-24 2013-04-02 Thermo Niton Analyzers Llc Apparatus for inspecting objects using coded beam
GB0823093D0 (en) * 2008-12-19 2009-01-28 Durham Scient Crystals Ltd Apparatus and method for characterisation of materials
CN101509880A (zh) * 2009-03-25 2009-08-19 公安部第一研究所 一种应用x射线的多效应探测融合技术的安全检查系统
CN102012527A (zh) * 2010-11-25 2011-04-13 上海英迈吉东影图像设备有限公司 移动式x射线检查车及其检查方法
CN103728326A (zh) * 2010-12-31 2014-04-16 同方威视技术股份有限公司 一种背散射成像用射线束的扫描装置和方法
GB201110048D0 (en) 2011-06-15 2011-07-27 Romax Technology Ltd Vibration monitoring
CN103776848B (zh) * 2012-10-24 2017-08-29 同方威视技术股份有限公司 射线发射装置和成像系统
CN203191332U (zh) * 2012-12-27 2013-09-11 清华大学 射线发射装置及成像系统
CN104345070B (zh) * 2013-07-29 2018-03-23 同方威视技术股份有限公司 探测器模块、安装探测器模块的方法及射线检测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064440A (en) * 1976-06-22 1977-12-20 Roder Frederick L X-ray or gamma-ray examination device for moving objects
US7505556B2 (en) * 2002-11-06 2009-03-17 American Science And Engineering, Inc. X-ray backscatter detection imaging modules
CN202929217U (zh) * 2012-08-21 2013-05-08 同方威视技术股份有限公司 可监测人体携带放射性物质的背散射人体安检系统
CN202870001U (zh) * 2012-11-19 2013-04-10 四川大学 U形结构的单源x射线透射与康普顿散射安检装置
CN103604819A (zh) * 2013-11-25 2014-02-26 东北大学 一种利用双能透射及低能散射进行物质识别的装置及方法
CN103808739A (zh) * 2014-01-20 2014-05-21 北京睿思厚德辐射信息科技有限公司 一种透射成像和背散射成像一体化的安全检查装置
CN105301669A (zh) * 2015-12-04 2016-02-03 同方威视技术股份有限公司 安检设备和射线探测方法
CN205374342U (zh) * 2015-12-04 2016-07-06 同方威视技术股份有限公司 安检设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280084A (zh) * 2021-12-23 2022-04-05 中国民航大学 一种基于射频信号的机场安检辅助方法
CN114280084B (zh) * 2021-12-23 2023-09-08 中国民航大学 一种基于射频信号的机场安检辅助方法

Also Published As

Publication number Publication date
CN105301669A (zh) 2016-02-03
US10823874B2 (en) 2020-11-03
JP6572326B2 (ja) 2019-09-04
JP2018523117A (ja) 2018-08-16
HK1218164A1 (zh) 2017-02-03
US20180259673A1 (en) 2018-09-13
CN105301669B (zh) 2019-01-04
DE112016002675T5 (de) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2017092395A1 (zh) 安检设备和射线探测方法
US9562866B2 (en) Covert surveillance using multi-modality sensing
CA3078087C (en) Covert surveillance using multi-modality sensing
US6473487B1 (en) Method and apparatus for physical characteristics discrimination of objects using a limited view three dimensional reconstruction
US7551718B2 (en) Scatter attenuation tomography
US9658173B2 (en) Portable x-ray backscattering imaging system including a radioactive source
TR201901095T4 (tr) Mobil geri saçılım görüntüleme güvenlik incelemesi aparatı ve yöntemi.
JP2010133977A (ja) 一度に1つのみの供給源が放射線を発光することを確実にすることによって、複数の供給源を備える門形の後方散乱検査器におけるクロストークを排除すること
AU2017265073B2 (en) Inspection devices, inspection methods and inspection systems
KR20170135630A (ko) 안전 검사 시스템
CN106093089B (zh) 安检设备和方法
US10024985B1 (en) Gamma ray detector with two-dimensional directionality
US11921252B2 (en) Security screening device capable of detecting and locating dangerous objects by using radiation
WO2014029195A1 (zh) 可监测放射性物质的背散射人体安检系统及其扫描方法
US20060159227A1 (en) Apparatus for measuring the momentum transfer spectrum of elastically scattered X-ray quanta and method of determining this momentum transfer spectrum
CN102012527A (zh) 移动式x射线检查车及其检查方法
US20070030955A1 (en) Scatter imaging system
CN205374342U (zh) 安检设备
US11726218B2 (en) Methods and systems for synchronizing backscatter signals and wireless transmission signals in x-ray scanning
WO2018072670A1 (zh) 背散射辐射成像系统
JPH05133909A (ja) 散乱放射線検査装置
CN109164116A (zh) 一种用于工业ct检测系统的控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567657

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016002675

Country of ref document: DE

Ref document number: 15740814

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16869706

Country of ref document: EP

Kind code of ref document: A1