JP2017094835A - Hybrid-vehicular regenerative electric power volume control system, hybrid vehicle, and hybrid-vehicular regenerative electric power volume control method - Google Patents

Hybrid-vehicular regenerative electric power volume control system, hybrid vehicle, and hybrid-vehicular regenerative electric power volume control method Download PDF

Info

Publication number
JP2017094835A
JP2017094835A JP2015227570A JP2015227570A JP2017094835A JP 2017094835 A JP2017094835 A JP 2017094835A JP 2015227570 A JP2015227570 A JP 2015227570A JP 2015227570 A JP2015227570 A JP 2015227570A JP 2017094835 A JP2017094835 A JP 2017094835A
Authority
JP
Japan
Prior art keywords
hybrid vehicle
amount
regenerative electric
electric energy
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015227570A
Other languages
Japanese (ja)
Other versions
JP6686384B2 (en
Inventor
竜 山角
Ryu Yamakado
竜 山角
晃浩 稲村
Akihiro Inamura
晃浩 稲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015227570A priority Critical patent/JP6686384B2/en
Priority to CN201680067475.XA priority patent/CN108290571B/en
Priority to PCT/JP2016/084253 priority patent/WO2017086435A1/en
Publication of JP2017094835A publication Critical patent/JP2017094835A/en
Application granted granted Critical
Publication of JP6686384B2 publication Critical patent/JP6686384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hybrid-vehicular regenerative electric power volume control system, a hybrid vehicle, and a hybrid-vehicular regenerative electric power volume control method, which are capable of increasing a regenerative electric power volume of a motor-generator and sufficiently securing a charge amount of a battery connected to the motor-generator via an inverter while the vehicle travels on a down-hill road, thus improving fuel economy.SOLUTION: In a case where a traveling spot of a hybrid vehicle is down-hill with its road inclination G equal to or more than a predetermined set inclination threshold G1, control is performed to calculate a target generative electric power volume Et, that is, a target value of a regenerative electric power volume of a motor-generator 31, by adding a correction regenerative electric power volume Ec set as a positive function of a magnitude being a down inclination G at a traveling spot to a basic regenerative electric power volume Eb that is regenerative electric power volume set on the basis of a travel state of the vehicle.SELECTED DRAWING: Figure 3

Description

本発明は、ハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法に関し、更に詳しくは、車両走行用の動力源であるエンジン及びモータージェネレーターと、制御装置と、を有するハイブリッドシステムを備えたハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法に関する。   The present invention relates to a regenerative electric energy control system for a hybrid vehicle, a hybrid vehicle, and a regenerative electric energy control method for a hybrid vehicle. More specifically, the present invention includes an engine and a motor generator, which are power sources for running a vehicle, and a control device. The present invention relates to a regenerative electric energy control system for a hybrid vehicle including a hybrid system, a hybrid vehicle, and a regenerative electric energy control method for a hybrid vehicle.

近年、燃費向上及び環境対策などの観点から、車両の運転状態に応じて複合的に制御されるエンジン及びモータージェネレーターを有するハイブリッドシステムを備えたハイブリッド車両(以下「HEV」という。)が注目されている。このHEVにおいては、車両の加速時や発進時には、モータージェネレーターによる駆動力のアシストが行われる一方で、慣性走行時や始動時にはモータージェネレーターによる回生発電が行われる(例えば、特許文献1を参照)。   In recent years, a hybrid vehicle (hereinafter referred to as “HEV”) including a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle has attracted attention from the viewpoint of improving fuel efficiency and environmental measures. Yes. In this HEV, when the vehicle is accelerated or started, the driving force is assisted by the motor generator, while regenerative power generation is performed by the motor generator at the time of inertia traveling or starting (see, for example, Patent Document 1).

このHEVが慣性走行しているときにおける、モータージェネレーターによる回生電力量の目標値(目標回生電力量)は、従来、HEVの走行状態(エンジンの燃料噴射量、エンジン回転数、車速等)に基づいて設定されてきた。なお、慣性走行とは、運転者がアクセルペダルを踏まずに(アクセルオフで)エンジンブレーキを効かせながら走行していることである。   The target value of the regenerative electric energy by the motor generator (target regenerative electric energy) when the HEV is traveling inertially is conventionally based on the HEV driving condition (engine fuel injection amount, engine speed, vehicle speed, etc.). Has been set. The inertia traveling means that the driver travels while applying the engine brake without pressing the accelerator pedal (when the accelerator is off).

しかしながら、HEVが下り勾配の道路を走行しているときに、その道路の下り勾配の大きさによっては、モータージェネレーターによる回生電力量を未だ大きくする余地が残っていた。   However, when the HEV is traveling on a downhill road, there is still room for increasing the amount of regenerative power generated by the motor generator depending on the downgrade of the road.

また、ハイブリッド車両の回生発電に関連する技術として、降坂時の勾配度に応じて自動変速機の変速比を低レシオ化または低シフト化するとともに、減速の程度に応じて決定された回生量を所定に減少させるハイブリッド車両の回生制御装置が提案されている(例えば、特許文献2参照)。   In addition, as a technology related to regenerative power generation of hybrid vehicles, the ratio of the automatic transmission is reduced or shifted according to the degree of gradient when descending the slope, and the regenerative amount determined according to the degree of deceleration A regenerative control device for a hybrid vehicle that reduces the predetermined amount has been proposed (see, for example, Patent Document 2).

しかしながら、上記のハイブリッド車両の回生制御装置では、降坂時の勾配度に応じて回生量を所定に減少させているので、すなわち、勾配度が大きくなるにつれて回生可能な量も大きくなるにもかかわらず、その回生可能な量の多くを無駄に捨てていることとなり、結果として、燃費の向上を図ることができないという問題がある。   However, in the above-described regenerative control device for a hybrid vehicle, the regenerative amount is reduced to a predetermined value in accordance with the gradient when descending, that is, the amount that can be regenerated increases as the gradient increases. Therefore, much of the amount that can be regenerated is wasted, and as a result, there is a problem that fuel consumption cannot be improved.

特開2002−238105号公報JP 2002-238105 A 特開2000−102110号公報JP 2000-102110 A

本発明の目的は、ハイブリッド車両が下り勾配の道路を走行しているときに、モータージェネレーターによる回生電力量を大きくすることができ、モータージェネレーターにインバーターを介して接続されるバッテリーの充電量を十分に確保することができ、その結果として燃費を向上させることができるハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法を提供することにある。   An object of the present invention is to increase the amount of regenerative electric power generated by a motor generator when a hybrid vehicle is traveling on a downhill road, and to sufficiently charge a battery connected to the motor generator via an inverter. It is desirable to provide a regenerative electric energy control system for a hybrid vehicle, a hybrid vehicle, and a regenerative electric energy control method for a hybrid vehicle that can be ensured at the same time.

上記の目的を達成する本発明のハイブリッド車両の回生電力量制御システムは、車両走行用の動力源であるエンジン及びモータージェネレーターと、制御装置と、を有するハイブリッドシステムを備えたハイブリッド車両の回生電力量制御システムにおいて、前記制御装置が、前記ハイブリッド車両の走行地点の道路勾配が予め設定された設定勾配閾値以上の下り勾配である場合に、前記モータージェネレーターの回生電力量の目標値である目標回生電力量を、前記ハイブリッド車両の走行状態に基づいて設定される回生電力量である基本回生電力量に、前記走行地点の下り勾配の大きさの正関数として設定される補正回生電力量を加算して算出する制御を行うように構成される。   The regenerative electric energy control system for a hybrid vehicle according to the present invention that achieves the above-described object provides a regenerative electric energy for a hybrid vehicle including a hybrid system including an engine and a motor generator that are power sources for driving the vehicle, and a control device. In the control system, when the road gradient of the travel point of the hybrid vehicle is a downward gradient that is equal to or greater than a preset gradient threshold, the target regenerative power that is a target value of the regenerative power amount of the motor generator The amount is added to the basic regenerative power amount that is the regenerative power amount set based on the traveling state of the hybrid vehicle, and the corrected regenerative power amount that is set as a positive function of the magnitude of the downward slope of the travel point. It is configured to perform control to calculate.

また、上記のハイブリッド車両の回生電力量制御システムにおいて、前記制御装置が、前記ハイブリッド車両の走行地点の道路勾配が前記設定勾配閾値以上の下り勾配である場合に、前記モータージェネレーターの目標回生電力量と、前記モータージェネレーターにインバーターを介して接続されるバッテリーの充電量の合計値である合計電力量が、前記バッテリーに充電できる量の最大値である最大充電量値以上となったときには、前記合計電力量が前記最大充電量値未満となるように、前記目標回生電力量を減少させる制御を行うように構成される。   Further, in the above regenerative electric energy control system for a hybrid vehicle, when the control device has a road gradient at a travel point of the hybrid vehicle that is a downward gradient equal to or greater than the set gradient threshold, the target regenerative electric energy of the motor generator And when the total amount of power, which is the total amount of charge of the battery connected to the motor generator via an inverter, is equal to or greater than the maximum amount of charge that is the maximum amount of charge that can be charged to the battery, the total amount Control is performed to reduce the target regenerative power amount so that the power amount is less than the maximum charge amount value.

また、上記の目的を達成する本発明のハイブリッド車両は、上記のハイブリッド車両の回生電力量制御システムを備えて構成される。   Moreover, the hybrid vehicle of the present invention that achieves the above object is configured to include the regenerative electric energy control system for the hybrid vehicle.

また、上記の目的を達成する本発明のハイブリッド車両の回生電力量制御方法は、車両走行用の動力源であるエンジン及びモータージェネレーターを有するハイブリッドシステムを備えたハイブリッド車両の回生電力量制御方法において、前記ハイブリッド車両の走行地点の道路勾配が予め設定された設定勾配閾値以上の下り勾配である場合に、前記モータージェネレーターの回生電力量の目標値である目標回生電力量を、前記ハイブリッド車両の走行状態に基づいて設定される回生電力量である基本回生電力量に、前記走行地点の下り勾配の大きさの正関数として設定される補正回生電力量を加算して算出する制御を行うことを特徴とする方法である。   A regenerative electric energy control method for a hybrid vehicle of the present invention that achieves the above object is a method for controlling the regenerative electric energy of a hybrid vehicle including a hybrid system having an engine and a motor generator as a power source for vehicle travel. When the road gradient of the travel point of the hybrid vehicle is a downward gradient that is equal to or greater than a preset gradient threshold, a target regenerative power amount that is a target value of the regenerative power amount of the motor generator is determined as a travel state of the hybrid vehicle. Control is performed by adding a correction regenerative power amount set as a positive function of the magnitude of the downward slope of the travel point to a basic regenerative power amount that is set based on It is a method to do.

また、上記のハイブリッド車両の回生電力量制御方法において、前記ハイブリッド車両の走行地点の道路勾配が前記設定勾配閾値以上の下り勾配である場合に、前記モータージェネレーターの目標回生電力量と、前記モータージェネレーターにインバーターを介して接続されるバッテリーの充電量の合計値である合計電力量が、前記バッテリーに充電できる量の最大値である最大充電量値以上となったときには、前記合計電力量が前記最大充電量値未満となるように、前記目標回生電力量を減少させる制御を行うことを特徴とする方法である。   Further, in the above regenerative electric energy control method for a hybrid vehicle, when the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or greater than the set gradient threshold, the target regenerative electric energy of the motor generator and the motor generator When the total power amount that is the total charge amount of the battery connected to the battery via the inverter becomes equal to or greater than the maximum charge amount value that is the maximum value that can be charged to the battery, the total power amount is In this method, control is performed to reduce the target regenerative power amount so as to be less than a charge amount value.

本発明のハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法によれば、ハイブリッド車両が急な下り勾配の道路を走行しているときに、その下り勾配が大きくなるにつれて、モータージェネレーターの回生電力量の目標値(目標回生電力量)を大きくするので、モータージェネレーターにインバーターを介して接続されるバッテリーの充電量を十分に確保することができる。その結果、バッテリーへの充電のためのエンジンの燃料噴射を抑制でき、さらに、上り勾配の道路でのモータージェネレーターのアシスト機会を増加することができ、燃費を向上させることができる。   According to the regenerative electric energy control system for a hybrid vehicle, the hybrid vehicle, and the regenerative electric energy control method for a hybrid vehicle according to the present invention, when the hybrid vehicle is traveling on a steep downhill road, the downgrade is increased. Accordingly, since the target value (target regenerative power amount) of the regenerative power amount of the motor generator is increased, the charge amount of the battery connected to the motor generator via the inverter can be sufficiently secured. As a result, the fuel injection of the engine for charging the battery can be suppressed, and further the motor generator assist opportunities on the uphill road can be increased, thereby improving the fuel consumption.

また、モータージェネレーターによる回生電力量をバッテリーに充電すると、バッテリーの充電量が過剰になると予測される場合には、モータージェネレーターによる目標回生電力量を減少補正するので、バッテリーへの過剰な充電を防止して、バッテリーの耐久性を向上させることができる。   In addition, if it is predicted that the amount of battery charge will be excessive when the battery is charged with regenerative power from the motor generator, the target regenerative power by the motor generator will be corrected to decrease, thus preventing excessive charging of the battery. Thus, the durability of the battery can be improved.

本発明の実施形態からなるハイブリッド車両の回生電力量制御システムを備えたハイブリッド車両の構成図である。1 is a configuration diagram of a hybrid vehicle including a regenerative electric energy control system for a hybrid vehicle according to an embodiment of the present invention. 本発明の実施形態からなるハイブリッド車両の回生電力量制御方法の制御フローの前半を示す図である。It is a figure which shows the first half of the control flow of the regeneration electric energy control method of the hybrid vehicle which consists of embodiment of this invention. 本発明の実施形態からなるハイブリッド車両の回生電力量制御方法の制御フローの後半を示す図である。It is a figure which shows the second half of the control flow of the regeneration electric energy control method of the hybrid vehicle which consists of embodiment of this invention. 道路勾配と補正回生電力量との相関関係を示す図である。It is a figure which shows the correlation with a road gradient and correction | amendment regenerative electric energy. 車重と設定勾配閾値との相関関係を示す図である。It is a figure which shows the correlation of a vehicle weight and a setting gradient threshold value.

以下に、本発明の実施の形態について、図面を参照して説明する。図1は、本発明の実施形態からなるハイブリッド車両の回生電力量制御システムを備えたハイブリッド車両を示す。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a hybrid vehicle equipped with a regenerative electric energy control system for a hybrid vehicle according to an embodiment of the present invention.

このハイブリッド車両(以下「HEV」という。)は、普通乗用車のみならず、バスやトラック、ピックアップトラックなどを含む車両であり、車両の運転状態に応じて複合的に制御されるエンジン10及びモータージェネレーター31を有するハイブリッドシステム30を備えている。   The hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, a pickup truck, and the like, and an engine 10 and a motor generator that are controlled in combination according to the driving state of the vehicle. A hybrid system 30 having 31 is provided.

エンジン10においては、エンジン本体11に形成された複数(この例では4個)の気筒12内における燃料の燃焼により発生した熱エネルギーにより、クランクシャフト13が回転駆動される。このエンジン10には、ディーゼルエンジンやガソリンエンジンが用いられる。クランクシャフト13の回転動力は、クランクシャフト13の一端部に接続するクラッチ14(例えば、湿式多板クラッチなど)を通じてトランスミッション20に伝達される。   In the engine 10, the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11. The engine 10 is a diesel engine or a gasoline engine. The rotational power of the crankshaft 13 is transmitted to the transmission 20 through a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.

トランスミッション20には、HEVの運転状態と予め設定されたマップデータとに基づいて決定された目標変速段へ、変速用アクチュエーター(図示しない)を用いて自動的に変速するAMTやATが用いられている。なお、トランスミッション20は、AMTのような自動変速式に限るものではなく、ドライバーが手動で変速するマニュアル式であってもよい。   The transmission 20 uses an AMT or AT that automatically shifts to a target shift speed determined based on the HEV operating state and preset map data using a shift actuator (not shown). Yes. The transmission 20 is not limited to an automatic transmission type such as AMT, and may be a manual type in which a driver manually changes gears.

トランスミッション20で変速された回転動力は、プロペラシャフト22を通じてデファレンシャル23に伝達され、一対の駆動輪24にそれぞれ駆動力として分配される。   The rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to each of the pair of drive wheels 24 as drive power.

ハイブリッドシステム30は、モータージェネレーター31と、そのモータージェネレーター31に順に電気的に接続するインバーター35、高電圧バッテリー32、DC/DCコンバーター33及び低電圧バッテリー34とを有している。   The hybrid system 30 includes a motor generator 31, an inverter 35, a high voltage battery 32, a DC / DC converter 33, and a low voltage battery 34 that are electrically connected to the motor generator 31 in order.

高電圧バッテリー32としては、リチウムイオンバッテリーやニッケル水素バッテリーなどが好ましく例示される。また、低電圧バッテリー34には鉛バッテリーが用いられる。   Preferred examples of the high voltage battery 32 include a lithium ion battery and a nickel metal hydride battery. The low voltage battery 34 is a lead battery.

DC/DCコンバーター33は、高電圧バッテリー32と低電圧バッテリー34との間における充放電の方向及び出力電圧を制御する機能を有している。また、低電圧バッテリー34は、各種の車両電装品36に電力を供給する。   The DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34. The low voltage battery 34 supplies power to various vehicle electrical components 36.

このハイブリッドシステム30における種々のパラメーター、例えば、電流値、電圧値やSOC値などは、BMS(バッテリーマネジメントシステム)39により検出される。   Various parameters in the hybrid system 30 such as a current value, a voltage value, and an SOC value are detected by a BMS (battery management system) 39.

モータージェネレーター31は、回転軸37に取り付けられた第1プーリー15とエンジン本体11の出力軸であるクランクシャフト13の他端部に取り付けられた第2プーリー16との間に掛け回された無端状のベルト状部材17を介して、エンジン10との間で動力を伝達する。なお、2つのプーリー15、16及びベルト状部材17の代わりに、ギヤボックスなどを用いて動力を伝達することもできる。また、モータージェネレーター31に接続するエンジン本体11の出力軸は、クランクシャフト13に限るものではなく、例えばエンジン本体11とトランスミッション20の間の伝達軸やプロペラシャフト22であっても良い。   The motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the two pulleys 15 and 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20, for example.

このモータージェネレーター31は、エンジン本体11を始動するスターターモーター(図示せず)の代わりに、クランキングを行う機能を有していてもよい。   The motor generator 31 may have a function of cranking instead of a starter motor (not shown) that starts the engine body 11.

これらのエンジン10及びハイブリッドシステム30は、制御装置80により制御される。具体的には、HEVの発進時や加速時には、ハイブリッドシステム30は高電圧バッテリー32から電力を供給されたモータージェネレーター31により駆動力の少なくとも一部をアシストする一方で、慣性走行時や制動時においては、モータージェネレーター31による回生発電を行い、余剰の運動エネルギーを電力に変換して高電圧バッテリー32を充電する。   The engine 10 and the hybrid system 30 are controlled by the control device 80. Specifically, at the time of HEV start or acceleration, the hybrid system 30 assists at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32, while at the time of inertia traveling or braking. Performs regenerative power generation by the motor generator 31, converts surplus kinetic energy into electric power, and charges the high voltage battery 32.

本発明のハイブリッド車両の回生電力量制御システムは、車両走行用の動力源であるエンジン10及びモータージェネレーター31と、制御装置80と、を有するハイブリッドシステム30を備えたシステムである。   The regenerative electric energy control system for a hybrid vehicle according to the present invention is a system including a hybrid system 30 having an engine 10 and a motor generator 31 that are power sources for driving the vehicle, and a control device 80.

そして、制御装置80が、ハイブリッド車両の走行地点の道路勾配Gが実験等により予め設定された設定勾配閾値G1以上の下り勾配である場合に、モータージェネレーター31の回生電力量の目標値である目標回生電力量Etを、ハイブリッド車両の走行状態(エンジン10の燃料噴射量、エンジン回転数、車速等)に基づいて設定される回生電力量である基本回生電力量Ebに、走行地点の下り勾配Gの大きさの正関数として設定される補正回生電力量Ecを加算して算出する制御を行うように構成する。すなわち、目標回生電力量Et=基本回生電力量Eb+補正回生電力量Ecとするとともに、この補正回生電力量Ecを、走行地点の下り勾配Gが小さいときには小さくなるように、走行地点の下り勾配Gが大きいときには大きくなるように、設定する。   Then, when the road gradient G at the travel point of the hybrid vehicle is a downward gradient equal to or greater than a preset gradient threshold G1 set by experiments or the like, the control device 80 is a target that is a target value of the regenerative electric energy of the motor generator 31. The regenerative power amount Et is changed to the basic regenerative power amount Eb, which is a regenerative power amount set based on the traveling state of the hybrid vehicle (fuel injection amount of the engine 10, engine speed, vehicle speed, etc.) The correction regenerative electric energy Ec which is set as a positive function of the magnitude of is added and calculated. That is, the target regenerative electric energy Et = basic regenerative electric energy Eb + corrected regenerative electric energy Ec, and the corrected regenerative electric energy Ec is decreased when the down gradient G of the travel point is small. Set to be large when is large.

ここで、道路勾配Gは、例えば、ESCシステム(横滑り防止システム)に搭載されている加速度センサー(Gセンサ−)、輪速センサー、ジャイロセンサー等の各種センサーの検出値を用いて推定算出したり、あるいは、ハイブリッド車両にナビゲーションシステムが搭載されている場合には、このナビゲーションシステムに登録されている道路勾配情報を用いたりして算出する。   Here, the road gradient G is estimated and calculated using detection values of various sensors such as an acceleration sensor (G sensor), a wheel speed sensor, and a gyro sensor mounted on the ESC system (side slip prevention system), for example. Alternatively, when the navigation system is mounted on the hybrid vehicle, the calculation is performed by using road gradient information registered in the navigation system.

また、この設定勾配閾値G1は、ハイブリッド車両に加わる重力加速度による前進方向の力が走行抵抗以上になり、エンジン10及びモータージェネレーター31からの駆動力が無くても、減速しない勾配に選定される。   Further, the set gradient threshold G1 is selected so that the force in the forward direction due to the gravitational acceleration applied to the hybrid vehicle is equal to or greater than the running resistance and the vehicle does not decelerate even if there is no driving force from the engine 10 and the motor generator 31.

より詳細には、この設定勾配閾値G1は、図5に示すような車重と設定勾配閾値G1の相関関係を設定した制御マップを用いて、ハイブリッド車両の車重を基に算出される。ハイブリッド車両の車重が軽いほど設定勾配閾値G1は大きくなり、車重が重いほど設定勾配閾値G1は小さくなる。   More specifically, the set gradient threshold value G1 is calculated based on the vehicle weight of the hybrid vehicle using a control map in which the correlation between the vehicle weight and the set gradient threshold value G1 is set as shown in FIG. The set gradient threshold value G1 increases as the vehicle weight of the hybrid vehicle decreases, and the set gradient threshold value G1 decreases as the vehicle weight increases.

また、設定勾配閾値G1の大きさに基づいて補正回生電力量Ecは変化する。図4に示すように、ハイブリッド車両の車重をa、b、c(a>b>c)として、それぞれの車重に対応する設定勾配閾値G1をG1a、G1b、G1cとし、それぞれの設定勾配閾値G1に対応する補正回生電力量Ecを示す線をLa、Lb、Lcとした場合、車重が大きくなるにつれて、補正回生電力量Ecが大きくなることが分かる。   Further, the corrected regenerative electric energy Ec changes based on the magnitude of the set gradient threshold G1. As shown in FIG. 4, the vehicle weight of the hybrid vehicle is set to a, b, c (a> b> c), the set gradient threshold G1 corresponding to each vehicle weight is set to G1a, G1b, G1c, and each set gradient is set. When the lines indicating the corrected regenerative electric energy Ec corresponding to the threshold G1 are La, Lb, and Lc, it can be seen that the corrected regenerative electric energy Ec increases as the vehicle weight increases.

なお、ハイブリッド車両がオートクルーズ走行する場合には、従来は、運転者により設定された設定車速度で一定走行するように、モータージェネレーター31による回生電力量(回生トルク)の目標回生量Etを基本回生電力量Ebに設定しているが、本発明では、道路勾配Gが設定勾配閾値G1以上の下り勾配である場合には、走行地点の下り勾配Gの大きさの正関数として補正回生電力量Ecを設定して、目標回生電力量Et(=Eb+Ec)を算出するフィードフォワード制御を行う。   When the hybrid vehicle travels by auto-cruise, conventionally, the target regeneration amount Et of the regenerative electric energy (regenerative torque) by the motor generator 31 is basically set so that the vehicle travels constantly at the set vehicle speed set by the driver. Although the regenerative electric energy Eb is set, in the present invention, when the road gradient G is a downward gradient equal to or greater than the set gradient threshold G1, the corrected regenerative electric energy is used as a positive function of the magnitude of the downward gradient G at the travel point. Ec is set, and feedforward control for calculating the target regenerative electric energy Et (= Eb + Ec) is performed.

なお、オートクルーズは、特に高速道路を走行する際に使用されており、運転者によってオートクルーズ作動スイッチ(図示しない)が投入された場合に、制御装置80が、HEVを自動走行させて予定通りに運行させる走行モードである。   Autocruise is used especially when traveling on a highway. When an autocruise operation switch (not shown) is turned on by a driver, the control device 80 causes HEV to automatically travel as planned. This is a driving mode for operating the vehicle.

このオートクルーズにおける走行モードとしては、エンジン走行、アシスト走行、モータ走行、及び惰性走行を、走行路の勾配、ハイブリッド車両の車重などのパラメーターに基づいて適時選択して、ハイブリッド車両の車速を予め設定された目標速度範囲に維持してHEVを自動走行させるモードや、先行車両に追従するように適時選択して、HEVに先行車を追従させるモードを例示できる。   As the travel mode in this auto cruise, engine travel, assist travel, motor travel, and inertia travel are selected in a timely manner based on parameters such as the gradient of the travel path and the vehicle weight of the hybrid vehicle, and the vehicle speed of the hybrid vehicle is determined in advance. Examples include a mode in which the HEV is automatically driven while maintaining the set target speed range, and a mode in which the HEV is made to follow the preceding vehicle by appropriately selecting to follow the preceding vehicle.

また、上記のハイブリッド車両の回生電力量制御システムにおいて、制御装置80が、ハイブリッド車両の走行地点の道路勾配Gが設定勾配閾値G1以上の下り勾配である場合に、モータージェネレーター31の目標回生電力量Etと、モータージェネレーター31にインバーター35を介して接続される高電圧バッテリー32の充電量Esの合計値である合計電力量E(=Et+Es)が、高電圧バッテリー32に充電できる量の最大値である最大充電量値Esmax以上となった(E≧Esmax)ときには、合計電力量Eが最大充電量値Esmax未満となるように、目標回生電力量Etを減少させる制御を行うように構成する。この充電量EsはBMS39により検出され、充電量Esの検出値のデータはBMS39または制御装置80に記憶させる。   Further, in the above-described hybrid vehicle regenerative power control system, when the control device 80 has a downward gradient equal to or greater than the set gradient threshold G1 at the travel point of the hybrid vehicle, the target regenerative power amount of the motor generator 31 is obtained. The total electric energy E (= Et + Es), which is the total value of Et and the charge amount Es of the high voltage battery 32 connected to the motor generator 31 via the inverter 35, is the maximum amount that can be charged to the high voltage battery 32. When the maximum charge amount value Esmax is equal to or greater than (E ≧ Esmax), control is performed to reduce the target regenerative power amount Et so that the total power amount E becomes less than the maximum charge amount value Esmax. The charge amount Es is detected by the BMS 39, and the data of the detected value of the charge amount Es is stored in the BMS 39 or the control device 80.

次に、上記のハイブリッド車両の回生電力量制御システムを基にした、本発明のハイブリッド車両の回生電力量制御方法について、図2、図3の制御フローを参照しながら説明する。図2の制御フローは、車両の始動時等で、図3の制御フローを実施する前に、上級の制御フローから呼ばれて実施され、実施後に、上級の制御フローに戻る制御フローとして示している。図3の制御フローは、車両の慣性走行時や始動時等、モータージェネレーター31による回生発電制御を行うときに、予め設定した制御時間が経過する毎に上級の制御フローから呼ばれて実施され、実施後に上級の制御フローに戻る制御フローとして示している。   Next, a regenerative electric energy control method for a hybrid vehicle according to the present invention based on the above-described hybrid vehicle regenerative electric energy control system will be described with reference to the control flow of FIGS. The control flow shown in FIG. 2 is called from the advanced control flow before starting the control flow shown in FIG. 3 at the start of the vehicle or the like, and is shown as a control flow that returns to the advanced control flow after the execution. Yes. The control flow of FIG. 3 is called and executed from an advanced control flow every time a preset control time elapses when performing regenerative power generation control by the motor generator 31, such as at the time of inertial running or starting of the vehicle, It is shown as a control flow that returns to an advanced control flow after implementation.

図2の制御フローについて説明する。図2の制御フローがスタートすると、ステップS10にて、ハイブリッド車両の車重を取得して、この取得した車重の情報を制御装置80に記憶させる。この車重の取得方法は、車両重量計(図示しない)等を用いて車重を検出する方法でもよいし、車両の寸法等に係る各種パラメーターを用いて車重を推定する方法でもよい。また、発進時や変速時に駆動輪24に伝達される駆動力が走行抵抗に等しくなるとして車重を推定する方法でもよい。   The control flow of FIG. 2 will be described. When the control flow in FIG. 2 starts, the vehicle weight of the hybrid vehicle is acquired in step S10, and the acquired vehicle weight information is stored in the control device 80. The vehicle weight acquisition method may be a method of detecting the vehicle weight using a vehicle weigh scale (not shown) or the like, or a method of estimating the vehicle weight using various parameters related to the dimensions of the vehicle. Alternatively, the vehicle weight may be estimated by assuming that the driving force transmitted to the drive wheels 24 at the time of starting or shifting is equal to the running resistance.

そして、ステップS10の制御を実施後、ステップS20に進み、ステップS20にて、図5に示すような車重と設定勾配閾値G1の相関関係を設定した制御マップを用いて、ステップS10で取得した車重の情報を基に、設定勾配閾値G1を算出して、制御装置80に記憶させる。ステップS20の制御を実施後、リターンに進み、本制御フローを終了して、上級の制御フローに戻る。なお、この設定勾配閾値G1としては、例えば、ハイブリッド車両の車重が25tの場合には、2%の勾配を例示できる。   Then, after carrying out the control of step S10, the process proceeds to step S20. In step S20, the control map in which the correlation between the vehicle weight and the set gradient threshold value G1 as shown in FIG. 5 is used is obtained in step S10. Based on the vehicle weight information, the set gradient threshold G1 is calculated and stored in the control device 80. After executing the control of step S20, the process proceeds to return, ends the present control flow, and returns to the advanced control flow. In addition, as this setting gradient threshold value G1, when the vehicle weight of a hybrid vehicle is 25t, a gradient of 2% can be illustrated, for example.

図3の制御フローについて説明する。図3の制御フローがスタートすると、ステップS30にて、高電圧バッテリー32の充電量EsをBMS39または制御装置80より読み込むとともに、ハイブリッド車両の走行状態(エンジン10の燃料噴射量、エンジン回転数、車速等)に基づいて基本回生電力量Ebを推定算出する。ステップS30の制御を実施後、ステップS40に進む。   The control flow of FIG. 3 will be described. When the control flow of FIG. 3 starts, in step S30, the charge amount Es of the high voltage battery 32 is read from the BMS 39 or the control device 80, and the running state of the hybrid vehicle (the fuel injection amount of the engine 10, the engine speed, the vehicle speed). Etc.), the basic regenerative electric energy Eb is estimated and calculated. After performing the control of step S30, the process proceeds to step S40.

ステップS40にて、ハイブリッド車両の走行地点の道路勾配GがステップS20で算出した設定勾配G1以上か否かを判定する。この道路勾配Gの算出は、ステップS30またはステップS40で行う。ステップS40にて、道路勾配Gが設定勾配G1未満であると判定した場合(NO)は、ステップS80に進み、ステップS80にて、基本回生電力量Ebを目標回生電力量Et(=Eb)に設定する。ステップS80の制御を実施後、ステップS90に進み、目標回生電力量Et分のモータージェネレーター31による回生発電制御を実施する。ステップS90の制御を実施後、リターンに進み、本制御フローを終了して、上級の制御フローに戻る。   In step S40, it is determined whether or not the road gradient G at the travel point of the hybrid vehicle is greater than or equal to the set gradient G1 calculated in step S20. This road gradient G is calculated in step S30 or step S40. When it is determined in step S40 that the road gradient G is less than the set gradient G1 (NO), the process proceeds to step S80, and in step S80, the basic regenerative power amount Eb is changed to the target regenerative power amount Et (= Eb). Set. After performing the control in step S80, the process proceeds to step S90, and regenerative power generation control by the motor generator 31 for the target regenerative power amount Et is performed. After executing the control of step S90, the process proceeds to return, ends the present control flow, and returns to the advanced control flow.

一方、ステップS40にて、道路勾配Gが設定勾配G1以上であると判定した場合(YES)は、ステップS50に進み、ステップS50にて、走行地点の下り勾配Gの大きさの正関数として設定される補正回生電力量Ecを算出するとともに、この補正回生電力量Ecと、ステップS30で読み込みまたは算出した充電量Es及び基本回生電力量Ebを用いて、目標回生電力量Et(=Eb+Ec)及び合計電力量E(=Et+Es)を算出する。ステップS50の制御を実施後、ステップS60に進む。   On the other hand, if it is determined in step S40 that the road gradient G is greater than or equal to the set gradient G1 (YES), the process proceeds to step S50, and is set as a positive function of the magnitude of the downward gradient G at the travel point in step S50. The corrected regenerative electric energy Ec is calculated, and the target regenerative electric energy Et (= Eb + Ec) is calculated using the corrected regenerative electric energy Ec, the charge amount Es read and calculated in step S30, and the basic regenerative electric energy Eb. The total electric energy E (= Et + Es) is calculated. After performing the control in step S50, the process proceeds to step S60.

ステップS60にて、ステップS50で算出した合計電力量Eが最大充電量値Esmax以上であるか否かを判定する。ステップS60にて、合計電力量Eが最大充電量値Esmax未満であると判定した場合(NO)には、ステップS90に進み、目標回生電力量Et分のモータージェネレーター31による回生発電制御を実施する。ステップS90の制御を実施後、リターンに進み、本制御フローを終了して、上級の制御フローに戻る。   In step S60, it is determined whether or not the total power amount E calculated in step S50 is greater than or equal to the maximum charge amount value Esmax. If it is determined in step S60 that the total power amount E is less than the maximum charge amount value Esmax (NO), the process proceeds to step S90, and regenerative power generation control by the motor generator 31 for the target regenerative power amount Et is performed. . After executing the control of step S90, the process proceeds to return, ends the present control flow, and returns to the advanced control flow.

一方、ステップS60にて、合計電力量Eが最大充電量値Esmax以上であると判定した場合(YES)には、ステップS70に進み、ステップS70にて、合計電力量Eが最大充電量値Esmax未満となるように、目標回生電力量Etを減少させる制御(補正)を行う。ステップS70の制御を実施後、ステップS90に進み、目標回生電力量Et分のモータージェネレーター31による回生発電制御を実施する。ステップS90の制御を実施後、リターンに進み、本制御フローを終了して、上級の制御フローに戻る。   On the other hand, when it is determined in step S60 that the total power amount E is equal to or greater than the maximum charge amount value Esmax (YES), the process proceeds to step S70, and in step S70, the total power amount E is the maximum charge amount value Esmax. Control (correction) is performed to reduce the target regenerative electric energy Et so as to be less than the value. After performing the control in step S70, the process proceeds to step S90, and regenerative power generation control by the motor generator 31 for the target regenerative electric energy Et is performed. After executing the control of step S90, the process proceeds to return, ends the present control flow, and returns to the advanced control flow.

以上のように、上記のハイブリッド車両の回生電力量制御システムを基にした、本発明のハイブリッド車両の回生電力量制御方法は、車両走行用の動力源であるエンジン10及びモータージェネレーター31を有するハイブリッドシステム30を備えたハイブリッド車両の回生電力量制御方法において、ハイブリッド車両の走行地点の道路勾配Gが予め設定された設定勾配閾値G1以上の下り勾配である場合に、モータージェネレーター31の回生電力量の目標値である目標回生電力量Etを、ハイブリッド車両の走行状態に基づいて設定される回生電力量である基本回生電力量Ebに、走行地点の下り勾配Gの大きさの正関数として設定される補正回生電力量Ecを加算して算出する制御を行うことを特徴とする方法である。   As described above, the regenerative electric energy control method for a hybrid vehicle according to the present invention based on the above-described regenerative electric energy control system for a hybrid vehicle is a hybrid having the engine 10 and the motor generator 31 that are power sources for driving the vehicle. In the regenerative electric energy control method for a hybrid vehicle provided with the system 30, when the road gradient G of the traveling point of the hybrid vehicle is a downward gradient equal to or greater than a preset gradient threshold G1, the regenerative electric energy of the motor generator 31 is set. The target regenerative power amount Et, which is a target value, is set as a positive function of the magnitude of the downward gradient G of the travel point to the basic regenerative power amount Eb, which is a regenerative power amount set based on the traveling state of the hybrid vehicle. In this method, the control is performed by adding and calculating the corrected regenerative electric energy Ec.

また、上記のハイブリッド車両の回生電力量制御方法において、ハイブリッド車両の走行地点の道路勾配Gが設定勾配閾値G1以上の下り勾配である場合に、モータージェネレーター31の目標回生電力量Etと、モータージェネレーター31にインバーター35を介して接続される高電圧バッテリー32の充電量Esの合計値である合計電力量E(=Et+Es)が、高電圧バッテリー32に充電できる量の最大値である最大充電量値Esmax以上となったときには、合計電力量Eが最大充電量値Esmax未満となるように、目標回生電力量Etを減少させる制御を行うことを特徴とする方法である。   Further, in the above regenerative electric energy control method for the hybrid vehicle, when the road gradient G at the travel point of the hybrid vehicle is a downward gradient equal to or greater than the set gradient threshold G1, the target regenerative electric energy Et of the motor generator 31 and the motor generator The maximum charge amount value that is the maximum amount of charge that can be charged in the high-voltage battery 32 is the total power amount E (= Et + Es) that is the total value of the charge amount Es of the high-voltage battery 32 connected to the inverter 31 via the inverter 35. In this method, control is performed to reduce the target regenerative electric energy Et so that the total electric energy E becomes less than the maximum charge amount value Esmax when the value is equal to or greater than Esmax.

本発明のハイブリッド車両の回生電力量制御システム、ハイブリッド車両及びハイブリッド車両の回生電力量制御方法によれば、ハイブリッド車両が急な下り勾配の道路を走行しているときに、その下り勾配が大きくなるにつれて、モータージェネレーター31の回生電力量の目標値(目標回生電力量)Etを大きくするので、モータージェネレーター31にインバーター35を介して接続される高電圧バッテリー32の充電量を十分に確保することができる。その結果、高電圧バッテリー32への充電のためのエンジン10の燃料噴射を抑制でき、さらに、上り勾配の道路でのモータージェネレーター31のアシスト機会を増加することができ、燃費を向上させることができる。   According to the regenerative electric energy control system for a hybrid vehicle, the hybrid vehicle, and the regenerative electric energy control method for a hybrid vehicle according to the present invention, when the hybrid vehicle is traveling on a steep downhill road, the downgrade is increased. Accordingly, the target value (target regenerative power amount) Et of the regenerative power amount of the motor generator 31 is increased, so that a sufficient charge amount of the high voltage battery 32 connected to the motor generator 31 via the inverter 35 can be secured. it can. As a result, fuel injection of the engine 10 for charging the high voltage battery 32 can be suppressed, and further, the opportunity for assisting the motor generator 31 on an uphill road can be increased, thereby improving fuel efficiency. .

また、モータージェネレーター31による回生電力量を高電圧バッテリー32に充電すると、高電圧バッテリー32の充電量が過剰になると予測される場合には、モータージェネレーター31による目標回生電力量Etを減少補正するので、高電圧バッテリー32への過剰な充電を防止して、高電圧バッテリー32の耐久性を向上させることができる。   In addition, when the high voltage battery 32 is charged with the regenerative power amount by the motor generator 31, if the charge amount of the high voltage battery 32 is predicted to be excessive, the target regenerative power amount Et by the motor generator 31 is corrected to decrease. In addition, excessive charging of the high voltage battery 32 can be prevented, and the durability of the high voltage battery 32 can be improved.

加えて、特に、ハイブリッド車両がバスやトラックなどの大型車両の場合には、積荷や乗客数によって車重が大きく変動するので、車重に応じて設定勾配閾値G1や補正回生電力量Ecを設定することが望ましい。   In addition, especially when the hybrid vehicle is a large vehicle such as a bus or truck, the vehicle weight varies greatly depending on the load and the number of passengers, so the set gradient threshold G1 and the corrected regenerative electric energy Ec are set according to the vehicle weight. It is desirable to do.

このように、車重に応じて設定勾配閾値G1や補正回生電力量Ecを設定することで、車重が比較的重い場合には、モータージェネレーター31の回生電力量をより増加させることができるので、燃費の向上に有利になる。また、車重が比較的軽い場合には、回生による過剰な制動力によってハイブリッド車両が減速し過ぎることを回避できるので、ドライバビリティの向上に有利になる。   Thus, by setting the set gradient threshold G1 and the corrected regenerative electric energy Ec according to the vehicle weight, the regenerative electric energy of the motor generator 31 can be further increased when the vehicle weight is relatively heavy. This is advantageous for improving fuel economy. Further, when the vehicle weight is relatively light, it is possible to avoid that the hybrid vehicle is excessively decelerated due to excessive braking force due to regeneration, which is advantageous in improving drivability.

10 エンジン
11 エンジン本体
30 ハイブリッドシステム
31 モータージェネレーター
32 高電圧バッテリー(バッテリー)
35 インバーター
80 制御装置
Et 目標回生電力量
Eb 基本回生電力量
Ec 補正回生電力量
Es 高電圧バッテリーの充電量
Esmax 高電圧バッテリーの充電量の最大値
E 高電圧バッテリーの充電量と目標回生電力量の合計電力量
10 Engine 11 Engine body 30 Hybrid system 31 Motor generator 32 High voltage battery (battery)
35 Inverter 80 Control device Et Target regenerative power amount Eb Basic regenerative power amount Ec Corrected regenerative power amount Es High-voltage battery charge amount Esmax Maximum value of high-voltage battery charge amount E High-voltage battery charge amount and target regenerative power amount Total power

Claims (5)

車両走行用の動力源であるエンジン及びモータージェネレーターと、制御装置と、を有するハイブリッドシステムを備えたハイブリッド車両の回生電力量制御システムにおいて、
前記制御装置が、
前記ハイブリッド車両の走行地点の道路勾配が予め設定された設定勾配閾値以上の下り勾配である場合に、
前記モータージェネレーターの回生電力量の目標値である目標回生電力量を、前記ハイブリッド車両の走行状態に基づいて設定される回生電力量である基本回生電力量に、前記走行地点の下り勾配の大きさの正関数として設定される補正回生電力量を加算して算出する制御を行うように構成されるハイブリッド車両の回生電力量制御システム。
In a regenerative electric energy control system for a hybrid vehicle comprising a hybrid system having an engine and a motor generator, which are power sources for driving the vehicle, and a control device,
The control device is
When the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or higher than a preset gradient threshold,
The target regenerative power amount that is the target value of the regenerative power amount of the motor generator is changed to the basic regenerative power amount that is the regenerative power amount that is set based on the running state of the hybrid vehicle, and the magnitude of the downward slope of the travel point A regenerative electric energy control system for a hybrid vehicle configured to perform control for adding and calculating a corrected regenerative electric energy set as a positive function of
前記制御装置が、
前記ハイブリッド車両の走行地点の道路勾配が前記設定勾配閾値以上の下り勾配である場合に、
前記モータージェネレーターの目標回生電力量と、前記モータージェネレーターにインバーターを介して接続されるバッテリーの充電量の合計値である合計電力量が、前記バッテリーに充電できる量の最大値である最大充電量値以上となったときには、前記合計電力量が前記最大充電量値未満となるように、前記目標回生電力量を減少させる制御を行うように構成される請求項1に記載のハイブリッド車両の回生電力量制御システム。
The control device is
When the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or greater than the set gradient threshold,
The maximum amount of charge that is the maximum amount of charge that can be charged to the battery, the total amount of power that is the sum of the amount of charge of the target regenerative power of the motor generator and the amount of charge of the battery connected to the motor generator via an inverter. 2. The regenerative electric energy of the hybrid vehicle according to claim 1, configured to perform a control to decrease the target regenerative electric energy so that the total electric energy becomes less than the maximum charge amount value when the above becomes the above. Control system.
請求項1または2に記載のハイブリッド車両の回生電力量制御システムを備えたハイブリッド車両。   A hybrid vehicle comprising the regenerative electric energy control system for a hybrid vehicle according to claim 1. 車両走行用の動力源であるエンジン及びモータージェネレーターを有するハイブリッドシステムを備えたハイブリッド車両の回生電力量制御方法において、
前記ハイブリッド車両の走行地点の道路勾配が予め設定された設定勾配閾値以上の下り勾配である場合に、
前記モータージェネレーターの回生電力量の目標値である目標回生電力量を、前記ハイブリッド車両の走行状態に基づいて設定される回生電力量である基本回生電力量に、前記走行地点の下り勾配の大きさの正関数として設定される補正回生電力量を加算して算出する制御を行うことを特徴とするハイブリッド車両の回生電力量制御方法。
In a method for controlling regenerative electric energy of a hybrid vehicle including a hybrid system having an engine and a motor generator as a power source for vehicle travel,
When the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or higher than a preset gradient threshold,
The target regenerative power amount that is the target value of the regenerative power amount of the motor generator is changed to the basic regenerative power amount that is the regenerative power amount that is set based on the running state of the hybrid vehicle, and the magnitude of the downward slope of the travel point A regenerative electric energy control method for a hybrid vehicle, wherein control is performed by adding and calculating a corrected regenerative electric energy set as a positive function of the hybrid vehicle.
前記ハイブリッド車両の走行地点の道路勾配が前記設定勾配閾値以上の下り勾配である場合に、
前記モータージェネレーターの目標回生電力量と、前記モータージェネレーターにインバーターを介して接続されるバッテリーの充電量の合計値である合計電力量が、前記バッテリーに充電できる量の最大値である最大充電量値以上となったときには、前記合計電力量が前記最大充電量値未満となるように、前記目標回生電力量を減少させる制御を行うことを特徴とする請求項4に記載のハイブリッド車両の回生電力量制御方法。
When the road gradient of the travel point of the hybrid vehicle is a downward gradient equal to or greater than the set gradient threshold,
The maximum amount of charge that is the maximum amount of charge that can be charged to the battery, the total amount of power that is the sum of the amount of charge of the target regenerative power of the motor generator and the amount of charge of the battery connected to the motor generator via an inverter. 5. The regenerative power amount of the hybrid vehicle according to claim 4, wherein when the above is reached, control is performed to reduce the target regenerative power amount so that the total power amount is less than the maximum charge amount value. Control method.
JP2015227570A 2015-11-20 2015-11-20 Hybrid vehicle regenerative electric energy control system, hybrid vehicle, and regenerative electric energy control method for hybrid vehicle Active JP6686384B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015227570A JP6686384B2 (en) 2015-11-20 2015-11-20 Hybrid vehicle regenerative electric energy control system, hybrid vehicle, and regenerative electric energy control method for hybrid vehicle
CN201680067475.XA CN108290571B (en) 2015-11-20 2016-11-18 Regenerative power amount control system for hybrid vehicle, and control method
PCT/JP2016/084253 WO2017086435A1 (en) 2015-11-20 2016-11-18 Regenerative power amount control system for hybrid vehicle, hybrid vehicle, and regenerative power amount control method for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015227570A JP6686384B2 (en) 2015-11-20 2015-11-20 Hybrid vehicle regenerative electric energy control system, hybrid vehicle, and regenerative electric energy control method for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2017094835A true JP2017094835A (en) 2017-06-01
JP6686384B2 JP6686384B2 (en) 2020-04-22

Family

ID=58717413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015227570A Active JP6686384B2 (en) 2015-11-20 2015-11-20 Hybrid vehicle regenerative electric energy control system, hybrid vehicle, and regenerative electric energy control method for hybrid vehicle

Country Status (3)

Country Link
JP (1) JP6686384B2 (en)
CN (1) CN108290571B (en)
WO (1) WO2017086435A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022183260A (en) * 2019-04-26 2022-12-08 トヨタ自動車株式会社 Control device, method and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109606124A (en) * 2018-12-13 2019-04-12 北京奕为汽车科技有限公司 Electric car regenerative braking method and device
JP7138143B2 (en) * 2020-08-21 2022-09-15 本田技研工業株式会社 vehicle controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058729Y2 (en) * 1984-11-10 1993-03-04
JP2001054202A (en) * 1999-08-05 2001-02-23 Nissan Motor Co Ltd Vehicle braking force controller
JP2009090735A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Control device for hybrid vehicle
WO2013084681A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Electric vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8204664B2 (en) * 2007-11-03 2012-06-19 GM Global Technology Operations LLC Method for controlling regenerative braking in a vehicle
JP2009126257A (en) * 2007-11-21 2009-06-11 Toyota Motor Corp Vehicle and its control method
JP5915208B2 (en) * 2012-01-31 2016-05-11 日産自動車株式会社 Regenerative brake control device for electric vehicle
DE112012005898T5 (en) * 2012-02-15 2014-11-13 Toyota Jidosha Kabushiki Kaisha Control device of a hybrid vehicle
GB2517471B (en) * 2013-08-21 2016-07-20 Jaguar Land Rover Ltd Dynamic deceleration control for hybrid vehicle
FR3010031B1 (en) * 2013-09-02 2016-12-23 Renault Sa METHOD FOR CONTROLLING THE RECOVERABLE BRAKE RESISTANT TORQUE OF AN ELECTRIC MOTOR VEHICLE ACCORDING TO THE DECLIVATION OF THE ROAD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058729Y2 (en) * 1984-11-10 1993-03-04
JP2001054202A (en) * 1999-08-05 2001-02-23 Nissan Motor Co Ltd Vehicle braking force controller
JP2009090735A (en) * 2007-10-04 2009-04-30 Honda Motor Co Ltd Control device for hybrid vehicle
WO2013084681A1 (en) * 2011-12-09 2013-06-13 本田技研工業株式会社 Electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022183260A (en) * 2019-04-26 2022-12-08 トヨタ自動車株式会社 Control device, method and program
JP7396428B2 (en) 2019-04-26 2023-12-12 トヨタ自動車株式会社 Control device, method, and program

Also Published As

Publication number Publication date
WO2017086435A1 (en) 2017-05-26
CN108290571B (en) 2021-06-11
JP6686384B2 (en) 2020-04-22
CN108290571A (en) 2018-07-17

Similar Documents

Publication Publication Date Title
KR101588789B1 (en) Method and apparatus of controlling creep torque for vehicle including driving motor
US9283953B2 (en) Travel control device
JP5843412B2 (en) Accelerator pedal reaction force control device and vehicle
US20130211654A1 (en) Engine start control device for hybrid electric vehicle
JP5664769B2 (en) Vehicle and vehicle control method
JP6018018B2 (en) Electric vehicle regeneration control device
JP2015059639A (en) Control device for vehicle
JP2017114312A (en) Hybrid vehicle and control method therefor
JP2014222989A (en) Regeneration control apparatus for electric automobile
JP2014111418A (en) Travel control unit of electric automobile
WO2017086435A1 (en) Regenerative power amount control system for hybrid vehicle, hybrid vehicle, and regenerative power amount control method for hybrid vehicle
JP2014103771A (en) Regeneration control device for electric vehicle
JP2014222988A (en) Regeneration control apparatus for electric automobile
JP2017030595A (en) Hybrid vehicle and method of controlling the same
JP2016175503A (en) Hybrid vehicle and control method therefor
JP6060757B2 (en) Vehicle control device
JP2015000675A (en) Control method for hybrid vehicle during cost drive and hybrid
JP2016175496A (en) Hybrid vehicle and control method therefor
WO2017086471A1 (en) Hybrid vehicle and control method therefor
JP2016175491A (en) Hybrid vehicle and control method therefor
JP2016175505A (en) Hybrid vehicle and control method therefor
JP2016175504A (en) Hybrid vehicle and control method therefor
JP6593045B2 (en) Hybrid vehicle and control method thereof
JP6400648B2 (en) Electric vehicle regeneration control device
JP2016175498A (en) Hybrid vehicle and its control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20190731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6686384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150