JP6717321B2 - Laminated panel and method for manufacturing molded article thereof - Google Patents

Laminated panel and method for manufacturing molded article thereof Download PDF

Info

Publication number
JP6717321B2
JP6717321B2 JP2017552694A JP2017552694A JP6717321B2 JP 6717321 B2 JP6717321 B2 JP 6717321B2 JP 2017552694 A JP2017552694 A JP 2017552694A JP 2017552694 A JP2017552694 A JP 2017552694A JP 6717321 B2 JP6717321 B2 JP 6717321B2
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic resin
reinforced thermoplastic
resin layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017552694A
Other languages
Japanese (ja)
Other versions
JPWO2017090676A1 (en
Inventor
川東 宏至
宏至 川東
竜也 熊谷
竜也 熊谷
杉浦 克彦
克彦 杉浦
光俊 佐野
光俊 佐野
幸治 上原
幸治 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPWO2017090676A1 publication Critical patent/JPWO2017090676A1/en
Application granted granted Critical
Publication of JP6717321B2 publication Critical patent/JP6717321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Description

本発明は、剛性、衝撃強度が高く、折り曲げ加工、プレス加工、ロールフォーミング等の塑性加工(板金加工)が可能な、繊維強化熱可塑性樹脂層と金属板層との積層体よりなる積層パネルと、その成形品の製造方法に関する。 The present invention provides a laminated panel comprising a laminate of a fiber reinforced thermoplastic resin layer and a metal plate layer, which has high rigidity and impact strength and is capable of plastic working (sheet metal working) such as bending, pressing and roll forming. , A method of manufacturing the molded article.

近年、環境保全、省エネルギーの観点から、自動車、鉄道、航空、等運輸機器、ロボット、電子機器、家具、建材等の分野においてこれら製品の軽量化が望まれている。このため、金属製部品を対象に繊維強化樹脂材料による軽量化が試みられて来た。 In recent years, from the viewpoint of environmental protection and energy saving, weight reduction of these products has been desired in the fields of automobiles, railways, aviation, transportation equipment such as robots, electronic equipment, furniture, building materials and the like. Therefore, attempts have been made to reduce the weight of metal parts by using a fiber-reinforced resin material.

中でも炭素繊維強化樹脂複合材料、ガラス繊維強化樹脂複合材料等は金属材料に比較して比強度、比剛性が優れることから、軽量化に寄与することができる。 Among them, the carbon fiber reinforced resin composite material, the glass fiber reinforced resin composite material and the like are superior in specific strength and specific rigidity as compared with the metal material, and thus can contribute to weight reduction.

ところが、これら繊維強化樹脂複合材料は材料コストが金属よりも高価であるのみならず、既存の成形設備の活用範囲が限定され、これら専用の成形加工設備の投資が必要となり、その費用が多大なため、過去30年以上その普及がなされて来なかったのが現状である。また、熱可塑性樹脂または熱硬化性樹脂をマトリックスとする繊維強化樹脂複合材料は、何れも成形サイクルが長い点に課題がある。 However, these fiber-reinforced resin composite materials are not only higher in material cost than metal, but also the range of utilization of existing molding equipment is limited, and investment of dedicated molding processing equipment is required, resulting in a large cost. Therefore, the current situation is that it has not been popularized for more than 30 years. Further, any fiber-reinforced resin composite material using a thermoplastic resin or a thermosetting resin as a matrix has a problem in that the molding cycle is long.

特許文献1には、プレス加工性に優れた樹脂複合型制振鋼板が提案され、実用化に至っているが、衝撃強度が低く、強度を必要としない用途に限定されている。特許文献2には鋼板と熱硬化性樹脂を含む繊維強化プラスチック製板体とを繊維強化樹脂層をプリフォームした後に一体化接合するプレス成形方法が記載されているが、成形工程が2段階となる上に、速熱硬化性の熱硬化樹脂を適用しているものの量産性(成形サイクル約5分)に課題がある。特許文献3には、剛性、耐衝撃性に優れた金属樹脂複合体として、金属板と金属板の間に繊維強化樹脂層を挟んで固着され、金属板の少なくとも一方の端縁を曲げ加工し、縫製により一体化する方法が記載されている。この複合体は、剛性、耐衝撃性に優れるが、生産性が悪く、量産性を兼備するものではない。 Patent Document 1 proposes a resin composite-type vibration-damping steel sheet excellent in press workability and has been put into practical use. However, it has low impact strength and is limited to applications that do not require strength. Patent Document 2 describes a press-molding method in which a steel plate and a fiber-reinforced plastic plate body containing a thermosetting resin are integrally joined after preforming a fiber-reinforced resin layer. In addition, there is a problem in mass productivity (a molding cycle of about 5 minutes), although a rapid thermosetting thermosetting resin is applied. In Patent Document 3, as a metal-resin composite having excellent rigidity and impact resistance, a fiber-reinforced resin layer is sandwiched and fixed between metal plates, and at least one edge of the metal plates is bent and sewn. The method of integration is described by. This composite has excellent rigidity and impact resistance, but has poor productivity and does not have mass productivity.

特許文献4には、金属板と金属板の間に織物を挟んで、熱硬化性樹脂で固着した積層体による座席シート用のフレーム部材が提案されている。繊維強化織物層は耐衝撃性に優れ、金属と繊維強化織物層界面での層間剥離を起こさせることで耐衝撃性の向上を図ることができるが、接着剤が硬化した後ではプレス成形時に層間剥離が起こり、繊維強化織物層の破断が起こるため、製品使用時の衝撃強度そのものが低下するという問題がある。その上、接着に熱硬化性樹脂を適用しているので、熱硬化に長時間を要するため、量産性を兼備するものではない。 Patent Document 4 proposes a frame member for a seat, which is a laminated body in which a woven fabric is sandwiched between metal plates and fixed with a thermosetting resin. The fiber reinforced woven fabric layer has excellent impact resistance, and the impact resistance can be improved by causing delamination at the interface between the metal and the fiber reinforced woven fabric layer. Since peeling occurs and the fiber-reinforced fabric layer breaks, there is a problem that the impact strength itself during use of the product decreases. Moreover, since a thermosetting resin is used for adhesion, it takes a long time for thermosetting, and therefore it does not combine mass productivity.

特開平5−138800号公報JP-A-5-138800 特許第5633989号公報Japanese Patent No. 5633989 特開2013−159019号公報JP, 2013-15919, A 特許第5669288号公報Patent No. 5669288

本発明は、高価な設備投資をすることなく、既存の成形設備を活用可能であり、剛性、衝撃強度が高く、折り曲げ加工、プレス加工、ロールフォーミング等の塑性加工(板金加工)が可能な繊維強化樹脂複合積層体及びその成形品の製造方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention can utilize existing molding equipment without expensive equipment investment, has high rigidity and high impact strength, and is capable of plastic working (sheet metal working) such as bending, pressing and roll forming. An object of the present invention is to provide a reinforced resin composite laminate and a method for producing a molded article thereof.

本発明の積層パネルは、不織布又は平均繊維長が10mm以上のチョップド繊維と熱可塑性樹脂とを含む繊維強化熱可塑性樹脂層と、該繊維強化熱可塑性樹脂層に接着された金属板層とを有し、最外層が該金属板層である積層パネルにおいて、JIS K6854−4:1999の「浮動ローラー法剥離試験」法による試験を行った場合に、剥離強度が2.5kN/m以上であり、且つ破壊は繊維強化熱可塑性樹脂層に生じるものであり、下記の積層構成因子を示す式(1)の計算値Zが1以上であることを特徴とする積層パネル。 The laminated panel of the present invention comprises a non-woven fabric or a fiber-reinforced thermoplastic resin layer containing chopped fibers having an average fiber length of 10 mm or more and a thermoplastic resin, and a metal plate layer bonded to the fiber-reinforced thermoplastic resin layer. Then, in the laminated panel in which the outermost layer is the metal plate layer, the peel strength is 2.5 kN/m or more when tested by the “floating roller method peel test” method of JIS K6854-4:1999. Moreover, the breakage occurs in the fiber-reinforced thermoplastic resin layer, and the calculated value Z of the formula (1) showing the following lamination constituent factors is 1 or more, a laminated panel.

Z=(σm・tm・εm)/(σc・tc・εc) …(1)
σm:金属板層の室温における引張強度(MPa)
tm:金属板層の厚み(mm)
εm:金属板層の室温における引張伸び率(%)
σc:繊維強化熱可塑性樹脂層の室温における引張強度(MPa)
tc:繊維強化熱可塑性樹脂層の厚み(mm)
εc:繊維強化熱可塑性樹脂層の室温における引張伸び率(%)
Z=(σm·tm·εm)/(σc·tc·εc) (1)
σm: Tensile strength (MPa) of the metal plate layer at room temperature
tm: Thickness of metal plate layer (mm)
εm: Tensile elongation (%) of the metal plate layer at room temperature
σc: Tensile strength (MPa) of the fiber-reinforced thermoplastic resin layer at room temperature
tc: Thickness of fiber reinforced thermoplastic resin layer (mm)
εc: Tensile elongation (%) of the fiber-reinforced thermoplastic resin layer at room temperature

本発明の一態様では、前記繊維強化熱可塑性樹脂層が、該繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244−4:1999(プラスチック−動的機械特性の試験方法、周波数100Hz、試験片厚み2mm、試験温度23℃)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ)値が1.0GPa以上である。
ここで、繊維強化熱可塑性樹脂層の比重ρ(無次元)は、室温(23℃)での測定値を代表値として適用したものである。
In one aspect of the present invention, the fiber-reinforced thermoplastic resin layer is a dynamic viscoelasticity test (JIS K 7244-4:1999 (Plastic-Dynamic Mechanical Property Test Method) of the fiber-reinforced thermoplastic resin layer unit test piece. , Frequency 100 Hz, test piece thickness 2 mm, test temperature 23° C.), the ratio of the storage elastic modulus E′ to the specific gravity ρ of the fiber-reinforced thermoplastic resin layer (specific storage elastic modulus value: E′/ρ) is 1.0 GPa. That is all.
Here, the specific gravity ρ (dimensionless) of the fiber-reinforced thermoplastic resin layer is obtained by applying a measured value at room temperature (23° C.) as a representative value.

本発明の一態様では、繊維強化熱可塑性樹脂層は、該繊維強化熱可塑性樹脂層単体試験片によるパンクチャー衝撃試験(ストライカ径1/2inch、衝撃速度4.4m/s、支持台内径:3inch、試験温度:23℃)による単位厚み当たりの最大耐衝撃強さが0.5kN/mm以上である。 In one aspect of the present invention, the fiber-reinforced thermoplastic resin layer has a puncture impact test (strike diameter 1/2 inch, impact velocity 4.4 m/s, support base inner diameter: 3 inch) using the fiber-reinforced thermoplastic resin layer unit test piece. , Test temperature: 23° C.), the maximum impact strength per unit thickness is 0.5 kN/mm or more.

本発明の一態様では、前記繊維強化熱可塑性樹脂層中の繊維が不織布であり、その平均繊維長が25mm以上である。 In one aspect of the present invention, the fibers in the fiber-reinforced thermoplastic resin layer are non-woven fabrics, and the average fiber length thereof is 25 mm or more.

本発明の一態様の積層パネルは、前記繊維強化熱可塑性樹脂層の両面に前記金属板層が接着された3層構造からなるものである。 The laminated panel of one aspect of the present invention has a three-layer structure in which the metal plate layer is adhered to both surfaces of the fiber reinforced thermoplastic resin layer.

本発明の一態様の積層パネルは、前記繊維強化熱可塑性樹脂層と前記金属板層との間に接着層を有する。 The laminated panel of one aspect of the present invention has an adhesive layer between the fiber-reinforced thermoplastic resin layer and the metal plate layer.

本発明の一態様では、前記繊維強化熱可塑性樹脂層中の繊維が有機繊維であり、該有機繊維の融点と前記熱可塑性樹脂の融点またはガラス転移温度との差が40℃以上である。 In one aspect of the present invention, the fibers in the fiber-reinforced thermoplastic resin layer are organic fibers, and the difference between the melting point of the organic fibers and the melting point or glass transition temperature of the thermoplastic resin is 40° C. or more.

本発明の一態様では、前記繊維強化熱可塑性樹脂層中の繊維が有機繊維であり、該有機繊維の融点が160℃以上である。 In one aspect of the present invention, the fibers in the fiber-reinforced thermoplastic resin layer are organic fibers, and the melting point of the organic fibers is 160° C. or higher.

本発明の一態様では、前記有機繊維が、平均繊維長25〜300mm、平均繊度2〜20dtex、目付50〜1000g/mの不織布である。In one aspect of the present invention, the organic fiber is a nonwoven fabric having an average fiber length of 25 to 300 mm, an average fineness of 2 to 20 dtex, and a basis weight of 50 to 1000 g/m 2 .

本発明の一態様では、本発明の積層パネルを塑性加工に用いる。 In one aspect of the present invention, the laminated panel of the present invention is used for plastic working.

本発明の成形品の製造方法の一態様は、本発明の積層パネルを塑性加工して成形品を製造する方法であって、前記繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244−4:1999(プラスチック−動的機械特性の試験方法、周波数100Hz、試験片厚み2mm)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ値が1.0GPa以上の温度領域における何れかの温度で塑性加工をすることを特徴とする。 One embodiment of the method for producing a molded article of the present invention is a method for producing a molded article by plastically working the laminated panel of the present invention, wherein a dynamic viscoelasticity test of the fiber-reinforced thermoplastic resin layer single-piece test piece ( Ratio of storage elastic modulus E′ to specific gravity ρ of the fiber-reinforced thermoplastic resin layer in JIS K 7244-4:1999 (Plastic-Determination of dynamic mechanical properties, frequency 100 Hz, test piece thickness 2 mm) (specific storage elastic modulus Value: E′/ρ value is characterized by performing plastic working at any temperature in a temperature range of 1.0 GPa or more.

本発明の成形品の製造方法の別態様は、本発明の積層パネルを塑性加工して成形品を製造する方法であって、10〜40℃の温度領域における何れかの温度で塑性加工することを特徴とする。 Another embodiment of the method for producing a molded article of the present invention is a method for producing a molded article by plastically working the laminated panel of the present invention, which is plastic working at any temperature in a temperature range of 10 to 40°C. Is characterized by.

本発明の一態様では、前記塑性加工は、プレス加工、ロールフォーミング加工、又は曲げ加工である。 In one aspect of the present invention, the plastic working is press working, roll forming, or bending.

本発明の積層パネルは、JIS K6854−4:1999の「浮動ローラー法剥離試験」法による剥離強度が2.5kN/m以上であり、且つ繊維強化熱可塑性樹脂層において母材破壊を起こす特性を有しているので、プレス加工等の塑性加工時に接着(接合)界面で剥離が起こらず、繊維強化熱可塑性樹脂層と金属板層が同時に塑性変形し、繊維強化熱可塑性樹脂層の軟化温度領域の温度(但し、溶融加工温度未満)または室温での板金加工が可能となる。 The laminated panel of the present invention has a peel strength of 2.5 kN/m or more according to the "floating roller method peel test" method of JIS K6854-4:1999, and has a property of causing base material fracture in the fiber reinforced thermoplastic resin layer. Since it has, peeling does not occur at the bonding (bonding) interface during plastic working such as press working, the fiber-reinforced thermoplastic resin layer and the metal plate layer undergo plastic deformation at the same time, and the softening temperature range of the fiber-reinforced thermoplastic resin layer It is possible to process the sheet metal at the temperature (below the melting processing temperature) or at room temperature.

この際、繊維強化熱可塑性樹脂層は射出成形等のような樹脂流動性が発現する溶融加工温度域まで加温せずとも、熱可塑性樹脂の融点以下またはガラス転移温度以下の半溶融状態の軟化温度域から室温までの冷間において板金加工が可能である。熱可塑性樹脂の種類にもよるが、金型温度は室温から200℃程度の温度領域での賦形が可能となるため、成形サイクルの律速となる冷却時間を短時間とすることができる。 At this time, the fiber-reinforced thermoplastic resin layer is softened in a semi-molten state below the melting point of the thermoplastic resin or below the glass transition temperature without being heated to a melt processing temperature range where resin fluidity such as injection molding is exhibited. Sheet metal processing is possible in the cold from the temperature range to room temperature. Although it depends on the type of the thermoplastic resin, the mold temperature can be shaped in a temperature range from room temperature to about 200° C., so that the cooling time, which is the rate-determining rate of the molding cycle, can be shortened.

とりわけ、金属板層と金属板層との間に繊維強化熱可塑性樹脂層をサンドイッチした積層パネルの場合には、金属板層による熱交換が速いために、冷却時間が数秒までの著しい短縮化が可能となり、成形サイクルの短縮化を図ることができる。 In particular, in the case of a laminated panel in which a fiber reinforced thermoplastic resin layer is sandwiched between metal plate layers, the heat exchange by the metal plate layers is fast, so that the cooling time can be significantly shortened to several seconds. This makes it possible to shorten the molding cycle.

前記繊維強化熱可塑性樹脂層が0.2mm以上の厚みであって、繊維強化熱可塑性樹脂層単体試験片によるパンクチャー衝撃試験(ASTM D3763、ストライカ径1/2inch、衝撃速度4.4m/s、支持台内径:3inch、試験温度:23℃)の条件下にて単位厚み当たりの最大耐衝撃強さが0.5kN/mm以上である場合、使用時の衝撃強度の向上のみならず、折り曲げやプレス成形(絞り成形)等塑性加工(板金加工)を容易とすることができる。 The fiber reinforced thermoplastic resin layer has a thickness of 0.2 mm or more, and a puncture impact test (ASTM D3763, striker diameter 1/2 inch, impact velocity 4.4 m/s, by a fiber reinforced thermoplastic resin layer single-piece test piece, When the maximum impact strength per unit thickness is 0.5 kN/mm or more under the conditions of the support base inner diameter: 3 inch and the test temperature: 23° C., not only the impact strength during use but also bending and It is possible to facilitate plastic working (sheet metal working) such as press molding (drawing).

本発明によると、板金加工性、軽量、高剛性、耐衝撃性、量産性を兼備した金属板層と繊維強化熱可塑性樹脂層からなる積層パネルと、この積層パネルを塑性加工してなる成形品が提供される。 According to the present invention, a laminated panel comprising a metal plate layer and a fiber reinforced thermoplastic resin layer having sheet metal workability, light weight, high rigidity, impact resistance, and mass productivity, and a molded product formed by plastically processing the laminated panel. Will be provided.

図1は本発明の積層パネルの断面図である。FIG. 1 is a sectional view of a laminated panel of the present invention. 図2は実施例で製造した成形品の断面図である。FIG. 2 is a sectional view of a molded product manufactured in the example. 図3aは、実施例で製造した成形品の斜視図であり、図3bは図3aのIIIb−IIIb線に沿う断面図である。3a is a perspective view of a molded product manufactured in the embodiment, and FIG. 3b is a sectional view taken along line IIIb-IIIb of FIG. 3a.

図1は、本発明の積層パネルの一例を示すものである。積層パネル1は、繊維強化熱可塑性樹脂層2の両面に金属板層3を接着したものである。 FIG. 1 shows an example of the laminated panel of the present invention. The laminated panel 1 is one in which metal plate layers 3 are bonded to both surfaces of a fiber reinforced thermoplastic resin layer 2.

この積層パネルは、JIS K6854−4:1999の「浮動ローラー法剥離試験」法による剥離強度(23℃)が2.5kN/m以上であり、好ましくは3kN/m以上、特に好ましくは5kN/m以上である。剥離強度が2.5kN以上であることにより、破壊が繊維強化熱可塑性樹脂層に生じやすくなり、また、金属板層と繊維強化熱可塑性樹脂層とが追従しやすくなることによって、冷間加工しやすくなる。加えて、この積層パネルは、剥離試験時の破壊が繊維強化熱可塑性樹脂層に生じるものである。剥離強度の上限は通常20kN/mであり、好ましくは10kN/mである。 This laminated panel has a peel strength (23° C.) of 2.5 kN/m or more, preferably 3 kN/m or more, particularly preferably 5 kN/m, according to the “floating roller method peeling test” method of JIS K6854-4:1999. That is all. When the peel strength is 2.5 kN or more, breakage easily occurs in the fiber-reinforced thermoplastic resin layer, and the metal plate layer and the fiber-reinforced thermoplastic resin layer easily follow each other, so that cold working is performed. It will be easier. In addition, in this laminated panel, the breakage occurs in the fiber reinforced thermoplastic resin layer during the peel test. The upper limit of the peel strength is usually 20 kN/m, preferably 10 kN/m.

本発明において、金属板層を構成する金属板は降伏比92%以下のものであることが好ましく、降伏比が92%以下であることにより、深絞り加工がより容易となる。 In the present invention, the metal plate forming the metal plate layer preferably has a yield ratio of 92% or less, and the yield ratio of 92% or less facilitates deep drawing.

降伏比とは、金属板における耐力の引張強さに対する比率であり、引張強度試験により得られる耐力及び引張強さから算出される。降伏比が低いほどプレス金型等へのなじみが良く、良い成形形状が得られるので、プレス成形及び絞り加工の成形性に対する指標として広く使用される。
本発明で用いる金属板層を構成する金属板の降伏比はより好ましくは85%以下、40%以上であり、さらに好ましくは80%以下、45%以上である。
The yield ratio is a ratio of proof stress to tensile strength of a metal plate, and is calculated from proof stress and tensile strength obtained by a tensile strength test. The lower the yield ratio, the better the fitting to a press die or the like and the better forming shape can be obtained. Therefore, it is widely used as an index for the formability of press forming and drawing.
The yield ratio of the metal plate constituting the metal plate layer used in the present invention is more preferably 85% or less and 40% or more, and further preferably 80% or less and 45% or more.

金属板層3を構成する金属板の材質としては、目的、用途、物性に応じて、鉄、ステンレス等の鋼板の他、アルミニウム、マグネシウム、チタン、それらを含む合金からなる群より選択される少なくとも一種が用いられる。中でも、軽量性(比重と剛性のバランス)の点から鉄、アルミ及びこれらを含む合金、ステンレスが好ましく、コストの点から、鉄、アルミ及びこれらを含む合金がより好ましい。 The material of the metal plate forming the metal plate layer 3 is at least selected from the group consisting of steel plates such as iron and stainless steel, aluminum, magnesium, titanium, and alloys containing them, depending on the purpose, application, and physical properties. One kind is used. Among them, iron, aluminum and alloys containing them, and stainless steel are preferable from the viewpoint of lightness (balance of specific gravity and rigidity), and iron, aluminum and alloys containing these are more preferable from the viewpoint of cost.

また、金属板の材質としては、金属板層単体試験片についてJIS Z2241:2011(金属材料引張試験方法)に従って室温(23℃)で測定される引張強度が200〜1500MPaであることが好ましく、250〜1000MPaであることがより好ましく、280〜600MPaであることがさらに好ましい。このような引張強度を有する金属板を用いることにより、冷間深絞り性等の冷間加工性を確保しながら、金属板層の厚みを可能な限り薄くすることができ、積層体パネルがより軽量となる傾向にあり好ましい。室温(23℃)における引張伸び率は、10〜80%であることが好ましく、12〜80%であることがより好ましく、20〜80%であることがさらに好ましい。このような引張伸び率を有する金属板を用いることにより、冷間深絞り等の冷間塑性加工時に金属板層が破断し難くなり、冷間塑性加工性が良好となる傾向にあり好ましい。 Further, as the material of the metal plate, the tensile strength measured at room temperature (23° C.) of the metal plate layer unit test piece according to JIS Z2241:2011 (metal material tensile test method) is preferably 200 to 1500 MPa, and 250 ˜1000 MPa is more preferable, and 280 to 600 MPa is further preferable. By using a metal plate having such tensile strength, the thickness of the metal plate layer can be made as thin as possible while ensuring cold workability such as cold deep drawability, and the laminate panel can be made more It tends to be lightweight, which is preferable. The tensile elongation at room temperature (23° C.) is preferably 10 to 80%, more preferably 12 to 80%, and further preferably 20 to 80%. By using a metal plate having such a tensile elongation, the metal plate layer is less likely to break during cold plastic working such as cold deep drawing, and cold plastic workability tends to be favorable, which is preferable.

金属板層の厚みtは、鋼板の場合には通常0.05〜1mm、好ましくは0.08〜0.6mm、より好ましくは0.1〜0.4mm、アルミ合金の場合には通常0.1〜2mm、好ましくは0.15〜1mm、より好ましくは0.2〜0.5mmであることが、積層パネルの剛性、軽量性の観点から好ましい。用途及びその要求特性に応じて繊維強化熱可塑性樹脂層(コア層)の厚みと金属板層の厚みを適宜選定することで、鋼材やアルミ材単体との等価剛性、等価強度を任意に設定可能である。The thickness t 3 of the metal plate layer is usually 0.05 to 1 mm in the case of a steel plate, preferably 0.08 to 0.6 mm, more preferably 0.1 to 0.4 mm, and usually 0 in the case of an aluminum alloy. It is preferably from 1 to 2 mm, preferably from 0.15 to 1 mm, and more preferably from 0.2 to 0.5 mm from the viewpoint of rigidity and lightness of the laminated panel. By appropriately selecting the thickness of the fiber reinforced thermoplastic resin layer (core layer) and the thickness of the metal plate layer according to the application and its required characteristics, the equivalent rigidity and equivalent strength of steel and aluminum materials can be set arbitrarily. Is.

金属板としては繊維強化熱可塑性樹脂層の種類、厚みにもよるが、軽量性、高剛性の観点から厚み0.1〜2mmのアルミ合金が好ましく、A1060、A1100−O、A2011、A2014、A2017,A2024、A2025、A2117、A2219、A3003−O、A3004、A3105、A4032、A5005−O、A5052、A5056、A5086、A5154、A5182、A5254、A5454、A5652、A6061、A6063、A6066、A6101、6N01、A7001、A7003、A7050、A7075,A7178、7N01、A7475等が利用できる。 As the metal plate, an aluminum alloy having a thickness of 0.1 to 2 mm is preferable from the viewpoints of lightness and high rigidity, although it depends on the type and thickness of the fiber-reinforced thermoplastic resin layer. A1060, A1100-O, A2011, A2014, A2017 , A2024, A2025, A2117, A2219, A3003-O, A3004, A3105, A4032, A5005-O, A5052, A5056, A5086, A5154, A5182, A5254, A5544, A5652, A6061, A6063, A6066, A6101, 6N01, A7001. , A7003, A7050, A7075, A7178, 7N01, A7475, etc. can be used.

中でも入手性の観点から、A5182(O,H34,H38)、A6061(T6,T651,T8),A6063(T6,T83,T832)等が活用できる。 Among them, from the viewpoint of availability, A5182 (O, H34, H38), A6061 (T6, T651, T8), A6063 (T6, T83, T832) and the like can be utilized.

なお、アルミ合金以外にはSPCC、SPCD、SPCE等の冷間圧延鋼板、SGCC等の溶融亜鉛めっき鋼板、SECC等の電気亜鉛めっき鋼板等の鋼板やステンレス合金系も活用できる。 In addition to aluminum alloys, cold-rolled steel sheets such as SPCC, SPCD and SPCE, hot-dip galvanized steel sheets such as SGCC, electrogalvanized steel sheets such as SECC and stainless steel alloys can be used.

なお、金属板層を構成する金属板は板状のものであることが好ましいが、本発明の積層パネルを成形加工できる形状であれば板状のものに限られず、湾曲していてもよいし、折れ曲がっていてもよい。また、表面が平らではない凹凸を有する形状のもの等であってもよい。凹凸形状としては、レンズ状、円錐、三角錐、四角錘、卍状等凹凸が連続的に配置されたアレイが好ましい。 The metal plate forming the metal plate layer is preferably a plate-shaped one, but is not limited to a plate-shaped one as long as the laminated panel of the present invention can be formed and processed, and may be curved. , It may be bent. Further, it may have a shape having unevenness such that the surface is not flat. As the concavo-convex shape, an array in which concavo-convex shapes such as a lens shape, a cone, a triangular pyramid, a quadrangular pyramid, and a swastika are continuously arranged is preferable.

本発明の繊維強化熱可塑性樹脂層は、熱可塑性樹脂に不織布又は平均繊維長10mm以上のチョップド繊維を含むものであればよい。熱可塑性樹脂中にこのような繊維を含むことにより、本発明の積層パネルを用いて後述の塑性加工等の成形加工を行う際に、繊維同士の摩擦や繊維と熱可塑性樹脂とのずれによる摩擦エネルギー(摩擦熱)が発生し、繊維強化熱可塑性樹脂層が軟化しやすくなり、低い加工温度であっても塑性加工がより容易となる利点がある。 The fiber-reinforced thermoplastic resin layer of the present invention may be a thermoplastic resin containing a nonwoven fabric or chopped fibers having an average fiber length of 10 mm or more. By including such a fiber in the thermoplastic resin, when performing a forming process such as a plastic process described later using the laminated panel of the present invention, friction due to friction between the fibers and friction due to the shift between the fiber and the thermoplastic resin. Energy (friction heat) is generated, the fiber-reinforced thermoplastic resin layer is easily softened, and there is an advantage that plastic working becomes easier even at a low working temperature.

ガラス短繊維による繊維強化熱可塑性樹脂は、通常、射出成形や押出成形で用いられる熱可塑性樹脂組成物であり、混練押出機によるコンパウンドで得ることができるものであり、射出成形や押出成形後のガラス繊維等強化繊維の残存繊維長は通常は1mm以下となるため、本積層パネルには適さない。 Fiber-reinforced thermoplastic resin with short glass fibers is usually a thermoplastic resin composition used in injection molding and extrusion molding, which can be obtained by compounding with a kneading extruder, and can be used after injection molding or extrusion molding. The residual fiber length of the reinforcing fiber such as glass fiber is usually 1 mm or less, and is not suitable for the present laminated panel.

長繊維チョップド繊維による繊維強化熱可塑性樹脂は、通常、射出成形や押出成形で用いられる熱可塑性樹脂組成物であるが、射出成形や押出成形時にガラス繊維等強化繊維は1mm以下となり物性低下を来すため、この残存繊維長を意図的に数mm以上にするように、直接、ガラス繊維等強化繊維の連続繊維を成形時に複合化する工程を設けたものがある。これらの代表例としては、PPやPA、PPS等の熱可塑性樹脂をベースレジンとするLFT(Long Fiber Thermoplastic)、D−LFT(Direct Long Fiber Thermoplastic)等が挙げられる。 A fiber-reinforced thermoplastic resin made of long-fiber chopped fibers is a thermoplastic resin composition that is usually used in injection molding or extrusion molding. However, during injection molding or extrusion molding, reinforced fibers such as glass fibers become 1 mm or less and physical properties deteriorate. Therefore, in some cases, a step of directly compounding continuous fibers of reinforcing fibers such as glass fibers into a composite is provided so that the residual fiber length is intentionally set to several mm or more. Typical examples of these include LFT (Long Fiber Thermoplastic) and D-LFT (Direct Long Fiber Thermoplastic) using a thermoplastic resin such as PP, PA or PPS as a base resin.

これらは、製造工程にもよるが、射出成形や押出成形時の混練工程によるガラス繊維の切断を極力抑制することで10〜数十mm程度の残存繊維長を確保できるため、本積層パネルに適用可能である。このようなLFTの代表例としては、商品名ファンクスター(日本ポリプロ株式会社製)やプラストロン(ダイセル株式会社製)、モストロン−L(株式会社プライムポリマー製)、クイックフォーム(東洋紡株式会社製)等が挙げられる。 Although these depend on the manufacturing process, the residual fiber length of 10 to several tens of mm can be secured by suppressing the cutting of the glass fiber by the kneading process at the time of injection molding or extrusion molding. It is possible. Typical examples of such an LFT are trade names Funkster (manufactured by Nippon Polypro Co., Ltd.), Plastron (manufactured by Daicel Co., Ltd.), Mostron-L (manufactured by Prime Polymer Co., Ltd.), and quick foam (manufactured by Toyobo Co., Ltd.). Etc.

チョップド繊維を用いる場合、繊維強化熱可塑性樹脂層中の平均繊維長が10mm以上、好ましくは20mm以上、より好ましくは30mm以上となるものであれば、どのようなチョップド繊維を使用してもよい。チョップド繊維は通常、モノフィラメントを集束した強化繊維(ストランド)を所定の長さに切断したものとして使用され、例えば、該ストランドに熱可塑性樹脂を含浸させて所定の長さに切断した長繊維ペレットの形態として使用される。繊維強化熱可塑性樹脂層中では通常これらが開繊された状態で存在するが、本発明においては、このように開繊されたチョップド繊維に加え未開繊状態の繊維も含めるものとする。 When chopped fibers are used, any chopped fibers may be used as long as the average fiber length in the fiber-reinforced thermoplastic resin layer is 10 mm or more, preferably 20 mm or more, more preferably 30 mm or more. The chopped fiber is usually used as a reinforcing fiber (strand) obtained by bundling monofilaments cut into a predetermined length. For example, a long fiber pellet cut into a predetermined length by impregnating the strand with a thermoplastic resin is used. Used as a form. In the fiber-reinforced thermoplastic resin layer, these are usually present in an opened state, but in the present invention, in addition to the chopped fibers thus opened, unopened fibers are also included.

繊維強化熱可塑性樹脂層に用いる繊維が不織布の場合は、ウェブの形成法として、乾式、湿式、スパンボンド法、メルトブローン法、エアレイド法が挙げられ、繊維の結合法として、ニードルパンチ法、ケミカルボンド法(浸漬法・スプレー法)、サーマルボンド法、水流交絡法等が挙げられ、これらの組合せにより調製された不織布が好適に利用できる。不織布の中でも特に好ましくは、繊維が相互に絡み合ったニードルパンチ法により製造された不織布である。 When the fiber used for the fiber-reinforced thermoplastic resin layer is a non-woven fabric, the web forming method includes a dry method, a wet method, a spunbond method, a meltblown method, and an airlaid method, and a fiber-bonding method includes a needle punch method and a chemical bond method. Methods (immersion method/spray method), thermal bond method, hydroentangling method, and the like, and a non-woven fabric prepared by a combination thereof can be suitably used. Among the non-woven fabrics, a non-woven fabric manufactured by a needle punching method in which fibers are intertwined with each other is particularly preferable.

不織布を用いた繊維強化熱可塑性樹脂としての代表例としては、商品名GMT(Glass MAT Thermoplastic: Quadrant Plastic Composites Japan(株)社製)、GMTex(Glass Mat Textile Thermoplastic: Quadrant Plastic Composites Japan(株)社製))等が挙げられる。なお、本発明においては、上記の不織布を用いた繊維強化熱可塑性樹脂に加えて、織物や編物を用いた繊維強化熱可塑性樹脂材料を用いることを妨げるものではない。織物を用いた繊維強化熱可塑性樹脂としての代表例としては、Q−Tex(Quadrant Plastic Composites社製)等が挙げられる。 Typical examples of the fiber reinforced thermoplastic resin using a non-woven fabric are GMT (Glass MAT Thermoplastic: manufactured by Quadrant Plastic Composites Japan Co., Ltd.), GMtex (Glass Mat texlastoplastic Plastic Qrastic Plastic Co., Ltd.). Manufactured)) and the like. In addition, in the present invention, in addition to the fiber-reinforced thermoplastic resin using the above-mentioned nonwoven fabric, the use of a fiber-reinforced thermoplastic resin material using a woven fabric or a knitted fabric is not hindered. A typical example of the fiber-reinforced thermoplastic resin using a woven fabric is Q-Tex (manufactured by Quadrant Plastic Composites).

不織布の中でも特に好ましくは、相互に繊維が絡み合ったニードルパンチにより製造された不織布である。強化繊維として不織布と織物を組み合わせた繊維強化熱可塑性樹脂層も好適である。何れも、繊維が相互に拘束されているので、高い耐衝撃性が確保でき、塑性加工時の繊維の切断や繊維の偏在が抑制でき、使用時の物性低下を抑制しやすい。
これらは、ニードルパンチ工程の条件にもよるが、最低でも5mm以上、通常25mm以上、好ましくは40mm以上の残存繊維長が確保できるため、本積層パネルに適用可能である。繊維強化熱可塑性樹脂層中の繊維の平均繊維長は25mm以上であることが好ましく、40mm以上であることがより好ましく、70mm以上であることがさらに好ましい。また、連続繊維の形態であることも好ましい。
なお、本発明における平均繊維長は、繊維強化熱可塑性樹脂層を灰化処理し、得られた残分中の繊維について測定される繊維長の数平均値を採用する。
Among the non-woven fabrics, a non-woven fabric manufactured by needle punching in which fibers are intertwined with each other is particularly preferable. A fiber-reinforced thermoplastic resin layer obtained by combining a non-woven fabric and a woven fabric as the reinforcing fiber is also suitable. In each case, since the fibers are bound to each other, high impact resistance can be secured, cutting of fibers during plastic working and uneven distribution of fibers can be suppressed, and deterioration of physical properties during use can be easily suppressed.
These can be applied to the present laminated panel, since the residual fiber length of at least 5 mm or more, usually 25 mm or more, preferably 40 mm or more can be secured, depending on the conditions of the needle punching process. The average fiber length of the fibers in the fiber-reinforced thermoplastic resin layer is preferably 25 mm or more, more preferably 40 mm or more, and further preferably 70 mm or more. It is also preferably in the form of continuous fibers.
As the average fiber length in the present invention, the number average value of the fiber lengths measured for the fibers in the residue obtained by ashing the fiber-reinforced thermoplastic resin layer is adopted.

繊維強化熱可塑性樹脂層2の厚みtは、通常0.2〜4mmであり、好ましくは0.3〜3mm、特に0.4〜2mmであることが好ましい。繊維強化熱可塑性樹脂層2の厚みを上記範囲内とすることにより、冷間塑性加工時におけるスプリング・バックによる変形が抑制されやすくなり好ましい。The thickness t2 of the fiber reinforced thermoplastic resin layer 2 is usually 0.2 to 4 mm, preferably 0.3 to 3 mm, and particularly preferably 0.4 to 2 mm. By setting the thickness of the fiber-reinforced thermoplastic resin layer 2 within the above range, deformation due to spring back during cold plastic working is easily suppressed, which is preferable.

繊維強化熱可塑性樹脂層2を構成する繊維としては、無機繊維、有機繊維、金属繊維などの強化繊維を1種又は2種以上用いることができる。中でも、軽量性、弾性率の点から無機繊維が好ましく、軽量性、伸び率、冷間加工性の点から有機繊維が好ましい。 As the fibers constituting the fiber-reinforced thermoplastic resin layer 2, one or more kinds of reinforcing fibers such as inorganic fibers, organic fibers and metal fibers can be used. Among them, inorganic fibers are preferable from the viewpoints of lightness and elasticity, and organic fibers are preferable from the viewpoints of lightness, elongation and cold workability.

無機繊維としては、ガラス繊維、炭素繊維、ボロン繊維、炭化ケイ素繊維、アルミナ繊維等が例示される。有機繊維としては、アラミド繊維、ポリパラフェニレンベンズオキサゾール繊維(PBO繊維)、高強力ポリエチレン繊維やポリプロピレン繊維、ポリアミド繊維、ポリエステル繊維やこれらを延伸配向強化した自己強化繊維等が例示される。金属繊維としては、アルミ繊維、アルミナ繊維、SUS繊維、銅繊維等が例示される。
強化繊維の形態としては、不織布、チョップド繊維(平均繊維長10mm以上)、不織布と織物または編物の組合せが挙げられ、中でも不織布、チョップド繊維が好適である。コスト、耐衝撃性能、成形性のバランスからガラス繊維又は炭素繊維、特にガラス繊維による不織布、平均繊維長10mm以上のチョップド繊維が好適である。
Examples of the inorganic fiber include glass fiber, carbon fiber, boron fiber, silicon carbide fiber, alumina fiber and the like. Examples of the organic fiber include aramid fiber, polyparaphenylene benzoxazole fiber (PBO fiber), high-strength polyethylene fiber, polypropylene fiber, polyamide fiber, polyester fiber, and self-reinforced fiber obtained by stretching and strengthening these fibers. Examples of metal fibers include aluminum fibers, alumina fibers, SUS fibers, and copper fibers.
Examples of the form of the reinforcing fiber include non-woven fabric, chopped fiber (average fiber length of 10 mm or more), and a combination of non-woven fabric and woven or knitted fabric, and among them, non-woven fabric and chopped fiber are preferable. From the balance of cost, impact resistance, and moldability, glass fiber or carbon fiber, particularly nonwoven fabric made of glass fiber, and chopped fiber having an average fiber length of 10 mm or more are preferable.

好ましく用いられる有機繊維は、有機繊維の融点と繊維強化熱可塑性樹脂層に用いる熱可塑性樹脂の融点又はガラス転移温度との差が40℃以上であるものが、熱可塑性樹脂を有機繊維に含浸させる際等の有機繊維の形態維持の点から好ましい。上記の温度差は、50〜200℃であることがより好ましく、60〜150℃であることがさらに好ましい。なお、上記温度差の算出には、繊維強化熱可塑性樹脂層に用いる熱可塑性樹脂が結晶性の場合は融点を、非晶性の場合はガラス転移温度を採用する。
また、繊維強化熱可塑性樹脂層に複数の熱可塑性樹脂を使用する場合は、これらの樹脂の融点又はガラス転移温度の平均値を採用する。複数の有機繊維を使用する場合は、これら有機繊維の融点の平均値を採用する。なお、融点、ガラス転移温度の測定は、示差走査熱量分析計(DSC)を用いて測定される。融点は、得られるDSC曲線の吸熱ピークのピークトップの温度とする。具体的には、25℃から10℃/分の昇温条件下、予想される融点+50℃程度まで昇温し、同温度にて1分間保持後、10℃/分にて25℃まで降温し、同温度にて1分間保持する。その後、10℃/分の昇温条件下で再度昇温した際のDSC曲線から求めることができる。
The organic fiber preferably used is one having a difference of 40° C. or more between the melting point of the organic fiber and the melting point or the glass transition temperature of the thermoplastic resin used for the fiber-reinforced thermoplastic resin layer, and the organic resin is impregnated with the thermoplastic resin. It is preferable from the viewpoint of maintaining the morphology of the organic fiber at the time. The temperature difference is more preferably 50 to 200°C, and further preferably 60 to 150°C. For the calculation of the temperature difference, the melting point is adopted when the thermoplastic resin used for the fiber reinforced thermoplastic resin layer is crystalline, and the glass transition temperature is adopted when it is amorphous.
When a plurality of thermoplastic resins are used in the fiber reinforced thermoplastic resin layer, the average value of the melting points or glass transition temperatures of these resins is adopted. When using a plurality of organic fibers, the average value of the melting points of these organic fibers is adopted. The melting point and glass transition temperature are measured using a differential scanning calorimeter (DSC). The melting point is the temperature at the peak top of the endothermic peak of the obtained DSC curve. Specifically, the temperature is raised from 25°C to 10°C/min to the expected melting point +50°C, held at the same temperature for 1 minute, and then lowered to 25°C at 10°C/min. , Hold at the same temperature for 1 minute. Then, it can be determined from the DSC curve when the temperature is raised again under the temperature rising condition of 10° C./min.

また、有機繊維としては、融点が好ましくは160℃以上、より好ましくは200℃以上、さらに好ましくは220℃以上、特に好ましくは250℃以上の結晶性熱可塑性樹脂からなるものであるが好ましい。融点が160℃以上であることにより、結晶性熱可塑性樹脂の融点や非晶性熱可塑樹脂のガラス転移温度付近まで、繊維強化熱可塑性樹脂層の熱変形温度(耐熱性)が向上し、結果として、積層パネルの耐熱性が向上する傾向となり好ましい。 The organic fiber is preferably a crystalline thermoplastic resin having a melting point of preferably 160° C. or higher, more preferably 200° C. or higher, even more preferably 220° C. or higher, and particularly preferably 250° C. or higher. When the melting point is 160° C. or higher, the heat distortion temperature (heat resistance) of the fiber-reinforced thermoplastic resin layer is improved to near the melting point of the crystalline thermoplastic resin or the glass transition temperature of the amorphous thermoplastic resin. As a result, the heat resistance of the laminated panel tends to be improved, which is preferable.

有機繊維の形態としては、フィラメント、ステープル及びフラットヤーン等の何れであってもよく、これら1種又は2種以上からなる不織布として用いることが好ましい。フィラメントの形態は、長繊維(連続繊維)であり、ステープルはフィラメントを収束したステープル・トウを切断して綿状にした短繊維であり、通常繊維長は35〜100mm度である。フラットヤーンは、熱可塑性樹脂等のフィルムを短冊状にカット(スリット)し、延伸することにより強度を持たせた平らな糸である。 The form of the organic fibers may be any of filaments, staples, flat yarns and the like, and it is preferable to use them as a non-woven fabric composed of one or more of these. The form of the filament is a long fiber (continuous fiber), and the staple is a short fiber obtained by cutting a staple tow in which filaments are bundled into a cotton shape, and usually has a fiber length of 35 to 100 mm. The flat yarn is a flat yarn obtained by cutting (slitting) a film of a thermoplastic resin or the like into a strip shape and stretching the film to give strength.

特に、有機繊維を用いたニードルパンチ法による不織布の場合においては、有機繊維の形態が、平均繊維長5〜400mmであることが好ましく、25〜300mmであることがより好ましく、40〜200mmであることがさらに好ましい。また、連続繊維の形態であることも好ましい。このような繊維長とすることにより、繊維が均質に分散し相互に絡み合いやすくなるので、繊維強化熱可塑性樹脂層の機械強度、耐熱性が向上する傾向となり好ましい。
平均繊度は1〜30dexであることが好ましく、2〜20dtexであることがより好ましく、3〜15dtexであることがさらに好ましい。このような平均繊度とすることにより、熱可塑性樹脂と有機繊維との界面が増大し、繊維強化熱可塑性樹脂層の機械強度、耐熱性が向上する傾向となり好ましい。
目付は50〜1500g/mであることが好ましく、100〜1000g/mであることがより好ましい。このような目付量とすることにより、繊維強化熱可塑性樹脂層の厚みを変えることにより、用途毎に要求される積層パネルの剛性を必要に応じて調整しやすく、冷間塑性加工性が確保しやすい傾向となり好ましい。
In particular, in the case of a non-woven fabric by the needle punch method using organic fibers, the morphology of the organic fibers is preferably 5 to 400 mm in average fiber length, more preferably 25 to 300 mm, and more preferably 40 to 200 mm. Is more preferable. It is also preferably in the form of continuous fibers. With such a fiber length, the fibers are homogeneously dispersed and easily entangled with each other, which is preferable because the mechanical strength and heat resistance of the fiber-reinforced thermoplastic resin layer tend to be improved.
The average fineness is preferably 1 to 30 dtex, more preferably 2 to 20 dtex, and further preferably 3 to 15 dtex. Such an average fineness is preferable because the interface between the thermoplastic resin and the organic fiber increases, and the mechanical strength and heat resistance of the fiber-reinforced thermoplastic resin layer tend to improve.
Preferably the basis weight is 50 to 1500 g / m 2, and more preferably 100 to 1000 g / m 2. By changing the thickness of the fiber reinforced thermoplastic resin layer by setting such a basis weight, it is easy to adjust the rigidity of the laminated panel required for each application as needed, and the cold plastic workability is ensured. It tends to be easy and is preferable.

また、有機繊維として不織布と織物を組み合わせた有機繊維強化熱可塑性樹脂層も好適である。何れも、繊維が相互に拘束されているので、高い耐衝撃性が確保でき、冷間塑性加工時の繊維の切断や繊維の偏在、目開きが抑制でき、使用時の物性低下を抑制することできる。 Further, an organic fiber-reinforced thermoplastic resin layer in which a nonwoven fabric and a woven fabric are combined as the organic fiber is also suitable. In each case, since the fibers are bound to each other, high impact resistance can be secured, cutting of fibers during cold plastic working, uneven distribution of fibers, and opening of openings can be suppressed, and deterioration of physical properties during use can be suppressed. it can.

熱可塑性樹脂としては、PP(ポリプロピレン)、PVC(ポリ塩化ビニル)、PA(ポリアクリロニトリル)、PC(ポリカーボネート)、PPS(ポリフェニレンサルファイド)、PEEK(ポリエーテルエーテルケトン)のほか、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)等のポリエステル、PES(ポリエーテルサルフォン)などが好適であり、中でもPP、PA、PBT、PPS、PEEK等の結晶性樹脂が好ましく、PP、PA、PBTがより好ましく、耐熱性、耐吸湿性、耐加水分解性、コストの点からPPがさらに好ましい。 Examples of the thermoplastic resin include PP (polypropylene), PVC (polyvinyl chloride), PA (polyacrylonitrile), PC (polycarbonate), PPS (polyphenylene sulfide), PEEK (polyether ether ketone), and PET (polyethylene terephthalate). , Polyester such as PBT (polybutylene terephthalate), PES (polyether sulfone) and the like are preferable, and among them, crystalline resins such as PP, PA, PBT, PPS and PEEK are preferable, and PP, PA and PBT are more preferable. PP is more preferable in terms of heat resistance, moisture absorption resistance, hydrolysis resistance, and cost.

繊維強化熱可塑性樹脂層中の繊維の体積含有率Vfは、10〜80体積%、さらには15〜70体積%であることが好ましい。体積含有率Vfが10体積%未満であると繊維による補強効果が現れにくく、80体積%を超えると繊維強化熱可塑性樹脂層にボイドができ、応力集中により衝撃強度が低下しやすくなったり、冷間加工等の加工時に割れやすくなったりする場合があるため、好ましくない。
繊維強化熱可塑性樹脂層中の繊維の重量体積含有率Wfは、20〜80重量%、さらには25〜75重量%であることが好ましい。体積含有率Wfが20重量%未満であると繊維による補強効果が現れにくく、80重量%を超えると繊維強化熱可塑性樹脂層にボイドができ、応力集中により衝撃強度が低下しやすくなったり、冷間加工等の加工時に割れやすくなったりするため、好ましくない。
The volume content Vf of the fibers in the fiber-reinforced thermoplastic resin layer is preferably 10 to 80% by volume, more preferably 15 to 70% by volume. When the volume content Vf is less than 10% by volume, the reinforcing effect by the fiber is difficult to appear, and when it exceeds 80% by volume, voids are formed in the fiber-reinforced thermoplastic resin layer, and the stress strength is likely to be lowered due to stress concentration. It is not preferable because it may be easily broken during processing such as hot working.
The weight volume content Wf of the fibers in the fiber reinforced thermoplastic resin layer is preferably 20 to 80% by weight, more preferably 25 to 75% by weight. When the volume content Wf is less than 20% by weight, the reinforcing effect by the fibers is difficult to appear, and when it exceeds 80% by weight, voids are formed in the fiber reinforced thermoplastic resin layer, and the stress concentration is apt to reduce the impact strength, or It is not preferable because it tends to crack during processing such as hot working.

繊維強化熱可塑性樹脂層の製造方法は、特に限定されるものではなく、従来公知の方法を採用することができる。
繊維強化熱可塑性樹脂層に用いる繊維がチョップド繊維の場合は、例えば、チョップド繊維を含有する樹脂ペレットを加熱溶融して直接積層パネルの繊維強化熱可塑性樹脂層を形成するか、樹脂ペレットを加熱溶融して予めシート化しておき、それと金属板層とを加熱融着等により積層する方法が挙げられる。また、D−LFT法によって、繊維長30mm以上の状態で、押出機のダイスより吐出した繊維強化熱可塑性樹脂を、繊維の切断を抑制しながら直接に積層、シート化する方法が挙げられる。
The method for producing the fiber-reinforced thermoplastic resin layer is not particularly limited, and a conventionally known method can be adopted.
When the fiber used for the fiber-reinforced thermoplastic resin layer is chopped fiber, for example, the resin pellet containing the chopped fiber is heat-melted to directly form the fiber-reinforced thermoplastic resin layer of the laminated panel, or the resin pellet is heat-melted. Then, a sheet is preliminarily formed into a sheet, and the sheet and the metal plate layer are laminated by heat fusion or the like. Further, by the D-LFT method, in a state where the fiber length is 30 mm or more, the fiber-reinforced thermoplastic resin discharged from the die of the extruder is directly laminated and formed into a sheet while suppressing the cutting of the fiber.

繊維強化熱可塑性樹脂層に用いる繊維が不織布の場合は、例えば、熱可塑性樹脂を押出機に投入し溶融させたのち、所望の厚みのシート状に押出成形するとともに、押出されたシート状物の少なくとも片面、好ましくは両面に不織布を供給して積層することにより製造することができる。得られた積層体の表面に、さらに熱可塑性樹脂シートを表裏に供給して積層することもできる。積層する際は、ラミネーター等を用いて加熱及び加圧し、熱可塑性樹脂を不織布に含浸させ、次いで冷却固化させシート状(所謂スタンパブルシート)にすることによって繊維強化熱可塑性樹脂層を製造することができる。また、工程短縮化の観点から、不織布と熱可塑性樹脂シートとを積層し、金属板と一度に熱成形することによって本発明の積層パネルの繊維強化熱可塑性樹脂層とすることも可能である。 When the fiber used for the fiber reinforced thermoplastic resin layer is a non-woven fabric, for example, the thermoplastic resin is charged into an extruder and melted, and then extruded into a sheet having a desired thickness, and the extruded sheet It can be manufactured by supplying and laminating a nonwoven fabric on at least one side, preferably both sides. On the surface of the obtained laminate, a thermoplastic resin sheet may be further supplied to the front and back to be laminated. When laminating, heat and pressurize using a laminator etc. to impregnate the non-woven fabric with a thermoplastic resin, and then cool and solidify to form a sheet-like (so-called stampable sheet) to produce a fiber reinforced thermoplastic resin layer. You can Further, from the viewpoint of shortening the process, it is also possible to laminate a nonwoven fabric and a thermoplastic resin sheet and thermoform them together with a metal plate to form the fiber-reinforced thermoplastic resin layer of the laminated panel of the present invention.

また、繊維強化熱可塑性樹脂層は、本発明の目的を損なわない範囲で、熱可塑性樹脂及び不織布又は平均繊維長10mm以上のチョップド繊維以外の他の成分を含んでいてもよい。他の成分としては、例えば、紫外線吸収剤、光安定剤、熱安定剤、酸化防止剤、耐衝撃性改質剤、難燃剤、離型剤、滑剤、ブロッキング防止剤、帯電防止剤、強化繊維以外の無機充填材等の各種添加剤が挙げられる。 Further, the fiber-reinforced thermoplastic resin layer may contain a component other than the thermoplastic resin and the non-woven fabric or the chopped fiber having an average fiber length of 10 mm or more within a range not impairing the object of the present invention. Other components include, for example, ultraviolet absorbers, light stabilizers, heat stabilizers, antioxidants, impact modifiers, flame retardants, release agents, lubricants, antiblocking agents, antistatic agents, reinforcing fibers. Other additives such as inorganic fillers other than

繊維強化熱可塑性樹脂層は、0.2mm以上の厚みであって、該繊維強化熱可塑性樹脂層単層の単体試験片によるパンクチャー衝撃試験(ASTM D3763、ストライカ径1/2inch、衝撃速度4.4m/s、支持台内径:3inch、試験温度:23℃)の条件下にて試験片厚み当たりの最大衝撃力が0.5kN/mm以上である場合、使用時の衝撃強度の向上のみならず、折り曲げやプレス成形(絞り成形)等塑性加工(板金加工)を容易とすることができ、好ましい。この最大衝撃力は0.7〜10kN/mmであることが好適であり、特に0.8〜5kN/mmであることがより好適である。 The fiber reinforced thermoplastic resin layer has a thickness of 0.2 mm or more, and a puncture impact test (ASTM D3763, striker diameter 1/2 inch, impact velocity 4.) with a single test piece of the fiber reinforced thermoplastic resin layer single layer. When the maximum impact force per thickness of the test piece is 0.5 kN/mm or more under the conditions of 4 m/s, support table inner diameter: 3 inch, test temperature: 23° C., not only the impact strength during use is improved. It is preferable because it can facilitate plastic working (sheet metal working) such as bending and press molding (drawing). This maximum impact force is preferably 0.7 to 10 kN/mm, and more preferably 0.8 to 5 kN/mm.

また、繊維強化熱可塑性樹脂層は、該繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244−4:1999(プラスチック−動的機械特性の試験方法、周波数100Hz、試験片厚み2mm、試験温度23℃)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ)値が1.0GPa以上であると、繊維強化熱可塑性樹脂層の可塑化が過剰となりにくく、金属板層の塑性変形と追従しながら繊維強化熱可塑性樹脂層も変形しやすくなるため、塑性加工がより容易となる傾向となり好ましい。 The fiber reinforced thermoplastic resin layer is a dynamic viscoelasticity test of the fiber reinforced thermoplastic resin layer unit test piece (JIS K 7244-4:1999 (Plastic-Dynamic mechanical property test method, frequency 100 Hz, test piece When the ratio (specific storage elastic modulus value: E′/ρ) of storage elastic modulus E′ to specific gravity ρ of the fiber-reinforced thermoplastic resin layer at a thickness of 2 mm and a test temperature of 23° C. is 1.0 GPa or more, The reinforced thermoplastic resin layer is less likely to be excessively plasticized, and the fiber-reinforced thermoplastic resin layer is likely to be deformed while following the plastic deformation of the metal plate layer, which is preferable because the plastic working tends to be easier.

ここで、繊維強化熱可塑性樹脂層の比貯蔵弾性率は、動的粘弾性測定装置(例えば、レオロジー社製FTレオスペクトラー)を用いて繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244−4:1999(プラスチック−動的機械特性の試験方法、周波数100Hz、試験片厚み2mm))の条件で、室温から200℃までの温度依存性を測定して求めることができる。なお、繊維強化熱可塑性樹脂層の比重ρ(無次元)も温度依存性があるが、ここでは室温(23℃)での重量と体積の測定値から算出された値を代表値として適用することができる。 Here, the specific storage elastic modulus of the fiber-reinforced thermoplastic resin layer is determined by using a dynamic viscoelasticity measuring device (for example, FT Rheospectler manufactured by Rheology Co., Ltd.). It can be determined by measuring the temperature dependence from room temperature to 200° C. under the conditions of the test (JIS K 7244-4:1999 (Plastic-Test method for dynamic mechanical properties, frequency 100 Hz, test piece thickness 2 mm)). .. The specific gravity ρ (dimensionless) of the fiber reinforced thermoplastic resin layer also has temperature dependency, but here, the value calculated from the measured values of weight and volume at room temperature (23°C) should be applied as a representative value. You can

上記の繊維強化熱可塑性樹脂層の比貯蔵弾性率値(E′/ρ)値は、より好ましくは1.5GPa以上であり、更に好ましくは1.8GPa以上である。一方、繊維強化熱可塑性樹脂の弾性率から、この値は通常50GPa以下、好ましくは30GPa以下、より好ましくは20GPa以下である。上限を50GPa以下とすることにより、冷間塑性加工時に、繊維強化熱可塑性樹脂による金属板層の破壊や、高硬度の強化繊維を使用した場合の強化繊維による金属板表面への転写痕の発生が抑制されやすくなり好ましい。 The specific storage elastic modulus value (E′/ρ) value of the fiber-reinforced thermoplastic resin layer is more preferably 1.5 GPa or more, and further preferably 1.8 GPa or more. On the other hand, from the elastic modulus of the fiber-reinforced thermoplastic resin, this value is usually 50 GPa or less, preferably 30 GPa or less, more preferably 20 GPa or less. By setting the upper limit to 50 GPa or less, the metal plate layer is broken by the fiber reinforced thermoplastic resin during cold plastic working, or the transfer mark is generated on the metal plate surface by the reinforcing fiber when the high hardness reinforcing fiber is used. Is easily suppressed, which is preferable.

繊維強化熱可塑性樹脂層と金属板層との接合(接着)方法については、特に制限がなく、各種の方法が適用できるが、剥離強度試験時に繊維強化熱可塑性樹脂層で母材破壊を起こすほど剥離試験強度が強固であることが必須となる。JIS K6854−4:1999の浮動ローラー法剥離試験で、剥離強度が2.5kN以上であり、且つ界面剥離を起こさず、繊維強化熱可塑性樹脂層で母材破壊を起こす接合(接着)方法であれば、特に制限がなく、公知の方法が好適に適用できる。 There are no particular restrictions on the method of joining (adhesion) the fiber-reinforced thermoplastic resin layer and the metal plate layer, and various methods can be applied, but so much that the base material is destroyed in the fiber-reinforced thermoplastic resin layer during the peel strength test. It is essential that the peel test strength be strong. According to the floating roller method peel test of JIS K6854-4:1999, the peel strength is 2.5 kN or more, and the bonding (adhesion) method does not cause interfacial peeling and causes the base material to break in the fiber reinforced thermoplastic resin layer. If there is no particular limitation, a known method can be suitably applied.

浮動ローラー法剥離試験での剥離強度が2.5kN/m以上であり、且つ繊維強化熱可塑性樹脂層で母材破壊が起こる接合性(接着性)を達成する方法としては、例えば、接着剤を使用した接着層を設ける方法、金属板の表面を例えば、陽極酸化処理、エッチング処理する方法の他、近年大成プラス株式会社により開発されたNMT処理、株式会社UACJにより開発されたKO処理等の金属表面に微細で複雑な凹凸によるアンカー層を設ける方法、株式会社新技術研究所や株式会社東亜電化等によるトリアジンチオール変性化合物を金属表面に化学反応により修飾し、金属表面と熱可塑性樹脂や各種硬化性樹脂等の接着剤との接着性を向上させる方法、株式会社ダイセルが開発したレーザー照射により金属表面に複雑な3次元網目状のステッチ・アンカーと呼ばれる多孔質層を形成する方法等が挙げられる。上述したように、金属板の表面処理を適切に選択する等を行えば、コア材となる繊維強化熱可塑性樹脂層との接着強度が十分に得られる場合があるので、必ずしも接着層は必要ではないが、容易に両層間の接着強度を確保する上では、接着剤または接着性樹脂(接着性フィルム)等の接着層を介して金属板層と繊維強化熱可塑性樹脂層とが接合されたものが望ましい。 As a method for achieving a bondability (adhesiveness) in which a peeling strength in a floating roller peeling test is 2.5 kN/m or more and a base material is broken in a fiber reinforced thermoplastic resin layer, for example, an adhesive is used. In addition to the method of providing the adhesive layer used, the method of anodizing or etching the surface of the metal plate, NMT treatment developed by Taisei Plus Co., Ltd., or KO treatment developed by UACJ Co., Ltd. A method of providing an anchor layer with fine and complex irregularities on the surface, a triazine thiol modified compound by New Technology Research Institute Co., Ltd. or Toa Denka Co., Ltd. is chemically modified on the metal surface, and the metal surface and thermoplastic resin and various curing Examples include a method of improving the adhesiveness with an adhesive such as a hydrophilic resin, a method developed by Daicel Co., Ltd., and a method of forming a complicated three-dimensional mesh-like porous anchor layer called a stitch anchor on a metal surface by laser irradiation. .. As described above, when the surface treatment of the metal plate is appropriately selected, the adhesive strength with the fiber-reinforced thermoplastic resin layer serving as the core material may be sufficiently obtained, so the adhesive layer is not always necessary. However, in order to easily secure the adhesive strength between the two layers, the metal plate layer and the fiber reinforced thermoplastic resin layer are joined via an adhesive layer such as an adhesive or an adhesive resin (adhesive film). Is desirable.

接着剤としては、エポキシ系接着剤、ウレタン系接着剤、ポリエステル系接着剤等を基本としてポリオレフィン系樹脂との接着性を改良したタイプの熱硬化型接着剤等を挙げることができる。あるいは、積層工程で、金属板層と積層される繊維強化熱可塑性樹脂層側の表面に、易接着性のプライマー層を付与しておいて、通常の熱硬化型エポキシ系、ウレタン系、ポリエステル系、アクリル系等の接着剤を用いて金属板層と接着させてもよい。 Examples of the adhesive include a thermosetting adhesive of a type that has improved adhesiveness to a polyolefin resin based on an epoxy adhesive, a urethane adhesive, a polyester adhesive, and the like. Alternatively, in the laminating step, an easily adhering primer layer is provided on the surface of the fiber reinforced thermoplastic resin layer side to be laminated with the metal plate layer, and a normal thermosetting epoxy type, urethane type or polyester type is used. Alternatively, it may be bonded to the metal plate layer using an acrylic adhesive or the like.

接着性樹脂としては、市販の無水マレイン酸−PP共重合体樹脂フィルム(商品名:三菱化学社製モディックP555、クラボウ社製クランベターP6700等)が好適に利用可能である。また、PP系フィルムとしては変性ポリオレフィン接着性樹脂フィルム(三井化学東セロ株式会社製アドマーVE300)、PET系フィルムとしてはヒートシールタイプPETフィルム(帝人デュポンフィルム株式会社製マイラー850)及びフィルム状ホットメルト型接着剤(クラボウ社製クランベターG13)、ナイロン系フィルムとしてはフィルム状ホットメルト型接着剤(クラボウ社製クランベターCN−1003)等が活用できる。または、予め繊維強化熱可塑性樹脂層と同類樹脂のフィルムが積層された金属複合板(ヒシメタル、アルセット(いずれも三菱樹脂株式会社製)等)を使用しても良い。この場合、PP系樹脂層においてはヒシメタルPO、アルセット1P、アルセットHP等が、ポリアミド系樹脂層においてはアルセット1Y、アルセット3Y、アルセットAR等が、PET系樹脂層においてはアルセットEG、アルセットEH等が好適に使用できる。 As the adhesive resin, a commercially available maleic anhydride-PP copolymer resin film (trade name: Modic P555 manufactured by Mitsubishi Chemical Co., Cranbetter P6700 manufactured by Kurabo Industries, etc.) can be preferably used. A modified polyolefin adhesive resin film (Admer VE300 manufactured by Mitsui Chemicals Tohcello Co., Ltd.) is used as the PP film, and a heat seal type PET film (Mylar 850 manufactured by Teijin DuPont Films Co., Ltd.) and a film-shaped hot melt type are used as the PET film. As the adhesive (Cranbetter G13 manufactured by Kurabo Industries), as the nylon film, a film-shaped hot-melt adhesive (Cranbetter CN-1003 manufactured by Kurabo Industries) can be used. Alternatively, a metal composite plate (Hishimetal, Alset (both manufactured by Mitsubishi Plastics Co., Ltd., etc.) in which a film of a resin similar to the fiber-reinforced thermoplastic resin layer is laminated in advance may be used. In this case, HISHIMETAL PO, ALSET 1P, ALSET HP, etc. in the PP resin layer, ALSET 1Y, ALSET 3Y, ALSET AR, etc. in the polyamide resin layer, and ALSET in the PET resin layer. EG, Alset EH and the like can be preferably used.

金属板層の金属板には、表面処理を施した方が接着(接合)強度の向上が期待でき、好ましい。表面処理方法としては、プラズマ処理、UV処理、コロナ処理、エッチング処理、アルカリ電解処理、クロメート処理等の化成処理等各種の化成処理等が挙げられる。 It is preferable that the metal plate of the metal plate layer is subjected to a surface treatment because improvement in adhesion (bonding) strength can be expected. Examples of the surface treatment method include various chemical conversion treatments such as plasma treatment, UV treatment, corona treatment, etching treatment, alkaline electrolysis treatment and chromate treatment.

金属板層と繊維強化熱可塑性樹脂層の接着方法としては、繊維強化熱可塑性樹脂層の熱可塑性樹脂の種類に応じた接着剤や接着性樹脂層を選択し、接合界面に介在させる方法等が挙げられる。具体的には、熱可塑性樹脂フィルムを金属板層に融着させておき、この熱可塑性樹脂フィルム層付きの金属板層と繊維強化熱可塑性樹脂層とを重ね合わせて加熱して金属板層と繊維強化熱可塑性樹脂層とを接着する方法が好適である。また、金属板層と繊維強化熱可塑性樹脂層との間に熱可塑性樹脂フィルムを介在させ、これらを加圧加熱して金属板層と繊維強化熱可塑性樹脂層とで接着させる方法も好適である。
なお、積層パネルの製造に用いる繊維強化熱可塑性樹脂層としては、上述したような予め製造された繊維強化熱可塑性樹脂シートを使用してもよいし、工程短縮化の観点から、不織布と熱可塑性樹脂シートとを積層したものや、チョップド繊維含有樹脂ペレットを直接用いて、金属板と一度に熱成形することによって本発明の積層パネルの繊維強化熱可塑性樹脂層としてもよい。
Examples of the method for adhering the metal plate layer and the fiber-reinforced thermoplastic resin layer include a method of selecting an adhesive or an adhesive resin layer according to the type of the thermoplastic resin of the fiber-reinforced thermoplastic resin layer, and interposing it at the bonding interface. Can be mentioned. Specifically, the thermoplastic resin film is fused to the metal plate layer, and the metal plate layer with the thermoplastic resin film layer and the fiber-reinforced thermoplastic resin layer are superposed and heated to form a metal plate layer. A method of adhering the fiber-reinforced thermoplastic resin layer is suitable. Further, a method in which a thermoplastic resin film is interposed between the metal plate layer and the fiber-reinforced thermoplastic resin layer, and these are pressure-heated to bond the metal plate layer and the fiber-reinforced thermoplastic resin layer to each other is also preferable. ..
As the fiber-reinforced thermoplastic resin layer used for manufacturing the laminated panel, a fiber-reinforced thermoplastic resin sheet manufactured in advance as described above may be used, or from the viewpoint of shortening the process, the nonwoven fabric and the thermoplastic resin may be used. A laminate of the resin sheet or a chopped fiber-containing resin pellet may be directly used to form the fiber-reinforced thermoplastic resin layer of the laminated panel of the present invention by thermoforming with a metal plate at once.

本発明の積層パネルは、上述した繊維強化熱可塑性樹脂層と金属板層を組み合わせて積層し、パネルの最外層が金属板層となる構成であれば、積層数は特に限定されない。中でも、軽量性、剛性、生産性の点から、金属板層/繊維強化熱可塑性樹脂層/金属板層の3層構造であることが好ましい。また、本発明の目的を損なわない範囲で、積層体パネルには、金属板層、本発明の繊維強化熱可塑性樹脂層以外の層を含んでいてもよい。 In the laminated panel of the present invention, the number of laminated layers is not particularly limited as long as the fiber-reinforced thermoplastic resin layer and the metal plate layer described above are laminated in combination and the outermost layer of the panel is the metal plate layer. Of these, a three-layer structure of a metal plate layer/fiber-reinforced thermoplastic resin layer/metal plate layer is preferable from the viewpoints of lightness, rigidity, and productivity. Further, the laminate panel may include layers other than the metal plate layer and the fiber-reinforced thermoplastic resin layer of the present invention, as long as the object of the present invention is not impaired.

接着して得られた積層パネルは、JIS K6854−4:1999の「浮動ローラー法剥離試験」法による試験を行った場合に、剥離強度が2.5kN/m以上、好ましくは3kN/m以上、より好ましくは5kN/m以上であり、且つ破壊は繊維強化熱可塑性樹脂層に生じる。 The laminated panel obtained by adhesion has a peel strength of 2.5 kN/m or more, preferably 3 kN/m or more, when tested by the “floating roller method peel test” method of JIS K6854-4:1999. It is more preferably 5 kN/m or more, and the fracture occurs in the fiber-reinforced thermoplastic resin layer.

このようにして得られる本発明の積層パネルは、下記の積層構成因子を示す式(1)の計算値Zが1以上であるが、好ましくは2以上、より好ましくは3以上、さらに好ましくは5以上である。積層構成因子Zが当該値以上であることは、下記に説明する加工性の観点から好ましい。また、積層構成因子Zは、2000以下であることが好ましく、より好ましくは500以下、さらに好ましくは100以下、特に好ましくは50以下である。積層構成因子Zが当該値以下であることは、軽量化の点から好ましい。
Z=(σm・tm・εm)/(σc・tc・εc) …(1)
σm:金属板層の室温における引張強度(MPa)
tm:金属板層の厚み(mm)
εm:金属板層の室温における引張伸び率(%)
σc:繊維強化熱可塑性樹脂層の室温における引張強度(MPa)
tc:繊維強化熱可塑性樹脂層の厚み(mm)
εc:繊維強化熱可塑性樹脂層の室温における引張伸び率(%)
In the laminated panel of the present invention thus obtained, the calculated value Z of the formula (1) showing the following lamination constituent factors is 1 or more, preferably 2 or more, more preferably 3 or more, and further preferably 5 That is all. It is preferable that the lamination constituent factor Z is equal to or more than the above value from the viewpoint of workability described below. The layer constituent factor Z is preferably 2000 or less, more preferably 500 or less, further preferably 100 or less, and particularly preferably 50 or less. It is preferable that the lamination constituent factor Z is equal to or less than the above value in terms of weight reduction.
Z=(σm·tm·εm)/(σc·tc·εc) (1)
σm: Tensile strength (MPa) of the metal plate layer at room temperature
tm: Thickness of metal plate layer (mm)
εm: Tensile elongation (%) of the metal plate layer at room temperature
σc: Tensile strength (MPa) of the fiber-reinforced thermoplastic resin layer at room temperature
tc: Thickness of fiber reinforced thermoplastic resin layer (mm)
εc: Tensile elongation (%) of the fiber-reinforced thermoplastic resin layer at room temperature

ここで、金属板層の室温(23℃)における引張強度(MPa)、金属板層の室温(23℃)における引張伸び率(%)は、金属板層単体試験片についてJIS Z2241:2011(金属材料引張試験方法)に従って測定した測定値に基づく。
繊維強化熱可塑性樹脂層の室温(23℃)における引張強度(MPa)、繊維強化熱可塑性樹脂層の室温(23℃)における引張伸び率(%)は、該繊維強化熱可塑性樹脂層単体試験片についてJIS K7164:2005(プラスチック−引張特性の試験方法−第4部:等方性及び直交行異方性繊維強化プラスチックの試験条件)に従って測定した測定値に基づく。
金属板層及び繊維強化熱可塑性樹脂層の厚みは平均厚みをいい、リブ、ボス等の部分的に突出する凸部を有する場合等は、これらの凸部を除いた部分の平均厚みをいう。
Here, the tensile strength (MPa) of the metal plate layer at room temperature (23° C.) and the tensile elongation rate (%) of the metal plate layer at room temperature (23° C.) are JIS Z2241:2011 (metal Material tensile test method).
The tensile strength (MPa) of the fiber-reinforced thermoplastic resin layer at room temperature (23° C.) and the tensile elongation (%) of the fiber-reinforced thermoplastic resin layer at room temperature (23° C.) are as follows: Is measured according to JIS K7164:2005 (Plastics-Testing method for tensile properties-Part 4: Test conditions for isotropic and orthogonal row anisotropic fiber reinforced plastics).
The thickness of the metal plate layer and the fiber-reinforced thermoplastic resin layer means the average thickness, and when the metal plate layer and the boss have a partially protruding convex portion, such as a rib and a boss, the average thickness of the portion excluding these convex portions.

なお、上記(1)式における(σm・tm・εm)の値は、最外層の金属板それぞれについて引張強度×厚み×引張伸び率の値を算出し、両金属板層のそれらの合計値を(σm・tm・εm)とする。最外層以外に金属板層有する場合にも同様に、各金属板層について引張強度×厚み×引張伸び率を算出し、各金属板層のそれらの合計値を(σm・tm・εm)とする。
同様に、繊維強化熱可塑性樹脂層が2以上存在する構成の場合も、各繊維強化熱可塑性樹脂層の引張強度×厚み×引張伸び率を算出し、各繊維強化熱可塑性樹脂層のそれらの合計値を(σc・tc・εc)とする。
The value of (σm·tm·εm) in the above formula (1) is calculated by calculating the value of tensile strength×thickness×tensile elongation ratio for each of the outermost metal plates, and calculating the total value of both metal plate layers. (Σm·tm·εm). Similarly, when a metal plate layer is provided in addition to the outermost layer, the tensile strength×thickness×tensile elongation rate is calculated for each metal plate layer, and the total value of each metal plate layer is defined as (σm·tm·εm). ..
Similarly, in the case of a structure in which two or more fiber reinforced thermoplastic resin layers are present, the tensile strength×thickness×tensile elongation of each fiber reinforced thermoplastic resin layer is calculated, and the total of those fiber reinforced thermoplastic resin layers is calculated. The value is (σc·tc·εc).

この計算値Zは、本発明の積層パネルの塑性加工が可能な積層構成の選択及び、その塑性加工特性を示す指標である。金属板層、繊維強化熱可塑性樹脂層の両層が理想的に接合されていることを前提に両層の変形に要するエネルギーが各々釣り合う場合には、金属板層と繊維強化熱可塑性樹脂層が追従して変形し、両層何れかの層に破断が起こらないと仮定すれば、両層の変形に要するエネルギーは金属板層と繊維強化熱可塑性樹脂層各々の層の最大引張力、厚み(断面積)、引張伸び率(歪)の積で表すことができ、計算値Z(式(1))で表すことができる。Zが1よりも小さいと深絞り成形や曲げ加工等の塑性加工時に金属板層の破断、割れが起こりやすくなる。 The calculated value Z is an index indicating the selection of the laminated structure capable of plastic working of the laminated panel of the present invention and the plastic working characteristics thereof. If the energy required for the deformation of both layers of the metal plate layer and the fiber-reinforced thermoplastic resin layer is ideally balanced, and the energy required for the deformation of both layers is balanced, the metal plate layer and the fiber-reinforced thermoplastic resin layer are Assuming that either layer does not break, the energy required to deform both layers is the maximum tensile force of each layer of the metal plate layer and the fiber reinforced thermoplastic resin layer, and the thickness ( It can be represented by the product of cross-sectional area) and tensile elongation (strain), and can be represented by a calculated value Z (equation (1)). When Z is smaller than 1, the metal plate layer is likely to be broken or cracked during plastic working such as deep drawing and bending.

本発明の積層パネルは、様々な成形加工法に適用することが可能であるが、上述した性質を備えたものであるので、特に塑性加工に用いることにより、顕著な効果を発揮することができる。本発明の積層パネルから成形品を製造するための塑性加工(板金加工)方法としては、従来公知の方法を挙げることができ。特に、プレス加工(単純プレス加工、絞り加工、深絞り加工、張出し加工、伸びフランジ加工等を含む。)、ロールフォーミング加工、曲げ加工に好ましく適用可能であり、特に深絞り加工に好適である。中でも、限界絞り比が1.6以上、特に2〜3の深絞り加工品の製造に、好適に用いることができる。なお、限界絞り比(LDR)とは、円筒絞りにおいて、1回の絞りで破断を起こさない円筒を絞ることのできる最大ブランク直径(Dmax)と円筒の直径(絞り加工品の内径:d)の比(Dmax/d)として算出される。 The laminated panel of the present invention can be applied to various molding processing methods, but since it has the above-mentioned properties, it can exert a remarkable effect particularly when used for plastic processing. .. As a plastic working (sheet metal working) method for producing a molded product from the laminated panel of the present invention, a conventionally known method can be mentioned. In particular, it can be preferably applied to press working (including simple press working, drawing, deep drawing, overhanging, stretch flange working, etc.), roll forming and bending, and is particularly suitable for deep drawing. Among them, it can be suitably used for the production of deep drawn products having a limiting drawing ratio of 1.6 or more, especially 2-3. The limiting drawing ratio (LDR) is defined by the maximum blank diameter (Dmax) and the diameter of the cylinder (internal diameter of drawn product: d) with which a cylinder that does not break can be drawn in one drawing. It is calculated as the ratio (Dmax/d).

本発明の積層パネルは、前記繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244−4:1999(プラスチック−動的機械特性の試験方法、周波数100Hz、試験片厚み2mm、試験温度23℃)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ)が1.0GPa以上、好ましくは1.5GPa以上、例えば1.5〜3GPaの温度領域の何れかの温度(金型温度または積層パネルの予熱温度)で好適に加工することができる。即ち、比貯蔵弾性率値(E′/ρ)が1.0GPa以上となる温度を、積層パネルの予備加熱温度選択の指標とすることができる。特に、積層パネルを上記の温度領域の何れかの温度に予熱した後に加工するこがより好ましい。 The laminated panel of the present invention has a dynamic viscoelasticity test (JIS K 7244-4:1999 (Plastic-Dynamic mechanical property test method, frequency 100 Hz, test piece thickness 2 mm, The ratio of the storage elastic modulus E′ to the specific gravity ρ of the fiber reinforced thermoplastic resin layer at a test temperature of 23° C. (specific storage elastic modulus value: E′/ρ) is 1.0 GPa or more, preferably 1.5 GPa or more, for example. It can be suitably processed at any temperature in the temperature range of 1.5 to 3 GPa (mold temperature or preheating temperature of laminated panel), that is, the specific storage elastic modulus value (E'/ρ) is 1.0 GPa. The above temperature can be used as an index for selecting the preheating temperature of the laminated panel, and it is particularly preferable to process the laminated panel after preheating it to any one of the above temperature ranges.

比貯蔵弾性率値(E′/ρ)がこのような値を示す加工温度領域で加工する方法としては、室温又は積層パネルの繊維強化熱可塑性樹脂層を構成する熱可塑性樹脂の融点以下若しくはガラス転移温度以下の溶融温度未満の軟化温度(半溶融温度)に積層パネルを予熱した後、室温から熱可塑性樹脂のガラス転移温度または融点温度以下設定された金型温度でプレス加工(単純プレス、深絞り等を含む。)、曲げ加工、ロールフォーミング等の塑性加工(板金加工)する方法が好適である。積層パネルの構成にもよるが、冷却サイクルの短縮化の観点から室温の積層パネルを室温の金型にて冷間加工してもよい。本発明においては、無機繊維に比べて引張伸び率が高い有機繊維を用いると、冷間塑性加工時に繊維強化熱可塑性樹脂層が金属板層の変形に追従しやすくなり、室温の積層パネルを室温の金型で冷間加工することがより容易となる。 The method for processing in the processing temperature range where the specific storage elastic modulus value (E′/ρ) shows such a value is as follows: room temperature or the melting point of the thermoplastic resin constituting the fiber reinforced thermoplastic resin layer of the laminated panel or glass. After preheating the laminated panel to a softening temperature (semi-melting temperature) below the melting temperature below the transition temperature, press working at room temperature from the glass transition temperature of the thermoplastic resin or below the melting point temperature (simple press, deep press) Suitable methods include plastic working (sheet metal working) such as drawing, etc.), bending, roll forming and the like. Although depending on the structure of the laminated panel, the laminated panel at room temperature may be cold worked by a mold at room temperature from the viewpoint of shortening the cooling cycle. In the present invention, when the organic fiber having a higher tensile elongation than the inorganic fiber is used, the fiber-reinforced thermoplastic resin layer easily follows the deformation of the metal plate layer during the cold plastic working, and the laminated panel at room temperature is cooled to room temperature. It becomes easier to perform cold working with the die.

軟化温度は、繊維強化熱可塑性樹脂層を構成する熱可塑性樹脂が結晶性樹脂の場合、DSCのカーブにおける、室温以上、融点以下であり、好ましくは結晶化温度以下である。非晶性樹脂の場合、軟化温度は室温以上ガラス転移温度+50℃程度の範囲をいい、好ましくはガラス転移温度以下である。融点、ガラス転移温度の測定方法は、上述した通りである。 When the thermoplastic resin forming the fiber-reinforced thermoplastic resin layer is a crystalline resin, the softening temperature is not lower than room temperature and not higher than the melting point in the DSC curve, and preferably not higher than the crystallization temperature. In the case of an amorphous resin, the softening temperature is in the range of room temperature or higher and glass transition temperature+50° C. or so, and is preferably the glass transition temperature or lower. The measuring method of the melting point and the glass transition temperature is as described above.

繊維強化熱可塑性樹脂層を構成する熱可塑性樹脂が結晶性樹脂の場合、予熱をしない室温でも塑性加工が可能な場合があり、熱可塑性樹脂の結晶化開始温度から結晶融解温度の間の温度領域の温度を選択して加温することが、得られる成形品の物性上好ましいが、成形時の成形サイクルの観点から、可能な限り、予熱工程を設けないことが望ましい。加温を行う場合、加温温度が結晶化開始温度より低いと、繊維強化熱可塑性樹脂層の塑性変形が困難となり、金属板層の割れを招くことがある。逆に熱可塑性樹脂の結晶融解温度よりも高いと、繊維強化熱可塑性樹脂層が過度に軟化し、成形加工時の変形過程の金属板層がこれに食い込むため、皺発生の原因となる場合がある。 When the thermoplastic resin that constitutes the fiber reinforced thermoplastic resin layer is a crystalline resin, plastic processing may be possible even at room temperature without preheating, and the temperature range between the crystallization start temperature and the crystal melting temperature of the thermoplastic resin It is preferable to select and heat the above-mentioned temperature from the viewpoint of the physical properties of the obtained molded product, but from the viewpoint of the molding cycle at the time of molding, it is desirable not to provide the preheating step as much as possible. When heating is performed, if the heating temperature is lower than the crystallization start temperature, it becomes difficult to plastically deform the fiber reinforced thermoplastic resin layer and the metal plate layer may be cracked. On the other hand, if the temperature is higher than the crystal melting temperature of the thermoplastic resin, the fiber reinforced thermoplastic resin layer excessively softens and the metal plate layer in the deformation process during the molding process bites into it, which may cause wrinkles. is there.

金型温度としては、室温から熱可塑性樹脂の結晶化温度の間に設定することが好ましく、冷却時間の短縮化から室温が特に好ましいが、加工時の剪断による強化繊維の破断状態により適宜選定することが可能である。 The mold temperature is preferably set between room temperature and the crystallization temperature of the thermoplastic resin, and room temperature is particularly preferable from the viewpoint of shortening the cooling time, but it is appropriately selected depending on the broken state of the reinforcing fiber due to shearing during processing. It is possible.

繊維強化熱可塑性樹脂層を構成する熱可塑性樹脂が非晶性樹脂の場合、予熱をしない室温でも板金加工が可能な場合があり、熱可塑性樹脂のガラス転移温度(Tg)以上かつガラス転移温度+50℃以下、即ち、Tg〜Tg+50℃の範囲の温度を選択して加温することが、得られる成形品の物性上好ましいが、成形時の成形サイクルの観点から、可能な限り、予熱工程を設けないことが望ましい。この加温温度が熱可塑性樹脂のガラス転移温度より低いと、繊維強化熱可塑性樹脂層の塑性変形が困難となり、金属板層の割れを招くことがある。逆に熱可塑性樹脂のガラス転移温度+50℃よりも高いと、溶融加工温度領域となるため、繊維強化熱可塑性樹脂層が過度に軟化、流動化し、成形加工時の変形過程の金属板層がこれに食い込むため、割れ、皺発生の原因となる場合がある。 When the thermoplastic resin constituting the fiber-reinforced thermoplastic resin layer is an amorphous resin, sheet metal processing may be possible even at room temperature without preheating, and the glass transition temperature (Tg) or more and the glass transition temperature +50 of the thermoplastic resin may be used. From the viewpoint of the molding cycle at the time of molding, it is preferable to provide a preheating step, although it is preferable to select and heat the temperature in the range of not higher than C, that is, in the range of Tg to Tg+50°C. Not desirable. When this heating temperature is lower than the glass transition temperature of the thermoplastic resin, it becomes difficult to plastically deform the fiber reinforced thermoplastic resin layer, which may cause cracking of the metal plate layer. On the other hand, if the temperature is higher than the glass transition temperature +50°C of the thermoplastic resin, it will be in the melting processing temperature region, so the fiber reinforced thermoplastic resin layer will be excessively softened and fluidized, and the metal plate layer in the deformation process during molding processing will be As it cuts into the ground, it may cause cracks and wrinkles.

金型温度としては、室温以上熱可塑性樹脂のガラス転移温度以下に設定することが好ましく、冷却時間の短縮化から室温が特に好ましいが、加工時の剪断による強化繊維、金属板層の破断状態により適宜選定することが可能である。 As the mold temperature, it is preferable to set the temperature above room temperature and below the glass transition temperature of the thermoplastic resin, and room temperature is particularly preferable from the viewpoint of shortening the cooling time, but depending on the breaking state of the reinforcing fiber and the metal plate layer due to shearing during processing. It can be selected appropriately.

本発明の積層パネルは、上述した性能を備えているので、金属板層及び繊維強化熱可塑性樹脂層の種類、構成、厚み、引張強度、引張伸び率を適切に選択することにより、10〜40℃といった低い温度領域でも塑性加工を行うことが容易となり、冷却時間が短くなり成形サイクルの短縮化を効果的に達成することができる。 Since the laminated panel of the present invention has the above-mentioned performance, by appropriately selecting the type, configuration, thickness, tensile strength, and tensile elongation of the metal plate layer and the fiber-reinforced thermoplastic resin layer, the laminated panel of 10 to 40 can be obtained. It becomes easy to perform plastic working even in a low temperature region such as ℃, and the cooling time is shortened, so that the molding cycle can be effectively shortened.

本発明で得られた成形品は、必要に応じて各種の塗装、フィルムラミネート等の表面加飾を施すことにより、自動車部品、電子部品、建材、その他各種の製品に利用できる。 The molded product obtained by the present invention can be used for automobile parts, electronic parts, building materials, and other various products, if necessary, by subjecting it to various coatings and surface decorations such as film lamination.

自動車部品としては、ボディー、ドアインナー、サイドパネル、ボンネット(エンジン・フード)、ルーフ、フロアー、キャブ下カバー、トランクリッド、レインフォース部品、サイドシル、クロスメンバー、ブラケット、各種ピラー部品、各種ビーム部品、フロアー補強板などが例示される。
電子部品としては、TV、PC、モバイル機器等の筐体が例示される。
Automotive parts include body, door inner, side panel, bonnet (engine hood), roof, floor, cab lower cover, trunk lid, reinforcement parts, side sills, cross members, brackets, various pillar parts, various beam parts, A floor reinforcing plate etc. are illustrated.
Examples of electronic components include TVs, PCs, mobile devices, and other housings.

その他の製品としては、ヘルメット、アルミサッシ・フレーム、エレベータ・ゲート・フレーム(梁)、防刃チョッキ、旅行カバン、破風、屋根などが例示される。 Other products include helmets, aluminum sash frames, elevator gate frames (beams), blade vests, travel bags, gables, roofs, and the like.

以下、実施例及び比較例について説明する。なお、以下の実施例及び比較例では、塑性加工として図2に示す深絞り加工又は図3に示すプレス成形を行った。図2では、直径98mm厚さ2mmの円形板状の積層パネルを高出力プレス試験機((株)アミノ製複動油圧プレス機TM200特別仕様)にて深絞り加工して図2に示す形状(絞り比:1.7)の成形品とした。図3では、400×600mm、厚さ2mmの長方形状の積層パネルを金型によってプレス成形し、図3に示す成形品とした。 Hereinafter, examples and comparative examples will be described. In the following examples and comparative examples, deep drawing shown in FIG. 2 or press forming shown in FIG. 3 was performed as plastic working. In FIG. 2, a circular plate-shaped laminated panel having a diameter of 98 mm and a thickness of 2 mm is deep-drawn by a high-power press tester (Amino's double-acting hydraulic press TM200 special specification) to obtain the shape shown in FIG. A molded product having a drawing ratio of 1.7) was prepared. In FIG. 3, a rectangular laminated panel having a size of 400×600 mm and a thickness of 2 mm was press-molded with a mold to obtain a molded product shown in FIG.

下記に繊維強化熱可塑性樹脂層に適用した材料を示す。なお、各種物性測定は、上述の方法に従って行った。また、「室温」とは、23℃をいう。 The materials applied to the fiber reinforced thermoplastic resin layer are shown below. The various physical properties were measured according to the methods described above. Moreover, "room temperature" means 23 degreeC.

GMT40:クオドラント・コンポジット・プラスチック・ジャパン株式会社製P4020−BK31
ニードルパンチ法によるガラス繊維製不織布とポリプロピレン樹脂からなるスタンパブルシート
ポリプロピレン樹脂含有量:60重量%
ガラス繊維含有量:19体積%(40重量%)
平均繊維長:101mm
比重:1.2
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):3.0GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:2.2kN
単位厚み当たりの最大耐衝撃強さ:1.1kN/mm
GMT40: Quadrant Composite Plastics Japan P4020-BK31
Stampable sheet consisting of non-woven fabric made of glass fiber and polypropylene resin by needle punch method Polypropylene resin content: 60% by weight
Glass fiber content: 19% by volume (40% by weight)
Average fiber length: 101 mm
Specific gravity: 1.2
Specific storage elastic modulus value E′/ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23° C.): 3.0 GPa
Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23°C): 2.2 kN
Maximum impact strength per unit thickness: 1.1 kN/mm

GMT65:クオドラント・コンポジット・プラスチック・ジャパン株式会社製
ニードルパンチ法によるガラス繊維製不織布とポリプロピレン樹脂からなるスタンパブルシート
ポリプロピレン樹脂含有量:35重量%
ガラス繊維含有量:40体積%(65重量%)
平均繊維長:98mm
比重:1.53
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):3.4GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:3.1kN
単位厚み当たりの最大耐衝撃強さ:1.55kN/mm
GMT65: Quadrant Composite Plastics Japan Co., Ltd. A stampable sheet consisting of a non-woven fabric made of glass fiber and polypropylene resin by the needle punch method Polypropylene resin content: 35% by weight
Glass fiber content: 40% by volume (65% by weight)
Average fiber length: 98 mm
Specific gravity: 1.53
Specific storage elastic modulus value E′/ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23° C.): 3.4 GPa
Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23°C): 3.1 kN
Maximum impact strength per unit thickness: 1.55 kN/mm

GMTex:クオドラント・コンポジット・プラスチック・ジャパン株式会社製P6538−BK31
ニードルパンチ処理されたガラス繊維製織物と不織布の積層体とポリプロピレン樹脂からなるスタンパブルシート
ポリプロピレン樹脂含有量:40重量%(65体積%)
ガラス繊維不織布含有量:14体積%
ガラス繊維織布含有量:21体積%
ガラス繊維含有量:35体積%(60重量%)
平均繊維長:101mm(不織布)、連続繊維(織物)
比重:1.45
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):6.9GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:2.7kN
単位厚み当たりの最大耐衝撃強さ:1.35kN/mm
GMTex: Quadrant Composite Plastics Japan P6538-BK31
A stampable sheet made of a polypropylene resin and a laminated body of glass fiber woven fabric and non-woven fabric subjected to needle punching. Polypropylene resin content: 40% by weight (65% by volume)
Glass fiber non-woven fabric content: 14% by volume
Glass fiber woven fabric content: 21% by volume
Glass fiber content: 35% by volume (60% by weight)
Average fiber length: 101 mm (nonwoven fabric), continuous fiber (woven fabric)
Specific gravity: 1.45
Specific storage elastic modulus value E′/ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23° C.): 6.9 GPa
Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23°C): 2.7 kN
Maximum impact strength per unit thickness: 1.35 kN/mm

CFRTP:株式会社ユウホウ製
ニードルパンチ製法によるPAN系炭素繊維不織布にポリカーボネート樹脂が溶融含浸されたスタンパブルシート
ポリカーボネート樹脂含有量:35重量%
炭素繊維含有量:55体積%(65重量%)
平均繊維長:60mm
比重:1.53
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):12.4GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:4.0kN
単位厚み当たりの最大耐衝撃強さ:2.0kN/mm
CFRTP: manufactured by Yuho Co., Ltd. A stampable sheet obtained by melt impregnating a PAN-based carbon fiber nonwoven fabric with a polycarbonate resin by a needle punch manufacturing method. Polycarbonate resin content: 35% by weight
Carbon fiber content: 55% by volume (65% by weight)
Average fiber length: 60 mm
Specific gravity: 1.53
Specific storage elastic modulus value E′/ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23° C.): 12.4 GPa
Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23°C): 4.0 kN
Maximum impact strength per unit thickness: 2.0 kN/mm

LFT:日本ポリプロ株式会社製 LR24A
長繊維チョップドガラス繊維とポリプロピレン樹脂からなるペレットを220℃で熱プレス成形したシート
ペレットのガラス繊維含有量:13体積%(40重量%)
ペレットのポリプロピレン樹脂含有量:60重量%
ペレット中のガラス繊維平均繊維長:10mm
ペレットの比重:1.2
比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):2.9GPa
パンクチャー試験(試験片厚み2mm、試験温度23℃)による最大耐衝撃強さ:1.6kN
単位厚み当たりの最大耐衝撃強さ:0.8kN/mm
LFT: LR24A manufactured by Japan Polypro Co., Ltd.
Sheet made by long-term chopped glass fiber and polypropylene resin pellets hot-pressed at 220°C Glass fiber content of pellets: 13% by volume (40% by weight)
Polypropylene resin content of pellets: 60% by weight
Glass fiber average fiber length in pellets: 10 mm
Specific gravity of pellets: 1.2
Specific storage elastic modulus value E′/ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23° C.): 2.9 GPa
Maximum impact strength by puncture test (test piece thickness 2 mm, test temperature 23°C): 1.6 kN
Maximum impact strength per unit thickness: 0.8 kN/mm

有機繊維不織布1:ユニセル株式会社製BT−1812W
メルトブローン法によるポリエステル連続繊維(融点265℃)製不織布
平均繊維長:連続繊維
目付:80g/m
ポリプロピレン樹脂(融点165℃)を有機繊維不織布1に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量70重量%、ポリエステル繊維含有量22体積%(30重量%)、比重1.0)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):1.4GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:4.2kN
単位厚み当たりの最大耐衝撃強さ:2.1kN/mm
Organic fiber non-woven fabric 1: BT-1812W manufactured by Unicell Corporation
Nonwoven fabric made of polyester continuous fiber (melting point 265° C.) by melt blown method Average fiber length: continuous fiber Unit weight: 80 g/m 2
Fiber reinforced thermoplastic resin layer unit test piece (polypropylene resin content 70% by weight, polyester fiber content 22% by volume (30% by weight), specific gravity obtained by impregnating organic fiber nonwoven fabric 1 with polypropylene resin (melting point 165° C.) 1.0) specific storage elastic modulus value E′/ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23° C.): 1.4 GPa
・Maximum impact strength by puncture test (test piece thickness 2mm, test temperature 23℃): 4.2kN
Maximum impact strength per unit thickness: 2.1 kN/mm

有機繊維不織布2:ワタナベ工業株式会社製エコパンチ
ニードルパンチ法による再生ポリエチレンテレフタレート樹脂ステープル(融点265℃)製不織布
平均繊維長:51mm
平均繊度:10dtex
目付:300g/m
ポリプロピレン樹脂(融点165℃)を有機繊維不織布2に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量70重量%、ポリエステル繊維含有量22体積%(30重量%)、比重1.0)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):1.4GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:2.4kN
単位厚み当たりの最大耐衝撃強さ:1.2kN/mm
Organic fiber non-woven fabric 2: Eco punch made by Watanabe Industry Co., Ltd. Non-woven fabric made of recycled polyethylene terephthalate resin staple (melting point 265° C.) by needle punch method Average fiber length: 51 mm
Average fineness: 10 dtex
Unit weight: 300g/m 2
Fiber-reinforced thermoplastic resin layer unit test piece (polypropylene resin content 70% by weight, polyester fiber content 22% by volume (30% by weight), specific gravity obtained by impregnating organic fiber nonwoven fabric 2 with polypropylene resin (melting point 165° C.) 1.0) specific storage elastic modulus value E′/ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23° C.): 1.4 GPa
・Maximum impact strength by puncture test (test piece thickness 2mm, test temperature 23℃): 2.4kN
Maximum impact strength per unit thickness: 1.2 kN/mm

有機繊維不織布3:三澤繊維株式会社製
ニードルパンチ法によるポリエチレンテレフタレート樹脂ステープル(融点265℃)製不織布
平均繊維長:51mm
平均繊度:3.3dtex
目付:300g/m
ポリプロピレン樹脂(融点165℃)を有機繊維不織布3に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量70重量%、ポリエステル繊維含有量22体積%(30重量%)、比重1.0)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):1.4GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:1.6kN
単位厚み当たりの最大耐衝撃強さ:0.8kN/mm
ポリプロピレン樹脂(融点165℃)を有機繊維不織布3に含浸させた繊維強化熱可塑性樹脂層単体試験片(ポリプロピンレン樹脂含有量30重量%、ポリエステル繊維含有量60体積%(70重量%)、比重1.19)の
・比貯蔵弾性率値E′/ρ(周波数100Hz、試験片厚み2mm、試験温度23℃):2.8GPa
・パンクチャー試験(試験片厚み2mm、試験温度23℃)による
最大耐衝撃強さ:3.0kN
単位厚み当たりの最大耐衝撃強さ:1.5kN/mm
Organic fiber non-woven fabric 3: manufactured by Misawa Textile Co., Ltd. Non-woven fabric made of polyethylene terephthalate resin staple (melting point 265° C.) by needle punch method Average fiber length: 51 mm
Average fineness: 3.3 dtex
Unit weight: 300g/m 2
Fiber reinforced thermoplastic resin layer unit test piece (polypropylene resin content 70% by weight, polyester fiber content 22% by volume (30% by weight), specific gravity obtained by impregnating organic fiber nonwoven fabric 3 with polypropylene resin (melting point 165° C.) 1.0) specific storage elastic modulus value E′/ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23° C.): 1.4 GPa
・Maximum impact strength by puncture test (test piece thickness 2mm, test temperature 23℃): 1.6kN
Maximum impact strength per unit thickness: 0.8 kN/mm
Fiber reinforced thermoplastic resin layer unit test piece (polypropylene resin content 30% by weight, polyester fiber content 60% by volume (70% by weight), specific gravity obtained by impregnating organic fiber nonwoven fabric 3 with polypropylene resin (melting point 165° C.) 1.19) of specific storage elastic modulus value E′/ρ (frequency 100 Hz, test piece thickness 2 mm, test temperature 23° C.): 2.8 GPa
・Maximum impact strength by puncture test (test piece thickness 2mm, test temperature 23℃): 3.0kN
Maximum impact strength per unit thickness: 1.5 kN/mm

A6061−T6:日本軽金属株式会社製アルミ板
厚み:0.5mm
引張強度:310MPa
引張伸び率:12%
降伏比:89%
A6061-T6: Aluminum plate manufactured by Nippon Light Metal Co., Ltd. Thickness: 0.5 mm
Tensile strength: 310MPa
Tensile elongation: 12%
Yield ratio: 89%

A5052−H34:株式会社UACJ製アルミニウム合金板
厚み:0.6mm
引張強度:260MPa
引張伸び率:10%
降伏比:83%
A5052-H34: Aluminum alloy plate made by UACJ Co., Ltd. Thickness: 0.6 mm
Tensile strength: 260MPa
Tensile elongation: 10%
Yield ratio: 83%

A5182−H38:三菱アルミ株式会社製アルミニウム合金板
厚み:0.25mm
引張強度:380MPa
引張伸び率:9%
降伏比:83%
A5182-H38: Aluminum alloy plate manufactured by Mitsubishi Aluminum Co., Ltd. Thickness: 0.25 mm
Tensile strength: 380MPa
Tensile elongation: 9%
Yield ratio: 83%

A5182−O:三菱アルミニウム株式会社製アルミニウム合金板
厚み:0.25mm
引張強度:290MPa
引張伸び率:21%
降伏比:56%
A5182-O: Mitsubishi Aluminum Co., Ltd. aluminum alloy plate Thickness: 0.25 mm
Tensile strength: 290MPa
Tensile elongation: 21%
Yield ratio: 56%

A5182−O:株式会社UACJ製アルミニウム合金板
厚み:0.4mm
引張強度:290MPa
引張伸び率:21%
降伏比:56%
A5182-O: Aluminum alloy plate made by UACJ Co., Ltd. Thickness: 0.4 mm
Tensile strength: 290MPa
Tensile elongation: 21%
Yield ratio: 56%

A1100−H16:三菱アルミニウム株式会社製アルミニウム合金板
厚み:0.15mm
引張強度:145MPa
引張伸び率:6%
降伏比:94%
A1100-H16: Aluminum alloy plate manufactured by Mitsubishi Aluminum Co., Ltd. Thickness: 0.15 mm
Tensile strength: 145MPa
Tensile elongation: 6%
Yield ratio: 94%

SPCD:新日鐵住金株式会社製 冷延鋼板
厚み:0.4mm
引張強度:300MPa
引張伸び率:48%
降伏比:50%
SPCD: Cold-rolled steel sheet manufactured by Nippon Steel & Sumitomo Metal Co., Ltd. Thickness: 0.4 mm
Tensile strength: 300MPa
Tensile elongation: 48%
Yield ratio: 50%

[実施例1](図1)
金属板層として、厚さ0.5mm、引張強度310MPa、引張伸び率12%のA6061−T6のアルミ板を2枚用いた。アルミ板の一方の面に予め接着性樹脂層(三菱化学社製モデッィクP555、厚さ20μm)を面圧3.9MPa、180℃にて加熱融着させた。
[Example 1] (Fig. 1)
As the metal plate layer, two A6061-T6 aluminum plates having a thickness of 0.5 mm, a tensile strength of 310 MPa and a tensile elongation of 12% were used. An adhesive resin layer (Model P555 manufactured by Mitsubishi Chemical Corporation, thickness 20 μm) was heat-fused to one surface of the aluminum plate in advance at a surface pressure of 3.9 MPa and 180° C.

繊維強化熱可塑性樹脂層としては、厚さ3.8mmのGMT40を用いた。 As the fiber-reinforced thermoplastic resin layer, GMT40 having a thickness of 3.8 mm was used.

2枚の金属板層間に繊維強化熱可塑性樹脂層を挟み、面圧3.9MPa、180℃×10分にてプレス成形を行い、金属板層と繊維強化熱可塑性樹脂層とを接着し、厚さ2mmの積層パネルを得た。 A fiber reinforced thermoplastic resin layer is sandwiched between two metal plate layers, and press molding is performed at a surface pressure of 3.9 MPa and 180° C. for 10 minutes to bond the metal plate layer and the fiber reinforced thermoplastic resin layer to each other to obtain a thick layer. A 2 mm thick laminated panel was obtained.

この積層パネルに剥離強度、曲げ弾性率、最大衝撃強さを測定すると共に、図2に示す深絞り加工を120℃で行い、深絞り性及び成形サイクルを評価し、結果を表1に示した。
また、繊維強化熱可塑性樹脂層として用いた材料のパンクチャー衝撃試験(ASTM D3763、ストライカ径1/2inch、衝撃速度4.4m/s、支持台内径:3inch、試験温度:23℃)による単位厚み当たりの最大耐衝撃強さと、積層構成因子を表わす式(1)の計算値Zを表1に併せて示す。
The peel strength, flexural modulus, and maximum impact strength of this laminated panel were measured, and the deep drawing shown in FIG. 2 was performed at 120° C. to evaluate the deep drawing property and the molding cycle. The results are shown in Table 1. ..
In addition, the unit thickness of the material used as the fiber reinforced thermoplastic resin layer by the puncture impact test (ASTM D3763, striker diameter 1/2 inch, impact speed 4.4 m/s, support base inner diameter: 3 inch, test temperature: 23° C.) Table 1 also shows the maximum impact strength per hit and the calculated value Z of the formula (1) representing the lamination constituent factor.

積層体パネルの剥離強度は、JIS K6854−4:1999の「浮動ローラー法剥離試験」法に従い、室温(23℃)で測定を行った。なお、剥離試験において繊維強化熱可塑性樹脂組成物層が破壊(母材破壊)する場合を「A」、繊維強化熱可塑性樹脂組成層と金属板層との界面で剥離(界面剥離)する場合を「B」とした。
積層パネルの曲げ弾性率は、JIS K7017:1999に基づき、曲げ試験機(インテスコ社製精密万能材料試験機)により室温で測定を行った。
深絞り加工時の深絞り性については、深絞り加工が可能であり得られる成形品に割れがない場合を「A」、深絞り加工は可能で金属板層にわずかに亀裂が存在するが実成形品として問題ないレベルである場合を「B」、深絞り加工ができず得られる成形品に割れが発生する場合を「C」として、評価した。
深絞り加工時の成形サイクルについては、深絞り加工に要する時間(積層パネルを金型に置いてから離型するまでの時間)及び冷却時間を測定することにより評価した。
The peel strength of the laminate panel was measured at room temperature (23° C.) according to the “floating roller method peel test” method of JIS K6854-4:1999. In the peel test, "A" indicates that the fiber-reinforced thermoplastic resin composition layer breaks (breaks the base material), and "Peels at the interface between the fiber-reinforced thermoplastic resin composition layer and the metal plate layer (interfacial peeling)". It was set to "B".
The bending elastic modulus of the laminated panel was measured at room temperature by a bending tester (precision universal material tester manufactured by Intesco) based on JIS K7017:1999.
Regarding the deep drawability during deep drawing, "A" is used when deep drawing is possible and the resulting molded product has no cracks. Deep drawing is possible and there are slight cracks in the metal plate layer. The evaluation was evaluated as "B" when the level of the molded product was not problematic, and "C" when the molded product obtained by deep drawing could not be cracked.
The molding cycle at the time of deep drawing was evaluated by measuring the time required for deep drawing (the time from placing the laminated panel on the mold until releasing it) and the cooling time.

なお、繊維強化熱可塑性樹脂層の予熱温度における比貯蔵弾性率値E′/ρ(GPa)は、動的粘弾性測定機(レオロジ社製FTレオスペクトラー)により25〜200℃の温度範囲で測定した。
また、積層パネル及び繊維強化熱可塑性樹脂層の最大耐衝撃強さはIMATEK社製衝撃試験機により測定した。
塑性加工時(積層パネルの予熱温度又は金型温度)の繊維強化熱可塑性樹脂層の比貯蔵弾性率値E′/ρ(GPa)は1.0GPa以上であることが好ましく、繊維強化熱可塑性樹脂層の単位厚み当たりの最大耐衝撃強さは0.5kN/mm以上が好ましい。
The specific storage elastic modulus value E′/ρ (GPa) at the preheating temperature of the fiber reinforced thermoplastic resin layer is within a temperature range of 25 to 200° C. by a dynamic viscoelasticity measuring device (FT Rheospectler manufactured by Rheology Co., Ltd.). It was measured.
Further, the maximum impact strength of the laminated panel and the fiber reinforced thermoplastic resin layer was measured by an impact tester manufactured by IMATEK.
The specific storage elastic modulus value E′/ρ(GPa) of the fiber reinforced thermoplastic resin layer during plastic working (preheating temperature of the laminated panel or mold temperature) is preferably 1.0 GPa or more, and the fiber reinforced thermoplastic resin The maximum impact strength per unit thickness of the layer is preferably 0.5 kN/mm or more.

[実施例2]
繊維強化熱可塑性樹脂層として厚さ3.8mmのGMT65を用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表1に示す。
[Example 2]
A laminated panel was formed in the same manner as in Example 1 except that GMT65 having a thickness of 3.8 mm was used as the fiber-reinforced thermoplastic resin layer, and the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 1.

[実施例3]
繊維強化熱可塑性樹脂層として厚さ3.8mmのGMTexを用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表1に示す。
[Example 3]
A laminated panel was molded in the same manner as in Example 1 except that GMtex having a thickness of 3.8 mm was used as the fiber-reinforced thermoplastic resin layer, and the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 1.

[実施例4]
繊維強化熱可塑性樹脂層として厚さ1.3mmのCFRTPを用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表1に示す。
[Example 4]
A laminated panel was molded in the same manner as in Example 1 except that CFRTP having a thickness of 1.3 mm was used as the fiber-reinforced thermoplastic resin layer, and its characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 1.

[実施例5]
予熱温度を35℃、金型温度を30℃で深絞り加工を行ったこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表2に示す。
[Example 5]
A laminated panel was molded in the same manner as in Example 1 except that the preheating temperature was 35° C. and the mold temperature was 30° C., and the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 2.

[実施例6]
金属板層の一方をアルミニウム合金板A5182−H38(厚さ:0.25mm、引張強度:380MPa、引張伸び率:9%)としたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表2に示す。
[Example 6]
A laminated panel was formed in the same manner as in Example 1 except that one of the metal plate layers was an aluminum alloy plate A5182-H38 (thickness: 0.25 mm, tensile strength: 380 MPa, tensile elongation: 9%). The characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 2.

[実施例7]
2枚の金属板層をアルミニウム合金板A5052−H34(厚さ:0.6mm、引張強度:260MPa、引張伸び率:10%)を用いたこと、接着性樹脂層を金属板層と繊維強化熱可塑性樹脂層との間に介在させて金属板層と繊維強化熱可塑性樹脂層とを積層パネルの成形時に接着したこと、塑性加工を図3のプレス成形としたこと、金型温度を室温(23℃)としたこと以外は実施例1と同様にして積層パネルを成形し、特性測定した。結果及びZ値を表2に示す。
[Example 7]
The two metal plate layers were aluminum alloy plates A5052-H34 (thickness: 0.6 mm, tensile strength: 260 MPa, tensile elongation: 10%), and the adhesive resin layer was a metal plate layer and a fiber-reinforced heat. The metal plate layer and the fiber reinforced thermoplastic resin layer were adhered to each other by interposing them between the plastic resin layer and the laminated panel, the plastic working was the press molding of FIG. 3, and the mold temperature was room temperature (23 C.) was used to form a laminated panel in the same manner as in Example 1 and the characteristics were measured. The results and Z values are shown in Table 2.

[実施例8]
実施例7において、プレス成形時の予熱温度及び金型温度を160℃としたこと以外は同様にして積層パネルを成形し、特性測定を行った。結果及びZ値を表2に示す。
[Example 8]
A laminated panel was molded in the same manner as in Example 7 except that the preheating temperature and the mold temperature at the time of press molding were 160° C., and the characteristics were measured. The results and Z values are shown in Table 2.

[実施例9]
2枚の金属板層としてアルミニウム合金板A5182−O(厚さ:0.25mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。
[Example 9]
A laminated panel was formed in the same manner as in Example 1 except that aluminum alloy plates A5182-O (thickness: 0.25 mm, tensile strength: 290 MPa, tensile elongation: 21%) were used as the two metal plate layers. Then, the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 3.

[実施例10]
2枚の金属板層として、深絞り用冷間圧延鋼板SPCD(厚さ:0.4mm、引張強度:300MPa、引張伸び率:48%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。
[Example 10]
Laminating in the same manner as in Example 1 except that cold-rolled steel sheets for deep drawing SPCD (thickness: 0.4 mm, tensile strength: 300 MPa, tensile elongation: 48%) were used as the two metal plate layers. The panel was molded, and the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 3.

[実施例11]
繊維強化熱可塑性樹脂層として厚さ2mmのLFTを用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。
[Example 11]
A laminated panel was molded in the same manner as in Example 1 except that the LFT having a thickness of 2 mm was used as the fiber-reinforced thermoplastic resin layer, and the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 3.

[実施例12]
2枚の金属板層としてアルミニウム合金板A5182−O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表3に示す。
[Example 12]
A laminated panel was formed in the same manner as in Example 1 except that aluminum alloy plates A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) were used as the two metal plate layers. Then, the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 3.

[実施例13]
金属板層として、厚さ0.5mm、引張強度310MPa、引張伸び率12%のA6061−T6のアルミ板を2枚用いた。アルミ板の一方の面に予め接着性樹脂層(三菱化学社製モデッィクP555、厚さ20μm)を面圧3.9MPa、180℃にて加熱融着させた。
[Example 13]
As the metal plate layer, two A6061-T6 aluminum plates having a thickness of 0.5 mm, a tensile strength of 310 MPa and a tensile elongation of 12% were used. An adhesive resin layer (Model P555 manufactured by Mitsubishi Chemical Corporation, thickness 20 μm) was heat-fused to one surface of the aluminum plate in advance at a surface pressure of 3.9 MPa and 180° C.

繊維強化熱可塑性樹脂層の材料として有機繊維不織布1とポリプロピレン樹脂(融点165℃)シートを、有機繊維30重量%、ポリプロピレン樹脂70重量%となるように積層した。 As a material for the fiber-reinforced thermoplastic resin layer, an organic fiber non-woven fabric 1 and a polypropylene resin (melting point 165° C.) sheet were laminated so as to be 30% by weight of organic fiber and 70% by weight of polypropylene resin.

2枚の金属板層間に、ポリプロピレン樹脂シート/有機繊維不織布1/ポリプロピレン樹脂シートをこの順に挟み、面圧3.9MPa、180℃×10分にて総厚み2mmとなるようにプレス成形を行い、金属板層と繊維強化熱可塑性樹脂層(ポリプロピレン樹脂/有機繊維不織布1)とを接着し、厚さ2mmの積層パネルを得た。
得られた積層パネルを実施例1と同様にして成形し、特性測定及び深絞り加工した。結果及びZ値等を表4に示す。
A polypropylene resin sheet/organic fiber nonwoven fabric 1/polypropylene resin sheet is sandwiched between two metal plate layers in this order, and press-molded to a total thickness of 2 mm at a surface pressure of 3.9 MPa and 180° C.×10 minutes, The metal plate layer and the fiber reinforced thermoplastic resin layer (polypropylene resin/organic fiber nonwoven fabric 1) were adhered to each other to obtain a laminated panel having a thickness of 2 mm.
The laminated panel thus obtained was molded in the same manner as in Example 1, and its characteristics were measured and deep drawing was performed. The results and the Z value are shown in Table 4.

[実施例14]
繊維強化熱可塑性樹脂層の材料として有機繊維不織布2を用い、2枚の金属板層としてアルミニウム合金板A5182−O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例13と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表4に示す。
[Example 14]
Using the organic fiber nonwoven fabric 2 as the material of the fiber reinforced thermoplastic resin layer, aluminum alloy plates A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) are used as the two metal plate layers. A laminated panel was molded in the same manner as in Example 13 except that it was used, and the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 4.

[実施例15]
繊維強化熱可塑性樹脂層の材料として有機繊維不織布3を用い、2枚の金属板層としてアルミニウム合金板A5182−O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用いたこと以外は実施例13と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表4に示す。
[Example 15]
Using the organic fiber nonwoven fabric 3 as the material of the fiber reinforced thermoplastic resin layer, aluminum alloy plates A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) are used as the two metal plate layers. A laminated panel was molded in the same manner as in Example 13 except that it was used, and the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 4.

[実施例16]
繊維強化熱可塑性樹脂層の材料として有機繊維不織布3を用い、2枚の金属板層としてアルミニウム合金板A5182−O(厚さ:0.4mm、引張強度:290MPa、引張伸び率:21%)を用い、有機繊維70重量%、ポリプロピレン樹脂30重量%となるように用いたこと以外は実施例13と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値を表4に示す。
[Example 16]
Using the organic fiber nonwoven fabric 3 as the material of the fiber reinforced thermoplastic resin layer, aluminum alloy plates A5182-O (thickness: 0.4 mm, tensile strength: 290 MPa, tensile elongation: 21%) are used as the two metal plate layers. A laminated panel was molded in the same manner as in Example 13 except that the organic fiber was 70% by weight and the polypropylene resin was 30% by weight, and the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 4.

[比較例1]
接着用PPフィルムを用いず、アルミ板を表面処理(具体的には、MEC株式会社AMALFA処理(化学エッチング)による多孔化処理(マイクロポーラス化処理))したこと、繊維強化熱可塑性樹脂層と金属板層とを繊維強化熱可塑性樹脂層中の樹脂の融着によって接着するようにしたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表5に示す。表5の通り、比較例1では、繊維強化熱可塑性樹脂層と金属板層との接着強度が低いため、両者間で界面剥離が生じると共に、深絞り加工により割れが生じた。
[Comparative Example 1]
The aluminum plate was surface-treated (specifically, MEC Corporation AMALFA treatment (chemical etching) for porosity treatment (microporous treatment)) without using the adhesive PP film, fiber-reinforced thermoplastic resin layer and metal A laminated panel was formed in the same manner as in Example 1 except that the resin in the fiber-reinforced thermoplastic resin layer was adhered to the plate layer by fusion bonding, and the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 1, since the adhesive strength between the fiber-reinforced thermoplastic resin layer and the metal plate layer was low, interfacial peeling occurred between the two and cracking occurred due to deep drawing.

[比較例2]
繊維強化熱可塑性樹脂層の代りにPP100%(強化繊維0%)を用いたこと以外は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表5に示す。表5に示す通り、この比較例2では、PP層の引張強度40MPaと低く、引張伸び率600%と高いため、積層構成因子を示す式(1)の値が0.16と1未満の値となると共に予熱温度における比貯蔵弾性率が0.6GPaと1.0GPa未満となり、界面剥離が生じ、絞り加工により割れが生じた。
[Comparative example 2]
A laminated panel was molded in the same manner as in Example 1 except that 100% PP (0% reinforcing fiber) was used instead of the fiber reinforced thermoplastic resin layer, and the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 2, the tensile strength of the PP layer was as low as 40 MPa and the tensile elongation rate was as high as 600%. Therefore, the value of the formula (1) indicating the lamination constituent factor is 0.16, which is less than 1. And the specific storage elastic modulus at the preheating temperature became 0.6 GPa and less than 1.0 GPa, interfacial peeling occurred, and cracking occurred by drawing.

[比較例3]
比較例2において積層パネルの予熱温度を35℃、金型温度を30℃として深絞り加工を行ったこと以外は同様とした。結果及びZ値等を表5に示す。表5に示す通り、この比較例3では、PP層の引張強度が40MPaと低く、引張伸び率が600%と高いため、積層構成因子を示すZ値が0.16と1未満の値となり、界面剥離が生じると共に、絞り加工により割れが生じた。
[Comparative Example 3]
The same procedure as in Comparative Example 2 was performed except that the preheating temperature of the laminated panel was 35° C. and the mold temperature was 30° C. for deep drawing. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 3, since the PP layer had a low tensile strength of 40 MPa and a high tensile elongation of 600%, the Z value indicating the lamination constituent factor was 0.16, which was less than 1, and Interfacial peeling occurred and cracking occurred due to drawing.

[比較例4]
2枚の金属板層として、アルミニウム合金板A1100−H16(厚さ:0.15mm、引張強度:145MPa、引張伸び率:6%)を用いた他は実施例1と同様にして積層パネルを成形し、特性測定及び深絞り加工した。結果及びZ値等を表5に示す。表5の通り、この比較例4では、金属板層の厚みが0.15mmと薄く、かつ引張強度が145MPa、引張伸び率が6%と低いため、積層構成因子を示すZ値が0.77と1未満の値となり、深絞り加工によって金属板層に割れが生じた。
[Comparative Example 4]
A laminated panel was formed in the same manner as in Example 1 except that aluminum alloy plates A1100-H16 (thickness: 0.15 mm, tensile strength: 145 MPa, tensile elongation: 6%) were used as the two metal plate layers. Then, the characteristics were measured and deep drawing was performed. The results and Z values are shown in Table 5. As shown in Table 5, in Comparative Example 4, since the thickness of the metal plate layer was thin at 0.15 mm, the tensile strength was 145 MPa, and the tensile elongation was low at 6%, the Z value indicating the lamination constituent factor was 0.77. And the value was less than 1, and cracking occurred in the metal plate layer by deep drawing.

Figure 0006717321
Figure 0006717321

Figure 0006717321
Figure 0006717321

Figure 0006717321
Figure 0006717321

Figure 0006717321
Figure 0006717321

Figure 0006717321
Figure 0006717321

以上の実施例より明らかな通り、本発明の積層パネルは剛性、剥離強度及び衝撃強度が高く、また深絞り性、プレス加工性に優れ、塑性加工が可能である。 As is clear from the above examples, the laminated panel of the present invention has high rigidity, high peel strength and impact strength, is excellent in deep drawability and press workability, and can be plastically worked.

本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
本出願は、2015年11月25日付で出願された日本特許出願2015−229810に基づいており、その全体が引用により援用される。
Although the invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2015-229810 filed on November 25, 2015, which is incorporated by reference in its entirety.

1 積層パネル
2 繊維強化熱可塑性樹脂層
3 金属板層
1 Laminated Panel 2 Fiber Reinforced Thermoplastic Resin Layer 3 Metal Plate Layer

Claims (13)

不織布又は平均繊維長が10mm以上のチョップド繊維と熱可塑性樹脂とを含む繊維強化熱可塑性樹脂層と、該繊維強化熱可塑性樹脂層に接着された金属板層とを有し、最外層が該金属板層である積層パネルにおいて、
JIS K6854−4:1999の「浮動ローラー法剥離試験」法による試験を行った場合に、剥離強度が2.5kN/m以上であり、且つ破壊は繊維強化熱可塑性樹脂層に生じるものであり、下記の積層構成因子を示す式(1)の計算値Zが1以上であることを特徴とする積層パネル。
Z=(σm・tm・εm)/(σc・tc・εc) …(1)
σm:金属板層の室温における引張強度(MPa)
tm:金属板層の厚み(mm)
εm:金属板層の室温における引張伸び率(%)
σc:繊維強化熱可塑性樹脂層の室温における引張強度(MPa)
tc:繊維強化熱可塑性樹脂層の厚み(mm)
εc:繊維強化熱可塑性樹脂層の室温における引張伸び率(%)
A non-woven fabric or a fiber-reinforced thermoplastic resin layer containing chopped fibers having an average fiber length of 10 mm or more and a thermoplastic resin, and a metal plate layer adhered to the fiber-reinforced thermoplastic resin layer, the outermost layer being the metal. In a laminated panel that is a board layer,
The peel strength is 2.5 kN/m or more when the test is performed by the "floating roller method peel test" of JIS K6854-4:1999, and the breakage occurs in the fiber-reinforced thermoplastic resin layer, A laminated panel characterized in that a calculated value Z of the formula (1) showing the following lamination constituent factors is 1 or more.
Z=(σm·tm·εm)/(σc·tc·εc) (1)
σm: Tensile strength (MPa) of the metal plate layer at room temperature
tm: Thickness of metal plate layer (mm)
εm: Tensile elongation (%) of the metal plate layer at room temperature
σc: Tensile strength (MPa) of the fiber-reinforced thermoplastic resin layer at room temperature
tc: Thickness of fiber reinforced thermoplastic resin layer (mm)
εc: Tensile elongation (%) of the fiber-reinforced thermoplastic resin layer at room temperature
請求項1において、前記繊維強化熱可塑性樹脂層が、該繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244−4:1999(プラスチック−動的機械特性の試験方法、周波数100Hz、試験片厚み2mm、試験温度23℃)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ)が1.0GPa以上であることを特徴とする積層パネル。 In Claim 1, the said fiber reinforced thermoplastic resin layer is the dynamic viscoelasticity test of this fiber reinforced thermoplastic resin layer single-piece test piece (JIS K 7244-4:1999 (Plastics-test method of dynamic mechanical property, frequency. The ratio (specific storage elastic modulus value: E′/ρ) of the storage elastic modulus E′ to the specific gravity ρ of the fiber-reinforced thermoplastic resin layer at 100 Hz, test piece thickness 2 mm, and test temperature 23° C.) is 1.0 GPa or more. A laminated panel characterized in that 請求項1又は2において、前記繊維強化熱可塑性樹脂層は、該繊維強化熱可塑性樹脂層単体試験片によるパンクチャー衝撃試験(ストライカ径1/2inch、衝撃速度4.4m/s、支持台内径:3inch、試験温度:23℃)による単位厚み当たりの最大耐衝撃強さが0.5kN/mm以上であることを特徴とする積層パネル。 In Claim 1 or 2, the said fiber reinforced thermoplastic resin layer WHEREIN: The puncture impact test (strike diameter 1/2 inch, impact velocity 4.4m/s, support stand inner diameter) by this fiber reinforced thermoplastic resin layer single test piece: A laminated panel having a maximum impact strength per unit thickness of 0.5 kN/mm or more at 3 inches and a test temperature of 23° C.). 請求項1ないし3のいずれか1項において、前記繊維強化熱可塑性樹脂層中の繊維が不織布であり、その平均繊維長が25mm以上であることを特徴とする積層パネル。 The laminated panel according to any one of claims 1 to 3, wherein the fibers in the fiber-reinforced thermoplastic resin layer are non-woven fabrics and have an average fiber length of 25 mm or more. 請求項1ないし4のいずれか1項において、前記繊維強化熱可塑性樹脂層の両面に前記金属板層が接着された3層構造からなるものであることを特徴とする積層パネル。 The laminated panel according to any one of claims 1 to 4, which has a three-layer structure in which the metal plate layers are adhered to both surfaces of the fiber-reinforced thermoplastic resin layer. 請求項1ないし5のいずれか1項において、前記繊維強化熱可塑性樹脂層と前記金属板層との間に接着層を有することを特徴とする積層パネル。 The laminated panel according to any one of claims 1 to 5, further comprising an adhesive layer between the fiber-reinforced thermoplastic resin layer and the metal plate layer. 請求項1ないし6のいずれか1項において、前記繊維強化熱可塑性樹脂層中の繊維が有機繊維であり、該有機繊維の融点と前記熱可塑性樹脂の融点またはガラス転移温度との差が40℃以上であることを特徴とする積層パネル。 The fiber in the fiber-reinforced thermoplastic resin layer according to claim 1, wherein the fiber is an organic fiber, and a difference between the melting point of the organic fiber and the melting point or the glass transition temperature of the thermoplastic resin is 40° C. The laminated panel characterized by the above. 請求項1ないし6のいずれか1項において、前記繊維強化熱可塑性樹脂層中の繊維が有機繊維であり、該有機繊維の融点が160℃以上であることを特徴とする積層パネル。 The laminated panel according to any one of claims 1 to 6, wherein the fiber in the fiber-reinforced thermoplastic resin layer is an organic fiber, and the melting point of the organic fiber is 160°C or higher. 請求項7又は8において、前記有機繊維が、平均繊維長25〜300mm、平均繊度2〜20dtex、目付50〜1000g/mの不織布であることを特徴とする積層パネル。The laminated panel according to claim 7 or 8, wherein the organic fiber is a nonwoven fabric having an average fiber length of 25 to 300 mm, an average fineness of 2 to 20 dtex, and a basis weight of 50 to 1000 g/m 2 . 請求項1ないし9のいずれか1項において、塑性加工に用いることを特徴とする積層パネル。 The laminated panel according to any one of claims 1 to 9, which is used for plastic working. 請求項1ないし10のいずれか1項に記載の積層パネルを塑性加工して成形品を製造する方法であって、前記繊維強化熱可塑性樹脂層単体試験片の動的粘弾性試験(JIS K 7244−4:1999(プラスチック−動的機械特性の試験方法、周波数100Hz、試験片厚み2mm)における当該繊維強化熱可塑性樹脂層の比重ρに対する貯蔵弾性率E′の比(比貯蔵弾性率値:E′/ρ)が1.0GPa以上の温度領域における何れかの温度で塑性加工をすることを特徴とする成形品の製造方法。 A method for producing a molded product by plastically working the laminated panel according to any one of claims 1 to 10, comprising a dynamic viscoelasticity test (JIS K 7244) of the fiber-reinforced thermoplastic resin layer single-piece test piece. -4: 1999 (Plastic-Dynamic mechanical property test method, frequency 100 Hz, test piece thickness 2 mm), the ratio of the storage elastic modulus E'to the specific gravity ρ of the fiber-reinforced thermoplastic resin layer (specific storage elastic modulus value: E A method for producing a molded product, characterized in that plastic working is performed at any temperature in a temperature range in which ′/ρ) is 1.0 GPa or more. 請求項1ないし10のいずれか1項に記載の積層パネルを塑性加工して成形品を製造する方法であって、10〜40℃の温度領域における何れかの温度で塑性加工をすることを特徴とする成形品の製造方法。 A method for producing a molded product by plastically working the laminated panel according to any one of claims 1 to 10, wherein the plastic working is performed at any temperature in a temperature range of 10 to 40°C. And a method of manufacturing a molded article. 請求項11又は12において、前記塑性加工は、プレス加工、ロールフォーミング加工、又は曲げ加工であることを特徴とする成形品の製造方法。 The method for manufacturing a molded product according to claim 11 or 12, wherein the plastic working is press working, roll forming, or bending.
JP2017552694A 2015-11-25 2016-11-24 Laminated panel and method for manufacturing molded article thereof Active JP6717321B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015229810 2015-11-25
JP2015229810 2015-11-25
PCT/JP2016/084787 WO2017090676A1 (en) 2015-11-25 2016-11-24 Laminated panel and method for manufacturing article molded therefrom

Publications (2)

Publication Number Publication Date
JPWO2017090676A1 JPWO2017090676A1 (en) 2018-09-06
JP6717321B2 true JP6717321B2 (en) 2020-07-01

Family

ID=58763481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017552694A Active JP6717321B2 (en) 2015-11-25 2016-11-24 Laminated panel and method for manufacturing molded article thereof

Country Status (2)

Country Link
JP (1) JP6717321B2 (en)
WO (1) WO2017090676A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7295376B2 (en) 2017-12-28 2023-06-21 日本製鉄株式会社 METAL-FIBER REINFORCED RESIN MATERIAL COMPOSITE AND PRODUCTION METHOD THEREOF
JP7215163B2 (en) * 2017-12-28 2023-01-31 日本製鉄株式会社 Metal-fiber reinforced resin material composite
WO2019159929A1 (en) * 2018-02-14 2019-08-22 三菱ケミカル株式会社 Flame retardant metal-resin composite material
JP7352059B2 (en) 2018-02-28 2023-09-28 日本製鉄株式会社 Metal-fiber-reinforced resin material composite and method for producing metal-fiber-reinforced resin material composite
JP7020184B2 (en) * 2018-03-01 2022-02-16 日本製鉄株式会社 Processing method of metal-thermoplastic fiber reinforced resin material composite member, metal-thermoplastic fiber reinforced resin material composite member and automobile parts.
JP7207510B2 (en) * 2018-03-01 2023-01-18 日本製鉄株式会社 METHOD OF PROCESSING METAL-THERMOPLASTIC FIBER REINFORCED COMPOSITE MEMBER
CN108517623A (en) * 2018-03-26 2018-09-11 东莞市科迪实业有限公司 A kind of production technology and method of the high-precision control of nonwoven fabric thickness
JP7069977B2 (en) * 2018-03-30 2022-05-18 三菱ケミカル株式会社 Thermoplastic resin laminate
CN111936685B (en) * 2018-03-30 2022-06-14 三井化学株式会社 Nonwoven fabric laminate, stretchable nonwoven fabric laminate, fibrous product, absorbent article, and sanitary mask
CN108741526A (en) * 2018-09-10 2018-11-06 潘素娇 A kind of children's trolley case being convenient for carrying
US20230001652A1 (en) * 2019-12-02 2023-01-05 Toyo Kohan Co., Ltd. Layered composite
CN114433709B (en) * 2022-01-17 2023-07-21 北京协同创新研究院 Forming method of super hybrid composite material special-shaped piece
CN117199675A (en) * 2022-05-31 2023-12-08 比亚迪股份有限公司 Battery protection bottom plate, battery package composite protection structure and vehicle
CN117199658A (en) * 2022-05-31 2023-12-08 比亚迪股份有限公司 Battery pack composite protection structure and vehicle
CN117199667A (en) * 2022-05-31 2023-12-08 比亚迪股份有限公司 Battery protection bottom plate and battery package composite protection structure and vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164533A (en) * 1986-01-16 1987-07-21 チッソ株式会社 Metal-polypropylene laminated composite body
JPH11227103A (en) * 1998-02-13 1999-08-24 Kawasaki Steel Corp Laminate
JP2011037002A (en) * 2007-12-14 2011-02-24 Nippon Zeon Co Ltd Metal/fiber-reinforced resin composite and process for producing the same
JP2013006293A (en) * 2011-06-22 2013-01-10 Fuji Heavy Ind Ltd Laminate

Also Published As

Publication number Publication date
JPWO2017090676A1 (en) 2018-09-06
WO2017090676A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6717321B2 (en) Laminated panel and method for manufacturing molded article thereof
JP5926947B2 (en) Fiber-reinforced resin molded body and vehicle interior material using the same
US10576709B2 (en) Resin composite
US8048815B2 (en) Composite article and method of manufacture
US10780670B2 (en) Laminate
JP3839037B1 (en) Laminated molded body
GB2528668A (en) Method of Manufacturing A Structural Panel For An Engineering Structure
US10913223B2 (en) Fibre reinforced composites
JP2013176876A (en) Manufacturing method of molding
CN107571577A (en) A kind of composite panel and preparation method thereof
JP2013000933A (en) Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite body and method for producing the same
US11772362B2 (en) Sandwich panel and a manufacturing method thereof
JP6805951B2 (en) Laminated panel
CN106671538B (en) Thermoplastic composite material with semi-closed honeycomb sandwich structure and preparation method thereof
US20160271906A1 (en) Resin joined body, method of producing resin joined body, and vehicular structural body
KR102317515B1 (en) A sandwich panel and a manufacturing method thereof
JP2013010255A (en) Thermoplastic resin composite material
JPH10305523A (en) Metal-fiber reinforced resin composite body and reinforced laminated body using the same
JP2006001035A (en) Polypropylene resin laminating and molding material and laminate thereof
JP6488584B2 (en) Carbon fiber reinforced thermoplastic resin molded product and metal welded joint
JP2014113715A (en) Molded article, and method for producing the same
JP2016070389A (en) Vibration-damping structure and vibration-damping material
EP4279247A1 (en) Decorative molded body and method for manufacturing same
US11260626B2 (en) Sandwich panel and a manufacturing method thereof
WO2022085172A1 (en) Ceiling material for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R151 Written notification of patent or utility model registration

Ref document number: 6717321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151