WO2017090585A1 - Al2O3を含有する固体状MAO組成物およびその製造方法 - Google Patents

Al2O3を含有する固体状MAO組成物およびその製造方法 Download PDF

Info

Publication number
WO2017090585A1
WO2017090585A1 PCT/JP2016/084544 JP2016084544W WO2017090585A1 WO 2017090585 A1 WO2017090585 A1 WO 2017090585A1 JP 2016084544 W JP2016084544 W JP 2016084544W WO 2017090585 A1 WO2017090585 A1 WO 2017090585A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
composition
group
polymethylaluminoxane
polymethylaluminoxane composition
Prior art date
Application number
PCT/JP2016/084544
Other languages
English (en)
French (fr)
Inventor
健太郎 境
裕仁 竹元
栄一 加地
Original Assignee
東ソー・ファインケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー・ファインケム株式会社 filed Critical 東ソー・ファインケム株式会社
Priority to EP16868532.9A priority Critical patent/EP3480258B1/en
Priority to CN201680068967.0A priority patent/CN108350276B/zh
Priority to JP2017515857A priority patent/JP6159049B1/ja
Priority to US15/778,868 priority patent/US10730969B2/en
Priority to KR1020187017748A priority patent/KR102574150B1/ko
Publication of WO2017090585A1 publication Critical patent/WO2017090585A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/025Metal oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/027Polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6428Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to a solid polymethylaluminoxane composition used for the polymerization of olefins (hereinafter sometimes referred to as a solid MAO composition), a polymerization catalyst using the solid MAO composition as a catalyst component, and polyolefins. It is related with the manufacturing method.
  • a solution-like polyaluminoxane composition is a condensation product generally prepared by partial hydrolysis reaction of an organoaluminum compound, and a co-catalyst that efficiently activates a transition metal compound as a main catalyst in the production of an olefin polymer. It is known to be useful as an ingredient. It is widely known that a polymethylaluminoxane composition using trimethylaluminum as a raw material organoaluminum compound exhibits particularly excellent promoter performance, and this composition is usually dissolved in an aromatic hydrocarbon solvent such as toluene. Handled in solution.
  • the polymethylaluminoxane composition exhibits excellent promoter performance, but usually the main catalyst such as a metallocene compound and the polymethylaluminoxane composition are handled in a state of being dissolved in a solvent, so that the morphology control of the produced polymer cannot be performed. For this reason, not only does the handling of the polymer become difficult, but fouling due to the adhesion of the polymer to the polymerization reactor or the like is very likely to occur.
  • a supported solid polymethylaluminoxane composition in which a polymethylaluminoxane composition is supported on a solid inorganic carrier such as silica, alumina, or magnesium chloride is prepared, and suspension polymerization or gas phase polymerization is performed.
  • a solid inorganic carrier such as silica, alumina, or magnesium chloride
  • silica with a controlled amount of surface hydroxyl groups is most widely used as a carrier, and there are not a few cases that have been developed to an industrial level.
  • polymer carriers such as polystyrene beads.
  • the above silica carrier tends to remain in the polymer and causes deterioration of the polymer performance such as being one of the causes of fish eyes during film forming. It is also known that a solid polymethylaluminoxane composition using a carrier as described above exhibits a significant decrease in activity when compared with the polymerization activity in homogeneous polymerization. Therefore, in order to solve the above problems, it has been desired to develop a highly active solid polymethylaluminoxane composition comparable to homogeneous polymerization while maintaining the merit that the copolycatalyst polymethylaluminoxane composition is in a solid state. .
  • Patent Document 1 A method of preparation was proposed (Patent Document 1).
  • the obtained solid polymethylaluminoxane composition has a uniform particle size, and the polymerization activity when preparing an olefin polymer is higher than that of a solid polymethylaluminoxane composition using a carrier. Yes.
  • an activity comparable to that of the solution-like polymethylaluminoxane composition may be exhibited.
  • solid polymethylaluminoxane is a new solid promoter having both high promoter performance (activator) and carrier function. Further, the volume-based median diameter is less than 5 ⁇ m smaller than the polymethylaluminoxane composition described in Patent Document 1, the uniformity of the particle size distribution is high, the polymerization activity when preparing the olefin polymer is high, and the reaction A solid polymethylaluminoxane composition having a high fouling suppression property was also proposed along with its production method (Patent Document 2).
  • Patent Document 1 WO2010 / 055652
  • Patent Document 2 WO2013 / 146337
  • the entire description of Patent Documents 1 and 2 is specifically incorporated herein by reference.
  • Patent Documents 1 and 2 it is possible to obtain solid polymethylaluminoxane having higher activity than the silica-supported polymethylaluminoxane composition as described above.
  • deterioration of the morphology of polyolefin and polymer formed by olefin polymerization using a catalyst prepared by using solid polymethylaluminoxane by the method described in Patent Documents 1 and 2 supporting a homogeneous catalyst such as a metallocene complex
  • the bulk density may be lowered and improvement is required.
  • the solid polymethylaluminoxane containing Al 2 O 3 has a higher activity as a promoter in olefin polymerization.
  • the present invention has been completed by finding that there is a product having the above and further studying.
  • Patent Documents 1 and 2 for example, as described in Claim 10 of Patent Document 1 and Claim 9 of Patent Document 2, a solution-like polymethylaluminoxane composition is heated to obtain a solid polymethylaluminoxane composition.
  • a heating temperature and a heating time suitable for precipitating the solid polymethylaluminoxane composition are selected.
  • the solid heating temperature and heating time in Example 1 of Patent Document 1 are 100 ° C. and 8 hours, respectively
  • the heating temperature and heating time in Example 1 of Patent Document 2 are also 100 ° C. and 8 hours, respectively.
  • the activity of the co-catalyst in olefin polymerization is improved by about 5%.
  • the precipitation rate was 97%
  • the heating time was 16 hours
  • the precipitation rate was 100%
  • the solid polymethyl obtained in the heating time of 16 hours was obtained.
  • a structural analysis (TEM observation) of the aluminoxane composition precipitate revealed that crystalline Al 2 O 3 was present in the solid polymethylaluminoxane. Based on this discovery, investigations proceeded and the increase in crystalline Al 2 O 3 in the solid polymethylaluminoxane composition was closely related to the morphology of the polyolefin formed by olefin polymerization and the polymer bulk density. I found out.
  • the amount of crystalline Al 2 O 3 increases upon heating after the precipitation of the solid polymethylaluminoxane composition is completed. That is, the inventors discovered for the first time that the morphology and polymer bulk density of a polyolefin formed by olefin polymerization were improved by heating after precipitation of the solid polymethylaluminoxane composition, and completed the present invention.
  • the solution-form polymethylaluminoxane that we used as a raw material for preparing the solid polymethylaluminoxane composition was completely dissolved in toluene. Therefore, the Al 2 O contained in the solid polymethylaluminoxane composition was used. 3 is presumed to be formed during the preparation of the solid polymethylaluminoxane.
  • the solid polymethylaluminoxane composition according to any one of [1] to [8], which is solid at a temperature of at least 30 ° C. or lower.
  • [Ten] (a) heating an aromatic hydrocarbon solution (solution-like polymethylaluminoxane composition) containing polymethylaluminoxane and trimethylaluminum containing a unit represented by the following general formula (II), to obtain polymethylaluminoxane and trimethylaluminum Depositing a solid polymethylaluminoxane composition containing (b)
  • the solution containing the solid polymethylaluminoxane composition precipitated in step (a) is heated at the same or different temperature as in step (a), and Al 2 O is added to the solid polymethylaluminoxane composition.
  • a method for producing an Al 2 O 3 -containing solid polymethylaluminoxane composition comprising the step of precipitating 3 .
  • n represents an integer of 10 to 50.
  • dry inert gas is bubbled through the solution polymethylaluminoxane composition, and / or the solution polymethylaluminoxane composition is not dried during at least a portion of step (a).
  • M represents a transition metal element
  • R 5 and R 6 together represent an organic group having a cycloalkadienyl skeleton
  • R 7 and R 8 together represent a cycloalkadienyl skeleton.
  • R 7 and R 8 are independently a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, an aryloxy group, an alkylsilyl group, an amino group, an imino group, a halogen atom or a hydrogen atom.
  • the organic group having a cycloalkadienyl skeleton includes an alkyl group, an alkoxy group, an aryloxy group, an alkylsilyl group, an alkylamide group, an alkylimide group, an alkylamino group, an alkylimino group, and / or a halogen as a substituent. May have atoms.
  • a solid polymethylaluminoxane composition having higher activity when used as a co-catalyst in olefin polymerization, a solid polymethylaluminoxane composition having higher activity can be obtained.
  • FIG. 1 shows the results of 1 H-NMR measurement of a solid MAO composition.
  • FIG. 2 is a TEM measurement image (Example 2) of the solid MAO composition.
  • FIG. 3 is a TEM measurement image. The interstitial distance and the plane orientation were obtained from the crystal pattern of the part enclosed by the red square in the image (d value is 2.4 mm).
  • FIG. 4 shows an electron diffraction pattern (ED pattern).
  • FIG. 5 shows an ED pattern of alumina having a corundum structure.
  • FIG. 6 shows a crystal structure obtained using VESTA software from an ED pattern of alumina having a corundum structure.
  • Solid polymethylaluminoxane composition contains polymethylaluminoxane (hereinafter sometimes referred to as PMAO), trimethylaluminum (hereinafter sometimes referred to as TMAL), and Al 2 O 3 . further, (i) the aluminum content is in the range of 36% to 43% by weight, and (ii) The content of Al 2 O 3 is in the range of 0.001 mol% to 10 mol% based on aluminum.
  • the polymethylaluminoxane can contain, for example, a unit represented by the following general formula (I). (In the formula, Me represents a methyl group, and n represents an integer of 10 to 50.)
  • n is a single polymethylaluminoxane (n is a specific integer) within the above range or a plurality of polymethylaluminoxanes (a plurality of integers where n is different). Means containing methylaluminoxane.
  • n is an integer of 10 to 50 is that n of polymethylaluminoxane in the solution-like polymethylaluminoxane composition used as a raw material for the solid MAO composition is 10 to 50.
  • n of the polymethylaluminoxane in the solid MAO composition substantially corresponds to n of the solution-like polymethylaluminoxane composition used as a raw material.
  • the polymethylaluminoxane in the present invention may be a chain structure, a cyclic structure or a branched structure as long as it contains the above unit.
  • the theoretical amount of aluminum content is about 46 to 47% by mass, and the theoretical amount of aluminum content in trimethylaluminum is about 38% by mass. That is, when the aluminum content in the solid MAO composition exceeds 46% by mass, the solid MAO composition consists only of polymethylaluminoxane having a cyclic structure, and it is estimated that trimethylaluminum is hardly present. Does not contain impurities such as solvents.
  • the theoretical amount of aluminum content varies depending on the n number of general formula (I), but is smaller than that of a cyclic structure.
  • the solid MAO composition of the present invention can contain polymethylaluminoxane having a linear structure and a branched structure in addition to the polymethylaluminoxane having a cyclic structure, and further impurities such as residual solvent in addition to trimethylaluminum. Therefore, in the solid MAO composition of the present invention, the aluminum content is in the range of 36% by mass to 43% by mass as indicated by (i). The smaller the aluminum content, the greater the proportion of trimethylaluminum, and the greater the aluminum content, the lower the proportion of trimethylaluminum.
  • the solid MAO composition of the present invention contains Al 2 O 3 . Since the Al content in Al 2 O 3 is approximately 52.9% by mass (the remainder is the oxygen content), if the Al 2 O 3 content increases, the Al content of the solid MAO composition tends to increase. .
  • the solid MAO composition has the performance of good particle size uniformity and robustness that does not easily break due to cracks, etc. Can do.
  • the aluminum content in the solid MAO composition of the present invention is less than 36% by mass, it indicates that drying is insufficient and impurities such as a solvent are included excessively.
  • the aluminum content exceeds 43% by mass, as described above, it is estimated that the aluminum content is mainly composed of polymethylaluminoxane having a cyclic structure, and the trimethylaluminum and solvent impurities are not included.
  • the composition itself is different from the solid MAO composition obtained in (1).
  • the aluminum content is preferably 38% by mass or more and 43% by mass or less, more preferably 40% by mass or more and 42% by mass or less, and further preferably 40.5% by mass or more and 41.5% by mass or less. .
  • the aluminum content of the solution-like polymethylaluminoxane composition and the solid MAO composition prepared in the present invention is, for example, after adding an excessive amount of disodium ethylenediaminetetraacetate to a solution hydrolyzed with a 0.5 N sulfuric acid aqueous solution. It can be determined by back titrating with zinc sulfate using dithizone as an indicator. When the measurement concentration is dilute, the measurement can also be performed using atomic absorption spectrometry.
  • the content of Al 2 O 3 shown in (ii) is in the range of 0.001 mol% to 10 mol% based on aluminum.
  • the content of Al 2 O 3 is preferably 0.01 mol% to 8 mol%, more preferably 0.1 mol% to 7 mol%, still more preferably 0.2 mol% to 6 mol%, still more preferably 0.5 mol, based on aluminum. It is in the range of mol% to 5 mol%.
  • Al 2 O 3 contained in the solid MAO composition of the present invention may have a crystal structure or an amorphous structure. At least a part of Al 2 O 3 contained in the solid MAO composition of the present invention is present in the solid MAO composition as crystal grains. Also, at least a portion of Al 2 O 3 can be present in the solid MAO composition as an amorphous.
  • the presence of Al 2 O 3 in the solid MAO composition can be confirmed by simulation analysis of the lattice pattern obtained by TEM observation of the solid MAO composition.
  • the TEM observation will be described in the example.
  • the size of Al 2 O 3 crystal grains in the solid MAO composition can be confirmed by TEM observation, and is preferably nano-order. Specifically, it can be 0.1 to 200 nm, preferably 0.1 to 100 nm, and more preferably 0.1 to 50 nm. Further, it is considered that some Al 2 O 3 is present in the solid MAO composition as an amorphous structure.
  • Al 2 O 3 contained in the solid MAO composition of the present invention is a product formed in the solid MAO composition during the process of preparing the solid MAO composition.
  • the solid MAO composition of the present invention contains polymethylaluminoxane (PMAO) and trimethylaluminum (TMAL).
  • TMAL contained in the polymethylaluminoxane composition of the present invention is an inherent substance as an unreacted raw material.
  • the total number of moles of methyl groups contained in the solid MAO composition of the present invention is the sum of the number of moles of methyl groups derived from trimethylaluminum (TMAL) and the number of moles of methyl groups derived from polymethylaluminoxane (PMAO). is there.
  • TMAL trimethylaluminum
  • PMAO polymethylaluminoxane
  • a low Me means that there are few methyl groups derived from the TMAL site contained in the polymethylaluminoxane composition, and there are many states of aluminum in the polymethylaluminoxane chain.
  • Me (TMAL) is 15 mol% or less, a solid MAO composition having low solvent solubility and strength that does not break particles even by drying treatment is obtained.
  • Me (TMAL) exceeds 15 mol%, the solvent solubility becomes high and the particles tend to be easily crushed.
  • Me (TMAL) is preferably 11 mol% or less.
  • the lower limit of Me (TMAL) may be, for example, 6 mol% or more, preferably 8 mol% or more, because it depends on the solution-like polymethylaluminoxane that is a raw material that can control the shape of the solid MAO composition. More than that.
  • the molar fraction of each component in the polymethylaluminoxane composition can be determined from the area ratio attributed to each component by 1 H-NMR measurement of the polymethylaluminoxane composition.
  • the specific method for determining the molar fraction Me (PMAO) and Me (TMAL) of the polymethylaluminoxane composition will be described in Examples.
  • the solid MAO composition of the present invention may be in the form of particles and have a volume-based median diameter in the range of 1 ⁇ m to 50 ⁇ m, for example.
  • the volume-based median diameter of the solid MAO composition of the present invention that is in the particulate form is in the above range, so that the bulk density of the polymer is maintained using the solid MAO composition and the transition metal compound, and the fine powder An olefin polymer with suppressed polymer formation can be obtained.
  • the volume-based median diameter of the solid MAO composition is generally about 5 to 200 ⁇ m from the viewpoint of improving the powder properties such as bulk density of the resulting olefin polymer.
  • the volume-based median diameter of the solid MAO composition of the present invention is preferably 1 to 50 ⁇ m, more preferably 2 to 40 ⁇ m, and even more preferably 5 to 40 ⁇ m, considering uniformity. .
  • the volume-based median diameter and particle size distribution of the solid MAO composition of the present invention can be determined by a laser diffraction / scattering method in a dry nitrogen atmosphere using a Mastersizer 2000 Hydro S from Malvern Instrument Ltd. Specific methods are described in the examples.
  • the solid MAO composition of the present invention does not contain a solid carrier. However, the Al 2 O 3 is not included in the solid support.
  • the solid MAO composition of the present invention does not intentionally contain a solid carrier such as silica at least during the production process. Since the solid MAO composition of the present invention does not contain a carrier such as silica, the disadvantages of the solid MAO composition containing a carrier such as silica can be avoided.
  • the solid MAO composition of the present invention is solid at room temperature (for example, 30 ° C. or lower), and is solid at least at 30 ° C. or lower.
  • the solid state means a state having substantially no fluidity.
  • n is a singular number within the above range (where n is a specific integer), or n is a plurality of types within the above range (a plurality of n different from each other).
  • An integer) of polymethylaluminoxane is that the degree of polymerization of aluminoxane based on the molecular weight determined from the freezing point depression in benzene is in the range of 10 to 50.
  • the solution-like polymethylaluminoxane composition used as a raw material in the production method of the present invention can be prepared, for example, by the method described in JP-T-2000-505785 (WO97 / 23288).
  • the method described in this patent document is a method for preparing a polymethylaluminoxane composition without hydrolyzing trimethylaluminum. Specifically, it is a method for obtaining a solution-like polymethylaluminoxane composition by thermally decomposing an alkylaluminum compound having an aluminum-oxygen-carbon bond.
  • aromatic hydrocarbon used in the solution-like polymethylaluminoxane composition examples include benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, xylene, chlorobenzene, dichlorobenzene and the like. However, it is not limited to these examples, and any aromatic hydrocarbon can be used as a solvent for the solution-like polymethylaluminoxane composition.
  • the alkylaluminum compound having an aluminum-oxygen-carbon bond is preferably prepared by a reaction between trimethylaluminum and an oxygen-containing organic compound.
  • the oxygen-containing organic compound is preferably an aliphatic or aromatic carboxylic acid represented by the general formula (III).
  • R 1 represents a C1-C20 linear or branched alkyl group, alkenyl group, or aryl hydrocarbon group, and n represents an integer of 1-5.
  • the oxygenated compound used in the reaction of trimethylaluminum with an aluminum-oxygen-carbon bond having an aluminum-oxygen-carbon bond to give a solution-like polymethylaluminoxane composition by thermal decomposition reaction is, for example, a carboxyl group having a COOH group. It is an acid compound and a carboxylic anhydride. In preparing a solution-like polymethylaluminoxane composition, these may be used alone or in combination with a plurality of compounds.
  • oxygen-containing compounds include formic acid, acetic acid, propionic acid, orthobutyric acid, orthovaleric acid, orthocaproic acid, orthoenanthic acid, orthocaprylic acid, orthopelargonic acid, orthocapric acid, ortholauric acid, and orthomyristic acid , Orthostearic acid, succinic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, benzoic acid, phthalic acid, citric acid, tartaric acid, lactic acid, malic acid, toluic acid, Toluic anhydride, acetic anhydride, propionic anhydride, positive butyric anhydride, positive valeric anhydride, positive caproic anhydride, succinic anhydride, malonic anhydride, succinic anhydride, glutaric anhydride, benzoic acid An acid anhydride, a phthalic acid anhydride,
  • acetic acid acetic anhydride
  • propionic acid propionic anhydride
  • benzoic acid benzoic anhydride
  • phthalic acid phthalic anhydride
  • toluic acid and toluic acid anhydride.
  • the molar ratio of the aluminum atom contained in trimethylaluminum used for the synthesis of the solution-like polymethylaluminoxane composition and the oxygen atom of the oxygen-containing organic compound is arbitrarily selected for the purpose of controlling the molecular weight of polymethylaluminoxane and the residual amount of trimethylaluminum. Can be set.
  • the ratio of the molar amount of aluminum atoms contained in the trimethylaluminum to the oxygen atoms of the oxygen-containing organic compound (Al / O molar ratio) can be arbitrarily set in the range of 0.5 to 3.0 to 1: 1.
  • the molar ratio is preferably in the range of 1.0 to 1.7: 1, More preferably, it is in the range of 1.15 to 1.3: 1.
  • the thermal decomposition of the aluminum compound having an aluminum-oxygen-carbon bond which is a precursor of the solution-like polymethylaluminoxane composition, can be carried out at any temperature between 20 and 120 ° C. From the viewpoint of easy operability and safety of the reaction and an appropriate reaction time, it is preferably 30 ° C. to 80 ° C., more preferably 60 ° C. to 80 ° C.
  • the thermal decomposition time of an aluminum compound having an aluminum-oxygen-carbon bond varies depending on the thermal decomposition temperature and the composition of the raw material (for example, Al / O molar ratio, concentration, etc.), but for example in the range of 5 to 100 hours. is there. If the temperature is low, it takes a long time. If the temperature is high, the thermal decomposition can be completed in a short time.
  • the thermal decomposition temperature exceeds 100 ° C., it becomes easy to cause remarkable formation of an amorphous gel, and the recovery yield of the polymethylaluminoxane homogeneous solution may be lowered.
  • the thermal decomposition temperature is lower than 50 ° C., there may be a case where a significant decrease in productivity is caused due to an increase in the polymethylaluminoxane formation reaction time.
  • an alkylaluminum compound having an aluminum-oxygen-carbon bond is thermally decomposed to prepare a solution-like polymethylaluminoxane composition, and the prepared solution-like polymethylaluminoxane composition is heated under predetermined conditions to obtain a solid
  • a solid methylaluminoxane composition having a controlled particle diameter can be obtained by using the solution-like polymethylaluminoxane composition once prepared as a parameter for stirring, concentration, heating temperature, and the like.
  • the concentration of polymethylaluminoxane in an inert hydrocarbon solvent prepared by pyrolyzing an alkylaluminum compound having an aluminum-oxygen-carbon bond, which is a raw material of the solution-like polymethylaluminoxane composition is in the range of 1 to 40% by weight. It is preferably 6 to 30% by weight, and more preferably 8 to 15% by weight. If the polymethylaluminoxane concentration is low, a long time is required, and if the concentration is high, the thermal decomposition can be completed in a short time. It is possible to adjust the concentration in consideration of the control state of the heat of reaction.
  • a solution-like polymethylaluminoxane composition can be obtained with a quantitative reaction yield.
  • the emphasis is placed on the fact that the amount of trimethylaluminum in the solution-like polymethylaluminoxane composition can be controlled.
  • trimethylaluminum does not act as an activator for transition metal compounds such as metallocene compounds, it has been an important problem to control the amount of trimethylaluminum remaining in the solution-like polymethylaluminoxane composition.
  • the solution-like polymethylaluminoxane composition used as a raw material has a solid fraction in which the mole fraction of methyl groups (Me (TAL)) derived from trimethylaluminum sites relative to the total number of moles of methyl groups is 15 mol% or less. It is preferable from the viewpoint of improving the yield of polymethylaluminoxane.
  • Me (TAL) is preferably 14 mol% or less.
  • the lower limit of Me (TAL) is approximately 6 mol%.
  • the Me (TAL) of the solution-like polymethylaluminoxane composition prepared by the hydrolysis method is 40 to 50 mol%, and the Me (TAL) in the polymethylaluminoxane composition is obtained from 15 mol% by the usual concentration and drying treatment. Lowering is difficult.
  • the lower limit of Me (TAL) is 8 by setting the molar ratio of the aluminum atom contained in trimethylaluminum to the oxygen atom of the oxygen-containing organic compound to 1.15. It is possible to make it mol%, and the performance of the obtained solid MAO composition is also good.
  • Me (TAL) is preferably 8 mol% to 14 mol%.
  • the solution-like polymethylaluminoxane used in the present invention may be obtained by adding the aliphatic or aromatic carboxylic acid represented by the general formula (III) in several portions.
  • R 1 represents a C1-C20 linear or branched alkyl group, alkenyl group, or aryl hydrocarbon group, and n represents an integer of 1-5.
  • the aromatic hydrocarbon used in the method for producing solid MAO of the present invention is not particularly limited, but for example, benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, xylene, chlorobenzene, dichlorobenzene and mixtures thereof
  • a solvent etc. can be illustrated.
  • it may be heat-treated with the solvent as it is, or may be heat-treated by adding and diluting another solvent.
  • step (a) a solid MAO composition containing polymethylaluminoxane and trimethylaluminum is deposited.
  • the solution containing the precipitated solid MAO composition is heated at the same or different temperature as in step (a) to precipitate Al 2 O 3 in the solid MAO composition.
  • the solid MAO composition obtained in step (a) corresponds to the solid MAO composition described in Patent Documents 1 and 2.
  • the precipitation rate of the solid MAO composition is less than 100%. For example, it is in the range of 95 to 98%.
  • Al 2 O 3 cannot be precipitated by heating in a state where the precipitation rate is less than 100%.
  • Al 2 O 3 is precipitated by heating the solid MAO composition having a precipitation rate of 100% and heating the solid MAO composition to 100%.
  • the precipitation rate of the solid MAO composition can be determined by the following method.
  • the precipitation rate of the solid MAO composition was defined as the Al concentration (L wt% -Al) in the supernatant liquid during precipitation of the solid MAO composition relative to the Al concentration (K wt% -Al) in the solution-like polymethylaluminoxane composition. In this case, it is defined as (1-L) * 100 / K (percentage%). Therefore, if the Al concentration in the supernatant liquid does not change even after heating, the precipitation rate is 0%. If the Al concentration in the supernatant liquid after heating is 0 wt%, the precipitation rate is 100%.
  • the heating temperature and time after precipitation of the solid MAO composition for precipitating Al 2 O 3 in the solid MAO composition depend on the precipitation temperature of the solid MAO composition in step (a) and the completion of the precipitation. Further, the time varies depending on the precipitated particle size of the solid MAO composition in step (a) and the solution-like polymethylaluminoxane composition used. However, in general, it is the same or different temperature as in step (a), and is in the range of 80 to 200 ° C, preferably 90 to 150 ° C, more preferably 100 to 140 ° C.
  • the heating time is preferably 1 to 20 hours, more preferably 5 to 12 hours in this temperature range. However, when the temperature decreases, the time required for Al 2 O 3 formed of solid MAO composition becomes long, the higher the temperature, the time is shortened required for Al 2 O 3 formed of solid MAO composition Tend.
  • Al 2 O 3 formation in solid MAO compositions is difficult to monitor directly. Therefore, measurement of the amount of methane gas generated by heating can be used as an indirect monitoring method for Al 2 O 3 formation.
  • methane gas (Me-H) is generated as shown in the above formula (X).
  • the precipitation rate of the solid MAO composition the ratio in which the Al component of the solution polymethylaluminoxane composition is converted into the solid MAO composition
  • the amount of Al 2 O 3 formed from the amount of methane gas produced Can be obtained by the following method.
  • the solid content is recovered from the solvent to obtain the solid MAO composition of the present invention containing Al 2 O 3 be able to.
  • the obtained solid MAO composition of the present invention can be appropriately washed and dried.
  • the present invention includes an olefin polymerization catalyst.
  • the polymerization catalyst for olefins of the present invention contains the solid MAO composition of the present invention and a transition metal compound represented by the following general formula (IV) as catalyst components.
  • M represents a transition metal element
  • R 5 and R 6 together represent an organic group having a cycloalkadienyl skeleton
  • R 7 and R 8 together represent a cycloalkadienyl skeleton.
  • R 7 and R 8 are independently a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, an aryloxy group, an alkylsilyl group, an amino group, an imino group, a halogen atom or a hydrogen atom.
  • the organic group having a cycloalkadienyl skeleton includes an alkyl group, an alkoxy group, an aryloxy group, an alkylsilyl group, an alkylamide group, an alkylimide group, an alkylamino group, an alkylimino group, and / or a halogen as a substituent. May have atoms.
  • the solid MAO composition of the present invention can be used as a polymerization catalyst in combination with a catalyst known as an olefin polymerization catalyst.
  • a catalyst known as an olefin polymerization catalyst examples include transition metal compounds.
  • Such a transition metal compound can be one represented by the above general formula (IV).
  • M in the general formula (IV) is titanium, zirconium, hafnium, chromium, vanadium, manganese, iron, cobalt, nickel, or palladium, and preferably titanium, zirconium, chromium, iron, nickel. .
  • a preferable transition metal compound is a metallocene compound in which one or two ligands having a cycloalkadienyl skeleton are coordinated.
  • ligands having a cycloalkadienyl skeleton include cyclopentadienyl, methylcyclopentadienyl, ethylcyclopentadienyl, butylcyclopentadienyl, dimethylcyclopentadienyl, and pentamethyl.
  • alkyl-substituted cyclopentadienyl group such as cyclopentadienyl group, indenyl group, and fluorenyl group can be exemplified, and the cycloalkadienyl group is bridged by a divalent substituted alkylene group, a substituted silylene group or the like. Also good.
  • the ligand other than the ligand having a cycloalkadienyl skeleton is a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, an aryloxy group, an alkylsilyl group, an amino group, an imino group, a halogen atom or a hydrogen atom. is there.
  • the hydrocarbon group having 1 to 20 carbon atoms include an alkyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
  • transition metal compound containing a ligand having a cycloalkadienyl skeleton when M in the general formula (IV) is zirconium are exemplified.
  • M in the general formula (IV) is zirconium, includes at least two ligands having a cycloalkadienyl skeleton, and the ligand having at least two cycloalkadienyl skeletons.
  • the transition metal compound bonded via an alkylene group such as ethylene and propylene, a substituted alkylene group such as isopropylidene and diphenylmethylene, a substituted silylene group such as silylene group and dimethylsilylene, and the like are exemplified.
  • transition metal compounds may be used alone in homogeneous polymerization, or two or more kinds may be used for the purpose of adjusting the molecular weight distribution. In the case of preparing a solid catalyst in advance, only one kind of these transition metal compounds may be used, or two or more kinds may be used for the purpose of adjusting the molecular weight distribution.
  • This invention includes the manufacturing method of polyolefin including polymerizing olefin using the catalyst of the said invention.
  • Homogeneous polymerization using the solid MAO composition of the present invention and polymerization using a supported catalyst prepared using the solid MAO composition of the present invention include, as a polymerization mode, solution polymerization and slurry polymerization using a solvent, It exhibits suitable performance in any method such as bulk polymerization and gas phase polymerization without using a solvent. Moreover, in any method of continuous polymerization and batch polymerization, preferable performance is exhibited, and hydrogen as a molecular weight regulator can be used as necessary.
  • the polymerization conditions for olefins can be appropriately selected depending on the polymerization method.
  • the monomer used for polymerization may be any compound that can be used for copolymerization of olefinic monomers alone or in combination.
  • Specific examples include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-decene, 1-hexadecene, 1-octadecene and 1-eicocene, bisfluoroethylene, trifluoroethylene , Halogen-substituted olefins such as tetrafluoroethylene and hexafluoropropene, and cyclic olefins such as cyclopentene, cyclohexene and norbornene.
  • the solid methylaluminoxane composition is usually dried at 40 ° C. under a vacuum pump full vacuum through a seal pot containing liquid paraffin, and no bubbles are observed in the seal pot. The time was taken as the end point of drying.
  • the aluminum content of the solution-like polymethylaluminoxane composition and the solid aluminoxane composition is basically determined by adding an excess amount of disodium ethylenediaminetetraacetate to a solution hydrolyzed with a 0.5 N aqueous sulfuric acid solution. It was determined by back titrating with zinc sulfate using dithizone as an indicator. When the measurement concentration was dilute, the measurement was performed using atomic absorption spectrometry.
  • volume-based median diameter and particle size distribution of solid MAO composition were measured using a master sizer 2000 Hydro S of Malvern Instrument Ltd. under a dry nitrogen atmosphere. It was determined by the laser diffraction / scattering method. The dispersion medium was mainly dehydrated and degassed n-hexane, and partially dehydrated and degassed toluene depending on the purpose. As an index of the catalyst particle size distribution, the uniformity represented by the following formula was used.
  • Xi is the histogram value of particle i
  • d (0.5) is the volume-based median diameter
  • Di is the volume-based diameter of particle i.
  • 1 H-NMR measurement of a polymethylaluminoxane composition is performed using d 8 -THF as a heavy solvent.
  • 1 H-NMR measurement was performed at a measurement temperature of 24 ° C. using a Gemini 2000 NMR measurement apparatus manufactured by 300 MHz Varian Technologies Japan Limited.
  • An example of a 1 H-NMR chart is shown in FIG. (i) The total integral value of the Me group peak of polymethylaluminoxane containing trimethylaluminoxane appearing at about -0.3 ppm to -1.2 ppm is obtained, and this is defined as I (polymethylaluminoxane).
  • An analytical sample of the solution-like polymethylaluminoxane composition was prepared by adding about 0.5 ml of d 8 -THF to about 0.05 ml of the solution-like polymethylaluminoxane composition.
  • An analytical sample of the solid MAO composition was prepared by adding 0.5 ml of d 8 -THF to 10 mg of the solution polymethylaluminoxane composition.
  • the lattice pattern structure confirmed in the TEM image of the solid MAO composition was due to the alumina structure.
  • the interstitial distance and the plane orientation were obtained from the crystal pattern of the portion surrounded by the square of the TEM image shown in FIG. The d value was 2.4%.
  • the electron diffraction pattern (ED pattern) shown in FIG. 4 was obtained by Fourier transforming the parameters obtained in 2). For this, ReciPro software was used.
  • the ED pattern of alumina having a corundum structure was determined using ReciPro software using the following parameters.
  • FIG. 5 shows an ED pattern with the following parameters:
  • the crystal structure was obtained from the EDpattern of alumina having the corundum structure obtained in 1) using VESTA software, and is shown in FIG. Compared with the ED pattern of the solid MAO composition obtained in 2), it was confirmed that both were the same. Moreover, when FIG. 6 and the lattice pattern (part enclosed by FIG. 3) of solid polymethylaluminoxane were compared, it confirmed that both showed good agreement. 3) It was concluded that the crystal part obtained from the TEM image of the solid MAO composition was alumina having a corundum structure. 4) From the above examination, it was concluded that the crystal part confirmed in the solid MAO composition was alumina having a corundum structure.
  • the amount of methane gas generated (A: mol%) relative to the amount of Al mol in the solution-like polymethylaluminoxane (A: mol%), the amount of Al 2 O 3 produced (mol%) relative to the amount of Al mol in the solution-like polymethylaluminoxane is A / 2 (mol%).
  • the reaction solution was heated at 70 ° C. for 32 hours, and then heated at 60 ° C. for 6 hours to obtain a toluene solution of a polymethylaluminoxane composition.
  • the obtained solution was a transparent liquid without gel. From the results of aluminum analysis performed after the reaction solution was recovered, the reaction yield shown on the aluminum atom basis was quantitative. The aluminum concentration of the obtained reaction liquid was 8.67 wt%.
  • the Me (TMAL) content of the obtained solution-like polymethylaluminoxane composition was determined by 1 H-NMR and found to be 13.1 mol%.
  • solid MAO composition solid MAO composition
  • the reaction slurry was recovered, and the supernatant was removed from the solid MAO composition by decantation, followed by washing with decantation 4 times with 200 ml of toluene.
  • a part of the obtained solid MAO slurry was collected and dried under reduced pressure at 40 ° C. to obtain a dry solid MAO composition.
  • the precipitation rate of the dry solid MAO composition was 100% based on the aluminum atom of the solution-like polymethylaluminoxane composition used.
  • the slurry concentration of the toluene slurry of the solid MAO composition determined from the weight of the dry solid MAO composition was determined to be 9.16 wt% -solid MAO.
  • (c) Methane gas generation amount The methane gas generation amount with respect to the Al amount of the solution-like polymethylaluminoxane composition calculated from the internal pressure (0.16 MPa) when the temperature was lowered to 80 ° C. after the reaction was calculated to be 3.4 mol%. Therefore, the maximum amount of Al 2 O 3 formed with respect to the amount of Al in the solution-like polymethylaluminoxane composition was 1.70 mol%.
  • the toluene slurry concentration of the BI-supported solid MAO catalyst was 3.29 wt% -BI-supported solid MAO catalyst (34 mg-BI-supported solid MAO catalyst / ml).
  • the inside of the autoclave system was immediately pressurized to 0.8 MPa with ethylene to initiate polymerization.
  • the polymerization was carried out for 1 hour, during which the temperature in the autoclave was controlled at 80 ⁇ 1 ° C. using a heat medium and a refrigerant.
  • the supply of ethylene gas was stopped, the autoclave was cooled to 30 ° C. or lower with a refrigerant, and then the gas in the system was discharged to the vent line.
  • BHT 2,6-di-t-butylhydroxytoluene
  • the resulting polymer was obtained by filtration.
  • the polymer collected by filtration was dried at 50 ° C. using a vacuum dryer. From the polymer weight (232 g) obtained, the polymerization activity of this catalyst was determined to be 21.1 kg-PE / g-cat ⁇ hr.
  • the precipitation rate of the dry solid MAO composition was 100.0% based on the aluminum atom of the solution-like polymethylaluminoxane composition used.
  • (c) Methane gas generation amount The methane gas generation amount with respect to the Al amount of the solution-like polymethylaluminoxane composition calculated from the internal pressure (0.13 MPa) when the temperature was lowered to 80 ° C. after the reaction was calculated to be 1.8 mol%. Therefore, the maximum amount of Al 2 O 3 formed relative to the amount of Al in the solution-like polymethylaluminoxane composition was 0.92 mol%.
  • the precipitation rate of the dry solid MAO composition was 100.0% based on the aluminum atom of the solution-like polymethylaluminoxane composition used.
  • Methane gas generation amount The methane gas generation amount with respect to the Al amount of the solution-like polymethylaluminoxane composition calculated from the internal pressure (0.21 MPa) when the temperature was lowered to 80 ° C. after the reaction was calculated to be 5.5 mol%. Therefore, the maximum amount of Al 2 O 3 formed relative to the amount of Al in the solution-like polymethylaluminoxane composition was 2.75 mol%.
  • the precipitation rate of the dry solid MAO composition was 100.0% based on the aluminum atom of the solution-like polymethylaluminoxane composition used.
  • (c) Methane gas generation amount The methane gas generation amount with respect to the Al amount of the solution-like polymethylaluminoxane composition calculated from the internal pressure (0.24 MPa) when the temperature was lowered to 80 ° C. after the reaction was calculated to be 6.9 mol%. Therefore, the maximum amount of Al 2 O 3 formed with respect to the amount of Al in the solution-like polymethylaluminoxane composition was 3.45 mol%.
  • the precipitation rate of the dry solid MAO composition was 100.0% based on the aluminum atom of the solution-like polymethylaluminoxane composition used.
  • (c) Methane gas generation amount The methane gas generation amount with respect to the Al amount of the solution-like polymethylaluminoxane composition calculated from the internal pressure (0.26 MPa) when the temperature was lowered to 80 ° C. after the reaction was calculated to be 8.02 mol%. Therefore, the maximum amount of Al 2 O 3 formed relative to the amount of Al in the solution-like polymethylaluminoxane composition was 4.01 mol%.
  • the precipitation rate of the dry solid MAO composition was 100.0% based on the aluminum atom of the solution-like polymethylaluminoxane composition used.
  • (c) Methane gas generation amount The methane gas generation amount with respect to the Al amount of the solution-like polymethylaluminoxane composition calculated from the internal pressure (0.31 MPa) when the temperature was lowered to 80 ° C. after the reaction was calculated to be 10.24 mol%. Therefore, the maximum amount of Al 2 O 3 formed with respect to the amount of Al in the solution-like polymethylaluminoxane composition was 5.12 mol%.
  • Example 7 (1) Synthesis of solid MAO composition
  • the toluene solution of the solution-like polymethylaluminoxane composition prepared in Preliminary Experiment 1 (Al / O 1.17) was diluted by adding toluene, and the Al concentration was adjusted to 4.34 wt%.
  • a solid MAO composition was prepared in the same manner as in Example 3 except for the above.
  • the precipitation rate of the dry solid MAO composition was 100.0% based on the aluminum atom of the solution-like polymethylaluminoxane composition used.
  • (c) Methane gas generation amount The methane gas generation amount with respect to the Al amount of the solution-like polymethylaluminoxane composition calculated from the internal pressure (0.15 MPa) when the temperature was lowered to 80 ° C. after the reaction was calculated to be 5.65 mol%. Therefore, the maximum formation amount of Al 2 O 3 with respect to the amount of Al in the solution-like polymethylaluminoxane composition was 2.82 mol%.
  • Table 1 shows the analysis results and ethylene polymerization evaluation results of the solid MAO compositions of Examples 1 to 7.
  • Comparative Example 1 A solid MAO composition was prepared in the same manner as in Example 2 except that the heating time was 8 hours. The precipitation rate of the dry solid MAO composition was 97.0% based on the aluminum atom of the solution-like polymethylaluminoxane composition used. Table 1 shows the analysis results of the solid MAO composition and the evaluation results of ethylene polymerization.
  • Reference example 1 The gas was degassed after Example 3, and the internal pressure at 80 ° C. was measured. As a result, it was 0.05 MPa.

Abstract

オレフィン重合における助触媒として用いた場合に、より高い活性を有する固体状ポリメチルアルミノキサン組成物を提供する。 ポリメチルアルミノキサンとトリメチルアルミニウムとAl2O3を含有する固体状ポリメチルアルミノキサン組成物であって、 (i) アルミニウム含有量が36質量%から43質量%の範囲にあり、かつ (ii) Al2O3の含有量がアルミニウム基準で0.001モル%から10モル%の範囲にある、 固体状ポリメチルアルミノキサン組成物。

Description

Al2O3を含有する固体状MAO組成物およびその製造方法
 本発明は、オレフィン類の重合に用いられる固体状ポリメチルアルミノキサン組成物(以下、固体状MAO組成物と表記することがある)およびその固体状MAO組成物を触媒成分として用いる重合触媒およびポリオレフィン類の製造方法に関するものである。
関連出願の相互参照
 本出願は、2015年11月26日出願の日本特願2015-230487号の優先権を主張し、その全記載は、ここに特に開示として援用される。
 溶液状ポリアルミノキサン組成物は、一般に有機アルミニウム化合物の部分加水分解反応により調製される縮合生成物であり、オレフィン重合体の製造において、主触媒となる遷移金属化合物を効率的に活性化する助触媒成分として有用であることが知られている。原料の有機アルミニウム化合物にトリメチルアルミニウムを用いたポリメチルアルミノキサン組成物が、特に優れた助触媒性能を示すことは広く知られており、この組成物は通常トルエンなどの芳香族炭化水素溶媒に溶解した溶液状態で取り扱われる。
 ポリメチルアルミノキサン組成物は優れた助触媒性能を示すが、通常、メタロセン化合物などの主触媒およびポリメチルアルミノキサン組成物共に溶媒に溶解した状態で取り扱われるため、生成する重合体のモルフォロジー制御ができない。このため、重合体の取扱いが困難となるだけでなく、重合反応器等への重合体付着によるファウリングが非常に起こり易いという問題を抱えている。
 これらの問題を解決するために、ポリメチルアルミノキサン組成物をシリカ、アルミナ、塩化マグネシウムなどの固体状無機担体に担持した担持型固体状ポリメチルアルミノキサン組成物を調製し、懸濁重合や気相重合に適用する方法が提案されている。固体状無機担体の中でも、表面水酸基量を制御したシリカが担体として最も広く用いられており、工業レベルへの展開に至っている事例も少なくない。また、ポリスチレンビーズなどのポリマー担体の使用の提案もある。
 前記のシリカ担体は重合体中へ残留し易く、フィルム成形の際のフィッシュアイの原因の一つとなるなど、重合体の性能悪化をもたらすことが知られている。また、上述のような担体を利用した固体状ポリメチルアルミノキサン組成物は、均一系重合における重合活性と比較した場合、大きな活性低下を示すことも知られている。したがって、上記課題を解決するため、助触媒のポリメチルアルミノキサン組成物が固体状態であるメリットを保持しつつ、均一系重合に匹敵する高活性固体状ポリメチルアルミノキサン組成物の開発が望まれていた。
 我々は、シリカなどの担体を用いずにポリメチルアルミノキサン組成物のみで、体積基準のメジアン径が5~50μmの範囲の比較的微粒子状である固体状ポリメチルアルミノキサン組成物およびそれらを効率的に調製する方法を提案した(特許文献1)。得られた固体状ポリメチルアルミノキサン組成物の粒子径は均一なもので、オレフィン系重合体を調製する際の重合活性が担体を用いた固体状ポリメチルアルミノキサン組成物に比べて高いと言う特徴を有す。重合条件によっては、溶液状ポリメチルアルミノキサン組成物に匹敵する活性を発現する場合がある。すなわち、固体状ポリメチルアルミノキサンは、高い助触媒性能(活性化剤)と担体の機能を併せ持つ新しい固体状助触媒である。さらに、特許文献1に記載のポリメチルアルミノキサン組成物より体積基準のメジアン径が小さい5μm未満であり、粒度分布の均一性が高く、オレフィン系重合体を調製する際の重合活性が高く、かつ反応器のファウリング抑制性が高い、固体状ポリメチルアルミノキサン組成物についても、その製造方法とともに提案した(特許文献2)。
 上記特許文献1及び2に記載の方法においては、溶液状ポリメチルアルミノキサン組成物から固体状ポリメチルアルミノキサン組成物を調製する際の収率が高く、溶液状ポリメチルアルミノキサン組成物から真空ポンプによる溶媒の除去も必要としない方法を提供することが出来る。
 特許文献1:WO2010/055652
 特許文献2:WO2013/146337
 特許文献1及び2の全記載は、ここに特に開示として援用される。
 特許文献1及び2に記載の方法では、上述のようにシリカ担持ポリメチルアルミノキサン組成物に比べ高活性の固体状ポリメチルアルミノキサンを得ることが可能である。しかし、特許文献1及び2記載の方法による固体状ポリメチルアルミノキサンを用いて調製した触媒(メタロセン錯体などの均一系触媒を担持したもの)を用いてオレフィン重合により形成されるポリオレフィンのモルフォロジー悪化やポリマーバルクデンシティーが低下してしまうことがあり、改善が必要である場合があった。
 本発明者らは、上記課題を解決すべく種々の検討を行った。その過程で、溶液状ポリメチルアルミノキサン組成物からの固体状ポリメチルアルミノキサン組成物の調製において、それまで固体状ポリメチルアルミノキサン組成物の調製(析出)に必要な温度および時間、溶液状ポリメチルアルミノキサン組成物を加熱していたが、この加熱の温度及び時間を、特許文献1及び2の記載の範囲外のある条件にすることで、得られる固体状ポリメチルアルミノキサン中にAl2O3が存在する領域があること、及びAl2O3が存在する固体状ポリメチルアルミノキサンには、特許文献1及び2の実施例に記載の固体状ポリメチルアルミノキサンに比べて、オレフィン重合における助触媒として高い活性を有する物があることを見出し、さらに検討を進めることで、本発明を完成させた。
 特許文献1及び2においては、例えば、特許文献1の請求項10及び特許文献2の請求項9に記載のように、溶液状ポリメチルアルミノキサン組成物を加熱して固体状ポリメチルアルミノキサン組成物を得る場合には、固体状ポリメチルアルミノキサン組成物を析出させるに適した加熱温度および加熱時間を選択する。例えば、特許文献1の実施例1における固加熱温度及び加熱時間は、それぞれ100℃及び8時間であり、特許文献2の実施例1における加熱温度及び加熱時間も、それぞれ100℃及び8時間である。ところが、特許文献1の実施例1における条件を100℃及び16時間にすることで、オレフィン重合における助触媒として活性は約5%向上することが明らかになった。さらに、加熱時間が8時間の場合は、析出率が97%であったのに対して、16時間の場合は、析出率が100%であり、加熱時間16時間で得られた固体状ポリメチルアルミノキサン組成物析出物の構造解析(TEM観察)を行ったところ固体状ポリメチルアルミノキサン中に結晶質のAl2O3が存在することを見出した。この発見を基に、検討を進めたところ、固体状ポリメチルアルミノキサン組成物中の結晶質のAl2O3の増大とオレフィン重合により形成されるポリオレフィンのモルフォロジーおよびポリマーバルクデンシティーが密接に関係することを見出した。更に、固体状ポリメチルアルミノキサン組成物の析出が完了した後の加熱において、結晶質のAl2O3量が増大することを見出した。すなわち、固体状ポリメチルアルミノキサン組成物析出後の加熱によって、オレフィン重合により形成されるポリオレフィンのモルフォロジーおよびポリマーバルクデンシティーが改善されることを初めて見出し、本発明を完成するに至った。
 ここで、我々が固体状ポリメチルアルミノキサン組成物の調製原料に用いた溶液状ポリメチルアルミノキサンは、トルエンに完全に溶解したものであり、従って、固体状ポリメチルアルミノキサン組成物に含まれるAl2O3は固体状ポリメチルアルミノキサン調製中に形成されたものであると推察される。
 上記課題を解決するための本発明は以下のとおりである。
[1] 
ポリメチルアルミノキサンとトリメチルアルミニウムとAl2O3を含有する固体状ポリメチルアルミノキサン組成物であって、
(i) アルミニウム含有量が36質量%から43質量%の範囲にあり、かつ
(ii) Al2O3の含有量がアルミニウム基準で0.001モル%から10モル%の範囲にある、
固体状ポリメチルアルミノキサン組成物。
[2] 
前記Al2O3の少なくとも一部は、結晶粒として固体状ポリメチルアルミノキサン組成物中に存在する[1]に記載の固体状ポリメチルアルミノキサン組成物。
[3] 
前記Al2O3の結晶粒は、0.1~200nmの範囲である[2]に記載の固体状ポリメチルアルミノキサン組成物。
[4] 
前記Al2O3の少なくとも一部は、アモルファスとして固体状ポリメチルアルミノキサン組成物中に存在する[1]~[3]のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
[5] 
ポリメチルアルミノキサンは、下記一般式(I)で示される単位を含むものである[1]~[4]のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
Figure JPOXMLDOC01-appb-C000004
(式中、Meはメチル基を示し、nは10~50の整数を示す。) 
[6] 
トリメチルアルミニウムに由来するメチル基のモル分率Me(TMAL)が15モル%以下である[1]~[5]のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
[7] 
粒子状であり、かつ体積基準のメジアン径が1~50μmの範囲である[1]~[6]のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
[8] 
固体状担体を含有しない(但し、前記Al2O3は固体状担体には含まれない)、[1]~[7]のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
[9]
少なくとも30℃以下の温度で固体状である、[1]~[8]のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
[10] 
(a)下記一般式(II)で示される単位を含むポリメチルアルミノキサンとトリメチルアルミニウムを含有する芳香族系炭化水素溶液(溶液状ポリメチルアルミノキサン組成物)を加熱して、ポリメチルアルミノキサンとトリメチルアルミニウムを含有する固体状ポリメチルアルミノキサン組成物を析出させる工程、
(b)前記工程(a)で、析出した固体状ポリメチルアルミノキサン組成物を含む溶液を、工程(a)と同じ又は異なる温度で加熱して、固体状ポリメチルアルミノキサン組成物中にAl2O3を析出させる工程、を含む、Al2O3含有固体状ポリメチルアルミノキサン組成物の製造方法。
Figure JPOXMLDOC01-appb-C000005
(式中、nは10~50の整数を示す。)
[11] 
前記工程(a)に先だって前記溶液状ポリメチルアルミノキサン組成物に乾燥不活性ガスをバブリングする、および/または工程(a)の少なくとも一部の期間中に前記溶液状ポリメチルアルミノキサン組成物に乾燥不活性ガスをバブリングする、ことを含む[10]に記載の製造方法。
[12] 
[1]~[9]のいずれかに記載の固体状ポリメチルアルミノキサン組成物と下記一般式(IV)で表される遷移金属化合物を触媒成分として含有するオレフィン類の重合触媒。
Figure JPOXMLDOC01-appb-C000006
(式中、Mは遷移金属元素を示し、R5およびR 6は一緒になってシクロアルカジエニル骨格を有する有機基を示し、R7およびR8は一緒になってシクロアルカジエニル骨格を有する有機基を示すか、またはR7およびR8は独立に、炭素数が1~20の炭化水素基、アルコキシ基、アリーロキシ基、アルキルシリル基、アミノ基、イミノ基、ハロゲン原子または水素原子であり、前記シクロアルカジエニル骨格を有する有機基は、置換基としてアルキル基、アルコシキ基、アリーロキシ基、アルキルシリル基、アルキルアミド基、アルキルイミド基、アルキルアミノ基、アルキルイミノ基、および/またはハロゲン原子を有してもよい。) 
[13] 
[12]に記載の触媒を用いてオレフィン類を重合することを含む、ポリオレフィン類の製造方法。
 本発明によれば、オレフィン重合における助触媒として用いた場合に、より高い活性を有する固体状ポリメチルアルミノキサン組成物を得ることができる。
図1は、固体状MAO組成物の1H-NMR測定結果である。
図2は、固体状MAO組成物のTEM測定画像(実施例2)である。
図3は、TEM測定画像である。画像中の赤い四角で囲った部分の結晶パターンより、格子間距離と面方位を求めた(d値は2.4Å)。
図4は、electron diffraction pattern(ED pattern) である。
図5は、コランダム構造を持つアルミナのED patternを示す。
図6は、コランダム構造を持つアルミナのED patternからVESTAソフトウェアを用いて求めた結晶構造を示す。
[固体状ポリメチルアルミノキサン組成物]
 本発明の固体状MAO組成物は、ポリメチルアルミノキサン(以下、PMAOと表記することがある)とトリメチルアルミニウム(以下TMALと表記することがある)とAl2O3を含有する。さらに、
(i) アルミニウム含有量が36質量%から43質量%の範囲にあり、かつ
(ii) Al2O3の含有量がアルミニウム基準で0.001モル%から10モル%の範囲にある。
 ポリメチルアルミノキサンは、例えば、以下の一般式(I)で示される単位を含むものであることができる。
Figure JPOXMLDOC01-appb-C000007
(式中、Meはメチル基を示し、nは10~50の整数を示す。)
 一般式(I)で示される単位を含むとは、nが上記範囲内の単数(nがある特定の整数)であるポリメチルアルミノキサンまたは複数種類(nが異なる複数の整数)である複数のポリメチルアルミノキサンを含むことを意味する。nが10~50の整数であるのは、固体状MAO組成物の原料となる溶液状ポリメチルアルミノキサン組成物中のポリメチルアルミノキサンのnが10~50であることによる。
 溶液状ポリメチルアルミノキサン組成物中のポリメチルアルミノキサン鎖同士またはポリメチルアルミノキサン鎖とトリメチルアルミニウムが不均化により、ポリメチルアルミノキサン鎖長が変化するとの記載がある文献もある。ポリメチルアルミノキサン鎖同士の不均化反応の場合にはトリメチルアルミニウムが生成し、ポリメチルアルミノキサン鎖とトリメチルアルミニウムとの不均化反応の場合にはトリメチルアルミニウムが消費されることになる。しかし、溶媒洗浄実施前の固体状ポリメチルアルミノキサンをd8-THFを溶媒とし1H-NMR測定を実施したところ、顕著なトリメチルアルミニウム含有量の変化が観られていない。このことから、固体状MAO組成物中のポリメチルアルミノキサンのnは、原料として用いた溶液状ポリメチルアルミノキサン組成物のnにほぼ相当すると考えられる。本発明におけるポリメチルアルミノキサンとは、上記単位を含むものであれば、鎖状構造であっても環状構造であっても、また枝分かれ構造であってもよい。
 ポリメチルアルミノキサンが環状構造をとる場合、アルミニウム含有量の理論量は約46~47質量%であり、トリメチルアルミニウム中のアルミニウム含有量の理論量は約38質量%である。すなわち、固体状MAO組成物中のアルミニウム含量が46質量%を超えるような場合、固体状MAO組成物は環状構造を有するポリメチルアルミノキサンのみからなり、トリメチルアルミニウムはほとんど存在しないものと推定され、更には溶媒等の不純物を全く含んでいないことになる。ポリメチルアルミノキサンが直鎖状構造をとる場合、一般式(I)のn数によってアルミニウム含有量の理論量は変動するが、環状構造のものに比べ小さくなる。一方、本発明の固体状MAO組成物には、環状構造のポリメチルアルミノキサンに加え、線状構造および枝分かれ構造を有するポリメチルアルミノキサンを含むことができ、更にはトリメチルアルミニウムに加え残留溶媒等の不純物が含まれる可能性があることから、本発明の固体状MAO組成物では(i)で示されるように、アルミニウム含有量は、36質量%から43質量%の範囲にある。アルミニウム含有量が小さい程、トリメチルアルミニウムの存在割合が多く、アルミニウム含有量が大きい程、トリメチルアルミニウムの存在割合が少ない傾向がある。
 本発明の固体状MAO組成物はAl2O3を含むものである。Al2O3におけるAl含有量はおよそ52.9質量%(残りが酸素含有量)であるので、Al2O3含有量が増大すれば、固体状MAO組成物のAl含有量も高くなる傾向はある。
 アルミニウム含有量が、36質量%から43質量%の範囲にあることで、固体状MAO組成物は、良好な粒子径の均一性と容易に割れ等による破砕が起こらない強固さという性能を有することができる。逆に、本発明の固体状MAO組成物におけるアルミニウム含有量が36質量%未満の場合、乾燥が不十分で溶剤等の不純物を含みすぎていることを示している。アルミニウム含有量が43質量%を超えると、上述のように、環状構造を主とするポリメチルアルミノキサンから成ると推定され、また、トリメチルアルミニウムおよび溶媒不純物を含まないことを示しているが、本発明で得られる固体状MAO組成物とは組成自身が異なるものである。アルミニウム含有量は、上記観点から、好ましくは38質量%以上、43質量%以下、より好ましくは40質量%以上、42質量%以下、さらに好ましくは40.5質量%以上、41.5質量%以下の範囲である。
 本発明において調製される溶液状ポリメチルアルミノキサン組成物および固体状MAO組成物のアルミニウム含量は、例えば、0.5Nの硫酸水溶液で加水分解した溶液に過剰量のエチレンジアミン四酢酸二ナトリウムを加えた後に、ジチゾンを指示薬とし硫酸亜鉛で逆滴定することにより求めることができる。測定濃度が希薄な場合は、原子吸光分析法を用いて測定を行うこともできる。
 (ii)で示されるAl2O3の含有量は、アルミニウム基準で0.001モル%から10モル%の範囲にある。Al2O3の含有量が、一定量以上であると、前述のようにオレフィン重合における助触媒として用いた場合に、より高い活性を有する固体状MAO組成物となる。Al2O3の含有量は、アルミニウム基準で、好ましくは0.01モル%から8モル%、より好ましくは0.1モル%から7モル%、さらに好ましくは0.2モル%から6モル%、より一層好ましくは0.5モル%から5モル%の範囲にある。
 本発明の固体状MAO組成物に含まれるAl2O3は結晶構造であっても良いし、アモルファス構造を有するもので良い。本発明の固体状MAO組成物に含まれるAl2O3の少なくとも一部は、結晶粒として固体状MAO組成物中に存在する。また、Al2O3の少なくとも一部は、アモルファスとして固体状MAO組成物中に存在することができる。
 固体状MAO組成物中のAl2O3の存在、特にAl2O3結晶の存在は、固体状MAO組成物のTEM観察により得られた格子パターンのシミュレーション解析により確認することができる。TEM観察に関しては、実施例のところで説明する。
 固体状MAO組成物中のAl2O3の結晶粒の大きさはTEM観察により確認することが出来、ナノオーダーのものであることが好ましい。具体的には、0.1~200nmであることができ、好ましくは0.1~100nm、更に好ましくは0.1~50nmである。また、Al2O3にはアモルファス構造として固体状MAO組成物中に存在しているものもあると考えられる。
 本発明の固体状MAO組成物に含まれるAl2O3は固体状MAO組成物の調製の過程で固体状MAO組成物中に生成した物である。固体状MAO組成物の調製の過程で生成した物であることで、Al2O3を含まない固体状MAO組成物に後から添加したAl2O3の場合と異なる構造や存在状態などを有する可能性がある。しかし、本願出願の時点で、本発明の固体状MAO組成物に含まれるAl2O3の構造や存在状態などを特定する手段はなく、構造や存在状態などの物としての詳細な特徴の特定は困難である。本発明の固体状MAO組成物の調製方法については後述する。
 本発明の固体状MAO組成物は、ポリメチルアルミノキサン(PMAO)とトリメチルアルミニウム(TMAL)を含有する。本発明のポリメチルアルミノキサン組成物が含有するTMALは、未反応原料として内在する物である。本発明の固体状MAO組成物に含まれるメチル基の総モル数は、トリメチルアルミニウム(TMAL)に由来するメチル基のモル数とポリメチルアルミノキサン(PMAO)に由来するメチル基のモル数の総和である。TMALのモル分率をMe(TMAL)と表し、PMAOのモル分率をMe(PMAO)と表すと、その総和Me(TMAL)+Me(PMAO)は100%である。トリメチルアルミニウムに由来するメチル基のモル分率Me(TMAL)は、例えば、15モル%以下である。
 Me(TMAL)が低いことは、ポリメチルアルミノキサン組成物に含まれるTMAL部位に由来するメチル基が少なく、ポリメチルアルミノキサン鎖のアルミニウムの状態が多いことを意味する。Me(TMAL)が15モル%以下であることで、溶媒溶解性が低く、乾燥処理によっても粒子が壊れることのない強度を有した固体状MAO組成物となる。逆に、Me(TMAL)が15モル%を超えると、溶媒溶解性が高くなると共に、粒子が容易に破砕される傾向を示すようになる。
 本発明の固体状メチルアルミノキサン組成物においてMe(TMAL)は、好ましくは11モル%以下である。Me(TMAL)の下限は、固体状MAO組成物の形状制御可能な原料となる溶液状ポリメチルアルミノキサンに依存するという理由から、例えば、6モル%又はそれ以上でよく、好ましくは8モル%又はそれ以上である。
 ポリメチルアルミノキサン組成物中のそれぞれの成分のモル分率は、ポリメチルアルミノキサン組成物の1H-NMR測定により、それぞれの成分に帰属される面積比から求めることができる。ポリメチルアルミノキサン組成物の具体的なモル分率Me(PMAO)、及びMe(TMAL)の求め方は、実施例において説明する。
 さらに本発明の固体状MAO組成物は、粒子状であり、体積基準のメジアン径が例えば、1μm~50μmの範囲のものであることができる。粒子状である本発明の固体状MAO組成物の体積基準のメジアン径が上記範囲であることで、固体状MAO組成物と遷移金属化合物を用いて良好な重合体の嵩密度を保持し、微粉重合体生成が抑制されたオレフィン系重合体を得ることができる。固体状MAO組成物の体積基準のメジアン径は、得られるオレフィン系重合体の嵩密度などの粉体性状が良好になるという点から、一般には5~200μm程度が良いとされている。本発明の固体状MAO組成物の体積基準のメジアン径は、均一性を考慮すると、1~50μmであることが好ましく、より好ましくは2~40μmの範囲、さらに好ましくは5~40μmの範囲である。
 本発明の固体状MAO組成物の体積基準のメジアン径および粒度分布はMalvern Instrument Ltd.のマスターサイザー2000 Hydro Sを利用し、乾燥窒素雰囲気下にレーザー回折・散乱法により求めることができる。具体的な方法は、実施例に記載した。
 本発明の固体状MAO組成物は、固体状担体を含有しない。但し、前記Al2O3は固体状担体には含まれない。本発明の固体状MAO組成物は、少なくとも製造の過程で意図的に、シリカなどの固体状担体を含有させたものではない。本発明の固体状MAO組成物は、シリカなどの担体を含有しないことで、シリカなどの担体を含有する固体状MAO組成物が有する欠点を回避することができる。
 本発明の固体状MAO組成物は、常温(例えば、30℃以下)の温度で固体状であり、少なくとも30℃以下の温度で固体状である。固体状とは、実質的に流動性を有さない状態を意味する。
[固体状MAO組成物の製造方法]
 本発明の固体状MAO組成物の製造方法は、
(a) 下記一般式(II)で示される単位を含むポリメチルアルミノキサンとトリメチルアルミニウムを含有する芳香族系炭化水素溶液(溶液状ポリメチルアルミノキサン組成物)を加熱して、ポリメチルアルミノキサンとトリメチルアルミニウムを含有する固体状MAO組成物を析出させる工程、
(b) 前記工程(a)で、析出した固体状MAO組成物を含む溶液を、工程(a)と同じ又は異なる温度で加熱して、固体状MAO組成物中にAl2O3を析出させる工程、を含む。
Figure JPOXMLDOC01-appb-C000008
(式中、Meはメチル基を示し、nは10~50の整数を示す。)
 一般式(II)で示される単位を含むとは、nが上記範囲内の単数(nがある特定の整数)であるポリメチルアルミノキサン、またはnが上記範囲内の複数種類(nが異なる複数の整数)である複数のポリメチルアルミノキサンを含むことを意味する。nが10~50の整数であるのは、ベンゼン中の凝固点降下から求めた分子量を基準とするアルミノキサンの重合度が10~50の範囲に存在するという理由からである。
 本発明の製造方法に原料として用いられる、溶液状ポリメチルアルミノキサン組成物は、例えば、特表2000-505785号公報(WO97/23288)に記載の方法によって調製することができるものである。本特許文献に記載の方法は、トリメチルアルミニウムを加水分解することなくポリメチルアルミノキサン組成物を調製する方法である。具体的には、アルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物を熱分解することにより溶液状ポリメチルアルミノキサン組成物を得る方法である。
 溶液状ポリメチルアルミノキサン組成物に用いられる芳香族系炭化水素は、例えば、ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン、キシレン、クロルベンゼン、ジクロルベンゼンなどを挙げることができる。但し、これらの例に限られず、芳香族系炭化水素であれば、溶液状ポリメチルアルミノキサン組成物用の溶媒として利用できる。
 更に、前記アルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物は、トリメチルアルミニウムと含酸素有機化合物との反応により調製されるものであることが好ましい。さらに、上記含酸素有機化合物は、一般式(III)で示される脂肪族または芳香族カルボン酸であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、R1は、C1~C20の直鎖あるいは分岐したアルキル基、アルケニル基、またはアリール基の炭化水素基を表し、nは1~5の整数を表す。) 
 熱分解反応により溶液状ポリメチルアルミノキサン組成物を与えるアルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物のトリメチルアルミニウムと含酸素化合物との反応に用いられる含酸素化合物とは、例えば、COOH基を有するカルボン酸化合物、カルボン酸無水物である。溶液状ポリメチルアルミノキサン組成物の調製に当たっては、これらを単独あるいは複数の化合物を用いることも可能である。含酸素化合物を具体的に例示すると、蟻酸、酢酸、プロピオン酸、正酪酸、正吉草酸、正カプロン酸、正エナント酸、正カプリル酸、正ペラルゴン酸、正カプリン酸、正ラウリン酸、正ミリスチン酸、正ステアリン酸、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、安息香酸、フタル酸、クエン酸、酒石酸、乳酸、リンゴ酸、トルイル酸、トルイル酸無水物、酢酸無水物、プロピオン酸無水物、正酪酸無水物、正吉草酸無水物、正カプロン酸無水物、蓚酸無水物、マロン酸無水物、コハク酸無水物、グルタル酸無水物、安息香酸無水物、フタル酸無水物、トルイル酸無水物などを挙げることが出来る。この中で好ましいものは、酢酸、酢酸無水物、プロピオン酸、プロピオン酸無水物、安息香酸、安息香酸無水物、フタル酸、フタル酸無水物、トルイル酸、トルイル酸無水物である。
 溶液状ポリメチルアルミノキサン組成物の合成に用いるトリメチルアルミニウムに含まれるアルミニウム原子と含酸素有機化合物の酸素原子のモル比は、ポリメチルアルミノキサンの分子量、またトリメチルアルミニウム残量の制御を目的として、任意に設定することができる。含酸素有機化合物の酸素原子に対するトリメチルアルミニウム含まれるアルミニウム原子のモル量の比(Al/Oモル比)は、0.5 ~3.0 : 1の範囲で任意に設定することができる。溶液状ポリメチルアルミノキサン組成物の調製のし易さ、その安定性および適切な残留トリメチルアルミニウム量の制御と言う観点から、上記モル量の比は、好ましくは1.0~ 1.7 : 1の範囲であり、さらに好ましくは1.15~1.3 : 1の範囲である。
 溶液状ポリメチルアルミノキサン組成物の前駆体であるアルミニウム-酸素-炭素結合を有するアルミニウム化合物の熱分解は、20~120℃の間の任意の温度で実施することができる。反応の易操作性と安全性および適切な反応時間という観点から、好ましくは 30℃~80℃であり、さらに好ましくは60℃~80℃である。アルミニウム-酸素-炭素結合を有するアルミニウム化合物の熱分解の時間は、熱分解温度や原料の組成(例えば、Al/Oモル比,濃度等)により変化するが、例えば、5~100時間の範囲である。温度が低ければ、長時間を要し、温度が高ければ、短時間で熱分解を終了することができる。
 上記熱分解温度が100℃を超えると、不定形のゲル状物の著しい生成を引き起こし易くなり、ポリメチルアルミノキサン均一溶液の回収収率が低下する場合がある。一方、熱分解温度が50℃を下回ると、ポリメチルアルミノキサン生成反応時間の増大による著しい生産性低下を引起す場合がある。
 本発明では原料として用いる溶液状ポリメチルアルミノキサン組成物調製時の温度制御が重要である。一見すると、本発明は溶液状ポリメチルアルミノキサン組成物の調製工程に、一部含まれるものと理解されかねない。しかし、粒径の制御された固体状MAO組成物を得ようとする場合、溶液状ポリメチルアルミノキサン組成物の原料であるアルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物を熱分解して溶液状ポリメチルアルミノキサン組成物をまず調製し、次いで固体状メチルアルミノキサン組成物を得ることが好ましい。すなわち、アルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物を熱分解して溶液状ポリメチルアルミノキサン組成物を調製し、調製された溶液状ポリメチルアルミノキサン組成物を所定の条件下で加熱して、固体状メチルアルミノキサン組成物を取得する方法である。一旦調製した溶液状ポリメチルアルミノキサン組成物を攪拌、濃度および加熱温度などをパラメータとすることで、制御された粒径の固体状メチルアルミノキサン組成物を得ることができる。この理由は現状で明確ではないが、ある鎖長および鎖長分布を有したポリメチルアルミノキサンの自己会合によりエネルギー的に安定な粒径の固体状メチルアルミノキサン組成物が熱処理により形成されると考えると、一旦きちんと形成されたポリメチルアルミノキサン構造が必要であることが理解できるものと発明者は考えている。
 溶液状ポリメチルアルミノキサン組成物の原料であるアルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物を熱分解して調製される不活性炭化水素溶媒中のポリメチルアルミノキサン濃度は、1~40重量%の範囲で良く、好ましくは6~30重量%であり、さらに好ましくは8~15重量%である。ポリメチルアルミノキサンの濃度が低ければ、長時間を要し、濃度が高ければ、短時間で熱分解を終了することができる。反応熱の制御状況を考慮し、濃度の調節を行うことが可能である。
 これまでのアルミニウム-酸素-炭素結合を有するアルミニウム化合物の熱分解反応により溶液状ポリメチルアルミノキサン組成物を得るほとんどの文献においては、定量的な反応収率で溶液状ポリメチルアルミノキサン組成物が得られるという点と溶液状ポリメチルアルミノキサン組成物中のトリメチルアルミニウム量の制御可能な点に力点が置かれている。一般に、トリメチルアルミニウムはメタロセン化合物をはじめとする遷移金属化合物の活性化剤として作用しないため、溶液状ポリメチルアルミノキサン組成物中に残存するトリメチルアルミニウム量を制御することは重要な課題であった。一方、溶液状ポリメチルアルミノキサン組成物を加水分解法において調製する場合、反応液中のアルミニウム濃度を低くし、かつ原料トリメチルアルミニウムに対する水の投入量を低く押さえなければ、アルミニウム回収率が大きく低下することが知られている。
 原料として用いられる溶液状ポリメチルアルミノキサン組成物は、メチル基の総モル数に対するトリメチルアルミニウム部位に由来するメチル基のモル分率(Me(TAL))が15モル%以下であることが、固体状ポリメチルアルミノキサンの収率を向上させるという観点から好ましい。Me(TAL)は、好ましくは14モル%以下である。Me(TAL)の下限はおよそ6モル%である。加水分解法で調製された溶液状ポリメチルアルミノキサン組成物のMe(TAL)は40~50mol%であり、通常の濃縮乾固処理によりポリメチルアルミノキサン組成物中のMe(TAL)を15モル%より下げることは困難である。一方、熱分解法による溶液状ポリメチルアルミノキサン組成物の調製では、トリメチルアルミニウムに含まれるアルミニウム原子と含酸素有機化合物の酸素原子のモル比を1.15とすることで、Me(TAL)の下限は8モル%とすることが可能で、得られる固体状MAO組成物の性能も良い。以上の理由から、Me(TAL)は好ましくは8モル%~14モル%である。
 本発明に使用される溶液状ポリメチルアルミノキサンは、一般式(III)で示される脂肪族または芳香族カルボン酸を複数回に分けて添加して得たものであっても良い。
Figure JPOXMLDOC01-appb-C000010
(式中、R1は、C1~C20の直鎖あるいは分岐したアルキル基、アルケニル基、またはアリール基の炭化水素基を表し、nは1~5の整数を表す。) 
 すなわち、一旦形成させた溶液状ポリメチルアルミノキサンの分子量およびトリメチルアルミニウム量を調整する目的で、一般式(III)で示される肪族または芳香族カルボン酸を更に添加、加熱処理を行うことで得られる溶液状ポリメチルアルミノキサンを使用することも可能である。
 本発明の固体状MAOの製造方法で用いる芳香族系炭化水素は、特に制限はないが、例えば、ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン、キシレン、クロルベンゼン、ジクロルベンゼンおよびそれらの混合溶媒等を例示できる。溶液状ポリメチルアルミノキサンを調製した後に固体状ポリメチルアルミノキサンを形成するため、そのままの溶媒での加熱処理でも良いし、別の溶媒を添加希釈して加熱処理を行うことでも良い。
 以上の工程(a)では、ポリメチルアルミノキサンとトリメチルアルミニウムを含有する固体状MAO組成物を析出させる。次いで、析出した固体状MAO組成物を含む溶液を、工程(a)と同じ又は異なる温度で加熱して、固体状MAO組成物中にAl2O3を析出させる。工程(a)で得られる固体状MAO組成物は、特許文献1及び2に記載の固体状MAO組成物に相当する。これらの固体状MAO組成物は、固体状MAO組成物の析出率(溶液状ポリメチルアルミノキサン組成物中のAl成分が固体状MAO組成物に変換した割合)が、100%に満たない。例えば、95~98%の範囲である。しかし、析出率が100%未満の状態での加熱では、Al2O3を析出させることはできない。本発明の工程(b)では、固体状MAO組成物の析出率を100%とし、かつ析出率100%の固体状MAO組成物を加熱することで、Al2O3を析出させる。固体状MAO組成物の析出率は、以下の方法で求めることができる。
 固体MAO組成物の析出率は、溶液状ポリメチルアルミノキサン組成物中のAl濃度(K wt%-Al)に対する固体MAO組成物析出時の上澄み液中のAl濃度(L wt%-Al)とした場合、(1-L)*100/K(百分率%)で定義される。したがって、加熱を行っても上澄み液中のAl濃度に変化がなければ析出率0%で、加熱後の上澄み液のAl濃度が0wt%であれば析出率100%となる。
 固体状MAO組成物中にAl2O3を析出させるための、固体状MAO組成物析出後の加熱温度および時間は、工程(a)での固体状MAO組成物の析出温度および析出終了までにかけた時間、さらには、工程(a)での固体状MAO組成物の析出粒子径及び用いた溶液状ポリメチルアルミノキサン組成物により変わってくる。しかし、一般には、工程(a)と同じ又は異なる温度であり、かつ80~200℃の範囲、好ましくは90~150℃、より好ましくは100~140℃の範囲である。加熱時間は、この温度範囲では、好ましくは1~20時間、より好ましくは5~12時間である。但し、温度が低くなると、固体状MAO組成物中のAl2O3形成に要する時間は長くなり、温度が高くなれば、固体状MAO組成物中のAl2O3形成に要する時間は短くなる傾向がある。
 固体状MAO組成物中に含まれる結晶構造およびアモルファス構造を有するAl2O3含有量については、直接測定することは技術的に困難である。固体状MAO組成物の形成中およびその後の加熱処理中に発生するメタンガス量を測定することにより間接的に求めることが出来る。それは、以下の式(X)によるAl2O3構造の形成が推定されるからである。具体的な方法に関しては、実施例で説明する。
Figure JPOXMLDOC01-appb-C000011
 固体状MAO組成物中のAl2O3形成は、直接的にモニターすることは困難である。そこで、Al2O3形成の間接的なモニター方法として、加熱により発生するメタンガス量の測定を用いることができる。Al2O3形成に伴って、上記式(X)に示すように、メタンガス(Me-H)が生成する。固体状MAO組成物の析出率(溶液状ポリメチルアルミノキサン組成物のAl成分が固体状MAO組成物に変換された割合)が100%の場合、このメタンガスの生成量から、Al2O3形成量を次の方法によって求めることが可能である。析出率100%の場合、溶液状ポリメチルアルミノキサン組成物から発生するAlモル量当たりのメタンガス量をx1とすると、x1は析出率100%になった時点でのメタンガス量として、測定により求まる。さらに、その後、析出率が100%になった以降、固体状MAO組成物から発生するAlモル量当たりのメタンガス量をx2とすると、発生したメタンガスの全量x(=x1+x2)も測定で求まることから、x2は差分(x-x1)として求まる。
 所定時間加熱して、固体状MAO組成物中にAl2O3を形成させた後、固形分を溶媒から回収することで、Al2O3を含有する本発明の固体状MAO組成物を得ることができる。得られた本発明の固体状MAO組成物は、適宜洗浄及び乾燥を行うこともできる。
[オレフィン類の重合触媒]
本発明は、オレフィン類の重合触媒を包含する。本発明のオレフィン類の重合触媒は、上記本発明の固体状MAO組成物と下記一般式(IV)で表される遷移金属化合物を触媒成分として含有する。
Figure JPOXMLDOC01-appb-C000012
(式中、Mは遷移金属元素を示し、R5およびR 6は一緒になってシクロアルカジエニル骨格を有する有機基を示し、R7およびR8は一緒になってシクロアルカジエニル骨格を有する有機基を示すか、またはR7およびR8は独立に、炭素数が1~20の炭化水素基、アルコキシ基、アリーロキシ基、アルキルシリル基、アミノ基、イミノ基、ハロゲン原子または水素原子であり、前記シクロアルカジエニル骨格を有する有機基は、置換基としてアルキル基、アルコシキ基、アリーロキシ基、アルキルシリル基、アルキルアミド基、アルキルイミド基、アルキルアミノ基、アルキルイミノ基、および/またはハロゲン原子を有してもよい。)
 本発明の固体状MAO組成物は、オレフィン重合用触媒として公知の触媒と組み合わせて重合触媒として用いることができる。オレフィン重合用触媒としては、例えば、遷移金属化合物を挙げることができる。このような遷移金属化合物は、上記一般式(IV)で示されるものであることができる。
 一般式(IV)中のMとしては、具体的にはチタン、ジルコニウム、ハフニウム、クロム、バナジウム、マンガン、鉄、コバルト、ニッケルあるいはパラジウムであり、好ましくはチタン、ジルコニウム、クロム、鉄、ニッケルである。
 前記一般式(IV)において、好ましい遷移金属化合物としては、シクロアルカジエニル骨格を有する配位子が1個ないし2個配位したメタロセン化合物である。シクロアルカジエニル骨格を有する配位子としては、たとえばシクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基,ペンタメチルシクロペンタジエニル基などのアルキル置換シクロペンタジエニル基、インデニル基、フルオレニル基などを例示することができ、シクロアルカジエニル基は2価の置換アルキレン基、置換シリレン基等で架橋されていてもよい。
 シクロアルカジエニル骨格を有する配位子以外の配位子は、炭素数が1~20の炭化水素基、アルコキシ基、アリーロキシ基、アルキルシリル基、アミノ基、イミノ基、ハロゲン原子または水素原子である。炭素数が1~20の炭化水素基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基などを例示することができ、具体的には、アルキル基としては、メチル基、エチル基、プロピル基、イソプロビル基、ブチル基などが例示され、シクロアルキル基としては、シクロペンチル基、シクロへキシル基などが例示され、アリール基としては、フェニル基、トリル基などが例示され、アラルキル基としてはベンジル基などが例示される。アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基などが例示され、アリーロキシ基としてはフェノキシ基などが例示される。これらの基にはハロゲン原子などが置換していてもよい。アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基などが例示される。ハロゲンとしては、フッ素、塩素、臭素、ヨウ素が例示される。
 前記一般式(IV)中のMがジルコニウムである場合の、シクロアルカジエニル骨格を有する配位子を含む遷移金属化合物について、具体的に化合物を例示する。ビス(シクロペンタジエニル)ジルコニウムモノクロリドモノハイドライド、ビス(シクロペンタジエニル)ジルコニウムモノブロミドモノハイドライド、ビス(シクロペンタジエニル)メチルジルコニウムハイドライド、ビス(シクロペンタジエニル)エチルジルコニウムハイドライド、ビス(シクロペンタジエニル)フェニルジルコニウムハイドライド、ビス(シクロペンタジエニル)べンジルジルコニウムハイドライド、ビス(シクロペンタジエニル)ネオぺンチルジルコニウムハイドライド、ビス(メチルシクロペンタジエニル)ジルコニウムモノクロリドハイドライド、ビス(インデニル)ジルコニウムモノクロリドハイドライド、ビス(シクロペンタジエニル)ジルコニウムジクロリド、ビス(シクロペンタジエニル)ジルコニウムジブロミド、ビス(シクロペンタジエニル)メチルジルコニウムモノクロリド、ビス(シクロペンタジエニル)エチルジルコニウムモノクロリド、ビス(シクロペンタジエニル)シクロヘキシルジルコニウムモノクロリド、ビス(シクロペンタジエニル)フェニルジルコニウムモノクロリド、ビス(シクロペンタジエニル)ベンジルジルコニウムモノクロリド、ビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(ジメチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(インデニル)ジルコニウムジクロリド、ビス(インデニル)ジルコニウムジブロミド、ビス(シクロペンタジエニル)ジルコニウムジメチル、ビス(シクロペンタジエニル)ジルコニウムジフェニル、ビス(シクロペンタジエニル)ジルコニウムジベンジル、ビス(シクロペンタジエニル)ジルコニウムモノメトキシモノクロリド、ビス(シクロペンタジエニル)ジルコニウムモノエトキシモノクロリド、ビス(メチルシクロペンタジエニル)ジルコニウムモノエトキシモノクロリド、ビス(シクロペンタジエニル)ジルコニウムモノフエノキシモノクロリド、ビス(フルオレニル)ジルコニウムジクロリドなどが挙げられる。
 また、前記一般式(IV)中のMがジルコニウムであり、シクロアルカジエニル骨格を有する配位子を少なくとも2個以上含み、かつこの少なくとも2個のシクロアルカジエニル骨格を有する配位子がエチレン、プロピレンなどのアルキレン基、イソプロピリデン、ジフェニルメチレンなどの置換アルキレン基、シリレン基、ジメチルシリレンなどの置換シリレン基などを介して結合されている遷移金属化合物について、具体的な化合物を例示する。エチレンビス(インデニル)ジメチルジルコニウム、エチレンビス(インデニル)ジエチルジルコニウム、エチレンビス(インデニル)ジフェニルジルコニウム、エチレンビス(インデニル)メチルジルコニウムモノクロリド、エチレンビス(インデニル)エチルジルコニウムモノクロリド、エチレンビス(インデニル)メチルジルコニウムモノブロミド、エチレンビス(インデニル)ジルコニウムジクロリド、エチレンビス(インデニル)ジルコニウムブロミド、エチレンビス(4,5,6-テトラヒドロ-1-インデニル)ジルコニウムジクロライドなどを挙げることができ、ラセミ体、メソ体およびそれらの混合物であってよい。
 これらの遷移金属化合物は、均一系重合に際して、1種類のみ使用してもよいし、分子量分布調整等を目的として2種類以上を使用してもよい。また、あらかじめ固体触媒調製を行う場合に際しては、これらの遷移金属化合物を1種類のみ使用してもよいし、分子量分布調整等を目的として2種類以上を使用してもよい。
[ポリオレフィン類の製造方法]
 本発明は上記本発明の触媒を用いてオレフィン類を重合することを含む、ポリオレフィン類の製造方法を包含する。
 本発明の固体状MAO組成物を用いた均一系重合および本発明の固体状MAO組成物を用いて調製された担持触媒を使用する重合は、重合形式として、溶媒を用いる溶液重合やスラリー重合、溶媒を用いないバルク重合や気相重合等のいずれの方法においても適した性能を発揮する。また、連続重合、回分式重合のいずれの方法においても好ましい性能を発揮し、分子量調節剤としての水素なども必要に応じて用いることが出来る。オレフィン類の重合条件は、重合方法に応じて適宜選択することができる。
 重合に用いられるモノマーについては、オレフィン系モノマーの単独およびそれらの組み合わされた共重合に用いることができるどのような化合物でも良い。具体例を示せば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-デセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどのα-オレフィン、ビスフルオロエチレン、トリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロペンなどのハロゲン置換オレフィン、シクロペンテン、シクロヘキセン、ノルボルネンなどの環状オレフィンが挙げられる。
 以下に本発明を実施例で詳細に説明するが、本発明は本実施例に限定されるものではない。
  尚、下記実施例においては、固体状メチルアルミノキサン組成物の乾燥は、通常、流動パラフィンを入れたシールポットを介し40℃において真空ポンプのフルバキューム下に実施し、シールポットに気泡が認められない時点を以って乾燥の終点とした。
[試験方法]
(1) 溶解度
 本発明の固体状メチルアルミノキサン組成物の25℃の温度に保持されたn-ヘキサンおよびトルエンに対する溶解する割合の測定は、特公平7-42301号公報に記載の方法に準じて実施した。具体的には、n-ヘキサンに対する溶解割合は25℃に保持された50mlのn-ヘキサンに固体状MAO組成物2gを加え、その後2時間の攪拌を行ない、次いでメンブレンフイルターを用いて溶液部を分離して、この濾液中のアルミニウム濃度を測定することにより求める。この方法で得られる溶解割合は、試料として用いた固体状MAO組成物2gに相当するアルミニウム原子の量に対する上記濾液中に存在するアルミニウム原子の割合として決定される。
(2) アルミニウム含量
 溶液状ポリメチルアルミノキサン組成物および固体状アルミノキサン組成物のアルミニウム含量は、基本的に0.5Nの硫酸水溶液で加水分解した溶液に過剰量のエチレンジアミン四酢酸二ナトリウムを加えた後に、ジチゾンを指示薬とし硫酸亜鉛で逆滴定することにより求めた。測定濃度が希薄な場合は、原子吸光分析法を用いて測定を行った。
(3) 固体状MAO組成物の比表面積
 固体状MAO組成物の比表面積は、BET吸着等温式を用い、固体表面におけるガスの吸着現象を利用して求めた。測定装置にはBEL JAPAN,INC.製のBELSORP mini IIを、測定ガスには窒素ガスを用いた。
(4) 固体状MAO組成物の体積基準のメジアン径および粒度分布
 固体状MAO組成物の体積基準のメジアン径および粒度分布はMalvern Instrument Ltd.のマスターサイザー2000 Hydro Sを利用し、乾燥窒素雰囲気下にレーザー回折・散乱法により求めた。分散媒には主に脱水・脱気したn-ヘキサンを、目的により一部には脱水・脱気したトルエンを用いた。触媒粒度分布の指標として、均一性は、下記の式で示される定義を用いた。
Figure JPOXMLDOC01-appb-M000013
 ここで、Xiは粒子iのヒストグラム値、d(0.5)は体積基準のメジアン径、Diは粒子iの体積基準径を示す。
(5) メチル基のモル分率
 ポリメチルアルミノキサン組成物中のそれぞれの成分のモル分率は、ポリメチルアルミノキサン組成物の1H-NMR測定により、それぞれの成分に帰属される面積比から求めた。以下にポリメチルアルミノキサン組成物の具体的なMe(PMAO), Me(TMAL)のモル分率の求め方を例示する。ポリメチルアルミノキサンに由来するメチル基のモル分率をMe(PMAO)と表す。トリメチルアルミニウムに由来するメチル基のモル分率をMe(TMAL)と表す。
 まず、重溶媒にはd8-THFを用いてポリメチルアルミノキサン組成物の1H-NMR測定を実施する。1H-NMR測定は300MHz バリアン・テクノロジーズ・ジャパン・リミテッドのGemini 2000 NMR測定装置を用い、測定温度24℃で行った。1H-NMRチャートの例を図1に示す。
(i) -0.3ppmから-1.2ppm程度に現われるトリメチルアルミノキサンを含むポリメチルアルミノキサンのMe基ピークの全体の積分値を求め、これをI(ポリメチルアルミノキサン)とする。
(ii) -1.1ppm付近のTMALに由来するMe基ピークを接線-1により切り出し、その積分値 I(TMAL-Me)を求める。
(iii) (ii)で求めたそれぞれの積分値を、(i)で求めた積分値 I(ポリメチルアルミノキサン)から引くと、トリメチルアルミニウムを含まないポリメチルアルミノキサンのみのMe-基の積分値I(PMAO-Me)を求めることができる。I(TMAL-Me)およびI(PMAO-Me)をI(ポリメチルアルミノキサン)で割って規格化すると、Me(PMAO), Me(TMAL)のモル分率を求めることが出来る。
 なお、それぞれのピークの切り出し方法としては、市販のカーブフィッティングプログラムを用いる方法やベースラインコレクションを用いる方法などにより簡便に行うことが出来る。
 また、溶液状ポリメチルアルミノキサン組成物の分析サンプルは、溶液状ポリメチルアルミノキサン組成物約0.05mlに対しd8-THFを約0.5ml添加することにより調製した。固体状MAO組成物の分析サンプルは、溶液状ポリメチルアルミノキサン組成物10mgに対しd8-THFを0.5ml添加することにより調製した。
(6) 固体状MAO組成物のTEM観察
 固体状MAO組成物のトルエンスラリーを湿式ビーズミル装置(アシザワ・ファインテック社製LMZ015、ビーズ : ジルコニアΦ0.1mm)により粉砕した。その後、破砕粒子を減圧乾燥した。乾燥破砕粒子の中から、試料厚さ80nm以下のものを採取し、JEOL社のTEM測定装置JEM-2010にてTEM測定を行った。
 固体状MAO組成物のTEMイメージに確認された格子パターンの構造がアルミナ構造に起因することを以下の方法により確認した。
1)図3に示すTEMイメージの四角で囲った部分の結晶パターンより、格子間距離と面方位を求めた。このd値は2.4Åであった。
2)で求めたパラメータをフーリエ変換することにより図4に示すelectron diffraction pattern(ED pattern)を求めた。これにはReciProソフトウェアを用いた。
3)アルミナ結晶構造の内、コランダム構造を持つアルミナのED patternを、以下のパラメータを用い、ReciProソフトウェアを使用して求めた。図5は、以下のパラメータを有するED patternを示す。
Unit-cell parameter of Al2O3[Acta Crystallographica A38 (1982) 733]:
a = b = 4.7602 Å, c = 12.9933 Å
α = β = 90°, γ = 120°
1)で求めたコランダム構造を持つアルミナのEDpatternから結晶構造を、VESTAソフトウェアを用いて求め、図6に示す。
2)で求めた固体状MAO組成物のED patternと比較し、両者が同一であることを確認した。また、図6と固体状ポリメチルアルミノキサンの格子パターン(図3で囲った部分)を比較したところ、両者が良い一致を示すことを確認した。
3)固体状MAO組成物のTEMイメージで得られた結晶部がコランダム構造を有するアルミナであると結論付けた。
4)以上の検討により、固体状MAO組成物で確認された結晶部はコランダム構造を有するアルミナであると結論付けた。
(7) 固体状MAO組成物調製時におけるメタンガス発生量の推算
 攪拌器およびデジタル計測可能な圧力計を設置した1270ml容量のオートクレーブに溶液状ポリメチルアルミノキサン組成物を262g導入し、固体状MAO組成物形成のための昇温加熱を実施した。所定の加熱時間の後に80℃に降温し、その時点の圧力を測定した。オートクレーブ内部のスラリー溶液の熱膨張、溶媒の蒸気圧と溶液状ポリメチルアルミノキサン組成物導入の際に存在していたN2の分圧を考慮し、空間容積に存在するメタンガス量を推算することが出来る。
 メタンガスは、溶液状ポリメチルアルミノキサン組成物に存在するAl原子に結合したMe基の脱離によるものであるので、ここで生成するMe基が脱離したAl原子がAl2O3形成に直結するものと考えられる。したがって、結晶性およびアモルファスAl2O3量の最大値に相当する。したがって、溶液状ポリメチルアルミノキサン中のAlモル量に対するメタンガス発生量(A : mol%)に対し、溶液状ポリメチルアルミノキサン中のAlモル量に対するAl2O3生成量(mol%)は、A/2(mol%)となる。
 以下の反応は乾燥窒素ガス雰囲気下に行い、溶媒はすべて脱水および脱気したものを使用した。
予備実験1 (安息香酸-Al/O=1.17)
(1) 溶液状ポリメチルアルミノキサン組成物の合成
 撹拌装置を有する内容積2Lのセパラブルフラスコに、トリメチルアルミニウム(TMAL) 240.8g(3.34mol)、トルエン680.5gを入れた。この溶液を15℃にまで冷却し、これに安息香酸176.6g(1.43mol)を溶液の温度が25℃以下になるような速度でゆっくりと添加した。その後50℃で加熱熟成を1時間行った。この時、TMALと安息香酸の酸素原子のモル比は、1.17であった。反応液を70℃で32時間加熱し、その後60℃で6時間加熱することにより、ポリメチルアルミノキサン組成物のトルエン溶液を得た。得られた溶液は、ゲル状物のない透明な液体であった。反応液回収後に行ったアルミニウム分析結果より、アルミニウム原子基準で示す反応収率は定量的なものであった。得られた反応液のアルミニウム濃度は、8.67wt%であった。得られた溶液状ポリメチルアルミノキサン組成物のMe(TMAL)量をH-NMRより求めたところ、13.1mol%であった。
(2) エチレン重合評価 
ビス(シクロペンタジエニル)ジルコニウムジクロライドを用いた重合
 磁気撹拌装置を持つ500mlの四つ口フラスコにトルエン250mlを導入し、34℃にまで加熱した。これにアルミニウム原子換算で0.16g(5.93mmol)のポリメチルアルミノキサンのトルエン溶液を加え、さらにAl/Zrのモル比が5000となるようにビス(シクロペンタジエニル)ジルコニウムジクロライド(Cp2ZrCl2)を加え、40℃に昇温しながらエチレンガスを吹き込んだ。10分後に、エチレンガスの供給を止め、メタノールを投入して触媒を失活させた。生成したポリエチレンを濾過乾燥し、重合活性を求めたところ48×106g-PE/mol-Zr・atm・hrであった。高温GPCにより求めた分子量は18万で、Mw/Mnは2.9であった。ポリマー形状は不定形で、重合器のファウリングが顕著であった。
実施例1
(1) 固体状MAO組成物(以後、固体MAO組成物と称す。)の合成 
 撹拌装置を有する内容積1Lのオートクレーブに予備実験1(Al/O=1.17)で調製した溶液状ポリメチルアルミノキサン組成物のトルエン溶液 258.6g(0.831mol-Al)を導入した。その後、300rpmで攪拌しながら120℃で8時間加熱した。加熱中に固体状MAO組成物が析出した。
 反応スラリーを回収し、固体状MAO組成物をデカンテーションにより上澄み液を除去した後に、トルエン200mlで4度のデカンテーションによる洗浄操作を行った。得られた固体MAOスラリーを一部採取し、40℃で減圧乾燥することにより乾燥固体状MAO組成物を得た。乾燥固体状MAO組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で100%であった。また、乾燥固体状MAO組成物の重量より求めた固体MAO組成物のトルエンスラリーのスラリー濃度は9.16wt%-固体状MAOと求められた。
(2) 固体状MAO組成物の分析 
(a) アルミニウム含量
 乾燥固体状MAO組成物中のアルミニウム含量を測定したところ、41.0wt%-Alであった。
(b) 形状評価 
 乾燥固体状MAO組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行った。50℃降温時のサンプリング品の固体MAO組成物の体積基準のメジアン径d(0.5) 6.1μm、均一性は0.230であった。
(c) メタンガス発生量
 反応後に80℃に降温した際の内部圧力(0.16MPa)から求めた溶液状ポリメチルアルミノキサン組成物のAl量に対するメタンガス発生量は3.4mol%と算出された。したがって、溶液状ポリメチルアルミノキサン組成物のAl量に対するAl2O3最大形成量は1.70mol%であった。
(d) 比表面積評価
 乾燥固体状MAO組成物の比表面積を測定したところ、544m2/gであった。
(3) エチレン重合評価 
a) ビスインデニルジルコニウムジクロライド(BI)担持固体MAO触媒の調製
 磁気攪拌装置を持つ300mlの四つ口フラスコに固体MAO組成物のトルエンスラリー46.8g(スラリー濃度9.16wt%-固体MAO組成物,アルミニウム原子換算 4.29g(65.9mmol))を加え、更にトルエン 40mlを加えて攪拌した。これにAl/Zrのモル比が200となるようにBIのトルエンスラリーを室温下に加え、その温度で遮光下に15時間反応させてBI担持固体MAO触媒を得た。上記固体MAOトルエンスラリー濃度を求めたと同じ方法による分析の結果、BI担持固体MAO触媒のトルエンスラリー濃度は3.29wt%-BI担持固体MAO触媒(34mg-BI担持固体MAO触媒/ml)であった。
b) エチレン重合評価
 触媒投入ポット、温度測定装置と磁気攪拌装置を持つ1Lオートクレーブにヘキサン800mlと0.5mol/Lのトリエチルアルミニウムのヘキサン溶液を1ml(0.5mmol)加え、エチレン加圧(0.8MPa)-脱ガスを2回行い、オートクレーブ内のN2をエチレンで置換した。その後、オートクレーブ内の溶液を75℃に加熱し、上記BI担持固体MAO触媒11mg(スラリーとして0.32ml)を投入ポットより添加した。その後、直ぐにエチレンによりオートクレーブ系内を0.8MPaにまで加圧して、重合を開始した。重合は1時間行い、その間、オートクレーブ内の温度を熱媒および冷媒を使用して80±1℃に制御した。重合時間の経過後は、エチレンガスの供給を止め、オートクレーブを冷媒により30℃以下まで冷却してから系内のガスをベントラインへ放出した。0.5wt%-BHT(BHT:2,6-ジ-t-ブチルヒドロキシトルエン)のメタノール溶液を少量添加した後に、得られたポリマーを濾過取得した。濾取したポリマーを減圧乾燥器により50℃で乾燥した。得られたポリマー重量(232g)よりこの触媒の重合活性は21.1kg-PE/g-cat・hrと求められた。
c) 取得ポリマー評価
 得られたポリマーの粒径は153.4μmで、Span0.735はであった。また、バルクデンシティー(BD)は0.397g/ccと求められた。
実施例2
(1) 固体状MAO組成物の合成 
 予備実験1(Al/O=1.17)で調製した溶液状ポリメチルアルミノキサン組成物のトルエン溶液を100℃加熱とし、加熱時間を16時間としたことを除いては実施例1と同様に固体MAO組成物を調製した。
 乾燥固体状MAO組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で100.0%であった。
(2) 固体状MAO組成物の分析 
(a) アルミニウム含量
 乾燥固体状MAO組成物中のアルミニウム含量を測定したところ、40.5wt%-Alであった。 
(b) 形状評価 
 乾燥固体状MAO組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行った。固体MAO組成物の体積基準のメジアン径d(0.5) 7.6μm、均一性は0.230であった。
(c) メタンガス発生量
 反応後に80℃に降温した際の内部圧力(0.13MPa)から求めた溶液状ポリメチルアルミノキサン組成物のAl量に対するメタンガス発生量は1.8mol%と算出された。したがって、溶液状ポリメチルアルミノキサン組成物のAl量に対するAl2O3最大形成量は0.92mol%であった。
(d) 比表面積評価
 乾燥固体状MAO組成物の比表面積を測定したところ、462m2/gであった。
(3) エチレン重合評価 
a) ビスインデニルジルコニウムジクロライド(BI)担持固体MAO触媒の調製
 実施例1(3)a)と同様にBIを担持し、BI担持固体MAO触媒を調製した。
b) エチレン重合評価
 実施例1(3)b)と同様に上記調製BI担持固体MAO触媒を用いて重合評価を行った。得られた乾燥ポリマー重量よりこの触媒の重合活性は19.6kg-PE/g-cat・hrと求められた。
c) 取得ポリマー評価
 得られたポリマーの粒径は205.3μmで、Span0.770はであった。また、バルクデンシティー(BD)は0.385g/ccと求められた。
実施例3
(1) 固体状MAO組成物の合成
 予備実験1(Al/O=1.17)で調製した溶液状ポリメチルアルミノキサン組成物のトルエン溶液を140℃加熱としたことを除いては実施例1と同様に固体MAO組成物を調製した。
 乾燥固体状MAO組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で100.0%であった。
(2) 固体状MAO組成物の分析 
(a) アルミニウム含量
 乾燥固体状MAO組成物中のアルミニウム含量を測定したところ、41.4wt%-Alであった。 
(b) 形状評価 
 乾燥固体状MAO組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行った。得られた固体MAO組成物の体積基準のメジアン径d(0.5) 5.2μm、均一性は0.220であった。
(c) メタンガス発生量
 反応後に80℃に降温した際の内部圧力(0.21MPa)から求めた溶液状ポリメチルアルミノキサン組成物のAl量に対するメタンガス発生量は5.5mol%と算出された。したがって、溶液状ポリメチルアルミノキサン組成物のAl量に対するAl2O3最大形成量は2.75mol%であった。
(d) 比表面積評価
 乾燥固体状MAO組成物の比表面積を測定したところ、664m2/gであった。
(3) エチレン重合評価 
a) ビスインデニルジルコニウムジクロライド(BI)担持固体MAO触媒の調製
 実施例1(3)a)と同様にBIを担持し、BI担持固体MAO触媒を調製した。
b) エチレン重合評価
 実施例1(3)b)と同様に上記調製BI担持固体MAO触媒を用いて重合評価を行った。得られた乾燥ポリマー重量よりこの触媒の重合活性は21.8kg-PE/g-cat・hrと求められた。
c) 取得ポリマー評価
 得られたポリマーの粒径は148.2μmで、Spanは0.749であった。また、バルクデンシティー(BD)は0.411g/ccと求められた。
実施例4
(1) 固体状MAO組成物の合成
 予備実験1(Al/O=1.17)で調製した溶液状ポリメチルアルミノキサン組成物のトルエン溶液を140℃加熱とし、加熱時間を16時間としたことを除いては実施例1と同様に固体MAO組成物を調製した。
 乾燥固体状MAO組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で100.0%であった。
(2) 固体状MAO組成物の分析 
(a) アルミニウム含量
 乾燥固体状MAO組成物中のアルミニウム含量を測定したところ、40.9wt%-Alであった。 
(b) 形状評価 
 乾燥固体状MAO組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行った。得られた固体MAO組成物の体積基準のメジアン径d(0.5) 5.0μm、均一性は0.225であった。
(c) メタンガス発生量
 反応後に80℃に降温した際の内部圧力(0.24MPa)から求めた溶液状ポリメチルアルミノキサン組成物のAl量に対するメタンガス発生量は6.9mol%と算出された。したがって、溶液状ポリメチルアルミノキサン組成物のAl量に対するAl2O3最大形成量は3.45mol%であった。
(3) エチレン重合評価 
a) ビスインデニルジルコニウムジクロライド(BI)担持固体MAO触媒の調製
 実施例1(3)a)と同様にBIを担持し、BI担持固体MAO触媒を調製した。
b) エチレン重合評価
 実施例1(3)b)と同様に上記調製BI担持固体MAO触媒を用いて重合評価を行った。得られた乾燥ポリマー重量よりこの触媒の重合活性は24.6kg-PE/g-cat・hrと求められた。
c) 取得ポリマー評価
 得られたポリマーの粒径は155.5μmで、Spanは0.730であった。また、バルクデンシティー(BD)は0.415g/ccと求められた。
実施例5
(1) 固体状MAO組成物の合成
 予備実験1(Al/O=1.17)で調製した溶液状ポリメチルアルミノキサン組成物のトルエン溶液を160℃加熱としたことを除いては実施例1と同様に固体MAO組成物を調製した。
 乾燥固体状MAO組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で100.0%であった。
(2) 固体状MAO組成物の分析 
(a) アルミニウム含量
 乾燥固体状MAO組成物中のアルミニウム含量を測定したところ、41.4wt%-Alであった。 
(b) 形状評価 
 乾燥固体状MAO組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行った。得られた固体MAO組成物の体積基準のメジアン径d(0.5) 5.1μm、均一性は0.230であった。
(c) メタンガス発生量
 反応後に80℃に降温した際の内部圧力(0.26MPa)から求めた溶液状ポリメチルアルミノキサン組成物のAl量に対するメタンガス発生量は8.02mol%と算出された。したがって、溶液状ポリメチルアルミノキサン組成物のAl量に対するAl2O3最大形成量は4.01mol%であった。
(3) エチレン重合評価 
a) ビスインデニルジルコニウムジクロライド(BI)担持固体MAO触媒の調製
 実施例1(3)a)と同様にBIを担持し、BI担持固体MAO触媒を調製した。
b) エチレン重合評価
 実施例1(3)b)と同様に上記調製BI担持固体MAO触媒を用いて重合評価を行った。得られた乾燥ポリマー重量よりこの触媒の重合活性は27.8kg-PE/g-cat・hrと求められた。
c) 取得ポリマー評価
 得られたポリマーの粒径は161.1μmで、Spanは0.752であった。また、バルクデンシティー(BD)は0.425g/ccと求められた。
実施例6
(1) 固体状MAO組成物の合成
 予備実験1(Al/O=1.17)で調製した溶液状ポリメチルアルミノキサン組成物のトルエン溶液を160℃加熱とし、加熱時間を16時間としたことを除いては実施例1と同様に固体MAO組成物を調製した。
 乾燥固体状MAO組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で100.0%であった。
(2) 固体状MAO組成物の分析 
(a) アルミニウム含量
 乾燥固体状MAO組成物中のアルミニウム含量を測定したところ、41.3wt%-Alであった。 
(b) 形状評価 
 乾燥固体状MAO組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行った。得られた固体MAO組成物の体積基準のメジアン径d(0.5) 4.9μm、均一性は0.240であった。
(c) メタンガス発生量
 反応後に80℃に降温した際の内部圧力(0.31MPa)から求めた溶液状ポリメチルアルミノキサン組成物のAl量に対するメタンガス発生量は10.24mol%と算出された。したがって、溶液状ポリメチルアルミノキサン組成物のAl量に対するAl2O3最大形成量は5.12mol%であった。
(3) エチレン重合評価 
a) ビスインデニルジルコニウムジクロライド(BI)担持固体MAO触媒の調製
 実施例1(3)a)と同様にBIを担持し、BI担持固体MAO触媒を調製した。
b) エチレン重合評価
 実施例1(3)b)と同様に上記調製BI担持固体MAO触媒を用いて重合評価を行った。得られた乾燥ポリマー重量よりこの触媒の重合活性は36.5kg-PE/g-cat・hrと求められた。
c) 取得ポリマー評価
 得られたポリマーの粒径は178.0μmで、Spanは0.716であった。また、バルクデンシティー(BD)は0.440g/ccと求められた。
実施例7
(1) 固体状MAO組成物の合成
 予備実験1(Al/O=1.17)で調製した溶液状ポリメチルアルミノキサン組成物のトルエン溶液をトルエン添加により希釈し、Al濃度を4.34wt%としたことを除いては実施例3と同様に固体MAO組成物を調製した。
 乾燥固体状MAO組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で100.0%であった。
(2) 固体状MAO組成物の分析 
(a) アルミニウム含量
 乾燥固体状MAO組成物中のアルミニウム含量を測定したところ、40.4wt%-Alであった。 
(b) 形状評価 
 乾燥固体状MAO組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行った。得られた固体MAO組成物の体積基準のメジアン径d(0.5) 32.1μm、均一性は0.263であった。
(c) メタンガス発生量
 反応後に80℃に降温した際の内部圧力(0.15MPa)から求めた溶液状ポリメチルアルミノキサン組成物のAl量に対するメタンガス発生量は5.65mol%と算出された。したがって、溶液状ポリメチルアルミノキサン組成物のAl量に対するAl2O3最大形成量は2.82mol%であった。
(3) エチレン重合評価 
a) ビスインデニルジルコニウムジクロライド(BI)担持固体MAO触媒の調製
 実施例1(3)a)と同様にBIを担持し、BI担持固体MAO触媒を調製した。
b) エチレン重合評価
 実施例1(3)b)と同様に上記調製BI担持固体MAO触媒を用いて重合評価を行った。得られた乾燥ポリマー重量よりこの触媒の重合活性は13.8kg-PE/g-cat・hrと求められた。
c) 取得ポリマー評価
 得られたポリマーの粒径は538.0μmで、Spanは0.883であった。また、バルクデンシティー(BD)は0.398g/ccと求められた。
 実施例1~7の固体状MAO組成物の分析結果及びエチレン重合評価結果を表1に示す。
比較例1
 加熱時間を8時間としたことを除いては実施例2と同様に固体MAO組成物を調製した。乾燥固体状MAO組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で97.0%であった。固体状MAO組成物の分析結果及びエチレン重合評価結果を表1に示す。
参考例1
 実施例3の後に脱ガスし、80℃における内部圧力を測定したところ、0.05MPaであった。
Figure JPOXMLDOC01-appb-T000014

Claims (13)

  1. ポリメチルアルミノキサンとトリメチルアルミニウムとAl2O3を含有する固体状ポリメチルアルミノキサン組成物であって、
    (i) アルミニウム含有量が36質量%から43質量%の範囲にあり、かつ
    (ii) Al2O3の含有量がアルミニウム基準で0.001モル%から10モル%の範囲にある、
    固体状ポリメチルアルミノキサン組成物。
  2. 前記Al2O3の少なくとも一部は、結晶粒として固体状ポリメチルアルミノキサン組成物中に存在する請求項1に記載の固体状ポリメチルアルミノキサン組成物。
  3. 前記Al2O3の結晶粒は、0.1~200nmの範囲である請求項2に記載の固体状ポリメチルアルミノキサン組成物。
  4. 前記Al2O3の少なくとも一部は、アモルファスとして固体状ポリメチルアルミノキサン組成物中に存在する請求項1~3のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
  5. ポリメチルアルミノキサンは、下記一般式(I)で示される単位を含むものである請求項1~4のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Meはメチル基を示し、nは10~50の整数を示す。) 
  6. トリメチルアルミニウムに由来するメチル基のモル分率Me(TMAL)が15モル%以下である請求項1~5のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
  7. 粒子状であり、かつ体積基準のメジアン径が1~50μmの範囲である請求項1~6のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
  8. 固体状担体を含有しない(但し、前記Al2O3は固体状担体には含まれない)、請求項1~7のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
  9. 少なくとも30℃以下の温度で固体状である、請求項1~8のいずれか1項に記載の固体状ポリメチルアルミノキサン組成物。
  10. (a)下記一般式(II)で示される単位を含むポリメチルアルミノキサンとトリメチルアルミニウムを含有する芳香族系炭化水素溶液(以下、溶液状ポリメチルアルミノキサン組成物と呼ぶ)を加熱して、ポリメチルアルミノキサンとトリメチルアルミニウムを含有する固体状ポリメチルアルミノキサン組成物を析出させる工程、
    (b)前記工程(a)で、析出した固体状ポリメチルアルミノキサン組成物を含む溶液を、工程(a)と同じ又は異なる温度で加熱して、固体状ポリメチルアルミノキサン組成物中にAl2O3を析出させる工程、を含む、Al2O3含有固体状ポリメチルアルミノキサン組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Meはメチル基を示し、nは10~50の整数を示す。)
  11. 前記工程(a)に先だって前記溶液状ポリメチルアルミノキサン組成物に乾燥不活性ガスをバブリングする、および/または工程(a)の少なくとも一部の期間中に前記溶液状ポリメチルアルミノキサン組成物に乾燥不活性ガスをバブリングする、ことを含む請求項10に記載の製造方法。
  12. 請求項1~9のいずれかに記載の固体状ポリメチルアルミノキサン組成物と下記一般式(IV)で表される遷移金属化合物を触媒成分として含有するオレフィン類の重合触媒。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Mは遷移金属元素を示し、R5およびR 6は一緒になってシクロアルカジエニル骨格を有する有機基を示し、R7およびR8は一緒になってシクロアルカジエニル骨格を有する有機基を示すか、またはR7およびR8は独立に、炭素数が1~20の炭化水素基、アルコキシ基、アリーロキシ基、アルキルシリル基、アミノ基、イミノ基、ハロゲン原子または水素原子であり、前記シクロアルカジエニル骨格を有する有機基は、置換基としてアルキル基、アルコシキ基、アリーロキシ基、アルキルシリル基、アルキルアミド基、アルキルイミド基、アルキルアミノ基、アルキルイミノ基、および/またはハロゲン原子を有してもよい。) 
  13. 請求項12に記載の触媒を用いてオレフィン類を重合することを含む、ポリオレフィン類の製造方法。
PCT/JP2016/084544 2015-11-26 2016-11-22 Al2O3を含有する固体状MAO組成物およびその製造方法 WO2017090585A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16868532.9A EP3480258B1 (en) 2015-11-26 2016-11-22 Solid mao composition containing al2o3 and method for producing same
CN201680068967.0A CN108350276B (zh) 2015-11-26 2016-11-22 含有Al2O3的固体状MAO组合物和其制造方法
JP2017515857A JP6159049B1 (ja) 2015-11-26 2016-11-22 Al2O3を含有する固体状MAO組成物およびその製造方法
US15/778,868 US10730969B2 (en) 2015-11-26 2016-11-22 Solid MAO composition containing Al2O3 and method for producing same
KR1020187017748A KR102574150B1 (ko) 2015-11-26 2016-11-22 Al2O3를 함유하는 고체상태 MAO 조성물 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-230487 2015-11-26
JP2015230487 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090585A1 true WO2017090585A1 (ja) 2017-06-01

Family

ID=58764237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084544 WO2017090585A1 (ja) 2015-11-26 2016-11-22 Al2O3を含有する固体状MAO組成物およびその製造方法

Country Status (6)

Country Link
US (1) US10730969B2 (ja)
EP (1) EP3480258B1 (ja)
JP (1) JP6159049B1 (ja)
KR (1) KR102574150B1 (ja)
CN (1) CN108350276B (ja)
WO (1) WO2017090585A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019122458A1 (en) 2017-12-22 2019-06-27 Sabic Global Technologies B.V. Process for preparation of semi-crystalline polyolefinic ionomers
WO2019122455A1 (en) 2017-12-22 2019-06-27 Sabic Global Technologies B.V. Process for preparation of amorphous functionalized olefin copolymer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4208487A1 (en) 2020-09-03 2023-07-12 SABIC Global Technologies B.V. Ultra-high molecular weight polyethylene polymers having improved processability and morpology
US11124586B1 (en) * 2020-11-09 2021-09-21 Chevron Phillips Chemical Company Lp Particle size control of metallocene catalyst systems in loop slurry polymerization reactors
EP4259670A2 (en) 2020-12-08 2023-10-18 Chevron Phillips Chemical Company Lp Particle size control of supported chromium catalysts in loop slurry polymerization reactors
WO2023039581A1 (en) 2021-09-13 2023-03-16 Chevron Phillips Chemical Company Lp Hydrocyclone modification of catalyst system components for use in olefin polymerizations
FR3140775A1 (fr) 2022-10-17 2024-04-19 IFP Energies Nouvelles Nouvelle composition catalytique à base de chrome ou de titane supporté

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502714A (ja) * 1996-10-25 2001-02-27 アクゾ ノーベル ナムローゼ フェンノートシャップ 非加水分解的手段の使用により形成された炭化水素可溶性アルキルアルミノキサン組成物
WO2010055652A1 (ja) * 2008-11-11 2010-05-20 東ソー・ファインケム株式会社 固体状ポリメチルアルミノキサン組成物およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101615A (en) 1973-02-20 1978-07-18 Sumitomo Chemical Company, Limited Process for producing alumina fiber or alumina-silica fiber
US5157008A (en) 1991-08-01 1992-10-20 Ethyl Corporation Hydrocarbon solutions of alkylaluminoxane compounds
US5731253A (en) * 1995-07-27 1998-03-24 Albemarle Corporation Hydrocarbylsilloxy - aluminoxane compositions
CN1268073A (zh) * 1997-05-22 2000-09-27 菲利浦石油公司 预聚合的烯烃聚合催化剂的制备和使用方法
JP5856561B2 (ja) 2010-05-11 2016-02-10 東ソー・ファインケム株式会社 固体状担体−ポリメチルアルミノキサン複合体、その製造方法、オレフィン類の重合触媒及びポリオレフィン類の製造方法
SG11201406100WA (en) 2012-03-28 2014-11-27 Tosoh Finechem Corp Method for manufacturing a small particle diameter product ofsolid polymethylaluminoxane composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502714A (ja) * 1996-10-25 2001-02-27 アクゾ ノーベル ナムローゼ フェンノートシャップ 非加水分解的手段の使用により形成された炭化水素可溶性アルキルアルミノキサン組成物
WO2010055652A1 (ja) * 2008-11-11 2010-05-20 東ソー・ファインケム株式会社 固体状ポリメチルアルミノキサン組成物およびその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019122458A1 (en) 2017-12-22 2019-06-27 Sabic Global Technologies B.V. Process for preparation of semi-crystalline polyolefinic ionomers
WO2019122457A1 (en) 2017-12-22 2019-06-27 Sabic Global Technologies B.V. Process for preparation of ethylene and propylene ionomer
WO2019122456A1 (en) 2017-12-22 2019-06-27 Sabic Global Technologies B.V. Process for preparation of semi-crystalline functionalized olefin copolymer
WO2019122453A1 (en) 2017-12-22 2019-06-27 Sabic Global Technologies B.V. Process for preparation of amorphous polyolefinic ionomers
WO2019122459A1 (en) 2017-12-22 2019-06-27 Sabic Global Technologies B.V. Process for preparation of functionalized ethylene and propylene copolymer
WO2019122455A1 (en) 2017-12-22 2019-06-27 Sabic Global Technologies B.V. Process for preparation of amorphous functionalized olefin copolymer
US11396565B2 (en) 2017-12-22 2022-07-26 Sabic Global Technologies B.V. Process for preparation of semi-crystalline functionalized olefin copolymer
US11401360B2 (en) 2017-12-22 2022-08-02 Sabic Global Technologies B.V. Process for preparation of amorphous polyolefinic ionomers
US11447585B2 (en) 2017-12-22 2022-09-20 Sabic Global Technologies B.V. Process for preparation of functionalized ethylene and propylene copolymer
US11466110B2 (en) 2017-12-22 2022-10-11 Sabic Global Technologies B.V. Process for preparation of semi-crystalline polyolefinic ionomers
US11466109B2 (en) 2017-12-22 2022-10-11 Sabic Global Technologies B.V. Process for preparation of amorphous functionalized olefin copolymer
US11472900B2 (en) 2017-12-22 2022-10-18 Sabic Global Technologies B.V. Process for preparation of ethylene and propylene ionomer
US11773195B2 (en) 2017-12-22 2023-10-03 Sabic Global Technologies B.V. Process for preparation of semi-crystalline functionalized olefin copolymer

Also Published As

Publication number Publication date
CN108350276A (zh) 2018-07-31
US10730969B2 (en) 2020-08-04
US20180355077A1 (en) 2018-12-13
KR102574150B1 (ko) 2023-09-04
CN108350276B (zh) 2020-12-01
EP3480258A4 (en) 2019-10-09
EP3480258A1 (en) 2019-05-08
JP6159049B1 (ja) 2017-07-05
EP3480258B1 (en) 2023-12-20
JPWO2017090585A1 (ja) 2017-11-24
KR20180088671A (ko) 2018-08-06

Similar Documents

Publication Publication Date Title
JP5856561B2 (ja) 固体状担体−ポリメチルアルミノキサン複合体、その製造方法、オレフィン類の重合触媒及びポリオレフィン類の製造方法
JP6158994B2 (ja) 小粒径固体状ポリメチルアルミノキサン組成物の製造方法
JP5611833B2 (ja) 固体状ポリメチルアルミノキサン組成物およびその製造方法
JP6159049B1 (ja) Al2O3を含有する固体状MAO組成物およびその製造方法
JP6259549B1 (ja) 固体状pmao組成物およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017515857

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187017748

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187017748

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016868532

Country of ref document: EP