WO2017090676A1 - Laminated panel and method for manufacturing article molded therefrom - Google Patents
Laminated panel and method for manufacturing article molded therefrom Download PDFInfo
- Publication number
- WO2017090676A1 WO2017090676A1 PCT/JP2016/084787 JP2016084787W WO2017090676A1 WO 2017090676 A1 WO2017090676 A1 WO 2017090676A1 JP 2016084787 W JP2016084787 W JP 2016084787W WO 2017090676 A1 WO2017090676 A1 WO 2017090676A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- thermoplastic resin
- reinforced thermoplastic
- resin layer
- layer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
Definitions
- the present invention relates to a laminated panel composed of a laminate of a fiber reinforced thermoplastic resin layer and a metal plate layer, which has high rigidity and impact strength and is capable of plastic working (sheet metal working) such as bending, pressing, and roll forming.
- the present invention relates to a method for producing the molded product.
- carbon fiber reinforced resin composite materials can contribute to weight reduction because they are superior in specific strength and specific rigidity compared to metal materials.
- these fiber reinforced resin composite materials are not only more expensive than metals, but also limit the scope of use of existing molding equipment, necessitating the investment of these dedicated molding equipment, and the cost is high. Therefore, the current situation has not been popularized over the past 30 years.
- the fiber reinforced resin composite material which uses a thermoplastic resin or a thermosetting resin as a matrix has a subject that a molding cycle is long.
- Patent Document 1 proposes a resin composite vibration-damping steel sheet excellent in press workability and has been put into practical use, but is limited to applications that have low impact strength and do not require strength.
- Patent Document 2 describes a press molding method in which a steel sheet and a fiber reinforced plastic plate containing a thermosetting resin are integrally joined after preforming a fiber reinforced resin layer. In addition, there is a problem in the mass productivity (molding cycle of about 5 minutes) of the one using the fast thermosetting resin.
- Patent Document 3 as a metal resin composite excellent in rigidity and impact resistance, a fiber reinforced resin layer is sandwiched between a metal plate and a metal plate, and at least one edge of the metal plate is bent and sewn. The method of integrating by is described. This composite is excellent in rigidity and impact resistance, but has poor productivity and does not have mass productivity.
- Patent Document 4 proposes a frame member for a seat that is a laminated body in which a woven fabric is sandwiched between metal plates and fixed with a thermosetting resin.
- the fiber reinforced fabric layer is excellent in impact resistance, and the impact resistance can be improved by causing delamination at the interface between the metal and the fiber reinforced fabric layer. Since peeling occurs and the fiber reinforced fabric layer breaks, there is a problem that the impact strength itself during use of the product is lowered.
- a thermosetting resin is applied for bonding, it takes a long time for thermosetting, so that it does not have mass productivity.
- the present invention is a fiber that can utilize existing molding equipment without expensive capital investment, has high rigidity and impact strength, and is capable of plastic working (sheet metal working) such as bending, press working, and roll forming. It aims at providing the manufacturing method of a reinforced resin compound laminated body and its molded article.
- the laminated panel of the present invention has a nonwoven fabric or a fiber reinforced thermoplastic resin layer containing chopped fibers having an average fiber length of 10 mm or more and a thermoplastic resin, and a metal plate layer bonded to the fiber reinforced thermoplastic resin layer.
- the peel strength is 2.5 kN / m or more when a test according to the “floating roller method peel test” method of JIS K6854-4: 1999 is performed.
- destruction occurs in a fiber reinforced thermoplastic resin layer,
- the calculated value Z of Formula (1) which shows the following lamination constituent factors is 1 or more, The laminated panel characterized by the above-mentioned.
- the fiber reinforced thermoplastic resin layer is a dynamic viscoelasticity test (JIS K 7244-4: 1999 (plastic-dynamic mechanical property test method) for a single specimen of the fiber reinforced thermoplastic resin layer.
- the ratio of the storage elastic modulus E ′ to the specific gravity ⁇ of the fiber reinforced thermoplastic resin layer (specific storage elastic modulus value: E ′ / ⁇ ) at a frequency of 100 Hz, a test piece thickness of 2 mm, and a test temperature of 23 ° C. is 1.0 GPa. That's it.
- the specific gravity ⁇ (dimensionless) of the fiber reinforced thermoplastic resin layer is obtained by applying a measured value at room temperature (23 ° C.) as a representative value.
- the fiber reinforced thermoplastic resin layer is formed by a puncture impact test using a single specimen of the fiber reinforced thermoplastic resin layer (strike diameter 1/2 inch, impact speed 4.4 m / s, support base inner diameter: 3 inch). , Test temperature: 23 ° C.), the maximum impact strength per unit thickness is 0.5 kN / mm or more.
- the fibers in the fiber-reinforced thermoplastic resin layer are nonwoven fabrics, and the average fiber length is 25 mm or more.
- the laminated panel of one embodiment of the present invention has a three-layer structure in which the metal plate layer is bonded to both surfaces of the fiber-reinforced thermoplastic resin layer.
- the laminated panel of one embodiment of the present invention has an adhesive layer between the fiber-reinforced thermoplastic resin layer and the metal plate layer.
- the fibers in the fiber-reinforced thermoplastic resin layer are organic fibers, and the difference between the melting point of the organic fibers and the melting point or glass transition temperature of the thermoplastic resin is 40 ° C. or higher.
- the fibers in the fiber-reinforced thermoplastic resin layer are organic fibers, and the melting point of the organic fibers is 160 ° C. or higher.
- the organic fiber is a nonwoven fabric having an average fiber length of 25 to 300 mm, an average fineness of 2 to 20 dtex, and a basis weight of 50 to 1000 g / m 2 .
- the laminated panel of the present invention is used for plastic working.
- One aspect of the method for producing a molded article of the present invention is a method for producing a molded article by plastic working the laminated panel of the present invention, wherein the dynamic viscoelasticity test of the fiber-reinforced thermoplastic resin layer single specimen ( Ratio (specific storage elastic modulus) of storage elastic modulus E 'to specific gravity ⁇ of the fiber-reinforced thermoplastic resin layer in JIS K 7244-4: 1999 (plastic-dynamic mechanical property test method, frequency 100 Hz, test piece thickness 2 mm) Value: It is characterized in that plastic working is performed at any temperature in a temperature range where E ′ / ⁇ value is 1.0 GPa or more.
- Another aspect of the method for producing a molded article of the present invention is a method for producing a molded article by plastic working the laminated panel of the present invention, wherein the plastic working is performed at any temperature in a temperature range of 10 to 40 ° C. It is characterized by.
- the plastic working is press working, roll forming work, or bending work.
- the laminated panel of the present invention has a peel strength of 2.5 kN / m or more according to the “floating roller method peel test” method of JIS K6854-4: 1999, and has a property of causing a base material breakage in a fiber reinforced thermoplastic resin layer. Therefore, no peeling occurs at the bonding (bonding) interface during plastic processing such as press processing, and the fiber reinforced thermoplastic resin layer and the metal plate layer are simultaneously plastically deformed, and the softening temperature range of the fiber reinforced thermoplastic resin layer. Sheet metal processing at room temperature (however, less than the melt processing temperature) or room temperature becomes possible.
- the fiber reinforced thermoplastic resin layer is softened in a semi-molten state below the melting point of the thermoplastic resin or below the glass transition temperature without heating to a melt processing temperature range where the resin fluidity is developed such as injection molding.
- Sheet metal processing is possible in the cold from the temperature range to room temperature.
- the mold temperature can be shaped in a temperature range from room temperature to about 200 ° C., so that the cooling time that is the rate limiting of the molding cycle can be shortened.
- the fiber reinforced thermoplastic resin layer has a thickness of 0.2 mm or more, and a puncture impact test (ASTM D3763, striker diameter 1/2 inch, impact speed 4.4 m / s, with a fiber reinforced thermoplastic resin layer single-piece test piece,
- ASTM D3763 puncture impact test
- striker diameter 1/2 inch striker diameter 1/2 inch
- impact speed 4.4 m / s with a fiber reinforced thermoplastic resin layer single-piece test piece
- a laminated panel composed of a metal plate layer and a fiber-reinforced thermoplastic resin layer having sheet metal workability, light weight, high rigidity, impact resistance, and mass productivity, and a molded product obtained by plastically processing the laminated panel Is provided.
- FIG. 1 is a cross-sectional view of a laminated panel of the present invention.
- FIG. 2 is a cross-sectional view of a molded product manufactured in the example.
- 3A is a perspective view of a molded product manufactured in the example, and
- FIG. 3B is a cross-sectional view taken along the line IIIb-IIIb in FIG. 3A.
- FIG. 1 shows an example of the laminated panel of the present invention.
- the laminated panel 1 is obtained by bonding metal plate layers 3 to both surfaces of a fiber reinforced thermoplastic resin layer 2.
- This laminated panel has a peel strength (23 ° C.) of 2.5 kN / m or more, preferably 3 kN / m or more, particularly preferably 5 kN / m, according to the “floating roller method peel test” method of JIS K6854-4: 1999. That's it.
- the peel strength is 2.5 kN or more, breakage is likely to occur in the fiber reinforced thermoplastic resin layer, and the metal plate layer and the fiber reinforced thermoplastic resin layer easily follow, thereby cold working. It becomes easy.
- this laminated panel is one in which breakage during the peel test occurs in the fiber reinforced thermoplastic resin layer.
- the upper limit of the peel strength is usually 20 kN / m, preferably 10 kN / m.
- the metal plate constituting the metal plate layer has a yield ratio of 92% or less, and the deep drawing process becomes easier when the yield ratio is 92% or less.
- the yield ratio is a ratio of the yield strength to the tensile strength in the metal plate, and is calculated from the yield strength and tensile strength obtained by the tensile strength test.
- the lower the yield ratio the better the fit to the press die and the like, and the better the molded shape is obtained. Therefore, it is widely used as an index for the moldability of press molding and drawing.
- the yield ratio of the metal plate constituting the metal plate layer used in the present invention is more preferably 85% or less and 40% or more, and further preferably 80% or less and 45% or more.
- the material of the metal plate constituting the metal plate layer 3 is at least selected from the group consisting of steel, such as iron and stainless steel, aluminum, magnesium, titanium, and alloys containing them, depending on the purpose, application, and physical properties.
- steel such as iron and stainless steel
- aluminum, magnesium, titanium, and alloys containing them depending on the purpose, application, and physical properties.
- One kind is used.
- iron, aluminum, an alloy including these, and stainless steel are preferable from the viewpoint of lightness (balance between specific gravity and rigidity), and iron, aluminum, and an alloy including these are more preferable from the viewpoint of cost.
- the tensile strength measured at room temperature (23 ° C.) according to JIS Z2241: 2011 (metal material tensile test method) for the metal plate layer unit test piece is 200 to 1500 MPa, 250 More preferably, it is ⁇ 1000 MPa, more preferably 280 to 600 MPa.
- the tensile elongation at room temperature (23 ° C.) is preferably 10 to 80%, more preferably 12 to 80%, and still more preferably 20 to 80%. It is preferable to use a metal plate having such a tensile elongation rate because the metal plate layer is difficult to break during cold plastic working such as cold deep drawing, and the cold plastic workability tends to be good.
- the thickness t 3 of the metal plate layer is usually 0.05 ⁇ 1 mm in the case of the steel sheet, preferably 0.08 ⁇ 0.6 mm, more preferably 0.1 ⁇ 0.4 mm, usually in the case of aluminum alloy 0
- the thickness is preferably 1 to 2 mm, preferably 0.15 to 1 mm, more preferably 0.2 to 0.5 mm, from the viewpoint of the rigidity and light weight of the laminated panel.
- the metal plate depends on the type and thickness of the fiber reinforced thermoplastic resin layer, an aluminum alloy having a thickness of 0.1 to 2 mm is preferable from the viewpoint of lightness and high rigidity.
- A5182 (O, H34, H38), A6061 (T6, T651, T8), A6063 (T6, T83, T832) and the like can be used from the viewpoint of availability.
- steel plates such as cold rolled steel plates such as SPCC, SPCD and SPCE, hot dip galvanized steel plates such as SGCC, and electrogalvanized steel plates such as SECC, and stainless alloy systems can also be used.
- the metal plate constituting the metal plate layer is preferably a plate-like one, but is not limited to a plate-like one as long as it can shape the laminated panel of the present invention, and may be curved. , May be bent. Moreover, the shape etc. which have the unevenness
- the irregular shape an array in which irregularities such as a lens shape, a cone, a triangular pyramid, a quadrangular pyramid, and a bowl shape are continuously arranged is preferable.
- the fiber reinforced thermoplastic resin layer of the present invention may be any material that includes a nonwoven fabric or chopped fibers having an average fiber length of 10 mm or more in the thermoplastic resin.
- thermoplastic resin By including such fibers in the thermoplastic resin, when performing molding processing such as plastic processing, which will be described later, using the laminated panel of the present invention, friction between fibers and friction due to displacement between the fibers and the thermoplastic resin. Energy (friction heat) is generated, the fiber-reinforced thermoplastic resin layer is easily softened, and there is an advantage that plastic processing becomes easier even at a low processing temperature.
- Fiber reinforced thermoplastic resin with short glass fibers is usually a thermoplastic resin composition used in injection molding or extrusion molding, and can be obtained by compounding with a kneading extruder, and after injection molding or extrusion molding. Since the remaining fiber length of the reinforcing fiber such as glass fiber is usually 1 mm or less, it is not suitable for the present laminated panel.
- Fiber reinforced thermoplastic resin with long chopped fibers is a thermoplastic resin composition that is usually used in injection molding and extrusion molding.
- reinforced fibers such as glass fibers are 1 mm or less, resulting in deterioration of physical properties. Therefore, there is a type in which a step of directly combining continuous fibers of reinforcing fibers such as glass fibers at the time of molding is provided so that the remaining fiber length is intentionally set to several mm or more.
- Typical examples of these include LFT (Long Fiber Thermoplastic), D-LFT (Direct Long Fiber Thermoplastic), etc. using a thermoplastic resin such as PP, PA, or PPS as a base resin.
- LFTs include the trade names Funkster (Nippon Polypro Co., Ltd.), Plastron (Daicel Co., Ltd.), Mostron-L (Prime Polymer Co., Ltd.), Quick Form (Toyobo Co., Ltd.) Etc.
- any chopped fibers may be used as long as the average fiber length in the fiber-reinforced thermoplastic resin layer is 10 mm or more, preferably 20 mm or more, more preferably 30 mm or more.
- the chopped fiber is usually used as a reinforced fiber (strand) in which monofilaments are bundled and cut into a predetermined length.
- a chopped fiber is made of a long fiber pellet cut into a predetermined length by impregnating the strand with a thermoplastic resin. Used as a form.
- these are usually present in an opened state, but in the present invention, in addition to the chopped fibers thus opened, unopened fibers are also included.
- examples of the web forming method include dry type, wet type, spun bond method, melt blown method, and airlaid method, and fiber bonding methods include needle punch method and chemical bond method. Examples include a method (dipping method / spray method), a thermal bond method, a hydroentanglement method, and the like, and a nonwoven fabric prepared by a combination thereof can be suitably used. Particularly preferred among the nonwoven fabrics is a nonwoven fabric produced by a needle punch method in which fibers are intertwined with each other.
- Typical examples of fiber reinforced thermoplastic resins using nonwoven fabric include the trade names GMT (Glass MAT Thermoplastic: Quadrant Plastic Composites Japan), GMTex (Glass Matsplastic Plastic Co., Ltd.). Manufactured)) and the like.
- GMT Glass MAT Thermoplastic: Quadrant Plastic Composites Japan
- GMTex Glass Matsplastic Plastic Co., Ltd.
- Manufactured in addition to the fiber reinforced thermoplastic resin using said nonwoven fabric, it does not prevent using the fiber reinforced thermoplastic resin material using a textile fabric or a knitted fabric.
- a typical example of a fiber reinforced thermoplastic resin using a woven fabric is Q-Tex (manufactured by Quadrant Plastic Composites).
- nonwoven fabrics a nonwoven fabric produced by a needle punch in which fibers are intertwined with each other is particularly preferable.
- a fiber reinforced thermoplastic resin layer in which a nonwoven fabric and a woven fabric are combined as the reinforcing fiber is also suitable.
- the fibers are mutually constrained, high impact resistance can be secured, fiber cutting during fiber processing and fiber uneven distribution can be suppressed, and deterioration of physical properties during use can be easily suppressed.
- these can be applied to the present laminated panel because a minimum remaining fiber length of 5 mm or more, usually 25 mm or more, and preferably 40 mm or more can be secured.
- the average fiber length of the fibers in the fiber reinforced thermoplastic resin layer is preferably 25 mm or more, more preferably 40 mm or more, and further preferably 70 mm or more. Moreover, it is also preferable that it is a form of continuous fiber.
- the thickness t 2 of the fiber reinforced thermoplastic resin layer 2 is usually 0.2 to 4 mm, preferably 0.3 to 3 mm, particularly preferably 0.4 to 2 mm. By making the thickness of the fiber reinforced thermoplastic resin layer 2 within the above range, it is preferable because deformation due to spring back during cold plastic working is easily suppressed.
- one or more reinforcing fibers such as inorganic fibers, organic fibers, and metal fibers can be used.
- inorganic fibers are preferable from the viewpoint of light weight and elastic modulus
- organic fibers are preferable from the viewpoint of light weight, elongation, and cold workability.
- Examples of the inorganic fiber include glass fiber, carbon fiber, boron fiber, silicon carbide fiber, and alumina fiber.
- Examples of the organic fibers include aramid fibers, polyparaphenylene benzoxazole fibers (PBO fibers), high-strength polyethylene fibers, polypropylene fibers, polyamide fibers, polyester fibers, and self-reinforced fibers obtained by stretching and strengthening these.
- Examples of the metal fiber include aluminum fiber, alumina fiber, SUS fiber, and copper fiber.
- Examples of the reinforcing fiber include nonwoven fabric, chopped fiber (average fiber length of 10 mm or more), and a combination of nonwoven fabric and woven fabric or knitted fabric. Among these, nonwoven fabric and chopped fiber are suitable. From the balance of cost, impact resistance, and moldability, glass fibers or carbon fibers, particularly nonwoven fabrics made of glass fibers, and chopped fibers having an average fiber length of 10 mm or more are suitable.
- the organic fiber preferably used has a difference between the melting point of the organic fiber and the melting point of the thermoplastic resin used for the fiber-reinforced thermoplastic resin layer or the glass transition temperature of 40 ° C. or more, and impregnates the organic fiber with the thermoplastic resin. It is preferable from the viewpoint of maintaining the shape of the organic fiber.
- the temperature difference is more preferably 50 to 200 ° C., and further preferably 60 to 150 ° C. In calculating the temperature difference, the melting point is employed when the thermoplastic resin used for the fiber-reinforced thermoplastic resin layer is crystalline, and the glass transition temperature is employed when the thermoplastic resin is amorphous.
- fusing point or glass transition temperature of these resin is employ
- the average melting point of these organic fibers is employed.
- the melting point and glass transition temperature are measured using a differential scanning calorimeter (DSC).
- the melting point is the temperature at the peak top of the endothermic peak of the obtained DSC curve. Specifically, the temperature is raised from 25 ° C. to 10 ° C./min to the expected melting point + 50 ° C., held at the same temperature for 1 minute, and then lowered to 25 ° C. at 10 ° C./min. And hold at the same temperature for 1 minute. Then, it can obtain
- the organic fiber is preferably made of a crystalline thermoplastic resin having a melting point of preferably 160 ° C. or higher, more preferably 200 ° C. or higher, further preferably 220 ° C. or higher, particularly preferably 250 ° C. or higher.
- the thermal deformation temperature (heat resistance) of the fiber-reinforced thermoplastic resin layer is improved to the vicinity of the melting point of the crystalline thermoplastic resin and the glass transition temperature of the amorphous thermoplastic resin. As such, the heat resistance of the laminated panel tends to be improved.
- the form of the organic fiber may be any of filaments, staples, flat yarns and the like, and is preferably used as a nonwoven fabric composed of one or more of these.
- Filaments are long fibers (continuous fibers). Staples are staple fibers formed by cutting staple tows in which the filaments are converged to form cotton. Usually, the fiber length is 35 to 100 mm.
- the flat yarn is a flat yarn that has a strength by cutting (slit) a film of a thermoplastic resin or the like into a strip shape and stretching it.
- the form of the organic fibers is preferably an average fiber length of 5 to 400 mm, more preferably 25 to 300 mm, and more preferably 40 to 200 mm. More preferably.
- the average fineness is preferably 1 to 30 dex, more preferably 2 to 20 dtex, and further preferably 3 to 15 dtex.
- the basis weight is preferably 50 to 1500 g / m 2 , more preferably 100 to 1000 g / m 2 .
- an organic fiber reinforced thermoplastic resin layer in which a nonwoven fabric and a woven fabric are combined as an organic fiber is also suitable.
- the fibers are constrained to each other, so that high impact resistance can be ensured, fiber cutting, uneven fiber distribution, and opening during cold plastic working can be suppressed, and deterioration in physical properties during use can be suppressed. it can.
- thermoplastic resins polypropylene, PVC (polyvinyl chloride), PA (polyacrylonitrile), PC (polycarbonate), PPS (polyphenylene sulfide), PEEK (polyether ether ketone), PET (polyethylene terephthalate) Polyester such as PBT (polybutylene terephthalate), PES (polyethersulfone), and the like are preferable, and crystalline resins such as PP, PA, PBT, PPS, and PEEK are preferable, and PP, PA, and PBT are more preferable. PP is more preferable from the viewpoints of heat resistance, moisture absorption resistance, hydrolysis resistance, and cost.
- the fiber volume content Vf in the fiber reinforced thermoplastic resin layer is preferably 10 to 80% by volume, more preferably 15 to 70% by volume. If the volume content Vf is less than 10% by volume, the reinforcing effect due to the fibers is difficult to appear. Since it may become easy to break at the time of processing, such as inter-processing, it is not preferred.
- the weight volume content Wf of the fibers in the fiber reinforced thermoplastic resin layer is preferably 20 to 80% by weight, more preferably 25 to 75% by weight. When the volume content Wf is less than 20% by weight, the reinforcing effect by the fiber is hardly exhibited. It is not preferable because it is easy to break during processing such as inter-processing.
- the manufacturing method of a fiber reinforced thermoplastic resin layer is not specifically limited, A conventionally well-known method is employable.
- the fiber used in the fiber reinforced thermoplastic resin layer is chopped fiber, for example, the resin pellet containing the chopped fiber is heated and melted to directly form the fiber reinforced thermoplastic resin layer of the laminated panel, or the resin pellet is heated and melted.
- a method of forming a sheet in advance and laminating it and a metal plate layer by heat fusion or the like can be mentioned.
- a fiber reinforced thermoplastic resin discharged from a die of an extruder is directly laminated and formed into a sheet while suppressing fiber cutting by the D-LFT method with a fiber length of 30 mm or more.
- the fiber used for the fiber reinforced thermoplastic resin layer is a non-woven fabric
- the thermoplastic resin is put into an extruder and melted, it is extruded into a sheet having a desired thickness, and the extruded sheet It can be produced by supplying and laminating a nonwoven fabric on at least one side, preferably both sides.
- a thermoplastic resin sheet can also be supplied to the front and back of the laminate to obtain a laminate.
- laminating a fiber reinforced thermoplastic resin layer is produced by heating and pressurizing using a laminator or the like, impregnating the thermoplastic resin into the nonwoven fabric, and then solidifying by cooling to form a sheet (so-called stampable sheet). Can do.
- stampable sheet a sheet
- the fiber reinforced thermoplastic resin layer may contain other components other than the thermoplastic resin and the nonwoven fabric or the chopped fiber having an average fiber length of 10 mm or more within a range not impairing the object of the present invention.
- Other components include, for example, ultraviolet absorbers, light stabilizers, heat stabilizers, antioxidants, impact modifiers, flame retardants, mold release agents, lubricants, antiblocking agents, antistatic agents, and reinforcing fibers.
- additives, such as inorganic fillers other than, are mentioned.
- the fiber reinforced thermoplastic resin layer has a thickness of 0.2 mm or more, and a puncture impact test using a single specimen of the fiber reinforced thermoplastic resin layer (ASTM D3763, striker diameter 1/2 inch, impact speed 4.
- ASTM D3763 striker diameter 1/2 inch
- impact speed 4 striker diameter 1/2 inch
- the maximum impact force per specimen thickness is 0.5 kN / mm or more under the conditions of 4 m / s, support base inner diameter: 3 inches, test temperature: 23 ° C.
- the maximum impact force is preferably 0.7 to 10 kN / mm, more preferably 0.8 to 5 kN / mm.
- the fiber reinforced thermoplastic resin layer is composed of a dynamic viscoelasticity test (JIS K 7244-4: 1999 (plastic-dynamic mechanical property test method, frequency 100 Hz, test piece).
- JIS K 7244-4 1999 (plastic-dynamic mechanical property test method, frequency 100 Hz, test piece).
- specific storage elastic modulus value: E ′ / ⁇ is 1.0 GPa or more
- the fiber Plasticization of the reinforced thermoplastic resin layer is unlikely to be excessive, and the fiber reinforced thermoplastic resin layer is also easily deformed while following the plastic deformation of the metal plate layer, which is preferable because plastic processing tends to be easier.
- the specific storage elastic modulus of the fiber-reinforced thermoplastic resin layer is determined based on the dynamic viscoelasticity of the fiber-reinforced thermoplastic resin layer single specimen using a dynamic viscoelasticity measuring apparatus (for example, FT Rheospectr manufactured by Rheology). It can be obtained by measuring the temperature dependence from room temperature to 200 ° C. under the test conditions (JIS K 7244-4: 1999 (Plastic—Dynamic mechanical property test method, frequency 100 Hz, test piece thickness 2 mm)). .
- the specific gravity ⁇ (dimensionless) of the fiber reinforced thermoplastic resin layer is also temperature-dependent, but here, the values calculated from the measured weight and volume at room temperature (23 ° C.) are applied as representative values. Can do.
- the specific storage elastic modulus (E ′ / ⁇ ) value of the fiber reinforced thermoplastic resin layer is more preferably 1.5 GPa or more, and further preferably 1.8 GPa or more.
- this value is usually 50 GPa or less, preferably 30 GPa or less, more preferably 20 GPa or less.
- the bonding (adhesion) method between the fiber reinforced thermoplastic resin layer and the metal plate layer there are no particular restrictions on the bonding (adhesion) method between the fiber reinforced thermoplastic resin layer and the metal plate layer, and various methods can be applied.
- the base material breaks down in the fiber reinforced thermoplastic resin layer during the peel strength test. It is essential that the peel test strength is strong.
- JIS K6854-4 Joining (adhesion) method in which the peeling strength is 2.5 kN or more in the floating roller method peeling test of 1999, and no interface peeling occurs and the base material breaks down in the fiber reinforced thermoplastic resin layer. If there is no particular limitation, a known method can be suitably applied.
- an adhesive is used as a method for achieving the bondability (adhesiveness) in which the peel strength in the floating roller method peel test is 2.5 kN / m or more and the base material breaks down in the fiber reinforced thermoplastic resin layer.
- an adhesive is used in addition to the method of providing the used adhesive layer.
- the metal surface is modified on the metal surface by chemical reaction, the metal surface and thermoplastic resin and various curing
- the adhesive strength with the fiber reinforced thermoplastic resin layer as the core material may be sufficiently obtained, so the adhesive layer is not always necessary.
- the metal plate layer and the fiber reinforced thermoplastic resin layer are joined via an adhesive layer such as an adhesive or an adhesive resin (adhesive film). Is desirable.
- the adhesive examples include an epoxy adhesive, a urethane adhesive, a polyester adhesive, and the like, and a thermosetting adhesive of a type having improved adhesion to a polyolefin resin.
- an easy-adhesive primer layer is provided on the surface of the fiber reinforced thermoplastic resin layer laminated with the metal plate layer, and a normal thermosetting epoxy system, urethane system, polyester system is provided.
- the metal plate layer may be bonded using an acrylic adhesive or the like.
- the adhesive resin commercially available maleic anhydride-PP copolymer resin films (trade names: Modic P555 manufactured by Mitsubishi Chemical Corporation, Clanbetter P6700 manufactured by Kurabo Industries, etc.) can be suitably used.
- a modified polyolefin adhesive resin film Mitsubishi Chemical Corporation, Clanbetter P6700 manufactured by Kurabo Industries, etc.
- a heat-seal type PET film Mylar 850, manufactured by Teijin DuPont Films Co., Ltd.
- a film-like hot melt type are used.
- An adhesive (Kurabo Clam Better G13), a film-like hot melt type adhesive (Kurabo Clan Better CN-1003) and the like can be used as the nylon film.
- a metal composite plate (Hishimetal, Alset (both manufactured by Mitsubishi Plastics Co., Ltd.) or the like) in which a film of a resin similar to the fiber reinforced thermoplastic resin layer is previously laminated may be used.
- Hishi Metal PO, Alset 1P, Alset HP, etc. in the PP resin layer, Alset 1Y, Alset 3Y, Alset AR, etc. in the polyamide resin layer, Alset in the PET resin layer EG, Alset EH, etc. can be used suitably.
- the surface of the metal plate of the metal plate layer is preferably subjected to a surface treatment because an improvement in adhesion (bonding) strength can be expected.
- a surface treatment method include various chemical treatments such as plasma treatment, UV treatment, corona treatment, etching treatment, alkali electrolysis treatment, chemical treatment such as chromate treatment, and the like.
- thermoplastic resin film is fused to the metal plate layer, and the metal plate layer with the thermoplastic resin film layer and the fiber reinforced thermoplastic resin layer are superposed and heated to form the metal plate layer.
- a method of bonding the fiber reinforced thermoplastic resin layer is preferable. Also suitable is a method in which a thermoplastic resin film is interposed between the metal plate layer and the fiber reinforced thermoplastic resin layer, and these are pressed and heated to bond the metal plate layer and the fiber reinforced thermoplastic resin layer. .
- a fiber reinforced thermoplastic resin layer used for manufacture of a laminated panel you may use the fiber reinforced thermoplastic resin sheet manufactured previously as mentioned above, and a nonwoven fabric and thermoplasticity from a viewpoint of process shortening. It is good also as a fiber reinforced thermoplastic resin layer of the laminated panel of this invention by thermoforming at once with a metal plate using what laminated
- the number of laminated layers is not particularly limited as long as the above-described fiber reinforced thermoplastic resin layer and the metal plate layer are laminated and the outermost layer of the panel is the metal plate layer.
- a three-layer structure of metal plate layer / fiber reinforced thermoplastic resin layer / metal plate layer is preferable in terms of lightness, rigidity, and productivity.
- layers other than a metal plate layer and the fiber reinforced thermoplastic resin layer of this invention may be included in the laminated body panel.
- the laminated panel obtained by bonding has a peel strength of 2.5 kN / m or more, preferably 3 kN / m or more when tested by the “floating roller method peel test” method of JIS K6854-4: 1999. More preferably, it is 5 kN / m or more, and the breakage occurs in the fiber-reinforced thermoplastic resin layer.
- the calculated value Z of the formula (1) showing the following lamination constituent factor is 1 or more, preferably 2 or more, more preferably 3 or more, and still more preferably 5 That's it. It is preferable from the viewpoint of workability described below that the lamination component factor Z is equal to or greater than the value. Further, the lamination component factor Z is preferably 2000 or less, more preferably 500 or less, still more preferably 100 or less, and particularly preferably 50 or less. It is preferable from the point of weight reduction that the lamination
- the tensile strength (MPa) at room temperature (23 ° C.) of the metal plate layer and the tensile elongation (%) at room temperature (23 ° C.) of the metal plate layer are JIS Z2241: 2011 (metal Based on measured values according to the material tensile test method).
- the tensile strength (MPa) of the fiber reinforced thermoplastic resin layer at room temperature (23 ° C.) and the tensile elongation (%) of the fiber reinforced thermoplastic resin layer at room temperature (23 ° C.) are as follows. For JIS K7164: 2005 (Plastics-Test method for tensile properties-Part 4: Test conditions for isotropic and orthotropic anisotropic fiber reinforced plastics).
- the thicknesses of the metal plate layer and the fiber reinforced thermoplastic resin layer refer to the average thickness, and in the case of having protruding portions such as ribs and bosses that partially protrude, the thickness refers to the average thickness of the portion excluding these protruding portions.
- the value of ( ⁇ m ⁇ tm ⁇ ⁇ m) in the above formula (1) is calculated by calculating the value of tensile strength ⁇ thickness ⁇ tensile elongation for each outermost metal plate, and calculating the total value of both metal plate layers. ( ⁇ m ⁇ tm ⁇ ⁇ m).
- the tensile strength ⁇ thickness ⁇ tensile elongation is calculated for each metal plate layer, and the total value of each metal plate layer is ( ⁇ m ⁇ tm ⁇ ⁇ m). .
- the tensile strength ⁇ thickness ⁇ tensile elongation of each fiber reinforced thermoplastic resin layer is calculated, and the total of each fiber reinforced thermoplastic resin layer is calculated.
- the value is ( ⁇ c ⁇ tc ⁇ ⁇ c).
- This calculated value Z is an index indicating the selection of a laminated structure capable of plastic working of the laminated panel of the present invention and its plastic working characteristics. If the energy required for deformation of both layers is balanced on the assumption that both the metal plate layer and the fiber reinforced thermoplastic resin layer are ideally joined, the metal plate layer and the fiber reinforced thermoplastic resin layer Assuming that deformation does not occur in either layer, the energy required for deformation of both layers is the maximum tensile force and thickness of each of the metal plate layer and the fiber reinforced thermoplastic resin layer ( Cross-sectional area) and tensile elongation (strain), and can be represented by a calculated value Z (formula (1)). When Z is less than 1, the metal plate layer is likely to break or crack during plastic working such as deep drawing or bending.
- the laminated panel of the present invention can be applied to various forming methods, since it has the above-described properties, a remarkable effect can be exhibited particularly by using it for plastic working. .
- a plastic working (sheet metal working) method for producing a molded product from the laminated panel of the present invention conventionally known methods can be mentioned.
- press working including simple press working, drawing, deep drawing, overhanging, stretch flange processing, etc.
- roll forming and bending
- is particularly suitable for deep drawing Among these, it can be suitably used for producing deep-drawn products having a limit drawing ratio of 1.6 or more, particularly 2 to 3.
- the limit drawing ratio (LDR) is the maximum blank diameter (Dmax) and the diameter of the cylinder (inner diameter of the drawn product: d) that can squeeze a cylinder that does not break with a single drawing. Calculated as the ratio (Dmax / d).
- the laminated panel of the present invention comprises a dynamic viscoelasticity test (JIS K 7244-4: 1999 (plastic-dynamic mechanical property test method, frequency 100 Hz, test piece thickness 2 mm,
- the ratio of the storage elastic modulus E ′ to the specific gravity ⁇ of the fiber-reinforced thermoplastic resin layer at a test temperature of 23 ° C. (specific storage elastic modulus value: E ′ / ⁇ ) is 1.0 GPa or more, preferably 1.5 GPa or more. It can be suitably processed at any temperature in the temperature range of 1.5-3 GPa (mold temperature or preheating temperature of the laminated panel), that is, the specific storage elastic modulus value (E ′ / ⁇ ) is 1.0 GPa.
- the above temperature can be used as an index for selecting the preheating temperature of the laminated panel, and it is particularly preferable to process the laminated panel after preheating to any temperature in the above temperature range.
- the specific storage elastic modulus value (E ′ / ⁇ ) shows such a value
- it is room temperature or below the melting point of the thermoplastic resin constituting the fiber reinforced thermoplastic resin layer of the laminated panel, or glass
- a softening temperature below the melting temperature below the transition temperature
- press processing is performed from room temperature to the mold temperature set below the glass transition temperature or melting temperature of the thermoplastic resin (simple pressing, deep
- a method of plastic working (sheet metal working) such as bending and roll forming is preferable.
- a room temperature laminated panel may be cold worked with a room temperature mold from the viewpoint of shortening the cooling cycle.
- the fiber-reinforced thermoplastic resin layer easily follows the deformation of the metal plate layer during cold plastic processing, and the room temperature laminated panel is changed to room temperature. It becomes easier to cold work with this mold.
- the softening temperature is not less than room temperature and not more than the melting point, preferably not more than the crystallization temperature, in the DSC curve.
- the softening temperature is in the range of room temperature to glass transition temperature + 50 ° C., preferably below the glass transition temperature.
- fusing point and glass transition temperature is as having mentioned above.
- thermoplastic resin constituting the fiber reinforced thermoplastic resin layer is a crystalline resin
- plastic processing may be possible even at room temperature without preheating, and the temperature range between the crystallization start temperature of the thermoplastic resin and the crystal melting temperature It is preferable from the viewpoint of the physical properties of the obtained molded product to select and warm the temperature, but from the viewpoint of the molding cycle at the time of molding, it is desirable not to provide a preheating step as much as possible.
- heating if the heating temperature is lower than the crystallization start temperature, plastic deformation of the fiber-reinforced thermoplastic resin layer becomes difficult and the metal plate layer may be cracked.
- the temperature is higher than the crystal melting temperature of the thermoplastic resin, the fiber reinforced thermoplastic resin layer is excessively softened, and the metal plate layer in the deformation process at the time of molding process bites into it, which may cause wrinkles. is there.
- the mold temperature is preferably set between room temperature and the crystallization temperature of the thermoplastic resin, and room temperature is particularly preferable from the viewpoint of shortening the cooling time. However, it is appropriately selected depending on the breaking state of the reinforcing fiber due to shear during processing. It is possible.
- thermoplastic resin constituting the fiber reinforced thermoplastic resin layer is an amorphous resin
- sheet metal processing may be possible even at room temperature without preheating, the glass transition temperature (Tg) of the thermoplastic resin or higher, and the glass transition temperature +50.
- Tg glass transition temperature
- this heating temperature is lower than the glass transition temperature of the thermoplastic resin, the plastic deformation of the fiber-reinforced thermoplastic resin layer becomes difficult, and the metal plate layer may be cracked.
- the glass transition temperature of the thermoplastic resin is higher than + 50 ° C., it becomes the melt processing temperature range, so the fiber reinforced thermoplastic resin layer is excessively softened and fluidized, and the metal plate layer in the deformation process at the time of molding processing becomes this. It may cause cracks and wrinkles.
- the mold temperature is preferably set to room temperature or more and below the glass transition temperature of the thermoplastic resin, and room temperature is particularly preferable because of shortening of the cooling time. It is possible to select appropriately.
- 10 to 40 can be selected by appropriately selecting the type, configuration, thickness, tensile strength, and tensile elongation of the metal plate layer and the fiber reinforced thermoplastic resin layer. It becomes easy to perform plastic working even in a low temperature region such as ° C., the cooling time is shortened, and the molding cycle can be shortened effectively.
- the molded product obtained according to the present invention can be used for automobile parts, electronic parts, building materials, and other various products by applying various surface decorations such as coating and film lamination as necessary.
- Auto parts include body, door inner, side panel, bonnet (engine / hood), roof, floor, cab lower cover, trunk lid, reinforcement parts, side sill, cross member, bracket, various pillar parts, various beam parts, A floor reinforcement board etc. are illustrated.
- the electronic component include a housing such as a TV, a PC, and a mobile device.
- helmets include helmets, aluminum sash frames, elevator gate frames (beams), anti-blade waistcoats, travel bags, gusts, roofs, etc.
- FIG. 2 the deep drawing shown in FIG. 2 or the press forming shown in FIG. 3 was performed as plastic working.
- FIG. 2 the shape shown in FIG. 2 is obtained by deep drawing a circular plate-like laminated panel having a diameter of 98 mm and a thickness of 2 mm using a high-power press tester (special specification of the double-acting hydraulic press TM200 manufactured by Amino Co., Ltd.) The molded product had a drawing ratio of 1.7).
- FIG. 3 a rectangular laminated panel having a size of 400 ⁇ 600 mm and a thickness of 2 mm was press-molded with a mold to obtain a molded product shown in FIG.
- thermoplastic resin layer The materials applied to the fiber reinforced thermoplastic resin layer are shown below. Various physical properties were measured according to the method described above. “Room temperature” refers to 23 ° C.
- GMT40 Quadrant Composite Plastic Japan Co., Ltd. P4020-BK31 Stampable sheet made of glass fiber nonwoven fabric and polypropylene resin by needle punch method
- Polypropylene resin content 60% by weight
- Glass fiber content 19% by volume (40% by weight)
- Average fiber length 101mm
- Specific gravity 1.2
- Specific storage modulus E ′ / ⁇ (frequency 100 Hz, specimen thickness 2 mm, test temperature 23 ° C.): 3.0 GPa
- Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 2.2 kN
- GMT65 Quadrant Composite Plastic Japan Co., Ltd. Stampable sheet made of glass fiber nonwoven fabric and polypropylene resin by needle punch method Polypropylene resin content: 35% by weight Glass fiber content: 40% by volume (65% by weight) Average fiber length: 98mm Specific gravity: 1.53 Specific storage elastic modulus value E ′ / ⁇ (frequency 100 Hz, specimen thickness 2 mm, test temperature 23 ° C.): 3.4 GPa Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 3.1 kN Maximum impact strength per unit thickness: 1.55 kN / mm
- CFRTP manufactured by Yuho Co., Ltd.
- Polycarbonate resin content 35% by weight
- Carbon fiber content 55% by volume (65% by weight)
- Average fiber length 60mm
- Specific gravity 1.53
- Specific storage elastic modulus value E ′ / ⁇ (frequency 100 Hz, specimen thickness 2 mm, test temperature 23 ° C.): 12.4 GPa
- Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 4.0 kN Maximum impact strength per unit thickness: 2.0 kN / mm
- Organic fiber nonwoven fabric 1 BT-1812W manufactured by Unicel Corporation Polyester continuous fibers by melt-blown method (melting point 265 ° C.) nonwoven fabric average fiber length: Continuous Fiber basis weight: 80 g / m 2 Fiber reinforced thermoplastic resin layer single-piece test piece (polypropylene resin content 70% by weight, polyester fiber content 22% by volume (30% by weight), specific gravity impregnated with an organic fiber nonwoven fabric 1 with polypropylene resin (melting point 165 ° C.) 1.0) ⁇ Specific storage elastic modulus value E ′ / ⁇ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23 ° C.): 1.4 GPa ⁇ Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 4.2 kN Maximum impact strength per unit thickness: 2.1 kN / mm
- Organic fiber nonwoven fabric 2 Eco punch made by Watanabe Kogyo Co., Ltd. Recycled polyethylene terephthalate resin staple (melting point 265 ° C.) nonwoven fabric by needle punch method Average fiber length: 51 mm Average fineness: 10 dtex Basis weight: 300 g / m 2 Fiber reinforced thermoplastic resin layer single-piece test piece (polypropylene resin content 70% by weight, polyester fiber content 22% by volume (30% by weight), specific gravity impregnated with an organic fiber nonwoven fabric 2 with polypropylene resin (melting point 165 ° C.) 1.0) ⁇ Specific storage elastic modulus value E ′ / ⁇ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23 ° C.): 1.4 GPa ⁇ Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 2.4 kN Maximum impact strength per unit thickness: 1.2 kN / mm
- Organic fiber non-woven fabric 3 manufactured by Misawa Fiber Co., Ltd.
- Non-woven fabric made of polyethylene terephthalate resin staple (melting point 265 ° C.) by needle punch method Average fiber length: 51 mm Average fineness: 3.3 dtex Basis weight: 300 g / m 2
- Specific storage elastic modulus value E ′ / ⁇ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23 ° C.): 1.4 GPa ⁇ Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 1.6 kN Maximum impact strength per unit thickness: 0.8 kN / mm
- A5052-H34 Aluminum alloy plate manufactured by UACJ Co., Ltd. Thickness: 0.6mm Tensile strength: 260 MPa Tensile elongation: 10% Yield ratio: 83%
- A5182-H38 Aluminum alloy plate manufactured by Mitsubishi Aluminum Co., Ltd. Thickness: 0.25mm
- A5182-O Aluminum alloy plate manufactured by Mitsubishi Aluminum Co., Ltd. Thickness: 0.25 mm
- A5182-O Aluminum alloy plate manufactured by UACJ Co., Ltd. Thickness: 0.4 mm Tensile strength: 290 MPa Tensile elongation: 21% Yield ratio: 56%
- A1100-H16 Aluminum alloy plate manufactured by Mitsubishi Aluminum Co., Ltd. Thickness: 0.15 mm
- Example 1 As the metal plate layer, two A6061-T6 aluminum plates having a thickness of 0.5 mm, a tensile strength of 310 MPa, and a tensile elongation of 12% were used. An adhesive resin layer (Model P555 manufactured by Mitsubishi Chemical Corporation, thickness 20 ⁇ m) was previously heat-sealed to one surface of the aluminum plate at a surface pressure of 3.9 MPa and 180 ° C.
- GMT 40 having a thickness of 3.8 mm was used.
- a fiber reinforced thermoplastic resin layer is sandwiched between two metal plate layers, press molding is performed at a surface pressure of 3.9 MPa, 180 ° C. ⁇ 10 minutes, and the metal plate layer and the fiber reinforced thermoplastic resin layer are bonded to each other.
- a laminated panel having a thickness of 2 mm was obtained.
- the laminate panel was measured for peel strength, flexural modulus, and maximum impact strength, and the deep drawing shown in FIG. 2 was performed at 120 ° C. to evaluate the deep drawability and molding cycle. The results are shown in Table 1. . Moreover, the unit thickness by the puncture impact test (ASTM D3763, striker diameter 1/2 inch, impact speed 4.4 m / s, support stand inner diameter: 3 inch, test temperature: 23 degreeC) of the material used as a fiber reinforced thermoplastic resin layer Table 1 also shows the maximum impact strength per hit and the calculated value Z of equation (1) representing the lamination component factor.
- the peel strength of the laminate panel was measured at room temperature (23 ° C.) according to the “floating roller method peel test” method of JIS K6854-4: 1999.
- the peel test the case where the fiber reinforced thermoplastic resin composition layer breaks (base material breakage) is “A”, and the case where the fiber reinforced thermoplastic resin composition layer peels off at the interface between the metal plate layer (interface peel). “B”.
- the flexural modulus of the laminated panel was measured at room temperature using a bending tester (a precision universal material tester manufactured by Intesco) based on JIS K7017: 1999.
- A indicates that deep drawing can be performed and there is no crack in the resulting molded product, while deep drawing is possible and there are slight cracks in the metal plate layer.
- Evaluation was made with “B” for a case where there was no problem as a molded product, and “C” for a case where cracking occurred in a molded product obtained because deep drawing could not be performed.
- the forming cycle at the time of deep drawing was evaluated by measuring the time required for deep drawing (the time from placing the laminated panel on the mold to releasing the mold) and the cooling time.
- the specific storage elastic modulus value E ′ / ⁇ (GPa) at the preheating temperature of the fiber reinforced thermoplastic resin layer is 25 to 200 ° C. in a temperature range of 25 to 200 ° C. using a dynamic viscoelasticity measuring machine (FT Leospectr manufactured by Rheology) It was measured. Moreover, the maximum impact strength of the laminated panel and the fiber reinforced thermoplastic resin layer was measured by an impact tester manufactured by IMATEK.
- the specific storage elastic modulus value E ′ / ⁇ (GPa) of the fiber reinforced thermoplastic resin layer at the time of plastic working (preheating temperature or mold temperature of the laminated panel) is preferably 1.0 GPa or more, and the fiber reinforced thermoplastic resin
- the maximum impact strength per unit thickness of the layer is preferably 0.5 kN / mm or more.
- Example 2 A laminated panel was formed in the same manner as in Example 1 except that GMT 65 having a thickness of 3.8 mm was used as the fiber reinforced thermoplastic resin layer, and the characteristics were measured and deep-drawn. The results and Z values are shown in Table 1.
- Example 3 A laminated panel was formed in the same manner as in Example 1 except that GMTex having a thickness of 3.8 mm was used as the fiber-reinforced thermoplastic resin layer, and the characteristics were measured and deep-drawn. The results and Z values are shown in Table 1.
- Example 4 A laminated panel was formed in the same manner as in Example 1 except that CFRTP having a thickness of 1.3 mm was used as the fiber reinforced thermoplastic resin layer, and characteristic measurements and deep drawing were performed. The results and Z values are shown in Table 1.
- Example 5 A laminated panel was formed in the same manner as in Example 1 except that deep drawing was performed at a preheating temperature of 35 ° C. and a mold temperature of 30 ° C., and characteristic measurements and deep drawing were performed. The results and Z values are shown in Table 2.
- Example 6 A laminated panel was formed in the same manner as in Example 1 except that one of the metal plate layers was aluminum alloy plate A5182-H38 (thickness: 0.25 mm, tensile strength: 380 MPa, tensile elongation: 9%), Characteristic measurement and deep drawing. The results and Z values are shown in Table 2.
- Example 7 Two metal plate layers were made of aluminum alloy plate A5052-H34 (thickness: 0.6 mm, tensile strength: 260 MPa, tensile elongation: 10%), and the adhesive resin layer was made of metal plate layer and fiber reinforced heat.
- the metal plate layer and the fiber-reinforced thermoplastic resin layer were bonded to each other during the molding of the laminated panel by interposing between the plastic resin layer, the plastic working was the press molding of FIG. 3, and the mold temperature was room temperature (23
- the laminated panel was molded in the same manner as in Example 1 except that the temperature was changed to (° C.), and the characteristics were measured. The results and Z values are shown in Table 2.
- Example 8 In Example 7, a laminated panel was molded in the same manner except that the preheating temperature and the mold temperature during press molding were set to 160 ° C., and the characteristics were measured. The results and Z values are shown in Table 2.
- Example 9 A laminated panel was formed in the same manner as in Example 1 except that aluminum metal plate A5182-O (thickness: 0.25 mm, tensile strength: 290 MPa, tensile elongation: 21%) was used as the two metal plate layers. Then, characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 3.
- Example 10 Lamination was performed in the same manner as in Example 1 except that cold drawing steel plate SPCD for deep drawing (thickness: 0.4 mm, tensile strength: 300 MPa, tensile elongation: 48%) was used as two metal plate layers. Panels were molded and measured for properties and deep drawn. The results and Z values are shown in Table 3.
- Example 11 A laminated panel was formed in the same manner as in Example 1 except that LFT having a thickness of 2 mm was used as the fiber-reinforced thermoplastic resin layer, and characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 3.
- Example 12 A laminated panel was formed in the same manner as in Example 1 except that aluminum metal plate A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) was used as the two metal plate layers. Then, characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 3.
- Example 13 As the metal plate layer, two A6061-T6 aluminum plates having a thickness of 0.5 mm, a tensile strength of 310 MPa, and a tensile elongation of 12% were used. An adhesive resin layer (Model P555 manufactured by Mitsubishi Chemical Corporation, thickness 20 ⁇ m) was previously heat-sealed to one surface of the aluminum plate at a surface pressure of 3.9 MPa and 180 ° C.
- the organic fiber nonwoven fabric 1 and a polypropylene resin (melting point 165 ° C.) sheet were laminated so as to be 30% by weight of organic fiber and 70% by weight of polypropylene resin.
- a polypropylene resin sheet / organic fiber nonwoven fabric 1 / polypropylene resin sheet is sandwiched between two metal plate layers in this order, and press molding is performed so that the total thickness is 2 mm at a surface pressure of 3.9 MPa and 180 ° C. for 10 minutes.
- the metal plate layer and the fiber reinforced thermoplastic resin layer (polypropylene resin / organic fiber nonwoven fabric 1) were bonded to obtain a laminated panel having a thickness of 2 mm.
- the obtained laminated panel was molded in the same manner as in Example 1 and subjected to characteristic measurement and deep drawing. The results and Z values are shown in Table 4.
- Organic fiber nonwoven fabric 2 is used as the material of the fiber reinforced thermoplastic resin layer, and aluminum alloy plate A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) is used as two metal plate layers.
- a laminated panel was formed in the same manner as in Example 13 except that it was used, and characteristic measurements and deep drawing were performed. The results and Z values are shown in Table 4.
- Organic fiber nonwoven fabric 3 is used as the material of the fiber reinforced thermoplastic resin layer, and aluminum alloy plate A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) is used as two metal plate layers.
- a laminated panel was formed in the same manner as in Example 13 except that it was used, and characteristic measurements and deep drawing were performed. The results and Z values are shown in Table 4.
- Organic fiber nonwoven fabric 3 is used as the material of the fiber reinforced thermoplastic resin layer, and aluminum alloy plate A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) is used as two metal plate layers.
- a laminated panel was formed in the same manner as in Example 13 except that 70% by weight of organic fibers and 30% by weight of polypropylene resin were used. The results and Z values are shown in Table 4.
- Example 2 A laminated panel was formed in the same manner as in Example 1 except that PP 100% (reinforcing fiber 0%) was used instead of the fiber-reinforced thermoplastic resin layer, and the properties were measured and deep-drawn. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 2, since the tensile strength of the PP layer is as low as 40 MPa and the tensile elongation rate is as high as 600%, the value of the formula (1) indicating the lamination constituent factor is 0.16 and a value less than 1 And the specific storage elastic modulus at the preheating temperature was 0.6 GPa and less than 1.0 GPa, interfacial peeling occurred, and cracking occurred due to drawing.
- Comparative Example 3 In Comparative Example 2, it was the same except that the deep drawing was performed with the preheating temperature of the laminated panel being 35 ° C. and the mold temperature being 30 ° C. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 3, because the tensile strength of the PP layer is as low as 40 MPa and the tensile elongation is as high as 600%, the Z value indicating the lamination component factor is 0.16 and less than 1, Interfacial peeling occurred and cracking occurred due to drawing.
- Example 4 A laminated panel is formed in the same manner as in Example 1 except that aluminum alloy plate A1100-H16 (thickness: 0.15 mm, tensile strength: 145 MPa, tensile elongation: 6%) is used as the two metal plate layers. Then, characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 4, the thickness of the metal plate layer is as thin as 0.15 mm, the tensile strength is 145 MPa, and the tensile elongation is as low as 6%. The value was less than 1 and the metal sheet layer was cracked by deep drawing.
- the laminated panel of the present invention has high rigidity, peel strength and impact strength, is excellent in deep drawability and press workability, and can be plastically processed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
Abstract
[Problem] To provide: a fiber-reinforced resin composite laminate that has high rigidity and impact strength and that can be subjected to bending, press working, roll forming, and other forms of plastic working (plate working), it being possible to use preexisting molding facilities to manufacture the fiber-reinforced resin composite laminate without investing in expensive facilities; and a method for manufacturing a molded article of said fiber-reinforced resin composite laminate. [Solution] Provided is a laminate panel 1 having a fiber-reinforced thermoplastic resin layer 2 that includes a thermoplastic resin and either a non-woven fabric or chopped fibers measuring 10 mm or more in average length, and a metal plate layer 3 bonded to the fiber-reinforced thermoplastic resin layer 2, the outermost layer of the laminate panel 1 being the metal plate layer, wherein the laminate panel 1 is characterized in that: when testing is carried out in accordance with the "floating roller peel test" method of JIS K 6854-4:1999, the peel strength is 2.5 kN/m or higher, destruction occurs in the fiber-reinforced thermoplastic resin layer, and the following value Z calculated from formula (1), which indicates the lamination construction factor, is at least 1. Z=(σm·tm·εm)/(σc·tc·εc) ... (1)
Description
本発明は、剛性、衝撃強度が高く、折り曲げ加工、プレス加工、ロールフォーミング等の塑性加工(板金加工)が可能な、繊維強化熱可塑性樹脂層と金属板層との積層体よりなる積層パネルと、その成形品の製造方法に関する。
The present invention relates to a laminated panel composed of a laminate of a fiber reinforced thermoplastic resin layer and a metal plate layer, which has high rigidity and impact strength and is capable of plastic working (sheet metal working) such as bending, pressing, and roll forming. The present invention relates to a method for producing the molded product.
近年、環境保全、省エネルギーの観点から、自動車、鉄道、航空、等運輸機器、ロボット、電子機器、家具、建材等の分野においてこれら製品の軽量化が望まれている。このため、金属製部品を対象に繊維強化樹脂材料による軽量化が試みられて来た。
In recent years, from the viewpoint of environmental conservation and energy saving, it is desired to reduce the weight of these products in the fields of transportation equipment such as automobiles, railways, aviation, robots, electronic equipment, furniture, and building materials. For this reason, attempts have been made to reduce the weight by using fiber reinforced resin materials for metal parts.
中でも炭素繊維強化樹脂複合材料、ガラス繊維強化樹脂複合材料等は金属材料に比較して比強度、比剛性が優れることから、軽量化に寄与することができる。
Among them, carbon fiber reinforced resin composite materials, glass fiber reinforced resin composite materials, and the like can contribute to weight reduction because they are superior in specific strength and specific rigidity compared to metal materials.
ところが、これら繊維強化樹脂複合材料は材料コストが金属よりも高価であるのみならず、既存の成形設備の活用範囲が限定され、これら専用の成形加工設備の投資が必要となり、その費用が多大なため、過去30年以上その普及がなされて来なかったのが現状である。また、熱可塑性樹脂または熱硬化性樹脂をマトリックスとする繊維強化樹脂複合材料は、何れも成形サイクルが長い点に課題がある。
However, these fiber reinforced resin composite materials are not only more expensive than metals, but also limit the scope of use of existing molding equipment, necessitating the investment of these dedicated molding equipment, and the cost is high. Therefore, the current situation has not been popularized over the past 30 years. Moreover, the fiber reinforced resin composite material which uses a thermoplastic resin or a thermosetting resin as a matrix has a subject that a molding cycle is long.
特許文献1には、プレス加工性に優れた樹脂複合型制振鋼板が提案され、実用化に至っているが、衝撃強度が低く、強度を必要としない用途に限定されている。特許文献2には鋼板と熱硬化性樹脂を含む繊維強化プラスチック製板体とを繊維強化樹脂層をプリフォームした後に一体化接合するプレス成形方法が記載されているが、成形工程が2段階となる上に、速熱硬化性の熱硬化樹脂を適用しているものの量産性(成形サイクル約5分)に課題がある。特許文献3には、剛性、耐衝撃性に優れた金属樹脂複合体として、金属板と金属板の間に繊維強化樹脂層を挟んで固着され、金属板の少なくとも一方の端縁を曲げ加工し、縫製により一体化する方法が記載されている。この複合体は、剛性、耐衝撃性に優れるが、生産性が悪く、量産性を兼備するものではない。
Patent Document 1 proposes a resin composite vibration-damping steel sheet excellent in press workability and has been put into practical use, but is limited to applications that have low impact strength and do not require strength. Patent Document 2 describes a press molding method in which a steel sheet and a fiber reinforced plastic plate containing a thermosetting resin are integrally joined after preforming a fiber reinforced resin layer. In addition, there is a problem in the mass productivity (molding cycle of about 5 minutes) of the one using the fast thermosetting resin. In Patent Document 3, as a metal resin composite excellent in rigidity and impact resistance, a fiber reinforced resin layer is sandwiched between a metal plate and a metal plate, and at least one edge of the metal plate is bent and sewn. The method of integrating by is described. This composite is excellent in rigidity and impact resistance, but has poor productivity and does not have mass productivity.
特許文献4には、金属板と金属板の間に織物を挟んで、熱硬化性樹脂で固着した積層体による座席シート用のフレーム部材が提案されている。繊維強化織物層は耐衝撃性に優れ、金属と繊維強化織物層界面での層間剥離を起こさせることで耐衝撃性の向上を図ることができるが、接着剤が硬化した後ではプレス成形時に層間剥離が起こり、繊維強化織物層の破断が起こるため、製品使用時の衝撃強度そのものが低下するという問題がある。その上、接着に熱硬化性樹脂を適用しているので、熱硬化に長時間を要するため、量産性を兼備するものではない。
Patent Document 4 proposes a frame member for a seat that is a laminated body in which a woven fabric is sandwiched between metal plates and fixed with a thermosetting resin. The fiber reinforced fabric layer is excellent in impact resistance, and the impact resistance can be improved by causing delamination at the interface between the metal and the fiber reinforced fabric layer. Since peeling occurs and the fiber reinforced fabric layer breaks, there is a problem that the impact strength itself during use of the product is lowered. In addition, since a thermosetting resin is applied for bonding, it takes a long time for thermosetting, so that it does not have mass productivity.
本発明は、高価な設備投資をすることなく、既存の成形設備を活用可能であり、剛性、衝撃強度が高く、折り曲げ加工、プレス加工、ロールフォーミング等の塑性加工(板金加工)が可能な繊維強化樹脂複合積層体及びその成形品の製造方法を提供することを目的とする。
The present invention is a fiber that can utilize existing molding equipment without expensive capital investment, has high rigidity and impact strength, and is capable of plastic working (sheet metal working) such as bending, press working, and roll forming. It aims at providing the manufacturing method of a reinforced resin compound laminated body and its molded article.
本発明の積層パネルは、不織布又は平均繊維長が10mm以上のチョップド繊維と熱可塑性樹脂とを含む繊維強化熱可塑性樹脂層と、該繊維強化熱可塑性樹脂層に接着された金属板層とを有し、最外層が該金属板層である積層パネルにおいて、JIS K6854-4:1999の「浮動ローラー法剥離試験」法による試験を行った場合に、剥離強度が2.5kN/m以上であり、且つ破壊は繊維強化熱可塑性樹脂層に生じるものであり、下記の積層構成因子を示す式(1)の計算値Zが1以上であることを特徴とする積層パネル。
The laminated panel of the present invention has a nonwoven fabric or a fiber reinforced thermoplastic resin layer containing chopped fibers having an average fiber length of 10 mm or more and a thermoplastic resin, and a metal plate layer bonded to the fiber reinforced thermoplastic resin layer. In a laminated panel in which the outermost layer is the metal plate layer, the peel strength is 2.5 kN / m or more when a test according to the “floating roller method peel test” method of JIS K6854-4: 1999 is performed. And destruction occurs in a fiber reinforced thermoplastic resin layer, The calculated value Z of Formula (1) which shows the following lamination constituent factors is 1 or more, The laminated panel characterized by the above-mentioned.
Z=(σm・tm・εm)/(σc・tc・εc) …(1)
σm:金属板層の室温における引張強度(MPa)
tm:金属板層の厚み(mm)
εm:金属板層の室温における引張伸び率(%)
σc:繊維強化熱可塑性樹脂層の室温における引張強度(MPa)
tc:繊維強化熱可塑性樹脂層の厚み(mm)
εc:繊維強化熱可塑性樹脂層の室温における引張伸び率(%) Z = (σm · tm · εm) / (σc · tc · εc) (1)
σm: Tensile strength (MPa) of the metal plate layer at room temperature
tm: Metal plate layer thickness (mm)
εm: Tensile elongation at room temperature of metal plate layer (%)
σc: Tensile strength at room temperature (MPa) of the fiber reinforced thermoplastic resin layer
tc: thickness of the fiber-reinforced thermoplastic resin layer (mm)
εc: Tensile elongation at room temperature (%) of the fiber reinforced thermoplastic resin layer
σm:金属板層の室温における引張強度(MPa)
tm:金属板層の厚み(mm)
εm:金属板層の室温における引張伸び率(%)
σc:繊維強化熱可塑性樹脂層の室温における引張強度(MPa)
tc:繊維強化熱可塑性樹脂層の厚み(mm)
εc:繊維強化熱可塑性樹脂層の室温における引張伸び率(%) Z = (σm · tm · εm) / (σc · tc · εc) (1)
σm: Tensile strength (MPa) of the metal plate layer at room temperature
tm: Metal plate layer thickness (mm)
εm: Tensile elongation at room temperature of metal plate layer (%)
σc: Tensile strength at room temperature (MPa) of the fiber reinforced thermoplastic resin layer
tc: thickness of the fiber-reinforced thermoplastic resin layer (mm)
εc: Tensile elongation at room temperature (%) of the fiber reinforced thermoplastic resin layer
本発明の一態様では、前記繊維強化熱可塑性樹脂層が、該繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244-4:1999(プラスチック-動的機械特性の試験方法、周波数100Hz、試験片厚み2mm、試験温度23℃)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ)値が1.0GPa以上である。
ここで、繊維強化熱可塑性樹脂層の比重ρ(無次元)は、室温(23℃)での測定値を代表値として適用したものである。 In one embodiment of the present invention, the fiber reinforced thermoplastic resin layer is a dynamic viscoelasticity test (JIS K 7244-4: 1999 (plastic-dynamic mechanical property test method) for a single specimen of the fiber reinforced thermoplastic resin layer. The ratio of the storage elastic modulus E ′ to the specific gravity ρ of the fiber reinforced thermoplastic resin layer (specific storage elastic modulus value: E ′ / ρ) at a frequency of 100 Hz, a test piece thickness of 2 mm, and a test temperature of 23 ° C. is 1.0 GPa. That's it.
Here, the specific gravity ρ (dimensionless) of the fiber reinforced thermoplastic resin layer is obtained by applying a measured value at room temperature (23 ° C.) as a representative value.
ここで、繊維強化熱可塑性樹脂層の比重ρ(無次元)は、室温(23℃)での測定値を代表値として適用したものである。 In one embodiment of the present invention, the fiber reinforced thermoplastic resin layer is a dynamic viscoelasticity test (JIS K 7244-4: 1999 (plastic-dynamic mechanical property test method) for a single specimen of the fiber reinforced thermoplastic resin layer. The ratio of the storage elastic modulus E ′ to the specific gravity ρ of the fiber reinforced thermoplastic resin layer (specific storage elastic modulus value: E ′ / ρ) at a frequency of 100 Hz, a test piece thickness of 2 mm, and a test temperature of 23 ° C. is 1.0 GPa. That's it.
Here, the specific gravity ρ (dimensionless) of the fiber reinforced thermoplastic resin layer is obtained by applying a measured value at room temperature (23 ° C.) as a representative value.
本発明の一態様では、繊維強化熱可塑性樹脂層は、該繊維強化熱可塑性樹脂層単体試験片によるパンクチャー衝撃試験(ストライカ径1/2inch、衝撃速度4.4m/s、支持台内径:3inch、試験温度:23℃)による単位厚み当たりの最大耐衝撃強さが0.5kN/mm以上である。
In one embodiment of the present invention, the fiber reinforced thermoplastic resin layer is formed by a puncture impact test using a single specimen of the fiber reinforced thermoplastic resin layer (strike diameter 1/2 inch, impact speed 4.4 m / s, support base inner diameter: 3 inch). , Test temperature: 23 ° C.), the maximum impact strength per unit thickness is 0.5 kN / mm or more.
本発明の一態様では、前記繊維強化熱可塑性樹脂層中の繊維が不織布であり、その平均繊維長が25mm以上である。
In one embodiment of the present invention, the fibers in the fiber-reinforced thermoplastic resin layer are nonwoven fabrics, and the average fiber length is 25 mm or more.
本発明の一態様の積層パネルは、前記繊維強化熱可塑性樹脂層の両面に前記金属板層が接着された3層構造からなるものである。
The laminated panel of one embodiment of the present invention has a three-layer structure in which the metal plate layer is bonded to both surfaces of the fiber-reinforced thermoplastic resin layer.
本発明の一態様の積層パネルは、前記繊維強化熱可塑性樹脂層と前記金属板層との間に接着層を有する。
The laminated panel of one embodiment of the present invention has an adhesive layer between the fiber-reinforced thermoplastic resin layer and the metal plate layer.
本発明の一態様では、前記繊維強化熱可塑性樹脂層中の繊維が有機繊維であり、該有機繊維の融点と前記熱可塑性樹脂の融点またはガラス転移温度との差が40℃以上である。
In one embodiment of the present invention, the fibers in the fiber-reinforced thermoplastic resin layer are organic fibers, and the difference between the melting point of the organic fibers and the melting point or glass transition temperature of the thermoplastic resin is 40 ° C. or higher.
本発明の一態様では、前記繊維強化熱可塑性樹脂層中の繊維が有機繊維であり、該有機繊維の融点が160℃以上である。
In one embodiment of the present invention, the fibers in the fiber-reinforced thermoplastic resin layer are organic fibers, and the melting point of the organic fibers is 160 ° C. or higher.
本発明の一態様では、前記有機繊維が、平均繊維長25~300mm、平均繊度2~20dtex、目付50~1000g/m2の不織布である。
In one embodiment of the present invention, the organic fiber is a nonwoven fabric having an average fiber length of 25 to 300 mm, an average fineness of 2 to 20 dtex, and a basis weight of 50 to 1000 g / m 2 .
本発明の一態様では、本発明の積層パネルを塑性加工に用いる。
In one embodiment of the present invention, the laminated panel of the present invention is used for plastic working.
本発明の成形品の製造方法の一態様は、本発明の積層パネルを塑性加工して成形品を製造する方法であって、前記繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244-4:1999(プラスチック-動的機械特性の試験方法、周波数100Hz、試験片厚み2mm)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ値が1.0GPa以上の温度領域における何れかの温度で塑性加工をすることを特徴とする。
One aspect of the method for producing a molded article of the present invention is a method for producing a molded article by plastic working the laminated panel of the present invention, wherein the dynamic viscoelasticity test of the fiber-reinforced thermoplastic resin layer single specimen ( Ratio (specific storage elastic modulus) of storage elastic modulus E 'to specific gravity ρ of the fiber-reinforced thermoplastic resin layer in JIS K 7244-4: 1999 (plastic-dynamic mechanical property test method, frequency 100 Hz, test piece thickness 2 mm) Value: It is characterized in that plastic working is performed at any temperature in a temperature range where E ′ / ρ value is 1.0 GPa or more.
本発明の成形品の製造方法の別態様は、本発明の積層パネルを塑性加工して成形品を製造する方法であって、10~40℃の温度領域における何れかの温度で塑性加工することを特徴とする。
Another aspect of the method for producing a molded article of the present invention is a method for producing a molded article by plastic working the laminated panel of the present invention, wherein the plastic working is performed at any temperature in a temperature range of 10 to 40 ° C. It is characterized by.
本発明の一態様では、前記塑性加工は、プレス加工、ロールフォーミング加工、又は曲げ加工である。
In one embodiment of the present invention, the plastic working is press working, roll forming work, or bending work.
本発明の積層パネルは、JIS K6854-4:1999の「浮動ローラー法剥離試験」法による剥離強度が2.5kN/m以上であり、且つ繊維強化熱可塑性樹脂層において母材破壊を起こす特性を有しているので、プレス加工等の塑性加工時に接着(接合)界面で剥離が起こらず、繊維強化熱可塑性樹脂層と金属板層が同時に塑性変形し、繊維強化熱可塑性樹脂層の軟化温度領域の温度(但し、溶融加工温度未満)または室温での板金加工が可能となる。
The laminated panel of the present invention has a peel strength of 2.5 kN / m or more according to the “floating roller method peel test” method of JIS K6854-4: 1999, and has a property of causing a base material breakage in a fiber reinforced thermoplastic resin layer. Therefore, no peeling occurs at the bonding (bonding) interface during plastic processing such as press processing, and the fiber reinforced thermoplastic resin layer and the metal plate layer are simultaneously plastically deformed, and the softening temperature range of the fiber reinforced thermoplastic resin layer. Sheet metal processing at room temperature (however, less than the melt processing temperature) or room temperature becomes possible.
この際、繊維強化熱可塑性樹脂層は射出成形等のような樹脂流動性が発現する溶融加工温度域まで加温せずとも、熱可塑性樹脂の融点以下またはガラス転移温度以下の半溶融状態の軟化温度域から室温までの冷間において板金加工が可能である。熱可塑性樹脂の種類にもよるが、金型温度は室温から200℃程度の温度領域での賦形が可能となるため、成形サイクルの律速となる冷却時間を短時間とすることができる。
At this time, the fiber reinforced thermoplastic resin layer is softened in a semi-molten state below the melting point of the thermoplastic resin or below the glass transition temperature without heating to a melt processing temperature range where the resin fluidity is developed such as injection molding. Sheet metal processing is possible in the cold from the temperature range to room temperature. Although depending on the type of the thermoplastic resin, the mold temperature can be shaped in a temperature range from room temperature to about 200 ° C., so that the cooling time that is the rate limiting of the molding cycle can be shortened.
とりわけ、金属板層と金属板層との間に繊維強化熱可塑性樹脂層をサンドイッチした積層パネルの場合には、金属板層による熱交換が速いために、冷却時間が数秒までの著しい短縮化が可能となり、成形サイクルの短縮化を図ることができる。
In particular, in the case of a laminated panel in which a fiber reinforced thermoplastic resin layer is sandwiched between a metal plate layer and a metal plate layer, the heat exchange by the metal plate layer is fast, so the cooling time is significantly shortened to several seconds. This makes it possible to shorten the molding cycle.
前記繊維強化熱可塑性樹脂層が0.2mm以上の厚みであって、繊維強化熱可塑性樹脂層単体試験片によるパンクチャー衝撃試験(ASTM D3763、ストライカ径1/2inch、衝撃速度4.4m/s、支持台内径:3inch、試験温度:23℃)の条件下にて単位厚み当たりの最大耐衝撃強さが0.5kN/mm以上である場合、使用時の衝撃強度の向上のみならず、折り曲げやプレス成形(絞り成形)等塑性加工(板金加工)を容易とすることができる。
The fiber reinforced thermoplastic resin layer has a thickness of 0.2 mm or more, and a puncture impact test (ASTM D3763, striker diameter 1/2 inch, impact speed 4.4 m / s, with a fiber reinforced thermoplastic resin layer single-piece test piece, When the maximum impact strength per unit thickness is 0.5 kN / mm or more under the conditions of the inner diameter of the support base: 3 inches and the test temperature: 23 ° C., not only the impact strength during use is improved, Plastic processing (sheet metal processing) such as press molding (drawing) can be facilitated.
本発明によると、板金加工性、軽量、高剛性、耐衝撃性、量産性を兼備した金属板層と繊維強化熱可塑性樹脂層からなる積層パネルと、この積層パネルを塑性加工してなる成形品が提供される。
According to the present invention, a laminated panel composed of a metal plate layer and a fiber-reinforced thermoplastic resin layer having sheet metal workability, light weight, high rigidity, impact resistance, and mass productivity, and a molded product obtained by plastically processing the laminated panel Is provided.
図1は、本発明の積層パネルの一例を示すものである。積層パネル1は、繊維強化熱可塑性樹脂層2の両面に金属板層3を接着したものである。
FIG. 1 shows an example of the laminated panel of the present invention. The laminated panel 1 is obtained by bonding metal plate layers 3 to both surfaces of a fiber reinforced thermoplastic resin layer 2.
この積層パネルは、JIS K6854-4:1999の「浮動ローラー法剥離試験」法による剥離強度(23℃)が2.5kN/m以上であり、好ましくは3kN/m以上、特に好ましくは5kN/m以上である。剥離強度が2.5kN以上であることにより、破壊が繊維強化熱可塑性樹脂層に生じやすくなり、また、金属板層と繊維強化熱可塑性樹脂層とが追従しやすくなることによって、冷間加工しやすくなる。加えて、この積層パネルは、剥離試験時の破壊が繊維強化熱可塑性樹脂層に生じるものである。剥離強度の上限は通常20kN/mであり、好ましくは10kN/mである。
This laminated panel has a peel strength (23 ° C.) of 2.5 kN / m or more, preferably 3 kN / m or more, particularly preferably 5 kN / m, according to the “floating roller method peel test” method of JIS K6854-4: 1999. That's it. When the peel strength is 2.5 kN or more, breakage is likely to occur in the fiber reinforced thermoplastic resin layer, and the metal plate layer and the fiber reinforced thermoplastic resin layer easily follow, thereby cold working. It becomes easy. In addition, this laminated panel is one in which breakage during the peel test occurs in the fiber reinforced thermoplastic resin layer. The upper limit of the peel strength is usually 20 kN / m, preferably 10 kN / m.
本発明において、金属板層を構成する金属板は降伏比92%以下のものであることが好ましく、降伏比が92%以下であることにより、深絞り加工がより容易となる。
In the present invention, it is preferable that the metal plate constituting the metal plate layer has a yield ratio of 92% or less, and the deep drawing process becomes easier when the yield ratio is 92% or less.
降伏比とは、金属板における耐力の引張強さに対する比率であり、引張強度試験により得られる耐力及び引張強さから算出される。降伏比が低いほどプレス金型等へのなじみが良く、良い成形形状が得られるので、プレス成形及び絞り加工の成形性に対する指標として広く使用される。
本発明で用いる金属板層を構成する金属板の降伏比はより好ましくは85%以下、40%以上であり、さらに好ましくは80%以下、45%以上である。 The yield ratio is a ratio of the yield strength to the tensile strength in the metal plate, and is calculated from the yield strength and tensile strength obtained by the tensile strength test. The lower the yield ratio, the better the fit to the press die and the like, and the better the molded shape is obtained. Therefore, it is widely used as an index for the moldability of press molding and drawing.
The yield ratio of the metal plate constituting the metal plate layer used in the present invention is more preferably 85% or less and 40% or more, and further preferably 80% or less and 45% or more.
本発明で用いる金属板層を構成する金属板の降伏比はより好ましくは85%以下、40%以上であり、さらに好ましくは80%以下、45%以上である。 The yield ratio is a ratio of the yield strength to the tensile strength in the metal plate, and is calculated from the yield strength and tensile strength obtained by the tensile strength test. The lower the yield ratio, the better the fit to the press die and the like, and the better the molded shape is obtained. Therefore, it is widely used as an index for the moldability of press molding and drawing.
The yield ratio of the metal plate constituting the metal plate layer used in the present invention is more preferably 85% or less and 40% or more, and further preferably 80% or less and 45% or more.
金属板層3を構成する金属板の材質としては、目的、用途、物性に応じて、鉄、ステンレス等の鋼板の他、アルミニウム、マグネシウム、チタン、それらを含む合金からなる群より選択される少なくとも一種が用いられる。中でも、軽量性(比重と剛性のバランス)の点から鉄、アルミ及びこれらを含む合金、ステンレスが好ましく、コストの点から、鉄、アルミ及びこれらを含む合金がより好ましい。
The material of the metal plate constituting the metal plate layer 3 is at least selected from the group consisting of steel, such as iron and stainless steel, aluminum, magnesium, titanium, and alloys containing them, depending on the purpose, application, and physical properties. One kind is used. Among these, iron, aluminum, an alloy including these, and stainless steel are preferable from the viewpoint of lightness (balance between specific gravity and rigidity), and iron, aluminum, and an alloy including these are more preferable from the viewpoint of cost.
また、金属板の材質としては、金属板層単体試験片についてJIS Z2241:2011(金属材料引張試験方法)に従って室温(23℃)で測定される引張強度が200~1500MPaであることが好ましく、250~1000MPaであることがより好ましく、280~600MPaであることがさらに好ましい。このような引張強度を有する金属板を用いることにより、冷間深絞り性等の冷間加工性を確保しながら、金属板層の厚みを可能な限り薄くすることができ、積層体パネルがより軽量となる傾向にあり好ましい。室温(23℃)における引張伸び率は、10~80%であることが好ましく、12~80%であることがより好ましく、20~80%であることがさらに好ましい。このような引張伸び率を有する金属板を用いることにより、冷間深絞り等の冷間塑性加工時に金属板層が破断し難くなり、冷間塑性加工性が良好となる傾向にあり好ましい。
As the material of the metal plate, it is preferable that the tensile strength measured at room temperature (23 ° C.) according to JIS Z2241: 2011 (metal material tensile test method) for the metal plate layer unit test piece is 200 to 1500 MPa, 250 More preferably, it is ˜1000 MPa, more preferably 280 to 600 MPa. By using a metal plate having such tensile strength, the thickness of the metal plate layer can be made as thin as possible while ensuring cold workability such as cold deep drawability. It tends to be lightweight, which is preferable. The tensile elongation at room temperature (23 ° C.) is preferably 10 to 80%, more preferably 12 to 80%, and still more preferably 20 to 80%. It is preferable to use a metal plate having such a tensile elongation rate because the metal plate layer is difficult to break during cold plastic working such as cold deep drawing, and the cold plastic workability tends to be good.
金属板層の厚みt3は、鋼板の場合には通常0.05~1mm、好ましくは0.08~0.6mm、より好ましくは0.1~0.4mm、アルミ合金の場合には通常0.1~2mm、好ましくは0.15~1mm、より好ましくは0.2~0.5mmであることが、積層パネルの剛性、軽量性の観点から好ましい。用途及びその要求特性に応じて繊維強化熱可塑性樹脂層(コア層)の厚みと金属板層の厚みを適宜選定することで、鋼材やアルミ材単体との等価剛性、等価強度を任意に設定可能である。
The thickness t 3 of the metal plate layer is usually 0.05 ~ 1 mm in the case of the steel sheet, preferably 0.08 ~ 0.6 mm, more preferably 0.1 ~ 0.4 mm, usually in the case of aluminum alloy 0 The thickness is preferably 1 to 2 mm, preferably 0.15 to 1 mm, more preferably 0.2 to 0.5 mm, from the viewpoint of the rigidity and light weight of the laminated panel. By appropriately selecting the thickness of the fiber reinforced thermoplastic resin layer (core layer) and the thickness of the metal plate layer according to the application and the required characteristics, the equivalent rigidity and equivalent strength of the steel material and aluminum material can be set arbitrarily. It is.
金属板としては繊維強化熱可塑性樹脂層の種類、厚みにもよるが、軽量性、高剛性の観点から厚み0.1~2mmのアルミ合金が好ましく、A1060、A1100-O、A2011、A2014、A2017,A2024、A2025、A2117、A2219、A3003-O、A3004、A3105、A4032、A5005-O、A5052、A5056、A5086、A5154、A5182、A5254、A5454、A5652、A6061、A6063、A6066、A6101、6N01、A7001、A7003、A7050、A7075,A7178、7N01、A7475等が利用できる。
Although the metal plate depends on the type and thickness of the fiber reinforced thermoplastic resin layer, an aluminum alloy having a thickness of 0.1 to 2 mm is preferable from the viewpoint of lightness and high rigidity. A1060, A1100-O, A2011, A2014, A2017 , A2024, A2025, A2117, A2219, A3003-O, A3004, A3105, A4032, A5005-O, A5052, A5056, A5086, A5154, A5182, A5254, A5454, A5652, A6061, A6063, A6066, A6101, 6N01, A7001 , A7003, A7050, A7075, A7178, 7N01, A7475, etc. can be used.
中でも入手性の観点から、A5182(O,H34,H38)、A6061(T6,T651,T8),A6063(T6,T83,T832)等が活用できる。
Among them, A5182 (O, H34, H38), A6061 (T6, T651, T8), A6063 (T6, T83, T832) and the like can be used from the viewpoint of availability.
なお、アルミ合金以外にはSPCC、SPCD、SPCE等の冷間圧延鋼板、SGCC等の溶融亜鉛めっき鋼板、SECC等の電気亜鉛めっき鋼板等の鋼板やステンレス合金系も活用できる。
In addition to aluminum alloys, steel plates such as cold rolled steel plates such as SPCC, SPCD and SPCE, hot dip galvanized steel plates such as SGCC, and electrogalvanized steel plates such as SECC, and stainless alloy systems can also be used.
なお、金属板層を構成する金属板は板状のものであることが好ましいが、本発明の積層パネルを成形加工できる形状であれば板状のものに限られず、湾曲していてもよいし、折れ曲がっていてもよい。また、表面が平らではない凹凸を有する形状のもの等であってもよい。凹凸形状としては、レンズ状、円錐、三角錐、四角錘、卍状等凹凸が連続的に配置されたアレイが好ましい。
The metal plate constituting the metal plate layer is preferably a plate-like one, but is not limited to a plate-like one as long as it can shape the laminated panel of the present invention, and may be curved. , May be bent. Moreover, the shape etc. which have the unevenness | corrugation whose surface is not flat may be sufficient. As the irregular shape, an array in which irregularities such as a lens shape, a cone, a triangular pyramid, a quadrangular pyramid, and a bowl shape are continuously arranged is preferable.
本発明の繊維強化熱可塑性樹脂層は、熱可塑性樹脂に不織布又は平均繊維長10mm以上のチョップド繊維を含むものであればよい。熱可塑性樹脂中にこのような繊維を含むことにより、本発明の積層パネルを用いて後述の塑性加工等の成形加工を行う際に、繊維同士の摩擦や繊維と熱可塑性樹脂とのずれによる摩擦エネルギー(摩擦熱)が発生し、繊維強化熱可塑性樹脂層が軟化しやすくなり、低い加工温度であっても塑性加工がより容易となる利点がある。
The fiber reinforced thermoplastic resin layer of the present invention may be any material that includes a nonwoven fabric or chopped fibers having an average fiber length of 10 mm or more in the thermoplastic resin. By including such fibers in the thermoplastic resin, when performing molding processing such as plastic processing, which will be described later, using the laminated panel of the present invention, friction between fibers and friction due to displacement between the fibers and the thermoplastic resin. Energy (friction heat) is generated, the fiber-reinforced thermoplastic resin layer is easily softened, and there is an advantage that plastic processing becomes easier even at a low processing temperature.
ガラス短繊維による繊維強化熱可塑性樹脂は、通常、射出成形や押出成形で用いられる熱可塑性樹脂組成物であり、混練押出機によるコンパウンドで得ることができるものであり、射出成形や押出成形後のガラス繊維等強化繊維の残存繊維長は通常は1mm以下となるため、本積層パネルには適さない。
Fiber reinforced thermoplastic resin with short glass fibers is usually a thermoplastic resin composition used in injection molding or extrusion molding, and can be obtained by compounding with a kneading extruder, and after injection molding or extrusion molding. Since the remaining fiber length of the reinforcing fiber such as glass fiber is usually 1 mm or less, it is not suitable for the present laminated panel.
長繊維チョップド繊維による繊維強化熱可塑性樹脂は、通常、射出成形や押出成形で用いられる熱可塑性樹脂組成物であるが、射出成形や押出成形時にガラス繊維等強化繊維は1mm以下となり物性低下を来すため、この残存繊維長を意図的に数mm以上にするように、直接、ガラス繊維等強化繊維の連続繊維を成形時に複合化する工程を設けたものがある。これらの代表例としては、PPやPA、PPS等の熱可塑性樹脂をベースレジンとするLFT(Long Fiber Thermoplastic)、D-LFT(Direct Long Fiber Thermoplastic)等が挙げられる。
Fiber reinforced thermoplastic resin with long chopped fibers is a thermoplastic resin composition that is usually used in injection molding and extrusion molding. However, when injection molding or extrusion molding, reinforced fibers such as glass fibers are 1 mm or less, resulting in deterioration of physical properties. Therefore, there is a type in which a step of directly combining continuous fibers of reinforcing fibers such as glass fibers at the time of molding is provided so that the remaining fiber length is intentionally set to several mm or more. Typical examples of these include LFT (Long Fiber Thermoplastic), D-LFT (Direct Long Fiber Thermoplastic), etc. using a thermoplastic resin such as PP, PA, or PPS as a base resin.
これらは、製造工程にもよるが、射出成形や押出成形時の混練工程によるガラス繊維の切断を極力抑制することで10~数十mm程度の残存繊維長を確保できるため、本積層パネルに適用可能である。このようなLFTの代表例としては、商品名ファンクスター(日本ポリプロ株式会社製)やプラストロン(ダイセル株式会社製)、モストロン-L(株式会社プライムポリマー製)、クイックフォーム(東洋紡株式会社製)等が挙げられる。
Although these depend on the manufacturing process, the remaining fiber length of about 10 to several tens of millimeters can be secured by minimizing the glass fiber cutting in the kneading process during injection molding and extrusion molding. Is possible. Typical examples of such LFTs include the trade names Funkster (Nippon Polypro Co., Ltd.), Plastron (Daicel Co., Ltd.), Mostron-L (Prime Polymer Co., Ltd.), Quick Form (Toyobo Co., Ltd.) Etc.
チョップド繊維を用いる場合、繊維強化熱可塑性樹脂層中の平均繊維長が10mm以上、好ましくは20mm以上、より好ましくは30mm以上となるものであれば、どのようなチョップド繊維を使用してもよい。チョップド繊維は通常、モノフィラメントを集束した強化繊維(ストランド)を所定の長さに切断したものとして使用され、例えば、該ストランドに熱可塑性樹脂を含浸させて所定の長さに切断した長繊維ペレットの形態として使用される。繊維強化熱可塑性樹脂層中では通常これらが開繊された状態で存在するが、本発明においては、このように開繊されたチョップド繊維に加え未開繊状態の繊維も含めるものとする。
When using chopped fibers, any chopped fibers may be used as long as the average fiber length in the fiber-reinforced thermoplastic resin layer is 10 mm or more, preferably 20 mm or more, more preferably 30 mm or more. The chopped fiber is usually used as a reinforced fiber (strand) in which monofilaments are bundled and cut into a predetermined length. For example, a chopped fiber is made of a long fiber pellet cut into a predetermined length by impregnating the strand with a thermoplastic resin. Used as a form. In the fiber-reinforced thermoplastic resin layer, these are usually present in an opened state, but in the present invention, in addition to the chopped fibers thus opened, unopened fibers are also included.
繊維強化熱可塑性樹脂層に用いる繊維が不織布の場合は、ウェブの形成法として、乾式、湿式、スパンボンド法、メルトブローン法、エアレイド法が挙げられ、繊維の結合法として、ニードルパンチ法、ケミカルボンド法(浸漬法・スプレー法)、サーマルボンド法、水流交絡法等が挙げられ、これらの組合せにより調製された不織布が好適に利用できる。不織布の中でも特に好ましくは、繊維が相互に絡み合ったニードルパンチ法により製造された不織布である。
When the fibers used in the fiber reinforced thermoplastic resin layer are non-woven fabrics, examples of the web forming method include dry type, wet type, spun bond method, melt blown method, and airlaid method, and fiber bonding methods include needle punch method and chemical bond method. Examples include a method (dipping method / spray method), a thermal bond method, a hydroentanglement method, and the like, and a nonwoven fabric prepared by a combination thereof can be suitably used. Particularly preferred among the nonwoven fabrics is a nonwoven fabric produced by a needle punch method in which fibers are intertwined with each other.
不織布を用いた繊維強化熱可塑性樹脂としての代表例としては、商品名GMT(Glass MAT Thermoplastic: Quadrant Plastic Composites Japan(株)社製)、GMTex(Glass Mat Textile Thermoplastic: Quadrant Plastic Composites Japan(株)社製))等が挙げられる。なお、本発明においては、上記の不織布を用いた繊維強化熱可塑性樹脂に加えて、織物や編物を用いた繊維強化熱可塑性樹脂材料を用いることを妨げるものではない。織物を用いた繊維強化熱可塑性樹脂としての代表例としては、Q-Tex(Quadrant Plastic Composites社製)等が挙げられる。
Typical examples of fiber reinforced thermoplastic resins using nonwoven fabric include the trade names GMT (Glass MAT Thermoplastic: Quadrant Plastic Composites Japan), GMTex (Glass Matsplastic Plastic Co., Ltd.). Manufactured)) and the like. In addition, in this invention, in addition to the fiber reinforced thermoplastic resin using said nonwoven fabric, it does not prevent using the fiber reinforced thermoplastic resin material using a textile fabric or a knitted fabric. A typical example of a fiber reinforced thermoplastic resin using a woven fabric is Q-Tex (manufactured by Quadrant Plastic Composites).
不織布の中でも特に好ましくは、相互に繊維が絡み合ったニードルパンチにより製造された不織布である。強化繊維として不織布と織物を組み合わせた繊維強化熱可塑性樹脂層も好適である。何れも、繊維が相互に拘束されているので、高い耐衝撃性が確保でき、塑性加工時の繊維の切断や繊維の偏在が抑制でき、使用時の物性低下を抑制しやすい。
これらは、ニードルパンチ工程の条件にもよるが、最低でも5mm以上、通常25mm以上、好ましくは40mm以上の残存繊維長が確保できるため、本積層パネルに適用可能である。繊維強化熱可塑性樹脂層中の繊維の平均繊維長は25mm以上であることが好ましく、40mm以上であることがより好ましく、70mm以上であることがさらに好ましい。また、連続繊維の形態であることも好ましい。
なお、本発明における平均繊維長は、繊維強化熱可塑性樹脂層を灰化処理し、得られた残分中の繊維について測定される繊維長の数平均値を採用する。 Among the nonwoven fabrics, a nonwoven fabric produced by a needle punch in which fibers are intertwined with each other is particularly preferable. A fiber reinforced thermoplastic resin layer in which a nonwoven fabric and a woven fabric are combined as the reinforcing fiber is also suitable. In any case, since the fibers are mutually constrained, high impact resistance can be secured, fiber cutting during fiber processing and fiber uneven distribution can be suppressed, and deterioration of physical properties during use can be easily suppressed.
Although depending on the conditions of the needle punching process, these can be applied to the present laminated panel because a minimum remaining fiber length of 5 mm or more, usually 25 mm or more, and preferably 40 mm or more can be secured. The average fiber length of the fibers in the fiber reinforced thermoplastic resin layer is preferably 25 mm or more, more preferably 40 mm or more, and further preferably 70 mm or more. Moreover, it is also preferable that it is a form of continuous fiber.
In addition, the average fiber length in this invention employ | adopts the number average value of the fiber length measured about the fiber in the residue obtained by ashing a fiber reinforced thermoplastic resin layer.
これらは、ニードルパンチ工程の条件にもよるが、最低でも5mm以上、通常25mm以上、好ましくは40mm以上の残存繊維長が確保できるため、本積層パネルに適用可能である。繊維強化熱可塑性樹脂層中の繊維の平均繊維長は25mm以上であることが好ましく、40mm以上であることがより好ましく、70mm以上であることがさらに好ましい。また、連続繊維の形態であることも好ましい。
なお、本発明における平均繊維長は、繊維強化熱可塑性樹脂層を灰化処理し、得られた残分中の繊維について測定される繊維長の数平均値を採用する。 Among the nonwoven fabrics, a nonwoven fabric produced by a needle punch in which fibers are intertwined with each other is particularly preferable. A fiber reinforced thermoplastic resin layer in which a nonwoven fabric and a woven fabric are combined as the reinforcing fiber is also suitable. In any case, since the fibers are mutually constrained, high impact resistance can be secured, fiber cutting during fiber processing and fiber uneven distribution can be suppressed, and deterioration of physical properties during use can be easily suppressed.
Although depending on the conditions of the needle punching process, these can be applied to the present laminated panel because a minimum remaining fiber length of 5 mm or more, usually 25 mm or more, and preferably 40 mm or more can be secured. The average fiber length of the fibers in the fiber reinforced thermoplastic resin layer is preferably 25 mm or more, more preferably 40 mm or more, and further preferably 70 mm or more. Moreover, it is also preferable that it is a form of continuous fiber.
In addition, the average fiber length in this invention employ | adopts the number average value of the fiber length measured about the fiber in the residue obtained by ashing a fiber reinforced thermoplastic resin layer.
繊維強化熱可塑性樹脂層2の厚みt2は、通常0.2~4mmであり、好ましくは0.3~3mm、特に0.4~2mmであることが好ましい。繊維強化熱可塑性樹脂層2の厚みを上記範囲内とすることにより、冷間塑性加工時におけるスプリング・バックによる変形が抑制されやすくなり好ましい。
The thickness t 2 of the fiber reinforced thermoplastic resin layer 2 is usually 0.2 to 4 mm, preferably 0.3 to 3 mm, particularly preferably 0.4 to 2 mm. By making the thickness of the fiber reinforced thermoplastic resin layer 2 within the above range, it is preferable because deformation due to spring back during cold plastic working is easily suppressed.
繊維強化熱可塑性樹脂層2を構成する繊維としては、無機繊維、有機繊維、金属繊維などの強化繊維を1種又は2種以上用いることができる。中でも、軽量性、弾性率の点から無機繊維が好ましく、軽量性、伸び率、冷間加工性の点から有機繊維が好ましい。
As the fibers constituting the fiber-reinforced thermoplastic resin layer 2, one or more reinforcing fibers such as inorganic fibers, organic fibers, and metal fibers can be used. Among these, inorganic fibers are preferable from the viewpoint of light weight and elastic modulus, and organic fibers are preferable from the viewpoint of light weight, elongation, and cold workability.
無機繊維としては、ガラス繊維、炭素繊維、ボロン繊維、炭化ケイ素繊維、アルミナ繊維等が例示される。有機繊維としては、アラミド繊維、ポリパラフェニレンベンズオキサゾール繊維(PBO繊維)、高強力ポリエチレン繊維やポリプロピレン繊維、ポリアミド繊維、ポリエステル繊維やこれらを延伸配向強化した自己強化繊維等が例示される。金属繊維としては、アルミ繊維、アルミナ繊維、SUS繊維、銅繊維等が例示される。
強化繊維の形態としては、不織布、チョップド繊維(平均繊維長10mm以上)、不織布と織物または編物の組合せが挙げられ、中でも不織布、チョップド繊維が好適である。コスト、耐衝撃性能、成形性のバランスからガラス繊維又は炭素繊維、特にガラス繊維による不織布、平均繊維長10mm以上のチョップド繊維が好適である。 Examples of the inorganic fiber include glass fiber, carbon fiber, boron fiber, silicon carbide fiber, and alumina fiber. Examples of the organic fibers include aramid fibers, polyparaphenylene benzoxazole fibers (PBO fibers), high-strength polyethylene fibers, polypropylene fibers, polyamide fibers, polyester fibers, and self-reinforced fibers obtained by stretching and strengthening these. Examples of the metal fiber include aluminum fiber, alumina fiber, SUS fiber, and copper fiber.
Examples of the reinforcing fiber include nonwoven fabric, chopped fiber (average fiber length of 10 mm or more), and a combination of nonwoven fabric and woven fabric or knitted fabric. Among these, nonwoven fabric and chopped fiber are suitable. From the balance of cost, impact resistance, and moldability, glass fibers or carbon fibers, particularly nonwoven fabrics made of glass fibers, and chopped fibers having an average fiber length of 10 mm or more are suitable.
強化繊維の形態としては、不織布、チョップド繊維(平均繊維長10mm以上)、不織布と織物または編物の組合せが挙げられ、中でも不織布、チョップド繊維が好適である。コスト、耐衝撃性能、成形性のバランスからガラス繊維又は炭素繊維、特にガラス繊維による不織布、平均繊維長10mm以上のチョップド繊維が好適である。 Examples of the inorganic fiber include glass fiber, carbon fiber, boron fiber, silicon carbide fiber, and alumina fiber. Examples of the organic fibers include aramid fibers, polyparaphenylene benzoxazole fibers (PBO fibers), high-strength polyethylene fibers, polypropylene fibers, polyamide fibers, polyester fibers, and self-reinforced fibers obtained by stretching and strengthening these. Examples of the metal fiber include aluminum fiber, alumina fiber, SUS fiber, and copper fiber.
Examples of the reinforcing fiber include nonwoven fabric, chopped fiber (average fiber length of 10 mm or more), and a combination of nonwoven fabric and woven fabric or knitted fabric. Among these, nonwoven fabric and chopped fiber are suitable. From the balance of cost, impact resistance, and moldability, glass fibers or carbon fibers, particularly nonwoven fabrics made of glass fibers, and chopped fibers having an average fiber length of 10 mm or more are suitable.
好ましく用いられる有機繊維は、有機繊維の融点と繊維強化熱可塑性樹脂層に用いる熱可塑性樹脂の融点又はガラス転移温度との差が40℃以上であるものが、熱可塑性樹脂を有機繊維に含浸させる際等の有機繊維の形態維持の点から好ましい。上記の温度差は、50~200℃であることがより好ましく、60~150℃であることがさらに好ましい。なお、上記温度差の算出には、繊維強化熱可塑性樹脂層に用いる熱可塑性樹脂が結晶性の場合は融点を、非晶性の場合はガラス転移温度を採用する。
また、繊維強化熱可塑性樹脂層に複数の熱可塑性樹脂を使用する場合は、これらの樹脂の融点又はガラス転移温度の平均値を採用する。複数の有機繊維を使用する場合は、これら有機繊維の融点の平均値を採用する。なお、融点、ガラス転移温度の測定は、示差走査熱量分析計(DSC)を用いて測定される。融点は、得られるDSC曲線の吸熱ピークのピークトップの温度とする。具体的には、25℃から10℃/分の昇温条件下、予想される融点+50℃程度まで昇温し、同温度にて1分間保持後、10℃/分にて25℃まで降温し、同温度にて1分間保持する。その後、10℃/分の昇温条件下で再度昇温した際のDSC曲線から求めることができる。 The organic fiber preferably used has a difference between the melting point of the organic fiber and the melting point of the thermoplastic resin used for the fiber-reinforced thermoplastic resin layer or the glass transition temperature of 40 ° C. or more, and impregnates the organic fiber with the thermoplastic resin. It is preferable from the viewpoint of maintaining the shape of the organic fiber. The temperature difference is more preferably 50 to 200 ° C., and further preferably 60 to 150 ° C. In calculating the temperature difference, the melting point is employed when the thermoplastic resin used for the fiber-reinforced thermoplastic resin layer is crystalline, and the glass transition temperature is employed when the thermoplastic resin is amorphous.
Moreover, when using a some thermoplastic resin for a fiber reinforced thermoplastic resin layer, the average value of melting | fusing point or glass transition temperature of these resin is employ | adopted. When using a plurality of organic fibers, the average melting point of these organic fibers is employed. The melting point and glass transition temperature are measured using a differential scanning calorimeter (DSC). The melting point is the temperature at the peak top of the endothermic peak of the obtained DSC curve. Specifically, the temperature is raised from 25 ° C. to 10 ° C./min to the expected melting point + 50 ° C., held at the same temperature for 1 minute, and then lowered to 25 ° C. at 10 ° C./min. And hold at the same temperature for 1 minute. Then, it can obtain | require from the DSC curve at the time of heating up again on temperature rising conditions of 10 degree-C / min.
また、繊維強化熱可塑性樹脂層に複数の熱可塑性樹脂を使用する場合は、これらの樹脂の融点又はガラス転移温度の平均値を採用する。複数の有機繊維を使用する場合は、これら有機繊維の融点の平均値を採用する。なお、融点、ガラス転移温度の測定は、示差走査熱量分析計(DSC)を用いて測定される。融点は、得られるDSC曲線の吸熱ピークのピークトップの温度とする。具体的には、25℃から10℃/分の昇温条件下、予想される融点+50℃程度まで昇温し、同温度にて1分間保持後、10℃/分にて25℃まで降温し、同温度にて1分間保持する。その後、10℃/分の昇温条件下で再度昇温した際のDSC曲線から求めることができる。 The organic fiber preferably used has a difference between the melting point of the organic fiber and the melting point of the thermoplastic resin used for the fiber-reinforced thermoplastic resin layer or the glass transition temperature of 40 ° C. or more, and impregnates the organic fiber with the thermoplastic resin. It is preferable from the viewpoint of maintaining the shape of the organic fiber. The temperature difference is more preferably 50 to 200 ° C., and further preferably 60 to 150 ° C. In calculating the temperature difference, the melting point is employed when the thermoplastic resin used for the fiber-reinforced thermoplastic resin layer is crystalline, and the glass transition temperature is employed when the thermoplastic resin is amorphous.
Moreover, when using a some thermoplastic resin for a fiber reinforced thermoplastic resin layer, the average value of melting | fusing point or glass transition temperature of these resin is employ | adopted. When using a plurality of organic fibers, the average melting point of these organic fibers is employed. The melting point and glass transition temperature are measured using a differential scanning calorimeter (DSC). The melting point is the temperature at the peak top of the endothermic peak of the obtained DSC curve. Specifically, the temperature is raised from 25 ° C. to 10 ° C./min to the expected melting point + 50 ° C., held at the same temperature for 1 minute, and then lowered to 25 ° C. at 10 ° C./min. And hold at the same temperature for 1 minute. Then, it can obtain | require from the DSC curve at the time of heating up again on temperature rising conditions of 10 degree-C / min.
また、有機繊維としては、融点が好ましくは160℃以上、より好ましくは200℃以上、さらに好ましくは220℃以上、特に好ましくは250℃以上の結晶性熱可塑性樹脂からなるものであるが好ましい。融点が160℃以上であることにより、結晶性熱可塑性樹脂の融点や非晶性熱可塑樹脂のガラス転移温度付近まで、繊維強化熱可塑性樹脂層の熱変形温度(耐熱性)が向上し、結果として、積層パネルの耐熱性が向上する傾向となり好ましい。
The organic fiber is preferably made of a crystalline thermoplastic resin having a melting point of preferably 160 ° C. or higher, more preferably 200 ° C. or higher, further preferably 220 ° C. or higher, particularly preferably 250 ° C. or higher. When the melting point is 160 ° C. or higher, the thermal deformation temperature (heat resistance) of the fiber-reinforced thermoplastic resin layer is improved to the vicinity of the melting point of the crystalline thermoplastic resin and the glass transition temperature of the amorphous thermoplastic resin. As such, the heat resistance of the laminated panel tends to be improved.
有機繊維の形態としては、フィラメント、ステープル及びフラットヤーン等の何れであってもよく、これら1種又は2種以上からなる不織布として用いることが好ましい。フィラメントの形態は、長繊維(連続繊維)であり、ステープルはフィラメントを収束したステープル・トウを切断して綿状にした短繊維であり、通常繊維長は35~100mm度である。フラットヤーンは、熱可塑性樹脂等のフィルムを短冊状にカット(スリット)し、延伸することにより強度を持たせた平らな糸である。
The form of the organic fiber may be any of filaments, staples, flat yarns and the like, and is preferably used as a nonwoven fabric composed of one or more of these. Filaments are long fibers (continuous fibers). Staples are staple fibers formed by cutting staple tows in which the filaments are converged to form cotton. Usually, the fiber length is 35 to 100 mm. The flat yarn is a flat yarn that has a strength by cutting (slit) a film of a thermoplastic resin or the like into a strip shape and stretching it.
特に、有機繊維を用いたニードルパンチ法による不織布の場合においては、有機繊維の形態が、平均繊維長5~400mmであることが好ましく、25~300mmであることがより好ましく、40~200mmであることがさらに好ましい。また、連続繊維の形態であることも好ましい。このような繊維長とすることにより、繊維が均質に分散し相互に絡み合いやすくなるので、繊維強化熱可塑性樹脂層の機械強度、耐熱性が向上する傾向となり好ましい。
平均繊度は1~30dexであることが好ましく、2~20dtexであることがより好ましく、3~15dtexであることがさらに好ましい。このような平均繊度とすることにより、熱可塑性樹脂と有機繊維との界面が増大し、繊維強化熱可塑性樹脂層の機械強度、耐熱性が向上する傾向となり好ましい。
目付は50~1500g/m2であることが好ましく、100~1000g/m2であることがより好ましい。このような目付量とすることにより、繊維強化熱可塑性樹脂層の厚みを変えることにより、用途毎に要求される積層パネルの剛性を必要に応じて調整しやすく、冷間塑性加工性が確保しやすい傾向となり好ましい。 In particular, in the case of a nonwoven fabric by needle punching using organic fibers, the form of the organic fibers is preferably an average fiber length of 5 to 400 mm, more preferably 25 to 300 mm, and more preferably 40 to 200 mm. More preferably. Moreover, it is also preferable that it is a form of continuous fiber. By setting it as such fiber length, since a fiber disperse | distributes uniformly and it becomes easy to mutually entangle, it tends to improve the mechanical strength and heat resistance of a fiber reinforced thermoplastic resin layer, and is preferable.
The average fineness is preferably 1 to 30 dex, more preferably 2 to 20 dtex, and further preferably 3 to 15 dtex. By setting it as such an average fineness, the interface of a thermoplastic resin and organic fiber increases, and the mechanical strength and heat resistance of a fiber reinforced thermoplastic resin layer tend to improve, and it is preferable.
The basis weight is preferably 50 to 1500 g / m 2 , more preferably 100 to 1000 g / m 2 . By setting the weight per unit area, it is easy to adjust the rigidity of the laminated panel required for each application by changing the thickness of the fiber reinforced thermoplastic resin layer, ensuring cold plastic workability. It tends to be easy and is preferable.
平均繊度は1~30dexであることが好ましく、2~20dtexであることがより好ましく、3~15dtexであることがさらに好ましい。このような平均繊度とすることにより、熱可塑性樹脂と有機繊維との界面が増大し、繊維強化熱可塑性樹脂層の機械強度、耐熱性が向上する傾向となり好ましい。
目付は50~1500g/m2であることが好ましく、100~1000g/m2であることがより好ましい。このような目付量とすることにより、繊維強化熱可塑性樹脂層の厚みを変えることにより、用途毎に要求される積層パネルの剛性を必要に応じて調整しやすく、冷間塑性加工性が確保しやすい傾向となり好ましい。 In particular, in the case of a nonwoven fabric by needle punching using organic fibers, the form of the organic fibers is preferably an average fiber length of 5 to 400 mm, more preferably 25 to 300 mm, and more preferably 40 to 200 mm. More preferably. Moreover, it is also preferable that it is a form of continuous fiber. By setting it as such fiber length, since a fiber disperse | distributes uniformly and it becomes easy to mutually entangle, it tends to improve the mechanical strength and heat resistance of a fiber reinforced thermoplastic resin layer, and is preferable.
The average fineness is preferably 1 to 30 dex, more preferably 2 to 20 dtex, and further preferably 3 to 15 dtex. By setting it as such an average fineness, the interface of a thermoplastic resin and organic fiber increases, and the mechanical strength and heat resistance of a fiber reinforced thermoplastic resin layer tend to improve, and it is preferable.
The basis weight is preferably 50 to 1500 g / m 2 , more preferably 100 to 1000 g / m 2 . By setting the weight per unit area, it is easy to adjust the rigidity of the laminated panel required for each application by changing the thickness of the fiber reinforced thermoplastic resin layer, ensuring cold plastic workability. It tends to be easy and is preferable.
また、有機繊維として不織布と織物を組み合わせた有機繊維強化熱可塑性樹脂層も好適である。何れも、繊維が相互に拘束されているので、高い耐衝撃性が確保でき、冷間塑性加工時の繊維の切断や繊維の偏在、目開きが抑制でき、使用時の物性低下を抑制することできる。
Further, an organic fiber reinforced thermoplastic resin layer in which a nonwoven fabric and a woven fabric are combined as an organic fiber is also suitable. In both cases, the fibers are constrained to each other, so that high impact resistance can be ensured, fiber cutting, uneven fiber distribution, and opening during cold plastic working can be suppressed, and deterioration in physical properties during use can be suppressed. it can.
熱可塑性樹脂としては、PP(ポリプロピレン)、PVC(ポリ塩化ビニル)、PA(ポリアクリロニトリル)、PC(ポリカーボネート)、PPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)のほか、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)等のポリエステル、PES(ポリエーテルサルフォン)などが好適であり、中でもPP、PA、PBT、PPS、PEEK等の結晶性樹脂が好ましく、PP、PA、PBTがより好ましく、耐熱性、耐吸湿性、耐加水分解性、コストの点からPPがさらに好ましい。
As thermoplastic resins, PP (polypropylene), PVC (polyvinyl chloride), PA (polyacrylonitrile), PC (polycarbonate), PPS (polyphenylene sulfide), PEEK (polyether ether ketone), PET (polyethylene terephthalate) Polyester such as PBT (polybutylene terephthalate), PES (polyethersulfone), and the like are preferable, and crystalline resins such as PP, PA, PBT, PPS, and PEEK are preferable, and PP, PA, and PBT are more preferable. PP is more preferable from the viewpoints of heat resistance, moisture absorption resistance, hydrolysis resistance, and cost.
繊維強化熱可塑性樹脂層中の繊維の体積含有率Vfは、10~80体積%、さらには15~70体積%であることが好ましい。体積含有率Vfが10体積%未満であると繊維による補強効果が現れにくく、80体積%を超えると繊維強化熱可塑性樹脂層にボイドができ、応力集中により衝撃強度が低下しやすくなったり、冷間加工等の加工時に割れやすくなったりする場合があるため、好ましくない。
繊維強化熱可塑性樹脂層中の繊維の重量体積含有率Wfは、20~80重量%、さらには25~75重量%であることが好ましい。体積含有率Wfが20重量%未満であると繊維による補強効果が現れにくく、80重量%を超えると繊維強化熱可塑性樹脂層にボイドができ、応力集中により衝撃強度が低下しやすくなったり、冷間加工等の加工時に割れやすくなったりするため、好ましくない。 The fiber volume content Vf in the fiber reinforced thermoplastic resin layer is preferably 10 to 80% by volume, more preferably 15 to 70% by volume. If the volume content Vf is less than 10% by volume, the reinforcing effect due to the fibers is difficult to appear. Since it may become easy to break at the time of processing, such as inter-processing, it is not preferred.
The weight volume content Wf of the fibers in the fiber reinforced thermoplastic resin layer is preferably 20 to 80% by weight, more preferably 25 to 75% by weight. When the volume content Wf is less than 20% by weight, the reinforcing effect by the fiber is hardly exhibited. It is not preferable because it is easy to break during processing such as inter-processing.
繊維強化熱可塑性樹脂層中の繊維の重量体積含有率Wfは、20~80重量%、さらには25~75重量%であることが好ましい。体積含有率Wfが20重量%未満であると繊維による補強効果が現れにくく、80重量%を超えると繊維強化熱可塑性樹脂層にボイドができ、応力集中により衝撃強度が低下しやすくなったり、冷間加工等の加工時に割れやすくなったりするため、好ましくない。 The fiber volume content Vf in the fiber reinforced thermoplastic resin layer is preferably 10 to 80% by volume, more preferably 15 to 70% by volume. If the volume content Vf is less than 10% by volume, the reinforcing effect due to the fibers is difficult to appear. Since it may become easy to break at the time of processing, such as inter-processing, it is not preferred.
The weight volume content Wf of the fibers in the fiber reinforced thermoplastic resin layer is preferably 20 to 80% by weight, more preferably 25 to 75% by weight. When the volume content Wf is less than 20% by weight, the reinforcing effect by the fiber is hardly exhibited. It is not preferable because it is easy to break during processing such as inter-processing.
繊維強化熱可塑性樹脂層の製造方法は、特に限定されるものではなく、従来公知の方法を採用することができる。
繊維強化熱可塑性樹脂層に用いる繊維がチョップド繊維の場合は、例えば、チョップド繊維を含有する樹脂ペレットを加熱溶融して直接積層パネルの繊維強化熱可塑性樹脂層を形成するか、樹脂ペレットを加熱溶融して予めシート化しておき、それと金属板層とを加熱融着等により積層する方法が挙げられる。また、D-LFT法によって、繊維長30mm以上の状態で、押出機のダイスより吐出した繊維強化熱可塑性樹脂を、繊維の切断を抑制しながら直接に積層、シート化する方法が挙げられる。 The manufacturing method of a fiber reinforced thermoplastic resin layer is not specifically limited, A conventionally well-known method is employable.
When the fiber used in the fiber reinforced thermoplastic resin layer is chopped fiber, for example, the resin pellet containing the chopped fiber is heated and melted to directly form the fiber reinforced thermoplastic resin layer of the laminated panel, or the resin pellet is heated and melted. Then, a method of forming a sheet in advance and laminating it and a metal plate layer by heat fusion or the like can be mentioned. Further, there is a method in which a fiber reinforced thermoplastic resin discharged from a die of an extruder is directly laminated and formed into a sheet while suppressing fiber cutting by the D-LFT method with a fiber length of 30 mm or more.
繊維強化熱可塑性樹脂層に用いる繊維がチョップド繊維の場合は、例えば、チョップド繊維を含有する樹脂ペレットを加熱溶融して直接積層パネルの繊維強化熱可塑性樹脂層を形成するか、樹脂ペレットを加熱溶融して予めシート化しておき、それと金属板層とを加熱融着等により積層する方法が挙げられる。また、D-LFT法によって、繊維長30mm以上の状態で、押出機のダイスより吐出した繊維強化熱可塑性樹脂を、繊維の切断を抑制しながら直接に積層、シート化する方法が挙げられる。 The manufacturing method of a fiber reinforced thermoplastic resin layer is not specifically limited, A conventionally well-known method is employable.
When the fiber used in the fiber reinforced thermoplastic resin layer is chopped fiber, for example, the resin pellet containing the chopped fiber is heated and melted to directly form the fiber reinforced thermoplastic resin layer of the laminated panel, or the resin pellet is heated and melted. Then, a method of forming a sheet in advance and laminating it and a metal plate layer by heat fusion or the like can be mentioned. Further, there is a method in which a fiber reinforced thermoplastic resin discharged from a die of an extruder is directly laminated and formed into a sheet while suppressing fiber cutting by the D-LFT method with a fiber length of 30 mm or more.
繊維強化熱可塑性樹脂層に用いる繊維が不織布の場合は、例えば、熱可塑性樹脂を押出機に投入し溶融させたのち、所望の厚みのシート状に押出成形するとともに、押出されたシート状物の少なくとも片面、好ましくは両面に不織布を供給して積層することにより製造することができる。得られた積層体の表面に、さらに熱可塑性樹脂シートを表裏に供給して積層することもできる。積層する際は、ラミネーター等を用いて加熱及び加圧し、熱可塑性樹脂を不織布に含浸させ、次いで冷却固化させシート状(所謂スタンパブルシート)にすることによって繊維強化熱可塑性樹脂層を製造することができる。また、工程短縮化の観点から、不織布と熱可塑性樹脂シートとを積層し、金属板と一度に熱成形することによって本発明の積層パネルの繊維強化熱可塑性樹脂層とすることも可能である。
When the fiber used for the fiber reinforced thermoplastic resin layer is a non-woven fabric, for example, after the thermoplastic resin is put into an extruder and melted, it is extruded into a sheet having a desired thickness, and the extruded sheet It can be produced by supplying and laminating a nonwoven fabric on at least one side, preferably both sides. A thermoplastic resin sheet can also be supplied to the front and back of the laminate to obtain a laminate. When laminating, a fiber reinforced thermoplastic resin layer is produced by heating and pressurizing using a laminator or the like, impregnating the thermoplastic resin into the nonwoven fabric, and then solidifying by cooling to form a sheet (so-called stampable sheet). Can do. Further, from the viewpoint of shortening the process, it is also possible to form a fiber reinforced thermoplastic resin layer of the laminated panel of the present invention by laminating a nonwoven fabric and a thermoplastic resin sheet and thermoforming the metal plate at once.
また、繊維強化熱可塑性樹脂層は、本発明の目的を損なわない範囲で、熱可塑性樹脂及び不織布又は平均繊維長10mm以上のチョップド繊維以外の他の成分を含んでいてもよい。他の成分としては、例えば、紫外線吸収剤、光安定剤、熱安定剤、酸化防止剤、耐衝撃性改質剤、難燃剤、離型剤、滑剤、ブロッキング防止剤、帯電防止剤、強化繊維以外の無機充填材等の各種添加剤が挙げられる。
Further, the fiber reinforced thermoplastic resin layer may contain other components other than the thermoplastic resin and the nonwoven fabric or the chopped fiber having an average fiber length of 10 mm or more within a range not impairing the object of the present invention. Other components include, for example, ultraviolet absorbers, light stabilizers, heat stabilizers, antioxidants, impact modifiers, flame retardants, mold release agents, lubricants, antiblocking agents, antistatic agents, and reinforcing fibers. Various additives, such as inorganic fillers other than, are mentioned.
繊維強化熱可塑性樹脂層は、0.2mm以上の厚みであって、該繊維強化熱可塑性樹脂層単層の単体試験片によるパンクチャー衝撃試験(ASTM D3763、ストライカ径1/2inch、衝撃速度4.4m/s、支持台内径:3inch、試験温度:23℃)の条件下にて試験片厚み当たりの最大衝撃力が0.5kN/mm以上である場合、使用時の衝撃強度の向上のみならず、折り曲げやプレス成形(絞り成形)等塑性加工(板金加工)を容易とすることができ、好ましい。この最大衝撃力は0.7~10kN/mmであることが好適であり、特に0.8~5kN/mmであることがより好適である。
The fiber reinforced thermoplastic resin layer has a thickness of 0.2 mm or more, and a puncture impact test using a single specimen of the fiber reinforced thermoplastic resin layer (ASTM D3763, striker diameter 1/2 inch, impact speed 4. When the maximum impact force per specimen thickness is 0.5 kN / mm or more under the conditions of 4 m / s, support base inner diameter: 3 inches, test temperature: 23 ° C.), not only the impact strength is improved during use. It is possible to facilitate plastic processing (sheet metal processing) such as bending and press molding (drawing), which is preferable. The maximum impact force is preferably 0.7 to 10 kN / mm, more preferably 0.8 to 5 kN / mm.
また、繊維強化熱可塑性樹脂層は、該繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244-4:1999(プラスチック-動的機械特性の試験方法、周波数100Hz、試験片厚み2mm、試験温度23℃)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ)値が1.0GPa以上であると、繊維強化熱可塑性樹脂層の可塑化が過剰となりにくく、金属板層の塑性変形と追従しながら繊維強化熱可塑性樹脂層も変形しやすくなるため、塑性加工がより容易となる傾向となり好ましい。
Further, the fiber reinforced thermoplastic resin layer is composed of a dynamic viscoelasticity test (JIS K 7244-4: 1999 (plastic-dynamic mechanical property test method, frequency 100 Hz, test piece). When the ratio of the storage elastic modulus E ′ to the specific gravity ρ of the fiber-reinforced thermoplastic resin layer (thickness 2 mm, test temperature 23 ° C.) (specific storage elastic modulus value: E ′ / ρ) is 1.0 GPa or more, the fiber Plasticization of the reinforced thermoplastic resin layer is unlikely to be excessive, and the fiber reinforced thermoplastic resin layer is also easily deformed while following the plastic deformation of the metal plate layer, which is preferable because plastic processing tends to be easier.
ここで、繊維強化熱可塑性樹脂層の比貯蔵弾性率は、動的粘弾性測定装置(例えば、レオロジー社製FTレオスペクトラー)を用いて繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244-4:1999(プラスチック-動的機械特性の試験方法、周波数100Hz、試験片厚み2mm))の条件で、室温から200℃までの温度依存性を測定して求めることができる。なお、繊維強化熱可塑性樹脂層の比重ρ(無次元)も温度依存性があるが、ここでは室温(23℃)での重量と体積の測定値から算出された値を代表値として適用することができる。
Here, the specific storage elastic modulus of the fiber-reinforced thermoplastic resin layer is determined based on the dynamic viscoelasticity of the fiber-reinforced thermoplastic resin layer single specimen using a dynamic viscoelasticity measuring apparatus (for example, FT Rheospectr manufactured by Rheology). It can be obtained by measuring the temperature dependence from room temperature to 200 ° C. under the test conditions (JIS K 7244-4: 1999 (Plastic—Dynamic mechanical property test method, frequency 100 Hz, test piece thickness 2 mm)). . The specific gravity ρ (dimensionless) of the fiber reinforced thermoplastic resin layer is also temperature-dependent, but here, the values calculated from the measured weight and volume at room temperature (23 ° C.) are applied as representative values. Can do.
上記の繊維強化熱可塑性樹脂層の比貯蔵弾性率値(E′/ρ)値は、より好ましくは1.5GPa以上であり、更に好ましくは1.8GPa以上である。一方、繊維強化熱可塑性樹脂の弾性率から、この値は通常50GPa以下、好ましくは30GPa以下、より好ましくは20GPa以下である。上限を50GPa以下とすることにより、冷間塑性加工時に、繊維強化熱可塑性樹脂による金属板層の破壊や、高硬度の強化繊維を使用した場合の強化繊維による金属板表面への転写痕の発生が抑制されやすくなり好ましい。
The specific storage elastic modulus (E ′ / ρ) value of the fiber reinforced thermoplastic resin layer is more preferably 1.5 GPa or more, and further preferably 1.8 GPa or more. On the other hand, from the elastic modulus of the fiber reinforced thermoplastic resin, this value is usually 50 GPa or less, preferably 30 GPa or less, more preferably 20 GPa or less. By setting the upper limit to 50 GPa or less, destruction of the metal plate layer by the fiber reinforced thermoplastic resin during cold plastic processing, or generation of transfer marks on the surface of the metal plate by the reinforcing fiber when using high-strength reinforcing fibers Is easy to be suppressed, which is preferable.
繊維強化熱可塑性樹脂層と金属板層との接合(接着)方法については、特に制限がなく、各種の方法が適用できるが、剥離強度試験時に繊維強化熱可塑性樹脂層で母材破壊を起こすほど剥離試験強度が強固であることが必須となる。JIS K6854-4:1999の浮動ローラー法剥離試験で、剥離強度が2.5kN以上であり、且つ界面剥離を起こさず、繊維強化熱可塑性樹脂層で母材破壊を起こす接合(接着)方法であれば、特に制限がなく、公知の方法が好適に適用できる。
There are no particular restrictions on the bonding (adhesion) method between the fiber reinforced thermoplastic resin layer and the metal plate layer, and various methods can be applied. However, the base material breaks down in the fiber reinforced thermoplastic resin layer during the peel strength test. It is essential that the peel test strength is strong. JIS K6854-4: Joining (adhesion) method in which the peeling strength is 2.5 kN or more in the floating roller method peeling test of 1999, and no interface peeling occurs and the base material breaks down in the fiber reinforced thermoplastic resin layer. If there is no particular limitation, a known method can be suitably applied.
浮動ローラー法剥離試験での剥離強度が2.5kN/m以上であり、且つ繊維強化熱可塑性樹脂層で母材破壊が起こる接合性(接着性)を達成する方法としては、例えば、接着剤を使用した接着層を設ける方法、金属板の表面を例えば、陽極酸化処理、エッチング処理する方法の他、近年大成プラス株式会社により開発されたNMT処理、株式会社UACJにより開発されたKO処理等の金属表面に微細で複雑な凹凸によるアンカー層を設ける方法、株式会社新技術研究所や株式会社東亜電化等によるトリアジンチオール変性化合物を金属表面に化学反応により修飾し、金属表面と熱可塑性樹脂や各種硬化性樹脂等の接着剤との接着性を向上させる方法、株式会社ダイセルが開発したレーザー照射により金属表面に複雑な3次元網目状のステッチ・アンカーと呼ばれる多孔質層を形成する方法等が挙げられる。上述したように、金属板の表面処理を適切に選択する等を行えば、コア材となる繊維強化熱可塑性樹脂層との接着強度が十分に得られる場合があるので、必ずしも接着層は必要ではないが、容易に両層間の接着強度を確保する上では、接着剤または接着性樹脂(接着性フィルム)等の接着層を介して金属板層と繊維強化熱可塑性樹脂層とが接合されたものが望ましい。
As a method for achieving the bondability (adhesiveness) in which the peel strength in the floating roller method peel test is 2.5 kN / m or more and the base material breaks down in the fiber reinforced thermoplastic resin layer, for example, an adhesive is used. In addition to the method of providing the used adhesive layer, the method of, for example, anodizing and etching the surface of the metal plate, metals such as NMT treatment recently developed by Taisei Plus Co., Ltd. and KO treatment developed by UACJ Co., Ltd. A method of providing an anchor layer with fine and complex irregularities on the surface, a triazine thiol-modified compound by New Technology Laboratory Co., Ltd. or Toa Denka Co., Ltd. is modified on the metal surface by chemical reaction, the metal surface and thermoplastic resin and various curing A method to improve the adhesiveness with adhesives such as adhesive resins, and a complex three-dimensional mesh-like surface on a metal surface by laser irradiation developed by Daicel Corporation. A method in which a porous layer, called the pitch anchor the like. As described above, if the surface treatment of the metal plate is appropriately selected, the adhesive strength with the fiber reinforced thermoplastic resin layer as the core material may be sufficiently obtained, so the adhesive layer is not always necessary. However, in order to easily secure the adhesive strength between the two layers, the metal plate layer and the fiber reinforced thermoplastic resin layer are joined via an adhesive layer such as an adhesive or an adhesive resin (adhesive film). Is desirable.
接着剤としては、エポキシ系接着剤、ウレタン系接着剤、ポリエステル系接着剤等を基本としてポリオレフィン系樹脂との接着性を改良したタイプの熱硬化型接着剤等を挙げることができる。あるいは、積層工程で、金属板層と積層される繊維強化熱可塑性樹脂層側の表面に、易接着性のプライマー層を付与しておいて、通常の熱硬化型エポキシ系、ウレタン系、ポリエステル系、アクリル系等の接着剤を用いて金属板層と接着させてもよい。
Examples of the adhesive include an epoxy adhesive, a urethane adhesive, a polyester adhesive, and the like, and a thermosetting adhesive of a type having improved adhesion to a polyolefin resin. Alternatively, in the lamination process, an easy-adhesive primer layer is provided on the surface of the fiber reinforced thermoplastic resin layer laminated with the metal plate layer, and a normal thermosetting epoxy system, urethane system, polyester system is provided. Alternatively, the metal plate layer may be bonded using an acrylic adhesive or the like.
接着性樹脂としては、市販の無水マレイン酸-PP共重合体樹脂フィルム(商品名:三菱化学社製モディックP555、クラボウ社製クランベターP6700等)が好適に利用可能である。また、PP系フィルムとしては変性ポリオレフィン接着性樹脂フィルム(三井化学東セロ株式会社製アドマーVE300)、PET系フィルムとしてはヒートシールタイプPETフィルム(帝人デュポンフィルム株式会社製マイラー850)及びフィルム状ホットメルト型接着剤(クラボウ社製クランベターG13)、ナイロン系フィルムとしてはフィルム状ホットメルト型接着剤(クラボウ社製クランベターCN-1003)等が活用できる。または、予め繊維強化熱可塑性樹脂層と同類樹脂のフィルムが積層された金属複合板(ヒシメタル、アルセット(いずれも三菱樹脂株式会社製)等)を使用しても良い。この場合、PP系樹脂層においてはヒシメタルPO、アルセット1P、アルセットHP等が、ポリアミド系樹脂層においてはアルセット1Y、アルセット3Y、アルセットAR等が、PET系樹脂層においてはアルセットEG、アルセットEH等が好適に使用できる。
As the adhesive resin, commercially available maleic anhydride-PP copolymer resin films (trade names: Modic P555 manufactured by Mitsubishi Chemical Corporation, Clanbetter P6700 manufactured by Kurabo Industries, etc.) can be suitably used. In addition, a modified polyolefin adhesive resin film (Mitsui Chemicals, Inc., Admer VE300, manufactured by Mitsui Chemicals, Inc.) is used as the PP film, and a heat-seal type PET film (Mylar 850, manufactured by Teijin DuPont Films Co., Ltd.) and a film-like hot melt type are used. An adhesive (Kurabo Clam Better G13), a film-like hot melt type adhesive (Kurabo Clan Better CN-1003) and the like can be used as the nylon film. Alternatively, a metal composite plate (Hishimetal, Alset (both manufactured by Mitsubishi Plastics Co., Ltd.) or the like) in which a film of a resin similar to the fiber reinforced thermoplastic resin layer is previously laminated may be used. In this case, Hishi Metal PO, Alset 1P, Alset HP, etc. in the PP resin layer, Alset 1Y, Alset 3Y, Alset AR, etc. in the polyamide resin layer, Alset in the PET resin layer EG, Alset EH, etc. can be used suitably.
金属板層の金属板には、表面処理を施した方が接着(接合)強度の向上が期待でき、好ましい。表面処理方法としては、プラズマ処理、UV処理、コロナ処理、エッチング処理、アルカリ電解処理、クロメート処理等の化成処理等各種の化成処理等が挙げられる。
The surface of the metal plate of the metal plate layer is preferably subjected to a surface treatment because an improvement in adhesion (bonding) strength can be expected. Examples of the surface treatment method include various chemical treatments such as plasma treatment, UV treatment, corona treatment, etching treatment, alkali electrolysis treatment, chemical treatment such as chromate treatment, and the like.
金属板層と繊維強化熱可塑性樹脂層の接着方法としては、繊維強化熱可塑性樹脂層の熱可塑性樹脂の種類に応じた接着剤や接着性樹脂層を選択し、接合界面に介在させる方法等が挙げられる。具体的には、熱可塑性樹脂フィルムを金属板層に融着させておき、この熱可塑性樹脂フィルム層付きの金属板層と繊維強化熱可塑性樹脂層とを重ね合わせて加熱して金属板層と繊維強化熱可塑性樹脂層とを接着する方法が好適である。また、金属板層と繊維強化熱可塑性樹脂層との間に熱可塑性樹脂フィルムを介在させ、これらを加圧加熱して金属板層と繊維強化熱可塑性樹脂層とで接着させる方法も好適である。
なお、積層パネルの製造に用いる繊維強化熱可塑性樹脂層としては、上述したような予め製造された繊維強化熱可塑性樹脂シートを使用してもよいし、工程短縮化の観点から、不織布と熱可塑性樹脂シートとを積層したものや、チョップド繊維含有樹脂ペレットを直接用いて、金属板と一度に熱成形することによって本発明の積層パネルの繊維強化熱可塑性樹脂層としてもよい。 As a method for adhering the metal plate layer and the fiber reinforced thermoplastic resin layer, there is a method of selecting an adhesive or an adhesive resin layer according to the type of the thermoplastic resin of the fiber reinforced thermoplastic resin layer and interposing it at the joining interface. Can be mentioned. Specifically, the thermoplastic resin film is fused to the metal plate layer, and the metal plate layer with the thermoplastic resin film layer and the fiber reinforced thermoplastic resin layer are superposed and heated to form the metal plate layer. A method of bonding the fiber reinforced thermoplastic resin layer is preferable. Also suitable is a method in which a thermoplastic resin film is interposed between the metal plate layer and the fiber reinforced thermoplastic resin layer, and these are pressed and heated to bond the metal plate layer and the fiber reinforced thermoplastic resin layer. .
In addition, as a fiber reinforced thermoplastic resin layer used for manufacture of a laminated panel, you may use the fiber reinforced thermoplastic resin sheet manufactured previously as mentioned above, and a nonwoven fabric and thermoplasticity from a viewpoint of process shortening. It is good also as a fiber reinforced thermoplastic resin layer of the laminated panel of this invention by thermoforming at once with a metal plate using what laminated | stacked the resin sheet and the chopped fiber containing resin pellet directly.
なお、積層パネルの製造に用いる繊維強化熱可塑性樹脂層としては、上述したような予め製造された繊維強化熱可塑性樹脂シートを使用してもよいし、工程短縮化の観点から、不織布と熱可塑性樹脂シートとを積層したものや、チョップド繊維含有樹脂ペレットを直接用いて、金属板と一度に熱成形することによって本発明の積層パネルの繊維強化熱可塑性樹脂層としてもよい。 As a method for adhering the metal plate layer and the fiber reinforced thermoplastic resin layer, there is a method of selecting an adhesive or an adhesive resin layer according to the type of the thermoplastic resin of the fiber reinforced thermoplastic resin layer and interposing it at the joining interface. Can be mentioned. Specifically, the thermoplastic resin film is fused to the metal plate layer, and the metal plate layer with the thermoplastic resin film layer and the fiber reinforced thermoplastic resin layer are superposed and heated to form the metal plate layer. A method of bonding the fiber reinforced thermoplastic resin layer is preferable. Also suitable is a method in which a thermoplastic resin film is interposed between the metal plate layer and the fiber reinforced thermoplastic resin layer, and these are pressed and heated to bond the metal plate layer and the fiber reinforced thermoplastic resin layer. .
In addition, as a fiber reinforced thermoplastic resin layer used for manufacture of a laminated panel, you may use the fiber reinforced thermoplastic resin sheet manufactured previously as mentioned above, and a nonwoven fabric and thermoplasticity from a viewpoint of process shortening. It is good also as a fiber reinforced thermoplastic resin layer of the laminated panel of this invention by thermoforming at once with a metal plate using what laminated | stacked the resin sheet and the chopped fiber containing resin pellet directly.
本発明の積層パネルは、上述した繊維強化熱可塑性樹脂層と金属板層を組み合わせて積層し、パネルの最外層が金属板層となる構成であれば、積層数は特に限定されない。中でも、軽量性、剛性、生産性の点から、金属板層/繊維強化熱可塑性樹脂層/金属板層の3層構造であることが好ましい。また、本発明の目的を損なわない範囲で、積層体パネルには、金属板層、本発明の繊維強化熱可塑性樹脂層以外の層を含んでいてもよい。
In the laminated panel of the present invention, the number of laminated layers is not particularly limited as long as the above-described fiber reinforced thermoplastic resin layer and the metal plate layer are laminated and the outermost layer of the panel is the metal plate layer. Among these, a three-layer structure of metal plate layer / fiber reinforced thermoplastic resin layer / metal plate layer is preferable in terms of lightness, rigidity, and productivity. Moreover, in the range which does not impair the objective of this invention, layers other than a metal plate layer and the fiber reinforced thermoplastic resin layer of this invention may be included in the laminated body panel.
接着して得られた積層パネルは、JIS K6854-4:1999の「浮動ローラー法剥離試験」法による試験を行った場合に、剥離強度が2.5kN/m以上、好ましくは3kN/m以上、より好ましくは5kN/m以上であり、且つ破壊は繊維強化熱可塑性樹脂層に生じる。
The laminated panel obtained by bonding has a peel strength of 2.5 kN / m or more, preferably 3 kN / m or more when tested by the “floating roller method peel test” method of JIS K6854-4: 1999. More preferably, it is 5 kN / m or more, and the breakage occurs in the fiber-reinforced thermoplastic resin layer.
このようにして得られる本発明の積層パネルは、下記の積層構成因子を示す式(1)の計算値Zが1以上であるが、好ましくは2以上、より好ましくは3以上、さらに好ましくは5以上である。積層構成因子Zが当該値以上であることは、下記に説明する加工性の観点から好ましい。また、積層構成因子Zは、2000以下であることが好ましく、より好ましくは500以下、さらに好ましくは100以下、特に好ましくは50以下である。積層構成因子Zが当該値以下であることは、軽量化の点から好ましい。
Z=(σm・tm・εm)/(σc・tc・εc) …(1)
σm:金属板層の室温における引張強度(MPa)
tm:金属板層の厚み(mm)
εm:金属板層の室温における引張伸び率(%)
σc:繊維強化熱可塑性樹脂層の室温における引張強度(MPa)
tc:繊維強化熱可塑性樹脂層の厚み(mm)
εc:繊維強化熱可塑性樹脂層の室温における引張伸び率(%) In the laminated panel of the present invention thus obtained, the calculated value Z of the formula (1) showing the following lamination constituent factor is 1 or more, preferably 2 or more, more preferably 3 or more, and still more preferably 5 That's it. It is preferable from the viewpoint of workability described below that the lamination component factor Z is equal to or greater than the value. Further, the lamination component factor Z is preferably 2000 or less, more preferably 500 or less, still more preferably 100 or less, and particularly preferably 50 or less. It is preferable from the point of weight reduction that the lamination | stacking component factor Z is below the said value.
Z = (σm · tm · εm) / (σc · tc · εc) (1)
σm: Tensile strength (MPa) of the metal plate layer at room temperature
tm: Metal plate layer thickness (mm)
εm: Tensile elongation at room temperature of metal plate layer (%)
σc: Tensile strength at room temperature (MPa) of the fiber reinforced thermoplastic resin layer
tc: thickness of the fiber-reinforced thermoplastic resin layer (mm)
εc: Tensile elongation at room temperature (%) of the fiber reinforced thermoplastic resin layer
Z=(σm・tm・εm)/(σc・tc・εc) …(1)
σm:金属板層の室温における引張強度(MPa)
tm:金属板層の厚み(mm)
εm:金属板層の室温における引張伸び率(%)
σc:繊維強化熱可塑性樹脂層の室温における引張強度(MPa)
tc:繊維強化熱可塑性樹脂層の厚み(mm)
εc:繊維強化熱可塑性樹脂層の室温における引張伸び率(%) In the laminated panel of the present invention thus obtained, the calculated value Z of the formula (1) showing the following lamination constituent factor is 1 or more, preferably 2 or more, more preferably 3 or more, and still more preferably 5 That's it. It is preferable from the viewpoint of workability described below that the lamination component factor Z is equal to or greater than the value. Further, the lamination component factor Z is preferably 2000 or less, more preferably 500 or less, still more preferably 100 or less, and particularly preferably 50 or less. It is preferable from the point of weight reduction that the lamination | stacking component factor Z is below the said value.
Z = (σm · tm · εm) / (σc · tc · εc) (1)
σm: Tensile strength (MPa) of the metal plate layer at room temperature
tm: Metal plate layer thickness (mm)
εm: Tensile elongation at room temperature of metal plate layer (%)
σc: Tensile strength at room temperature (MPa) of the fiber reinforced thermoplastic resin layer
tc: thickness of the fiber-reinforced thermoplastic resin layer (mm)
εc: Tensile elongation at room temperature (%) of the fiber reinforced thermoplastic resin layer
ここで、金属板層の室温(23℃)における引張強度(MPa)、金属板層の室温(23℃)における引張伸び率(%)は、金属板層単体試験片についてJIS Z2241:2011(金属材料引張試験方法)に従って測定した測定値に基づく。
繊維強化熱可塑性樹脂層の室温(23℃)における引張強度(MPa)、繊維強化熱可塑性樹脂層の室温(23℃)における引張伸び率(%)は、該繊維強化熱可塑性樹脂層単体試験片についてJIS K7164:2005(プラスチック-引張特性の試験方法-第4部:等方性及び直交行異方性繊維強化プラスチックの試験条件)に従って測定した測定値に基づく。
金属板層及び繊維強化熱可塑性樹脂層の厚みは平均厚みをいい、リブ、ボス等の部分的に突出する凸部を有する場合等は、これらの凸部を除いた部分の平均厚みをいう。 Here, the tensile strength (MPa) at room temperature (23 ° C.) of the metal plate layer and the tensile elongation (%) at room temperature (23 ° C.) of the metal plate layer are JIS Z2241: 2011 (metal Based on measured values according to the material tensile test method).
The tensile strength (MPa) of the fiber reinforced thermoplastic resin layer at room temperature (23 ° C.) and the tensile elongation (%) of the fiber reinforced thermoplastic resin layer at room temperature (23 ° C.) are as follows. For JIS K7164: 2005 (Plastics-Test method for tensile properties-Part 4: Test conditions for isotropic and orthotropic anisotropic fiber reinforced plastics).
The thicknesses of the metal plate layer and the fiber reinforced thermoplastic resin layer refer to the average thickness, and in the case of having protruding portions such as ribs and bosses that partially protrude, the thickness refers to the average thickness of the portion excluding these protruding portions.
繊維強化熱可塑性樹脂層の室温(23℃)における引張強度(MPa)、繊維強化熱可塑性樹脂層の室温(23℃)における引張伸び率(%)は、該繊維強化熱可塑性樹脂層単体試験片についてJIS K7164:2005(プラスチック-引張特性の試験方法-第4部:等方性及び直交行異方性繊維強化プラスチックの試験条件)に従って測定した測定値に基づく。
金属板層及び繊維強化熱可塑性樹脂層の厚みは平均厚みをいい、リブ、ボス等の部分的に突出する凸部を有する場合等は、これらの凸部を除いた部分の平均厚みをいう。 Here, the tensile strength (MPa) at room temperature (23 ° C.) of the metal plate layer and the tensile elongation (%) at room temperature (23 ° C.) of the metal plate layer are JIS Z2241: 2011 (metal Based on measured values according to the material tensile test method).
The tensile strength (MPa) of the fiber reinforced thermoplastic resin layer at room temperature (23 ° C.) and the tensile elongation (%) of the fiber reinforced thermoplastic resin layer at room temperature (23 ° C.) are as follows. For JIS K7164: 2005 (Plastics-Test method for tensile properties-Part 4: Test conditions for isotropic and orthotropic anisotropic fiber reinforced plastics).
The thicknesses of the metal plate layer and the fiber reinforced thermoplastic resin layer refer to the average thickness, and in the case of having protruding portions such as ribs and bosses that partially protrude, the thickness refers to the average thickness of the portion excluding these protruding portions.
なお、上記(1)式における(σm・tm・εm)の値は、最外層の金属板それぞれについて引張強度×厚み×引張伸び率の値を算出し、両金属板層のそれらの合計値を(σm・tm・εm)とする。最外層以外に金属板層有する場合にも同様に、各金属板層について引張強度×厚み×引張伸び率を算出し、各金属板層のそれらの合計値を(σm・tm・εm)とする。
同様に、繊維強化熱可塑性樹脂層が2以上存在する構成の場合も、各繊維強化熱可塑性樹脂層の引張強度×厚み×引張伸び率を算出し、各繊維強化熱可塑性樹脂層のそれらの合計値を(σc・tc・εc)とする。 In addition, the value of (σm · tm · εm) in the above formula (1) is calculated by calculating the value of tensile strength × thickness × tensile elongation for each outermost metal plate, and calculating the total value of both metal plate layers. (Σm · tm · εm). Similarly, in the case of having a metal plate layer other than the outermost layer, the tensile strength × thickness × tensile elongation is calculated for each metal plate layer, and the total value of each metal plate layer is (σm · tm · εm). .
Similarly, in the case of a configuration in which two or more fiber reinforced thermoplastic resin layers exist, the tensile strength × thickness × tensile elongation of each fiber reinforced thermoplastic resin layer is calculated, and the total of each fiber reinforced thermoplastic resin layer is calculated. The value is (σc · tc · εc).
同様に、繊維強化熱可塑性樹脂層が2以上存在する構成の場合も、各繊維強化熱可塑性樹脂層の引張強度×厚み×引張伸び率を算出し、各繊維強化熱可塑性樹脂層のそれらの合計値を(σc・tc・εc)とする。 In addition, the value of (σm · tm · εm) in the above formula (1) is calculated by calculating the value of tensile strength × thickness × tensile elongation for each outermost metal plate, and calculating the total value of both metal plate layers. (Σm · tm · εm). Similarly, in the case of having a metal plate layer other than the outermost layer, the tensile strength × thickness × tensile elongation is calculated for each metal plate layer, and the total value of each metal plate layer is (σm · tm · εm). .
Similarly, in the case of a configuration in which two or more fiber reinforced thermoplastic resin layers exist, the tensile strength × thickness × tensile elongation of each fiber reinforced thermoplastic resin layer is calculated, and the total of each fiber reinforced thermoplastic resin layer is calculated. The value is (σc · tc · εc).
この計算値Zは、本発明の積層パネルの塑性加工が可能な積層構成の選択及び、その塑性加工特性を示す指標である。金属板層、繊維強化熱可塑性樹脂層の両層が理想的に接合されていることを前提に両層の変形に要するエネルギーが各々釣り合う場合には、金属板層と繊維強化熱可塑性樹脂層が追従して変形し、両層何れかの層に破断が起こらないと仮定すれば、両層の変形に要するエネルギーは金属板層と繊維強化熱可塑性樹脂層各々の層の最大引張力、厚み(断面積)、引張伸び率(歪)の積で表すことができ、計算値Z(式(1))で表すことができる。Zが1よりも小さいと深絞り成形や曲げ加工等の塑性加工時に金属板層の破断、割れが起こりやすくなる。
This calculated value Z is an index indicating the selection of a laminated structure capable of plastic working of the laminated panel of the present invention and its plastic working characteristics. If the energy required for deformation of both layers is balanced on the assumption that both the metal plate layer and the fiber reinforced thermoplastic resin layer are ideally joined, the metal plate layer and the fiber reinforced thermoplastic resin layer Assuming that deformation does not occur in either layer, the energy required for deformation of both layers is the maximum tensile force and thickness of each of the metal plate layer and the fiber reinforced thermoplastic resin layer ( Cross-sectional area) and tensile elongation (strain), and can be represented by a calculated value Z (formula (1)). When Z is less than 1, the metal plate layer is likely to break or crack during plastic working such as deep drawing or bending.
本発明の積層パネルは、様々な成形加工法に適用することが可能であるが、上述した性質を備えたものであるので、特に塑性加工に用いることにより、顕著な効果を発揮することができる。本発明の積層パネルから成形品を製造するための塑性加工(板金加工)方法としては、従来公知の方法を挙げることができ。特に、プレス加工(単純プレス加工、絞り加工、深絞り加工、張出し加工、伸びフランジ加工等を含む。)、ロールフォーミング加工、曲げ加工に好ましく適用可能であり、特に深絞り加工に好適である。中でも、限界絞り比が1.6以上、特に2~3の深絞り加工品の製造に、好適に用いることができる。なお、限界絞り比(LDR)とは、円筒絞りにおいて、1回の絞りで破断を起こさない円筒を絞ることのできる最大ブランク直径(Dmax)と円筒の直径(絞り加工品の内径:d)の比(Dmax/d)として算出される。
Although the laminated panel of the present invention can be applied to various forming methods, since it has the above-described properties, a remarkable effect can be exhibited particularly by using it for plastic working. . As a plastic working (sheet metal working) method for producing a molded product from the laminated panel of the present invention, conventionally known methods can be mentioned. In particular, it can be preferably applied to press working (including simple press working, drawing, deep drawing, overhanging, stretch flange processing, etc.), roll forming, and bending, and is particularly suitable for deep drawing. Among these, it can be suitably used for producing deep-drawn products having a limit drawing ratio of 1.6 or more, particularly 2 to 3. The limit drawing ratio (LDR) is the maximum blank diameter (Dmax) and the diameter of the cylinder (inner diameter of the drawn product: d) that can squeeze a cylinder that does not break with a single drawing. Calculated as the ratio (Dmax / d).
本発明の積層パネルは、前記繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244-4:1999(プラスチック-動的機械特性の試験方法、周波数100Hz、試験片厚み2mm、試験温度23℃)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ)が1.0GPa以上、好ましくは1.5GPa以上、例えば1.5~3GPaの温度領域の何れかの温度(金型温度または積層パネルの予熱温度)で好適に加工することができる。即ち、比貯蔵弾性率値(E′/ρ)が1.0GPa以上となる温度を、積層パネルの予備加熱温度選択の指標とすることができる。特に、積層パネルを上記の温度領域の何れかの温度に予熱した後に加工するこがより好ましい。
The laminated panel of the present invention comprises a dynamic viscoelasticity test (JIS K 7244-4: 1999 (plastic-dynamic mechanical property test method, frequency 100 Hz, test piece thickness 2 mm, The ratio of the storage elastic modulus E ′ to the specific gravity ρ of the fiber-reinforced thermoplastic resin layer at a test temperature of 23 ° C. (specific storage elastic modulus value: E ′ / ρ) is 1.0 GPa or more, preferably 1.5 GPa or more. It can be suitably processed at any temperature in the temperature range of 1.5-3 GPa (mold temperature or preheating temperature of the laminated panel), that is, the specific storage elastic modulus value (E ′ / ρ) is 1.0 GPa. The above temperature can be used as an index for selecting the preheating temperature of the laminated panel, and it is particularly preferable to process the laminated panel after preheating to any temperature in the above temperature range.
比貯蔵弾性率値(E′/ρ)がこのような値を示す加工温度領域で加工する方法としては、室温又は積層パネルの繊維強化熱可塑性樹脂層を構成する熱可塑性樹脂の融点以下若しくはガラス転移温度以下の溶融温度未満の軟化温度(半溶融温度)に積層パネルを予熱した後、室温から熱可塑性樹脂のガラス転移温度または融点温度以下設定された金型温度でプレス加工(単純プレス、深絞り等を含む。)、曲げ加工、ロールフォーミング等の塑性加工(板金加工)する方法が好適である。積層パネルの構成にもよるが、冷却サイクルの短縮化の観点から室温の積層パネルを室温の金型にて冷間加工してもよい。本発明においては、無機繊維に比べて引張伸び率が高い有機繊維を用いると、冷間塑性加工時に繊維強化熱可塑性樹脂層が金属板層の変形に追従しやすくなり、室温の積層パネルを室温の金型で冷間加工することがより容易となる。
As a method of processing in the processing temperature region in which the specific storage elastic modulus value (E ′ / ρ) shows such a value, it is room temperature or below the melting point of the thermoplastic resin constituting the fiber reinforced thermoplastic resin layer of the laminated panel, or glass After preheating the laminated panel to a softening temperature (semi-melting temperature) below the melting temperature below the transition temperature, press processing is performed from room temperature to the mold temperature set below the glass transition temperature or melting temperature of the thermoplastic resin (simple pressing, deep A method of plastic working (sheet metal working) such as bending and roll forming is preferable. Depending on the configuration of the laminated panel, a room temperature laminated panel may be cold worked with a room temperature mold from the viewpoint of shortening the cooling cycle. In the present invention, when organic fibers having a higher tensile elongation than inorganic fibers are used, the fiber-reinforced thermoplastic resin layer easily follows the deformation of the metal plate layer during cold plastic processing, and the room temperature laminated panel is changed to room temperature. It becomes easier to cold work with this mold.
軟化温度は、繊維強化熱可塑性樹脂層を構成する熱可塑性樹脂が結晶性樹脂の場合、DSCのカーブにおける、室温以上、融点以下であり、好ましくは結晶化温度以下である。非晶性樹脂の場合、軟化温度は室温以上ガラス転移温度+50℃程度の範囲をいい、好ましくはガラス転移温度以下である。融点、ガラス転移温度の測定方法は、上述した通りである。
When the thermoplastic resin constituting the fiber-reinforced thermoplastic resin layer is a crystalline resin, the softening temperature is not less than room temperature and not more than the melting point, preferably not more than the crystallization temperature, in the DSC curve. In the case of an amorphous resin, the softening temperature is in the range of room temperature to glass transition temperature + 50 ° C., preferably below the glass transition temperature. The measuring method of melting | fusing point and glass transition temperature is as having mentioned above.
繊維強化熱可塑性樹脂層を構成する熱可塑性樹脂が結晶性樹脂の場合、予熱をしない室温でも塑性加工が可能な場合があり、熱可塑性樹脂の結晶化開始温度から結晶融解温度の間の温度領域の温度を選択して加温することが、得られる成形品の物性上好ましいが、成形時の成形サイクルの観点から、可能な限り、予熱工程を設けないことが望ましい。加温を行う場合、加温温度が結晶化開始温度より低いと、繊維強化熱可塑性樹脂層の塑性変形が困難となり、金属板層の割れを招くことがある。逆に熱可塑性樹脂の結晶融解温度よりも高いと、繊維強化熱可塑性樹脂層が過度に軟化し、成形加工時の変形過程の金属板層がこれに食い込むため、皺発生の原因となる場合がある。
When the thermoplastic resin constituting the fiber reinforced thermoplastic resin layer is a crystalline resin, plastic processing may be possible even at room temperature without preheating, and the temperature range between the crystallization start temperature of the thermoplastic resin and the crystal melting temperature It is preferable from the viewpoint of the physical properties of the obtained molded product to select and warm the temperature, but from the viewpoint of the molding cycle at the time of molding, it is desirable not to provide a preheating step as much as possible. When heating, if the heating temperature is lower than the crystallization start temperature, plastic deformation of the fiber-reinforced thermoplastic resin layer becomes difficult and the metal plate layer may be cracked. Conversely, if the temperature is higher than the crystal melting temperature of the thermoplastic resin, the fiber reinforced thermoplastic resin layer is excessively softened, and the metal plate layer in the deformation process at the time of molding process bites into it, which may cause wrinkles. is there.
金型温度としては、室温から熱可塑性樹脂の結晶化温度の間に設定することが好ましく、冷却時間の短縮化から室温が特に好ましいが、加工時の剪断による強化繊維の破断状態により適宜選定することが可能である。
The mold temperature is preferably set between room temperature and the crystallization temperature of the thermoplastic resin, and room temperature is particularly preferable from the viewpoint of shortening the cooling time. However, it is appropriately selected depending on the breaking state of the reinforcing fiber due to shear during processing. It is possible.
繊維強化熱可塑性樹脂層を構成する熱可塑性樹脂が非晶性樹脂の場合、予熱をしない室温でも板金加工が可能な場合があり、熱可塑性樹脂のガラス転移温度(Tg)以上かつガラス転移温度+50℃以下、即ち、Tg~Tg+50℃の範囲の温度を選択して加温することが、得られる成形品の物性上好ましいが、成形時の成形サイクルの観点から、可能な限り、予熱工程を設けないことが望ましい。この加温温度が熱可塑性樹脂のガラス転移温度より低いと、繊維強化熱可塑性樹脂層の塑性変形が困難となり、金属板層の割れを招くことがある。逆に熱可塑性樹脂のガラス転移温度+50℃よりも高いと、溶融加工温度領域となるため、繊維強化熱可塑性樹脂層が過度に軟化、流動化し、成形加工時の変形過程の金属板層がこれに食い込むため、割れ、皺発生の原因となる場合がある。
When the thermoplastic resin constituting the fiber reinforced thermoplastic resin layer is an amorphous resin, sheet metal processing may be possible even at room temperature without preheating, the glass transition temperature (Tg) of the thermoplastic resin or higher, and the glass transition temperature +50. It is preferable from the viewpoint of the molding cycle during molding to provide a preheating step as much as possible from the viewpoint of the physical properties of the molded product obtained by selecting and heating at a temperature not higher than ° C., that is, in the range of Tg to Tg + 50 ° C. Desirably not. When this heating temperature is lower than the glass transition temperature of the thermoplastic resin, the plastic deformation of the fiber-reinforced thermoplastic resin layer becomes difficult, and the metal plate layer may be cracked. Conversely, if the glass transition temperature of the thermoplastic resin is higher than + 50 ° C., it becomes the melt processing temperature range, so the fiber reinforced thermoplastic resin layer is excessively softened and fluidized, and the metal plate layer in the deformation process at the time of molding processing becomes this. It may cause cracks and wrinkles.
金型温度としては、室温以上熱可塑性樹脂のガラス転移温度以下に設定することが好ましく、冷却時間の短縮化から室温が特に好ましいが、加工時の剪断による強化繊維、金属板層の破断状態により適宜選定することが可能である。
The mold temperature is preferably set to room temperature or more and below the glass transition temperature of the thermoplastic resin, and room temperature is particularly preferable because of shortening of the cooling time. It is possible to select appropriately.
本発明の積層パネルは、上述した性能を備えているので、金属板層及び繊維強化熱可塑性樹脂層の種類、構成、厚み、引張強度、引張伸び率を適切に選択することにより、10~40℃といった低い温度領域でも塑性加工を行うことが容易となり、冷却時間が短くなり成形サイクルの短縮化を効果的に達成することができる。
Since the laminated panel of the present invention has the above-described performance, 10 to 40 can be selected by appropriately selecting the type, configuration, thickness, tensile strength, and tensile elongation of the metal plate layer and the fiber reinforced thermoplastic resin layer. It becomes easy to perform plastic working even in a low temperature region such as ° C., the cooling time is shortened, and the molding cycle can be shortened effectively.
本発明で得られた成形品は、必要に応じて各種の塗装、フィルムラミネート等の表面加飾を施すことにより、自動車部品、電子部品、建材、その他各種の製品に利用できる。
The molded product obtained according to the present invention can be used for automobile parts, electronic parts, building materials, and other various products by applying various surface decorations such as coating and film lamination as necessary.
自動車部品としては、ボディー、ドアインナー、サイドパネル、ボンネット(エンジン・フード)、ルーフ、フロアー、キャブ下カバー、トランクリッド、レインフォース部品、サイドシル、クロスメンバー、ブラケット、各種ピラー部品、各種ビーム部品、フロアー補強板などが例示される。
電子部品としては、TV、PC、モバイル機器等の筐体が例示される。 Auto parts include body, door inner, side panel, bonnet (engine / hood), roof, floor, cab lower cover, trunk lid, reinforcement parts, side sill, cross member, bracket, various pillar parts, various beam parts, A floor reinforcement board etc. are illustrated.
Examples of the electronic component include a housing such as a TV, a PC, and a mobile device.
電子部品としては、TV、PC、モバイル機器等の筐体が例示される。 Auto parts include body, door inner, side panel, bonnet (engine / hood), roof, floor, cab lower cover, trunk lid, reinforcement parts, side sill, cross member, bracket, various pillar parts, various beam parts, A floor reinforcement board etc. are illustrated.
Examples of the electronic component include a housing such as a TV, a PC, and a mobile device.
その他の製品としては、ヘルメット、アルミサッシ・フレーム、エレベータ・ゲート・フレーム(梁)、防刃チョッキ、旅行カバン、破風、屋根などが例示される。
Other products include helmets, aluminum sash frames, elevator gate frames (beams), anti-blade waistcoats, travel bags, gusts, roofs, etc.
以下、実施例及び比較例について説明する。なお、以下の実施例及び比較例では、塑性加工として図2に示す深絞り加工又は図3に示すプレス成形を行った。図2では、直径98mm厚さ2mmの円形板状の積層パネルを高出力プレス試験機((株)アミノ製複動油圧プレス機TM200特別仕様)にて深絞り加工して図2に示す形状(絞り比:1.7)の成形品とした。図3では、400×600mm、厚さ2mmの長方形状の積層パネルを金型によってプレス成形し、図3に示す成形品とした。
Hereinafter, examples and comparative examples will be described. In the following examples and comparative examples, the deep drawing shown in FIG. 2 or the press forming shown in FIG. 3 was performed as plastic working. In FIG. 2, the shape shown in FIG. 2 is obtained by deep drawing a circular plate-like laminated panel having a diameter of 98 mm and a thickness of 2 mm using a high-power press tester (special specification of the double-acting hydraulic press TM200 manufactured by Amino Co., Ltd.) The molded product had a drawing ratio of 1.7). In FIG. 3, a rectangular laminated panel having a size of 400 × 600 mm and a thickness of 2 mm was press-molded with a mold to obtain a molded product shown in FIG.
下記に繊維強化熱可塑性樹脂層に適用した材料を示す。なお、各種物性測定は、上述の方法に従って行った。また、「室温」とは、23℃をいう。
The materials applied to the fiber reinforced thermoplastic resin layer are shown below. Various physical properties were measured according to the method described above. “Room temperature” refers to 23 ° C.
GMT40:クオドラント・コンポジット・プラスチック・ジャパン株式会社製P4020-BK31
ニードルパンチ法によるガラス繊維製不織布とポリプロピレン樹脂からなるスタンパブルシート
ポリプロピレン樹脂含有量:60重量%
ガラス繊維含有量:19体積%(40重量%)
平均繊維長:101mm
比重:1.2
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):3.0GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:2.2kN
単位厚み当たりの最大耐衝撃強さ:1.1kN/mm GMT40: Quadrant Composite Plastic Japan Co., Ltd. P4020-BK31
Stampable sheet made of glass fiber nonwoven fabric and polypropylene resin by needle punch method Polypropylene resin content: 60% by weight
Glass fiber content: 19% by volume (40% by weight)
Average fiber length: 101mm
Specific gravity: 1.2
Specific storage modulus E ′ / ρ (frequency 100 Hz, specimen thickness 2 mm, test temperature 23 ° C.): 3.0 GPa
Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 2.2 kN
Maximum impact strength per unit thickness: 1.1 kN / mm
ニードルパンチ法によるガラス繊維製不織布とポリプロピレン樹脂からなるスタンパブルシート
ポリプロピレン樹脂含有量:60重量%
ガラス繊維含有量:19体積%(40重量%)
平均繊維長:101mm
比重:1.2
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):3.0GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:2.2kN
単位厚み当たりの最大耐衝撃強さ:1.1kN/mm GMT40: Quadrant Composite Plastic Japan Co., Ltd. P4020-BK31
Stampable sheet made of glass fiber nonwoven fabric and polypropylene resin by needle punch method Polypropylene resin content: 60% by weight
Glass fiber content: 19% by volume (40% by weight)
Average fiber length: 101mm
Specific gravity: 1.2
Specific storage modulus E ′ / ρ (
Maximum impact strength by puncture test (
Maximum impact strength per unit thickness: 1.1 kN / mm
GMT65:クオドラント・コンポジット・プラスチック・ジャパン株式会社製
ニードルパンチ法によるガラス繊維製不織布とポリプロピレン樹脂からなるスタンパブルシート
ポリプロピレン樹脂含有量:35重量%
ガラス繊維含有量:40体積%(65重量%)
平均繊維長:98mm
比重:1.53
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):3.4GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:3.1kN
単位厚み当たりの最大耐衝撃強さ:1.55kN/mm GMT65: Quadrant Composite Plastic Japan Co., Ltd. Stampable sheet made of glass fiber nonwoven fabric and polypropylene resin by needle punch method Polypropylene resin content: 35% by weight
Glass fiber content: 40% by volume (65% by weight)
Average fiber length: 98mm
Specific gravity: 1.53
Specific storage elastic modulus value E ′ / ρ (frequency 100 Hz, specimen thickness 2 mm, test temperature 23 ° C.): 3.4 GPa
Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 3.1 kN
Maximum impact strength per unit thickness: 1.55 kN / mm
ニードルパンチ法によるガラス繊維製不織布とポリプロピレン樹脂からなるスタンパブルシート
ポリプロピレン樹脂含有量:35重量%
ガラス繊維含有量:40体積%(65重量%)
平均繊維長:98mm
比重:1.53
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):3.4GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:3.1kN
単位厚み当たりの最大耐衝撃強さ:1.55kN/mm GMT65: Quadrant Composite Plastic Japan Co., Ltd. Stampable sheet made of glass fiber nonwoven fabric and polypropylene resin by needle punch method Polypropylene resin content: 35% by weight
Glass fiber content: 40% by volume (65% by weight)
Average fiber length: 98mm
Specific gravity: 1.53
Specific storage elastic modulus value E ′ / ρ (
Maximum impact strength by puncture test (
Maximum impact strength per unit thickness: 1.55 kN / mm
GMTex:クオドラント・コンポジット・プラスチック・ジャパン株式会社製P6538-BK31
ニードルパンチ処理されたガラス繊維製織物と不織布の積層体とポリプロピレン樹脂からなるスタンパブルシート
ポリプロピレン樹脂含有量:40重量%(65体積%)
ガラス繊維不織布含有量:14体積%
ガラス繊維織布含有量:21体積%
ガラス繊維含有量:35体積%(60重量%)
平均繊維長:101mm(不織布)、連続繊維(織物)
比重:1.45
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):6.9GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:2.7kN
単位厚み当たりの最大耐衝撃強さ:1.35kN/mm GMTex: P6538-BK31 made by Quadrant Composite Plastic Japan Co., Ltd.
Stampable sheet consisting of a laminate of a glass fiber woven fabric and nonwoven fabric subjected to needle punching treatment and polypropylene resin Polypropylene resin content: 40% by weight (65% by volume)
Glass fiber nonwoven fabric content: 14% by volume
Glass fiber woven fabric content: 21% by volume
Glass fiber content: 35% by volume (60% by weight)
Average fiber length: 101 mm (nonwoven fabric), continuous fiber (woven fabric)
Specific gravity: 1.45
Specific storage elastic modulus value E ′ / ρ (frequency 100 Hz, specimen thickness 2 mm, test temperature 23 ° C.): 6.9 GPa
Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 2.7 kN
Maximum impact strength per unit thickness: 1.35 kN / mm
ニードルパンチ処理されたガラス繊維製織物と不織布の積層体とポリプロピレン樹脂からなるスタンパブルシート
ポリプロピレン樹脂含有量:40重量%(65体積%)
ガラス繊維不織布含有量:14体積%
ガラス繊維織布含有量:21体積%
ガラス繊維含有量:35体積%(60重量%)
平均繊維長:101mm(不織布)、連続繊維(織物)
比重:1.45
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):6.9GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:2.7kN
単位厚み当たりの最大耐衝撃強さ:1.35kN/mm GMTex: P6538-BK31 made by Quadrant Composite Plastic Japan Co., Ltd.
Stampable sheet consisting of a laminate of a glass fiber woven fabric and nonwoven fabric subjected to needle punching treatment and polypropylene resin Polypropylene resin content: 40% by weight (65% by volume)
Glass fiber nonwoven fabric content: 14% by volume
Glass fiber woven fabric content: 21% by volume
Glass fiber content: 35% by volume (60% by weight)
Average fiber length: 101 mm (nonwoven fabric), continuous fiber (woven fabric)
Specific gravity: 1.45
Specific storage elastic modulus value E ′ / ρ (
Maximum impact strength by puncture test (
Maximum impact strength per unit thickness: 1.35 kN / mm
CFRTP:株式会社ユウホウ製
ニードルパンチ製法によるPAN系炭素繊維不織布にポリカーボネート樹脂が溶融含浸されたスタンパブルシート
ポリカーボネート樹脂含有量:35重量%
炭素繊維含有量:55体積%(65重量%)
平均繊維長:60mm
比重:1.53
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):12.4GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:4.0kN
単位厚み当たりの最大耐衝撃強さ:2.0kN/mm CFRTP: manufactured by Yuho Co., Ltd. A stampable sheet in which a polycarbonate resin is melt-impregnated with a PAN-based carbon fiber nonwoven fabric by a needle punch manufacturing method. Polycarbonate resin content: 35% by weight
Carbon fiber content: 55% by volume (65% by weight)
Average fiber length: 60mm
Specific gravity: 1.53
Specific storage elastic modulus value E ′ / ρ (frequency 100 Hz, specimen thickness 2 mm, test temperature 23 ° C.): 12.4 GPa
Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 4.0 kN
Maximum impact strength per unit thickness: 2.0 kN / mm
ニードルパンチ製法によるPAN系炭素繊維不織布にポリカーボネート樹脂が溶融含浸されたスタンパブルシート
ポリカーボネート樹脂含有量:35重量%
炭素繊維含有量:55体積%(65重量%)
平均繊維長:60mm
比重:1.53
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):12.4GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:4.0kN
単位厚み当たりの最大耐衝撃強さ:2.0kN/mm CFRTP: manufactured by Yuho Co., Ltd. A stampable sheet in which a polycarbonate resin is melt-impregnated with a PAN-based carbon fiber nonwoven fabric by a needle punch manufacturing method. Polycarbonate resin content: 35% by weight
Carbon fiber content: 55% by volume (65% by weight)
Average fiber length: 60mm
Specific gravity: 1.53
Specific storage elastic modulus value E ′ / ρ (
Maximum impact strength by puncture test (
Maximum impact strength per unit thickness: 2.0 kN / mm
LFT:日本ポリプロ株式会社製 LR24A
長繊維チョップドガラス繊維とポリプロピレン樹脂からなるペレットを220℃で熱プレス成形したシート
ペレットのガラス繊維含有量:13体積%(40重量%)
ペレットのポリプロピレン樹脂含有量:60重量%
ペレット中のガラス繊維平均繊維長:10mm
ペレットの比重:1.2
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):2.9GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:1.6kN
単位厚み当たりの最大耐衝撃強さ:0.8kN/mm LFT: Nippon Polypro Co., Ltd. LR24A
Sheets obtained by hot press molding pellets made of long fiber chopped glass fibers and polypropylene resin at 220 ° C. Glass fiber content of pellets: 13% by volume (40% by weight)
Polypropylene resin content of pellets: 60% by weight
Glass fiber average fiber length in the pellet: 10 mm
Specific gravity of pellet: 1.2
Specific storage modulus E ′ / ρ (frequency 100 Hz, specimen thickness 2 mm, test temperature 23 ° C.): 2.9 GPa
Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 1.6 kN
Maximum impact strength per unit thickness: 0.8 kN / mm
長繊維チョップドガラス繊維とポリプロピレン樹脂からなるペレットを220℃で熱プレス成形したシート
ペレットのガラス繊維含有量:13体積%(40重量%)
ペレットのポリプロピレン樹脂含有量:60重量%
ペレット中のガラス繊維平均繊維長:10mm
ペレットの比重:1.2
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):2.9GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:1.6kN
単位厚み当たりの最大耐衝撃強さ:0.8kN/mm LFT: Nippon Polypro Co., Ltd. LR24A
Sheets obtained by hot press molding pellets made of long fiber chopped glass fibers and polypropylene resin at 220 ° C. Glass fiber content of pellets: 13% by volume (40% by weight)
Polypropylene resin content of pellets: 60% by weight
Glass fiber average fiber length in the pellet: 10 mm
Specific gravity of pellet: 1.2
Specific storage modulus E ′ / ρ (
Maximum impact strength by puncture test (
Maximum impact strength per unit thickness: 0.8 kN / mm
有機繊維不織布1:ユニセル株式会社製BT-1812W
メルトブローン法によるポリエステル連続繊維(融点265℃)製不織布
平均繊維長:連続繊維
目付:80g/m2
ポリプロピレン樹脂(融点165℃)を有機繊維不織布1に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量70重量%、ポリエステル繊維含有量22体積%(30重量%)、比重1.0)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):1.4GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:4.2kN
単位厚み当たりの最大耐衝撃強さ:2.1kN/mm Organic fiber nonwoven fabric 1: BT-1812W manufactured by Unicel Corporation
Polyester continuous fibers by melt-blown method (melting point 265 ° C.) nonwoven fabric average fiber length: Continuous Fiber basis weight: 80 g / m 2
Fiber reinforced thermoplastic resin layer single-piece test piece (polypropylene resin content 70% by weight, polyester fiber content 22% by volume (30% by weight), specific gravity impregnated with an organic fiber nonwoven fabric 1 with polypropylene resin (melting point 165 ° C.) 1.0) ・ Specific storage elastic modulus value E ′ / ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23 ° C.): 1.4 GPa
・ Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 4.2 kN
Maximum impact strength per unit thickness: 2.1 kN / mm
メルトブローン法によるポリエステル連続繊維(融点265℃)製不織布
平均繊維長:連続繊維
目付:80g/m2
ポリプロピレン樹脂(融点165℃)を有機繊維不織布1に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量70重量%、ポリエステル繊維含有量22体積%(30重量%)、比重1.0)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):1.4GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:4.2kN
単位厚み当たりの最大耐衝撃強さ:2.1kN/mm Organic fiber nonwoven fabric 1: BT-1812W manufactured by Unicel Corporation
Polyester continuous fibers by melt-blown method (melting point 265 ° C.) nonwoven fabric average fiber length: Continuous Fiber basis weight: 80 g / m 2
Fiber reinforced thermoplastic resin layer single-piece test piece (polypropylene resin content 70% by weight, polyester fiber content 22% by volume (30% by weight), specific gravity impregnated with an organic fiber nonwoven fabric 1 with polypropylene resin (
・ Maximum impact strength by puncture test (
Maximum impact strength per unit thickness: 2.1 kN / mm
有機繊維不織布2:ワタナベ工業株式会社製エコパンチ
ニードルパンチ法による再生ポリエチレンテレフタレート樹脂ステープル(融点265℃)製不織布
平均繊維長:51mm
平均繊度:10dtex
目付:300g/m2
ポリプロピレン樹脂(融点165℃)を有機繊維不織布2に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量70重量%、ポリエステル繊維含有量22体積%(30重量%)、比重1.0)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):1.4GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:2.4kN
単位厚み当たりの最大耐衝撃強さ:1.2kN/mm Organic fiber nonwoven fabric 2: Eco punch made by Watanabe Kogyo Co., Ltd. Recycled polyethylene terephthalate resin staple (melting point 265 ° C.) nonwoven fabric by needle punch method Average fiber length: 51 mm
Average fineness: 10 dtex
Basis weight: 300 g / m 2
Fiber reinforced thermoplastic resin layer single-piece test piece (polypropylene resin content 70% by weight, polyester fiber content 22% by volume (30% by weight), specific gravity impregnated with an organicfiber nonwoven fabric 2 with polypropylene resin (melting point 165 ° C.) 1.0) ・ Specific storage elastic modulus value E ′ / ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23 ° C.): 1.4 GPa
・ Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 2.4 kN
Maximum impact strength per unit thickness: 1.2 kN / mm
ニードルパンチ法による再生ポリエチレンテレフタレート樹脂ステープル(融点265℃)製不織布
平均繊維長:51mm
平均繊度:10dtex
目付:300g/m2
ポリプロピレン樹脂(融点165℃)を有機繊維不織布2に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量70重量%、ポリエステル繊維含有量22体積%(30重量%)、比重1.0)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):1.4GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:2.4kN
単位厚み当たりの最大耐衝撃強さ:1.2kN/mm Organic fiber nonwoven fabric 2: Eco punch made by Watanabe Kogyo Co., Ltd. Recycled polyethylene terephthalate resin staple (melting point 265 ° C.) nonwoven fabric by needle punch method Average fiber length: 51 mm
Average fineness: 10 dtex
Basis weight: 300 g / m 2
Fiber reinforced thermoplastic resin layer single-piece test piece (polypropylene resin content 70% by weight, polyester fiber content 22% by volume (30% by weight), specific gravity impregnated with an organic
・ Maximum impact strength by puncture test (
Maximum impact strength per unit thickness: 1.2 kN / mm
有機繊維不織布3:三澤繊維株式会社製
ニードルパンチ法によるポリエチレンテレフタレート樹脂ステープル(融点265℃)製不織布
平均繊維長:51mm
平均繊度:3.3dtex
目付:300g/m2
ポリプロピレン樹脂(融点165℃)を有機繊維不織布3に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量70重量%、ポリエステル繊維含有量22体積%(30重量%)、比重1.0)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):1.4GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:1.6kN
単位厚み当たりの最大耐衝撃強さ:0.8kN/mm
ポリプロピレン樹脂(融点165℃)を有機繊維不織布3に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量30重量%、ポリエステル繊維含有量60体積%(70重量%)、比重1.19)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):2.8GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:3.0kN
単位厚み当たりの最大耐衝撃強さ:1.5kN/mm Organic fiber non-woven fabric 3: manufactured by Misawa Fiber Co., Ltd. Non-woven fabric made of polyethylene terephthalate resin staple (melting point 265 ° C.) by needle punch method Average fiber length: 51 mm
Average fineness: 3.3 dtex
Basis weight: 300 g / m 2
Fiber reinforced thermoplastic resin layer single-piece specimen impregnated with an organicfiber nonwoven fabric 3 with a polypropylene resin (melting point 165 ° C.) (polypropylene resin content 70% by weight, polyester fiber content 22% by volume (30% by weight), specific gravity 1.0) ・ Specific storage elastic modulus value E ′ / ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23 ° C.): 1.4 GPa
・ Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 1.6 kN
Maximum impact strength per unit thickness: 0.8 kN / mm
Fiber reinforced thermoplastic resin layer single-piece specimen impregnated with polypropylene fiber (melting point 165 ° C.) in organic fiber nonwoven fabric 3 (polypropylene resin content 30% by weight, polyester fiber content 60% by volume (70% by weight), specific gravity 1.19) ・ Specific storage elastic modulus value E ′ / ρ (frequency 100 Hz, specimen thickness 2 mm, test temperature 23 ° C.): 2.8 GPa
・ Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23 ° C.): 3.0 kN
Maximum impact strength per unit thickness: 1.5 kN / mm
ニードルパンチ法によるポリエチレンテレフタレート樹脂ステープル(融点265℃)製不織布
平均繊維長:51mm
平均繊度:3.3dtex
目付:300g/m2
ポリプロピレン樹脂(融点165℃)を有機繊維不織布3に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量70重量%、ポリエステル繊維含有量22体積%(30重量%)、比重1.0)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):1.4GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:1.6kN
単位厚み当たりの最大耐衝撃強さ:0.8kN/mm
ポリプロピレン樹脂(融点165℃)を有機繊維不織布3に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量30重量%、ポリエステル繊維含有量60体積%(70重量%)、比重1.19)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):2.8GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:3.0kN
単位厚み当たりの最大耐衝撃強さ:1.5kN/mm Organic fiber non-woven fabric 3: manufactured by Misawa Fiber Co., Ltd. Non-woven fabric made of polyethylene terephthalate resin staple (melting point 265 ° C.) by needle punch method Average fiber length: 51 mm
Average fineness: 3.3 dtex
Basis weight: 300 g / m 2
Fiber reinforced thermoplastic resin layer single-piece specimen impregnated with an organic
・ Maximum impact strength by puncture test (
Maximum impact strength per unit thickness: 0.8 kN / mm
Fiber reinforced thermoplastic resin layer single-piece specimen impregnated with polypropylene fiber (
・ Maximum impact strength by puncture test (
Maximum impact strength per unit thickness: 1.5 kN / mm
A6061-T6:日本軽金属株式会社製アルミ板
厚み:0.5mm
引張強度:310MPa
引張伸び率:12%
降伏比:89% A6061-T6: Nippon Light Metal Co., Ltd. aluminum plate Thickness: 0.5mm
Tensile strength: 310 MPa
Tensile elongation: 12%
Yield ratio: 89%
厚み:0.5mm
引張強度:310MPa
引張伸び率:12%
降伏比:89% A6061-T6: Nippon Light Metal Co., Ltd. aluminum plate Thickness: 0.5mm
Tensile strength: 310 MPa
Tensile elongation: 12%
Yield ratio: 89%
A5052-H34:株式会社UACJ製アルミニウム合金板
厚み:0.6mm
引張強度:260MPa
引張伸び率:10%
降伏比:83% A5052-H34: Aluminum alloy plate manufactured by UACJ Co., Ltd. Thickness: 0.6mm
Tensile strength: 260 MPa
Tensile elongation: 10%
Yield ratio: 83%
厚み:0.6mm
引張強度:260MPa
引張伸び率:10%
降伏比:83% A5052-H34: Aluminum alloy plate manufactured by UACJ Co., Ltd. Thickness: 0.6mm
Tensile strength: 260 MPa
Tensile elongation: 10%
Yield ratio: 83%
A5182-H38:三菱アルミ株式会社製アルミニウム合金板
厚み:0.25mm
引張強度:380MPa
引張伸び率:9%
降伏比:83% A5182-H38: Aluminum alloy plate manufactured by Mitsubishi Aluminum Co., Ltd. Thickness: 0.25mm
Tensile strength: 380 MPa
Tensile elongation: 9%
Yield ratio: 83%
厚み:0.25mm
引張強度:380MPa
引張伸び率:9%
降伏比:83% A5182-H38: Aluminum alloy plate manufactured by Mitsubishi Aluminum Co., Ltd. Thickness: 0.25mm
Tensile strength: 380 MPa
Tensile elongation: 9%
Yield ratio: 83%
A5182-O:三菱アルミニウム株式会社製アルミニウム合金板
厚み:0.25mm
引張強度:290MPa
引張伸び率:21%
降伏比:56% A5182-O: Aluminum alloy plate manufactured by Mitsubishi Aluminum Co., Ltd. Thickness: 0.25 mm
Tensile strength: 290 MPa
Tensile elongation: 21%
Yield ratio: 56%
厚み:0.25mm
引張強度:290MPa
引張伸び率:21%
降伏比:56% A5182-O: Aluminum alloy plate manufactured by Mitsubishi Aluminum Co., Ltd. Thickness: 0.25 mm
Tensile strength: 290 MPa
Tensile elongation: 21%
Yield ratio: 56%
A5182-O:株式会社UACJ製アルミニウム合金板
厚み:0.4mm
引張強度:290MPa
引張伸び率:21%
降伏比:56% A5182-O: Aluminum alloy plate manufactured by UACJ Co., Ltd. Thickness: 0.4 mm
Tensile strength: 290 MPa
Tensile elongation: 21%
Yield ratio: 56%
厚み:0.4mm
引張強度:290MPa
引張伸び率:21%
降伏比:56% A5182-O: Aluminum alloy plate manufactured by UACJ Co., Ltd. Thickness: 0.4 mm
Tensile strength: 290 MPa
Tensile elongation: 21%
Yield ratio: 56%
A1100-H16:三菱アルミニウム株式会社製アルミニウム合金板
厚み:0.15mm
引張強度:145MPa
引張伸び率:6%
降伏比:94% A1100-H16: Aluminum alloy plate manufactured by Mitsubishi Aluminum Co., Ltd. Thickness: 0.15 mm
Tensile strength: 145 MPa
Tensile elongation: 6%
Yield ratio: 94%
厚み:0.15mm
引張強度:145MPa
引張伸び率:6%
降伏比:94% A1100-H16: Aluminum alloy plate manufactured by Mitsubishi Aluminum Co., Ltd. Thickness: 0.15 mm
Tensile strength: 145 MPa
Tensile elongation: 6%
Yield ratio: 94%
SPCD:新日鐵住金株式会社製 冷延鋼板
厚み:0.4mm
引張強度:300MPa
引張伸び率:48%
降伏比:50% SPCD: Cold rolled steel sheet manufactured by Nippon Steel & Sumitomo Metal Corporation Thickness: 0.4mm
Tensile strength: 300 MPa
Tensile elongation: 48%
Yield ratio: 50%
厚み:0.4mm
引張強度:300MPa
引張伸び率:48%
降伏比:50% SPCD: Cold rolled steel sheet manufactured by Nippon Steel & Sumitomo Metal Corporation Thickness: 0.4mm
Tensile strength: 300 MPa
Tensile elongation: 48%
Yield ratio: 50%
[実施例1](図1)
金属板層として、厚さ0.5mm、引張強度310MPa、引張伸び率12%のA6061-T6のアルミ板を2枚用いた。アルミ板の一方の面に予め接着性樹脂層(三菱化学社製モデッィクP555、厚さ20μm)を面圧3.9MPa、180℃にて加熱融着させた。 Example 1 (FIG. 1)
As the metal plate layer, two A6061-T6 aluminum plates having a thickness of 0.5 mm, a tensile strength of 310 MPa, and a tensile elongation of 12% were used. An adhesive resin layer (Model P555 manufactured by Mitsubishi Chemical Corporation, thickness 20 μm) was previously heat-sealed to one surface of the aluminum plate at a surface pressure of 3.9 MPa and 180 ° C.
金属板層として、厚さ0.5mm、引張強度310MPa、引張伸び率12%のA6061-T6のアルミ板を2枚用いた。アルミ板の一方の面に予め接着性樹脂層(三菱化学社製モデッィクP555、厚さ20μm)を面圧3.9MPa、180℃にて加熱融着させた。 Example 1 (FIG. 1)
As the metal plate layer, two A6061-T6 aluminum plates having a thickness of 0.5 mm, a tensile strength of 310 MPa, and a tensile elongation of 12% were used. An adhesive resin layer (Model P555 manufactured by Mitsubishi Chemical Corporation, thickness 20 μm) was previously heat-sealed to one surface of the aluminum plate at a surface pressure of 3.9 MPa and 180 ° C.
繊維強化熱可塑性樹脂層としては、厚さ3.8mmのGMT40を用いた。
As the fiber reinforced thermoplastic resin layer, GMT 40 having a thickness of 3.8 mm was used.
2枚の金属板層間に繊維強化熱可塑性樹脂層を挟み、面圧3.9MPa、180℃×10分にてプレス成形を行い、金属板層と繊維強化熱可塑性樹脂層とを接着し、厚さ2mmの積層パネルを得た。
A fiber reinforced thermoplastic resin layer is sandwiched between two metal plate layers, press molding is performed at a surface pressure of 3.9 MPa, 180 ° C. × 10 minutes, and the metal plate layer and the fiber reinforced thermoplastic resin layer are bonded to each other. A laminated panel having a thickness of 2 mm was obtained.
この積層パネルに剥離強度、曲げ弾性率、最大衝撃強さを測定すると共に、図2に示す深絞り加工を120℃で行い、深絞り性及び成形サイクルを評価し、結果を表1に示した。
また、繊維強化熱可塑性樹脂層として用いた材料のパンクチャー衝撃試験(ASTM D3763、ストライカ径1/2inch、衝撃速度4.4m/s、支持台内径:3inch、試験温度:23℃)による単位厚み当たりの最大耐衝撃強さと、積層構成因子を表わす式(1)の計算値Zを表1に併せて示す。 The laminate panel was measured for peel strength, flexural modulus, and maximum impact strength, and the deep drawing shown in FIG. 2 was performed at 120 ° C. to evaluate the deep drawability and molding cycle. The results are shown in Table 1. .
Moreover, the unit thickness by the puncture impact test (ASTM D3763, striker diameter 1/2 inch, impact speed 4.4 m / s, support stand inner diameter: 3 inch, test temperature: 23 degreeC) of the material used as a fiber reinforced thermoplastic resin layer Table 1 also shows the maximum impact strength per hit and the calculated value Z of equation (1) representing the lamination component factor.
また、繊維強化熱可塑性樹脂層として用いた材料のパンクチャー衝撃試験(ASTM D3763、ストライカ径1/2inch、衝撃速度4.4m/s、支持台内径:3inch、試験温度:23℃)による単位厚み当たりの最大耐衝撃強さと、積層構成因子を表わす式(1)の計算値Zを表1に併せて示す。 The laminate panel was measured for peel strength, flexural modulus, and maximum impact strength, and the deep drawing shown in FIG. 2 was performed at 120 ° C. to evaluate the deep drawability and molding cycle. The results are shown in Table 1. .
Moreover, the unit thickness by the puncture impact test (ASTM D3763, striker diameter 1/2 inch, impact speed 4.4 m / s, support stand inner diameter: 3 inch, test temperature: 23 degreeC) of the material used as a fiber reinforced thermoplastic resin layer Table 1 also shows the maximum impact strength per hit and the calculated value Z of equation (1) representing the lamination component factor.
積層体パネルの剥離強度は、JIS K6854-4:1999の「浮動ローラー法剥離試験」法に従い、室温(23℃)で測定を行った。なお、剥離試験において繊維強化熱可塑性樹脂組成物層が破壊(母材破壊)する場合を「A」、繊維強化熱可塑性樹脂組成層と金属板層との界面で剥離(界面剥離)する場合を「B」とした。
積層パネルの曲げ弾性率は、JIS K7017:1999に基づき、曲げ試験機(インテスコ社製精密万能材料試験機)により室温で測定を行った。
深絞り加工時の深絞り性については、深絞り加工が可能であり得られる成形品に割れがない場合を「A」、深絞り加工は可能で金属板層にわずかに亀裂が存在するが実成形品として問題ないレベルである場合を「B」、深絞り加工ができず得られる成形品に割れが発生する場合を「C」として、評価した。
深絞り加工時の成形サイクルについては、深絞り加工に要する時間(積層パネルを金型に置いてから離型するまでの時間)及び冷却時間を測定することにより評価した。 The peel strength of the laminate panel was measured at room temperature (23 ° C.) according to the “floating roller method peel test” method of JIS K6854-4: 1999. In the peel test, the case where the fiber reinforced thermoplastic resin composition layer breaks (base material breakage) is “A”, and the case where the fiber reinforced thermoplastic resin composition layer peels off at the interface between the metal plate layer (interface peel). “B”.
The flexural modulus of the laminated panel was measured at room temperature using a bending tester (a precision universal material tester manufactured by Intesco) based on JIS K7017: 1999.
Regarding the deep drawability at the time of deep drawing, “A” indicates that deep drawing can be performed and there is no crack in the resulting molded product, while deep drawing is possible and there are slight cracks in the metal plate layer. Evaluation was made with “B” for a case where there was no problem as a molded product, and “C” for a case where cracking occurred in a molded product obtained because deep drawing could not be performed.
The forming cycle at the time of deep drawing was evaluated by measuring the time required for deep drawing (the time from placing the laminated panel on the mold to releasing the mold) and the cooling time.
積層パネルの曲げ弾性率は、JIS K7017:1999に基づき、曲げ試験機(インテスコ社製精密万能材料試験機)により室温で測定を行った。
深絞り加工時の深絞り性については、深絞り加工が可能であり得られる成形品に割れがない場合を「A」、深絞り加工は可能で金属板層にわずかに亀裂が存在するが実成形品として問題ないレベルである場合を「B」、深絞り加工ができず得られる成形品に割れが発生する場合を「C」として、評価した。
深絞り加工時の成形サイクルについては、深絞り加工に要する時間(積層パネルを金型に置いてから離型するまでの時間)及び冷却時間を測定することにより評価した。 The peel strength of the laminate panel was measured at room temperature (23 ° C.) according to the “floating roller method peel test” method of JIS K6854-4: 1999. In the peel test, the case where the fiber reinforced thermoplastic resin composition layer breaks (base material breakage) is “A”, and the case where the fiber reinforced thermoplastic resin composition layer peels off at the interface between the metal plate layer (interface peel). “B”.
The flexural modulus of the laminated panel was measured at room temperature using a bending tester (a precision universal material tester manufactured by Intesco) based on JIS K7017: 1999.
Regarding the deep drawability at the time of deep drawing, “A” indicates that deep drawing can be performed and there is no crack in the resulting molded product, while deep drawing is possible and there are slight cracks in the metal plate layer. Evaluation was made with “B” for a case where there was no problem as a molded product, and “C” for a case where cracking occurred in a molded product obtained because deep drawing could not be performed.
The forming cycle at the time of deep drawing was evaluated by measuring the time required for deep drawing (the time from placing the laminated panel on the mold to releasing the mold) and the cooling time.
なお、繊維強化熱可塑性樹脂層の予熱温度における比貯蔵弾性率値E′/ρ(GPa)は、動的粘弾性測定機(レオロジ社製FTレオスペクトラー)により25~200℃の温度範囲で測定した。
また、積層パネル及び繊維強化熱可塑性樹脂層の最大耐衝撃強さはIMATEK社製衝撃試験機により測定した。
塑性加工時(積層パネルの予熱温度又は金型温度)の繊維強化熱可塑性樹脂層の比貯蔵弾性率値E′/ρ(GPa)は1.0GPa以上であることが好ましく、繊維強化熱可塑性樹脂層の単位厚み当たりの最大耐衝撃強さは0.5kN/mm以上が好ましい。 The specific storage elastic modulus value E ′ / ρ (GPa) at the preheating temperature of the fiber reinforced thermoplastic resin layer is 25 to 200 ° C. in a temperature range of 25 to 200 ° C. using a dynamic viscoelasticity measuring machine (FT Leospectr manufactured by Rheology) It was measured.
Moreover, the maximum impact strength of the laminated panel and the fiber reinforced thermoplastic resin layer was measured by an impact tester manufactured by IMATEK.
The specific storage elastic modulus value E ′ / ρ (GPa) of the fiber reinforced thermoplastic resin layer at the time of plastic working (preheating temperature or mold temperature of the laminated panel) is preferably 1.0 GPa or more, and the fiber reinforced thermoplastic resin The maximum impact strength per unit thickness of the layer is preferably 0.5 kN / mm or more.
また、積層パネル及び繊維強化熱可塑性樹脂層の最大耐衝撃強さはIMATEK社製衝撃試験機により測定した。
塑性加工時(積層パネルの予熱温度又は金型温度)の繊維強化熱可塑性樹脂層の比貯蔵弾性率値E′/ρ(GPa)は1.0GPa以上であることが好ましく、繊維強化熱可塑性樹脂層の単位厚み当たりの最大耐衝撃強さは0.5kN/mm以上が好ましい。 The specific storage elastic modulus value E ′ / ρ (GPa) at the preheating temperature of the fiber reinforced thermoplastic resin layer is 25 to 200 ° C. in a temperature range of 25 to 200 ° C. using a dynamic viscoelasticity measuring machine (FT Leospectr manufactured by Rheology) It was measured.
Moreover, the maximum impact strength of the laminated panel and the fiber reinforced thermoplastic resin layer was measured by an impact tester manufactured by IMATEK.
The specific storage elastic modulus value E ′ / ρ (GPa) of the fiber reinforced thermoplastic resin layer at the time of plastic working (preheating temperature or mold temperature of the laminated panel) is preferably 1.0 GPa or more, and the fiber reinforced thermoplastic resin The maximum impact strength per unit thickness of the layer is preferably 0.5 kN / mm or more.
[実施例2]
繊維強化熱可塑性樹脂層として厚さ3.8mmのGMT65を用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表1に示す。 [Example 2]
A laminated panel was formed in the same manner as in Example 1 except that GMT 65 having a thickness of 3.8 mm was used as the fiber reinforced thermoplastic resin layer, and the characteristics were measured and deep-drawn. The results and Z values are shown in Table 1.
繊維強化熱可塑性樹脂層として厚さ3.8mmのGMT65を用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表1に示す。 [Example 2]
A laminated panel was formed in the same manner as in Example 1 except that GMT 65 having a thickness of 3.8 mm was used as the fiber reinforced thermoplastic resin layer, and the characteristics were measured and deep-drawn. The results and Z values are shown in Table 1.
[実施例3]
繊維強化熱可塑性樹脂層として厚さ3.8mmのGMTexを用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表1に示す。 [Example 3]
A laminated panel was formed in the same manner as in Example 1 except that GMTex having a thickness of 3.8 mm was used as the fiber-reinforced thermoplastic resin layer, and the characteristics were measured and deep-drawn. The results and Z values are shown in Table 1.
繊維強化熱可塑性樹脂層として厚さ3.8mmのGMTexを用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表1に示す。 [Example 3]
A laminated panel was formed in the same manner as in Example 1 except that GMTex having a thickness of 3.8 mm was used as the fiber-reinforced thermoplastic resin layer, and the characteristics were measured and deep-drawn. The results and Z values are shown in Table 1.
[実施例4]
繊維強化熱可塑性樹脂層として厚さ1.3mmのCFRTPを用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表1に示す。 [Example 4]
A laminated panel was formed in the same manner as in Example 1 except that CFRTP having a thickness of 1.3 mm was used as the fiber reinforced thermoplastic resin layer, and characteristic measurements and deep drawing were performed. The results and Z values are shown in Table 1.
繊維強化熱可塑性樹脂層として厚さ1.3mmのCFRTPを用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表1に示す。 [Example 4]
A laminated panel was formed in the same manner as in Example 1 except that CFRTP having a thickness of 1.3 mm was used as the fiber reinforced thermoplastic resin layer, and characteristic measurements and deep drawing were performed. The results and Z values are shown in Table 1.
[実施例5]
予熱温度を35℃、金型温度を30℃で深絞り加工を行ったこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表2に示す。 [Example 5]
A laminated panel was formed in the same manner as in Example 1 except that deep drawing was performed at a preheating temperature of 35 ° C. and a mold temperature of 30 ° C., and characteristic measurements and deep drawing were performed. The results and Z values are shown in Table 2.
予熱温度を35℃、金型温度を30℃で深絞り加工を行ったこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表2に示す。 [Example 5]
A laminated panel was formed in the same manner as in Example 1 except that deep drawing was performed at a preheating temperature of 35 ° C. and a mold temperature of 30 ° C., and characteristic measurements and deep drawing were performed. The results and Z values are shown in Table 2.
[実施例6]
金属板層の一方をアルミニウム合金板A5182-H38(厚さ:0.25mm、引張強度:380MPa、引張伸び率:9%)としたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表2に示す。 [Example 6]
A laminated panel was formed in the same manner as in Example 1 except that one of the metal plate layers was aluminum alloy plate A5182-H38 (thickness: 0.25 mm, tensile strength: 380 MPa, tensile elongation: 9%), Characteristic measurement and deep drawing. The results and Z values are shown in Table 2.
金属板層の一方をアルミニウム合金板A5182-H38(厚さ:0.25mm、引張強度:380MPa、引張伸び率:9%)としたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表2に示す。 [Example 6]
A laminated panel was formed in the same manner as in Example 1 except that one of the metal plate layers was aluminum alloy plate A5182-H38 (thickness: 0.25 mm, tensile strength: 380 MPa, tensile elongation: 9%), Characteristic measurement and deep drawing. The results and Z values are shown in Table 2.
[実施例7]
2枚の金属板層をアルミニウム合金板A5052-H34(厚さ:0.6mm、引張強度:260MPa、引張伸び率:10%)を用いたこと、接着性樹脂層を金属板層と繊維強化熱可塑性樹脂層との間に介在させて金属板層と繊維強化熱可塑性樹脂層とを積層パネルの成形時に接着したこと、塑性加工を図3のプレス成形としたこと、金型温度を室温(23℃)としたこと以外は実施例1と同様にして積層パネルを成形し、特性測定した。結果及びZ値を表2に示す。 [Example 7]
Two metal plate layers were made of aluminum alloy plate A5052-H34 (thickness: 0.6 mm, tensile strength: 260 MPa, tensile elongation: 10%), and the adhesive resin layer was made of metal plate layer and fiber reinforced heat. The metal plate layer and the fiber-reinforced thermoplastic resin layer were bonded to each other during the molding of the laminated panel by interposing between the plastic resin layer, the plastic working was the press molding of FIG. 3, and the mold temperature was room temperature (23 The laminated panel was molded in the same manner as in Example 1 except that the temperature was changed to (° C.), and the characteristics were measured. The results and Z values are shown in Table 2.
2枚の金属板層をアルミニウム合金板A5052-H34(厚さ:0.6mm、引張強度:260MPa、引張伸び率:10%)を用いたこと、接着性樹脂層を金属板層と繊維強化熱可塑性樹脂層との間に介在させて金属板層と繊維強化熱可塑性樹脂層とを積層パネルの成形時に接着したこと、塑性加工を図3のプレス成形としたこと、金型温度を室温(23℃)としたこと以外は実施例1と同様にして積層パネルを成形し、特性測定した。結果及びZ値を表2に示す。 [Example 7]
Two metal plate layers were made of aluminum alloy plate A5052-H34 (thickness: 0.6 mm, tensile strength: 260 MPa, tensile elongation: 10%), and the adhesive resin layer was made of metal plate layer and fiber reinforced heat. The metal plate layer and the fiber-reinforced thermoplastic resin layer were bonded to each other during the molding of the laminated panel by interposing between the plastic resin layer, the plastic working was the press molding of FIG. 3, and the mold temperature was room temperature (23 The laminated panel was molded in the same manner as in Example 1 except that the temperature was changed to (° C.), and the characteristics were measured. The results and Z values are shown in Table 2.
[実施例8]
実施例7において、プレス成形時の予熱温度及び金型温度を160℃としたこと以外は同様にして積層パネルを成形し、特性測定を行った。結果及びZ値を表2に示す。 [Example 8]
In Example 7, a laminated panel was molded in the same manner except that the preheating temperature and the mold temperature during press molding were set to 160 ° C., and the characteristics were measured. The results and Z values are shown in Table 2.
実施例7において、プレス成形時の予熱温度及び金型温度を160℃としたこと以外は同様にして積層パネルを成形し、特性測定を行った。結果及びZ値を表2に示す。 [Example 8]
In Example 7, a laminated panel was molded in the same manner except that the preheating temperature and the mold temperature during press molding were set to 160 ° C., and the characteristics were measured. The results and Z values are shown in Table 2.
[実施例9]
2枚の金属板層としてアルミニウム合金板A5182-O(厚さ:0.25mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。 [Example 9]
A laminated panel was formed in the same manner as in Example 1 except that aluminum metal plate A5182-O (thickness: 0.25 mm, tensile strength: 290 MPa, tensile elongation: 21%) was used as the two metal plate layers. Then, characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 3.
2枚の金属板層としてアルミニウム合金板A5182-O(厚さ:0.25mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。 [Example 9]
A laminated panel was formed in the same manner as in Example 1 except that aluminum metal plate A5182-O (thickness: 0.25 mm, tensile strength: 290 MPa, tensile elongation: 21%) was used as the two metal plate layers. Then, characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 3.
[実施例10]
2枚の金属板層として、深絞り用冷間圧延鋼板SPCD(厚さ:0.4mm、引張強度:300MPa、引張伸び率:48%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。 [Example 10]
Lamination was performed in the same manner as in Example 1 except that cold drawing steel plate SPCD for deep drawing (thickness: 0.4 mm, tensile strength: 300 MPa, tensile elongation: 48%) was used as two metal plate layers. Panels were molded and measured for properties and deep drawn. The results and Z values are shown in Table 3.
2枚の金属板層として、深絞り用冷間圧延鋼板SPCD(厚さ:0.4mm、引張強度:300MPa、引張伸び率:48%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。 [Example 10]
Lamination was performed in the same manner as in Example 1 except that cold drawing steel plate SPCD for deep drawing (thickness: 0.4 mm, tensile strength: 300 MPa, tensile elongation: 48%) was used as two metal plate layers. Panels were molded and measured for properties and deep drawn. The results and Z values are shown in Table 3.
[実施例11]
繊維強化熱可塑性樹脂層として厚さ2mmのLFTを用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。 [Example 11]
A laminated panel was formed in the same manner as in Example 1 except that LFT having a thickness of 2 mm was used as the fiber-reinforced thermoplastic resin layer, and characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 3.
繊維強化熱可塑性樹脂層として厚さ2mmのLFTを用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。 [Example 11]
A laminated panel was formed in the same manner as in Example 1 except that LFT having a thickness of 2 mm was used as the fiber-reinforced thermoplastic resin layer, and characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 3.
[実施例12]
2枚の金属板層としてアルミニウム合金板A5182-O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。 [Example 12]
A laminated panel was formed in the same manner as in Example 1 except that aluminum metal plate A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) was used as the two metal plate layers. Then, characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 3.
2枚の金属板層としてアルミニウム合金板A5182-O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。 [Example 12]
A laminated panel was formed in the same manner as in Example 1 except that aluminum metal plate A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) was used as the two metal plate layers. Then, characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 3.
[実施例13]
金属板層として、厚さ0.5mm、引張強度310MPa、引張伸び率12%のA6061-T6のアルミ板を2枚用いた。アルミ板の一方の面に予め接着性樹脂層(三菱化学社製モデッィクP555、厚さ20μm)を面圧3.9MPa、180℃にて加熱融着させた。 [Example 13]
As the metal plate layer, two A6061-T6 aluminum plates having a thickness of 0.5 mm, a tensile strength of 310 MPa, and a tensile elongation of 12% were used. An adhesive resin layer (Model P555 manufactured by Mitsubishi Chemical Corporation, thickness 20 μm) was previously heat-sealed to one surface of the aluminum plate at a surface pressure of 3.9 MPa and 180 ° C.
金属板層として、厚さ0.5mm、引張強度310MPa、引張伸び率12%のA6061-T6のアルミ板を2枚用いた。アルミ板の一方の面に予め接着性樹脂層(三菱化学社製モデッィクP555、厚さ20μm)を面圧3.9MPa、180℃にて加熱融着させた。 [Example 13]
As the metal plate layer, two A6061-T6 aluminum plates having a thickness of 0.5 mm, a tensile strength of 310 MPa, and a tensile elongation of 12% were used. An adhesive resin layer (Model P555 manufactured by Mitsubishi Chemical Corporation, thickness 20 μm) was previously heat-sealed to one surface of the aluminum plate at a surface pressure of 3.9 MPa and 180 ° C.
繊維強化熱可塑性樹脂層の材料として有機繊維不織布1とポリプロピレン樹脂(融点165℃)シートを、有機繊維30重量%、ポリプロピレン樹脂70重量%となるように積層した。
As the material of the fiber reinforced thermoplastic resin layer, the organic fiber nonwoven fabric 1 and a polypropylene resin (melting point 165 ° C.) sheet were laminated so as to be 30% by weight of organic fiber and 70% by weight of polypropylene resin.
2枚の金属板層間に、ポリプロピレン樹脂シート/有機繊維不織布1/ポリプロピレン樹脂シートをこの順に挟み、面圧3.9MPa、180℃×10分にて総厚み2mmとなるようにプレス成形を行い、金属板層と繊維強化熱可塑性樹脂層(ポリプロピレン樹脂/有機繊維不織布1)とを接着し、厚さ2mmの積層パネルを得た。
得られた積層パネルを実施例1と同様にして成形し、特性測定及び深絞り加工した。結果及びZ値等を表4に示す。 A polypropylene resin sheet / organic fiber nonwoven fabric 1 / polypropylene resin sheet is sandwiched between two metal plate layers in this order, and press molding is performed so that the total thickness is 2 mm at a surface pressure of 3.9 MPa and 180 ° C. for 10 minutes. The metal plate layer and the fiber reinforced thermoplastic resin layer (polypropylene resin / organic fiber nonwoven fabric 1) were bonded to obtain a laminated panel having a thickness of 2 mm.
The obtained laminated panel was molded in the same manner as in Example 1 and subjected to characteristic measurement and deep drawing. The results and Z values are shown in Table 4.
得られた積層パネルを実施例1と同様にして成形し、特性測定及び深絞り加工した。結果及びZ値等を表4に示す。 A polypropylene resin sheet / organic fiber nonwoven fabric 1 / polypropylene resin sheet is sandwiched between two metal plate layers in this order, and press molding is performed so that the total thickness is 2 mm at a surface pressure of 3.9 MPa and 180 ° C. for 10 minutes. The metal plate layer and the fiber reinforced thermoplastic resin layer (polypropylene resin / organic fiber nonwoven fabric 1) were bonded to obtain a laminated panel having a thickness of 2 mm.
The obtained laminated panel was molded in the same manner as in Example 1 and subjected to characteristic measurement and deep drawing. The results and Z values are shown in Table 4.
[実施例14]
繊維強化熱可塑性樹脂層の材料として有機繊維不織布2を用い、2枚の金属板層としてアルミニウム合金板A5182-O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例13と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表4に示す。 [Example 14]
Organicfiber nonwoven fabric 2 is used as the material of the fiber reinforced thermoplastic resin layer, and aluminum alloy plate A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) is used as two metal plate layers. A laminated panel was formed in the same manner as in Example 13 except that it was used, and characteristic measurements and deep drawing were performed. The results and Z values are shown in Table 4.
繊維強化熱可塑性樹脂層の材料として有機繊維不織布2を用い、2枚の金属板層としてアルミニウム合金板A5182-O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例13と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表4に示す。 [Example 14]
Organic
[実施例15]
繊維強化熱可塑性樹脂層の材料として有機繊維不織布3を用い、2枚の金属板層としてアルミニウム合金板A5182-O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例13と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表4に示す。 [Example 15]
Organicfiber nonwoven fabric 3 is used as the material of the fiber reinforced thermoplastic resin layer, and aluminum alloy plate A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) is used as two metal plate layers. A laminated panel was formed in the same manner as in Example 13 except that it was used, and characteristic measurements and deep drawing were performed. The results and Z values are shown in Table 4.
繊維強化熱可塑性樹脂層の材料として有機繊維不織布3を用い、2枚の金属板層としてアルミニウム合金板A5182-O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例13と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表4に示す。 [Example 15]
Organic
[実施例16]
繊維強化熱可塑性樹脂層の材料として有機繊維不織布3を用い、2枚の金属板層としてアルミニウム合金板A5182-O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用い、有機繊維70重量%、ポリプロピレン樹脂30重量%となるように用いたこと以外は実施例13と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表4に示す。 [Example 16]
Organicfiber nonwoven fabric 3 is used as the material of the fiber reinforced thermoplastic resin layer, and aluminum alloy plate A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) is used as two metal plate layers. A laminated panel was formed in the same manner as in Example 13 except that 70% by weight of organic fibers and 30% by weight of polypropylene resin were used. The results and Z values are shown in Table 4.
繊維強化熱可塑性樹脂層の材料として有機繊維不織布3を用い、2枚の金属板層としてアルミニウム合金板A5182-O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用い、有機繊維70重量%、ポリプロピレン樹脂30重量%となるように用いたこと以外は実施例13と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表4に示す。 [Example 16]
Organic
[比較例1]
接着用PPフィルムを用いず、アルミ板を表面処理(具体的には、MEC株式会社AMALFA処理(化学エッチング)による多孔化処理(マイクロポーラス化処理))したこと、繊維強化熱可塑性樹脂層と金属板層とを繊維強化熱可塑性樹脂層中の樹脂の融着によって接着するようにしたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表5に示す。表5の通り、比較例1では、繊維強化熱可塑性樹脂層と金属板層との接着強度が低いため、両者間で界面剥離が生じると共に、深絞り加工により割れが生じた。 [Comparative Example 1]
Without using a PP film for bonding, the aluminum plate was surface-treated (specifically, porous treatment (microporous treatment) by MAL Corporation AMALFA treatment (chemical etching)), fiber reinforced thermoplastic resin layer and metal A laminated panel was formed in the same manner as in Example 1 except that the plate layer was bonded to the resin layer by fusing the resin in the fiber-reinforced thermoplastic resin layer, and the characteristics were measured and deep-drawn. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 1, since the adhesive strength between the fiber-reinforced thermoplastic resin layer and the metal plate layer was low, interfacial peeling occurred between them, and cracking occurred due to deep drawing.
接着用PPフィルムを用いず、アルミ板を表面処理(具体的には、MEC株式会社AMALFA処理(化学エッチング)による多孔化処理(マイクロポーラス化処理))したこと、繊維強化熱可塑性樹脂層と金属板層とを繊維強化熱可塑性樹脂層中の樹脂の融着によって接着するようにしたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表5に示す。表5の通り、比較例1では、繊維強化熱可塑性樹脂層と金属板層との接着強度が低いため、両者間で界面剥離が生じると共に、深絞り加工により割れが生じた。 [Comparative Example 1]
Without using a PP film for bonding, the aluminum plate was surface-treated (specifically, porous treatment (microporous treatment) by MAL Corporation AMALFA treatment (chemical etching)), fiber reinforced thermoplastic resin layer and metal A laminated panel was formed in the same manner as in Example 1 except that the plate layer was bonded to the resin layer by fusing the resin in the fiber-reinforced thermoplastic resin layer, and the characteristics were measured and deep-drawn. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 1, since the adhesive strength between the fiber-reinforced thermoplastic resin layer and the metal plate layer was low, interfacial peeling occurred between them, and cracking occurred due to deep drawing.
[比較例2]
繊維強化熱可塑性樹脂層の代りにPP100%(強化繊維0%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表5に示す。表5に示す通り、この比較例2では、PP層の引張強度40MPaと低く、引張伸び率600%と高いため、積層構成因子を示す式(1)の値が0.16と1未満の値となると共に予熱温度における比貯蔵弾性率が0.6GPaと1.0GPa未満となり、界面剥離が生じ、絞り加工により割れが生じた。 [Comparative Example 2]
A laminated panel was formed in the same manner as in Example 1 except thatPP 100% (reinforcing fiber 0%) was used instead of the fiber-reinforced thermoplastic resin layer, and the properties were measured and deep-drawn. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 2, since the tensile strength of the PP layer is as low as 40 MPa and the tensile elongation rate is as high as 600%, the value of the formula (1) indicating the lamination constituent factor is 0.16 and a value less than 1 And the specific storage elastic modulus at the preheating temperature was 0.6 GPa and less than 1.0 GPa, interfacial peeling occurred, and cracking occurred due to drawing.
繊維強化熱可塑性樹脂層の代りにPP100%(強化繊維0%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表5に示す。表5に示す通り、この比較例2では、PP層の引張強度40MPaと低く、引張伸び率600%と高いため、積層構成因子を示す式(1)の値が0.16と1未満の値となると共に予熱温度における比貯蔵弾性率が0.6GPaと1.0GPa未満となり、界面剥離が生じ、絞り加工により割れが生じた。 [Comparative Example 2]
A laminated panel was formed in the same manner as in Example 1 except that
[比較例3]
比較例2において積層パネルの予熱温度を35℃、金型温度を30℃として深絞り加工を行ったこと以外は同様とした。結果及びZ値等を表5に示す。表5に示す通り、この比較例3では、PP層の引張強度が40MPaと低く、引張伸び率が600%と高いため、積層構成因子を示すZ値が0.16と1未満の値となり、界面剥離が生じると共に、絞り加工により割れが生じた。 [Comparative Example 3]
In Comparative Example 2, it was the same except that the deep drawing was performed with the preheating temperature of the laminated panel being 35 ° C. and the mold temperature being 30 ° C. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 3, because the tensile strength of the PP layer is as low as 40 MPa and the tensile elongation is as high as 600%, the Z value indicating the lamination component factor is 0.16 and less than 1, Interfacial peeling occurred and cracking occurred due to drawing.
比較例2において積層パネルの予熱温度を35℃、金型温度を30℃として深絞り加工を行ったこと以外は同様とした。結果及びZ値等を表5に示す。表5に示す通り、この比較例3では、PP層の引張強度が40MPaと低く、引張伸び率が600%と高いため、積層構成因子を示すZ値が0.16と1未満の値となり、界面剥離が生じると共に、絞り加工により割れが生じた。 [Comparative Example 3]
In Comparative Example 2, it was the same except that the deep drawing was performed with the preheating temperature of the laminated panel being 35 ° C. and the mold temperature being 30 ° C. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 3, because the tensile strength of the PP layer is as low as 40 MPa and the tensile elongation is as high as 600%, the Z value indicating the lamination component factor is 0.16 and less than 1, Interfacial peeling occurred and cracking occurred due to drawing.
[比較例4]
2枚の金属板層として、アルミニウム合金板A1100-H16(厚さ:0.15mm、引張強度:145MPa、引張伸び率:6%)を用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表5に示す。表5の通り、この比較例4では、金属板層の厚みが0.15mmと薄く、かつ引張強度が145MPa、引張伸び率が6%と低いため、積層構成因子を示すZ値が0.77と1未満の値となり、深絞り加工によって金属板層に割れが生じた。 [Comparative Example 4]
A laminated panel is formed in the same manner as in Example 1 except that aluminum alloy plate A1100-H16 (thickness: 0.15 mm, tensile strength: 145 MPa, tensile elongation: 6%) is used as the two metal plate layers. Then, characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 4, the thickness of the metal plate layer is as thin as 0.15 mm, the tensile strength is 145 MPa, and the tensile elongation is as low as 6%. The value was less than 1 and the metal sheet layer was cracked by deep drawing.
2枚の金属板層として、アルミニウム合金板A1100-H16(厚さ:0.15mm、引張強度:145MPa、引張伸び率:6%)を用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表5に示す。表5の通り、この比較例4では、金属板層の厚みが0.15mmと薄く、かつ引張強度が145MPa、引張伸び率が6%と低いため、積層構成因子を示すZ値が0.77と1未満の値となり、深絞り加工によって金属板層に割れが生じた。 [Comparative Example 4]
A laminated panel is formed in the same manner as in Example 1 except that aluminum alloy plate A1100-H16 (thickness: 0.15 mm, tensile strength: 145 MPa, tensile elongation: 6%) is used as the two metal plate layers. Then, characteristic measurement and deep drawing were performed. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 4, the thickness of the metal plate layer is as thin as 0.15 mm, the tensile strength is 145 MPa, and the tensile elongation is as low as 6%. The value was less than 1 and the metal sheet layer was cracked by deep drawing.
以上の実施例より明らかな通り、本発明の積層パネルは剛性、剥離強度及び衝撃強度が高く、また深絞り性、プレス加工性に優れ、塑性加工が可能である。
As is clear from the above examples, the laminated panel of the present invention has high rigidity, peel strength and impact strength, is excellent in deep drawability and press workability, and can be plastically processed.
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
本出願は、2015年11月25日付で出願された日本特許出願2015-229810に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2015-229810 filed on November 25, 2015, which is incorporated by reference in its entirety.
本出願は、2015年11月25日付で出願された日本特許出願2015-229810に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2015-229810 filed on November 25, 2015, which is incorporated by reference in its entirety.
1 積層パネル
2 繊維強化熱可塑性樹脂層
3 金属板層 1laminated panel 2 fiber reinforced thermoplastic resin layer 3 metal plate layer
2 繊維強化熱可塑性樹脂層
3 金属板層 1
Claims (13)
- 不織布又は平均繊維長が10mm以上のチョップド繊維と熱可塑性樹脂とを含む繊維強化熱可塑性樹脂層と、該繊維強化熱可塑性樹脂層に接着された金属板層とを有し、最外層が該金属板層である積層パネルにおいて、
JIS K6854-4:1999の「浮動ローラー法剥離試験」法による試験を行った場合に、剥離強度が2.5kN/m以上であり、且つ破壊は繊維強化熱可塑性樹脂層に生じるものであり、下記の積層構成因子を示す式(1)の計算値Zが1以上であることを特徴とする積層パネル。
Z=(σm・tm・εm)/(σc・tc・εc) …(1)
σm:金属板層の室温における引張強度(MPa)
tm:金属板層の厚み(mm)
εm:金属板層の室温における引張伸び率(%)
σc:繊維強化熱可塑性樹脂層の室温における引張強度(MPa)
tc:繊維強化熱可塑性樹脂層の厚み(mm)
εc:繊維強化熱可塑性樹脂層の室温における引張伸び率(%) A non-woven fabric or a fiber reinforced thermoplastic resin layer containing a chopped fiber having an average fiber length of 10 mm or more and a thermoplastic resin, and a metal plate layer bonded to the fiber reinforced thermoplastic resin layer, the outermost layer being the metal In laminated panels that are plate layers,
When a test according to the “floating roller method peel test” method of JIS K6854-4: 1999 is performed, the peel strength is 2.5 kN / m or more, and the breakage occurs in the fiber-reinforced thermoplastic resin layer. The calculated value Z of Formula (1) which shows the following lamination constituent factors is 1 or more, The laminated panel characterized by the above-mentioned.
Z = (σm · tm · εm) / (σc · tc · εc) (1)
σm: Tensile strength (MPa) of the metal plate layer at room temperature
tm: Metal plate layer thickness (mm)
εm: Tensile elongation at room temperature of metal plate layer (%)
σc: Tensile strength at room temperature (MPa) of the fiber reinforced thermoplastic resin layer
tc: thickness of the fiber-reinforced thermoplastic resin layer (mm)
εc: Tensile elongation at room temperature (%) of the fiber reinforced thermoplastic resin layer - 請求項1において、前記繊維強化熱可塑性樹脂層が、該繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244-4:1999(プラスチック-動的機械特性の試験方法、周波数100Hz、試験片厚み2mm、試験温度23℃)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ)が1.0GPa以上であることを特徴とする積層パネル。 The fiber reinforced thermoplastic resin layer according to claim 1, wherein the fiber reinforced thermoplastic resin layer has a dynamic viscoelasticity test (JIS K 7244-4: 1999 (plastic-dynamic mechanical property test method, frequency The ratio of the storage elastic modulus E ′ to the specific gravity ρ of the fiber-reinforced thermoplastic resin layer (specific storage elastic modulus value: E ′ / ρ) at 100 Hz, test piece thickness 2 mm, and test temperature 23 ° C. is 1.0 GPa or more. A laminated panel characterized by that.
- 請求項1又は2において、前記繊維強化熱可塑性樹脂層は、該繊維強化熱可塑性樹脂層単体試験片によるパンクチャー衝撃試験(ストライカ径1/2inch、衝撃速度4.4m/s、支持台内径:3inch、試験温度:23℃)による単位厚み当たりの最大耐衝撃強さが0.5kN/mm以上であることを特徴とする積層パネル。 3. The fiber reinforced thermoplastic resin layer according to claim 1, wherein the fiber reinforced thermoplastic resin layer is a puncture impact test (strike diameter 1/2 inch, impact speed 4.4 m / s, support base inner diameter: A laminated panel having a maximum impact strength per unit thickness of 0.5 kN / mm or more by 3 inches and a test temperature of 23 ° C.
- 請求項1ないし3のいずれか1項において、前記繊維強化熱可塑性樹脂層中の繊維が不織布であり、その平均繊維長が25mm以上であることを特徴とする積層パネル。 4. The laminated panel according to any one of claims 1 to 3, wherein the fibers in the fiber-reinforced thermoplastic resin layer are nonwoven fabrics, and the average fiber length is 25 mm or more.
- 請求項1ないし4のいずれか1項において、前記繊維強化熱可塑性樹脂層の両面に前記金属板層が接着された3層構造からなるものであることを特徴とする積層パネル。 5. The laminated panel according to claim 1, wherein the laminated panel has a three-layer structure in which the metal plate layer is bonded to both surfaces of the fiber reinforced thermoplastic resin layer.
- 請求項1ないし5のいずれか1項において、前記繊維強化熱可塑性樹脂層と前記金属板層との間に接着層を有することを特徴とする積層パネル。 6. The laminated panel according to claim 1, further comprising an adhesive layer between the fiber-reinforced thermoplastic resin layer and the metal plate layer.
- 請求項1ないし6のいずれか1項において、前記繊維強化熱可塑性樹脂層中の繊維が有機繊維であり、該有機繊維の融点と前記熱可塑性樹脂の融点またはガラス転移温度との差が40℃以上であることを特徴とする積層パネル。 In any 1 item | term of the Claims 1 thru | or 6, the fiber in the said fiber reinforced thermoplastic resin layer is an organic fiber, and the difference of melting | fusing point of this organic fiber, melting | fusing point of the said thermoplastic resin, or glass transition temperature is 40 degreeC. A laminated panel characterized by the above.
- 請求項1ないし6のいずれか1項において、前記繊維強化熱可塑性樹脂層中の繊維が有機繊維であり、該有機繊維の融点が160℃以上であることを特徴とする積層パネル。 The laminated panel according to any one of claims 1 to 6, wherein the fiber in the fiber-reinforced thermoplastic resin layer is an organic fiber, and the melting point of the organic fiber is 160 ° C or higher.
- 請求項7又は8において、前記有機繊維が、平均繊維長25~300mm、平均繊度2~20dtex、目付50~1000g/m2の不織布であることを特徴とする積層パネル。 9. The laminated panel according to claim 7, wherein the organic fiber is a nonwoven fabric having an average fiber length of 25 to 300 mm, an average fineness of 2 to 20 dtex, and a basis weight of 50 to 1000 g / m 2 .
- 請求項1ないし9のいずれか1項において、塑性加工に用いることを特徴とする積層パネル。 10. A laminated panel according to claim 1, wherein the laminated panel is used for plastic working.
- 請求項1ないし10のいずれか1項に記載の積層パネルを塑性加工して成形品を製造する方法であって、前記繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244-4:1999(プラスチック-動的機械特性の試験方法、周波数100Hz、試験片厚み2mm)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ)が1.0GPa以上の温度領域における何れかの温度で塑性加工をすることを特徴とする成形品の製造方法。 A method for producing a molded product by plastic processing of the laminated panel according to claim 1, wherein a dynamic viscoelasticity test (JIS K 7244) of the fiber-reinforced thermoplastic resin single-piece test piece is performed. -4: ratio of storage elastic modulus E 'to specific gravity ρ of the fiber-reinforced thermoplastic resin layer in 1999 (plastic-dynamic mechanical property test method, frequency 100 Hz, test piece thickness 2 mm) (specific storage elastic modulus value: E A method for producing a molded article, wherein the plastic working is performed at any temperature in a temperature range of '/ ρ) of 1.0 GPa or more.
- 請求項1ないし10のいずれか1項に記載の積層パネルを塑性加工して成形品を製造する方法であって、10~40℃の温度領域における何れかの温度で塑性加工をすることを特徴とする成形品の製造方法。 A method for producing a molded product by plastic working the laminated panel according to any one of claims 1 to 10, wherein the plastic working is performed at any temperature in a temperature range of 10 to 40 ° C. A method for manufacturing a molded product.
- 請求項11又は12において、前記塑性加工は、プレス加工、ロールフォーミング加工、又は曲げ加工であることを特徴とする成形品の製造方法。 The method for manufacturing a molded product according to claim 11 or 12, wherein the plastic working is press working, roll forming work, or bending work.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017552694A JP6717321B2 (en) | 2015-11-25 | 2016-11-24 | Laminated panel and method for manufacturing molded article thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-229810 | 2015-11-25 | ||
JP2015229810 | 2015-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017090676A1 true WO2017090676A1 (en) | 2017-06-01 |
Family
ID=58763481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/084787 WO2017090676A1 (en) | 2015-11-25 | 2016-11-24 | Laminated panel and method for manufacturing article molded therefrom |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6717321B2 (en) |
WO (1) | WO2017090676A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108517623A (en) * | 2018-03-26 | 2018-09-11 | 东莞市科迪实业有限公司 | A kind of production technology and method of the high-precision control of nonwoven fabric thickness |
CN108741526A (en) * | 2018-09-10 | 2018-11-06 | 潘素娇 | A kind of children's trolley case being convenient for carrying |
WO2019132042A1 (en) * | 2017-12-28 | 2019-07-04 | 日本製鉄株式会社 | Metal/fiber-reinforced resin material composite |
WO2019132043A1 (en) * | 2017-12-28 | 2019-07-04 | 日本製鉄株式会社 | Metal-fiber reinforced resin material composite and production method thereof |
WO2019159929A1 (en) * | 2018-02-14 | 2019-08-22 | 三菱ケミカル株式会社 | Flame retardant metal-resin composite material |
WO2019168064A1 (en) * | 2018-02-28 | 2019-09-06 | 日本製鉄株式会社 | Metal-fiber reinforced resin material composite body and method for producing metal-fiber reinforced resin material composite body |
JP2019150990A (en) * | 2018-03-01 | 2019-09-12 | 日本製鉄株式会社 | Metal-thermoplastic fiber reinforced resin material composite member processing method, metal-thermoplastic fiber reinforced resin material composite member, and automotive parts |
JP2019177669A (en) * | 2018-03-30 | 2019-10-17 | 三菱ケミカル株式会社 | Thermoplastic resin laminate |
CN111936685A (en) * | 2018-03-30 | 2020-11-13 | 三井化学株式会社 | Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fibrous product, absorbent article, and sanitary mask |
WO2021112077A1 (en) * | 2019-12-02 | 2021-06-10 | 東洋鋼鈑株式会社 | Layered composite |
JP2022033907A (en) * | 2018-03-01 | 2022-03-02 | 日本製鉄株式会社 | Processing method for metal-thermoplastic fiber-reinforced resin material composites |
CN114433709A (en) * | 2022-01-17 | 2022-05-06 | 北京协同创新研究院 | Forming method of super-hybrid composite material special-shaped part |
WO2023231958A1 (en) * | 2022-05-31 | 2023-12-07 | 比亚迪股份有限公司 | Battery pack composite protective structure and vehicle |
WO2023231960A1 (en) * | 2022-05-31 | 2023-12-07 | 比亚迪股份有限公司 | Battery protection bottom plate, battery pack composite protection structure, and vehicle |
WO2023231949A1 (en) * | 2022-05-31 | 2023-12-07 | 比亚迪股份有限公司 | Battery protective bottom plate, battery pack composite protective structure, and vehicle |
CN117199672A (en) * | 2022-05-31 | 2023-12-08 | 比亚迪股份有限公司 | Battery pack composite protection structure and vehicle |
CN117199669A (en) * | 2022-05-31 | 2023-12-08 | 比亚迪股份有限公司 | Battery protection bottom plate, battery package composite protection structure and vehicle |
WO2024160284A1 (en) * | 2023-02-02 | 2024-08-08 | 比亚迪股份有限公司 | Battery pack cover plate, battery pack, and vehicle |
WO2024160285A1 (en) * | 2023-02-02 | 2024-08-08 | 比亚迪股份有限公司 | Battery pack cover plate, battery pack and vehicle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62164533A (en) * | 1986-01-16 | 1987-07-21 | チッソ株式会社 | Metal-polypropylene laminated composite body |
JPH11227103A (en) * | 1998-02-13 | 1999-08-24 | Kawasaki Steel Corp | Laminate |
JP2011037002A (en) * | 2007-12-14 | 2011-02-24 | Nippon Zeon Co Ltd | Metal/fiber-reinforced resin composite and process for producing the same |
JP2013006293A (en) * | 2011-06-22 | 2013-01-10 | Fuji Heavy Ind Ltd | Laminate |
-
2016
- 2016-11-24 WO PCT/JP2016/084787 patent/WO2017090676A1/en active Application Filing
- 2016-11-24 JP JP2017552694A patent/JP6717321B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62164533A (en) * | 1986-01-16 | 1987-07-21 | チッソ株式会社 | Metal-polypropylene laminated composite body |
JPH11227103A (en) * | 1998-02-13 | 1999-08-24 | Kawasaki Steel Corp | Laminate |
JP2011037002A (en) * | 2007-12-14 | 2011-02-24 | Nippon Zeon Co Ltd | Metal/fiber-reinforced resin composite and process for producing the same |
JP2013006293A (en) * | 2011-06-22 | 2013-01-10 | Fuji Heavy Ind Ltd | Laminate |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102420302B1 (en) * | 2017-12-28 | 2022-07-13 | 닛폰세이테츠 가부시키가이샤 | Metal-fiber reinforced resin material composite |
KR102456527B1 (en) * | 2017-12-28 | 2022-10-19 | 닛폰세이테츠 가부시키가이샤 | Metal-fiber-reinforced resin material composite and manufacturing method thereof |
WO2019132042A1 (en) * | 2017-12-28 | 2019-07-04 | 日本製鉄株式会社 | Metal/fiber-reinforced resin material composite |
WO2019132043A1 (en) * | 2017-12-28 | 2019-07-04 | 日本製鉄株式会社 | Metal-fiber reinforced resin material composite and production method thereof |
JP2019119213A (en) * | 2017-12-28 | 2019-07-22 | 日本製鉄株式会社 | Metal-fiber reinforced resin material composite and manufacturing method therefor |
JP2019119212A (en) * | 2017-12-28 | 2019-07-22 | 日本製鉄株式会社 | Metal-fiber reinforced resin material composite |
US11331882B2 (en) | 2017-12-28 | 2022-05-17 | Nippon Steel Corporation | Metal/fiber-reinforced resin material composite |
JP7215163B2 (en) | 2017-12-28 | 2023-01-31 | 日本製鉄株式会社 | Metal-fiber reinforced resin material composite |
JP7295376B2 (en) | 2017-12-28 | 2023-06-21 | 日本製鉄株式会社 | METAL-FIBER REINFORCED RESIN MATERIAL COMPOSITE AND PRODUCTION METHOD THEREOF |
CN111526984B (en) * | 2017-12-28 | 2023-08-08 | 日本制铁株式会社 | Metal-fiber reinforced resin material composite and method for producing same |
CN111526985B (en) * | 2017-12-28 | 2022-09-16 | 日本制铁株式会社 | Metal-fiber reinforced resin material composite |
KR20200044060A (en) * | 2017-12-28 | 2020-04-28 | 닛폰세이테츠 가부시키가이샤 | Metal-fiber reinforced resin material composite |
KR20200044881A (en) * | 2017-12-28 | 2020-04-29 | 닛폰세이테츠 가부시키가이샤 | Metal-fiber reinforced resin material composite and manufacturing method thereof |
CN111526984A (en) * | 2017-12-28 | 2020-08-11 | 日本制铁株式会社 | Metal-fiber reinforced resin material composite and method for producing same |
US11623432B2 (en) | 2017-12-28 | 2023-04-11 | Nippon Steel Corporation | Metal-fiber-reinforced resin material composite and production method thereof |
CN111526985A (en) * | 2017-12-28 | 2020-08-11 | 日本制铁株式会社 | Metal-fiber reinforced resin material composite |
WO2019159929A1 (en) * | 2018-02-14 | 2019-08-22 | 三菱ケミカル株式会社 | Flame retardant metal-resin composite material |
CN111655477A (en) * | 2018-02-28 | 2020-09-11 | 日本制铁株式会社 | Metal-fiber reinforced resin material composite, and method for producing metal-fiber reinforced resin material composite |
JP2019151106A (en) * | 2018-02-28 | 2019-09-12 | 日本製鉄株式会社 | Metal-fiber reinforced resin material composite and manufacturing method of metal-fiber reinforced resin material composite |
JP7352059B2 (en) | 2018-02-28 | 2023-09-28 | 日本製鉄株式会社 | Metal-fiber-reinforced resin material composite and method for producing metal-fiber-reinforced resin material composite |
WO2019168064A1 (en) * | 2018-02-28 | 2019-09-06 | 日本製鉄株式会社 | Metal-fiber reinforced resin material composite body and method for producing metal-fiber reinforced resin material composite body |
CN111655477B (en) * | 2018-02-28 | 2022-12-23 | 日本制铁株式会社 | Metal-fiber reinforced resin material composite, and method for producing metal-fiber reinforced resin material composite |
JP2022033907A (en) * | 2018-03-01 | 2022-03-02 | 日本製鉄株式会社 | Processing method for metal-thermoplastic fiber-reinforced resin material composites |
JP7020184B2 (en) | 2018-03-01 | 2022-02-16 | 日本製鉄株式会社 | Processing method of metal-thermoplastic fiber reinforced resin material composite member, metal-thermoplastic fiber reinforced resin material composite member and automobile parts. |
JP7207510B2 (en) | 2018-03-01 | 2023-01-18 | 日本製鉄株式会社 | METHOD OF PROCESSING METAL-THERMOPLASTIC FIBER REINFORCED COMPOSITE MEMBER |
JP2019150990A (en) * | 2018-03-01 | 2019-09-12 | 日本製鉄株式会社 | Metal-thermoplastic fiber reinforced resin material composite member processing method, metal-thermoplastic fiber reinforced resin material composite member, and automotive parts |
CN108517623A (en) * | 2018-03-26 | 2018-09-11 | 东莞市科迪实业有限公司 | A kind of production technology and method of the high-precision control of nonwoven fabric thickness |
CN111936685A (en) * | 2018-03-30 | 2020-11-13 | 三井化学株式会社 | Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fibrous product, absorbent article, and sanitary mask |
JP2019177669A (en) * | 2018-03-30 | 2019-10-17 | 三菱ケミカル株式会社 | Thermoplastic resin laminate |
JP7069977B2 (en) | 2018-03-30 | 2022-05-18 | 三菱ケミカル株式会社 | Thermoplastic resin laminate |
CN111936685B (en) * | 2018-03-30 | 2022-06-14 | 三井化学株式会社 | Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fibrous product, absorbent article, and sanitary mask |
CN108741526A (en) * | 2018-09-10 | 2018-11-06 | 潘素娇 | A kind of children's trolley case being convenient for carrying |
WO2021112077A1 (en) * | 2019-12-02 | 2021-06-10 | 東洋鋼鈑株式会社 | Layered composite |
US20230001652A1 (en) * | 2019-12-02 | 2023-01-05 | Toyo Kohan Co., Ltd. | Layered composite |
CN114761225A (en) * | 2019-12-02 | 2022-07-15 | 东洋钢钣株式会社 | Laminated composite body |
EP4070946A4 (en) * | 2019-12-02 | 2024-01-10 | Toyo Kohan Co., Ltd. | Layered composite |
CN114433709B (en) * | 2022-01-17 | 2023-07-21 | 北京协同创新研究院 | Forming method of super hybrid composite material special-shaped piece |
CN114433709A (en) * | 2022-01-17 | 2022-05-06 | 北京协同创新研究院 | Forming method of super-hybrid composite material special-shaped part |
WO2023231958A1 (en) * | 2022-05-31 | 2023-12-07 | 比亚迪股份有限公司 | Battery pack composite protective structure and vehicle |
WO2023231960A1 (en) * | 2022-05-31 | 2023-12-07 | 比亚迪股份有限公司 | Battery protection bottom plate, battery pack composite protection structure, and vehicle |
WO2023231949A1 (en) * | 2022-05-31 | 2023-12-07 | 比亚迪股份有限公司 | Battery protective bottom plate, battery pack composite protective structure, and vehicle |
CN117199672A (en) * | 2022-05-31 | 2023-12-08 | 比亚迪股份有限公司 | Battery pack composite protection structure and vehicle |
CN117199675A (en) * | 2022-05-31 | 2023-12-08 | 比亚迪股份有限公司 | Battery protection bottom plate, battery package composite protection structure and vehicle |
CN117199669A (en) * | 2022-05-31 | 2023-12-08 | 比亚迪股份有限公司 | Battery protection bottom plate, battery package composite protection structure and vehicle |
CN117199667A (en) * | 2022-05-31 | 2023-12-08 | 比亚迪股份有限公司 | Battery protection bottom plate and battery package composite protection structure and vehicle |
CN117199669B (en) * | 2022-05-31 | 2024-10-11 | 比亚迪股份有限公司 | Battery protection bottom plate, battery package composite protection structure and vehicle |
WO2024160284A1 (en) * | 2023-02-02 | 2024-08-08 | 比亚迪股份有限公司 | Battery pack cover plate, battery pack, and vehicle |
WO2024160285A1 (en) * | 2023-02-02 | 2024-08-08 | 比亚迪股份有限公司 | Battery pack cover plate, battery pack and vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP6717321B2 (en) | 2020-07-01 |
JPWO2017090676A1 (en) | 2018-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017090676A1 (en) | Laminated panel and method for manufacturing article molded therefrom | |
US8048815B2 (en) | Composite article and method of manufacture | |
JP5926947B2 (en) | Fiber-reinforced resin molded body and vehicle interior material using the same | |
US9365748B2 (en) | Carrier reinforced heat activated adhesive compounds | |
JP5920690B2 (en) | Pre-preg sheet material and manufacturing method thereof | |
JP3839037B1 (en) | Laminated molded body | |
US4379198A (en) | Composite material containing a thermoplastic synthetic resin layer | |
US10780670B2 (en) | Laminate | |
WO2018006450A1 (en) | Composite material plate and preparation method therefor | |
JP2006525141A (en) | Nonwoven composite element | |
US7846855B2 (en) | Nonwoven fabrics and laminates made by using the same | |
JP2013176876A (en) | Manufacturing method of molding | |
CN106671538B (en) | Thermoplastic composite material with semi-closed honeycomb sandwich structure and preparation method thereof | |
JP6805951B2 (en) | Laminated panel | |
US11981114B2 (en) | Method of manufacturing sandwich panel and sandwich panel | |
US20220212426A1 (en) | Fiber-reinforced resin substrate, integrated molded article, and method for manufacturing fiber-reinforced resin substrate | |
KR20190104791A (en) | A sandwich panel and a manufacturing method thereof | |
US20160271906A1 (en) | Resin joined body, method of producing resin joined body, and vehicular structural body | |
JP6360766B2 (en) | Damping structure and damping material | |
JP2013010255A (en) | Thermoplastic resin composite material | |
JP6488584B2 (en) | Carbon fiber reinforced thermoplastic resin molded product and metal welded joint | |
US20180065335A1 (en) | Sandwich panel and method for manufacturing same | |
JP2014113715A (en) | Molded article, and method for producing the same | |
KR102655190B1 (en) | Manufacturing method of a molded object and manufacturing method of a sandwich panel | |
JP4512440B2 (en) | Method for producing hollow structure plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16868619 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017552694 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16868619 Country of ref document: EP Kind code of ref document: A1 |