WO2017086435A1 - Regenerative power amount control system for hybrid vehicle, hybrid vehicle, and regenerative power amount control method for hybrid vehicle - Google Patents

Regenerative power amount control system for hybrid vehicle, hybrid vehicle, and regenerative power amount control method for hybrid vehicle Download PDF

Info

Publication number
WO2017086435A1
WO2017086435A1 PCT/JP2016/084253 JP2016084253W WO2017086435A1 WO 2017086435 A1 WO2017086435 A1 WO 2017086435A1 JP 2016084253 W JP2016084253 W JP 2016084253W WO 2017086435 A1 WO2017086435 A1 WO 2017086435A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid vehicle
amount
electric energy
regenerative
regenerative power
Prior art date
Application number
PCT/JP2016/084253
Other languages
French (fr)
Japanese (ja)
Inventor
竜 山角
晃浩 稲村
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201680067475.XA priority Critical patent/CN108290571B/en
Publication of WO2017086435A1 publication Critical patent/WO2017086435A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a regenerative electric energy control system for a hybrid vehicle, a hybrid vehicle, and a regenerative electric energy control method for a hybrid vehicle. More specifically, the present disclosure includes an engine and a motor generator that are power sources for running the vehicle, and a control device.
  • the present invention relates to a regenerative electric energy control system for a hybrid vehicle including a hybrid system, a hybrid vehicle, and a regenerative electric energy control method for a hybrid vehicle.
  • HEV hybrid vehicle
  • a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle
  • the driving force is assisted by the motor generator, while regenerative power generation is performed by the motor generator at the time of inertia traveling or starting (see, for example, Patent Document 1).
  • the target value of the regenerative electric energy by the motor generator (target regenerative electric energy) when the HEV is traveling inertially is conventionally based on the HEV driving condition (engine fuel injection amount, engine speed, vehicle speed, etc.).
  • the inertia traveling means that the driver travels while applying the engine brake without pressing the accelerator pedal (when the accelerator is off).
  • the regenerative amount is reduced to a predetermined value in accordance with the gradient when descending, that is, the amount that can be regenerated increases as the gradient increases. Therefore, much of the amount that can be regenerated is wasted, and as a result, there is a problem that fuel consumption cannot be improved.
  • the purpose of the aspect of the present disclosure is to increase the amount of regenerative power generated by the motor generator when the hybrid vehicle is traveling on a downhill road, and to charge the battery connected to the motor generator via an inverter. It is an object of the present invention to provide a regenerative electric energy control system for a hybrid vehicle, a hybrid vehicle, and a regenerative electric energy control method for a hybrid vehicle that can sufficiently secure the fuel consumption and as a result improve fuel efficiency.
  • a regenerative electric energy control system for a hybrid vehicle that achieves the above object is a regenerative power for a hybrid vehicle including a hybrid system including an engine and a motor generator that are power sources for driving the vehicle, and a control device.
  • the control device is a target that is a target value of the regenerative electric energy of the motor generator when the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or greater than a preset gradient threshold.
  • a regenerative power amount is set to a basic regenerative power amount that is a regenerative power amount that is set based on the driving state of the hybrid vehicle, and a corrected regenerative power amount that is set as a monotonically increasing function of the magnitude of the downward slope of the travel point. It is comprised so that the control calculated by adding may be performed.
  • the target regenerative electric energy of the motor generator when the control device has a road gradient at a travel point of the hybrid vehicle that is a downward gradient equal to or greater than the set gradient threshold, the target regenerative electric energy of the motor generator And when the total amount of power, which is the total amount of charge of the battery connected to the motor generator via an inverter, is equal to or greater than the maximum amount of charge that is the maximum amount of charge that can be charged to the battery, the total amount Control is performed to reduce the target regenerative power amount so that the power amount is less than the maximum charge amount value.
  • hybrid vehicle of the present disclosure that achieves the above object is configured to include the above-described hybrid vehicle regenerative electric energy control system.
  • a method for controlling the regenerative electric energy of a hybrid vehicle is a method for controlling the regenerative electric energy of a hybrid vehicle including a hybrid system having an engine and a motor generator that are power sources for driving the vehicle.
  • a target regenerative power amount that is a target value of the regenerative power amount of the motor generator is determined by the hybrid vehicle.
  • Control is performed by adding a basic regenerative power amount that is a regenerative power amount that is set based on the running state to a correction regenerative power amount that is set as a monotonically increasing function of the magnitude of the downward slope of the travel point. It is the method characterized by this.
  • the target regenerative electric energy of the motor generator and the motor generator when the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or greater than the set gradient threshold, the target regenerative electric energy of the motor generator and the motor generator When the total power amount that is the total charge amount of the battery connected to the battery via the inverter becomes equal to or greater than the maximum charge amount value that is the maximum value that can be charged to the battery, the total power amount is In this method, control is performed to reduce the target regenerative power amount so as to be less than a charge amount value.
  • the regenerative electric energy control system for a hybrid vehicle, the hybrid vehicle, and the regenerative electric energy control method for the hybrid vehicle according to an aspect of the present disclosure, when the hybrid vehicle is traveling on a steep downhill road, As the value increases, the target value (target regenerative power amount) of the regenerative power amount of the motor generator is increased, so that the charge amount of the battery connected to the motor generator via the inverter can be sufficiently secured. As a result, the fuel injection of the engine for charging the battery can be suppressed, and further the motor generator assist opportunities on the uphill road can be increased, thereby improving the fuel consumption.
  • the target regenerative power by the motor generator will be corrected to decrease, thus preventing excessive charging of the battery.
  • the durability of the battery can be improved.
  • FIG. 1 shows a hybrid vehicle including a regenerative electric energy control system for a hybrid vehicle according to an embodiment of the present disclosure.
  • the hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, a pickup truck, and the like, and an engine 10 and a motor generator that are controlled in combination according to the driving state of the vehicle.
  • a hybrid system 30 having 31 is provided.
  • the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11.
  • the engine 10 is a diesel engine or a gasoline engine.
  • the rotational power of the crankshaft 13 is transmitted to the transmission 20 through a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
  • the transmission 20 uses an AMT or AT that automatically shifts to a target shift speed determined based on the HEV operating state and preset map data using a shift actuator (not shown). Yes.
  • the transmission 20 is not limited to an automatic transmission type such as AMT, and may be a manual type in which a driver manually changes gears.
  • Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
  • the hybrid system 30 includes a motor generator 31 and an inverter 35, a high voltage battery 32, a DC / DC converter 33, and a low voltage battery 34 that are electrically connected to the motor generator 31 in order.
  • the high voltage battery 32 includes a lithium ion battery and a nickel metal hydride battery.
  • the low voltage battery 34 is a lead battery.
  • the DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34.
  • the low voltage battery 34 supplies power to various vehicle electrical components 36.
  • BMS battery management system
  • the motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the two pulleys 15 and 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20, for example.
  • the motor generator 31 may have a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
  • the hybrid system 30 assists at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32, while at the time of inertia traveling or braking. Performs regenerative power generation by the motor generator 31, converts surplus kinetic energy into electric power, and charges the high voltage battery 32.
  • the regenerative electric energy control system for a hybrid vehicle is a system including a hybrid system 30 that includes an engine 10 and a motor generator 31 that are power sources for driving a vehicle, and a control device 80.
  • the control device 80 is a target that is a target value of the regenerative electric energy of the motor generator 31.
  • the regenerative power amount Et is changed to the basic regenerative power amount Eb, which is a regenerative power amount set based on the traveling state of the hybrid vehicle (fuel injection amount of the engine 10, engine speed, vehicle speed, etc.)
  • the road gradient G is estimated and calculated using detection values of various sensors such as an acceleration sensor (G sensor), a wheel speed sensor, and a gyro sensor mounted on the ESC system (side skid prevention system), for example.
  • G sensor acceleration sensor
  • wheel speed sensor wheel speed sensor
  • gyro sensor mounted on the ESC system side skid prevention system
  • the navigation system is mounted on the hybrid vehicle, the calculation is performed by using road gradient information registered in the navigation system.
  • the set gradient threshold G1 is selected so that the forward force caused by the gravitational acceleration applied to the hybrid vehicle is equal to or greater than the running resistance and the vehicle does not decelerate even when there is no driving force from the engine 10 and the motor generator 31.
  • the set gradient threshold G1 is calculated based on the vehicle weight of the hybrid vehicle using a control map in which the correlation between the vehicle weight and the set gradient threshold G1 is set as shown in FIG.
  • the set gradient threshold value G1 increases as the vehicle weight of the hybrid vehicle decreases, and the set gradient threshold value G1 decreases as the vehicle weight increases.
  • the corrected regenerative electric energy Ec changes based on the magnitude of the set gradient threshold G1.
  • the vehicle weight of the hybrid vehicle is set to a, b, c (a> b> c)
  • the set gradient threshold G1 corresponding to each vehicle weight is set to G1a, G1b, G1c, and each set gradient is set.
  • the lines indicating the corrected regenerative electric energy Ec corresponding to the threshold G1 are La, Lb, and Lc, it can be seen that the corrected regenerative electric energy Ec increases as the vehicle weight increases.
  • the target regeneration amount Et of the regenerative electric energy (regenerative torque) by the motor generator 31 is basically set so that the vehicle travels constantly at the set vehicle speed set by the driver.
  • the regenerative electric energy Eb is set, in the present disclosure, when the road gradient G is a downward gradient greater than or equal to the set gradient threshold G1, the corrected regenerative power is used as a monotonically increasing function of the magnitude of the downward gradient G at the travel point.
  • Autocruise is used especially when traveling on a highway.
  • an autocruise operation switch (not shown) is turned on by a driver, the control device 80 causes HEV to automatically travel as planned. This is a driving mode for operating the vehicle.
  • engine travel, assist travel, motor travel, and inertia travel are selected in a timely manner based on parameters such as the gradient of the travel path and the vehicle weight of the hybrid vehicle, and the vehicle speed of the hybrid vehicle is determined in advance.
  • Examples include a mode in which the HEV is automatically driven while maintaining the set target speed range, and a mode in which the HEV is made to follow the preceding vehicle by appropriately selecting to follow the preceding vehicle.
  • the target regenerative power amount of the motor generator 31 is obtained.
  • the total electric energy E ( Et + Es), which is the total value of Et and the charge amount Es of the high voltage battery 32 connected to the motor generator 31 via the inverter 35, is the maximum amount that can be charged to the high voltage battery 32.
  • E ⁇ Esmax control is performed to reduce the target regenerative power amount Et so that the total power amount E becomes less than the maximum charge amount value Esmax.
  • the charge amount Es is detected by the BMS 39, and the data of the detected value of the charge amount Es is stored in the BMS 39 or the control device 80.
  • the control flow shown in FIG. 2 is called from the upper control flow before the control flow shown in FIG. 3 is executed at the time of starting the vehicle, etc., and is shown as a control flow that returns to the upper control flow after the execution. Yes.
  • the control flow in FIG. 3 is called and executed from the upper control flow every time a preset control time elapses when performing regenerative power generation control by the motor generator 31, such as during inertial running or start of the vehicle. It is shown as a control flow that returns to the upper control flow after execution.
  • the control flow in FIG. 2 will be described.
  • the vehicle weight of the hybrid vehicle is acquired in step S10, and the acquired vehicle weight information is stored in the control device 80.
  • the vehicle weight acquisition method may be a method of detecting the vehicle weight using a vehicle weigh scale (not shown) or the like, or a method of estimating the vehicle weight using various parameters related to the dimensions of the vehicle.
  • the vehicle weight may be estimated by assuming that the driving force transmitted to the drive wheels 24 at the time of starting or shifting is equal to the running resistance.
  • step S10 the control map in which the correlation between the vehicle weight and the set gradient threshold value G1 as shown in FIG. 5 is used is obtained in step S10.
  • the set gradient threshold G1 is calculated and stored in the control device 80.
  • the process proceeds to return, ends the present control flow, and returns to the upper control flow.
  • this setting gradient threshold value G1 when the vehicle weight of a hybrid vehicle is 25t, a gradient of 2% can be illustrated, for example.
  • step S30 the charge amount Es of the high voltage battery 32 is read from the BMS 39 or the control device 80, and the running state of the hybrid vehicle (the fuel injection amount of the engine 10, the engine speed, the vehicle speed). Etc.), the basic regenerative electric energy Eb is estimated and calculated.
  • step S40 the process proceeds to step S40.
  • step S40 it is determined whether or not the road gradient G at the travel point of the hybrid vehicle is greater than or equal to the set gradient G1 calculated in step S20.
  • This road gradient G is calculated in step S30 or step S40.
  • step S90 the process proceeds to step S90, and regenerative power generation control by the motor generator 31 for the target regenerative power amount Et is performed.
  • the process proceeds to return, ends the control flow, and returns to the upper control flow.
  • step S40 when it is determined in step S40 that the road gradient G is greater than or equal to the set gradient G1 (YES), the process proceeds to step S50, and in step S50, as a monotonically increasing function of the magnitude of the downward gradient G of the travel point.
  • step S60 After performing the control in step S50, the process proceeds to step S60.
  • step S60 it is determined whether or not the total power amount E calculated in step S50 is equal to or greater than the maximum charge amount value Esmax. If it is determined in step S60 that the total power amount E is less than the maximum charge amount value Esmax (NO), the process proceeds to step S90, and regenerative power generation control by the motor generator 31 for the target regenerative power amount Et is performed. . After performing the control in step S90, the process proceeds to return, ends the control flow, and returns to the upper control flow.
  • step S60 when it is determined in step S60 that the total power amount E is equal to or greater than the maximum charge amount value Esmax (YES), the process proceeds to step S70, and in step S70, the total power amount E is the maximum charge amount value Esmax. Control (correction) is performed to reduce the target regenerative electric energy Et so as to be less than the value. After performing the control in step S70, the process proceeds to step S90, and regenerative power generation control by the motor generator 31 for the target regenerative electric energy Et is performed. After performing the control in step S90, the process proceeds to return, ends the control flow, and returns to the upper control flow.
  • the hybrid vehicle regenerative electric energy control method of the present disclosure based on the above-described hybrid vehicle regenerative electric energy control system is a hybrid including the engine 10 and the motor generator 31 that are power sources for running the vehicle.
  • the regenerative electric energy control method for a hybrid vehicle provided with the system 30 when the road gradient G of the traveling point of the hybrid vehicle is a downward gradient equal to or greater than a preset gradient threshold G1, the regenerative electric energy of the motor generator 31 is set.
  • the target regenerative power amount Et which is a target value, is set as a monotonically increasing function of the magnitude of the downward gradient G of the travel point to the basic regenerative power amount Eb, which is a regenerative power amount set based on the traveling state of the hybrid vehicle.
  • control is performed by adding and calculating the corrected regenerative electric energy Ec.
  • control is performed to reduce the target regenerative electric energy Et so that the total electric energy E becomes less than the maximum charge amount value Esmax when the value is equal to or greater than Esmax.
  • the regenerative electric energy control system for a hybrid vehicle, the hybrid vehicle, and the regenerative electric energy control method for a hybrid vehicle according to the present disclosure when the hybrid vehicle is traveling on a steep downhill road, the downgrade is increased. Accordingly, the target value (target regenerative power amount) Et of the regenerative power amount of the motor generator 31 is increased, so that a sufficient charge amount of the high voltage battery 32 connected to the motor generator 31 via the inverter 35 can be secured. it can. As a result, fuel injection of the engine 10 for charging the high voltage battery 32 can be suppressed, and further, the opportunity for assisting the motor generator 31 on an uphill road can be increased, thereby improving fuel efficiency. .
  • the high voltage battery 32 when the high voltage battery 32 is charged with the regenerative power amount by the motor generator 31, if the charge amount of the high voltage battery 32 is predicted to be excessive, the target regenerative power amount Et by the motor generator 31 is corrected to decrease. In addition, excessive charging of the high voltage battery 32 can be prevented, and the durability of the high voltage battery 32 can be improved.
  • the vehicle weight varies greatly depending on the load and the number of passengers, so the set gradient threshold G1 and the corrected regenerative electric energy Ec are set according to the vehicle weight. It is desirable to do.
  • the regenerative electric energy of the motor generator 31 can be further increased when the vehicle weight is relatively heavy. This is advantageous for improving fuel economy. Further, when the vehicle weight is relatively light, it is possible to avoid that the hybrid vehicle is excessively decelerated due to excessive braking force due to regeneration, which is advantageous in improving drivability.
  • the present invention is useful in that the battery can be prevented from being excessively charged and the durability of the battery can be improved.
  • Engine 11 Engine body 30 Hybrid system 31 Motor generator 32 High voltage battery (battery) 35 Inverter 80 Control device Et Target regenerative power amount Eb Basic regenerative power amount Ec Corrected regenerative power amount Es High-voltage battery charge amount Esmax Maximum value of high-voltage battery charge amount E High-voltage battery charge amount and target regenerative power amount Total power

Abstract

When a road grade (G) of a travelling spot of a hybrid vehicle is a down grade equal to or greater than a set grade threshold value (G1) that has been set in advance, control is performed to calculate a desired regenerative power amount (Et), which is a desired value for the regenerative power amount of a motor generator (31), by adding a corrective regenerative power amount (Ec), which is set as a monotonically increasing function of the magnitude of the down gradient (G) of the travelling spot, to a basic regenerative power amount (Eb), which is a regenerative power amount set on the basis of the travelling status of the hybrid vehicle.

Description

ハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法Regenerative electric energy control system for hybrid vehicle, hybrid vehicle, and regenerative electric energy control method for hybrid vehicle
 本開示は、ハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法に関し、更に詳しくは、車両走行用の動力源であるエンジン及びモータージェネレーターと、制御装置と、を有するハイブリッドシステムを備えたハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法に関する。 The present disclosure relates to a regenerative electric energy control system for a hybrid vehicle, a hybrid vehicle, and a regenerative electric energy control method for a hybrid vehicle. More specifically, the present disclosure includes an engine and a motor generator that are power sources for running the vehicle, and a control device. The present invention relates to a regenerative electric energy control system for a hybrid vehicle including a hybrid system, a hybrid vehicle, and a regenerative electric energy control method for a hybrid vehicle.
 近年、燃費向上及び環境対策などの観点から、車両の運転状態に応じて複合的に制御されるエンジン及びモータージェネレーターを有するハイブリッドシステムを備えたハイブリッド車両(以下「HEV」という。)が注目されている。このHEVにおいては、車両の加速時や発進時には、モータージェネレーターによる駆動力のアシストが行われる一方で、慣性走行時や始動時にはモータージェネレーターによる回生発電が行われる(例えば、特許文献1を参照)。 In recent years, a hybrid vehicle (hereinafter referred to as “HEV”) including a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle has attracted attention from the viewpoint of improving fuel efficiency and environmental measures. Yes. In this HEV, when the vehicle is accelerated or started, the driving force is assisted by the motor generator, while regenerative power generation is performed by the motor generator at the time of inertia traveling or starting (see, for example, Patent Document 1).
 このHEVが慣性走行しているときにおける、モータージェネレーターによる回生電力量の目標値(目標回生電力量)は、従来、HEVの走行状態(エンジンの燃料噴射量、エンジン回転数、車速等)に基づいて設定されてきた。なお、慣性走行とは、運転者がアクセルペダルを踏まずに(アクセルオフで)エンジンブレーキを効かせながら走行していることである。 The target value of the regenerative electric energy by the motor generator (target regenerative electric energy) when the HEV is traveling inertially is conventionally based on the HEV driving condition (engine fuel injection amount, engine speed, vehicle speed, etc.). Has been set. The inertia traveling means that the driver travels while applying the engine brake without pressing the accelerator pedal (when the accelerator is off).
 しかしながら、HEVが下り勾配の道路を走行しているときに、その道路の下り勾配の大きさによっては、モータージェネレーターによる回生電力量を未だ大きくする余地が残っていた。 However, when the HEV is traveling on a downhill road, there is still room for increasing the amount of regenerative power generated by the motor generator depending on the downgrade of the road.
 また、ハイブリッド車両の回生発電に関連する技術として、降坂時の勾配度に応じて自動変速機の変速比を低レシオ化または低シフト化するとともに、減速の程度に応じて決定された回生量を所定に減少させるハイブリッド車両の回生制御装置が提案されている(例えば、特許文献2参照)。 In addition, as a technology related to regenerative power generation of hybrid vehicles, the ratio of the automatic transmission is reduced or shifted according to the degree of gradient when descending the slope, and the regenerative amount determined according to the degree of deceleration A regenerative control device for a hybrid vehicle that reduces the predetermined amount has been proposed (see, for example, Patent Document 2).
 しかしながら、上記のハイブリッド車両の回生制御装置では、降坂時の勾配度に応じて回生量を所定に減少させているので、すなわち、勾配度が大きくなるにつれて回生可能な量も大きくなるにもかかわらず、その回生可能な量の多くを無駄に捨てていることとなり、結果として、燃費の向上を図ることができないという問題がある。 However, in the above-described regenerative control device for a hybrid vehicle, the regenerative amount is reduced to a predetermined value in accordance with the gradient when descending, that is, the amount that can be regenerated increases as the gradient increases. Therefore, much of the amount that can be regenerated is wasted, and as a result, there is a problem that fuel consumption cannot be improved.
日本国特開2002-238105号公報Japanese Unexamined Patent Publication No. 2002-238105 日本国特開2000-102110号公報Japanese Unexamined Patent Publication No. 2000-102110
 本開示の様態の目的は、ハイブリッド車両が下り勾配の道路を走行しているときに、モータージェネレーターによる回生電力量を大きくすることができ、モータージェネレーターにインバーターを介して接続されるバッテリーの充電量を十分に確保することができ、その結果として燃費を向上させることができるハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法を提供することにある。 The purpose of the aspect of the present disclosure is to increase the amount of regenerative power generated by the motor generator when the hybrid vehicle is traveling on a downhill road, and to charge the battery connected to the motor generator via an inverter. It is an object of the present invention to provide a regenerative electric energy control system for a hybrid vehicle, a hybrid vehicle, and a regenerative electric energy control method for a hybrid vehicle that can sufficiently secure the fuel consumption and as a result improve fuel efficiency.
 上記の目的を達成する本開示の様態のハイブリッド車両の回生電力量制御システムは、車両走行用の動力源であるエンジン及びモータージェネレーターと、制御装置と、を有するハイブリッドシステムを備えたハイブリッド車両の回生電力量制御システムにおいて、前記制御装置が、前記ハイブリッド車両の走行地点の道路勾配が予め設定された設定勾配閾値以上の下り勾配である場合に、前記モータージェネレーターの回生電力量の目標値である目標回生電力量を、前記ハイブリッド車両の走行状態に基づいて設定される回生電力量である基本回生電力量に、前記走行地点の下り勾配の大きさの単調増加関数として設定される補正回生電力量を加算して算出する制御を行うように構成される。 A regenerative electric energy control system for a hybrid vehicle according to an aspect of the present disclosure that achieves the above object is a regenerative power for a hybrid vehicle including a hybrid system including an engine and a motor generator that are power sources for driving the vehicle, and a control device. In the electric energy control system, the control device is a target that is a target value of the regenerative electric energy of the motor generator when the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or greater than a preset gradient threshold. A regenerative power amount is set to a basic regenerative power amount that is a regenerative power amount that is set based on the driving state of the hybrid vehicle, and a corrected regenerative power amount that is set as a monotonically increasing function of the magnitude of the downward slope of the travel point. It is comprised so that the control calculated by adding may be performed.
 また、上記のハイブリッド車両の回生電力量制御システムにおいて、前記制御装置が、前記ハイブリッド車両の走行地点の道路勾配が前記設定勾配閾値以上の下り勾配である場合に、前記モータージェネレーターの目標回生電力量と、前記モータージェネレーターにインバーターを介して接続されるバッテリーの充電量の合計値である合計電力量が、前記バッテリーに充電できる量の最大値である最大充電量値以上となったときには、前記合計電力量が前記最大充電量値未満となるように、前記目標回生電力量を減少させる制御を行うように構成される。 Further, in the above regenerative electric energy control system for a hybrid vehicle, when the control device has a road gradient at a travel point of the hybrid vehicle that is a downward gradient equal to or greater than the set gradient threshold, the target regenerative electric energy of the motor generator And when the total amount of power, which is the total amount of charge of the battery connected to the motor generator via an inverter, is equal to or greater than the maximum amount of charge that is the maximum amount of charge that can be charged to the battery, the total amount Control is performed to reduce the target regenerative power amount so that the power amount is less than the maximum charge amount value.
 また、上記の目的を達成する本開示のハイブリッド車両は、上記のハイブリッド車両の回生電力量制御システムを備えて構成される。 Further, the hybrid vehicle of the present disclosure that achieves the above object is configured to include the above-described hybrid vehicle regenerative electric energy control system.
 また、上記の目的を達成する本開示の様態のハイブリッド車両の回生電力量制御方法は、車両走行用の動力源であるエンジン及びモータージェネレーターを有するハイブリッドシステムを備えたハイブリッド車両の回生電力量制御方法において、前記ハイブリッド車両の走行地点の道路勾配が予め設定された設定勾配閾値以上の下り勾配である場合に、前記モータージェネレーターの回生電力量の目標値である目標回生電力量を、前記ハイブリッド車両の走行状態に基づいて設定される回生電力量である基本回生電力量に、前記走行地点の下り勾配の大きさの単調増加関数として設定される補正回生電力量を加算して算出する制御を行うことを特徴とする方法である。 In addition, a method for controlling the regenerative electric energy of a hybrid vehicle according to an aspect of the present disclosure that achieves the above object is a method for controlling the regenerative electric energy of a hybrid vehicle including a hybrid system having an engine and a motor generator that are power sources for driving the vehicle. When the road gradient at the travel point of the hybrid vehicle is a downward gradient that is equal to or greater than a preset gradient threshold, a target regenerative power amount that is a target value of the regenerative power amount of the motor generator is determined by the hybrid vehicle. Control is performed by adding a basic regenerative power amount that is a regenerative power amount that is set based on the running state to a correction regenerative power amount that is set as a monotonically increasing function of the magnitude of the downward slope of the travel point. It is the method characterized by this.
 また、上記のハイブリッド車両の回生電力量制御方法において、前記ハイブリッド車両の走行地点の道路勾配が前記設定勾配閾値以上の下り勾配である場合に、前記モータージェネレーターの目標回生電力量と、前記モータージェネレーターにインバーターを介して接続されるバッテリーの充電量の合計値である合計電力量が、前記バッテリーに充電できる量の最大値である最大充電量値以上となったときには、前記合計電力量が前記最大充電量値未満となるように、前記目標回生電力量を減少させる制御を行うことを特徴とする方法である。 Further, in the above regenerative electric energy control method for a hybrid vehicle, when the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or greater than the set gradient threshold, the target regenerative electric energy of the motor generator and the motor generator When the total power amount that is the total charge amount of the battery connected to the battery via the inverter becomes equal to or greater than the maximum charge amount value that is the maximum value that can be charged to the battery, the total power amount is In this method, control is performed to reduce the target regenerative power amount so as to be less than a charge amount value.
 本開示の様態のハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法によれば、ハイブリッド車両が急な下り勾配の道路を走行しているときに、その下り勾配が大きくなるにつれて、モータージェネレーターの回生電力量の目標値(目標回生電力量)を大きくするので、モータージェネレーターにインバーターを介して接続されるバッテリーの充電量を十分に確保することができる。その結果、バッテリーへの充電のためのエンジンの燃料噴射を抑制でき、さらに、上り勾配の道路でのモータージェネレーターのアシスト機会を増加することができ、燃費を向上させることができる。 According to the regenerative electric energy control system for a hybrid vehicle, the hybrid vehicle, and the regenerative electric energy control method for the hybrid vehicle according to an aspect of the present disclosure, when the hybrid vehicle is traveling on a steep downhill road, As the value increases, the target value (target regenerative power amount) of the regenerative power amount of the motor generator is increased, so that the charge amount of the battery connected to the motor generator via the inverter can be sufficiently secured. As a result, the fuel injection of the engine for charging the battery can be suppressed, and further the motor generator assist opportunities on the uphill road can be increased, thereby improving the fuel consumption.
 また、モータージェネレーターによる回生電力量をバッテリーに充電すると、バッテリーの充電量が過剰になると予測される場合には、モータージェネレーターによる目標回生電力量を減少補正するので、バッテリーへの過剰な充電を防止して、バッテリーの耐久性を向上させることができる。 In addition, if it is predicted that the amount of battery charge will be excessive when the battery is charged with regenerative power from the motor generator, the target regenerative power by the motor generator will be corrected to decrease, thus preventing excessive charging of the battery. Thus, the durability of the battery can be improved.
本開示の実施形態からなるハイブリッド車両の回生電力量制御システムを備えたハイブリッド車両の構成図である。It is a lineblock diagram of a hybrid vehicle provided with a regenerative electric energy control system of a hybrid vehicle which constitutes an embodiment of this indication. 本開示の実施形態からなるハイブリッド車両の回生電力量制御方法の制御フローの前半を示す図である。It is a figure which shows the first half of the control flow of the regeneration electric energy control method of the hybrid vehicle which consists of embodiment of this indication. 本開示の実施形態からなるハイブリッド車両の回生電力量制御方法の制御フローの後半を示す図である。It is a figure which shows the second half of the control flow of the regeneration electric energy control method of the hybrid vehicle which consists of embodiment of this indication. 道路勾配と補正回生電力量との相関関係を示す図である。It is a figure which shows the correlation with a road gradient and correction | amendment regenerative electric energy. 車重と設定勾配閾値との相関関係を示す図である。It is a figure which shows the correlation of a vehicle weight and a setting gradient threshold value.
 以下に、本開示の実施の形態について、図面を参照して説明する。図1は、本開示の実施形態からなるハイブリッド車両の回生電力量制御システムを備えたハイブリッド車両を示す。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 shows a hybrid vehicle including a regenerative electric energy control system for a hybrid vehicle according to an embodiment of the present disclosure.
 このハイブリッド車両(以下「HEV」という。)は、普通乗用車のみならず、バスやトラック、ピックアップトラックなどを含む車両であり、車両の運転状態に応じて複合的に制御されるエンジン10及びモータージェネレーター31を有するハイブリッドシステム30を備えている。 The hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, a pickup truck, and the like, and an engine 10 and a motor generator that are controlled in combination according to the driving state of the vehicle. A hybrid system 30 having 31 is provided.
 エンジン10においては、エンジン本体11に形成された複数(この例では4個)の気筒12内における燃料の燃焼により発生した熱エネルギーにより、クランクシャフト13が回転駆動される。このエンジン10には、ディーゼルエンジンやガソリンエンジンが用いられる。クランクシャフト13の回転動力は、クランクシャフト13の一端部に接続するクラッチ14(例えば、湿式多板クラッチなど)を通じてトランスミッション20に伝達される。 In the engine 10, the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11. The engine 10 is a diesel engine or a gasoline engine. The rotational power of the crankshaft 13 is transmitted to the transmission 20 through a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
 トランスミッション20には、HEVの運転状態と予め設定されたマップデータとに基づいて決定された目標変速段へ、変速用アクチュエーター(図示しない)を用いて自動的に変速するAMTやATが用いられている。なお、トランスミッション20は、AMTのような自動変速式に限るものではなく、ドライバーが手動で変速するマニュアル式であってもよい。 The transmission 20 uses an AMT or AT that automatically shifts to a target shift speed determined based on the HEV operating state and preset map data using a shift actuator (not shown). Yes. The transmission 20 is not limited to an automatic transmission type such as AMT, and may be a manual type in which a driver manually changes gears.
 トランスミッション20で変速された回転動力は、プロペラシャフト22を通じてデファレンシャル23に伝達され、一対の駆動輪24にそれぞれ駆動力として分配される。 Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
 ハイブリッドシステム30は、モータージェネレーター31と、そのモータージェネレーター31に順に電気的に接続するインバーター35、高電圧バッテリー32、DC/DCコンバーター33及び低電圧バッテリー34とを有している。 The hybrid system 30 includes a motor generator 31 and an inverter 35, a high voltage battery 32, a DC / DC converter 33, and a low voltage battery 34 that are electrically connected to the motor generator 31 in order.
 高電圧バッテリー32としては、リチウムイオンバッテリーやニッケル水素バッテリーなどが好ましく例示される。また、低電圧バッテリー34には鉛バッテリーが用いられる。 Preferred examples of the high voltage battery 32 include a lithium ion battery and a nickel metal hydride battery. The low voltage battery 34 is a lead battery.
 DC/DCコンバーター33は、高電圧バッテリー32と低電圧バッテリー34との間における充放電の方向及び出力電圧を制御する機能を有している。また、低電圧バッテリー34は、各種の車両電装品36に電力を供給する。 The DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34. The low voltage battery 34 supplies power to various vehicle electrical components 36.
 このハイブリッドシステム30における種々のパラメーター、例えば、電流値、電圧値やSOC値などは、BMS(バッテリーマネジメントシステム)39により検出される。 Various parameters in the hybrid system 30 such as a current value, a voltage value, and an SOC value are detected by a BMS (battery management system) 39.
 モータージェネレーター31は、回転軸37に取り付けられた第1プーリー15とエンジン本体11の出力軸であるクランクシャフト13の他端部に取り付けられた第2プーリー16との間に掛け回された無端状のベルト状部材17を介して、エンジン10との間で動力を伝達する。なお、2つのプーリー15、16及びベルト状部材17の代わりに、ギヤボックスなどを用いて動力を伝達することもできる。また、モータージェネレーター31に接続するエンジン本体11の出力軸は、クランクシャフト13に限るものではなく、例えばエンジン本体11とトランスミッション20の間の伝達軸やプロペラシャフト22であっても良い。 The motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the two pulleys 15 and 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20, for example.
 このモータージェネレーター31は、エンジン本体11を始動するスターターモーター(図示せず)の代わりに、クランキングを行う機能を有していてもよい。 The motor generator 31 may have a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
 これらのエンジン10及びハイブリッドシステム30は、制御装置80により制御される。具体的には、HEVの発進時や加速時には、ハイブリッドシステム30は高電圧バッテリー32から電力を供給されたモータージェネレーター31により駆動力の少なくとも一部をアシストする一方で、慣性走行時や制動時においては、モータージェネレーター31による回生発電を行い、余剰の運動エネルギーを電力に変換して高電圧バッテリー32を充電する。 These engine 10 and hybrid system 30 are controlled by a control device 80. Specifically, at the time of HEV start or acceleration, the hybrid system 30 assists at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32, while at the time of inertia traveling or braking. Performs regenerative power generation by the motor generator 31, converts surplus kinetic energy into electric power, and charges the high voltage battery 32.
 本開示のハイブリッド車両の回生電力量制御システムは、車両走行用の動力源であるエンジン10及びモータージェネレーター31と、制御装置80と、を有するハイブリッドシステム30を備えたシステムである。 The regenerative electric energy control system for a hybrid vehicle according to the present disclosure is a system including a hybrid system 30 that includes an engine 10 and a motor generator 31 that are power sources for driving a vehicle, and a control device 80.
 そして、制御装置80が、ハイブリッド車両の走行地点の道路勾配Gが実験等により予め設定された設定勾配閾値G1以上の下り勾配である場合に、モータージェネレーター31の回生電力量の目標値である目標回生電力量Etを、ハイブリッド車両の走行状態(エンジン10の燃料噴射量、エンジン回転数、車速等)に基づいて設定される回生電力量である基本回生電力量Ebに、走行地点の下り勾配Gの大きさの単調増加関数として設定される補正回生電力量Ecを加算して算出する制御を行うように構成する。すなわち、目標回生電力量Et=基本回生電力量Eb+補正回生電力量Ecとするとともに、この補正回生電力量Ecを、走行地点の下り勾配Gが小さいときには小さくなるように、走行地点の下り勾配Gが大きいときには大きくなるように、設定する。 Then, when the road gradient G at the travel point of the hybrid vehicle is a downward gradient equal to or greater than a preset gradient threshold G1 set by experiments or the like, the control device 80 is a target that is a target value of the regenerative electric energy of the motor generator 31. The regenerative power amount Et is changed to the basic regenerative power amount Eb, which is a regenerative power amount set based on the traveling state of the hybrid vehicle (fuel injection amount of the engine 10, engine speed, vehicle speed, etc.) The correction regenerative electric energy Ec that is set as a monotonically increasing function of the magnitude is added to perform control for calculation. That is, the target regenerative electric energy Et = basic regenerative electric energy Eb + corrected regenerative electric energy Ec, and the corrected regenerative electric energy Ec is decreased when the down gradient G of the travel point is small. Set to be large when is large.
 ここで、道路勾配Gは、例えば、ESCシステム(横滑り防止システム)に搭載されている加速度センサー(Gセンサ-)、輪速センサー、ジャイロセンサー等の各種センサーの検出値を用いて推定算出したり、あるいは、ハイブリッド車両にナビゲーションシステムが搭載されている場合には、このナビゲーションシステムに登録されている道路勾配情報を用いたりして算出する。 Here, the road gradient G is estimated and calculated using detection values of various sensors such as an acceleration sensor (G sensor), a wheel speed sensor, and a gyro sensor mounted on the ESC system (side skid prevention system), for example. Alternatively, when the navigation system is mounted on the hybrid vehicle, the calculation is performed by using road gradient information registered in the navigation system.
 また、この設定勾配閾値G1は、ハイブリッド車両に加わる重力加速度による前進方向の力が走行抵抗以上になり、エンジン10及びモータージェネレーター31からの駆動力が無くても、減速しない勾配に選定される。 Further, the set gradient threshold G1 is selected so that the forward force caused by the gravitational acceleration applied to the hybrid vehicle is equal to or greater than the running resistance and the vehicle does not decelerate even when there is no driving force from the engine 10 and the motor generator 31.
 より詳細には、この設定勾配閾値G1は、図5に示すような車重と設定勾配閾値G1の相関関係を設定した制御マップを用いて、ハイブリッド車両の車重を基に算出される。ハイブリッド車両の車重が軽いほど設定勾配閾値G1は大きくなり、車重が重いほど設定勾配閾値G1は小さくなる。 More specifically, the set gradient threshold G1 is calculated based on the vehicle weight of the hybrid vehicle using a control map in which the correlation between the vehicle weight and the set gradient threshold G1 is set as shown in FIG. The set gradient threshold value G1 increases as the vehicle weight of the hybrid vehicle decreases, and the set gradient threshold value G1 decreases as the vehicle weight increases.
 また、設定勾配閾値G1の大きさに基づいて補正回生電力量Ecは変化する。図4に示すように、ハイブリッド車両の車重をa、b、c(a>b>c)として、それぞれの車重に対応する設定勾配閾値G1をG1a、G1b、G1cとし、それぞれの設定勾配閾値G1に対応する補正回生電力量Ecを示す線をLa、Lb、Lcとした場合、車重が大きくなるにつれて、補正回生電力量Ecが大きくなることが分かる。 Further, the corrected regenerative electric energy Ec changes based on the magnitude of the set gradient threshold G1. As shown in FIG. 4, the vehicle weight of the hybrid vehicle is set to a, b, c (a> b> c), the set gradient threshold G1 corresponding to each vehicle weight is set to G1a, G1b, G1c, and each set gradient is set. When the lines indicating the corrected regenerative electric energy Ec corresponding to the threshold G1 are La, Lb, and Lc, it can be seen that the corrected regenerative electric energy Ec increases as the vehicle weight increases.
 なお、ハイブリッド車両がオートクルーズ走行する場合には、従来は、運転者により設定された設定車速度で一定走行するように、モータージェネレーター31による回生電力量(回生トルク)の目標回生量Etを基本回生電力量Ebに設定しているが、本開示では、道路勾配Gが設定勾配閾値G1以上の下り勾配である場合には、走行地点の下り勾配Gの大きさの単調増加関数として補正回生電力量Ecを設定して、目標回生電力量Et(=Eb+Ec)を算出するフィードフォワード制御を行う。 When the hybrid vehicle travels by auto-cruise, conventionally, the target regeneration amount Et of the regenerative electric energy (regenerative torque) by the motor generator 31 is basically set so that the vehicle travels constantly at the set vehicle speed set by the driver. Although the regenerative electric energy Eb is set, in the present disclosure, when the road gradient G is a downward gradient greater than or equal to the set gradient threshold G1, the corrected regenerative power is used as a monotonically increasing function of the magnitude of the downward gradient G at the travel point. The feedforward control for setting the amount Ec and calculating the target regenerative electric energy Et (= Eb + Ec) is performed.
 なお、オートクルーズは、特に高速道路を走行する際に使用されており、運転者によってオートクルーズ作動スイッチ(図示しない)が投入された場合に、制御装置80が、HEVを自動走行させて予定通りに運行させる走行モードである。 Autocruise is used especially when traveling on a highway. When an autocruise operation switch (not shown) is turned on by a driver, the control device 80 causes HEV to automatically travel as planned. This is a driving mode for operating the vehicle.
 このオートクルーズにおける走行モードとしては、エンジン走行、アシスト走行、モータ走行、及び惰性走行を、走行路の勾配、ハイブリッド車両の車重などのパラメーターに基づいて適時選択して、ハイブリッド車両の車速を予め設定された目標速度範囲に維持してHEVを自動走行させるモードや、先行車両に追従するように適時選択して、HEVに先行車を追従させるモードを例示できる。 As the travel mode in this auto cruise, engine travel, assist travel, motor travel, and inertia travel are selected in a timely manner based on parameters such as the gradient of the travel path and the vehicle weight of the hybrid vehicle, and the vehicle speed of the hybrid vehicle is determined in advance. Examples include a mode in which the HEV is automatically driven while maintaining the set target speed range, and a mode in which the HEV is made to follow the preceding vehicle by appropriately selecting to follow the preceding vehicle.
 また、上記のハイブリッド車両の回生電力量制御システムにおいて、制御装置80が、ハイブリッド車両の走行地点の道路勾配Gが設定勾配閾値G1以上の下り勾配である場合に、モータージェネレーター31の目標回生電力量Etと、モータージェネレーター31にインバーター35を介して接続される高電圧バッテリー32の充電量Esの合計値である合計電力量E(=Et+Es)が、高電圧バッテリー32に充電できる量の最大値である最大充電量値Esmax以上となった(E≧Esmax)ときには、合計電力量Eが最大充電量値Esmax未満となるように、目標回生電力量Etを減少させる制御を行うように構成する。この充電量EsはBMS39により検出され、充電量Esの検出値のデータはBMS39または制御装置80に記憶させる。 Further, in the above-described hybrid vehicle regenerative power control system, when the control device 80 has a downward gradient equal to or greater than the set gradient threshold G1 at the travel point of the hybrid vehicle, the target regenerative power amount of the motor generator 31 is obtained. The total electric energy E (= Et + Es), which is the total value of Et and the charge amount Es of the high voltage battery 32 connected to the motor generator 31 via the inverter 35, is the maximum amount that can be charged to the high voltage battery 32. When the maximum charge amount value Esmax is equal to or greater than (E ≧ Esmax), control is performed to reduce the target regenerative power amount Et so that the total power amount E becomes less than the maximum charge amount value Esmax. The charge amount Es is detected by the BMS 39, and the data of the detected value of the charge amount Es is stored in the BMS 39 or the control device 80.
 次に、上記のハイブリッド車両の回生電力量制御システムを基にした、本開示のハイブリッド車両の回生電力量制御方法について、図2、図3の制御フローを参照しながら説明する。図2の制御フローは、車両の始動時等で、図3の制御フローを実施する前に、上位の制御フローから呼ばれて実施され、実施後に、上位の制御フローに戻る制御フローとして示している。図3の制御フローは、車両の慣性走行時や始動時等、モータージェネレーター31による回生発電制御を行うときに、予め設定した制御時間が経過する毎に上位の制御フローから呼ばれて実施され、実施後に上位の制御フローに戻る制御フローとして示している。 Next, a regenerative power amount control method for a hybrid vehicle according to the present disclosure based on the above-described hybrid vehicle regenerative power amount control system will be described with reference to the control flows of FIGS. The control flow shown in FIG. 2 is called from the upper control flow before the control flow shown in FIG. 3 is executed at the time of starting the vehicle, etc., and is shown as a control flow that returns to the upper control flow after the execution. Yes. The control flow in FIG. 3 is called and executed from the upper control flow every time a preset control time elapses when performing regenerative power generation control by the motor generator 31, such as during inertial running or start of the vehicle. It is shown as a control flow that returns to the upper control flow after execution.
 図2の制御フローについて説明する。図2の制御フローがスタートすると、ステップS10にて、ハイブリッド車両の車重を取得して、この取得した車重の情報を制御装置80に記憶させる。この車重の取得方法は、車両重量計(図示しない)等を用いて車重を検出する方法でもよいし、車両の寸法等に係る各種パラメーターを用いて車重を推定する方法でもよい。また、発進時や変速時に駆動輪24に伝達される駆動力が走行抵抗に等しくなるとして車重を推定する方法でもよい。 The control flow in FIG. 2 will be described. When the control flow in FIG. 2 starts, the vehicle weight of the hybrid vehicle is acquired in step S10, and the acquired vehicle weight information is stored in the control device 80. The vehicle weight acquisition method may be a method of detecting the vehicle weight using a vehicle weigh scale (not shown) or the like, or a method of estimating the vehicle weight using various parameters related to the dimensions of the vehicle. Alternatively, the vehicle weight may be estimated by assuming that the driving force transmitted to the drive wheels 24 at the time of starting or shifting is equal to the running resistance.
 そして、ステップS10の制御を実施後、ステップS20に進み、ステップS20にて、図5に示すような車重と設定勾配閾値G1の相関関係を設定した制御マップを用いて、ステップS10で取得した車重の情報を基に、設定勾配閾値G1を算出して、制御装置80に記憶させる。ステップS20の制御を実施後、リターンに進み、本制御フローを終了して、上位の制御フローに戻る。なお、この設定勾配閾値G1としては、例えば、ハイブリッド車両の車重が25tの場合には、2%の勾配を例示できる。 Then, after carrying out the control of step S10, the process proceeds to step S20. In step S20, the control map in which the correlation between the vehicle weight and the set gradient threshold value G1 as shown in FIG. 5 is used is obtained in step S10. Based on the vehicle weight information, the set gradient threshold G1 is calculated and stored in the control device 80. After executing the control of step S20, the process proceeds to return, ends the present control flow, and returns to the upper control flow. In addition, as this setting gradient threshold value G1, when the vehicle weight of a hybrid vehicle is 25t, a gradient of 2% can be illustrated, for example.
 図3の制御フローについて説明する。図3の制御フローがスタートすると、ステップS30にて、高電圧バッテリー32の充電量EsをBMS39または制御装置80より読み込むとともに、ハイブリッド車両の走行状態(エンジン10の燃料噴射量、エンジン回転数、車速等)に基づいて基本回生電力量Ebを推定算出する。ステップS30の制御を実施後、ステップS40に進む。 The control flow in FIG. 3 will be described. When the control flow of FIG. 3 starts, in step S30, the charge amount Es of the high voltage battery 32 is read from the BMS 39 or the control device 80, and the running state of the hybrid vehicle (the fuel injection amount of the engine 10, the engine speed, the vehicle speed). Etc.), the basic regenerative electric energy Eb is estimated and calculated. After performing the control of step S30, the process proceeds to step S40.
 ステップS40にて、ハイブリッド車両の走行地点の道路勾配GがステップS20で算出した設定勾配G1以上か否かを判定する。この道路勾配Gの算出は、ステップS30またはステップS40で行う。ステップS40にて、道路勾配Gが設定勾配G1未満であると判定した場合(NO)は、ステップS80に進み、ステップS80にて、基本回生電力量Ebを目標回生電力量Et(=Eb)に設定する。ステップS80の制御を実施後、ステップS90に進み、目標回生電力量Et分のモータージェネレーター31による回生発電制御を実施する。ステップS90の制御を実施後、リターンに進み、本制御フローを終了して、上位の制御フローに戻る。 In step S40, it is determined whether or not the road gradient G at the travel point of the hybrid vehicle is greater than or equal to the set gradient G1 calculated in step S20. This road gradient G is calculated in step S30 or step S40. When it is determined in step S40 that the road gradient G is less than the set gradient G1 (NO), the process proceeds to step S80, and in step S80, the basic regenerative power amount Eb is changed to the target regenerative power amount Et (= Eb). Set. After performing the control in step S80, the process proceeds to step S90, and regenerative power generation control by the motor generator 31 for the target regenerative power amount Et is performed. After performing the control in step S90, the process proceeds to return, ends the control flow, and returns to the upper control flow.
 一方、ステップS40にて、道路勾配Gが設定勾配G1以上であると判定した場合(YES)は、ステップS50に進み、ステップS50にて、走行地点の下り勾配Gの大きさの単調増加関数として設定される補正回生電力量Ecを算出するとともに、この補正回生電力量Ecと、ステップS30で読み込みまたは算出した充電量Es及び基本回生電力量Ebを用いて、目標回生電力量Et(=Eb+Ec)及び合計電力量E(=Et+Es)を算出する。ステップS50の制御を実施後、ステップS60に進む。 On the other hand, when it is determined in step S40 that the road gradient G is greater than or equal to the set gradient G1 (YES), the process proceeds to step S50, and in step S50, as a monotonically increasing function of the magnitude of the downward gradient G of the travel point. The set regenerative power amount Ec is calculated, and the target regenerative power amount Et (= Eb + Ec) is calculated using the corrected regenerative power amount Ec, the charge amount Es read and calculated in step S30, and the basic regenerative power amount Eb. And the total electric energy E (= Et + Es) is calculated. After performing the control in step S50, the process proceeds to step S60.
 ステップS60にて、ステップS50で算出した合計電力量Eが最大充電量値Esmax以上であるか否かを判定する。ステップS60にて、合計電力量Eが最大充電量値Esmax未満であると判定した場合(NO)には、ステップS90に進み、目標回生電力量Et分のモータージェネレーター31による回生発電制御を実施する。ステップS90の制御を実施後、リターンに進み、本制御フローを終了して、上位の制御フローに戻る。 In step S60, it is determined whether or not the total power amount E calculated in step S50 is equal to or greater than the maximum charge amount value Esmax. If it is determined in step S60 that the total power amount E is less than the maximum charge amount value Esmax (NO), the process proceeds to step S90, and regenerative power generation control by the motor generator 31 for the target regenerative power amount Et is performed. . After performing the control in step S90, the process proceeds to return, ends the control flow, and returns to the upper control flow.
 一方、ステップS60にて、合計電力量Eが最大充電量値Esmax以上であると判定した場合(YES)には、ステップS70に進み、ステップS70にて、合計電力量Eが最大充電量値Esmax未満となるように、目標回生電力量Etを減少させる制御(補正)を行う。ステップS70の制御を実施後、ステップS90に進み、目標回生電力量Et分のモータージェネレーター31による回生発電制御を実施する。ステップS90の制御を実施後、リターンに進み、本制御フローを終了して、上位の制御フローに戻る。 On the other hand, when it is determined in step S60 that the total power amount E is equal to or greater than the maximum charge amount value Esmax (YES), the process proceeds to step S70, and in step S70, the total power amount E is the maximum charge amount value Esmax. Control (correction) is performed to reduce the target regenerative electric energy Et so as to be less than the value. After performing the control in step S70, the process proceeds to step S90, and regenerative power generation control by the motor generator 31 for the target regenerative electric energy Et is performed. After performing the control in step S90, the process proceeds to return, ends the control flow, and returns to the upper control flow.
 以上のように、上記のハイブリッド車両の回生電力量制御システムを基にした、本開示のハイブリッド車両の回生電力量制御方法は、車両走行用の動力源であるエンジン10及びモータージェネレーター31を有するハイブリッドシステム30を備えたハイブリッド車両の回生電力量制御方法において、ハイブリッド車両の走行地点の道路勾配Gが予め設定された設定勾配閾値G1以上の下り勾配である場合に、モータージェネレーター31の回生電力量の目標値である目標回生電力量Etを、ハイブリッド車両の走行状態に基づいて設定される回生電力量である基本回生電力量Ebに、走行地点の下り勾配Gの大きさの単調増加関数として設定される補正回生電力量Ecを加算して算出する制御を行うことを特徴とする方法である。 As described above, the hybrid vehicle regenerative electric energy control method of the present disclosure based on the above-described hybrid vehicle regenerative electric energy control system is a hybrid including the engine 10 and the motor generator 31 that are power sources for running the vehicle. In the regenerative electric energy control method for a hybrid vehicle provided with the system 30, when the road gradient G of the traveling point of the hybrid vehicle is a downward gradient equal to or greater than a preset gradient threshold G1, the regenerative electric energy of the motor generator 31 is set. The target regenerative power amount Et, which is a target value, is set as a monotonically increasing function of the magnitude of the downward gradient G of the travel point to the basic regenerative power amount Eb, which is a regenerative power amount set based on the traveling state of the hybrid vehicle. In this method, control is performed by adding and calculating the corrected regenerative electric energy Ec.
 また、上記のハイブリッド車両の回生電力量制御方法において、ハイブリッド車両の走行地点の道路勾配Gが設定勾配閾値G1以上の下り勾配である場合に、モータージェネレーター31の目標回生電力量Etと、モータージェネレーター31にインバーター35を介して接続される高電圧バッテリー32の充電量Esの合計値である合計電力量E(=Et+Es)が、高電圧バッテリー32に充電できる量の最大値である最大充電量値Esmax以上となったときには、合計電力量Eが最大充電量値Esmax未満となるように、目標回生電力量Etを減少させる制御を行うことを特徴とする方法である。 Further, in the above regenerative electric energy control method for the hybrid vehicle, when the road gradient G at the travel point of the hybrid vehicle is a downward gradient equal to or greater than the set gradient threshold G1, the target regenerative electric energy Et of the motor generator 31 and the motor generator The maximum charge amount value that is the maximum amount of charge that can be charged in the high-voltage battery 32 is the total power amount E (= Et + Es) that is the total value of the charge amount Es of the high-voltage battery 32 connected to the inverter 31 via the inverter 35. In this method, control is performed to reduce the target regenerative electric energy Et so that the total electric energy E becomes less than the maximum charge amount value Esmax when the value is equal to or greater than Esmax.
 本開示のハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法によれば、ハイブリッド車両が急な下り勾配の道路を走行しているときに、その下り勾配が大きくなるにつれて、モータージェネレーター31の回生電力量の目標値(目標回生電力量)Etを大きくするので、モータージェネレーター31にインバーター35を介して接続される高電圧バッテリー32の充電量を十分に確保することができる。その結果、高電圧バッテリー32への充電のためのエンジン10の燃料噴射を抑制でき、さらに、上り勾配の道路でのモータージェネレーター31のアシスト機会を増加することができ、燃費を向上させることができる。 According to the regenerative electric energy control system for a hybrid vehicle, the hybrid vehicle, and the regenerative electric energy control method for a hybrid vehicle according to the present disclosure, when the hybrid vehicle is traveling on a steep downhill road, the downgrade is increased. Accordingly, the target value (target regenerative power amount) Et of the regenerative power amount of the motor generator 31 is increased, so that a sufficient charge amount of the high voltage battery 32 connected to the motor generator 31 via the inverter 35 can be secured. it can. As a result, fuel injection of the engine 10 for charging the high voltage battery 32 can be suppressed, and further, the opportunity for assisting the motor generator 31 on an uphill road can be increased, thereby improving fuel efficiency. .
 また、モータージェネレーター31による回生電力量を高電圧バッテリー32に充電すると、高電圧バッテリー32の充電量が過剰になると予測される場合には、モータージェネレーター31による目標回生電力量Etを減少補正するので、高電圧バッテリー32への過剰な充電を防止して、高電圧バッテリー32の耐久性を向上させることができる。 In addition, when the high voltage battery 32 is charged with the regenerative power amount by the motor generator 31, if the charge amount of the high voltage battery 32 is predicted to be excessive, the target regenerative power amount Et by the motor generator 31 is corrected to decrease. In addition, excessive charging of the high voltage battery 32 can be prevented, and the durability of the high voltage battery 32 can be improved.
 加えて、特に、ハイブリッド車両がバスやトラックなどの大型車両の場合には、積荷や乗客数によって車重が大きく変動するので、車重に応じて設定勾配閾値G1や補正回生電力量Ecを設定することが望ましい。 In addition, especially when the hybrid vehicle is a large vehicle such as a bus or truck, the vehicle weight varies greatly depending on the load and the number of passengers, so the set gradient threshold G1 and the corrected regenerative electric energy Ec are set according to the vehicle weight. It is desirable to do.
 このように、車重に応じて設定勾配閾値G1や補正回生電力量Ecを設定することで、車重が比較的重い場合には、モータージェネレーター31の回生電力量をより増加させることができるので、燃費の向上に有利になる。また、車重が比較的軽い場合には、回生による過剰な制動力によってハイブリッド車両が減速し過ぎることを回避できるので、ドライバビリティの向上に有利になる。 Thus, by setting the set gradient threshold G1 and the corrected regenerative electric energy Ec according to the vehicle weight, the regenerative electric energy of the motor generator 31 can be further increased when the vehicle weight is relatively heavy. This is advantageous for improving fuel economy. Further, when the vehicle weight is relatively light, it is possible to avoid that the hybrid vehicle is excessively decelerated due to excessive braking force due to regeneration, which is advantageous in improving drivability.
 本出願は、2015年11月20日付で出願された日本国特許出願(2015-227570)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (2015-227570) filed on November 20, 2015, the contents of which are incorporated herein by reference.
 本発明によればバッテリーへの過剰な充電を防止して、バッテリーの耐久性を向上させることができる点で有用である。 The present invention is useful in that the battery can be prevented from being excessively charged and the durability of the battery can be improved.
10 エンジン
11 エンジン本体
30 ハイブリッドシステム
31 モータージェネレーター
32 高電圧バッテリー(バッテリー)
35 インバーター
80 制御装置
Et 目標回生電力量
Eb 基本回生電力量
Ec 補正回生電力量
Es 高電圧バッテリーの充電量
Esmax 高電圧バッテリーの充電量の最大値
E 高電圧バッテリーの充電量と目標回生電力量の合計電力量
10 Engine 11 Engine body 30 Hybrid system 31 Motor generator 32 High voltage battery (battery)
35 Inverter 80 Control device Et Target regenerative power amount Eb Basic regenerative power amount Ec Corrected regenerative power amount Es High-voltage battery charge amount Esmax Maximum value of high-voltage battery charge amount E High-voltage battery charge amount and target regenerative power amount Total power

Claims (6)

  1.  車両走行用の動力源であるエンジン及びモータージェネレーターと、制御装置と、を有するハイブリッドシステムを備えたハイブリッド車両の回生電力量制御システムにおいて、
     前記制御装置が、
     前記ハイブリッド車両の走行地点の道路勾配が予め設定された設定勾配閾値以上の下り勾配である場合に、
     前記モータージェネレーターの回生電力量の目標値である目標回生電力量を、前記ハイブリッド車両の走行状態に基づいて設定される回生電力量である基本回生電力量に、前記走行地点の下り勾配の大きさの単調増加関数として設定される補正回生電力量を加算して算出する制御を行うように構成されるハイブリッド車両の回生電力量制御システム。
    In a regenerative electric energy control system for a hybrid vehicle comprising a hybrid system having an engine and a motor generator, which are power sources for driving the vehicle, and a control device,
    The control device is
    When the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or higher than a preset gradient threshold,
    The target regenerative power amount that is the target value of the regenerative power amount of the motor generator is changed to the basic regenerative power amount that is the regenerative power amount that is set based on the running state of the hybrid vehicle, and the magnitude of the downward slope of the travel point A regenerative electric energy control system for a hybrid vehicle configured to perform control for adding and calculating a corrected regenerative electric energy set as a monotonically increasing function.
  2.  前記制御装置が、
     前記ハイブリッド車両の走行地点の道路勾配が前記設定勾配閾値以上の下り勾配である場合に、
     前記モータージェネレーターの目標回生電力量と、前記モータージェネレーターにインバーターを介して接続されるバッテリーの充電量の合計値である合計電力量が、前記バッテリーに充電できる量の最大値である最大充電量値以上となったときには、前記合計電力量が前記最大充電量値未満となるように、前記目標回生電力量を減少させる制御を行うように構成される請求項1に記載のハイブリッド車両の回生電力量制御システム。
    The control device is
    When the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or greater than the set gradient threshold,
    The maximum amount of charge that is the maximum amount of charge that can be charged to the battery, the total amount of power that is the sum of the amount of charge of the target regenerative power of the motor generator and the amount of charge of the battery connected to the motor generator via an inverter. 2. The regenerative electric energy of the hybrid vehicle according to claim 1, configured to perform a control to decrease the target regenerative electric energy so that the total electric energy becomes less than the maximum charge amount value when the above becomes the above. Control system.
  3.  走行地点の前記道路勾配を算出する勾配算出手段をさらに備えたことを特徴とする請求項1または2に記載の回生電力量制御システム。 The regenerative electric energy control system according to claim 1 or 2, further comprising a gradient calculating means for calculating the road gradient of the travel point.
  4.  請求項1または2に記載のハイブリッド車両の回生電力量制御システムを備えたハイブリッド車両。 A hybrid vehicle comprising the regenerative electric energy control system for a hybrid vehicle according to claim 1 or 2.
  5.  車両走行用の動力源であるエンジン及びモータージェネレーターを有するハイブリッドシステムを備えたハイブリッド車両の回生電力量制御方法において、
     前記ハイブリッド車両の走行地点の道路勾配が予め設定された設定勾配閾値以上の下り勾配である場合に、
     前記モータージェネレーターの回生電力量の目標値である目標回生電力量を、前記ハイブリッド車両の走行状態に基づいて設定される回生電力量である基本回生電力量に、前記走行地点の下り勾配の大きさの単調増加関数として設定される補正回生電力量を加算して算出する制御を行うことを特徴とするハイブリッド車両の回生電力量制御方法。
    In a method for controlling regenerative electric energy of a hybrid vehicle including a hybrid system having an engine and a motor generator as a power source for vehicle travel,
    When the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or higher than a preset gradient threshold,
    The target regenerative power amount that is the target value of the regenerative power amount of the motor generator is changed to the basic regenerative power amount that is the regenerative power amount that is set based on the running state of the hybrid vehicle, and the magnitude of the downward slope of the travel point A regenerative electric energy control method for a hybrid vehicle, wherein control is performed by adding and calculating a corrected regenerative electric energy set as a monotonically increasing function.
  6.  前記ハイブリッド車両の走行地点の道路勾配が前記設定勾配閾値以上の下り勾配である場合に、
     前記モータージェネレーターの目標回生電力量と、前記モータージェネレーターにインバーターを介して接続されるバッテリーの充電量の合計値である合計電力量が、前記バッテリーに充電できる量の最大値である最大充電量値以上となったときには、前記合計電力量が前記最大充電量値未満となるように、前記目標回生電力量を減少させる制御を行うことを特徴とする請求項4に記載のハイブリッド車両の回生電力量制御方法。
    When the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or greater than the set gradient threshold,
    The maximum amount of charge that is the maximum amount of charge that can be charged to the battery, the total amount of power that is the sum of the amount of charge of the target regenerative power of the motor generator and the amount of charge of the battery connected to the motor generator via an inverter. 5. The regenerative power amount of the hybrid vehicle according to claim 4, wherein when the above is reached, control is performed to reduce the target regenerative power amount so that the total power amount is less than the maximum charge amount value. Control method.
PCT/JP2016/084253 2015-11-20 2016-11-18 Regenerative power amount control system for hybrid vehicle, hybrid vehicle, and regenerative power amount control method for hybrid vehicle WO2017086435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680067475.XA CN108290571B (en) 2015-11-20 2016-11-18 Regenerative power amount control system for hybrid vehicle, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-227570 2015-11-20
JP2015227570A JP6686384B2 (en) 2015-11-20 2015-11-20 Hybrid vehicle regenerative electric energy control system, hybrid vehicle, and regenerative electric energy control method for hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2017086435A1 true WO2017086435A1 (en) 2017-05-26

Family

ID=58717413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084253 WO2017086435A1 (en) 2015-11-20 2016-11-18 Regenerative power amount control system for hybrid vehicle, hybrid vehicle, and regenerative power amount control method for hybrid vehicle

Country Status (3)

Country Link
JP (1) JP6686384B2 (en)
CN (1) CN108290571B (en)
WO (1) WO2017086435A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109606124A (en) * 2018-12-13 2019-04-12 北京奕为汽车科技有限公司 Electric car regenerative braking method and device
JP7172836B2 (en) 2019-04-26 2022-11-16 トヨタ自動車株式会社 Braking force controller
JP7138143B2 (en) * 2020-08-21 2022-09-15 本田技研工業株式会社 vehicle controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058729Y2 (en) * 1984-11-10 1993-03-04
JP2001054202A (en) * 1999-08-05 2001-02-23 Nissan Motor Co Ltd Vehicle braking force controller
JP2009090735A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Control device for hybrid vehicle
WO2013084681A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Electric vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8204664B2 (en) * 2007-11-03 2012-06-19 GM Global Technology Operations LLC Method for controlling regenerative braking in a vehicle
JP2009126257A (en) * 2007-11-21 2009-06-11 Toyota Motor Corp Vehicle and its control method
JP5915208B2 (en) * 2012-01-31 2016-05-11 日産自動車株式会社 Regenerative brake control device for electric vehicle
WO2013121541A1 (en) * 2012-02-15 2013-08-22 トヨタ自動車株式会社 Control device for hybrid vehicle
GB2517471B (en) * 2013-08-21 2016-07-20 Jaguar Land Rover Ltd Dynamic deceleration control for hybrid vehicle
FR3010031B1 (en) * 2013-09-02 2016-12-23 Renault Sa METHOD FOR CONTROLLING THE RECOVERABLE BRAKE RESISTANT TORQUE OF AN ELECTRIC MOTOR VEHICLE ACCORDING TO THE DECLIVATION OF THE ROAD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058729Y2 (en) * 1984-11-10 1993-03-04
JP2001054202A (en) * 1999-08-05 2001-02-23 Nissan Motor Co Ltd Vehicle braking force controller
JP2009090735A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Control device for hybrid vehicle
WO2013084681A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Electric vehicle

Also Published As

Publication number Publication date
CN108290571B (en) 2021-06-11
CN108290571A (en) 2018-07-17
JP2017094835A (en) 2017-06-01
JP6686384B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
KR101588789B1 (en) Method and apparatus of controlling creep torque for vehicle including driving motor
JP4527138B2 (en) Control device for hybrid vehicle
US9102327B2 (en) Engine start control device for hybrid electric vehicle
JP5843412B2 (en) Accelerator pedal reaction force control device and vehicle
JP6018018B2 (en) Electric vehicle regeneration control device
JP2017114312A (en) Hybrid vehicle and control method therefor
JP2014111418A (en) Travel control unit of electric automobile
JP2014222989A (en) Regeneration control apparatus for electric automobile
WO2017086435A1 (en) Regenerative power amount control system for hybrid vehicle, hybrid vehicle, and regenerative power amount control method for hybrid vehicle
JP2014222988A (en) Regeneration control apparatus for electric automobile
JP2014103771A (en) Regeneration control device for electric vehicle
JP7010296B2 (en) Vehicle control method and control device
JP2015073347A (en) Electric-vehicular travel control apparatus
JP2017030595A (en) Hybrid vehicle and method of controlling the same
JP2016175503A (en) Hybrid vehicle and control method therefor
JP2015000675A (en) Control method for hybrid vehicle during cost drive and hybrid
JP6060757B2 (en) Vehicle control device
JP2016175496A (en) Hybrid vehicle and control method therefor
WO2017086471A1 (en) Hybrid vehicle and control method therefor
JP2016175491A (en) Hybrid vehicle and control method therefor
JP2016175505A (en) Hybrid vehicle and control method therefor
JP6400648B2 (en) Electric vehicle regeneration control device
JP6593045B2 (en) Hybrid vehicle and control method thereof
JP2016175504A (en) Hybrid vehicle and control method therefor
KR101500096B1 (en) Hybrid vehicle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866435

Country of ref document: EP

Kind code of ref document: A1