WO2017090139A1 - 系統連系用リレーの異常検出装置及びパワーコンディショナ - Google Patents

系統連系用リレーの異常検出装置及びパワーコンディショナ Download PDF

Info

Publication number
WO2017090139A1
WO2017090139A1 PCT/JP2015/083158 JP2015083158W WO2017090139A1 WO 2017090139 A1 WO2017090139 A1 WO 2017090139A1 JP 2015083158 W JP2015083158 W JP 2015083158W WO 2017090139 A1 WO2017090139 A1 WO 2017090139A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
grid
relay
value
commercial system
Prior art date
Application number
PCT/JP2015/083158
Other languages
English (en)
French (fr)
Inventor
建儒 龍
秀樹 日高
Original Assignee
田淵電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田淵電機株式会社 filed Critical 田淵電機株式会社
Priority to US15/321,060 priority Critical patent/US10418812B2/en
Priority to JP2016521814A priority patent/JP6240757B2/ja
Priority to PCT/JP2015/083158 priority patent/WO2017090139A1/ja
Publication of WO2017090139A1 publication Critical patent/WO2017090139A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • H02J3/44Synchronising a generator for connection to a network or to another generator with means for ensuring correct phase sequence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to an abnormality detection device and a power conditioner for a grid interconnection relay.
  • a distributed DC power supply equipped with solar cells, fuel cells, etc. is configured with a power conditioner that converts frequency and voltage into AC power adapted to the commercial system for use in connection with the commercial system. ing.
  • the power conditioner converts DC power generated by a solar cell, a fuel cell, etc. into DC power having a predetermined voltage value, and converts DC power output from the DC / DC converter into AC power.
  • a DC / AC inverter and an LC filter for removing high frequency components from the output waveform of the DC / AC inverter are provided.
  • Power conditioners connected to solar cells, fuel cells, etc. are connected to the grid, and a ground fault or short circuit accident occurs, or planned power outages cause power transmission from the substation to the distribution lines.
  • a stopped state that is, when an individual operation state is reached, the power conditioner control device is connected to the grid to prevent the effect on the operation of the division switch and to ensure safety during maintenance work of the distribution lines, etc.
  • the system relay is opened, and the distributed power source is disconnected from the distribution line.
  • the distributed power source is switched from the distributed power source to the independent autonomous system that is disconnected from the commercial system or independent from the commercial system. Power is supplied.
  • the power conditioner control device includes a current control block that controls the DC / AC inverter so that an alternating current synchronized with the phase of the commercial system is output from the DC / AC inverter during grid connection, and a stand-alone system when disconnected. Is provided with a voltage control block for controlling the DC / AC inverter so that a predetermined level of AC voltage is output.
  • the voltage of the predetermined level is a voltage for a low-voltage consumer defined in Article 26 of the Electricity Business Act and Article 44 of the Enforcement Regulations of the Act, and is 101 ⁇ 6V for the standard voltage 100V and 202 for the standard voltage 200V. Voltage within ⁇ 20V.
  • the contact points of the grid connection relay are normally in advance to prevent reverse charging and asynchronous charging to the commercial system. It is necessary to detect whether or not the system connection operation is in an abnormal state such as welding of the contact points of the grid connection relay, and it is necessary to prevent the transition from the grid connection operation to the independent operation. .
  • Patent Document 1 includes a filter circuit that smoothes AC power from an inverter circuit, inverter circuit control means that controls the operation state of the inverter circuit, control means that controls connection or disconnection of a grid interconnection relay, , Connected between the filter circuit and the grid connection relay, for detecting the current flowing through the filter circuit, and for the grid connection when the inverter circuit is controlled to be stopped by the inverter circuit control means.
  • a grid interconnection device having means for detecting an abnormality of the grid interconnection device based on the control state of the relay and the detection result of the current detection unit.
  • the abnormality detection means determines whether or not the contact of the grid connection relay is welded based on whether or not reactive current is flowing from the commercial system to the capacitor of the filter circuit with the inverter circuit stopped. Is configured to do.
  • Patent Document 2 when the commercial system is operating normally, the DC / AC inverter circuit is controlled to be in a stopped state, and the grid connection relay is controlled to be in an open state.
  • the potential difference between the input side of the first grid connection relay and the output side of the second grid connection relay By detecting the potential difference between the output side of one grid connection relay and the input side of the second grid connection relay with a photocoupler, etc., before the inverter circuit and the commercial system are linked, A grid interconnection device that detects whether or not the grid interconnection relay or the second grid interconnection relay is welded has been proposed.
  • the grid interconnection device is configured to operate the inverter circuit and perform the same detection operation when the commercial system fails.
  • Patent Document 3 discloses a grid-connected inverter device that can safely start a grid-connected operation with a commercial system after confirming that both the switch for interconnection and the inverter circuit unit are normal. Yes.
  • the grid-connected inverter device includes an inverter circuit unit that converts DC power supplied from a DC power source into AC power, an output voltage detector that detects an output voltage of the inverter circuit unit, an inverter circuit unit, and a commercial system.
  • An interconnection switch for establishing interconnection, a system voltage detector for detecting a commercial system voltage, and a control circuit unit for controlling the inverter circuit unit and the interconnection switch are provided.
  • the control circuit unit confirms the open circuit state of the interconnection switch based on the detection value of the output voltage detector
  • the inverter circuit unit is started, and the detection value of the output voltage detector and the system voltage detector It is configured to perform control to close the interconnection switch when the detected value becomes substantially equal.
  • the grid-connected inverter device short-circuits a current limiting resistor that consumes a current generated by a voltage difference between the inverter circuit unit and the commercial system and the current limiting resistor between the inverter circuit unit and the switching switch.
  • a resistance short-circuiting switch that is configured to perform control to close the resistance short-circuiting switch at a predetermined timing after the control circuit unit closes the interconnection switch.
  • Patent Document 4 discloses a power converter that can detect an abnormality of a switch disposed between a power converter and a terminal for independent operation.
  • the power conversion device includes: a power conversion unit that converts power supplied from an external device into predetermined power; a first terminal connected between the power operation unit connected to a power system and the power conversion unit; A switch, a second switch connected between a terminal for independent operation connected to a load and the power conversion unit, a voltage detection unit for detecting a voltage of the terminal for independent operation, and the power conversion unit And a controller for controlling the first switch and the second switch.
  • the control unit outputs a control signal for opening the first switch and the second switch, respectively, and in a control state in which a predetermined voltage is output from the power conversion unit, An abnormality determination process for determining an abnormality of the second switch is executed based on the voltage of the terminal for independent operation detected by the voltage detection unit.
  • the abnormality detection means of the grid interconnection device disclosed in Patent Document 1 is configured to detect the presence or absence of reactive current flowing from the commercial system to the filter circuit by stopping the inverter circuit during grid interconnection or disconnection. For this reason, when the commercial system has a power failure and starts independent operation, there has been a problem that an abnormality of the grid interconnection relay cannot be detected.
  • the object of the present invention is to provide a grid interconnection that can accurately detect an abnormality in the grid interconnection relay without increasing the component cost when the commercial grid is powered down and starts independent operation.
  • An abnormality detection device for a power relay and a power conditioner are provided.
  • the first characteristic configuration of the abnormality detection device for the grid interconnection relay is as described in claim 1 of the claims, via the grid interconnection relay.
  • An inverter that converts DC power into AC power and is configured to be switchable between grid-connected operation linked to a commercial system and independent operation that supplies power to the independent system via a relay for independent system
  • An abnormality detection device for a grid interconnection relay that is incorporated in a power conditioner having an LC filter that removes a high frequency component from the output voltage of the grid and detects an abnormality of the grid interconnection relay when switching to self-sustaining operation, When it is determined that there is no commercial system voltage by the commercial system voltage determination process for determining the presence or absence of the commercial system voltage and the commercial system voltage determination process, the contact of the grid interconnection relay is controlled.
  • monitor voltages of different values are switched and output in time series from the power conditioner, and the difference between the voltage on the power conditioner side and the voltage on the commercial system side for each monitor voltage follows the monitor voltage. And a first voltage determination process for determining the abnormality of the grid interconnection relay based on whether or not the abnormality is detected.
  • monitor voltages of different values are switched and output in time series from the power conditioner while the contact of the grid interconnection relay is controlled to open, and the voltage on the power conditioner side for each monitor voltage And the voltage difference on the commercial system side is calculated.
  • the difference fluctuates following the monitor voltage, it is determined that the grid interconnection relay is normal.
  • the hum noise does not fluctuate as much as the monitor voltage fluctuates, so the difference between the voltage on the power conditioner side and the voltage on the commercial system side for each monitor voltage is different. In the case of switching following the monitor voltage, it is possible to determine that the grid interconnection relay is normal. Conversely, if the difference between the voltage on the inverter side and the voltage on the commercial system side for each monitor voltage does not change much without following the monitor voltage, it can be determined that the grid interconnection relay is abnormal. become.
  • the first voltage determination processing includes the voltage on the power conditioner side and the commercial system for each monitor voltage. This is because the abnormality determination of the grid interconnection relay is performed based on whether or not the product of the difference with the voltage on the side is smaller than a predetermined reference value.
  • the difference between the voltage on the power conditioner side and the voltage on the commercial system side follows the monitor voltage. As a result, it is possible to amplify the tendency of whether or not to switch, and as a result, it becomes possible to determine with high accuracy.
  • the command value of the output variable voltage of the power conditioner is set to ⁇ E *.
  • a is a reliability coefficient for adjusting the command value ⁇ E * and the reference value E chk of the output variable voltage
  • b is a reliability coefficient for the commercial system voltage E Grid
  • the command value for the effective value of the output voltage shown in at least the equation [Equation 1]
  • the sampling time k is calculated based on the following formula [Equation 2].
  • a product ⁇ E CST of the difference ⁇ E between the voltage and the voltage on the commercial grid side is calculated, and the grid interconnection relay is calculated based on whether the product ⁇ E CST of the difference ⁇ E is smaller than the predetermined reference value E chk.
  • the point is that it is configured to make an abnormality determination.
  • the setting range of the command values E min and E max of the output voltage effective value is set as shown in Equation [Equation 1].
  • the reliability coefficient b is a ratio with respect to the commercial system voltage E Grid .
  • E min , E max (where E min ⁇ E max ) of the output voltage effective value shown in the formula [Equation 1] corresponding to the command value of the output voltage effective value from the power conditioner in time series.
  • the difference ⁇ E between the voltage on the power conditioner side and the voltage on the commercial system side is calculated, and the product ⁇ E CST of each difference ⁇ E is calculated.
  • E chk Based on the magnitude relationship between the product ⁇ E CST and the reference value E chk , it is determined whether the grid interconnection relay is abnormal or normal.
  • the command values E min and E max of the output voltage effective value are the rated voltage E Grid of the commercial system. On the other hand, it is set to fall within the range of b ⁇ E Grid to 2 ⁇ a ⁇ ⁇ E * .
  • the abnormality detection processing unit is configured to use a commercial system voltage determination process.
  • the output voltage of the power conditioner is set to zero, and the contact of the grid interconnection relay is controlled to open, and the voltage on the power conditioner side and the commercial system side are set.
  • a second voltage determination process is performed to perform abnormality determination of the grid interconnection relay based on a magnitude relationship between a difference from the voltage and a value obtained by multiplying the predetermined reference value by a predetermined reliability coefficient. There is in point.
  • the abnormality detection processing unit is determined to have a commercial system voltage by the commercial system voltage determination process. Then, in a state in which the contact of the grid connection relay is controlled to open, a first current determination process for determining abnormality of the grid connection relay based on the presence or absence of an input current to the power conditioner; If it is determined by the commercial system voltage determination process that there is no commercial system voltage, the system connection relay is in a state where the contact of the system connection relay is controlled to open, based on the presence or absence of the output current from the power conditioner. And a second current determination process for determining abnormality of the system relay.
  • the commercial system voltage determination process is executed at the time of switching to the self-sustaining operation, and the presence or absence of the commercial system voltage is determined. At this time, if it is determined that there is a commercial grid voltage, the first current determination process is executed, and if it is determined that there is no commercial grid voltage, the second current determination process is executed.
  • the connection of the grid connection relay is determined based on whether or not current flows from the power conditioner to the load connected to the commercial system with the contact of the grid connection relay being controlled to open. The presence / absence of abnormality is determined. Accordingly, it is possible to appropriately determine the abnormality of the grid connection relay while avoiding reverse charging or asynchronous charging to the commercial system.
  • the first current determination process includes a capacitor capacitance C inv , an internal resistance R c , capacitor current i c, as free-standing system voltage e sd as a measurement value, in that it is configured to calculate the capacitor current i c which is calculated based on equation formula 3 below as the input current .
  • the current value flowing into the capacitor of the LC filter is calculated by measuring the self-sustained system voltage esd using an existing voltage detection circuit that detects the output voltage of the self-supporting system and substituting the value into the formula [Equation 3]. Therefore, it is possible to determine whether or not current flows from the commercial system via the grid interconnection relay without providing a separate current detection circuit.
  • the instantaneous value of the commercial system voltage becomes equal to the instantaneous value of the freestanding system voltage, and the change in the current flowing through the capacitor can be captured.
  • the welding state of the grid connection relay can be determined from the change state of the current flowing through the capacitor.
  • the current flowing through the capacitor becomes almost zero. Note that s is a Laplace operator (Laplace variable).
  • the first current determination process is configured such that the absolute value of the input current measured at a predetermined sampling period is When the absolute value of the input current increases every time it is measured more than a predetermined threshold continuously, the grid interconnection relay is determined to be abnormal.
  • the current value based on the value measured at a predetermined sampling period is a predetermined threshold value or more and the absolute value is increased a plurality of times, it is determined that the current from the commercial system flows into the capacitor constituting the LC filter.
  • the second current determination process includes a capacitor capacitance C inv of the LC filter,
  • the output current i sp of the power conditioner calculated based on the following formula [Equation 4] as the internal resistance R c , the output voltage e sd during the self-sustaining operation, the capacitor current i c , and the inverter current i inv as the measurement value Is calculated as the output current.
  • the inverter When there is no commercial system voltage, the inverter is driven to output a predetermined self-sustained system voltage esd from the power conditioner, and the measured output current i inv of the inverter and the self- supported system voltage esd are expressed by the following equation (3). And the output current i sp from the power conditioner is calculated by the equation [Equation 4]. That is, when the contact of the grid connection relay is welded, the current flowing out from the power conditioner to the load connected to the commercial system is detected.
  • the tenth feature configuration is the absolute value of the peak value of the output current of the power conditioner in addition to the ninth feature configuration described above, in addition to the ninth feature configuration described above.
  • the grid interconnection relay is determined to be abnormal.
  • the difference in absolute value of the calculated peak value of the output current of the power conditioner is equal to or more than a predetermined threshold value continuously several times, and the absolute value of the peak value is measured every time measurement is performed.
  • the peak value of the output current of the power conditioner is always a constant value.
  • the abnormality detection processing unit includes all contacts of the grid interconnection relay. Each abnormality detection process is executed after the opening control is performed, and each abnormality detection process is executed every time the closing control is performed independently for each contact.
  • the number of contacts of the grid interconnection relay varies depending on whether the inverter output is single-phase or three-phase, and the result of each determination process described above varies depending on which contact is welded. That is, the first current determination process and the second current determination process are performed after opening control of all the contacts of the grid interconnection relay. If it is determined that the contacts are welded, it is clear that all the contacts are welded. Become. Further, the first voltage determination process and the second voltage determination process are executed every time when the closing control is performed independently for each contact, and if it is determined that the contact is welded, the contact whose opening is controlled is welded. Becomes clear.
  • the commercial system voltage determination process includes a preset power conditioner. Based on the magnitude relationship between the value obtained by multiplying the output voltage setting value by a predetermined reliability coefficient and the commercial system voltage, and the value obtained by multiplying the independent system frequency by the predetermined reliability coefficient and the commercial system frequency The configuration is such that the presence or absence of commercial system voltage is determined.
  • the presence or absence of the commercial grid voltage can be accurately determined without causing erroneous determination due to noise or the like.
  • the characteristic configuration of the power conditioner according to the present invention is that, as described in claim 12, the grid connection operation linked to the commercial system via the grid interconnection relay and the independent system via the independent grid relay
  • a single-phase or three-phase power conditioner having a control device capable of switching between self-sustained operation to supply power, the grid interconnection relay having any one of the first to eleventh characteristic configurations described above
  • the abnormality detecting device is incorporated in the control device.
  • the abnormality detection processing unit determines that the contact point of the grid connection relay is welded, it is possible to avoid the inconvenient situation of reverse charging and asynchronous charging to the commercial system by avoiding independent operation. Can be prevented.
  • the system connection relay when a commercial system starts a power failure and starts a self-sustained operation, the system connection relay can accurately detect the abnormality of the system connection relay without increasing the component cost.
  • An abnormality detection device and a power conditioner can be provided.
  • FIG. 1 is a circuit block diagram of a distributed power source including a power conditioner.
  • FIG. 2 is an explanatory diagram of the on / off operation of the grid interconnection relay when an abnormality is detected.
  • FIG. 3 is a flowchart showing commercial system voltage determination processing.
  • FIG. 4 is a flowchart showing an abnormality detection method for the grid interconnection relay.
  • FIG. 5 is a flowchart showing the first voltage determination process.
  • FIG. 6 is an explanatory diagram of the first current determination process.
  • FIG. 7 is an explanatory diagram of the second current determination process when the threshold is equal to or greater than the determination threshold.
  • FIG. 8 is an explanatory diagram of the second current determination process when it is equal to or less than the determination threshold.
  • FIG. 1 is a circuit block diagram of a distributed power source including a power conditioner.
  • FIG. 2 is an explanatory diagram of the on / off operation of the grid interconnection relay when an abnormality is detected.
  • FIG. 3 is a flowchart
  • FIG. 9A is an explanatory diagram of the output voltage switching sequence of the inverter when the first voltage determination process is executed
  • FIG. 9B is an explanatory diagram of the voltage detection sequence on the commercial system side when the first voltage determination process is executed.
  • Figure 10 (a) is an explanatory view of a contact control process sequence for welding detection of contact S w at the first voltage determination process performed
  • FIG. 10 (c) are explanatory views of a commercial system side voltage waveforms corresponding to FIG. 10 (b) when welding detection of contact S w.
  • Figure 11 (a) is an explanatory view of a contact control process sequence for welding detection of contact S w at the first voltage determination process performed
  • FIG. 11 (c) is an explanatory view of the commercial system side voltage waveforms corresponding to FIG. 11 (b) of the welding not detected when the contacts S w.
  • FIG. 1 shows a solar power generation device 1 which is an example of a distributed power source.
  • the solar power generation device 1 includes a solar cell panel SP and a power conditioner PCS connected to the solar cell panel SP.
  • DC power generated by the solar panel SP is supplied to the power conditioner PCS via a DC circuit breaker and a surge absorber (not shown).
  • Power conditioner PCS is given a DC / DC converter 2 for boosting the power DC voltage to a predetermined DC link voltage V dc by solar panels SP, the DC link voltage V dc boosted by the DC / DC converter 2 DC / AC inverter 3 for converting the AC voltage into the AC voltage, LC filter 4 for removing harmonics from the AC voltage output from the DC / AC inverter 3, and control for controlling the DC / DC converter 2 and the DC / AC inverter 3
  • the apparatus 5 etc. are provided.
  • the AC power converted by the power conditioner PCS is connected to the commercial system 100 via the grid connection relay Ry1 and supplied to the AC load R uw , and is disconnected from the commercial system 100 due to a power failure of the commercial system 100 or the like. Then, power is supplied to the self-supporting load R sd via the self-supporting system relay Ry2.
  • the contacts of the grid interconnection relay Ry1 are indicated by S u and S w
  • the two contacts of the independent grid relay Ry2 are indicated by S sd .
  • the control device 5 of the power conditioner PCS includes a microcomputer, a memory, peripheral circuits including an input / output circuit including an AD converter, and the like, and a control program stored in the memory is stored by a CPU incorporated in the microcomputer. The desired function is realized by being executed.
  • the converter control unit 5a that controls the boost switch of the DC / DC converter 2
  • the inverter control unit 5b that controls the switch constituting the bridge of the DC / AC inverter 3
  • the abnormality in the grid interconnection relay Ry1 Each control block that functions as the detected abnormality detection processing unit 5 c is embodied as the control device 5.
  • the converter control unit 5a monitors the input voltage, input current, and output voltage to the DC / DC converter 2 and executes MPPT (Maximum Power Point Tracking) control for operating the solar cell panel SP at the maximum power point.
  • the DC / DC converter 2 is boosted to output a predetermined DC link voltage V dc to the DC / AC inverter 3.
  • the inverter control unit 5b is configured to control the inverter 3 so as to perform grid-connected operation via the grid interconnection relay Ry1, or to control the inverter 3 so as to operate independently via the independent grid relay Ry2. Has been.
  • the inverter control unit 5b includes a current control block that controls the output current of the inverter 3 so as to synchronize with the phase of the commercial system voltage during grid connection operation, and a voltage control that supplies AC power of a predetermined voltage to the independent system when disconnected.
  • a block and functional blocks such as an isolated operation detection block for detecting whether or not the system is in an isolated operation state during grid interconnection operation are provided.
  • the abnormality detection processing unit 5c detects whether there is an abnormality in the grid interconnection relay Ry1 during the transition from grid interconnection operation to independent operation, and detects that a contact welding abnormality has occurred in the grid interconnection relay Ry1. Then, the alarm display indicating the failure is turned on, and the independent operation control by the inverter control unit 5b is stopped. That is, the abnormality detection processing unit 5c functions as the abnormality detection device of the present invention.
  • a monitor signal of the output current i inv detected by a current transformer provided downstream of the inductor L constituting the LC filter 4 is input to the AD conversion unit of the control device 5.
  • a monitor signal of the independent system voltage esd of the power conditioner PCS detected by a resistance voltage dividing circuit provided on the upstream side of the independent system relay Ry2 is input to the AD converter of the control device 5, and the system interconnection
  • a monitor signal of the commercial system voltage e uw detected by a resistance voltage dividing circuit provided on the downstream side of the relay Ry1 is input to the AD converter of the control device 5.
  • the independent system voltage e sd and the independent system frequency f sd of the power conditioner PCS are obtained, and the commercial system voltage e uw and the commercial system frequency f Grid are obtained.
  • the inverter control unit 5b closes the grid interconnection relay Ry1 and performs grid interconnection operation when the generated power of the solar panel SP reaches a value that enables interconnection with the commercial system, and generates power of the solar panel SP. Or the isolated operation detection block detects that it is in the isolated operation state, the system interconnection relay Ry1 is opened and disconnected from the commercial system.
  • the inverter control unit 5b When the inverter control unit 5b is disconnected from the commercial system due to the single operation state and the generated power of the solar panel SP is a value sufficient for the independent operation, the inverter control unit 5b activates the abnormality detection processing unit 5c. Abnormality detection of the interconnection relay Ry1 is performed.
  • the inverter control unit 5b activates the inverter 3 and closes the independent grid relay Ry2 to operate independently.
  • the detection processing unit 5c determines that the grid interconnection relay Ry1 is abnormal, the DC / AC inverter 3 is stopped without closing the independent grid relay Ry2.
  • the abnormality detection processing executed in the abnormality detection processing unit 5c includes contact control processing for opening or closing the contact of the grid interconnection relay Ry1, commercial system voltage determination processing, output voltage setting processing for the inverter 3, The voltage determination process and the current determination process are included.
  • Abnormality detection processing unit 5c all the contacts S u of the system interconnection relay Ry1, with contacts after opening controlled S w executes the current determination processing and voltage judgment processing described later determines whether or not welded , and it is configured to execute the current determination processing and voltage judgment processing whenever the closing control for each contact S u or S w.
  • FIG. 2 shows the on / off control timing for the contacts S u and S w of the grid interconnection relay Ry1.
  • each check time is 1 sec.
  • Delay time T dly is 300 msec. Is set to It is sufficient that at least the check time T on ⁇ 3T dly is set.
  • Such an open / close control sequence for the grid interconnection relay Ry1 is the contact control processing step described above.
  • the delay time T dly can be changed to an appropriate time depending on the type of grid interconnection relay.
  • FIG. 3 shows a welding determination preparation flow of the grid interconnection relay Ry1 that executes the above-described commercial system voltage determination processing step and voltage setting processing step.
  • E * sd. rms is a command value of the effective value of the output voltage during the self-sustaining operation
  • x is a reliability coefficient set to a value in the range of 0 ⁇ x ⁇ 1 in order to ensure the accuracy of determination.
  • x 0.5 Is set to
  • the independent system frequency f sd is set to the same value as the commercial system frequency f Grid .
  • the command value E * sd. rms is set to a value of 40 V, which is lower than the rated output voltage effective value of 100 V during self-sustained operation.
  • the commercial system voltage is measured for at least one cycle (20 msec. If the commercial system frequency is 50 Hz), the absolute value
  • the commercial system voltage may be measured for a plurality of periods, and the average of the absolute values
  • the product of the commercial system frequency f Grid , the independent system frequency f sd and the reliability coefficient x is compared.
  • the value of the reliability coefficient x is a coefficient for ensuring the reliability of judgment. The closer the value is to 1, the more easily affected by noise, but the more severe it can be judged. It becomes a bad judgment.
  • an intermediate value of 0.5 is preferably used.
  • step S4 it is determined that there is a commercial system voltage when both of the two formulas [Equation 5] are established, and it is determined that there is no commercial system voltage when neither of them is established.
  • Steps S3 and S4 described above are the predetermined relationship between the value obtained by multiplying the preset output voltage setting value of the power conditioner PCS by a predetermined reliability coefficient and the commercial system voltage, and the independent system frequency with the predetermined reliability coefficient.
  • This is a commercial system voltage determination processing step for determining the presence or absence of the commercial system voltage based on the magnitude relationship between the value multiplied by the commercial system frequency.
  • the preset output voltage setting value of the power conditioner PCS may be a voltage value required during the independent operation, or may be a dedicated voltage value for detecting an abnormality lower than the voltage value. Even when the commercial system voltage and the independent operation voltage are different values, the presence or absence of the commercial system voltage can be accurately determined by appropriately setting the output voltage setting value and the reliability coefficient.
  • Equation [5] by checking not only the commercial system voltage but also the commercial system frequency, the presence / absence of the commercial system voltage can be accurately determined without causing erroneous determination due to noise or the like. .
  • the reference value E chk for performing contact welding determination in the voltage determination processing is the effective value E uw.
  • the delay time T chk that is set to rms and determines the difference between the independent system voltage and the commercial system voltage is set to the reciprocal of the commercial system frequency (S5).
  • a command value for the output voltage of the power conditioner PCS when an abnormality is detected is set (S6), and a reference value E chk for determining contact welding is expressed by a mathematical expression described later.
  • the value is set to a value smaller than (a ⁇ ⁇ E * ) 3 shown in [Equation 14], and the delay time T chk at this time is set to the reciprocal of the independent system frequency (S7).
  • Steps S5 to S7 described above are voltage setting processing steps.
  • E * sd.rms is the command value of the autonomous system voltage effective value
  • ⁇ sd is the phase angle of the autonomous system voltage.
  • the commercial system voltage determination process step for determining the presence or absence of the commercial system voltage is executed, and based on the result of the commercial system voltage determination process step, the power setting PCS is self-supporting in the voltage setting process step.
  • the reference value E chk for determining the abnormality of the grid voltage and the grid interconnection relay Ry1 is set to a different value.
  • the power conditioner PCS is controlled by the control device 5 so as to shift to a self-sustained operation when the commercial system loses power. However, the commercial system voltage may be temporarily lowered to recover soon. In such a case, if the grid connection relay Ry1 is welded, an inconvenient situation such as reaching an asynchronous input state may occur, and the power conditioner PCS may be damaged.
  • the commercial system voltage determination process is executed before the voltage setting process, and the reference value for determining the abnormality of the independent grid voltage of the power conditioner PCS and the grid connection relay Ry1 is changed according to the result.
  • the reference value for determining the abnormality of the independent grid voltage of the power conditioner PCS and the grid connection relay Ry1 is changed according to the result.
  • the self-sustained system voltage of the power conditioner PCS is set to 0 V and the value of the commercial system voltage is set to a reference value, the accuracy of the power conditioner PCS is not increased. It is possible to perform welding determination of high-contact.
  • FIG. 4 shows a contact welding determination flow of the grid interconnection relay Ry1 of the present invention.
  • the above-described contact control processing step is executed (S22). If it is determined by the commercial system voltage determination process that there is a commercial system voltage (S23, Y), whether or not there is an input current to the power conditioner PCS with the contact of the grid interconnection relay Ry1 being controlled to open. Based on this, a first current determination process (S27) for determining abnormality of grid interconnection relay Ry1 is executed.
  • the power conditioner PCS has a predetermined delay time n ⁇ T chk (n is a positive integer).
  • the effective values of the output voltage esd and the commercial system voltage euw are measured (S25), and the first voltage determination process is executed (S26).
  • step S32 the state of the error flag is determined. If the error flag is set (S32, Y), it is determined that the corresponding relay contact is welded, and accordingly, the display panel of the power conditioner PCS is abnormal. An abnormality handling process such as turning on the display is executed (S33).
  • Step S32 unless confirmed set of error flags (S32, N), all the contacts S u of the system interconnection relay Ry1, S w is opened controlled conditions, closing control for each contact S u or S w
  • the processes from step S22 to step S34 are repeated until each abnormality determination process is completed in each of the three states.
  • each current determination process and each voltage determination process will be described in detail.
  • the capacitor capacity C inv of the LC filter 4 the internal resistance R c , the capacitor current i c , and the self-sustained system voltage esd serving as a measurement value are based on the following formula [Equation 7].
  • the calculated capacitor current ic is calculated as the input current. Note that s is a Laplace operator (Laplace variable).
  • the first current determination process is performed at least three times in order to determine the change state of the absolute value
  • the threshold value I c.chk can be determined by the following equation [Equation 8]. However, P sd. “rated” is the rated output power during the autonomous operation, “E * sd.rms” is the command value of the autonomous system voltage effective value, “y” is a reliability coefficient, and is a positive number of y ⁇ 1.
  • the predetermined sampling period T s may be any sampling period that satisfies the condition of the reciprocal of the maximum switching frequency of the switching elements constituting the inverter.
  • step S27 in order to determine the change state of the absolute value
  • the following formula is used as the capacitor capacity C inv of the LC filter 4, the internal resistance R c , the self-sustaining system voltage e sd , the capacitor current i c , and the output current i inv of the inverter that becomes the measurement value.
  • the output current i sp power conditioner PCS is calculated based on [Equation 9] is configured to calculate an output current to a load connected to the grid.
  • the inverter 3 is driven in a predetermined from the power conditioner PCS self-standing system voltage e sd is output, the inverter current i inv and independence system voltage e sd formula from [Equation 7], which is measured
  • the value i c obtained by the above equation is substituted into the formula [Equation 9] to calculate the output current i sp from the power conditioner PCS.
  • self-supporting system voltage e sd is a value detected by the resistance voltage dividing circuit for detecting an output voltage e sd inverter.
  • the second current determination process is performed by the maximum value I sp. Of the output current i sp of the power conditioner PCS .
  • a predetermined threshold value I sp I sp. If it is greater than or equal to chk and if the absolute value
  • the determination process may be repeated a plurality of times in consideration of erroneous detection due to noise and in order to reliably detect the change state.
  • the difference between the calculated maximum values of the output current of the power conditioner PCS is a predetermined threshold value or more continuously several times and the absolute value of the instantaneous output current i sp
  • the abnormality display is turned on on the display panel of the inverter PCS.
  • step S27 the maximum value I sp of the output current i sp.
  • the change state of max is the threshold value I sp. If the condition that the condition that the value is less than chk and the value tends to increase is not satisfied is continued for a predetermined time (for example, several cycles), the commercial system is not connected to a load or is connected to a light load.
  • the state is determined (S27, N), and the process proceeds to the second voltage determination process after step S28. Note that the determination process may be repeated a plurality of times in consideration of erroneous detection due to noise and in order to reliably detect the change state.
  • the effective values of the autonomous system voltage e sd and the commercial system voltage e uw of the power conditioner PCS are measured during a predetermined delay time n ⁇ T chk (n is a positive integer).
  • and a value obtained by multiplying the reference value E chk set in the voltage setting processing step by a predetermined reliability coefficient z is determined (S29).
  • the reliability coefficient z 0.5 (z is z ⁇ A positive number of 1), the absolute value of the difference
  • 200V.
  • step S29 the absolute value of the difference
  • the delay time T chk only needs to be set to a plurality of periods, and is not limited to three periods.
  • step S24 When the welding of the grid interconnection relay Ry1 is not detected in the second current determination process in step S24 (S24, OK), the first voltage determination process after step S25 is executed.
  • FIG. 5 shows a specific processing procedure of the first voltage determination processing.
  • the processing time T 1 of the for determining the presence or absence of an abnormality in the system interconnection relay Ry1 is set (S41).
  • T ON in the formula [Equation 11] is mainly controlled by opening or closing each contact of the grid connection relay Ry1 in the contact control processing of the grid connection relay Ry1. This is the time for measuring the voltage on the power conditioner PCS side and the voltage on the commercial system side, and T dly is the time required for the arithmetic processing for the measured value.
  • T ON is 1.0 sec.
  • the delay time T dly is set to 300 msec. Is set to
  • the measurement time initial value of k is set to "-2"
  • the total contact S u equation [equation from the power conditioner PCS in a state where S w is opened the control of the grid interconnection relay Ry1 13
  • a monitor voltage of E min is output as rms (S42).
  • the voltage e uw on the commercial system side is measured and the effective value E uw. rms is calculated, the command value E min of the output voltage effective value of the inverter PCS, and the voltage effective value E uw.
  • the absolute value ⁇ E (k) of the rms difference is calculated and stored in the memory (S43).
  • step 43 Until processing time T 1 is passed the process of step 43 is continued, the processing time T 1 is elapsed (S44, Y), with the value "1" is added to the measurement time k, the power conditioner PCS The output voltage is updated to the command value Emax of the effective value of the output voltage shown in the equation [Equation 13] and output (S45).
  • the voltage is switched from E min to E max and further to E min in time series.
  • ⁇ E * is a command value for the output variable voltage of the power conditioner
  • a and b are reliability coefficients that are set in the range of 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1.
  • the product ⁇ E CST calculated in step S47 is compared with a predetermined reference value E chk . If the product ⁇ E CST is smaller than the predetermined reference value E chk, it is determined that the contact of the grid interconnection relay Ry1 is welded (S48, N), and an error flag is set (step of FIG. 4). S31).
  • Step S30 If the product ⁇ E CST is equal to or greater than the predetermined reference value E chk, it is determined that the contact of the grid interconnection relay Ry1 is not welded (S48, Y), and the error flag is reset (FIG. 4). Step S30).
  • FIG. 9A and 9B show the processing timing of the first voltage determination processing described with reference to the flowcharts of FIGS.
  • the command value E * sd output voltage effective value from the power conditioner PCS during the initial processing time T 1.
  • a monitor voltage of E min is output as rms (k ⁇ 2).
  • the product ⁇ E CST of the data ⁇ E (k ⁇ 2), ⁇ E (T k ⁇ 1 ) and ⁇ E (k) stored in the memory during the time T CHK is calculated based on the formula [Equation 14], Is compared with the reference value E chk .
  • the variable voltage of the command value of the inverter output voltage is ⁇ E *
  • the reliability coefficient for adjusting the variable voltage ⁇ E * and the reference value E chk is a.
  • the reliability coefficient a 0.5
  • the command value ⁇ E * 20 V of the output variable voltage
  • the command value E * sd
  • the output voltage effective value command values E min and E max are preferably set to fall within the range of b ⁇ E Grid to 2 ⁇ a ⁇ ⁇ E * with respect to the rated voltage E Grid of the commercial system.
  • the difference between the command values E min and E max of the output voltage effective value is small, the product ⁇ E CST is obtained depending on whether or not the contact of the grid interconnection relay Ry1 is welded due to the influence of hum noise. There is a possibility that such a big difference is not recognized.
  • the circuit elements for detecting the output voltage, output current, and commercial system voltage of the power conditioner PCS are inherently power conditioners. Since it is a circuit element necessary for controlling the PCS, it is not necessary to prepare a separate sensor or circuit element in order to determine the welding of the grid interconnection relay Ry1.
  • FIGS. 10 (a), (b), (c) and FIGS. 11 (a), (b), (c) show examples of experimental results of the first voltage determination processing according to the present invention. More specifically, as shown in FIG. 10 (a) and FIG. 11 (a), the in contact control process in step S22 in FIG. 4, the contacts S u of the system interconnection relay Ry1, the contact S u of the S W are closed, with the contact S W is opened, as a result of the first voltage determination process is executed, i.e. welding determination result for the contact S w in FIG. 10 (b), (c) and FIG. 11 (b), the It is shown in (c).
  • the power number 3 is a value corresponding to the number of sampled differences.
  • the command value of the effective value of the output voltage from the power conditioner PCS is switched and output alternately over three periods using the two values E min and E max in the first voltage determination process.
  • E min and E max in the first voltage determination process.
  • the monitor voltages E min and E max having different values are switched and output in time series from the power conditioner PCS, and the difference between the voltage on the power conditioner PCS side and the voltage on the commercial system side with respect to each monitor voltage E min and E max .
  • monitor voltages E min and E max are switched and output in time series, in addition to switching in the order of E min ⁇ E max ⁇ E min , it may be switched in the order of E max ⁇ E min ⁇ E max. Not too long. That is, it is only necessary that the monitor voltage of the output voltage effective value command values E min and E max is switched and output in time series.
  • abnormality or normality is determined based on whether or not the difference similarly changes with changes in the monitor voltages E min and E max . That is, if the difference changes similarly when the monitor voltages E min and E max are changed, it is determined that the grid interconnection relay Ry1 is normal. On the other hand, the difference when changing the respective monitor voltage E min and E max may not change, system interconnection relay Ry1 is determined to be abnormal.
  • the abnormality detection apparatus for the grid connection relay is configured to connect the grid connection when it is determined that there is no commercial system voltage by the commercial system voltage determination process for determining the presence or absence of the commercial system voltage and the commercial system voltage determination process.
  • the power conditioner switches and outputs different values of the monitor voltage in time series, and the difference between the voltage on the power conditioner side and the voltage on the commercial system side for each monitor voltage is
  • An abnormality detection processing unit that executes a first voltage determination process for determining an abnormality of the grid interconnection relay based on whether or not to follow the monitor voltage may be provided.
  • the present invention has been described by taking the case where the output of the power conditioner PCS is a single phase as an example.
  • the present invention has a three-phase output of the power conditioner PCS, and the grid interconnection relay Ry1. This is also applicable to the case where the contacts are composed of three contacts S u , S v , and S w .
  • the abnormality detection device for the grid interconnection relay has been described by taking the distributed power source including the solar cell panel SP and the power conditioner PCS connected to the solar cell panel SP as an example.
  • the power generation device incorporated in is not limited to the solar cell panel SP, and may be any power generation device such as a wind power generation device or a fuel cell.
  • the plurality of embodiments described above are merely examples of an abnormality detection method and a power conditioner for a grid interconnection relay according to the present invention, and the technical scope of the present invention is not limited by the description. Needless to say, the specific circuit configuration and abnormality detection algorithm can be changed and designed as appropriate as long as the above effects are achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Protection Of Static Devices (AREA)

Abstract

商用系統が停電して自立運転を起動する場合に、部品コストが嵩むことなく、精度良く系統連系用リレーの異常を検知可能な異常検出装置を提供する。 自立運転への切替時に系統連系用リレーの異常を検出する系統連系用リレーの異常検出装置であって、商用系統電圧の有無を判定する商用系統電圧判定処理と、前記商用系統電圧判定処理により商用系統電圧が無いと判定されると、前記系統連系用リレーの接点が開成制御された状態で、前記パワーコンディショナから異なる値のモニタ電圧を時系列で切替出力し、各モニタ電圧に対する前記パワーコンディショナ側の電圧と商用系統側の電圧との差分が前記モニタ電圧に追従するか否かに基づいて前記系統連系用リレーの異常判定を行なう第1電圧判定処理と、を実行する異常検出処理部を備えている。

Description

系統連系用リレーの異常検出装置及びパワーコンディショナ
 本発明は、系統連系用リレーの異常検出装置及びパワーコンディショナに関する。
 太陽電池や燃料電池等を備えた分散型直流電源は、商用系統に連系させて使用するために、周波数や電圧を商用系統に適合させた交流電力に変換するパワーコンディショナを備えて構成されている。
 パワーコンディショナは、太陽電池や燃料電池等で発電された直流電力を所定の電圧値の直流電力に調整するDC/DCコンバータと、DC/DCコンバータから出力される直流電力を交流電力に変換するDC/ACインバータと、DC/ACインバータの出力波形から高周波成分を除去するLCフィルタ等を備えている。
 太陽電池や燃料電池等に接続されたパワーコンディショナが系統連系運転を行なっている配電線に地絡または短絡事故が発生し、或いは計画停電等によって変電所から配電線への電力の送電が停止した状態、即ち単独運転状態に至った場合には、区分開閉器の動作への影響防止及び配電線等の保全作業時の安全性を確保するために、パワーコンディショナの制御装置によって系統連系用リレーが開成され、当該分散型電源は当該配電線から解列される。
 そして、その後パワーコンディショナの制御装置によって自立系統用リレーが閉成されると、商用系統から切り離された自立系統或いは商用系統とは連系することなく独立した自立系統に当該分散型電源から交流電力が供給される。
 パワーコンディショナの制御装置には、系統連系時に商用系統の位相に同期した交流電流がDC/ACインバータから出力されるようにDC/ACインバータを制御する電流制御ブロックと、解列時に自立系統に所定レベルの交流電圧が出力されるようにDC/ACインバータを制御する電圧制御ブロックを備えている。
 所定レベルの電圧とは、電気事業法第26条及び同法施行規則第44条に規定された低圧需要家用の電圧であり、標準電圧100Vに対して101±6V、標準電圧200Vに対して202±20V以内の電圧をいう。
 商用系統から解列して自立系統に給電する自立運転を行なう場合には、商用系統への逆充電の防止及び非同期投入の防止のために、事前に系統連系用リレーの接点が正常な状態であるか否かを検出する必要があり、当該系統連系用リレーの接点が溶着する等の異常な状態である場合には、系統連系運転から自立運転への移行を阻止する必要がある。
 特許文献1には、インバータ回路からの交流電力を平滑するフィルタ回路と、インバータ回路の運転状態を制御するインバータ回路制御手段と、系統連系用リレーの連系又は解列の状態の制御手段と、フィルタ回路と系統連系用リレーの間に接続され、フィルタ回路に流れる電流を検出する電流検出手段と、インバータ回路制御手段によりインバータ回路が停止状態に制御されているときに、系統連系用リレーの制御状態及び電流検出手段の検出結果に基づいて系統連系装置の異常を検出する手段とを有する系統連系装置が開示されている。
 当該異常検出手段は、インバータ回路を停止した状態で、商用系統からフィルタ回路のコンデンサに無効電流が流れているか否かに基づいて、系統連系用リレーの接点が溶着しているか否かを判定するように構成されている。
 特許文献2には、商用系統が正常に運転されている場合に、DC/ACインバータ回路を停止状態に制御し、系統連系用リレーを開放状態に制御している時、系統連系用リレーを構成する第一の系統連系用リレー、第二の系統連系用リレーについて、第一の系統連系用リレーの入力側と第二の系統連系用リレーの出力側の電位差と、第一の系統連系用リレーの出力側と第二の系統連系用リレーの入力側の電位差をそれぞれフォトカプラ等によって検出することで、インバータ回路と商用系統が連系する前に、第一の系統連系用リレーまたは第二の系統連系用リレーが溶着しているか否かを検出する系統連系装置が提案されている。
 さらに、当該系統連系装置は、商用系統が停電した場合に、インバータ回路を作動させて、同様の検出動作を行なうように構成されている。
 特許文献3には、連系用開閉器及びインバータ回路部が共に正常であることを確認した後に、商用系統との連系運転を安全に開始することができる系統連系インバータ装置が開示されている。
 当該系統連系インバータ装置は、直流電源から供給された直流電力を交流電力に変換するインバータ回路部と、インバータ回路部の出力電圧を検出する出力電圧検出器と、インバータ回路部と商用系統との連系を確立する連系用開閉器と、商用系統の電圧を検出する系統電圧検出器と、インバータ回路部及び連系用開閉器を制御する制御回路部とを備えている。
 そして、当該制御回路部が、出力電圧検出器の検出値に基づいて連系用開閉器の開路状態を確認した後にインバータ回路部を始動させ、出力電圧検出器の検出値と系統電圧検出器の検出値とが略同等になったときに連系用開閉器を閉じる制御を行うように構成されている。
 また、当該系統連系インバータ装置は、インバータ回路部と連系用開閉器との間に、インバータ回路部と商用系統との電圧差によって生じる電流を消費する電流制限抵抗と、電流制限抵抗を短絡させる抵抗短絡用開閉器とが設けられ、制御回路部が連系用開閉器を閉じた後に所定のタイミングで抵抗短絡用開閉器を閉じる制御を行うように構成されている。
 特許文献4には、電力変換部と自立運転用端子との間に配置された開閉器の異常を検出できる電力変換装置が開示されている。
 当該電力変換装置は、外部装置から供給される電力を所定の電力へ変換する電力変換部と、電力系統に接続される連系運転用端子と前記電力変換部との間に接続される第1開閉器と、負荷に接続される自立運転用端子と前記電力変換部との間に接続される第2開閉器と、前記自立運転用端子の電圧を検出する電圧検出部と、前記電力変換部、前記第1開閉器および前記第2開閉器を制御する制御部と、を備えている。
 そして、前記制御部は、前記第1開閉器と前記第2開閉器とに対し開状態にする制御信号をそれぞれ出力し、かつ、前記電力変換部から所定の電圧を出力させた制御状態において、前記電圧検出部により検出される前記自立運転用端子の電圧に基づいて、前記第2開閉器の異常を判定する異常判定処理を実行するように構成されている。
特開2008-35655号公報 特開2011-135767号公報 特開2007-174792号公報 特開2014-64415号公報
 しかし、特許文献1に開示された系統連系装置の異常検出手段では、系統連系時または解列時にインバータ回路を停止して商用系統からフィルタ回路に流れる無効電流の有無を検知する構成であるため、商用系統が停電して自立運転を起動するような場合には、系統連系用リレーの異常を検知することができないという問題があった。
 また、特許文献2に開示された系統連系装置では、第一の系統連系用リレーの入力側と第二の系統連系用リレーの出力側の電位差と、第一の系統連系用リレーの出力側と第二の系統連系用リレーの入力側の電位差をそれぞれ検出するための別途の回路素子が必要になり部品コストが嵩むという問題があった。
 しかも、商用系統の電圧が運用規定の適正範囲内であるか否かのみに基づいて停電検知していたため、ノイズの影響により誤検知する虞があった。そして、商用系統の停電時にDC/ACインバータ回路を作動させたときのリレー接点の前後の電圧に基づいて系統連系用リレーの異常を検知する場合、商用系統への負荷の接続状態によっては誤検知する虞があり、またハムノイズ等の影響によっても誤検知する虞があった。
 また、特許文献3に開示された系統連系インバータ装置によれば、部品コストが嵩むばかりでなく、抵抗短絡用開閉器が故障すると、商用系統と連系することができなくなるという問題があった。
 さらに、特許文献4に開示された電力変換装置によれば、電力変換部から所定の電圧が出力されたときに、第2開閉器に自立負荷が接続されていると、誤判定を招く可能性が相当高いという問題があった。
 本発明の目的は、上述した問題点に鑑み、商用系統が停電して自立運転を起動する場合に、部品コストが嵩むことなく、精度良く系統連系用リレーの異常を検知可能な系統連系用リレーの異常検出装置、及びパワーコンディショナを提供する点にある。
 上述の目的を達成するため、本発明による系統連系用リレーの異常検出装置の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、系統連系用リレーを介して商用系統と連系する系統連系運転と自立系統用リレーを介して自立系統に給電する自立運転との何れかに切替可能に構成されるとともに直流電力を交流電力に変換するインバータと前記インバータの出力電圧から高周波成分を除去するLCフィルタを備えたパワーコンディショナに組み込まれ、自立運転への切替時に系統連系用リレーの異常を検出する系統連系用リレーの異常検出装置であって、商用系統電圧の有無を判定する商用系統電圧判定処理と、前記商用系統電圧判定処理により商用系統電圧が無いと判定されると、前記系統連系用リレーの接点が開成制御された状態で、前記パワーコンディショナから異なる値のモニタ電圧を時系列で切替出力し、各モニタ電圧に対する前記パワーコンディショナ側の電圧と商用系統側の電圧との差分が前記モニタ電圧に追従するか否かに基づいて前記系統連系用リレーの異常判定を行なう第1電圧判定処理と、を実行する異常検出処理部を備えている点にある。
 先ず、自立運転への切替時に商用系統電圧判定処理が実行されて商用系統電圧の有無が判定される。このとき商用系統電圧が無いと判定されると第1電圧判定処理が実行される。
 第1電圧判定処理では、系統連系用リレーの接点が開成制御された状態で、パワーコンディショナから異なる値のモニタ電圧が時系列に切替出力され、各モニタ電圧に対するパワーコンディショナ側での電圧と商用系統側での電圧の差分が算出される。その差分がモニタ電圧に追従して変動すると系統連系用リレーが正常であると判定される。
 例えば、単一の値のモニタ電圧に対するパワーコンディショナ側での電圧と商用系統側での電圧の差分で判断すると、インバータが駆動される際に商用系統側に発生するハムノイズ等の影響を受けて差分値が小さくなり、系統連系用リレーが異常であるとの誤判定を招く虞がある。
 しかし、モニタ電圧の値が時系列に切替出力されてもハムノイズはモニタ電圧の変動程には大きく変動しないので、各モニタ電圧に対するパワーコンディショナ側での電圧と商用系統側での電圧の差分がモニタ電圧に追従して切り替わる場合には系統連系用リレーが正常であると判定できるようになる。反対に各モニタ電圧に対するパワーコンディショナ側での電圧と商用系統側での電圧の差分がモニタ電圧に追従することなくあまり変化しない場合には、系統連系用リレーが異常であると判定できるようになる。
 同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記第1電圧判定処理は、各モニタ電圧に対する前記パワーコンディショナ側の電圧と商用系統側の電圧との差分の積が所定の基準値より小であるか否かに基づいて前記系統連系用リレーの異常判定を行なうように構成されている点にある。
 各モニタ電圧に対する前記パワーコンディショナ側の電圧と商用系統側の電圧との差分の積を算出することにより、パワーコンディショナ側での電圧と商用系統側での電圧の差分がモニタ電圧に追従して切り替わるか否かの傾向を増幅して表すことができ、その結果精度よく判定できるようになる。
 同第三の特徴構成は、同請求項3に記載した通り、上述の第二の特徴構成に加えて、前記第1電圧判定処理は、前記パワーコンディショナの出力可変電圧の指令値をΔE、当該出力可変電圧の指令値ΔE及び基準値Echkを調整する信頼係数をa、商用系統電圧EGridに対する信頼係数をbとして、少なくとも数式〔数1〕に示す出力電圧実効値の指令値の実効値Emin,Emax(但し、Emin<Emax)のモニタ電圧を時系列で切替出力したときに、サンプリング時刻kとして以下の数式〔数2〕に基づいて前記パワーコンディショナ側の電圧と商用系統側の電圧との差分ΔEの積ΔECSTを算出し、前記差分ΔEの積ΔECSTが前記所定の基準値Echkより小であるか否かに基づいて前記系統連系用リレーの異常判定を行なうように構成されている点にある。尚、出力電圧実効値の指令値Emin,Emaxの設定範囲は、数式〔数1〕に示すように設定されている。信頼係数bは商用系統電圧EGridに対する割合である。
Figure JPOXMLDOC01-appb-M000005

Figure JPOXMLDOC01-appb-M000006
 パワーコンディショナから出力電圧実効値の指令値に対応する少なくとも数式〔数1〕に示す出力電圧実効値の指令値Emin,Emax(但し、Emin<Emax)のモニタ電圧を時系列で切替出力し、夫々の出力時にパワーコンディショナ側の電圧と商用系統側の電圧との差分ΔEを算出し、各差分ΔEの積ΔECSTを算出する。積ΔECSTと基準値Echkとの大小関係をに基づいて系統連系用リレーが異常であるか正常であるかが判定される。具体的に、積ΔECSTが基準値Echkより大きければ系統連系用リレーが正常と判定され、積ΔECSTが基準値Echkより小さければ系統連系用リレーが異常と判定される。
 同第四の特徴構成は、同請求項4に記載した通り、上述の第三の特徴構成に加えて、前記出力電圧実効値の指令値Emin,Emaxは、商用系統の定格電圧EGridに対して、b×EGridから2×a×ΔEの範囲に入るように設定されている点にある。
 系統連系用リレーの接点が溶着した異常状態で、パワーコンディショナ側の出力電圧実効値の指令値がEmin,Emaxとの間で切り替わると、商用系統側でもその変化に追従するように略同じ値の電圧が計測される。つまり、数式〔数1〕の積ΔECSTは比較的小さな値になる。系統連系用リレーの接点が溶着していない正常状態で、パワーコンディショナ側の出力電圧実効値の指令値Emin,Emaxとの間で切り替わると、商用系統側ではその変化に僅かに追従するハムノイズの電圧のみが計測される。つまり、数式〔数1〕の積ΔECSTは比較的大きな値になる。
 しかし、出力電圧実効値の指令値Emin,Emaxの差が小さい場合には、系統連系用リレーの接点が溶着している場合と溶着していない場合とで積ΔECSTにそれほど大きな相違が認められない虞がある。そこで、出力電圧実効値の指令値Emin,Emaxを、b×EGridから2×a×ΔEの範囲に入るように設定しておけば、系統連系用リレーの接点が溶着している場合と溶着していない場合とで積ΔECSTに顕著な相違が現れるようになる。
 同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記異常検出処理部は、前記商用系統電圧判定処理により商用系統電圧が有ると判定されると、前記パワーコンディショナの出力電圧を零に設定し、前記系統連系用リレーの接点が開成制御された状態で、前記パワーコンディショナ側の電圧と商用系統側の電圧との差分と、前記所定の基準値に所定の信頼係数を掛けた値との大小関係に基づいて前記系統連系用リレーの異常判定を行なう第2電圧判定処理を実行するように構成されている点にある。
 商用系統電圧が有る場合には、系統連系用リレーの接点が溶着していると、パワーコンディショナ側の電圧値と商用系統側の電圧値との差分が略零になるため、当該差分の値に基づいて系統連系用のリレーの異常の有無を判定することができるようになる。その際に、商用系統電圧判定処理の結果に基づいて、異常検出時のパワーコンディショナの出力電圧が異なる値に設定されるので、商用系統への逆充電や非同期投入という不都合が生じることが未然に回避できるようになる。
 同第六の特徴構成は、同請求項6に記載した通り、上述の第一の特徴構成に加えて、前記異常検出処理部は、前記商用系統電圧判定処理により商用系統電圧が有ると判定されると、前記系統連系用リレーの接点が開成制御された状態で、前記パワーコンディショナへの入力電流の有無に基づいて前記系統連系用リレーの異常判定を行なう第1電流判定処理と、前記商用系統電圧判定処理により商用系統電圧が無いと判定されると、前記系統連系用リレーの接点が開成制御された状態で、前記パワーコンディショナからの出力電流の有無に基づいて前記系統連系用リレーの異常判定を行なう第2電流判定処理と、を実行するように構成されている点にある。
 自立運転への切替時に商用系統電圧判定処理が実行されて商用系統電圧の有無が判定される。このとき商用系統電圧が有ると判定されると第1電流判定処理が実行され、商用系統電圧が無いと判定されると第2電流判定処理が実行される。
 第1電流判定処理では、系統連系用リレーの接点が開成制御された状態で、商用系統からパワーコンディショナへ電流が流入するか否かに基づいて系統連系用リレーの異常の有無の判定が行われる。
 第2電流判定処理では、系統連系用リレーの接点が開成制御された状態で、パワーコンディショナから商用系統に接続された負荷へ電流が流出するか否かに基づいて系統連系用リレーの異常の有無の判定が行われる。従って、商用系統への逆充電や非同期投入を回避しながら、適性に系統連系用リレーの異常判定を行なうことができるようになる。
 同第七の特徴構成は、同請求項7に記載した通り、上述の第六の特徴構成に加えて、前記第1電流判定処理は、前記LCフィルタのコンデンサ容量Cinv、内部抵抗R、コンデンサ電流i、計測値となる自立系統電圧esdとして、以下の数式〔数3〕に基づいて算出される前記コンデンサ電流iを前記入力電流として算出するように構成されている点にある。
Figure JPOXMLDOC01-appb-M000007
 自立系統の出力電圧を検出する既存の電圧検出回路を用いて自立系統電圧esdを計測し、その値を数式〔数3〕に代入することにより、LCフィルタのコンデンサに流入する電流値が算出されるので、別途の電流検出回路を設けなくても、商用系統から系統連系用リレーを介して電流が流入するか否かが判定できるようになる。
 つまり、系統連系用リレーの接点が溶着していると、商用系統電圧の瞬時値と自立系統電圧の瞬時値とが等しくなり、コンデンサに流れる電流の変化を捉えることができる。そして、コンデンサに流れる電流の変化状態から系統連系用リレーの溶着状態を判定することができる。尚、系統連系用リレーが短絡していない場合は、コンデンサに流れる電流がほぼゼロになる。尚、sはラプラス演算子(ラプラス変数)である。
 同第八の特徴構成は、同請求項8に記載した通り、上述の第七の特徴構成に加えて、前記第1電流判定処理は、所定のサンプリング周期で計測した前記入力電流の絶対値が複数回連続して所定の閾値以上であり、且つ、計測する度に前記入力電流の絶対値が大きくなる場合に、前記系統連系用リレーが異常であると判定する点にある。
 所定のサンプリング周期で計測された値に基づく電流値が複数回所定の閾値以上で且つ絶対値が大きくなると、LCフィルタを構成するコンデンサに商用系統からの電流が流入していると判定される。
 同第九の特徴構成は、同請求項9に記載した通り、上述の六から第八の何れかの特徴構成に加えて、前記第2電流判定処理は、前記LCフィルタのコンデンサ容量Cinv、内部抵抗R、自立運転時の出力電圧esd、コンデンサ電流i、計測値となるインバータ電流iinvとして、以下の数式〔数4〕に基づいて算出されるパワーコンディショナの出力電流ispを前記出力電流として算出するように構成されている点にある。
Figure JPOXMLDOC01-appb-M000008
 商用系統電圧が無い場合には、インバータが駆動されてパワーコンディショナから所定の自立系統電圧esdが出力され、計測されたインバータの出力電流iinvと自立系統電圧esdが数式〔数3〕に代入され、数式〔数4〕によって、パワーコンディショナからの出力電流ispが算出される。つまり、系統連系用リレーの接点が溶着していると、パワーコンディショナから商用系統に接続された負荷に流出する電流が検出されるようになるのである。
 同第十の特徴構成は、同請求項10に記載した通り、上述の第九の特徴構成に加えて、前記第2電流判定処理は、前記パワーコンディショナの前記出力電流の波高値の絶対値の差分が複数回連続して所定の閾値以上であり、且つ、計測する度に前記波高値の絶対値が小さくなる場合に、前記系統連系用リレーが異常であると判定する点にある。
 パワーコンディショナから商用系統に接続された負荷に電流が流出すると、電圧降下が生じて次第に電流値が低下する。そこで、第2電流判定処理では、算出されたパワーコンディショナの出力電流の波高値の絶対値の差分が複数回連続して所定の閾値以上であり、且つ、計測する度に前記波高値の絶対値が小さくなる場合にパワーコンディショナから商用系統に接続された負荷に電流が流出していると判定される。尚、商用系統に負荷が接続されていない場合には、パワーコンディショナの出力電流の波高値は常に一定値となる。
 同第十一の特徴構成は、同請求項11に記載した通り、上述の一から第十の何れかの特徴構成に加えて、前記異常検出処理部は、前記系統連系用リレーの全接点を開成制御した後に各異常検出処理を実行するとともに、一接点毎に単独で閉成制御する度に各異常検出処理を実行するように構成されている点にある。
 パワーコンディショナの出力が単相であるか三相であるかによって系統連系用リレーの接点数が変動し、また何れの接点が溶着しているかによって上述の各判定処理の結果が異なる。つまり、系統連系用リレーの全接点を開成制御した後に第1電流判定処理及び第2電流判定処理を実行し、溶着していると判定されると全接点が溶着していることが明らかになる。さらに、一接点毎に単独で閉成制御する度に第1電圧判定処理及び第2電圧判定処理を実行し、溶着していると判定されると開成制御されている接点が溶着していることが明らかになる。
 同第十二の特徴構成は、同請求項12に記載した通り、上述の一から第十一の何れかの特徴構成に加えて、前記商用系統電圧判定処理は、予め設定されたパワーコンディショナの出力電圧設定値に所定の信頼係数を掛けた値と、商用系統電圧との大小関係、及び、自立系統周波数に所定の信頼係数を掛けた値と、商用系統周波数との大小関係に基づいて、商用系統電圧の有無を判定するように構成されている点にある。
 商用系統電圧のみならず商用系統周波数をもチェックすることにより、ノイズ等による誤判定を招くことなく精度よく商用系統電圧の有無を判定できるようになる。
 本発明によるパワーコンディショナの特徴構成は、同請求項12に記載した通り、系統連系用リレーを介して商用系統と連系する系統連系運転と、自立系統用リレーを介して自立系統に給電する自立運転とを切替可能な制御装置を備えている単相または三相のパワーコンディショナであって、上述した第一から第十一の何れかの特徴構成を備えた系統連系用リレーの異常検出装置が前記制御装置に組み込まれている点にある。
 異常検出処理部により系統連系用リレーの接点が溶着していると判定されるような場合に、自立運転を回避して商用系統への逆充電及び非同期投入という不都合な事態の発生を未然に防止できるようになる。
 以上説明した通り、本発明によれば、商用系統が停電して自立運転を起動する場合に、部品コストが嵩むことなく、精度良く系統連系用リレーの異常を検知可能な系統連系用リレーの異常検出装置、及びパワーコンディショナを提供することができるようになった。
図1はパワーコンディショナを含む分散型電源の回路ブロック構成図である。 図2は異常検出時の系統連系用リレーのオン/オフ動作の説明図である。 図3は商用系統電圧判定処理を示すフローチャートである。 図4は系統連系用リレーの異常検出方法を示すフローチャートである。 図5は第1電圧判定処理を示すフローチャートである。 図6は第1電流判定処理の説明図である。 図7は判定の閾値以上の場合の第2電流判定処理の説明図である。 図8は判定の閾値以下の場合の第2電流判定処理の説明図である。 図9(a)は第1電圧判定処理実行時のパワーコンディショナの出力電圧切替シーケンスの説明図、図9(b)は第1電圧判定処理実行時の商用系統側の電圧検出シーケンスの説明図である。 図10(a)は第1電圧判定処理実行時の接点Sの溶着検出のための接点制御処理シーケンスの説明図、図10(b)は図10(a)の接点制御処理シーケンス実行時のパワーコンディショナの出力電圧波形の説明図、図10(c)は接点Sの溶着検出時の図10(b)に対応する商用系統側電圧波形の説明図である。 図11(a)は第1電圧判定処理実行時の接点Sの溶着検出のための接点制御処理シーケンスの説明図、図11(b)は図11(a)の接点制御処理シーケンス実行時のパワーコンディショナの出力電圧波形の説明図、図11(c)は接点Sの溶着不検出時の図11(b)に対応する商用系統側電圧波形の説明図である。
 以下、本発明による系統連系用リレーの異常検出装置及びパワーコンディショナを図面に基づいて説明する。
 図1には、分散型電源の一例である太陽光発電装置1が示されている。太陽光発電装置1は、太陽電池パネルSPと、太陽電池パネルSPに接続されたパワーコンディショナPCSを備えて構成されている。
 太陽電池パネルSPで発電された直流電力は直流遮断器及びサージアブソーバ(図示せず)を介してパワーコンディショナPCSに供給される。
 パワーコンディショナPCSは、太陽電池パネルSPで発電された直流電圧を所定の直流リンク電圧Vdcに昇圧するDC/DCコンバータ2と、DC/DCコンバータ2で昇圧された直流リンク電圧Vdcを所定の交流電圧に変換するDC/ACインバータ3と、DC/ACインバータ3から出力される交流電圧から高調波を除去するLCフィルタ4と、DC/DCコンバータ2及びDC/ACインバータ3を制御する制御装置5等を備えている。
 パワーコンディショナPCSで変換された交流電力は、系統連系用リレーRy1を介して商用系統100と連系して交流負荷Ruwに給電され、商用系統100の停電等によって商用系統100から解列すると、その後、自立系統用リレーRy2を介して自立負荷Rsdに給電される。
 図1には、系統連系用リレーRy1の接点がS,S、自立系統用リレーRy2の2つの接点がSsdで示されている。
 パワーコンディショナPCSの制御装置5は、マイクロコンピュータ、メモリ、AD変換部を含む入出力回路等を含む周辺回路等で構成され、マイクロコンピュータに組み込まれたCPUによって、メモリに格納された制御プログラムが実行されることにより所期の機能が実現される。
 具体的に、DC/DCコンバータ2の昇圧スイッチを制御するコンバータ制御部5aと、DC/ACインバータ3のブリッジを構成するスイッチを制御するインバータ制御部5bと、系統連系用リレーRy1の異常を検知する異常検出処理部5cとして機能する各制御ブロックが制御装置5として具現化される。
 コンバータ制御部5aは、DC/DCコンバータ2への入力電圧、入力電流、出力電圧をモニタして、太陽電池パネルSPを最大電力点で動作させるMPPT(Maximum Power Point Tracking)制御等を実行しつつ、DC/DCコンバータ2を昇圧制御して所定の直流リンク電圧VdcをDC/ACインバータ3に出力するように構成されている。
 インバータ制御部5bは、系統連系用リレーRy1を介して系統連系運転するようにインバータ3を制御し、または自立系統用リレーRy2を介して自立運転するようにインバータ3を制御するように構成されている。
 インバータ制御部5bは、系統連系運転時に商用系統電圧の位相に同期するようにインバータ3の出力電流を制御する電流制御ブロックと、解列時に自立系統に所定電圧の交流電力を給電する電圧制御ブロックと、系統連系運転時に単独運転状態か否かを検出する単独運転検出ブロック等の機能ブロックを備えている。
 異常検出処理部5cは、系統連系運転から自立運転への移行時に系統連系用リレーRy1の異常の有無を検知し、系統連系用リレーRy1に接点溶着異常が発生していることが検知されると、故障を表す警報表示を点灯するとともに、インバータ制御部5bによる自立運転制御を停止するように構成されている。即ち、異常検出処理部5cは本発明の異常検出装置として機能する。
 LCフィルタ4を構成するインダクタLの下流側に設けられた電流トランスによって検知された出力電流iinvのモニタ信号が制御装置5のAD変換部に入力されている。
 さらに、自立系統用リレーRy2の上流側に設けられた抵抗分圧回路によって検知されるパワーコンディショナPCSの自立系統電圧esdのモニタ信号が制御装置5のAD変換部に入力され、系統連系用リレーRy1の下流側に設けられた抵抗分圧回路によって検知される商用系統電圧euwのモニタ信号が制御装置5のAD変換部に入力されている。
 各AD変換部に入力された各モニタ信号に基づいて、パワーコンディショナPCSの自立系統電圧esd及び自立系統周波数fsdが得られ、商用系統電圧euw及び商用系統周波数fGridが得られる。
 インバータ制御部5bは、太陽電池パネルSPの発電電力が商用系統との連系が可能な値になると系統連系用リレーRy1を閉成して系統連系運転し、太陽電池パネルSPの発電電力が低下し或いは単独運転検出ブロックにより単独運転状態であると検出すると系統連系用リレーRy1を開成して商用系統から解列する。
 インバータ制御部5bは、単独運転状態が原因で商用系統から解列した場合で、太陽電池パネルSPの発電電力が自立運転に十分な値である場合は、異常検出処理部5cを起動して系統連系用リレーRy1の異常検知を行なう。
 そして、インバータ制御部5bは、異常検出処理部5cにより系統連系用リレーRy1が正常であると判定されるとインバータ3を起動するとともに自立系統用リレーRy2を閉成して自立運転し、異常検出処理部5cにより系統連系用リレーRy1が異常であると判定されると自立系統用リレーRy2を閉成することなくDC/ACインバータ3を停止するように構成されている。
 以下、異常検出処理部5cにより実行される系統連系用リレーRy1の異常検出方法について説明する。
 異常検出処理部5cで実行される異常検出処理には、系統連系用リレーRy1の接点を開成または閉成制御する接点制御処理と、商用系統電圧判定処理と、インバータ3の出力電圧設定処理と、電圧判定処理と、電流判定処理が含まれる。
 異常検出処理部5cは、系統連系用リレーRy1の全接点S,Sを開成制御した後に接点が溶着しているか否かを判定する後述の電流判定処理及び電圧判定処理を実行するとともに、各接点SまたはS毎に閉成制御する度に電流判定処理及び電圧判定処理を実行するように構成されている。
 系統連系用リレーRy1の全接点S,Sを開成制御した後に電流判定処理及び電圧判定処理を実行し、その結果、溶着していると判定できると全接点S,Sが溶着していることが明らかになる。
 この時点で正常と判定できる場合には、一接点SまたはS毎に単独で閉成制御する度に電流判定処理及び電圧判定処理を実行する。それぞれで溶着していると判定できると、その時に開成制御されている接点が溶着していることが明らかになる。
 系統連系用リレーRy1の接点S,Sに関するオン/オフ制御のタイミングを図2に示す。異常検出処理部5cが起動すると、全接点S,Sを開成制御した状態で、接点S,Sに対するチェックである電流判定処理及び電圧判定処理を行ない、所定の遅延時間Tdlyの後に接点Sを閉成制御して接点Sに対するチェックである電流判定処理及び電圧判定処理を行ない、さらに接点Sを開成制御し所定の遅延時間Tdlyの後に接点Sを閉成制御して接点Sに対するチェックである電流判定処理及び電圧判定処理を行なう。
 本実施形態では、各チェック時間が1sec.、遅延時間Tdlyが300msec.に設定されている。少なくともチェック時間Ton≧3Tdlyに設定されていればよい。このような系統連系用リレーRy1に対する開閉制御シーケンスが上述した接点制御処理ステップとなる。尚、遅延時間Tdlyは、系統連系用リレーの種類によって適宜適切な時間に変更することができる。
 図3には、上述した商用系統電圧判定処理ステップ及び電圧設定処理ステップを実行する系統連系用リレーRy1の溶着判定準備フローが示されている。
 商用系統電圧判定処理ステップでは、自立運転する必要がある場合に(S1)、系統連系用リレーRy1の全ての接点が開成制御され(S2)、系統連系用リレーRy1の下流側に設けられた抵抗分圧回路によって商用系統電圧euwがチェックされ(S3)、以下に示す数式〔数5〕に基づいて商用系統電圧の有無がチェックされる(S4)。
Figure JPOXMLDOC01-appb-M000009
 尚、E sd.rmsは自立運転時の出力電圧実効値の指令値、xは判定の精度を確保するために0<x<1の範囲の値に設定される信頼係数で、本実施形態ではx=0.5に設定されている。また、自立系統周波数fsdは、商用系統周波数fGridと同じ値に設定されている。尚、本実施形態では、指令値E sd.rmsは自立運転時の定格出力電圧実効値100Vよりも低い値40Vに設定されている。
 商用系統電圧が少なくとも1周期(商用系統周波数が50Hzであれば、20msec.)計測されて最大瞬時値の絶対値|euw|が求められ、絶対値|euw|と、自立運転時の出力電圧実効値の指令値E sd.rmsと信頼係数xとの積とが比較される。商用系統電圧を複数周期計測して各周期の最大瞬時値の絶対値|euw|の平均を求めてもよい。
 さらに、商用系統周波数fGridと、自立系統周波数fsdと信頼係数xとの積とが比較される。信頼係数xの値は判断の信頼度を担保するための係数で、その値が1に近いほどノイズの影響を受け易くなるが厳しく判定でき、0に近いほどノイズの影響を受け難くなるが緩やかな判定となる。通常は中間の値0.5が好ましく用いられる。
 例えば、商用系統電圧|euw|が0Vで、自立系統電圧の実効値の指令値E sd.rmsが40V、x=0.5の場合、〔数5〕は以下のようになる。
|euw|=0 < 0.5×40=20
Grid =0 < 0.5×50=25
 例えば、商用系統電圧|euw|が283Vで、自立系統電圧の実効値の指令値E sd.rmsが40V、x=0.5の場合、数式〔数5〕は以下のようになる。
|euw|=283 > 0.5×40=20
Grid =50 > 0.5×50=25
 つまり、ステップS4では、数式〔数5〕の2式が共に成立するときに商用系統電圧が有ると判断され、何れも成立しないときに商用系統電圧が無いと判断される。
 上述のステップS3,S4が、予め設定されたパワーコンディショナPCSの出力電圧設定値に所定の信頼係数を掛けた値と、商用系統電圧との大小関係、及び、自立系統周波数に所定の信頼係数を掛けた値と、商用系統周波数との大小関係に基づいて、商用系統電圧の有無を判定する商用系統電圧判定処理ステップとなる。
 予め設定されたパワーコンディショナPCSの出力電圧設定値とは、自立運転時に必要な電圧値であってもよく、当該電圧値よりも低い異常検出のための専用の電圧値であってもよい。商用系統電圧と自立運転電圧とが異なる値である場合でも、出力電圧設定値と信頼係数を適切に設定することにより精度よく商用系統電圧の有無を判定することができる。
 また、数式〔数5〕に示すように、商用系統電圧のみならず商用系統周波数をもチェックすることにより、ノイズ等による誤判定を招くことなく精度よく商用系統電圧の有無の判定が可能になる。
 商用系統電圧判定処理ステップにより商用系統電圧が有ると判断されると、電圧判定処理で接点の溶着判断を行なう基準値Echkが商用系統電圧の実効値Euw.rmsに設定され、自立系統電圧と商用系統電圧との差分の判断を行う遅延時間Tchkが商用系統周波数の逆数に設定される(S5)。
 また、商用系統電圧が無いと判断されると、異常検出時のパワーコンディショナPCSの出力電圧の指令値が設定されるとともに(S6)、接点の溶着判断を行なう基準値Echkが後述の数式〔数14〕に示す(a・ΔEより小さな値に設定され、この時の遅延時間Tchkが自立系統周波数の逆数に設定される(S7)。
 つまり、商用系統電圧が有ると判断されるとパワーコンディショナPCSは停止されて出力電圧は0Vとなる。上述のステップS5からステップS7が電圧設定処理ステップとなる。
 上述した出力電圧の指令値e sdは、以下の数式〔数6〕の通りである。
Figure JPOXMLDOC01-appb-M000010
 ここで、E sd.rmsは自立系統電圧実効値の指令値、θsdは自立系統電圧の位相角度である。本実施形態では、E sd.rms=40Vとの値は、系統連系用リレーRy1に対する異常検出処理時の指令値であり、正常判定後の指令値は、E sd.rms=100Vとなる。尚、上記に示す異常検出処理の指令値及び正常判定後の指令値は一例であり、適宜設定可能である。
 つまり、電圧設定処理ステップの前に商用系統電圧の有無を判定する商用系統電圧判定処理ステップが実行され、商用系統電圧判定処理ステップの結果に基づいて、電圧設定処理ステップではパワーコンディショナPCSの自立系統電圧及び系統連系用リレーRy1の異常判定のための基準値Echkが異なる値に設定される。
 パワーコンディショナPCSは、商用系統が停電すると自立運転に移行するように制御装置5によって制御されるのであるが、一時的に商用系統電圧が低下して程なく復帰する場合もある。そのような場合に系統連系用リレーRy1が溶着していると、非同期投入状態に到る等の不都合な事態が生じ、パワーコンディショナPCSが破損する虞もある。
 そこで、電圧設定処理の前に商用系統電圧判定処理を実行して、その結果に応じてパワーコンディショナPCSの自立系統電圧及び系統連系用リレーRy1の異常判定のための基準値を異なる値に設定することで、安全を確保しながらも系統連系用リレーの異常判定を精度よく行なうことができ、非同期投入や逆充電が回避できるようになる。
 例えば、商用系統電圧が検知される場合には、パワーコンディショナPCSの自立系統電圧を0Vに、商用系統電圧の値を基準値に設定すれば、パワーコンディショナPCSの破損を招くことなく、精度の高い接点の溶着判定が行なえるようになる。
 図4には、本発明の系統連系用リレーRy1の接点溶着判定フローが示されている。
 自立運転が起動されると(S21)、上述の接点制御処理ステップが実行される(S22)。商用系統電圧判定処理により商用系統電圧が有ると判定されていると(S23,Y)、系統連系用リレーRy1の接点が開成制御された状態で、パワーコンディショナPCSへの入力電流の有無に基づいて系統連系用リレーRy1の異常判定を行なう第1電流判定処理(S27)が実行される。
 商用系統電圧判定処理により商用系統電圧が無いと判定されていると(S23,N)、系統連系用リレーRy1の接点が開成制御された状態で、パワーコンディショナPCSからの出力電流の有無に基づいて系統連系用リレーRy1の異常判定を行なう第2電流判定処理(S24)が実行される。
 第1電流判定処理で系統連系用リレーRy1が異常と判定されない場合には(S27,N)、所定の遅延時間n・Tchk(nは正整数)の間にパワーコンディショナPCSの出力電圧esdと商用系統電圧euwの実効値が計測されて(S28)、第2電圧判定処理が実行される(S29)。
 また、第2電流判定処理で系統連系用リレーRy1が異常と判定されない場合には(S24,N)、所定の遅延時間n・Tchk(nは正整数)の間にパワーコンディショナPCSの出力電圧esdと商用系統電圧euwの実効値が計測されて(S25)、第1電圧判定処理が実行される(S26)。
 ステップS32ではエラーフラグの状態が判定され、エラーフラグがセットされていると(S32,Y)、対応するリレー接点が溶着していると判定されて、それに伴いパワーコンディショナPCSの表示パネルに異常表示を点灯させる等の異常対応処理が実行される(S33)。
 ステップS32でエラーフラグのセットが確認されない限り(S32,N)、系統連系用リレーRy1の全接点S,Sが開成制御された状態、各接点SまたはS毎に閉成制御された状態の三状態のそれぞれで各異常判定処理が終了するまで、ステップS22からステップS34までの処理が繰り返される。以下に各電流判定処理及び各電圧判定処理を詳述する。
 第1電流判定処理(S27)では、LCフィルタ4のコンデンサ容量Cinv、内部抵抗R、コンデンサ電流i、計測値となる自立系統電圧esdとして、以下の数式〔数7〕に基づいて算出されるコンデンサ電流iを入力電流として算出する。尚、sはラプラス演算子(ラプラス変数)である。
Figure JPOXMLDOC01-appb-M000011
 インバータの出力電圧esdを検出する抵抗分圧回路を用いて自立系統電圧esdを計測し、その値を数式〔数7〕に代入することにより、LCフィルタ4のコンデンサに流入する電流値が算出される。
 つまり、系統連系用リレーRy1の接点が溶着していると、商用系統電圧euwの検出値と自立系統電圧esdの検出値が等しくなるような状態になると考えるのである。
 図6に示すように、第1電流判定処理は、所定のサンプリング周期Tで計測及び算出した瞬時コンデンサ電流iの絶対値|i|の変化状態を判断するために、少なくとも3回連続して閾値Ic.chk以上であり、且つ、その値が大きくなる傾向があるというという条件が成立する場合に(S27,Y)、系統連系用リレーRy1の接点が溶着していると判断して、メモリに設定されたエラーフラグ記憶領域にフラグをセットする(S31)。尚、ノイズによる誤検出を考慮し、変化状態を確実に検出するために複数回判定処理を繰り返してもよい。
 閾値Ic.chkは、以下の数式〔数8〕で定めることができる。但し、Psd.ratedは自立運転時の定格出力電力、E sd.rmsは自立系統電圧実効値の指令値、yは信頼係数で、y<1の正数である。
Figure JPOXMLDOC01-appb-M000012
 エラーフラグがセットされると、パワーコンディショナPCSの表示パネルに異常表示が点灯されるように構成されている。本実施形態では、自立運転時の定格電力Psd.rated1.5kWを基準に、自立系統電圧の実効値の指令値E sd.rms100V、定格電流の10%(y=0.1)として設計すると、閾値Ic.chk=1A、サンプリング周期T=50μsec.(DC/ACインバータのスイッチング周期に相当)に設定されている。閾値は、定格電流の10%の値に設定している((0.1×1500)/(100×1.414)=1)。尚、所定のサンプリング周期Tとは、インバータを構成するスイッチング素子の最高スイッチング周波数の逆数という条件を満たすサンプリング周期であればよい。
 ステップS27で、瞬時コンデンサ電流iの絶対値|i|の変化状態を判断するために、少なくとも3回連続して閾値Ic.chk以上であり、且つ、その値が大きくなる傾向があるというという条件が成立しない状態が所定時間(例えば数サイクル)継続すると、商用系統からパワーコンディショナPCSのコンデンサに流れる電流が無いと判断して(S27,N)、ステップS28の電圧判定処理に移行する。但し、ノイズによる誤検出を考慮し、変化状態を確実に検出するために、複数回判定処理を繰り返してもよい。尚、商用系統電圧が有る場合、系統連系用リレーRy1の接点が溶着することなく正常であれば、瞬時コンデンサ電流iの絶対値|i|は常時零となる。
 第2電流判定処理(S24)では、LCフィルタ4のコンデンサ容量Cinv、内部抵抗R、自立系統電圧esd、コンデンサ電流i、計測値となるインバータの出力電流iinvとして、以下の数式〔数9〕に基づいて算出されるパワーコンディショナPCSの出力電流ispを商用系統に接続された負荷への出力電流として算出するように構成されている。
Figure JPOXMLDOC01-appb-M000013
 商用系統電圧が無い場合には、インバータ3が駆動されてパワーコンディショナPCSから所定の自立系統電圧esdが出力され、計測されたインバータ電流iinvと自立系統電圧esdから数式〔数7〕により求められたiが数式〔数9〕に代入されて、パワーコンディショナPCSからの出力電流ispが算出される。ここで、自立系統電圧esdは、インバータの出力電圧esdを検出する抵抗分圧回路により検出される値である。
 つまり、系統連系用リレーRy1の接点が溶着していると、パワーコンディショナPCSから商用系統に接続された負荷Ruwに流出する電流が検出されるようになるのである。
 図7に示すように、第2電流判定処理は、パワーコンディショナPCSの出力電流ispの最大値Isp.maxの差分の変化状態を判断するために、3回連続して所定の閾値Isp.chk以上である場合、且つ、瞬時出力電流ispの絶対値|isp|が小さくなる傾向がある場合に(S24,Y)、系統連系用リレーRy1の接点が溶着していると判断して、メモリに設定されたエラーフラグ記憶領域にフラグをセットする(S31)。但し、ノイズによる誤検出を考慮し、且つ、変化状態を確実に検出するために、複数回判定処理を繰り返してもよい。
 出力電流ispの最大値Isp.maxは、数式〔数10〕で示され、閾値Isp.chkは、数式〔数11〕で示される。尚、数式〔数11〕でE sd.rmsは自立運転時の出力電圧の実効値の指令値である。
Figure JPOXMLDOC01-appb-M000014

Figure JPOXMLDOC01-appb-M000015
 パワーコンディショナPCSから商用系統に接続された負荷Ruwに電流が流出すると、電圧降下が生じて次第に電流値が低下する。そこで、第2電流判定処理では、算出されたパワーコンディショナPCSの出力電流の最大値の差分が複数回連続して所定の閾値以上であり、且つ、瞬時出力電流ispの絶対値|isp|が小さくなる傾向がある場合にパワーコンディショナPCSから商用系統に接続された負荷Ruwに電流が流出していると判定されるのである。
 尚、系統連系用リレーRy1の接点が溶着することなく正常である場合、商用系統に負荷が接続されていない場合、また、商用系統に軽い負荷が接続されている場合は、図8に示すように、パワーコンディショナPCSの出力電流ispの最大値Isp.maxが常に所定の閾値Isp.chk以下となると考えられる。
 ステップS31でエラーフラグがセットされると、パワーコンディショナPCSの表示パネルに異常表示が点灯される。本実施形態では、自立運転時の定格電力Psd.ratedは1.5kWを基準に、自立系統電圧の実効値の指令値E sd.rms100V、定格電流の10%(y=0.1)として設計すると、閾値Isp.chk=1A、サンプリング周期は0.5Tsdに設定されている(図6参照)。尚、自立系統周波数が50Hzである場合はサンプリング周期は10msec.となる。
 ステップS27で、図8に示すように、出力電流ispの最大値Isp.maxの変化状態は、少なくとも3回連続して閾値Isp.chk未満であり、その値が大きくなる傾向があるという条件が成立しない状態が所定時間(例えば数サイクル)継続すると、商用系統に負荷が接続されていない状態、或いは、軽い負荷と接続されている状態と判断して(S27,N)、ステップS28以降の第2電圧判定処理に移行する。尚、ノイズによる誤検出を考慮し、且つ、変化状態を確実に検出するために、複数回判定処理を繰り返してもよい。
 第2電圧判定処理では、所定の遅延時間n・Tchk(nは正整数)の間にパワーコンディショナPCSの自立系統電圧esdと商用系統電圧euwの実効値が計測されて、それらの差分の絶対値|Esd.rms-Euw.rms|と、電圧設定処理ステップで設定された基準値Echkに所定の信頼係数zを掛けた値との大小関係が判定される(S29)。
 例えば、系統連系用リレーRy1の接点が溶着していなければ、商用系統電圧が200V、パワーコンディショナPCSの出力電圧が0Vと検知されるので、信頼係数z=0.5(zは、z<1の正数)とすれば、差分の絶対値|Esd.rms-Euw.rms|=200Vに対して比較値100V(=200×0.5)が小さくなる。
 しかし、接点が溶着していれば、商用系統電圧が200V、パワーコンディショナPCSの出力電圧が200Vと検知され、差分の絶対値|Esd.rms-Euw.rms|=0Vに対して比較値100V(=200×0.5)が大きくなる。
 ステップS29で、差分の絶対値|Esd.rms-Euw.rms|よりも基準値Echkに信頼係数zを掛けた値の方が大きいと判定されると、系統連系用リレーRy1の接点が溶着していると判定して、メモリに設定されたエラーフラグ記憶領域にフラグをセットする(S31)。
 差分の絶対値|Esd.rms-Euw.rms|よりも基準値Echkに信頼係数zを掛けた値の方が小さいと判定されると、系統連系用リレーRy1が正常であると判定して、メモリに設定されたエラーフラグ記憶領域のエラーフラグをリセットする(S30)。
 遅延時間Tchkが商用系統周波数、或いは、自立系統周波数の3周期(n=3)に設定され、少なくとも3周期の間のサンプリング値に基づいて実効値が算出されるように構成されているが、遅延時間Tchkは複数周期に設定されていればよく、3周期に限るものではない。
 ステップS24の第2電流判定処理で系統連系用リレーRy1の溶着が検出されない場合には(S24,OK)、ステップS25以降の第1電圧判定処理が実行される。
 図5には、第1電圧判定処理の具体的な処理手順が示されている。
 第1電圧判定処理では、数式〔数12〕に示すように、系統連系用リレーRy1の異常の有無を判定するための処理時間Tが設定される(S41)。
Figure JPOXMLDOC01-appb-M000016

 ここで、数式〔数11〕のTONは、図2に示すように、系統連系用リレーRy1の接点制御処理で系統連系用リレーRy1の各接点を開成または閉成制御して主にパワーコンディショナPCS側の電圧及び商用系統側の電圧を計測する時間であり、Tdlyは計測値に対する演算処理に要する時間である。本実施形態では、TONは1.0sec.に設定され、遅延時間Tdlyは300msec.に設定されている。
 設定が完了すると、測定時刻kの初期値が「-2」に設定され、系統連系用リレーRy1の全接点S,Sが開成制御された状態でパワーコンディショナPCSから数式〔数13〕に示す出力電圧実効値の指令値Esd.rmsとしてEminのモニタ電圧が出力される(S42)。
 次に、商用系統側の電圧euwが計測されて実効値Euw.rmsが算出され、パワーコンディショナPCSの出力電圧実効値の指令値Eminと商用系統側の電圧実効値Euw.rmsの差分の絶対値ΔE(k)が算出されて、その値がメモリに記憶される(S43)。
 処理時間Tが経過するまでの間はステップ43の処理が継続され、処理時間Tが経過すると(S44,Y)、測定時刻kに値「1」が加算されるとともに、パワーコンディショナPCSの出力電圧が数式〔数13〕に示す出力電圧実効値の指令値Emaxに更新されて出力される(S45)。
 初期値k=「-2」に設定された測定時刻kが「1」になるまでステップS43からステップS45の測定処理が3回繰り返され(S46)、この間にパワーコンディショナPCSから出力されるモニタ電圧が、EminからEmaxに、さらにEminに時系列で切り替えられる。尚、ΔEはパワーコンディショナの出力可変電圧の指令値、a,bは信頼係数で0<a<1,0<b<1の範囲に設定される値である。
Figure JPOXMLDOC01-appb-M000017
 ステップS46で測定時刻kが「1」になると判定されると、時刻k(k=-2,-1,0)に対応して時系列で算出された3つの差分ΔE(k)がメモリから読み出されて、各差分の積ΔECSTが算出され、その値がメモリに記憶される(S47)。
 ステップS47で算出された積ΔECSTが所定の基準値Echkと比較される。積ΔECSTが所定の基準値Echkより小さい場合には、系統連系用リレーRy1の接点が溶着していると判定されて(S48,N)、エラーフラグがセットされる(図4のステップS31)。
 積ΔECSTが所定の基準値Echk以上である場合には、系統連系用リレーRy1の接点は溶着していないと判定されて(S48,Y)、エラーフラグがリセットされる(図4のステップS30)。
 図9(a),(b)には、図4及び図5のフローチャートで説明した第1電圧判定処理の処理タイミングが示されている。
 図9(a)に示すように、先ず、最初の処理時間Tの間にパワーコンディショナPCSからの出力電圧実効値の指令値E sd.rms(k-2)としてEminのモニタ電圧が出力される。
 図9(b)に示すように、当該最初の処理時間Tの間に商用系統側の電圧実効値Euw.rms(k-2)が計測され、E sd.rms(k-2)とEuw.rms(k-2)の差分がΔE(k-2)として算出されてメモリに記憶される。
 図9(a)に示すように、次の処理時間Tの間にパワーコンディショナPCSからの出力電圧実効値の指令値E sd.rms(k-1)としてEmaxのモニタ電圧が出力される。
 図9(b)に示すように、当該次の処理時間Tの間に商用系統側の電圧実効値Euw.rms(k-1)が計測され、E sd.rms(k-1)とEuw.rms(k-1)の差分がΔE(k-1)として算出されてメモリに記憶される。
 図9(a)に示すように、最後の処理時間Tの間にパワーコンディショナPCSからの出力電圧実効値の指令値E sd.rms(k)としてEminのモニタ電圧が出力される。
 図9(b)に示すように、当該最後の処理時間Tの間に商用系統側の電圧実効値Euw.rms(k)が計測され、E sd.rms(k)とEuw.rms(k)の差分がΔE(k)として算出されてメモリに記憶される。
 その後、時間TCHKの間にメモリに記憶されたデータΔE(k-2)、ΔE(Tk-1)及びΔE(k)の積ΔECSTが数式〔数14〕に基づいて算出され、所定の基準値Echkとの比較が行なわれる。パワーコンディショナの出力電圧の指令値の可変電圧をΔE、可変電圧ΔE及び基準値Echkを調整する信頼係数をaとする。本実施形態では、信頼係数a=0.5、出力可変電圧の指令値ΔE=20V、指令値E sd.rms=40V,信頼係数b=0.1に設定されているが、これらの値は実際の設計条件等に基づいて適宜設定可能である。
Figure JPOXMLDOC01-appb-M000018
 出力電圧実効値の指令値Emin,Emaxは、商用系統の定格電圧EGridに対して、b×EGridから2×a×ΔEの範囲に入るように設定されていることが好ましい。出力電圧実効値の指令値Emin,Emaxの差が小さい場合には、ハムノイズの影響で系統連系用リレーRy1の接点が溶着している場合と溶着していない場合とで積ΔECSTにそれほど大きな相違が認められない虞がある。そのような場合に備えて、出力電圧実効値の指令値Emin,Emaxを、b×E Grid から2×a×ΔE の範囲に入るように設定しておけば、系統連系用リレーRy1の接点が溶着している場合と溶着していない場合とで積ΔECSTに顕著な相違が現れるようになる。
 以上説明したように、本発明による系統連系用リレーRy1の異常検出装置を採用すれば、パワーコンディショナPCSの出力電圧や出力電流、商用系統電圧を検知するための回路素子は本来パワーコンディショナPCSの制御に必要な回路素子であるので、系統連系用リレーRy1の溶着を判定するために別途のセンサや回路素子を準備する必要はない。
 また、交流負荷Ruwが接続されているか否かに関わらず、また商用系統電圧の有無に関わらず、確実に系統連系用リレーRy1の接点が溶着異常であるか否かが検出できるようになる。
 図10(a),(b),(c)及び図11(a),(b),(c)には、本発明による第1電圧判定処理の実験結果の一例が示されている。詳述すると、図10(a)及び図11(a)に示すように、図4のステップS22の接点制御処理で、系統連系用リレーRy1の接点S,Sのうち接点Sが閉成され、接点Sが開成された状態で、第1電圧判定処理が実行された結果、つまり接点Sに対する溶着判定結果が図10(b),(c)及び図11(b),(c)に示されている。
 実験は、図2に示すチェック時間TON=1sec.、遅延時間Tdly=0.3sec.、モニタ電圧Emin=30V、Emax=50V、チェック時間T1=0.2sec.、基準値Echk=125Vの各条件で行なわれた。
 図10(b)に示すように、接点Sが溶着した系統連系用リレーRy1を用いて、接点制御処理ステップで接点Sを閉成制御し、接点Sを開成制御した状態で、パワーコンディショナPCSから周期T(=0.2sec.≒(TON-Tdly)/3)で、Emin(=30V)、Emax(=50V)、Emin(=30V)の順に時系列で電圧esdを切替出力した。
 図10(c)に示すように、系統連系用リレーRy1の接点Sが溶着しているため、この電圧esdとほぼ同じ値の電圧euwが商用系統側でも検出されるようになる。そのため、各周期Tで算出したΔEの値は略零になる。その後、TchkでΔE(k-2)、ΔE(k-1)及びΔE(k)の積ΔECSTが算出され、その値がEchk(=125V)よりも小さな値と判断され、系統連系用リレーRy1の接点が溶着していると判断された。図10(c)には、パワーコンディショナPCSから電圧が出力されていない時期に、商用系統側の電圧euw波形に僅かのハムノイズが認められる。
 図11(c)に示すように、接点Sが溶着していない正常な系統連系用リレーRy1を用いて、接点制御処理ステップで接点Sを閉成制御し、接点Sを開成制御した状態で、パワーコンディショナPCSから周期T(=0.2sec.≒(TON-Tdly)/3)で、Emin(=30V)、Emax(=50V)、Emin(=30V)の順に時系列で電圧を切替出力した。
 図11(c)に示すように、系統連系用リレーRy1の接点Sは溶着されていないので、この電圧esdは商用系統側で検出されることがない。しかし、パワーコンディショナPCSから出力される電圧esdによりハムノイズの値が大きくなり、単純にΔE(k)の値のみで判定すると系統連系用リレーRy1の接点が溶着していると誤判定することになる。図10(c)の差分ΔE(k-2)、ΔE(k-1)及びΔE(k)が図11(c)の差分ΔE(k-2)、ΔE(k-1)及びΔE(k)と顕著に異なる値とならないためである。
 しかし、図11(b),(c)に示すように、パワーコンディショナPCSから出力される電圧esdを30Vから50Vにステップ的に変化させた場合にはハムノイズのレベルはそれほど大きく変化しない。そのため、ΔE(k-2)、ΔE(k-1)及びΔE(k)の積ΔECSTがEchk(=125V)よりも大きな値と判断され、系統連系用リレーRy1の接点が溶着していないと正確に判断することができるようになった。
 また、図10(b),(c)に示す系統連系用リレーRy1が溶着している場合、各差分ΔEは総合可変電圧の指令値の半分として設計する(0.5×a×ΔE)。つまり5V程度になり、Echkを5(=125V)~6(=216V)の範囲に設定することが適正であると評価できる。尚、Echkの値は、出力電圧実効値の指令値Emin、Emaxの各値を考慮して決定すればよい。べき数3はサンプリングされた差分の数に対応する値である。
 以下、別実施形態を説明する。
 上述の実施形態では、第1電圧判定処理でパワーコンディショナPCSからの出力電圧実効値の指令値が、EminとEmaxの2値を用いて、3周期に亘って交互に切替出力される例を説明したが、2値である必要はなく、少なくとも異なる値の電圧であればよく、また3周期ある必要はなく2周期以上であればよい。
 つまり、パワーコンディショナPCSから異なる値のモニタ電圧EminとEmaxを時系列で切替出力し、各モニタ電圧EminとEmaxに対するパワーコンディショナPCS側の電圧と商用系統側の電圧との差分がモニタ電圧に追従するか否かに基づいて系統連系用リレーRy1の異常判定を行なうように構成されていればよい。
 また、モニタ電圧EminとEmaxを時系列で切替出力する際に、Emin→Emax→Eminの順に切り替える以外に、Emax→Emin→Emaxの順に切り替えてもよいことはいうまでもない。つまり、出力電圧実効値の指令値Emin,Emaxのモニタ電圧を時系列で切替出力するように構成されていればよい。
 上述した実施形態では、差分ΔE(k-2)、ΔE(k-1)及びΔE(k)の積ΔECSTと基準値Echkとを比較して異常または正常判定する態様を説明したが、差分毎に予め設定した基準値と比較して異常または正常判定し、全ての差分で正常と判定された場合に最終的な異常または正常判定を行なうように構成してもよい。
 さらに、各モニタ電圧EminとEmaxの変化に伴って差分が同様に変化するか否かに基づいて異常または正常判定を行なうように構成してもよい。つまり、各モニタ電圧EminとEmaxを変化させたときに差分が同様に変化する場合は、系統連系用リレーRy1が正常であると判定される。一方、各モニタ電圧EminとEmaxを変化させたときに差分が変化しない場合は、系統連系用リレーRy1が異常であると判定される。
 即ち、本発明による系統連系用リレーの異常検出装置は、商用系統電圧の有無を判定する商用系統電圧判定処理と、商用系統電圧判定処理により商用系統電圧が無いと判定されると、系統連系用リレーの接点が開成制御された状態で、パワーコンディショナから異なる値のモニタ電圧を時系列で切替出力し、各モニタ電圧に対するパワーコンディショナ側の電圧と商用系統側の電圧との差分がモニタ電圧に追従するか否かに基づいて系統連系用リレーの異常判定を行なう第1電圧判定処理と、を実行する異常検出処理部を備えていればよい。
 以上説明した実施形態では、パワーコンディショナPCSの出力が単相である場合を例に本発明を説明したが、本発明はパワーコンディショナPCSの出力が三相であり、系統連系用リレーRy1の接点がS,S,Sの3接点で構成される場合も適用可能である。
 上述した実施形態では、太陽電池パネルSPと、太陽電池パネルSPに接続されたパワーコンディショナPCSを備えた分散型電源を例に系統連系用リレーの異常検出装置を説明したが、分散型電源に組み込まれる発電装置は太陽電池パネルSPに限るものではなく、風力発電装置や燃料電池等の任意の発電装置であってもよい。
 以上説明した複数の実施形態は、本発明による系統連系用リレーの異常検出方法及びパワーコンディショナの一例に過ぎず、該記載により本発明の技術的範囲が限定されるものではなく、本発明の作用効果が奏される限り、具体的な回路構成や異常検出アルゴリズムは適宜変更設計可能なことは言うまでもない。
1:分散型電源
2:DC/DCコンバータ
3:DC/ACインバータ
4:LCフィルタ
5:制御装置
5a:コンバータ制御部
5b:インバータ制御部
5c:異常検出処理部
PCS:パワーコンディショナ
Ry1:系統連系用リレー
Ry2:自立系統用リレー
,S:接点

Claims (13)

  1.  系統連系用リレーを介して商用系統と連系する系統連系運転と自立系統用リレーを介して自立系統に給電する自立運転との何れかに切替可能に構成されるとともに直流電力を交流電力に変換するインバータと前記インバータの出力電圧から高周波成分を除去するLCフィルタを備えたパワーコンディショナに組み込まれ、自立運転への切替時に系統連系用リレーの異常を検出する系統連系用リレーの異常検出装置であって、
     商用系統電圧の有無を判定する商用系統電圧判定処理と、
     前記商用系統電圧判定処理により商用系統電圧が無いと判定されると、前記系統連系用リレーの接点が開成制御された状態で、前記パワーコンディショナから異なる値のモニタ電圧を時系列で切替出力し、各モニタ電圧に対する前記パワーコンディショナ側の電圧と商用系統側の電圧との差分が前記モニタ電圧に追従するか否かに基づいて前記系統連系用リレーの異常判定を行なう第1電圧判定処理と、
    を実行する異常検出処理部を備えている系統連系用リレーの異常検出装置。
  2.  前記第1電圧判定処理は、各モニタ電圧に対する前記パワーコンディショナ側の電圧と商用系統側の電圧との差分の積が所定の基準値より小であるか否かに基づいて前記系統連系用リレーの異常判定を行なうように構成されている請求項1記載の系統連系用リレーの異常検出装置。
  3.  前記第1電圧判定処理は、前記パワーコンディショナの出力可変電圧の指令値をΔE、当該出力可変電圧の指令値ΔE及び基準値Echkを調整する信頼係数をa、商用系統電圧EGridに対する信頼係数をbとして、少なくとも数式〔数1〕に示す出力電圧実効値の指令値Emin,Emax(但し、Emin<Emax)のモニタ電圧を時系列で切替出力したときに、サンプリング時刻kとして以下の数式〔数2〕に基づいて前記パワーコンディショナ側の電圧と商用系統側の電圧との差分ΔEの積ΔECSTを算出し、前記差分ΔEの積ΔECSTが前記所定の基準値Echkより小であるか否かに基づいて前記系統連系用リレーの異常判定を行なうように構成されている請求項2記載の系統連系用リレーの異常検出装置。
    Figure JPOXMLDOC01-appb-M000001

    Figure JPOXMLDOC01-appb-M000002
  4.  前記出力電圧実効値の指令値Emin,Emaxは、商用系統の定格電圧EGridに対して、b×EGridから2×a×ΔEの範囲に入るように設定されている請求項3記載の系統連系用リレーの異常検出装置。
  5.  前記異常検出処理部は、前記商用系統電圧判定処理により商用系統電圧が有ると判定されると、前記パワーコンディショナの出力電圧を零に設定し、前記系統連系用リレーの接点が開成制御された状態で、前記パワーコンディショナ側の電圧と商用系統側の電圧との差分と、前記基準値に所定の信頼係数を掛けた値との大小関係に基づいて前記系統連系用リレーの異常判定を行なう第2電圧判定処理を実行するように構成されている請求項1から4の何れかに記載の系統連系用リレーの異常検出装置。
  6.  前記異常検出処理部は、
     前記商用系統電圧判定処理により商用系統電圧が有ると判定されると、前記系統連系用リレーの接点が開成制御された状態で、前記パワーコンディショナへの入力電流の有無に基づいて前記系統連系用リレーの異常判定を行なう第1電流判定処理と、
     前記商用系統電圧判定処理により商用系統電圧が無いと判定されると、前記系統連系用リレーの接点が開成制御された状態で、前記パワーコンディショナからの出力電流の有無に基づいて前記系統連系用リレーの異常判定を行なう第2電流判定処理と、
    を実行するように構成されている請求項1から5の何れかに記載の系統連系用リレーの異常検出装置。
  7.  前記第1電流判定処理は、前記LCフィルタのコンデンサ容量Cinv、内部抵抗R、コンデンサ電流i、計測値となる自立系統電圧esdとして、以下の数式〔数3〕に基づいて算出される前記コンデンサ電流iを前記入力電流として算出するように構成されている請求項6記載の系統連系用リレーの異常検出装置。
    Figure JPOXMLDOC01-appb-M000003
  8.  前記第1電流判定処理は、所定のサンプリング周期で計測した前記入力電流の絶対値が複数回連続して所定の閾値以上であり、且つ、計測する度に前記出力電流の絶対値が大きくなる場合に、前記系統連系用リレーが異常であると判定する請求項7記載の系統連系用リレーの異常検出装置。
  9.  前記第2電流判定処理は、前記LCフィルタのコンデンサ容量Cinv、内部抵抗R、自立運転時の出力電圧esd、コンデンサ電流i、計測値となるインバータ電流iinvとして、以下の数式〔数4〕に基づいて算出されるパワーコンディショナの出力電流ispを前記出力電流として算出するように構成されている請求項6から8の何れかに記載の系統連系用リレーの異常検出装置。
    Figure JPOXMLDOC01-appb-M000004
  10.  前記第2電流判定処理は、前記パワーコンディショナの前記出力電流の波高値の絶対値の差分が複数回連続して所定の閾値以上であり、且つ、計測する度に前記波高値の絶対値が小さくなる場合に、前記系統連系用リレーが異常であると判定する請求項9記載の系統連系用リレーの異常検出装置。
  11.  前記異常検出処理部は、前記系統連系用リレーの全接点を開成制御した後に各異常検出処理を実行するとともに、一接点毎に単独で閉成制御する度に各異常検出処理を実行するように構成されている請求項1から10の何れかに記載の系統連系用リレーの異常検出装置。
  12.  前記商用系統電圧判定処理は、予め設定されたパワーコンディショナの出力電圧設定値に所定の信頼係数を掛けた値と、商用系統電圧との大小関係、及び、自立系統周波数に所定の信頼係数を掛けた値と、商用系統周波数との大小関係に基づいて、商用系統電圧の有無を判定するように構成されている請求項1から11の何れかに記載の系統連系用リレーの異常検出装置。
  13.  系統連系用リレーを介して商用系統と連系する系統連系運転と、自立系統用リレーを介して自立系統に給電する自立運転とを切替可能な制御装置を備えている単相または三相のパワーコンディショナであって、
     請求項1から11の何れかに記載の系統連系用リレーの異常検出装置が前記制御装置に組み込まれているパワーコンディショナ。
     
PCT/JP2015/083158 2015-11-26 2015-11-26 系統連系用リレーの異常検出装置及びパワーコンディショナ WO2017090139A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/321,060 US10418812B2 (en) 2015-11-26 2015-11-26 Abnormality detection device for grid interconnection relay and power conditioner
JP2016521814A JP6240757B2 (ja) 2015-11-26 2015-11-26 系統連系用リレーの異常検出装置及びパワーコンディショナ
PCT/JP2015/083158 WO2017090139A1 (ja) 2015-11-26 2015-11-26 系統連系用リレーの異常検出装置及びパワーコンディショナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083158 WO2017090139A1 (ja) 2015-11-26 2015-11-26 系統連系用リレーの異常検出装置及びパワーコンディショナ

Publications (1)

Publication Number Publication Date
WO2017090139A1 true WO2017090139A1 (ja) 2017-06-01

Family

ID=58763277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083158 WO2017090139A1 (ja) 2015-11-26 2015-11-26 系統連系用リレーの異常検出装置及びパワーコンディショナ

Country Status (3)

Country Link
US (1) US10418812B2 (ja)
JP (1) JP6240757B2 (ja)
WO (1) WO2017090139A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044428A1 (ja) * 2017-08-28 2019-03-07 京セラ株式会社 コントローラ、分散電源、および溶着を確認する方法
WO2019188370A1 (ja) * 2018-03-30 2019-10-03 オムロン株式会社 電力バッファ装置
WO2024042608A1 (ja) * 2022-08-23 2024-02-29 東芝三菱電機産業システム株式会社 太陽光発電システムにおける制御装置及び電力変換装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524627B1 (de) * 2021-01-13 2022-08-15 Avl List Gmbh Prüfverfahren zum Prüfen einer Trennfunktionalität einer Hauptschaltvorrichtung einer elektrischen Verbindungsvorrichtung eines Brennstoffzellensystems
CN112415377B (zh) * 2021-01-21 2021-04-20 浙江艾罗网络能源技术股份有限公司 一种三相并网逆变器继电器失效检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035655A (ja) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd 系統連系装置
WO2011065278A1 (ja) * 2009-11-30 2011-06-03 三洋電機株式会社 系統連系装置
JP2015100249A (ja) * 2013-11-20 2015-05-28 三菱電機株式会社 系統連系インバータ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174792A (ja) 2005-12-21 2007-07-05 Kawamura Electric Inc 系統連系インバータ装置
KR101084214B1 (ko) * 2009-12-03 2011-11-18 삼성에스디아이 주식회사 계통 연계형 전력 저장 시스템 및 전력 저장 시스템 제어 방법
JP5472415B2 (ja) 2012-09-21 2014-04-16 株式会社安川電機 電力変換装置
JP2015177686A (ja) * 2014-03-17 2015-10-05 日本電気株式会社 需要地系統構築システム、仮想送電網構築装置、送受電ユニット、需要地系統構築方法及びプログラム
US9331566B1 (en) * 2015-02-18 2016-05-03 Adaptive Frequency Holdings, LLC Adaptive AC power exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035655A (ja) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd 系統連系装置
WO2011065278A1 (ja) * 2009-11-30 2011-06-03 三洋電機株式会社 系統連系装置
JP2015100249A (ja) * 2013-11-20 2015-05-28 三菱電機株式会社 系統連系インバータ装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044428A1 (ja) * 2017-08-28 2019-03-07 京セラ株式会社 コントローラ、分散電源、および溶着を確認する方法
JPWO2019044428A1 (ja) * 2017-08-28 2019-12-26 京セラ株式会社 コントローラ、分散電源、および溶着を確認する方法
WO2019188370A1 (ja) * 2018-03-30 2019-10-03 オムロン株式会社 電力バッファ装置
JP2019180162A (ja) * 2018-03-30 2019-10-17 オムロン株式会社 電力バッファ装置
WO2024042608A1 (ja) * 2022-08-23 2024-02-29 東芝三菱電機産業システム株式会社 太陽光発電システムにおける制御装置及び電力変換装置
JP7568137B2 (ja) 2022-08-23 2024-10-16 株式会社Tmeic 太陽光発電システムにおける制御装置及び電力変換装置

Also Published As

Publication number Publication date
JPWO2017090139A1 (ja) 2017-11-24
US10418812B2 (en) 2019-09-17
US20170271871A1 (en) 2017-09-21
JP6240757B2 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6153663B1 (ja) リレーの異常検出装置及びパワーコンディショナ
JP6105705B2 (ja) 系統連系用リレーの異常検出装置、及びパワーコンディショナ
JP6240757B2 (ja) 系統連系用リレーの異常検出装置及びパワーコンディショナ
JP5646752B2 (ja) 系統連系インバータ装置およびその制御方法
US20130222951A1 (en) Fault protection circuit for photovoltaic power system
US20060245221A1 (en) Electrical power source, operational method of the same, inverter and operational method of the same
US9356553B2 (en) String continuity monitoring
EP2608341A1 (en) Grounding device
JP2002112459A (ja) 太陽電池モジュールおよび発電装置
JP5472415B2 (ja) 電力変換装置
CN104283441A (zh) 一种直流电源及提供直流电源的方法
JP4353114B2 (ja) パワーコンディショナ
TW201535915A (zh) 反向器裝置
KR101370490B1 (ko) 순간 전압 강하 보상 장치와 보상 방법
CN115166573A (zh) 一种通过ups系统检测回馈和错误接线事件的方法
CN110967576A (zh) 分布式电源并网模式下防孤岛的运行检测方法
JP6351480B2 (ja) 系統連系インバータ装置
JP6203012B2 (ja) 系統連系インバータ装置
JP2007097311A (ja) 系統連係装置
JP4244025B2 (ja) 分散電源装置およびその直流地絡の検出方法
JP2018207638A (ja) 系統連系装置
KR20150005822A (ko) H-브리지 멀티 레벨 인버터의 순간정전 제어 장치 및 방법
JP2008306889A (ja) 無停電電源装置
JP6178824B2 (ja) 系統連系インバータ装置の制御装置、制御方法、系統連系インバータ装置、及び系統連系インバータ装置の起動方法
JP6484570B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016521814

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15321060

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909258

Country of ref document: EP

Kind code of ref document: A1