WO2017088158A1 - 一种蓝相液晶显示面板及蓝相液晶显示面板的制作方法 - Google Patents

一种蓝相液晶显示面板及蓝相液晶显示面板的制作方法 Download PDF

Info

Publication number
WO2017088158A1
WO2017088158A1 PCT/CN2015/095722 CN2015095722W WO2017088158A1 WO 2017088158 A1 WO2017088158 A1 WO 2017088158A1 CN 2015095722 W CN2015095722 W CN 2015095722W WO 2017088158 A1 WO2017088158 A1 WO 2017088158A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
substrate
liquid crystal
corrugated
phase liquid
Prior art date
Application number
PCT/CN2015/095722
Other languages
English (en)
French (fr)
Inventor
唐岳军
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US14/899,104 priority Critical patent/US10274794B2/en
Publication of WO2017088158A1 publication Critical patent/WO2017088158A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Definitions

  • the present invention relates to the field of liquid crystal display, and in particular to a method for fabricating a blue phase liquid crystal display panel and a blue phase liquid crystal display panel.
  • blue phase liquid crystals have outstanding advantages for liquid crystal display: the response time is in the sub-millisecond range, and no overdrive technology (Over Drive) is required, that is, high-speed driving of 240 Hz or higher can be realized.
  • Field sequential color timing display does not require the orientation layer necessary for ordinary liquid crystal display, which not only simplifies the manufacturing process, but also reduces the cost; macroscopically, the blue phase liquid crystal is optically isotropic, so that the blue phase liquid crystal display device has a viewing angle Wide and dark state features.
  • the blue phase liquid crystal display panel is that the driving voltage is too large.
  • the industry generally adopts a method of improving the performance of the blue phase liquid crystal material or optimizing the electrode structure to solve the problem. Improving the performance of blue phase liquid crystal materials, such as the preparation of a blue phase liquid crystal material with a large Kerr constant, involves a complicated process of synthesizing a blue phase liquid crystal material, and the development cost is very expensive.
  • the blue phase liquid crystal display panel can only adopt a horizontal electric field and cannot adopt a vertical electric field.
  • the blue phase liquid crystal exhibits a biaxial crystal having a birefringence characteristic under the action of an electric field, and its optical axis direction is parallel to the electric field direction.
  • the blue phase liquid crystal Under the action of the vertical electric field, the blue phase liquid crystal will be "stretched" in the vertical direction, the optical axis direction is vertical, and the normally incident polarized light does not generate birefringence after passing through the vertical direction of the blue phase liquid crystal. There is no change in phase.
  • the polarization state of the polarized light after passing through the blue phase liquid crystal is the same as the case where no voltage is applied to the blue phase liquid crystal display panel.
  • the vertical gray electric field cannot be adjusted to realize the display of each gray scale of the blue phase liquid crystal display panel.
  • the blue phase liquid crystal Under the action of the horizontal electric field, the blue phase liquid crystal generates birefringence to the vertically incident polarized light, and the display picture can be realized by adjusting the electric field intensity.
  • the blue phase liquid crystal display panel generally uses an In-Plane Switching (IPS) driving method.
  • IPS In-Plane Switching
  • an electrode is formed on the corrugated convex surface of the upper and lower substrates respectively, and a corrugated electrode solution filled with a blue phase liquid crystal between the two electrodes can effectively reduce the blue phase liquid.
  • the driving voltage of the crystal has extremely strict requirements on the assembly accuracy of the two substrates. Once the assembly offset occurs, the thickness of the blue phase liquid crystal display panel is seriously changed, which affects the display effect and reduces the yield.
  • the blue phase liquid crystal display panel includes: a first substrate and a second substrate disposed in parallel at intervals; the first substrate includes a first substrate and a first electrode layer and a second electrode layer disposed in sequence adjacent to a side of the second substrate, and the first electrode a first space for accommodating the blue phase liquid crystal is disposed between the layer and the second electrode layer, a second space is disposed between the second electrode layer and the second substrate, and a channel is formed between the first space and the second space;
  • the electrode layer and the second electrode layer cooperate to have an electric field component parallel to the first substrate or the second substrate in the first space; the first electrode layer and the second electrode layer together form a continuous or intermittent wave structure, and the wave structure is composed of a plurality of concave-convex first electrode units and a corrugated unit defined by the second electrode unit, wherein the first electrode unit belongs to the first electrode layer, the second electrode unit belongs to the second electrode layer, and the channel
  • the wave structure is a sawtooth structure; at least a part of the plurality of corrugated units In the transmissive display region, at least another portion of the corrugated unit is a reflective display region, and the first pitch formed between the first electrode layer and the second electrode layer in the corrugated unit corresponding to the reflective display region is greater than the corresponding corresponding to the transmissive display region a second spacing formed between the first electrode layer and the second electrode layer in the corrugated unit, and the driving voltages of the corrugated cells corresponding to the transmissive and reflective display regions are the same, and the corrugation angles are the same, so that the light passes through the transmissive type
  • the phase delay of the corrugated unit corresponding to the reflective display area is the same.
  • the blue phase liquid crystal display panel includes: a first substrate and a second substrate disposed in parallel at intervals; the first substrate includes a first substrate and a first electrode layer and a second electrode layer disposed in sequence adjacent to a side of the second substrate, and the first electrode a first space for accommodating the blue phase liquid crystal is disposed between the layer and the second electrode layer, a second space is disposed between the second electrode layer and the second substrate, and a channel is formed between the first space and the second space; First electrode layer and The two electrode layers cooperate to have an electric field component parallel to the first substrate or the second substrate in the first space.
  • the first electrode layer and the second electrode layer together form a continuous or intermittent wave structure, and the wave structure is composed of a plurality of concave-convex first electrode units and a corrugated unit defined by the second electrode unit, and the first electrode unit belongs to The first electrode layer, the second electrode unit belongs to the second electrode layer, the channel is a through hole formed in the second electrode layer, or the corrugated unit defined by the first electrode unit and the second electrode unit is open at both ends.
  • the wave structure is a sawtooth structure.
  • At least a part of the plurality of corrugated cells is a transmissive display region, and at least another portion of the corrugated cells is a reflective display region, and the corrugated cells corresponding to the reflective display region are between the first electrode layer and the second electrode layer
  • the first pitch formed is larger than a second pitch formed between the first electrode layer and the second electrode layer in the corrugated cell corresponding to the transmissive display region, and the driving voltage of the corrugated cell corresponding to the transmissive and reflective display regions is the same
  • the corrugation angles are the same, so that the phase delays are consistent when the light passes through the corrugated cells corresponding to the transmissive and reflective display regions.
  • the corrugated unit of at least a part of the plurality of corrugated units is a transmissive display area, and at least another part of the corrugated unit is a reflective display area, and the inclined angle of the corrugated unit corresponding to the reflective display area is smaller than the corrugated unit corresponding to the transmissive display area.
  • the inclination angle of the corrugated cell corresponding to the transmissive and reflective display regions is the same, and the first pitch formed between the first electrode layer and the second electrode layer in the corrugated cell corresponding to the reflective display region is equal to the transmissive type
  • a second pitch formed between the first electrode layer and the second electrode layer in the corrugated cell corresponding to the display region is such that the phase delay is uniform when the light passes through the corrugated cells corresponding to the transmissive and reflective display regions, respectively.
  • a part of the corrugated unit is a transmissive display area, and the other part is a reflective display area.
  • a first pitch formed between the first electrode layer and the second electrode layer is larger than that in the transmissive display area.
  • a second pitch formed between the first electrode layer and the second electrode layer, and the driving voltages of the transmissive and reflective display regions are the same, and the corrugation angles are the same, so that the light passes through the transmissive and reflective display regions respectively. The delay is consistent.
  • part of the corrugated unit is a transmissive display area
  • the other part is a reflective display area
  • the tilt angle of the reflective display area in the corrugated unit is smaller than the tilt angle of the transmissive display area, and the corresponding driving of the transmissive and reflective display areas
  • the voltage is the same, and the first pitch formed between the first electrode layer and the second electrode layer in the reflective display region is equal to the second pitch formed between the first electrode layer and the second electrode layer in the transmissive display region,
  • the phase delay is consistent when the light passes through the transmissive and reflective display regions, respectively.
  • the first substrate further includes a first protruding structure disposed between the first electrode layer and the first substrate, and an insulating layer disposed on at least one surface of the second electrode layer.
  • the present invention provides a method of fabricating a blue phase liquid crystal display panel.
  • the method for fabricating the blue phase liquid crystal display panel includes: sequentially disposing a first electrode layer and a second electrode layer on the first substrate to form a first substrate, and providing an unclosed accommodation between the first electrode layer and the second electrode layer a first space of the blue phase liquid crystal; a second substrate is fixed on a side of the first substrate on which the second electrode layer is formed, a second space is disposed between the second electrode layer and the second substrate, and the first space and the second space are Having a channel; injecting a blue phase liquid crystal into the second space, the blue phase liquid crystal enters the first space through the channel; wherein the first electrode layer and the second electrode layer cooperate to make the first space have parallel to the first substrate or the first The electric field component of the two substrates.
  • first electrode layer and the second electrode layer are sequentially disposed on the first substrate to form the first substrate, including: forming a first protrusion structure on the first substrate; forming a first electrode on the surface of the first protrusion structure a layer; a photoresist is coated on the first substrate, the height of the photoresist is greater than the height of the first protrusion structure; a mask with a pattern is placed on the photoresist, and the mask is passed through at least two different directions by ultraviolet rays.
  • the non-pattern portion of the film illuminates and softens a portion of the photoresist, and after removing the mask, the softened photoresist is stripped to form a second raised structure, and the second raised structure is composed of the remaining photoresist and wraps the first raised structure
  • Forming a second electrode layer on a surface of the second bump structure etching the via hole on the second electrode layer and/or etching the first bump structure, the first electrode layer, the second bump structure, and the second electrode layer
  • To form an opening irradiate with ultraviolet rays to remove the remaining photoresist, and the remaining photoresist is softened and discharged through the through holes and/or the openings, and the first substrate, the first electrode layer and the second electrode layer together constitute the first Substrate.
  • the method further comprises the steps of: forming an insulating layer on the surface of the second protruding structure; and/or forming the second electrode layer on the surface of the second protruding structure.
  • the step further includes the step of forming an insulating layer on the surface of the second electrode layer.
  • the invention has the beneficial effects that the first electrode layer and the second electrode layer are sequentially disposed on the first substrate, and the blue phase liquid crystal is injected into the first space between the first electrode layer and the second electrode layer, and the first electrode layer Cooperating with the second electrode layer to have an electric field component parallel to the first substrate or the second substrate in the first space, the blue phase liquid crystal exhibits anisotropy under the action of the electric field, and the transmitted light can be adjusted by adjusting the electric field intensity Strong, to achieve the purpose of the display.
  • the electric field between the first electrode layer and the second electrode layer is deeply distributed in the blue phase liquid crystal layer in the first space, and the driving voltage can be effectively reduced, and the first electrode layer and the second electrode layer are both disposed on the first substrate. The requirement for the accuracy of the assembly of the first substrate and the second substrate is lowered, and the yield is improved.
  • FIG. 1 is a schematic structural view of a first embodiment of a blue phase liquid crystal display panel of the present invention
  • Figure 2 is a cross-sectional view along line AB of the first embodiment of the blue phase liquid crystal display panel of the present invention
  • FIG. 3 is a cross-sectional view of the AB cross section of the first embodiment of the blue phase liquid crystal display panel of the present invention when it is energized;
  • Figure 4 is a cross-sectional view showing an embodiment of a blue phase liquid crystal display panel of the present invention.
  • Figure 5 is a cross-sectional view showing a second embodiment of the blue phase liquid crystal display panel of the present invention.
  • Figure 6 is a cross-sectional view showing a third embodiment of the blue phase liquid crystal display panel of the present invention.
  • Figure 7 is a cross-sectional view showing a fourth embodiment of the blue phase liquid crystal display panel of the present invention.
  • Figure 8 is a cross-sectional view showing a fifth embodiment of the blue phase liquid crystal display panel of the present invention.
  • FIG. 9 is a flow chart showing a first embodiment of a method for fabricating a blue phase liquid crystal display panel of the present invention.
  • FIG. 10 is a flow chart of a second embodiment of a method for fabricating a blue phase liquid crystal display panel of the present invention.
  • FIG. 11 is a schematic view showing a first protrusion structure formed in a second embodiment of the method for fabricating a blue phase liquid crystal display panel of the present invention
  • FIG. 12 is a first electrode layer formed in a second embodiment of the method for fabricating a blue phase liquid crystal display panel of the present invention.
  • FIG. 13 is a schematic view showing a photoresist coated in a second embodiment of the method for fabricating a blue phase liquid crystal display panel of the present invention.
  • FIG. 14 is a schematic view showing a second convex structure formed in a second embodiment of the method for fabricating a blue phase liquid crystal display panel of the present invention.
  • FIG. 15 is a schematic view showing a second electrode layer formed in a second embodiment of the method for fabricating a blue phase liquid crystal display panel of the present invention.
  • 16 is a schematic view of the second embodiment of the method for fabricating a blue phase liquid crystal display panel of the present invention with the remaining photoresist removed;
  • FIG. 17 is a schematic view showing an insulating layer formed on a second bump structure in an embodiment of a method for fabricating a blue phase liquid crystal display panel of the present invention
  • FIG. 18 is a schematic view showing an insulating layer formed on a second electrode layer in an embodiment of a method for fabricating a blue phase liquid crystal display panel of the present invention.
  • a first embodiment of the blue phase liquid crystal display panel of the present invention includes a first substrate 10 and a second substrate 20, and the first substrate 10 and the second substrate 20 are arranged in parallel at intervals.
  • the first substrate 10 includes a first substrate 11, a first electrode layer 12, and a second electrode layer 13 which are sequentially disposed.
  • the first electrode layer 12 is connected to a driving circuit (not shown) through the first electrode 121, and the second electrode layer 13 is connected to the driving circuit through the second electrode 131.
  • the first electrode layer 12 may be a pixel electrode, and the second electrode layer 13 may be a common electrode, or may be reversed.
  • the electrode layer shown in the drawing is an elongated protrusion parallel to the long side of the pixel, and the electrode layer may have other shapes, for example, a plurality of strips, blocks, and the like which are spaced apart.
  • the direction of the electrode layer can be set according to the actual display needs and the matching polarizer, for example, at an angle of 45 degrees with the long side of the pixel, or parallel with the short side of the pixel.
  • the first electrode layer 12 and the second electrode layer 13 together form a wave structure, and the wave structure is composed of a plurality of bumps
  • the first electrode unit 61 and the corrugated unit 60 defined by the second electrode unit 62 are configured.
  • the first electrode unit 61 belongs to the first electrode layer 12, and the second electrode unit 62 belongs to the second electrode layer 13.
  • the three corrugated elements are drawn to form a continuous wave structure, and the wave structure may also be intermittent.
  • the number of corrugated units constituting the wave structure is also not limited.
  • the wave structure drawn in the figure is zigzag, and the wave structure may also be a wedge shape, a trapezoidal shape, a circular arc shape or a combination of different shapes.
  • a first space 30 is disposed between the first electrode layer 12 and the second electrode layer 13, and a second space 40 is disposed between the second electrode layer 13 and the second substrate 20.
  • the blue phase liquid crystal is distributed in the first space 30 and the first Two spaces 40.
  • a polarizer (not shown) is disposed under the first substrate 10 and above the second substrate 20.
  • the polarization directions of the two polarizers are perpendicular to each other.
  • the blue phase liquid crystal exhibits optical isotropy, and the incident light passes through the blue phase liquid crystal, and the polarization direction is still perpendicular to the upper polarizer, and cannot pass through the upper polarizer to appear black.
  • the first electrode layer 12 and the second electrode layer 13 cooperate to have an oblique electric field in the first space 30 (refer to the first space in FIG. 3 for the electric field direction).
  • the arrow in 30 points to), the first electrode layer 12 shown in the figure is at a high level, and the second electrode layer 13 is at a low level, which may be reversed.
  • the blue phase liquid crystal exhibits a uniaxial crystal having birefringence characteristics, and its optical axis direction is parallel to the electric field direction.
  • the oblique electric field has a horizontal electric field component parallel to the first substrate 10 or the second substrate 20.
  • the blue phase liquid crystal can be incident on the light perpendicular to the first substrate 10 (the illumination direction can be referred to in FIG. 3 by The arrow extending from the first substrate 10 to the second substrate 20 is directed to generate birefringence, and the incident light changes in phase after passing through the blue phase liquid crystal, and can pass through the upper polarizer.
  • the effective optical anisotropy ⁇ n effect of the blue phase liquid crystal increases as the tilt electric field increases, and the transmitted light intensity also increases.
  • the light transmittance can be adjusted by adjusting the electric field intensity to realize the gray scale display, and the color filter film can be used to realize the color display.
  • the angle between the first electrode unit 61 and the first substrate is 45°,
  • the two electrode unit 62 is parallel to the first electrode unit 61.
  • the polarization directions of the two polarizers are perpendicular to each other, and the panel is opaque when not energized, and is called a normally black panel. It is also possible to set the polarization directions of the two polarizers to be parallel to each other, so that the panel transmits light when the power is not supplied, and the transmitted light intensity decreases as the voltage increases during energization, which is called a normally white panel.
  • both the first electrode layer 12 and the second electrode layer 13 are disposed on the first substrate 11, and the requirements for the assembly accuracy of the first substrate 10 and the second substrate 20 are lowered, and the yield is improved.
  • the first substrate 110 further includes an insulating layer 114 and a first bump structure 115.
  • the insulating layer 114 is provided on the upper and lower surfaces of the second electrode layer 113.
  • the insulating layer 114 corresponding to the position at which the via hole is formed in the second electrode layer 113 is also removed, and the insulating layer 114 corresponding to the position at which the opening is formed is also removed to form a channel between the first space 130 and the second space 140.
  • the first bump structure 115 is disposed between the first electrode layer 112 and the first substrate 111.
  • the insulating layer 114 may be made of a resin or the like for supporting the second electrode layer 113.
  • the upper and lower surfaces of the second electrode layer 113 shown in the drawing have an insulating layer 114, and it can be considered that the second electrode layer 113 is embedded in the supporting structure formed by the insulating layer 114.
  • the insulating layer 114 may also be provided only on one surface of the second electrode layer 113.
  • the first bump structure 115 may be a transparent material such as silicon nitride, silicon oxide, or resin for supporting the first electrode layer 112. This embodiment can be combined with any of the embodiments of the blue phase liquid crystal display panel of the present invention.
  • the second embodiment of the blue phase liquid crystal display panel of the present invention is based on the first embodiment of the blue phase liquid crystal display panel of the present invention, and the corrugated cells of the plurality of corrugated cells 201, 202 and 203.
  • 201 and 202 are transmissive display areas
  • the corrugated unit 203 is a reflective display area.
  • Reflective display A reflective layer 215 is disposed in the first substrate 211 below the corrugated unit 203 corresponding to the region.
  • the number of corrugated cells in the transmissive display area and the number of corrugated cells in the reflective display area may be determined according to display requirements.
  • the first pitch between the first electrode layer 212 and the second electrode layer 213 is d1
  • the second pitch between the second electrode layers 213 is d2
  • the driving voltages of the corrugated cells 201, 202, and 203 are the same
  • the corrugation inclination angle is ⁇ 0
  • the first substrate 210 may further include an insulating layer (not shown) provided on the upper surface and/or the lower surface of the second electrode layer 213.
  • the blue phase liquid crystal is not shown in the drawing, but referring to the first embodiment of the blue phase liquid crystal display panel of the present invention, it can be known that the blue phase liquid crystal is distributed in the first space 230 and the second space 240.
  • the effective optical anisotropy ⁇ n effect is a component of ⁇ n in the horizontal direction, which increases as the electric field strength increases, so increasing the distance between the electrodes causes the ⁇ n effect to decrease.
  • the d effect is the distance of the light passing through the blue phase liquid crystal in the vertical direction
  • the phase delay decreases as the pitch of the electrode layers increases.
  • the incident light passes through the two reflective display areas and passes through the transmissive display area only once.
  • the phase delay is uniform, and then the phase delay of the incident light passing through the reflective display region is half of the transmissive display region, d1>d2. Since the incident light direction of the reflective display region is not completely perpendicular to the surface of the display panel, the calculation formula of the above phase delay needs to be corrected, and the accurate values of d1, d2, and ⁇ 0 are obtained through experiments.
  • Different test panels can be manufactured according to several preset d1, d2, and ⁇ 0 , and the transmission area d2 is equal to the value near half of the reflection area d1, and the same blue phase liquid crystal is filled in the test panel.
  • the VT (voltage-transmittance) curves of the transmissive display area and the reflective display area of these test panels are plotted. For the same test panel, when there is no ambient light, the backlight is turned on, and the VT curve of the transmission display is measured; when the backlight is off, the VT curve of the reflection display is measured under strong ambient light conditions.
  • test panel d1 and d2 It can be used as a reference value in actual production.
  • the second electrode layer 213 has the same size, and the first electrode layer 212 of the corrugated cells 201, 202 corresponding to the transmissive display region is smaller in size than the reflection.
  • the corrugated unit 203 corresponding to the display area is such that d2 ⁇ d1 and the phase delay is uniform when the light passes through the corrugated unit corresponding to the transmissive or reflective display area.
  • the size of the first electrode layer 212 of the transmissive display region and the reflective display region is the same, and the size of the second electrode layer 213 of the transmissive display region is larger than that of the reflective display region, so that d2 ⁇ d1 and the phase delay is satisfied.
  • the sizes of the first electrode layer 212 and the second electrode layer 213 of the transmissive display region and the reflective display region are different, but d2 ⁇ d1 while satisfying the phase delay requirement.
  • the display panel is divided into a transmissive display region and a reflective display region in units of corrugated cells, and the light is respectively transmitted through the transmissive display.
  • the phase delay is consistent between the area and the reflective display area, and the transmissive display area and the reflective display area have uniform photoelectric characteristics, and the transflective display panel is realized, so that the display using the display panel is in a strong illumination environment and a weak illumination environment. Have a good display effect.
  • a third embodiment of the blue phase liquid crystal display panel of the present invention is a corrugated cell in a plurality of corrugated cells 301, 302, and 303 based on the first embodiment of the blue phase liquid crystal display panel of the present invention.
  • 301, 302 are transmissive display areas
  • the corrugated unit 303 is a reflective display area.
  • a reflective layer 315 is disposed in the first substrate 311 below the corrugated unit 303 corresponding to the reflective display region.
  • the number of corrugated cells in the transmissive display area and the number of corrugated cells in the reflective display area may be determined according to display requirements.
  • the angle of inclination of the corrugated unit 303 corresponding to the reflective display area is ⁇ , and the pair of transmissive display areas
  • the inclination angles of the corrugated units 301, 302 are ⁇ , and the driving voltages of the corrugated units 301, 302, and 303 are the same, and the spacing between the first electrode layer 312 and the second electrode layer 313 is the same.
  • the first substrate 310 may further include an insulating layer (not shown) provided on the upper surface and/or the lower surface of the second electrode layer 313.
  • the blue phase liquid crystal is not shown in the drawing, but referring to the first embodiment of the blue phase liquid crystal display panel of the present invention, it can be known that the blue phase liquid crystal is distributed in the first space 330 and the second space 340.
  • the angle between the blue phase liquid crystal forming the optical anisotropy and the horizontal plane and the inclination angle of the corrugated unit are mutually complementary angles, and it is known that ⁇ > ⁇ .
  • the initial experimental ⁇ , ⁇ values are calculated and set according to the formula of the phase delay T. Since the incident light direction of the reflective display area is not completely perpendicular to the surface of the display panel, the formula needs to be corrected, and the precise ⁇ and ⁇ values are obtained through experiments.
  • Different test panels can be manufactured according to a preset number of ⁇ , ⁇ , and the same blue phase liquid crystal is filled in the test panel.
  • the V-T (voltage-transmittance) curves of the transmissive display area and the reflective display area of these test panels are plotted.
  • the backlight when there is no ambient light, the backlight is turned on, and the V-T curve of the transmission display is measured; when the backlight is off, the V-T curve of the reflection display is measured under strong ambient light conditions.
  • the alpha and beta of the test panel are It can be used as a reference value in actual production.
  • the corrugated cells 301, 302 corresponding to the transmissive display regions and the corrugated cells 303 corresponding to the reflective display regions have the same height, and the corrugated cells 301, 302 have a smaller width than the corrugated cells 303, such that ⁇ > ⁇ , and Meet the phase delay requirements.
  • the widths of the corrugated units 301, 302 and the corrugated unit 303 are the same, and the height of the corrugated units 301, 302 is greater than the corrugated unit 303, so that ⁇ > ⁇ , And meet the requirements of phase delay.
  • Either the height and width of the corrugated units 301, 302 and the corrugated unit 303 are inconsistent, but let ⁇ > ⁇ and satisfy the requirement of phase delay.
  • the display panel is divided into a transmissive display region and a reflective display region in units of corrugated cells, and the light passes through the transmissive display region and the reflection respectively.
  • the phase display is consistent in the display area, and the transmissive display area and the reflective display area have consistent photoelectric characteristics, and the transflective display panel is realized, so that the display using the display panel is better in a strong illumination environment and a weak illumination environment. The display effect.
  • a fourth embodiment of the blue phase liquid crystal display panel of the present invention is based on the first embodiment of the blue phase liquid crystal display panel of the present invention, and a part of the corrugated cells 401, 402 and 403 is of a transmissive type.
  • the display area and the other part are reflective display areas.
  • a reflective layer 415 is disposed in the first substrate 411 below the reflective display region.
  • a first pitch formed between the first electrode layer 412 and the second electrode layer 413 in the reflective display region is d3, and a second interval formed between the first electrode layer 412 and the second electrode layer 413 in the transmissive display region
  • the pitch is d4, d3>d4, and the driving voltages of the transmissive and reflective display regions are the same, and the corrugation inclination angle is the same.
  • the first substrate 210 may further include an insulating layer (not shown) provided on the upper surface and/or the lower surface of the second electrode layer 213.
  • the blue phase liquid crystal is not shown in the drawing, but referring to the first embodiment of the blue phase liquid crystal display panel of the present invention, it can be known that the blue phase liquid crystal is distributed in the first space 430 and the second space 440.
  • the relationship between d3 and d4 is adjusted so that the phase delay is uniform when the light passes through the transmissive and reflective display regions, respectively.
  • d3 and d4 For the calculation and testing of the relationship between the d3 and the d4, reference may be made to the corresponding description in the second embodiment of the blue phase liquid crystal display panel of the present invention, and details are not described herein again.
  • the present embodiment converges the transmissive display region and the reflective display region in one corrugated unit, and the transflective display panel can also be realized.
  • a fifth embodiment of the blue phase liquid crystal display panel of the present invention is based on the first embodiment of the blue phase liquid crystal display panel of the present invention, and a part of the corrugated cells 501, 502 and 503 is a transmissive display.
  • the area, the other part is the reflective display area.
  • the first substrate 511 below the reflective display area A reflective layer 515 is provided in the middle.
  • the angle of inclination of the reflective display region is ⁇
  • the angle of inclination of the transmissive display region is ⁇ , ⁇ ⁇ ⁇ .
  • the transmissive and reflective display regions have the same driving voltage, and the first pitch formed between the first electrode layer 512 and the second electrode layer 513 in the reflective display region is equal to the first electrode layer 512 in the transmissive display region and A second pitch formed between the second electrode layers 513.
  • the first substrate 510 may further include an insulating layer (not shown) provided on the upper surface and/or the lower surface of the second electrode layer 513.
  • the blue phase liquid crystal is not shown in the drawing, but referring to the first embodiment of the blue phase liquid crystal display panel of the present invention, it can be known that the blue phase liquid crystal is distributed in the first space 530 and the second space 540.
  • the present embodiment converges the transmissive display region and the reflective display region in one corrugated unit, and the transflective display panel can also be realized.
  • a first embodiment of a method for fabricating a blue phase liquid crystal display panel of the present invention includes:
  • a first space that does not close the blue phase liquid crystal is disposed between the first electrode layer and the second electrode layer.
  • the first electrode layer 12 may be a pixel electrode, and the second electrode layer 13 may be a common electrode, or may be reversed.
  • the second substrate is parallel to the first substrate, and the second substrate is fixed to the first substrate by the auxiliary spacer.
  • a second space is disposed between the second electrode layer and the second substrate, and a channel is formed between the first space and the second space.
  • the blue phase liquid crystal is distributed in the first space and the second space.
  • the first electrode layer and the second electrode layer cooperate to have an electric field component parallel to the first substrate or the second substrate in the first space, and the blue phase liquid crystal can be incident perpendicular to the first substrate under the action of the electric field
  • the light produces birefringence, and the phase changes after the light passes through the blue phase liquid crystal.
  • the light transmittance can be adjusted by adjusting the intensity of the electric field to realize the display. Picture.
  • the electric field between the first electrode layer and the second electrode layer is deeply distributed in the blue phase liquid crystal layer in the first space, and the driving voltage can be effectively reduced compared with the conventional IPS electrode.
  • the first electrode layer and the second electrode layer are both disposed on the first substrate, which reduces the requirement for the accuracy of the assembly of the first substrate and the second substrate, and improves the yield.
  • a second embodiment of the method for fabricating a blue phase liquid crystal display panel of the present invention is based on the first embodiment of the method for fabricating a blue phase liquid crystal display panel of the present invention, and step S110 is performed on the first substrate.
  • the first electrode layer and the second electrode layer are sequentially disposed to form the first substrate, including:
  • reference numeral 101 denotes a first substrate
  • reference numeral 1 denotes a first convex structure which is a solid structure and is made of a transparent material such as silicon nitride, silicon oxide or resin.
  • reference numeral 102 denotes a first electrode layer.
  • reference numeral 2 denotes a photoresist coated on the first substrate 101 and the first electrode layer 102, and the height of the photoresist 2 is greater than the height of the first protruding structure 1;
  • S204 placing a mask with a pattern on the photoresist, irradiating and softening a portion of the photoresist through the non-pattern portion of the mask from at least two different directions, removing the mask, and peeling off the softened photoresist to form Second raised structure;
  • reference numeral 4 denotes a mask which can be irradiated from at least two different directions (refer to the direction of the arrow in the drawing) through a non-pattern portion of the mask 4 using unidirectional ultraviolet rays and Softening it, removing the mask 4, coating the developer on the irradiated photoresist layer, and then rinsing away the photoresist dissolved in the developer with deionized water while being separated from the bottom of the photoresist layer.
  • the unsoftened photoresist 22 is also washed away by deionized water.
  • the remaining photoresist constitutes the second raised structure 3, and the second raised structure 3 surrounds the first raised structure 1.
  • reference numeral 103 denotes a second electrode layer, and the first electrode layer 102 and the second electrode layer 103 form a wave structure.
  • S206 etching a via hole on the second electrode layer and/or etching the first bump structure, the first electrode layer, the second bump structure, and the second electrode layer to form an opening;
  • Both the through hole and the opening can serve as a channel, connecting the first space between the first electrode layer 102 and the second electrode layer 103 and the second space between the second electrode layer 103 and the second substrate for use in a subsequent step.
  • S207 irradiating with ultraviolet rays to remove the remaining photoresist, and the remaining photoresist is softened and discharged through the through holes and/or the openings;
  • the space left after the remaining photoresist is discharged is used to infuse the blue phase liquid crystal.
  • the first substrate 101, the first electrode layer 102, and the second electrode layer 103 together constitute a first substrate.
  • the three continuous corrugated cells formed in Fig. 16 constitute a continuous wave structure, and the wave structure may also be intermittent, and the number of corrugated cells constituting the wave structure is also not limited.
  • the wave structure drawn in the figure is zigzag, and the wave structure may also be a wedge shape, a trapezoidal shape, a circular arc shape or a combination of different shapes.
  • the inclination angle of each corrugated unit and the spacing between the first electrode layer 102 and the second electrode layer 103 are identical, corresponding to the display in the first embodiment of the blue phase liquid crystal display panel of the present invention. panel. Further, by changing the shapes of the first convex structure 1 and the second convex structure 3, the inclination angle of the corrugated unit or the spacing between the first electrode layer 102 and the second electrode layer 103 is changed, and the display panel is divided into transmissions.
  • the display area and the reflective display area are such that the phase delay is uniform when the light passes through the transmissive display area and the reflective display area, respectively, and a reflective layer is disposed in the first substrate 101 corresponding to the reflective display area, so that the transflective display can be prepared. panel.
  • the insulating layer is formed on the upper surface and/or the lower surface of the second electrode layer. This embodiment can be combined with any of the embodiments of the method for fabricating the blue phase liquid crystal display panel of the present invention.
  • a first insulating layer 222 is formed on the upper surface of the second bump structure 221, and after this step, a second electrode layer is formed on the upper surface of the first insulating layer 222 such that the first insulating layer 222 is disposed at The lower surface of the second electrode layer.
  • the second insulating layer 224 is formed on the upper surface of the second electrode layer 223.
  • the steps illustrated in Figure 17 and the steps illustrated in Figure 18 may both be performed to form two layers of insulating layer; or alternatively performed to form an insulating layer.
  • the first insulating layer 222 and the second insulating layer 224 may be made of a resin or the like for supporting the second electrode layer 223.
  • the subsequent step of etching the via at the position where the via or the opening is to be opened, the corresponding insulating layer and the second electrode layer 223 are collectively removed to form a via.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种蓝相液晶显示面板,包括:间隔平行设置的第一基板(10)和第二基板(20),第一基板(10)包括第一基底(11)及邻近第二基板(20)一侧依次设置的第一电极层(12)、第二电极层(13),第一电极层(12)和第二电极层(13)之间设有容纳蓝相液晶的第一空间(30),第二电极层(13)和第二基板(20)之间设有第二空间(40),且第一空间(30)和第二空间(40)之间具有通道;其中,第一电极层(12)和第二电极层(13)共同作用使得第一空间(30)内具有平行于第一基板(10)或第二基板(20)的电场分量。还提供了一种蓝相液晶显示面板的制作方法。

Description

一种蓝相液晶显示面板及蓝相液晶显示面板的制作方法 【技术领域】
本发明涉及液晶显示领域,特别是涉及一种蓝相液晶显示面板及蓝相液晶显示面板的制作方法。
【背景技术】
与目前广泛使用的液晶相比,蓝相液晶用于液晶显示具有突出的优点:响应时间在亚毫秒范围内,无需采用过驱动技术(Over Drive),即可以实现240Hz以上的高速驱动,可以实现场序彩色时序显示;不需要普通液晶显示所必需的取向层,不但简化了制造工艺,也降低了成本;宏观上,蓝相液晶是光学各向同性的,从而使蓝相液晶显示装置具有视角宽、暗态好的特点。
然而蓝相液晶显示面板面临的主要问题之一是驱动电压过大,目前业界通常采用改进蓝相液晶材料性能或者优化电极结构的方式来解决这一问题。改进蓝相液晶材料性能,例如制备大克尔常数的蓝相液晶材料,涉及合成蓝相液晶材料的复杂过程,研发成本十分昂贵。
目前蓝相液晶显示面板只能采用水平电场而无法采用垂直电场,原因在于:蓝相液晶在电场的作用下表现为一个具有双折射特性的单轴晶体,其光轴方向平行于电场方向。在垂直电场的作用下,蓝相液晶将在垂直方向上被“拉伸”,其光轴方向是垂直的,而垂直入射的偏振光通过该垂直方向拉伸的蓝相液晶后不产生双折射,没有相位的改变,偏振光通过蓝相液晶后的偏振状态与蓝相液晶显示面板未施加电压的情况相同,不能通过调节垂直电场来实现蓝相液晶显示面板的各灰阶的显示。而在水平电场的作用下,蓝相液晶对垂直入射的偏振光产生双折射,可以通过调节电场强度来实现显示画面。蓝相液晶显示面板一般使用平面转换(In-Plane Switching,IPS)驱动方式。
现有技术中提出了分别在上下基板上的凹凸配合的波纹状凸起表面形成电极,在两层电极中间填充蓝相液晶的波纹形电极方案,可以有效的降低蓝相液 晶的驱动电压。但是这一结构对两个基板的组立精度要求极为严苛,一旦发生组立偏移就会导致蓝相液晶显示面板的盒厚发生严重变化,影响显示效果,降低良率。
【发明内容】
为了至少部分解决以上问题,本发明提出了一种蓝相液晶显示面板。该蓝相液晶显示面板包括:间隔平行设置的第一基板和第二基板,第一基板包括第一基底及邻近第二基板一侧依次设置的第一电极层、第二电极层,第一电极层和第二电极层之间设有容纳蓝相液晶的第一空间,第二电极层和第二基板之间设有第二空间,且第一空间和第二空间之间具有通道;第一电极层和第二电极层共同作用使得第一空间内具有平行于第一基板或第二基板的电场分量;第一电极层及第二电极层一起形成连续或断续的波浪结构,波浪结构由多个凹凸配合的第一电极单元、第二电极单元所定义的波纹单元构成,第一电极单元属于第一电极层,第二电极单元属于第二电极层,通道是第二电极层上开设的通孔,或是第一电极单元、第二电极单元所定义的波纹单元两端敞口;其中,波浪结构是锯齿结构;多个波纹单元中至少一部分的波纹单元是透射型显示区域,至少另一部分波纹单元是反射型显示区域,反射型显示区域对应的波纹单元中,第一电极层和第二电极层之间形成的第一间距,大于透射型显示区域对应的波纹单元中的第一电极层和第二电极层之间形成的第二间距,且透射型、反射型显示区域对应的波纹单元的驱动电压相同、波纹倾斜角度相同,以使得光线分别经过透射型、反射型显示区域对应的波纹单元时相位延迟一致。
为了至少部分解决以上问题,本发明提出了一种蓝相液晶显示面板。该蓝相液晶显示面板包括:间隔平行设置的第一基板和第二基板,第一基板包括第一基底及邻近第二基板一侧依次设置的第一电极层、第二电极层,第一电极层和第二电极层之间设有容纳蓝相液晶的第一空间,第二电极层和第二基板之间设有第二空间,且第一空间和第二空间之间具有通道;其中,第一电极层和第 二电极层共同作用使得第一空间内具有平行于第一基板或第二基板的电场分量。
其中,第一电极层及第二电极层一起形成连续或断续的波浪结构,波浪结构由多个凹凸配合的第一电极单元、第二电极单元所定义的波纹单元构成,第一电极单元属于第一电极层,第二电极单元属于第二电极层,通道是第二电极层上开设的通孔,或是第一电极单元、第二电极单元所定义的波纹单元两端敞口。
其中,波浪结构是锯齿结构。
其中,多个波纹单元中至少一部分的波纹单元是透射型显示区域,至少另一部分波纹单元是反射型显示区域,反射型显示区域对应的波纹单元中,第一电极层和第二电极层之间形成的第一间距,大于透射型显示区域对应的波纹单元中的第一电极层和第二电极层之间形成的第二间距,且透射型、反射型显示区域对应的波纹单元的驱动电压相同、波纹倾斜角度相同,以使得光线分别经过透射型、反射型显示区域对应的波纹单元时相位延迟一致。
其中,多个波纹单元中至少一部分的波纹单元是透射型显示区域,至少另一部分波纹单元是反射型显示区域,反射型显示区域对应的波纹单元的倾斜角度小于透射型显示区域对应的波纹单元中的倾斜角度,且透射型、反射型显示区域对应的波纹单元的驱动电压相同,反射型显示区域对应的波纹单元中的第一电极层和第二电极层之间形成的第一间距等于透射型显示区域对应的波纹单元中的第一电极层和第二电极层之间形成的第二间距,以使得光线分别经过透射型、反射型显示区域对应的波纹单元时相位延迟一致。
其中,波纹单元中的一部分是透射型显示区域,另一部分是反射型显示区域,反射型显示区域中,第一电极层和第二电极层之间形成的第一间距,大于透射型显示区域中的第一电极层和第二电极层之间形成的第二间距,且透射型、反射型显示区域的驱动电压相同、波纹倾斜角度相同,以使得光线分别经过透射型、反射型显示区域时相位延迟一致。
其中,波纹单元的一部分是透射型显示区域,另一部分是反射型显示区域,波纹单元中反射型显示区域的倾斜角度小于透射型显示区域的倾斜角度,且透射型、反射型显示区域对应的驱动电压相同,反射型显示区域中的第一电极层和第二电极层之间形成的第一间距等于透射型显示区域中的第一电极层和第二电极层之间形成的第二间距,以使得光线分别经过透射型、反射型显示区域时相位延迟一致。
其中,第一基板进一步包括设于第一电极层和第一基底之间的第一凸起结构,以及设于第二电极层的至少一个表面的绝缘层。
为了至少部分解决以上问题,本发明提出了一种蓝相液晶显示面板的制作方法。该蓝相液晶显示面板的制作方法包括:在第一基底上依次设置第一电极层、第二电极层以形成第一基板,第一电极层和第二电极层之间设有不封闭的容纳蓝相液晶的第一空间;在第一基底的形成第二电极层一侧固定第二基板,第二电极层和第二基板之间设有第二空间,且第一空间和第二空间之间具有通道;向第二空间内灌注蓝相液晶,蓝相液晶通过通道进入第一空间;其中,第一电极层和第二电极层共同作用使得第一空间内具有平行于第一基板或第二基板的电场分量。
其中,在第一基底上依次设置第一电极层、第二电极层以形成第一基板包括:在第一基底上形成第一凸起结构;在第一凸起结构的表面上形成第一电极层;在第一基底上涂布光刻胶,光刻胶的高度大于第一凸起结构的高度;在光刻胶上放置带有图形的掩膜,用紫外线从至少两个不同方向通过掩膜的无图形部分照射并软化部分光刻胶,去除掩膜后剥离软化的光刻胶以形成第二凸起结构,第二凸起结构由剩余的光刻胶组成并包裹第一凸起结构;在第二凸起结构的表面上形成第二电极层;在第二电极层上蚀刻通孔和/或蚀刻第一凸起结构、第一电极层、第二凸起结构和第二电极层以形成敞口;用紫外线照射以去除剩余的光刻胶,剩余的光刻胶软化后通过通孔和/或敞口排出,第一基底、第一电极层和第二电极层共同组成第一基板。
其中,在第二凸起结构表面形成第二电极层的步骤之前还包括步骤:在第二凸起结构的表面上形成绝缘层;和/或在第二凸起结构表面形成第二电极层的步骤之后还包括步骤:在第二电极层的表面上形成绝缘层。
本发明的有益效果是:在第一基底上依次设置第一电极层和第二电极层,在第一电极层和第二电极层之间的第一空间内注入蓝相液晶,第一电极层和第二电极层共同作用使得第一空间内具有平行于第一基板或第二基板的电场分量,蓝相液晶在电场的作用下表现出各向异性,通过调节电场强度可以调节透过的光强,达到显示画面的目的。第一电极层和第二电极层之间的电场深入分布在第一空间内的蓝相液晶层,可以有效的降低驱动电压,并且第一电极层和第二电极层都设置在第一基底上,降低对第一基板和第二基板的组立精度的要求,提高良率。
【附图说明】
图1是本发明蓝相液晶显示面板第一实施例的结构示意图;
图2是本发明蓝相液晶显示面板第一实施例的AB截面剖视图;
图3是本发明蓝相液晶显示面板第一实施例通电时的AB截面剖视图;
图4是本发明蓝相液晶显示面板一个实施例的截面图;
图5是本发明蓝相液晶显示面板第二实施例的截面图;
图6是本发明蓝相液晶显示面板第三实施例的截面图;
图7是本发明蓝相液晶显示面板第四实施例的截面图;
图8是本发明蓝相液晶显示面板第五实施例的截面图;
图9是本发明蓝相液晶显示面板的制作方法第一实施例的流程图;
图10是本发明蓝相液晶显示面板的制作方法第二实施例的流程图;
图11是本发明蓝相液晶显示面板的制作方法第二实施例中形成第一凸起结构的示意图;
图12是本发明蓝相液晶显示面板的制作方法第二实施例中形成第一电极层 的示意图;
图13是本发明蓝相液晶显示面板的制作方法第二实施例中涂布光刻胶的示意图;
图14是本发明蓝相液晶显示面板的制作方法第二实施例中形成第二凸起结构的示意图;
图15是本发明蓝相液晶显示面板的制作方法第二实施例中形成第二电极层的示意图;
图16是本发明蓝相液晶显示面板的制作方法第二实施例中去除剩余光刻胶后的示意图;
图17是本发明蓝相液晶显示面板的制作方法一实施例中在第二凸起结构上形成绝缘层的示意图;
图18是本发明蓝相液晶显示面板的制作方法一实施例中在第二电极层上形成绝缘层的示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
结合图1和图2,本发明蓝相液晶显示面板的第一实施例包括:第一基板10和第二基板20,第一基板10和第二基板20间隔平行设置。第一基板10包括依次设置的第一基底11、第一电极层12和第二电极层13。
第一电极层12通过第一电极121连接到驱动电路(图中未画出),第二电极层13通过第二电极131连接到驱动电路。可以设置第一电极层12为像素电极,第二电极层13为公共电极,也可以反过来。图中所示的电极层为平行于像素长边的长条状凸起,电极层也可以为其他形状,例如多个间隔设置的条状、块状等。电极层的方向可以根据实际显示需要和配合偏光片进行设置,例如与像素长边成45度夹角,或者与像素短边平行等。
第一电极层12和第二电极层13一起形成波浪结构,波浪结构由多个凹凸 配合的第一电极单元61、第二电极单元62所定义的波纹单元60构成。第一电极单元61属于第一电极层12,第二电极单元62属于第二电极层13。图中所画为三个波纹单元组成了连续的波浪结构,波浪结构也可以是断续的,组成波浪结构的波纹单元的数量也并无限定。图中所画的波浪结构为锯齿形,波浪结构也可以为楔形、梯形、圆弧形或者不同形状的组合等。
第一电极层12和第二电极层13之间设有第一空间30,第二电极层13和第二基板20之间设有第二空间40,蓝相液晶分布在第一空间30和第二空间40。第一空间30和第二空间40之间具有通道,通道为第二电极层13上开设的通孔51和/或电极层两端的敞口52。制备蓝相液晶显示面板时,剩余的光刻胶从通道排出;灌注液晶时,蓝相液晶通过通道进入第一空间30。
在第一基板10下方和第二基板20上方分别设置一片偏光片(图中未画出),两片偏光片的偏振方向相互垂直。当蓝相液晶显示面板未施加电压时,蓝相液晶呈现出光学各向同性,入射光经过蓝相液晶后偏振方向仍与上偏光片垂直,无法通过上偏光片,呈现黑色。
如图3所示,当蓝相液晶显示面板施加电压时,第一电极层12和第二电极层13共同作用使得第一空间30内具有倾斜电场(电场方向可参考图3中的第一空间30内的箭头指向),图中所示的第一电极层12为高电平,第二电极层13为低电平,也可以反过来。在倾斜电场的作用下,蓝相液晶表现为具有双折射特性的单轴晶体,其光轴方向与电场方向平行。倾斜电场具有平行于第一基板10或第二基板20的水平电场分量,在水平电场分量的作用下,蓝相液晶能够对垂直于第一基板10入射的光线(光照方向可参考图3中由第一基板10延伸至第二基板20的箭头指向)产生双折射,入射光经过蓝相液晶后相位发生改变,可以透过上偏光片。蓝相液晶的有效光学各向异性Δneffect随倾斜电场的增加而增加,透过的光强度也随之增加。可以通过调节电场强度来调节透光率,实现灰阶显示,配合彩色滤光膜,可以实现彩色显示。
为了提高透光率,优选第一电极单元61与第一基底的夹角为45°附近,第 二电极单元62平行于第一电极单元61。为了最大程度降低蓝相液晶的驱动电压,可以优化设置条状凸起电极的高度使得电极结构匹配像素尺寸。
上述方案中两片偏光片的偏振方向相互垂直,不通电时面板不透光,被称为常黑型面板。也可以将两片偏光片的偏振方向设为相互平行,这样在不通电时面板透光,通电时随着电压的增加,透过的光强度随之减小,被称为常白型面板。
由上述实施例可知,由于利用的是第一电极层12和第二电极层13两个面状电极层之间的电场,电场深入分布在第一空间30内的蓝相液晶层,相较与传统的IPS电极可以有效的降低驱动电压。并且第一电极层12和第二电极层13都设置在第一基底11上,降低对第一基板10和第二基板20的组立精度的要求,提高良率。
如图4所示,在本发明蓝相液晶显示面板的一个实施例中,第一基板110进一步包括绝缘层114和第一凸起结构115。绝缘层114设于第二电极层113的上下两个表面上。第二电极层113上开设通孔的位置对应的绝缘层114也被去除,形成敞口的位置对应的绝缘层114也被去除,以形成第一空间130与第二空间140之间的通道。第一凸起结构115设于第一电极层112和第一基底111之间。
绝缘层114可以使用树脂等材料,用于支撑第二电极层113。图中所示的第二电极层113的上下表面都有绝缘层114,可以认为第二电极层113是镶嵌在绝缘层114形成的支撑结构中。绝缘层114也可以只设置在第二电极层113的一个表面上。
第一凸起结构115可以是氮化硅、氧化硅、树脂等透明材料,用于支撑第一电极层112。本实施例可以与本发明蓝相液晶显示面板的任一实施例相结合。
如图5所示,本发明蓝相液晶显示面板的第二实施例,是在本发明蓝相液晶显示面板的第一实施例的基础上,多个波纹单元201、202和203中的波纹单元201、202是透射型显示区域,波纹单元203是反射型显示区域。反射型显示 区域对应的波纹单元203下方的第一基底211中设有反射层215。透射型显示区域中波纹单元的数量和反射型显示区域中波纹单元的数量可根据显示需求而定。
反射型显示区域对应的波纹单元203中,第一电极层212和第二电极层213之间的第一间距为d1,透射型显示区域对应的波纹单元201、202中的第一电极层212和第二电极层213之间的第二间距为d2,且波纹单元201、202和203的驱动电压相同、波纹倾斜角度均为α0。第一基板210可以进一步包括设于第二电极层213的上表面和/或下表面上的绝缘层(图中未画出)。图中未画出蓝相液晶,但参考本发明蓝相液晶显示面板的第一实施例,可以得知蓝相液晶分布在第一空间230和第二空间240中。
调节d1与d2的关系,以使得光线分别经过透射型、反射型显示区域对应的波纹单元时相位延迟一致。蓝相液晶的Δn=ne-n0=λKE2,其中λ为入射光的
Figure PCTCN2015095722-appb-000001
晶而言,其有效光学各向异性Δneffect是Δn在水平方向上的分量,随电场强度增大而增大,因此增加电极之间距离会使得Δneffect减小。同时又因为deffect是光线在垂直方向上经过蓝相液晶的距离,所以在波纹倾斜角度不变的情况下增大电极层间距会使得T=Δneffect*deffect减小,即入射光经过液晶的相位延迟随电极层的间距增大而减小。入射光要经过两次反射型显示区域,而只经过透射型显示区域一次。要求光线分别经过透射型、反射型显示区域对应的波纹单元时相位延迟一致,那么入射光单次经过反射型显示区域的相位延迟是透射型显示区域的一半,d1>d2。由于反射型显示区域的入射光方向不是完全垂直于显示面板表面,上述相位延迟的计算公式需要做修正,通过实验得出精确的d1、d2、α0数值。
可以按照预先设定的几个d1、d2、α0制造不同的测试面板,选取透射区d2等于反射区d1一半附近数值,在测试面板中填充同一种蓝相液晶。绘制这几 个测试面板的透射型显示区域和反射型显示区域的V-T(电压-透过率)曲线。对于同一测试面板,当无环境光时,开启背光,测量的为透射显示的V-T曲线;当背光关闭时,在强环境光条件下量测的为反射显示的V-T曲线。
若一测试面板的透射型显示区域和反射型显示区域的曲线在误差范围内一致,则说明入射光分别经过透射型显示区域和反射型显示区域时相位延迟一致,那么该测试面板的d1和d2就可以作为实际生产中的参考值。
图中所画的透射型显示区域和反射型显示区域对应的波纹单元中,第二电极层213的尺寸相同,透射型显示区域对应的波纹单元201、202的第一电极层212的尺寸小于反射型显示区域对应的波纹单元203,从而使得d2<d1,并满足光线分别经过透射型、反射型显示区域对应的波纹单元时相位延迟一致。也可以是透射型显示区域和反射型显示区域的第一电极层212的尺寸相同,透射型显示区域的第二电极层213的尺寸大于反射型显示区域,从而使得d2<d1,并满足相位延迟的要求。或者透射型显示区域和反射型显示区域的第一电极层212和第二电极层213的尺寸都不相同,但使得d2<d1,同时满足相位延迟的要求。
由上述实施例可知,通过调整第一电极层212和第二电极层213的间距,将显示面板以波纹单元为单位分为透射型显示区域和反射型显示区域,并使得光线分别经过透射型显示区域和反射型显示区域时相位延迟一致,透射型显示区域和反射型显示区域具有一致的光电特性,实现透反型显示面板,令使用该显示面板的显示器在强光照环境和弱光照环境下都有较好的显示效果。
如图6所示,本发明蓝相液晶显示面板的第三实施例,是在本发明蓝相液晶显示面板的第一实施例的基础上,多个波纹单元301、302和303中的波纹单元301、302是透射型显示区域,波纹单元303是反射型显示区域。反射型显示区域对应的波纹单元303下方的第一基底311中设有反射层315。透射型显示区域中波纹单元的数量和反射型显示区域中波纹单元的数量可根据显示需求而定。
反射型显示区域对应的波纹单元303的倾斜角度为β,透射型显示区域对 应的波纹单元301、302的倾斜角度为α,且波纹单元301、302和303的驱动电压相同,第一电极层312和第二电极层313之间的间距相同。第一基板310可以进一步包括设于第二电极层313的上表面和/或下表面上的绝缘层(图中未画出)。图中未画出蓝相液晶,但参考本发明蓝相液晶显示面板的第一实施例,可以得知蓝相液晶分布在第一空间330和第二空间340中。
调节α和β的关系以使得光线分别经过透射型、反射型显示区域对应的波纹单元时相位延迟一致。参考本发明蓝相液晶显示面板的第二实施例中的公式和计算方法,电极层之间的间距相同则蓝相液晶的Δn=ne-n0相同,形成光学各向异性的蓝相液晶与水平面的夹角越小其有效光学各向异性Δneffect越大,因此相同的电极层间距时,形成光学各向异性的蓝相液晶与水平面的夹角越小其相位延迟T越大,一般而言形成光学各向异性的蓝相液晶与水平面的夹角与波纹单元的倾斜角度互为余角,可知α>β。根据相位延迟T的公式计算并设置初始实验α、β数值。由于反射型显示区域的入射光方向不是完全垂直于显示面板表面,需要对公式进行修正,通过实验得出精确α、β数值。
可以按照预先设定的几个α、β制造不同的测试面板,在测试面板中填充同一种蓝相液晶。绘制这几个测试面板的透射型显示区域和反射型显示区域的V-T(电压-透过率)曲线。对于同一测试面板,当无环境光时,开启背光,测量的为透射显示的V-T曲线;当背光关闭时,在强环境光条件下量测的为反射显示的V-T曲线。
若一测试面板的透射型显示区域和反射型显示区域的曲线在误差范围内一致,则说明入射光分别经过透射型显示区域和反射型显示区域时相位延迟一致,那么该测试面板的α和β就可以作为实际生产中的参考值。
图中所画的透射型显示区域对应的波纹单元301、302和反射型显示区域对应的波纹单元303的高度一致,而波纹单元301、302的宽度小于波纹单元303,从而使得α>β,并满足相位延迟的要求。或者波纹单元301、302和波纹单元303的宽度一致,波纹单元301、302的高度大于波纹单元303,从而使得α>β, 并满足相位延迟的要求。或者波纹单元301、302和波纹单元303的高度和宽度都不一致,但使得α>β,并满足相位延迟的要求。
由上述实施例可知,通过调整波纹单元301、302和303的倾斜角度,将显示面板以波纹单元为单位分为透射型显示区域和反射型显示区域,并使得光线分别经过透射型显示区域和反射型显示区域时相位延迟一致,透射型显示区域和反射型显示区域具有一致的光电特性,实现透反型显示面板,令使用该显示面板的显示器在强光照环境和弱光照环境下都有较好的显示效果。
如图7所示,本发明蓝相液晶显示面板的第四实施例,是在本发明蓝相液晶显示面板的第一实施例的基础上,波纹单元401、402和403中的一部分是透射型显示区域,另一部分是反射型显示区域。反射型显示区域下方的第一基底411中设有反射层415。
反射型显示区域中的第一电极层412和第二电极层413之间形成的第一间距为d3,透射型显示区域中的第一电极层412和第二电极层413之间形成的第二间距为d4,d3>d4,且透射型、反射型显示区域的驱动电压相同、波纹倾斜角度相同。第一基板210可以进一步包括设于第二电极层213的上表面和/或下表面上的绝缘层(图中未画出)。图中未画出蓝相液晶,但参考本发明蓝相液晶显示面板的第一实施例,可以得知蓝相液晶分布在第一空间430和第二空间440中。
调节d3与d4的关系,以使得光线分别经过透射型、反射型显示区域时相位延迟一致。d3与d4关系的计算以及测试可参考本发明蓝相液晶显示面板的第二实施例中的对应描述,在此不再赘述。
本实施例与本发明蓝相液晶显示面板的第二实施例相比,将透射型显示区域和反射型显示区域集中在一个波纹单元里,同样可以实现透反型显示面板。
如图8所示,本发明蓝相液晶显示面板的第五实施例,是在本发明蓝相液晶显示面板的第一实施例的基础上,波纹单元501、502和503的一部分是透射型显示区域,另一部分是反射型显示区域。反射型显示区域下方的第一基底511 中设有反射层515。
反射型显示区域的倾斜角度为ρ,透射型显示区域的倾斜角度为σ,ρ<σ。透射型、反射型显示区域对应的驱动电压相同,反射型显示区域中的第一电极层512和第二电极层513之间形成的第一间距等于透射型显示区域中的第一电极层512和第二电极层513之间形成的第二间距。第一基板510可以进一步包括设于第二电极层513的上表面和/或下表面上的绝缘层(图中未画出)。图中未画出蓝相液晶,但参考本发明蓝相液晶显示面板的第一实施例,可以得知蓝相液晶分布在第一空间530和第二空间540中。
调节ρ和σ的关系以使得光线分别经过透射型、反射型显示区域时相位延迟一致。ρ和σ关系的计算以及测试可参考本发明蓝相液晶显示面板的第三实施例中的对应描述,在此不再赘述。
本实施例与本发明蓝相液晶显示面板的第三实施例相比,将透射型显示区域和反射型显示区域集中在一个波纹单元里,同样可以实现透反型显示面板。
如图9所示,本发明蓝相液晶显示面板的制作方法的第一实施例包括:
S110:第一基底上依次设置第一电极层、第二电极层以形成第一基板;
第一电极层和第二电极层之间设有不封闭的容纳蓝相液晶的第一空间。可以设置第一电极层12为像素电极,第二电极层13为公共电极,也可以反过来。
S120:在第一基底的形成第二电极层一侧固定第二基板;
第二基板平行于第一基底,第二基板通过辅助隔垫物固定在第一基底上。第二电极层和第二基板之间设有第二空间,且第一空间和第二空间之间具有通道。
S130:向第二空间内灌注蓝相液晶,蓝相液晶通过通道进入第一空间;
蓝相液晶分布在第一空间和第二空间。通电时,第一电极层和第二电极层共同作用使得第一空间内具有平行于第一基板或第二基板的电场分量,在电场的作用下,蓝相液晶能够对垂直与第一基板入射的光线产生双折射,光线经过蓝相液晶后相位发生改变,可以通过调节电场的强度来调节透光率,实现显示 画面。
由上述实施例可知,第一电极层和第二电极层之间的电场深入分布在第一空间内的蓝相液晶层,相较与传统的IPS电极可以有效的降低驱动电压。并且第一电极层和第二电极层都设置在第一基底上,降低对第一基板和第二基板的组立精度的要求,提高良率。
如图10所示,本发明蓝相液晶显示面板的制作方法的第二实施例,是在本发明蓝相液晶显示面板的制作方法的第一实施例的基础上,步骤S110:第一基底上依次设置第一电极层、第二电极层以形成第一基板包括:
S201:在第一基底上形成第一凸起结构;
参阅图11,图中标号101表示第一基底,标号1表示第一凸起结构,该第一凸起结构为实心结构,采用氮化硅、氧化硅、树脂等透明材料制成。
S202:在第一凸起结构的表面上形成第一电极层;
参阅图12,图中标号102表示第一电极层。
S203:在第一基底上涂布光刻胶;
参阅图13,图中标号2表示涂布在第一基底101和第一电极层102上的光刻胶,光刻胶2的高度大于第一凸起结构1的高度;
S204:在光刻胶上放置带有图形的掩膜,用紫外线从至少两个不同方向通过掩膜的无图形部分照射并软化部分光刻胶,去除掩膜后剥离软化的光刻胶以形成第二凸起结构;
参阅图14,图中标号4表示掩膜,可以使用单向紫外线移动着从至少两个不同的方向(可参考图中的箭头方向)通过掩膜4的无图形部分照射部分光刻胶21并使其软化,去除掩膜4,在照射过的光刻胶层上涂布显影液,然后用去离子水冲洗走溶解于显影液中的光刻胶,同时与光刻胶层底部分离的部分未软化光刻胶22也被去离子水冲走。剩余的光刻胶组成了第二凸起结构3,并且第二凸起结构3包裹第一凸起结构1。
S205:在第二凸起结构的表面上形成第二电极层;
参阅图15,图中标号103表示第二电极层,第一电极层102和第二电极层103形成了波浪结构。
S206:在第二电极层上蚀刻通孔和/或蚀刻第一凸起结构、第一电极层、第二凸起结构和第二电极层以形成敞口;
通孔和敞口都可以作为通道,连通第一电极层102与第二电极层103之间的第一空间和第二电极层103与第二基板之间的第二空间,用于后续步骤中剩余光刻胶的排出和蓝相液晶的注入。
S207:用紫外线照射以去除剩余的光刻胶,剩余的光刻胶软化后通过通孔和/或敞口排出;
参阅图16,剩余的光刻胶排出之后留出的空间用于灌注蓝相液晶。第一基底101、第一电极层102和第二电极层103共同组成第一基板。
图16中所形成的三个连续的波纹单元组成了连续的波浪结构,波浪结构也可以是断续的,组成波浪结构的波纹单元的数量也并无限定。图中所画的波浪结构为锯齿形,波浪结构也可以为楔形、梯形、圆弧形或者不同形状的组合等。
图16中所形成的波浪结构中,各波纹单元的倾斜角度和第一电极层102与第二电极层103之间的间距一致,对应本发明蓝相液晶显示面板的第一实施例中的显示面板。此外,通过改变第一凸起结构1和第二凸起结构3的形状,来改变波纹单元的倾斜角度或第一电极层102与第二电极层103之间的间距,将显示面板分为透射型显示区域和反射型显示区域,使得光线分别经过透射型显示区域和反射型显示区域时相位延迟一致,并在反射型显示区域对应的第一基底101中设置反射层,可以制备透反型显示面板。
结合图17和图18,在本发明蓝相液晶显示面板的制作方法的一个实施例中还包括绝缘层的形成,绝缘层可形成在第二电极层的上表面和/或下表面上。本实施例可以与本发明蓝相液晶显示面板的制作方法的任一实施例相结合。
图17中第一绝缘层222形成在第二凸起结构221的上表面上,在此步骤之后在第一绝缘层222的上表面上形成第二电极层,使得第一绝缘层222设置在 第二电极层的下表面。图18中在第二凸起结构表面形成第二电极层223的步骤之后,第二绝缘层224形成在第二电极层223的上表面上。
图17示意的步骤和图18示意的步骤可以都执行以形成两层绝缘层;或者任意择一执行以形成一层绝缘层。第一绝缘层222和第二绝缘层224可以使用树脂等材料,用于支撑第二电极层223。在后续的蚀刻通道的步骤中,在要开设通孔或者敞口的位置,对应的绝缘层和第二电极层223一并被去除,以形成通道。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种蓝相液晶显示面板,其中,包括:
    间隔平行设置的第一基板和第二基板,所述第一基板包括第一基底及邻近第二基板一侧依次设置的第一电极层、第二电极层,所述第一电极层和所述第二电极层之间设有容纳蓝相液晶的第一空间,所述第二电极层和所述第二基板之间设有第二空间,且所述第一空间和所述第二空间之间具有通道;
    所述第一电极层和所述第二电极层共同作用使得第一空间内具有平行于所述第一基板或所述第二基板的电场分量;所述第一电极层及所述第二电极层一起形成连续或断续的波浪结构,所述波浪结构由多个凹凸配合的第一电极单元、第二电极单元所定义的波纹单元构成,所述第一电极单元属于所述第一电极层,所述第二电极单元属于所述第二电极层,所述通道是所述第二电极层上开设的通孔,或是所述第一电极单元、第二电极单元所定义的波纹单元两端敞口;
    其中,所述波浪结构是锯齿结构;
    所述多个波纹单元中至少一部分的所述波纹单元是透射型显示区域,至少另一部分所述波纹单元是反射型显示区域,所述反射型显示区域对应的波纹单元中,所述第一电极层和第二电极层之间形成的第一间距,大于所述透射型显示区域对应的波纹单元中的所述第一电极层和第二电极层之间形成的第二间距,且所述透射型、反射型显示区域对应的波纹单元的驱动电压相同、波纹倾斜角度相同,以使得光线分别经过所述透射型、反射型显示区域对应的波纹单元时相位延迟一致。
  2. 一种蓝相液晶显示面板,其中,包括:
    间隔平行设置的第一基板和第二基板,所述第一基板包括第一基底及邻近第二基板一侧依次设置的第一电极层、第二电极层,所述第一电极层和所述第二电极层之间设有容纳蓝相液晶的第一空间,所述第二电极层和所述第二基板之间设有第二空间,且所述第一空间和所述第二空间之间具有通道;
    其中,所述第一电极层和所述第二电极层共同作用使得第一空间内具有平行于所述第一基板或所述第二基板的电场分量。
  3. 根据权利要求2所述的蓝相液晶显示面板,其中,
    所述第一电极层及所述第二电极层一起形成连续或断续的波浪结构,所述波浪结构由多个凹凸配合的第一电极单元、第二电极单元所定义的波纹单元构成,所述第一电极单元属于所述第一电极层,所述第二电极单元属于所述第二电极层,所述通道是所述第二电极层上开设的通孔,或是所述第一电极单元、第二电极单元所定义的波纹单元两端敞口。
  4. 根据权利要求3所述的蓝相液晶显示面板,其中,
    所述波浪结构是锯齿结构。
  5. 根据权利要求3所述的蓝相液晶显示面板,其中,
    所述多个波纹单元中至少一部分的所述波纹单元是透射型显示区域,至少另一部分所述波纹单元是反射型显示区域,所述反射型显示区域对应的波纹单元中,所述第一电极层和第二电极层之间形成的第一间距,大于所述透射型显示区域对应的波纹单元中的所述第一电极层和第二电极层之间形成的第二间距,且所述透射型、反射型显示区域对应的波纹单元的驱动电压相同、波纹倾斜角度相同,以使得光线分别经过所述透射型、反射型显示区域对应的波纹单元时相位延迟一致。
  6. 根据权利要求3所述的蓝相液晶显示面板,其中,
    所述多个波纹单元中至少一部分的所述波纹单元是透射型显示区域,至少另一部分所述波纹单元是反射型显示区域,所述反射型显示区域对应的波纹单元的倾斜角度小于所述透射型显示区域对应的波纹单元中的倾斜角度,且所述透射型、反射型显示区域对应的波纹单元的驱动电压相同,所述反射型显示区域对应的波纹单元中的所述第一电极层和第二电极层之间形成的第一间距等于所述透射型显示区域对应的波纹单元中的所述第一电极层和第二电极层之间形成的第二间距,以使得光线分别经过所述透射型、反射型显示区域对应的波纹 单元时相位延迟一致。
  7. 根据权利要求3所述的蓝相液晶显示面板,其中,
    所述波纹单元中的一部分是透射型显示区域,另一部分是反射型显示区域,所述反射型显示区域中,所述第一电极层和第二电极层之间形成的第一间距,大于所述透射型显示区域中的所述第一电极层和第二电极层之间形成的第二间距,且所述透射型、反射型显示区域的驱动电压相同、波纹倾斜角度相同,以使得光线分别经过所述透射型、反射型显示区域时相位延迟一致。
  8. 根据权利要求3所述的蓝相液晶显示面板,其中,
    所述波纹单元的一部分是透射型显示区域,另一部分是反射型显示区域,所述波纹单元中反射型显示区域的倾斜角度小于所述透射型显示区域的倾斜角度,且所述透射型、反射型显示区域对应的驱动电压相同,所述反射型显示区域中的所述第一电极层和第二电极层之间形成的第一间距等于所述透射型显示区域中的所述第一电极层和第二电极层之间形成的第二间距,以使得光线分别经过所述透射型、反射型显示区域时相位延迟一致。
  9. 根据权利要求3所述的蓝相液晶显示面板,其中,
    所述第一基板进一步包括设于所述第一电极层和所述第一基底之间的第一凸起结构,以及设于所述第二电极层的至少一个表面的绝缘层。
  10. 一种蓝相液晶显示面板的制作方法,其中,包括:
    在第一基底上依次设置第一电极层、第二电极层以形成第一基板,所述第一电极层和所述第二电极层之间设有不封闭的容纳蓝相液晶的第一空间;
    在所述第一基底的形成第二电极层一侧固定第二基板,所述第二电极层和所述第二基板之间设有第二空间,且所述第一空间和所述第二空间之间具有通道;
    向所述第二空间内灌注蓝相液晶,所述蓝相液晶通过所述通道进入所述第一空间;
    其中,所述第一电极层和第二电极层共同作用使得第一空间内具有平行于 所述第一基板或第二基板的电场分量。
  11. 根据权利要求10所述的制作方法,其中,
    所述在第一基底上依次设置第一电极层、第二电极层以形成第一基板包括:
    在所述第一基底上形成第一凸起结构;
    在所述第一凸起结构的表面上形成所述第一电极层;
    在所述第一基底上涂布光刻胶,所述光刻胶的高度大于所述第一凸起结构的高度;
    在所述光刻胶上放置带有图形的掩膜,用紫外线从至少两个不同方向通过所述掩膜的无图形部分照射并软化部分所述光刻胶,去除所述掩膜后剥离所述软化的光刻胶以形成第二凸起结构,所述第二凸起结构由剩余的所述光刻胶组成并包裹所述第一凸起结构;
    在所述第二凸起结构的表面上形成第二电极层;
    在所述第二电极层上蚀刻通孔和/或蚀刻所述第一凸起结构、所述第一电极层、所述第二凸起结构和所述第二电极层以形成敞口;
    用紫外线照射以去除剩余的所述光刻胶,剩余的所述光刻胶软化后通过所述通孔和/或所述敞口排出,所述第一基底、所述第一电极层和所述第二电极层共同组成所述第一基板。
  12. 根据权利要求11所述的制作方法,其中,
    在所述第二凸起结构表面形成第二电极层的步骤之前还包括步骤:
    在所述第二凸起结构的表面上形成绝缘层;
    和/或在所述第二凸起结构表面形成第二电极层的步骤之后还包括步骤:
    在所述第二电极层的表面上形成绝缘层。
PCT/CN2015/095722 2015-11-23 2015-11-27 一种蓝相液晶显示面板及蓝相液晶显示面板的制作方法 WO2017088158A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/899,104 US10274794B2 (en) 2015-11-23 2015-11-27 Blue-phase liquid crystal panels and manufacturing methods of liquid crystal panels thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510822960.0A CN105242465B (zh) 2015-11-23 2015-11-23 一种蓝相液晶显示面板及蓝相液晶显示面板的制作方法
CN201510822960.0 2015-11-23

Publications (1)

Publication Number Publication Date
WO2017088158A1 true WO2017088158A1 (zh) 2017-06-01

Family

ID=55040154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095722 WO2017088158A1 (zh) 2015-11-23 2015-11-27 一种蓝相液晶显示面板及蓝相液晶显示面板的制作方法

Country Status (3)

Country Link
US (1) US10274794B2 (zh)
CN (1) CN105242465B (zh)
WO (1) WO2017088158A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018072806A1 (en) * 2016-10-18 2018-04-26 Baden-Württemberg Stiftung Ggmbh Method of fabricating a multi-aperture system for foveated imaging and corresponding multi-aperture system
US10451936B1 (en) * 2018-04-12 2019-10-22 Sharp Kabushiki Kaisha Thin two-dimensional dimming backlight with low zone visibility
CN109597250B (zh) * 2018-12-26 2021-06-01 Tcl华星光电技术有限公司 蓝相液晶面板的制作方法及其立体电极的制作方法
CN112631027B (zh) * 2020-12-30 2022-02-18 惠科股份有限公司 一种显示面板及其制作方法和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231027A (zh) * 2011-06-29 2011-11-02 四川大学 一种采用波纹形电极的透反蓝相液晶显示器
KR20120069458A (ko) * 2010-12-20 2012-06-28 엘지디스플레이 주식회사 블루상 모드 액정표시장치 및 이의 제조방법
CN105093720A (zh) * 2015-08-03 2015-11-25 武汉华星光电技术有限公司 蓝相液晶显示模组、蓝相液晶显示器及其制作方法
CN105182651A (zh) * 2015-08-03 2015-12-23 武汉华星光电技术有限公司 蓝相液晶显示模组、蓝相液晶显示器及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171740A (ja) * 2005-12-26 2007-07-05 Epson Imaging Devices Corp 液晶装置
US8654292B2 (en) * 2009-05-29 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
JP5381804B2 (ja) * 2010-02-25 2014-01-08 セイコーエプソン株式会社 映像処理回路、映像処理方法、液晶表示装置および電子機器
JP5546525B2 (ja) * 2011-12-13 2014-07-09 株式会社ジャパンディスプレイ 液晶表示装置
JP6190709B2 (ja) * 2013-12-04 2017-08-30 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置
CN105093764B (zh) * 2015-08-07 2017-12-08 武汉华星光电技术有限公司 半透反式蓝相液晶显示器及其液晶显示模组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069458A (ko) * 2010-12-20 2012-06-28 엘지디스플레이 주식회사 블루상 모드 액정표시장치 및 이의 제조방법
CN102231027A (zh) * 2011-06-29 2011-11-02 四川大学 一种采用波纹形电极的透反蓝相液晶显示器
CN105093720A (zh) * 2015-08-03 2015-11-25 武汉华星光电技术有限公司 蓝相液晶显示模组、蓝相液晶显示器及其制作方法
CN105182651A (zh) * 2015-08-03 2015-12-23 武汉华星光电技术有限公司 蓝相液晶显示模组、蓝相液晶显示器及其制作方法

Also Published As

Publication number Publication date
CN105242465A (zh) 2016-01-13
CN105242465B (zh) 2018-03-13
US20180039142A1 (en) 2018-02-08
US10274794B2 (en) 2019-04-30

Similar Documents

Publication Publication Date Title
TWI480651B (zh) 液晶顯示裝置及其製造方法
TWI494647B (zh) 液晶顯示器及其製造方法
WO2014183397A1 (zh) 显示装置
KR101358223B1 (ko) 배향막과 액정표시소자, 배향막 형성방법 및 액정표시소자 제조방법
TWI398711B (zh) 畫素結構及顯示面板
WO2017088158A1 (zh) 一种蓝相液晶显示面板及蓝相液晶显示面板的制作方法
ITUD980090A1 (it) Metodo di produzione di due domini all'interno di uno strato di cristallo liquido, un dispositivo di visualizzazione a
KR20120010748A (ko) 액정표시장치 및 그 제조방법
TW200532320A (en) Liquid crystal display device and method of manufacturing liquid crystal display device
WO2015158123A1 (zh) 柔性显示面板和柔性显示器
US8154695B2 (en) Liquid crystal display and method of fabricating the same
WO2012121330A1 (ja) 液晶表示装置
WO2019084995A1 (zh) 液晶显示装置及其制造方法
KR20090054746A (ko) 광위상 지연 필름, 그 제조 방법 및 이를 구비한 표시 장치
US9581869B2 (en) In-plane switching mode liquid crystal display device and fabrication method thereof
KR101963560B1 (ko) 반투과형 블루상 액정 디스플레이 및 그 액정 디스플레이 모듈
WO2013166807A1 (zh) 蓝相液晶面板和显示装置
WO2013010491A1 (zh) 半透射半反射液晶显示器及其制作方法
KR19980023082A (ko) 고분자박막 배향방법 및 이를 이용한 액정배향방법과 액정 셀 및 그의 제조방법
KR101778297B1 (ko) 위상지연층을 구비하는 액정표시장치 및 상기 위상지연층 형성방법
JP2005505020A (ja) 表面の波状によって形成された多重領域効果を持つ液晶表示装置
JP3045628B2 (ja) 液晶表示素子の製造方法
CN103293788A (zh) 液晶显示装置
WO2021174638A1 (zh) 液晶显示面板及其制备方法和液晶显示器
CN113777834B (zh) 一种液晶微透镜阵列及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14899104

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909069

Country of ref document: EP

Kind code of ref document: A1