WO2017088569A1 - 磁悬浮轴承转轴的弯曲检测方法和系统 - Google Patents

磁悬浮轴承转轴的弯曲检测方法和系统 Download PDF

Info

Publication number
WO2017088569A1
WO2017088569A1 PCT/CN2016/099472 CN2016099472W WO2017088569A1 WO 2017088569 A1 WO2017088569 A1 WO 2017088569A1 CN 2016099472 W CN2016099472 W CN 2016099472W WO 2017088569 A1 WO2017088569 A1 WO 2017088569A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
displacement sensor
center position
bent
displacement
Prior art date
Application number
PCT/CN2016/099472
Other languages
English (en)
French (fr)
Inventor
胡余生
郭伟林
胡叨福
贺永玲
杨斌
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to DK16867796.1T priority Critical patent/DK3379198T3/da
Priority to US15/778,526 priority patent/US10746527B2/en
Priority to EP16867796.1A priority patent/EP3379198B1/en
Publication of WO2017088569A1 publication Critical patent/WO2017088569A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B7/31Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • G01B7/282Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures for measuring roundness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B7/31Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B7/312Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes for measuring eccentricity, i.e. lateral shift between two parallel axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Definitions

  • the present invention relates to the field of magnetic levitation technology, and more particularly to a bending detection method and system for a magnetic suspension bearing shaft.
  • Magnetic suspension bearings also called electromagnetic bearings or magnetic bearings
  • magnetic bearings are a new type of high-performance bearing that uses magnetic field force to suspend bearings without mechanical friction and lubrication.
  • oil lubrication and gas lubrication As a novel support component, it is followed by oil lubrication and gas lubrication. After that, another revolutionary change in the bearing industry was hailed as one of the most promising high-tech developments in the 21st century.
  • the rotating shaft In the existing magnetic suspension bearing system, the rotating shaft is supported by a magnetic suspension bearing, and operates in an oil-free and frictionless state to operate at a very high rotational speed. Since the rotating shaft is composed of many parts, the rotating shaft cannot be integrally machined, which leads to the possibility of bending of the rotating shaft. For high-speed rotors, although the bending degree is not large, as the rotating speed is higher and higher, the swing of the rotating shaft will become more and more severe, which will eventually lead to rotor instability, which will cause damage to the magnetic suspension bearing system. Impact.
  • the present invention provides a bending detection method and system for a magnetic suspension bearing shaft to detect the bending degree of the rotating shaft and avoid the problem of destructive influence on the magnetic suspension bearing system due to excessive bending of the rotating shaft.
  • the present invention provides the following technical solutions:
  • a bending detection system for a magnetic suspension bearing shaft comprising at least one section disposed on one side of the rotating shaft a displacement sensor, at least one second displacement sensor disposed on the opposite side of the rotating shaft, and a processor coupled to the first displacement sensor and the second displacement sensor;
  • the first displacement sensor is configured to measure a distance between the rotating shaft and the first displacement sensor;
  • the second displacement sensor is configured to measure a distance between the rotating shaft and the second displacement sensor;
  • the processor includes a computing unit, a first determining unit, and a second determining unit;
  • the calculating unit is configured to calculate a center position detected by the rotating shaft at different positions during one rotation
  • the first determining unit determines whether the rotating shaft is bent according to the change curve of the center position, and if not, outputs a detection result that the rotating shaft passes, and if it is bent, sends a control command to the second determining unit. ;
  • the second determining unit determines whether the difference between the maximum value and the minimum value of the center position is less than a threshold value, and if not, outputs a detection result that the rotating shaft passes the test, and if it is greater than, outputs The test result that the rotating shaft is unqualified.
  • the rotating shaft is moved to the position of the first displacement sensor by the magnetic suspension bearing, so that the first displacement sensor generates displacement a minimum value of the signal, and transmitting a minimum value of the displacement signal to the computing unit, after which the rotating shaft is moved from the position of the first displacement sensor to the second displacement sensor by the magnetic suspension bearing Positioning, such that the first displacement sensor generates a maximum value of the displacement signal, and transmits a maximum value of the displacement signal to the calculation unit; the calculation unit calculates the maximum value and the minimum value according to the displacement signal The center position of the shaft.
  • the first determining unit determines whether the rotating shaft is curved by determining whether the change curve of the center position is a straight line. If the determination result is a straight line, determining that the rotating shaft is not bent, and if the determination result is not a straight line, Then, it is determined that the rotating shaft is curved.
  • the first determining unit determines whether the rotating shaft is bent by determining whether the change curve of the center position is a sinusoidal curve. If the determination result is a sinusoidal curve, determining that the rotating shaft is curved, if the determination result is not sinusoidal The curve determines that the rotating shaft is not bent.
  • the first displacement sensor and the second displacement sensor are eddy current displacement sensors.
  • Method for detecting bending of a magnetic suspension bearing shaft which is applied to the magnetic suspension shaft according to any of the above A bending detection system for a bearing shaft, the detecting method comprising:
  • the process of calculating the central position detected by the rotating shaft at different positions during one rotation of the rotating shaft comprises:
  • the center position of the rotating shaft is calculated according to the maximum value and the minimum value of the displacement signal.
  • the process of determining whether the rotating shaft is bent according to the change curve of the center position comprises:
  • the process of determining whether the rotating shaft is bent according to the change curve of the center position comprises:
  • the bending detection method and system for the magnetic suspension bearing shaft determines whether the rotating shaft is bent and whether the rotating shaft is qualified according to the calculated center position of the rotating shaft detected at different positions during the rotation of the rotating shaft, and if the rotating shaft is qualified Then, the bending degree of the rotating shaft is within the allowable range. If the rotating shaft fails, the bending degree of the rotating shaft is too large, which may have a destructive influence on the magnetic suspension bearing system, so that the user can judge whether the rotating shaft is processed according to the detection result of the rotating shaft. To avoid damaging effects on the magnetic suspension bearing system due to the excessive bending of the shaft.
  • FIG. 1 is a schematic structural view of a non-bending rotating shaft according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a curved rotating shaft according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a rotating shaft stopped at different positions according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of calculating a center position of a rotating shaft according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a method for detecting a bending of a magnetic suspension bearing shaft according to another embodiment of the present invention.
  • FIG. 6 is a flow chart of calculating a center position of a rotating shaft according to another embodiment of the present invention.
  • An embodiment of the present invention provides a bending detection system for a magnetic suspension bearing shaft, which is a rotating shaft supported by a magnetic suspension bearing, and the rotating shaft can work in a high-speed running state without lubricating oil and mechanical friction, the rotating shaft It may be a shaft of a motor or an engine, etc., and the present invention is not limited thereto.
  • the bending detection system of the magnetic suspension bearing shaft includes at least one first displacement sensor disposed on one side of the rotating shaft, at least one second displacement sensor disposed on the opposite side of the rotating shaft, and the first displacement sensor and the first A processor with two displacement sensors connected.
  • the first displacement sensor is configured to measure a relative displacement between the rotating shaft and the first displacement sensor probe;
  • the second displacement sensor is configured to measure a relative displacement between the rotating shaft and the second displacement sensor probe;
  • the processor includes a calculation unit, and the first a judging unit and a second judging unit;
  • the calculating unit is configured to calculate a center position of the rotating shaft at different positions during one rotation;
  • the first judging unit is based on the center position
  • the change curve determines whether the rotation axis is bent. If it is not bent, the detection result of the output shaft pass is output, and if it is bent, the control command is sent to the second judgment unit; after receiving the control command, the second judgment unit determines the maximum position of the center position. Whether the difference between the value and the minimum value is smaller than the threshold value, and if so, the detection result of the rotation axis pass is output, and if not, the detection result of the shaft failure is output.
  • FIG. 1 is a schematic structural view of a rotating shaft that is not bent
  • FIG. 2 is a schematic structural view of a curved rotating shaft.
  • One side of the rotating shaft 10 has a sensor 1 and a sensor 3 above the rotating shaft 10, and the rotating shaft 10 is opposite.
  • One side has a sensor 2 and a sensor 4 below the rotating shaft 10, wherein the sensor 1 and the sensor 2 are symmetrically arranged, the sensor 3 and the sensor 4 are symmetrically arranged, and the sensors 1 and 3 are first displacement sensors, and the sensors 2 and 4 are second. Motion detector.
  • only sensor 1 and sensor 2 may be provided.
  • first displacement sensor and the second displacement sensor will be described below by taking only the sensor 1 and the sensor 2 as an example.
  • the working processes of the sensor 3 and the sensor 4 are the same, and will not be described herein.
  • the senor 1 and the sensor 2 are preferably eddy current displacement sensors, and may of course be strain gauge or inductive displacement sensors.
  • the eddy current displacement sensor can accurately measure the static and dynamic relative displacement between the metal object and the probe end face, that is, the sensor 1 can measure the relative displacement between the shaft 10 and the sensor 1 probe, and the sensor 2 can measure The relative displacement between the rotating shaft 10 and the sensor 2 probe, and the magnitude of the displacement signal outputted by the sensor 1 and the sensor 2 varies with the distance between the probe and the rotating shaft 10, and therefore, when the rotating shaft 10 is located at the position of the sensor 1, the rotating shaft The distance between the sensor 10 and the sensor 1 is the smallest. At this time, the sensor 1 outputs the minimum value of the displacement signal. When the rotating shaft 10 is located at the position of the sensor 2, the distance between the rotating shaft 10 and the sensor 1 is the largest, and the sensor 1 outputs the displacement signal. The maximum value.
  • the bending detection system of the magnetic suspension bearing shaft in the present embodiment first controls the rotation of the rotating shaft 10, and stops the rotating shaft 10 at different positions during the one-rotation of the rotating shaft 10, referring to FIG. 3, the marking on the rotating shaft 10 A is the reference object.
  • the mark A is located at the position indicated by A1.
  • the mark A is located at the position indicated by A2, and when the second stop is stopped, the mark A is located at A3.
  • the rotation of the shaft 10 ends one week.
  • the center position of the rotating shaft 10 is measured every time the rotating shaft 10 is stopped. If the rotating shaft 10 is not bent, the center position of the rotating shaft is unique. If the rotating shaft 10 is bent, the center is The position will shift up or down, and the offset of the center position will vary when the shaft 10 is rotated to a different position. Based on this, in the present embodiment, it is judged whether or not the shaft 10 is bent by measuring the center position of the rotary shaft 10 stopped at different positions. Alternatively, the spacing between the various positions at which the spindle 10 is stopped is equal.
  • the process of measuring the center position of the rotating shaft 10 is as shown in FIG. 4: the rotating shaft 10 is first moved to the position of the sensor 1 by the magnetic suspension bearing, so that the sensor 1 generates the minimum value of the displacement signal and passes through the sensor 1
  • the minimum value of the displacement signal is transmitted to the calculation unit in the processor, and then the shaft 10 is moved from the position of the sensor 1 to the position of the sensor 2 by the magnetic suspension bearing, so that the sensor 1 generates the maximum value of the displacement signal and passes through the sensor 1
  • the maximum value of the displacement signal is transmitted to the calculation unit such that the calculation unit calculates the center position of the rotation axis based on the maximum value and the minimum value of the displacement signal.
  • the calculating unit may obtain the maximum value D1 of the distance between the rotating shaft 10 and the sensor 1 according to the maximum value of the displacement signal, obtain the minimum value D2 of the distance between the rotating shaft 10 and the sensor 2 according to the minimum value of the displacement signal, and then according to the radius D of the rotating shaft 10,
  • the maximum value D1 and the minimum value D2 are used to calculate the center position O of the rotating shaft 10, that is, the center position O is equal to the maximum value D1 minus the minimum value D2 plus the radius D, as shown in FIG.
  • the first determining unit After calculating the center position of the rotating shaft 10 at each position, the first determining unit will calculate the calculated value of each center position as a curve of the center position, and determine whether the rotating shaft 10 is bent according to the curve of the center position. If the bending is not performed, the detection result of the output shaft 10 is passed. If the bending is performed, the control command is sent to the second determining unit. After receiving the control command, the second determining unit compares the values of the respective center positions to obtain the center position. The maximum value and the minimum value are calculated, and the difference between the maximum value and the minimum value of the center position is calculated, and then the difference is judged whether the difference is smaller than the threshold value.
  • the detection result of the output shaft 10 is qualified, and if it is greater than, the output shaft 10 is unqualified. result. If the output result is that the rotating shaft 10 is qualified, then the rotating shaft 10 is not bent or the bending degree is within the allowable range. If the output result is that the rotating shaft 10 is unqualified, the bending of the rotating shaft 10 is too large, and the rotating shaft needs to be reworked. To avoid the damaging effect of the shaft 10 on the magnetic suspension bearing system.
  • the size of the threshold may be set according to a specific application scenario of the rotating shaft, which is not limited by the present invention.
  • the first determining unit can determine whether the rotating shaft 10 is bent by determining whether the change curve of the center position is a straight line, and if the determination result is a straight line, determining the rotating shaft 10 If the result of the determination is not a straight line, it is determined that the rotating shaft 10 is bent, and it is necessary to further judge whether or not the bending degree of the rotating shaft 10 is within an allowable range.
  • the first determining unit may determine whether the rotating shaft 10 is bent by determining whether the change curve of the center position is a sinusoidal curve. If the determination result is a sinusoidal curve, determining that the rotating shaft 10 is curved, and if the determination result is not a sinusoidal curve, determining the rotating shaft 10 does not bend.
  • the bending detection system of the magnetic suspension bearing shaft provided by the embodiment provides the bending center of the rotating shaft and whether the rotating shaft is qualified according to the calculated center position of the rotating shaft detected at different positions during the one rotation of the rotating shaft, and if the rotating shaft is qualified, The bending degree of the rotating shaft is within the allowable range. If the rotating shaft fails, the bending degree of the rotating shaft is too large, which may have a destructive influence on the magnetic suspension bearing system, so that the user can judge whether the rotating shaft is processed according to the detection result of the rotating shaft to avoid Due to the too large curvature of the shaft, it has a devastating effect on the magnetic suspension bearing system.
  • Another embodiment of the present invention further provides a bending detection method for a magnetic suspension bearing shaft, which is applied to a bending detection system for a magnetic suspension bearing shaft provided by any of the above embodiments.
  • the detection method includes:
  • the center position of the shaft is unique. If the shaft is bent, the center position will shift upward or downward. Based on this, in the present embodiment, it is judged whether or not the shaft is bent by measuring the center position of the rotating shaft stopped at different positions.
  • the rotation shaft is controlled to rotate in the direction of the arrow, and during the rotation of the rotation shaft, the rotation shaft is stopped at different positions, and the mark A on the rotation shaft is used as a reference object.
  • the mark A is located at the position A1.
  • the mark A is at the position A2, and so on, until the end of the rotation of the shaft when the mark A returns to the position A1.
  • the process of calculating the center position of the rotating shaft every time the rotating shaft stops, as shown in FIG. 6, includes:
  • S603 Calculate a center position of the rotating shaft according to a maximum value and a minimum value of the displacement signal.
  • the process of calculating the center position of the rotating shaft according to the maximum value and the minimum value of the displacement signal includes: According to the maximum value of the displacement signal, the maximum value D1 of the rotation axis and the sensor distance is obtained, and the minimum value D2 of the rotation axis and the sensor distance is obtained according to the minimum value of the displacement signal, and then the rotation axis is calculated according to the radius D, the maximum value D1 and the minimum value D2 of the rotation axis.
  • the center position O that is, the center position O is equal to the maximum value D1 minus the minimum value D2 plus the radius D, as shown in FIG.
  • S504 determining whether the difference between the maximum value and the minimum value of the center position is less than a threshold, if yes, then proceeds to S505, and if not, proceeds to S506;
  • the process of determining whether the rotation axis is bent according to the change curve of the center position includes: determining whether the change curve is a straight line, and if yes, the rotation axis is not bent, and if not, the rotation axis is curved.
  • the process of determining whether the rotation axis is bent according to the change curve of the center position includes: determining whether the change curve is a sinusoid, and if so, the rotation axis is bent, and if not, the rotation axis is not bent.
  • the method for detecting the bending of the rotating shaft of the magnetic suspension bearing is based on the calculated center position of the rotating shaft detected at different positions during the one-rotation of the rotating shaft, and determining whether the rotating shaft is bent and the rotating shaft is qualified, and if the rotating shaft is qualified, The bending degree of the rotating shaft is within the allowable range. If the rotating shaft fails, the bending degree of the rotating shaft is too large, which may have a destructive influence on the magnetic suspension bearing system, so that the user can judge whether the rotating shaft is processed according to the detection result of the rotating shaft to avoid Due to the too large curvature of the shaft, it has a devastating effect on the magnetic suspension bearing system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种磁悬浮轴承转轴(10)的弯曲检测方法和系统,包括第一位移传感器(1)、第二位移传感器(2)以及与第一位移传感器(1)和第二位移传感器(2)连接的处理器;处理器包括计算单元、第一判断单元和第二判断单元;计算单元用于计算转轴在转动一周的过程中停在不同的位置处所检测的中心位置(S501);第一判断单元根据中心位置的变化曲线判断转轴是否出现弯曲(S502),若不弯曲,则输出转轴合格的检测结果(S503);第二判断单元判断中心位置的最大值和最小值的差是否小于阈值(S504),如果小于,则输出转轴合格的检测结果(S505),如果大于,则输出转轴不合格的检测结果(S506),这样用户就可以根据转轴的检测结果判断是否对转轴进行处理,以避免由于转轴的弯曲度太大而对磁悬浮轴承系统造成破坏性的影响。

Description

磁悬浮轴承转轴的弯曲检测方法和系统
本申请要求于2015年11月27日提交中国专利局、申请号为201510856407.9、发明名称为“磁悬浮轴承转轴的弯曲检测方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及磁悬浮技术领域,更具体地说,涉及一种磁悬浮轴承转轴的弯曲检测方法和系统。
背景技术
磁悬浮轴承也称电磁轴承或磁力轴承,是利用磁场力将轴承无机械摩擦、无润滑的悬浮在空间的一种新型高性能轴承,其作为一种新颖的支撑部件,是继油润滑、气润滑之后轴承行业的又一次革命性变化,被誉为21世纪最有发展前景的高新技术之一。
现有的磁悬浮轴承系统中转轴是采用磁悬浮轴承进行支承,工作在无油、无摩擦的状态,来以非常高的转速运行的。由于转轴由很多零部件组成,因此,转轴不可能是整体加工而成的,这就导致了转轴有可能出现弯曲的情况。而对于高速转子而言,虽说这种弯曲度不会很大,但是随着转速越来越高,转轴的摆动会越来越厉害,最终会导致转子失稳,会对磁悬浮轴承系统造成破坏性的影响。
发明内容
有鉴于此,本发明提供了一种磁悬浮轴承转轴的弯曲检测方法和系统,以检测转轴的弯曲度,避免由于转轴弯曲度过大而对磁悬浮轴承系统造成破坏性影响的问题。
为实现上述目的,本发明提供如下技术方案:
一种磁悬浮轴承转轴的弯曲检测系统,包括设置在转轴一侧的至少一个第 一位移传感器、设置在所述转轴相对的另一侧的至少一个第二位移传感器以及与所述第一位移传感器和第二位移传感器连接的处理器;
所述第一位移传感器用于测量所述转轴与所述第一位移传感器之间的距离;所述第二位移传感器用于测量所述转轴与所述第二位移传感器之间的距离;
所述处理器包括计算单元、第一判断单元和第二判断单元;
所述计算单元用于计算所述转轴在转动一周的过程中停在不同的位置处所检测的中心位置;
所述第一判断单元根据所述中心位置的变化曲线判断所述转轴是否出现弯曲,若不弯曲,则输出所述转轴合格的检测结果,若弯曲,则发送控制指令至所述第二判断单元;
所述第二判断单元在接收到所述控制指令后,判断所述中心位置的最大值和最小值的差是否小于阈值,如果小于,则输出所述转轴合格的检测结果,如果大于,则输出所述转轴不合格的检测结果。
优选的,在所述转轴转动一周的过程中,当所述转轴停止时,通过所述磁悬浮轴承将所述转轴移动到所述第一位移传感器的位置处,使得所述第一位移传感器产生位移信号的最小值,并将所述位移信号的最小值传输至所述计算单元,之后通过所述磁悬浮轴承将所述转轴从所述第一位移传感器的位置处移动到所述第二位移传感器的位置处,使得所述第一位移传感器产生位移信号的最大值,并将所述位移信号的最大值传输至所述计算单元;所述计算单元根据所述位移信号的最大值和最小值计算所述转轴的中心位置。
优选的,所述第一判断单元通过判断所述中心位置的变化曲线是否为直线来判断所述转轴是否出现弯曲,若判断结果为直线,则判定所述转轴不弯曲,若判断结果不是直线,则判定所述转轴弯曲。
优选的,所述第一判断单元通过判断所述中心位置的变化曲线是否为正弦曲线来判断所述转轴是否出现弯曲,若判断结果为正弦曲线,则判定所述转轴弯曲,若判断结果不是正弦曲线,则判定所述转轴不弯曲。
优选的,所述第一位移传感器和第二位移传感器为电涡流位移传感器。
一种磁悬浮轴承转轴的弯曲检测方法,应用于如上任一项所述的磁悬浮轴 承转轴的弯曲检测系统,所述检测方法包括:
计算所述转轴在转动一周的过程中停在不同位置处所检测的中心位置;
根据所述中心位置的变化曲线判断所述转轴是否出现弯曲;
若弯曲,判断所述中心位置的最大值和最小值的差是否小于阈值,如果是,则判定所述转轴合格,如果否,则判定所述转轴不合格;
若不弯曲,则判定所述转轴合格。
优选的,计算所述转轴在转动一周的过程中停在不同位置处所检测的中心位置的过程包括:
在所述转轴转动一周的过程中,当所述转轴停止时,将所述转轴移动到所述第一位移传感器的位置处,获得位移信号的最小值;
将所述转轴从所述第一位移传感器的位置处移动到所述第二位移传感器的位置处,获得位移信号的最大值;
根据所述位移信号的最大值和最小值计算所述转轴的中心位置。
优选的,根据所述中心位置的变化曲线判断所述转轴是否出现弯曲的过程包括:
判断所述变化曲线是否为直线,若是,则所述转轴不弯曲,若否,则所述转轴弯曲。
优选的,根据所述中心位置的变化曲线判断所述转轴是否出现弯曲的过程包括:
判断所述变化曲线是否为正弦曲线,若是,则所述转轴弯曲,若否,则所述转轴不弯曲。
与现有技术相比,本发明所提供的技术方案具有以下优点:
本发明所提供的磁悬浮轴承转轴的弯曲检测方法和系统,根据计算出的转轴在转动一周的过程中停在不同位置处所检测的转轴中心位置,判断转轴是否出现弯曲以及转轴是否合格,若转轴合格,则转轴的弯曲度在允许范围内,若转轴不合格,则转轴的弯曲度太大,会对磁悬浮轴承系统造成破坏性影响,这样用户就可以根据转轴的检测结果判断是否对转轴进行处理,以避免由于转轴的弯曲度太大而对磁悬浮轴承系统造成破坏性的影响。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明的一个实施例提供的不弯曲的转轴的结构示意图;
图2为本发明的一个实施例提供的弯曲的转轴的结构示意图;
图3为本发明的一个实施例提供的转轴停在不同位置的结构示意图;
图4为本发明的一个实施例提供的计算转轴中心位置的原理图;
图5为本发明的另一个实施例提供的磁悬浮轴承转轴的弯曲检测方法流程图;
图6为本发明的另一个实施例提供的计算转轴的中心位置的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的一个实施例提供了一种磁悬浮轴承转轴的弯曲检测系统,该磁悬浮轴承转轴是指采用磁悬浮轴承进行支撑的转轴,该转轴可以工作在无润滑油无机械摩擦的高速运行状态,该转轴可以是电机或发动机的转轴等,本发明并不仅限定于此。
本实施例提供的磁悬浮轴承转轴的弯曲检测系统,包括设置在转轴一侧的至少一个第一位移传感器、设置在转轴相对的另一侧的至少一个第二位移传感器以及与第一位移传感器和第二位移传感器连接的处理器。
其中,第一位移传感器用于测量转轴与第一位移传感器探头之间的相对位移;第二位移传感器用于测量转轴与第二位移传感器探头之间的相对位移;处理器包括计算单元、第一判断单元和第二判断单元;计算单元用于计算转轴在转动一周的过程中停在不同的位置处的中心位置;第一判断单元根据中心位置 的变化曲线判断转轴是否出现弯曲,若不弯曲,则输出转轴合格的检测结果,若弯曲,则发送控制指令至第二判断单元;第二判断单元在接收到控制指令后,判断中心位置的最大值和最小值的差是否小于阈值,如果是,则输出转轴合格的检测结果,如果否,则输出转轴不合格的检测结果。
参考图1和图2,图1为不弯曲的转轴的结构示意图,图2为弯曲的转轴的结构示意图,转轴10的一侧如转轴10的上方具有传感器1和传感器3,转轴10相对的另一侧如转轴10的下方具有传感器2和传感器4,其中,传感器1和传感器2对称设置,传感器3和传感器4对称设置,且传感器1和3为第一位移传感器,传感器2和4为第二位移传感器。当然,在本发明的其他实施例中,可以仅设置传感器1和传感器2。
下面仅以传感器1和传感器2为例来说明第一位移传感器和第二位移传感器的工作过程,传感器3和传感器4的工作过程与其相同,在此不再赘述。
本实施例中,传感器1和传感器2优选为电涡流位移传感器,当然也可以为应变式或电感式位移传感器等。其中,电涡流位移传感器能准确测量金属被测物体与探头端面之间静态和动态的相对位移变化,也就是说,传感器1可测量转轴10与传感器1探头之间的相对位移,传感器2可测量转轴10与传感器2探头之间的相对位移,且传感器1和传感器2输出的位移信号的大小随探头到转轴10之间的间距而变化,因此,当转轴10位于传感器1的位置处时,转轴10与传感器1之间的距离最小,此时传感器1输出位移信号的最小值,当转轴10位于传感器2的位置处时,转轴10与传感器1之间的距离最大,此时传感器1输出位移信号的最大值。
基于此,本实施例中的磁悬浮轴承转轴的弯曲检测系统先控制转轴10转动,并在转轴10转动一周的过程中,将转轴10停止在不同位置处,参考图3,以转轴10上的标记A为参照物,转轴10开始转动时,标记A位于A1所示位置处,当转轴10第一次停止时,标记A位于A2所示位置处,第二次停止时,标记A位于A3所示位置处,依次类推,直到标记A回到A1所示位置时转轴10转动一周结束。
本实施例中在转轴10每一次停止时,都进行转轴10的中心位置的测量,若转轴10不弯曲,则转轴的中心位置是唯一不变的,若转轴10弯曲,则中心 位置会向上或向下偏移,且转轴10转动到不同位置时,中心位置的偏移量也会有所不同。基于此,本实施例中通过测量停在不同位置处的转轴10的中心位置来判断转轴10是否出现了弯曲。可选的,转轴10停止的各个位置之间的间隔均等。
当转轴10停止时,测量转轴10的中心位置的过程如图4所示:先通过磁悬浮轴承将转轴10移动到传感器1的位置处,使得传感器1产生位移信号的最小值,并通过传感器1将位移信号的最小值传输至处理器中的计算单元,然后通过磁悬浮轴承将转轴10从传感器1的位置处移动到传感器2的位置处,使得传感器1产生位移信号的最大值,并通过传感器1将位移信号的最大值传输至计算单元,使得计算单元根据位移信号的最大值和最小值计算转轴的中心位置。
进一步地,计算单元可以根据位移信号的最大值获得转轴10与传感器1间距的最大值D1,根据位移信号的最小值获得转轴10与传感器2间距的最小值D2,然后根据转轴10的半径D、最大值D1与最小值D2来计算出转轴10的中心位置O,即中心位置O等于最大值D1减去最小值D2再加半径D,如图4所示。
计算出各个位置处的转轴10的中心位置后,第一判断单元会将计算出的各个中心位置的值绘制成中心位置的变化曲线,并根据中心位置的变化曲线判断转轴10是否出现弯曲,若不弯曲,则输出转轴10合格的检测结果,若弯曲,则发送控制指令至第二判断单元,第二判断单元接收到控制指令后,会将各个中心位置的值进行对比,求出中心位置的最大值和最小值,并计算中心位置的最大值和最小值的差,然后判断该差值是否小于阈值,如若小于,则输出转轴10合格的检测结果,若大于,输出转轴10不合格的检测结果。若输出结果是转轴10合格,那么说明转轴10不弯曲或弯曲度在允许的范围内,若输出结果是转轴10不合格,则说明转轴10的弯曲度过大,需重新对转轴进行精加工处理,以避免转轴10对磁悬浮轴承系统造成破坏性的影响。其中,阈值的大小可以根据转轴的具体应用场景进行设定,本发明并不对此进行限定。
进一步需要说明的是,第一判断单元可以通过判断中心位置的变化曲线是否为直线来判断转轴10是否出现弯曲,若判断结果为直线,则判定转轴10 不弯曲,若判断结果不是直线,则判定转轴10弯曲,需进一步判断转轴10的弯曲度是否在允许的范围内。此外,第一判断单元还可通过判断中心位置的变化曲线是否为正弦曲线来判断转轴10是否出现弯曲,若判断结果为正弦曲线,则判定转轴10弯曲,若判断结果不是正弦曲线,则判定转轴10不弯曲。
本实施例提供的磁悬浮轴承转轴的弯曲检测系统,根据计算出的转轴在转动一周的过程中停在不同位置处所检测的转轴中心位置,判断转轴是否出现弯曲以及转轴是否合格,若转轴合格,则转轴的弯曲度在允许范围内,若转轴不合格,则转轴的弯曲度太大,会对磁悬浮轴承系统造成破坏性影响,这样用户就可以根据转轴的检测结果判断是否对转轴进行处理,以避免由于转轴的弯曲度太大而对磁悬浮轴承系统造成破坏性的影响。
本发明的另一实施例还提供了一种磁悬浮轴承转轴的弯曲检测方法,应用于如上任一实施例提供的磁悬浮轴承转轴的弯曲检测系统,如图5所示,该检测方法包括:
S501:计算所述转轴在转动一周的过程中停在不同位置处所检测的中心位置;
若转轴不弯曲,则转轴的中心位置是唯一不变的,若转轴弯曲则中心位置会向上或向下偏移。基于此,本实施例中通过测量停在不同位置处的转轴的中心位置来判断转轴是否出现了弯曲。
参考图3,首先控制转轴沿箭头方向转动,并在转轴转动一周的过程中,将转轴停止在不同位置处,以转轴上的标记A为参照物,转轴开始转动时,标记A位于位置A1处,当转轴第一次停止时,标记A位于位置A2处,以此类推,直到标记A回到位置A1时转轴转动一周结束。
在转轴每次停止时,计算转轴的中心位置的过程,如图6所示,包括:
S601:将转轴移动到第一位移传感器的位置处,获得位移信号的最小值;
S602:将转轴从第一位移传感器的位置处移动到第二位移传感器的位置处,获得位移信号的最大值;
S603:根据位移信号的最大值和最小值计算所述转轴的中心位置。
根据位移信号的最大值和最小值计算所述转轴的中心位置的过程包括:根 据位移信号的最大值获得转轴与传感器间距的最大值D1,根据位移信号的最小值获得转轴与传感器间距的最小值D2,然后根据转轴的半径D、最大值D1与最小值D2来计算出转轴的中心位置O,即中心位置O等于最大值D1减去最小值D2再加半径D,如图4所示。
S502:根据所述中心位置的变化曲线判断所述转轴是否出现弯曲,若不弯曲,则进入S503,若弯曲,则进入S504;
S503:判定所述转轴合格;
S504:判断中心位置的最大值和最小值的差是否小于阈值,如果是,则进入S505,如果否,则进入S506;
S505:判定所述转轴合格;
S506:判定所述转轴不合格。
其中,根据中心位置的变化曲线判断转轴是否出现弯曲的过程包括:判断所述变化曲线是否为直线,若是,则所述转轴不弯曲,若否,则所述转轴弯曲。或者,根据中心位置的变化曲线判断转轴是否出现弯曲的过程包括:判断变化曲线是否为正弦曲线,若是,则转轴弯曲,若否,则转轴不弯曲。中心位置的具体计算过程以及判断过程上述实施例已经进行了详细描述,在此不再赘述。
本实施例提供的磁悬浮轴承转轴的弯曲检测方法,根据计算出的转轴在转动一周的过程中停在不同位置处所检测的转轴中心位置,判断转轴是否出现弯曲以及转轴是否合格,若转轴合格,则转轴的弯曲度在允许范围内,若转轴不合格,则转轴的弯曲度太大,会对磁悬浮轴承系统造成破坏性影响,这样用户就可以根据转轴的检测结果判断是否对转轴进行处理,以避免由于转轴的弯曲度太大而对磁悬浮轴承系统造成破坏性的影响。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在 其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种磁悬浮轴承转轴的弯曲检测系统,其特征在于,包括设置在转轴一侧的至少一个第一位移传感器、设置在所述转轴相对的另一侧的至少一个第二位移传感器以及与所述第一位移传感器和第二位移传感器连接的处理器;
    所述第一位移传感器用于测量所述转轴与所述第一位移传感器之间的距离;所述第二位移传感器用于测量所述转轴与所述第二位移传感器之间的距离;
    所述处理器包括计算单元、第一判断单元和第二判断单元;
    所述计算单元用于计算所述转轴在转动一周的过程中停在不同的位置处所检测的中心位置;
    所述第一判断单元根据所述中心位置的变化曲线判断所述转轴是否出现弯曲,若不弯曲,则输出所述转轴合格的检测结果,若弯曲,则发送控制指令至所述第二判断单元;
    所述第二判断单元在接收到所述控制指令后,判断所述中心位置的最大值和最小值的差是否小于阈值,如果小于,则输出所述转轴合格的检测结果,如果大于,则输出所述转轴不合格的检测结果。
  2. 根据权利要求1所述检测系统,其特征在于,在所述转轴转动一周的过程中,当所述转轴停止时,通过所述磁悬浮轴承将所述转轴移动到所述第一位移传感器的位置处,使得所述第一位移传感器产生位移信号的最小值,并将所述位移信号的最小值传输至所述计算单元,之后通过所述磁悬浮轴承将所述转轴从所述第一位移传感器的位置处移动到所述第二位移传感器的位置处,使得所述第一位移传感器产生位移信号的最大值,并将所述位移信号的最大值传输至所述计算单元;所述计算单元根据所述位移信号的最大值和最小值计算所述转轴的中心位置。
  3. 根据权利要求2所述检测系统,其特征在于,所述第一判断单元通过判断所述中心位置的变化曲线是否为直线来判断所述转轴是否出现弯曲,若判断结果为直线,则判定所述转轴不弯曲,若判断结果不是直线,则判定所述转轴弯曲。
  4. 根据权利要求2所述检测系统,其特征在于,所述第一判断单元通过 判断所述中心位置的变化曲线是否为正弦曲线来判断所述转轴是否出现弯曲,若判断结果为正弦曲线,则判定所述转轴弯曲,若判断结果不是正弦曲线,则判定所述转轴不弯曲。
  5. 根据权利要求1所述检测系统,其特征在于,所述第一位移传感器和第二位移传感器为电涡流位移传感器。
  6. 一种磁悬浮轴承转轴的弯曲检测方法,其特征在于,应用于权利要求1~5任一项所述的磁悬浮轴承转轴的弯曲检测系统,所述检测方法包括:
    计算所述转轴在转动一周的过程中停在不同位置处所检测的中心位置;
    根据所述中心位置的变化曲线判断所述转轴是否出现弯曲;
    若弯曲,判断所述中心位置的最大值和最小值的差是否小于阈值,如果是,则判定所述转轴合格,如果否,则判定所述转轴不合格;
    若不弯曲,则判定所述转轴合格。
  7. 根据权利要求6所述的方法,其特征在于,计算所述转轴在转动一周的过程中停在不同位置处所检测的中心位置的过程包括:
    在所述转轴转动一周的过程中,当所述转轴停止时,将所述转轴移动到所述第一位移传感器的位置处,获得位移信号的最小值;
    将所述转轴从所述第一位移传感器的位置处移动到所述第二位移传感器的位置处,获得位移信号的最大值;
    根据所述位移信号的最大值和最小值计算所述转轴的中心位置。
  8. 根据权利要求7所述的方法,其特征在于,根据所述中心位置的变化曲线判断所述转轴是否出现弯曲的过程包括:
    判断所述变化曲线是否为直线,若是,则所述转轴不弯曲,若否,则所述转轴弯曲。
  9. 根据权利要求7所述的方法,其特征在于,根据所述中心位置的变化曲线判断所述转轴是否出现弯曲的过程包括:
    判断所述变化曲线是否为正弦曲线,若是,则所述转轴弯曲,若否,则所述转轴不弯曲。
PCT/CN2016/099472 2015-11-27 2016-09-20 磁悬浮轴承转轴的弯曲检测方法和系统 WO2017088569A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK16867796.1T DK3379198T3 (da) 2015-11-27 2016-09-20 Fremgangsmåde og system til påvisning af bøjning i en roterende aksel i et magnetisk leje
US15/778,526 US10746527B2 (en) 2015-11-27 2016-09-20 Method and system for detecting bend in rotating shaft of magnetic bearing
EP16867796.1A EP3379198B1 (en) 2015-11-27 2016-09-20 Method and system for detecting bend in rotating shaft of magnetic bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510856407.9A CN105258634B (zh) 2015-11-27 2015-11-27 磁悬浮轴承转轴的弯曲检测方法和系统
CN201510856407.9 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017088569A1 true WO2017088569A1 (zh) 2017-06-01

Family

ID=55098420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099472 WO2017088569A1 (zh) 2015-11-27 2016-09-20 磁悬浮轴承转轴的弯曲检测方法和系统

Country Status (5)

Country Link
US (1) US10746527B2 (zh)
EP (1) EP3379198B1 (zh)
CN (1) CN105258634B (zh)
DK (1) DK3379198T3 (zh)
WO (1) WO2017088569A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258634B (zh) * 2015-11-27 2019-01-15 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮轴承转轴的弯曲检测方法和系统
CN113418492A (zh) * 2021-06-21 2021-09-21 广东省计量科学研究院(华南国家计量测试中心) 一种自动检测水准标尺弯曲差的装置
CN113532363A (zh) * 2021-08-24 2021-10-22 惠州市兴利嘉科技有限公司 一种定位准确的耳机头戴钢带弯曲度检测装置
CN117310349B (zh) * 2023-11-27 2024-05-10 山东天瑞重工有限公司 一种检测工装、电子元件检测系统及其检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151050A (ja) * 1997-07-31 1999-02-23 Koyo Seiko Co Ltd 磁気軸受装置
CN1453559A (zh) * 2003-03-08 2003-11-05 东风汽车公司 曲轴弯曲变形的测量方法
CN101424512A (zh) * 2008-12-18 2009-05-06 浙江大学 一种多圈重合三点法检测高速主轴径向运动误差的方法
US20100122592A1 (en) * 2008-11-20 2010-05-20 Nag-Jeam Kim System for measuring deflection of rotating shaft in wireless manner
CN203224222U (zh) * 2013-04-08 2013-10-02 成都赛腾自动化工程有限公司 高速电机转轴位移多向监控装置
CN105258634A (zh) * 2015-11-27 2016-01-20 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮轴承转轴的弯曲检测方法和系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2957126A (en) * 1958-05-16 1960-10-18 Westinghouse Electric Corp Non-electronic eccentricity detector
US20040011149A1 (en) * 2002-04-03 2004-01-22 David Carroll Integrated angular and radial position sensor
US7264430B2 (en) * 2004-02-26 2007-09-04 Federal Mogul World Wide, Inc Magnetically levitated high-speed spindle for shaping irregular surfaces
CN100437018C (zh) * 2006-09-26 2008-11-26 武汉理工大学 集成化磁悬浮转子动态位移测量装置
CN101033936A (zh) * 2007-01-30 2007-09-12 常熟理工学院 对径两点六位测量轧辊圆度误差和机床主轴运动误差的方法
CN101727091A (zh) * 2008-10-29 2010-06-09 牛俊华 工件轴线弯曲变形自动检测与诊断系统
CN201535668U (zh) * 2009-07-06 2010-07-28 上海宝业机电科技有限公司 一种芯棒不直度测量装置
EP2498076A1 (en) * 2011-03-11 2012-09-12 Hexagon Technology Center GmbH Wear-Monitoring of a Gearbox in a Power Station
CN102829748B (zh) * 2012-08-22 2014-10-22 清华大学 一种立式转子磁力轴承间隙自动检测方法
CN104457555A (zh) * 2013-09-12 2015-03-25 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮系统中轴悬浮中心检测方法和装置
CN104457649B (zh) * 2013-09-12 2018-12-04 珠海格力电器股份有限公司 磁悬浮系统中的轴检测方法和装置
US9816965B2 (en) * 2014-11-14 2017-11-14 General Electric Company Method to detect vibration nodes between a sensor and an actuator in a rotatable component
CN104776813B (zh) * 2015-04-15 2017-09-01 石家庄钢铁有限责任公司 一种便携式棒材弯曲度激光测量仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151050A (ja) * 1997-07-31 1999-02-23 Koyo Seiko Co Ltd 磁気軸受装置
CN1453559A (zh) * 2003-03-08 2003-11-05 东风汽车公司 曲轴弯曲变形的测量方法
US20100122592A1 (en) * 2008-11-20 2010-05-20 Nag-Jeam Kim System for measuring deflection of rotating shaft in wireless manner
CN101424512A (zh) * 2008-12-18 2009-05-06 浙江大学 一种多圈重合三点法检测高速主轴径向运动误差的方法
CN203224222U (zh) * 2013-04-08 2013-10-02 成都赛腾自动化工程有限公司 高速电机转轴位移多向监控装置
CN105258634A (zh) * 2015-11-27 2016-01-20 珠海格力节能环保制冷技术研究中心有限公司 磁悬浮轴承转轴的弯曲检测方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3379198A4 *

Also Published As

Publication number Publication date
CN105258634A (zh) 2016-01-20
CN105258634B (zh) 2019-01-15
EP3379198A4 (en) 2018-12-19
DK3379198T3 (da) 2022-03-07
US10746527B2 (en) 2020-08-18
EP3379198A1 (en) 2018-09-26
EP3379198B1 (en) 2021-12-01
US20180356202A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
WO2017088569A1 (zh) 磁悬浮轴承转轴的弯曲检测方法和系统
JP4842784B2 (ja) 管の探傷用追従装置及びこれを用いた管の自動探傷装置
CN104786093B (zh) 旋转工具的旋转振动以及动平衡的调整机构
US8347713B2 (en) Apparatus and method for measuring dynamic rigidity of a main shaft of a machine tool
JP6189153B2 (ja) 梃子式測定器
JP2009270913A (ja) 軸受隙間計測装置
CN110048554B (zh) 用于监控磁性轴承装置的方法
JP2009095227A (ja) 特に工作機械の、傾斜した駆動軸の特性量の確定方法、並びにその適切な使用方法、対応する装置及びその使用方法
JP2009095227A6 (ja) 特に工作機械の、傾斜した駆動軸の特性量の確定方法、並びにその適切な使用方法、対応する装置及びその使用方法
CN103210282A (zh) 线性位置传感器系统
CN105352466A (zh) 一种轴向位移检测装置、方法和磁悬浮轴承
JP2008102049A (ja) バランス修正装置
JP2001033233A (ja) 管状および棒状被検査物の検査方法
CN103076127B (zh) 一种销轴检测装置及具有该装置的工程机械
JP6053414B2 (ja) 軸受監視システム、回転機械、及び軸受の監視方法
CN106197217B (zh) 一种轴承套圈外径精度准确检测装置
CN208902084U (zh) 一种特大型轴承套圈外径尺寸的检测装置
CN207610853U (zh) 旋转机械偏摆量的测量装置
JP6961513B2 (ja) 軸受監視装置及びこの軸受監視装置を備えた回転機械
JP2013217660A (ja) 誘起アキシアル荷重の測定装置及びその測定方法
CN103954207A (zh) 一种大中型阶梯式回转件产品同轴度的检测方法
JP2009068843A (ja) 摩擦計測装置及び摩擦計測方法
CN210512897U (zh) 一种锭子环跳检测装置
JP6033122B2 (ja) 気液比取得システム、軸受装置、回転機械及び気液比取得方法
JP2007114099A (ja) 回転速度検出装置及びそれを用いた圧延材搬送速度検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16867796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016867796

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016867796

Country of ref document: EP

Effective date: 20180621