WO2017086235A1 - マクロライド系免疫抑制剤の高分子誘導体 - Google Patents

マクロライド系免疫抑制剤の高分子誘導体 Download PDF

Info

Publication number
WO2017086235A1
WO2017086235A1 PCT/JP2016/083417 JP2016083417W WO2017086235A1 WO 2017086235 A1 WO2017086235 A1 WO 2017086235A1 JP 2016083417 W JP2016083417 W JP 2016083417W WO 2017086235 A1 WO2017086235 A1 WO 2017086235A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
tacrolimus
carbon number
compound
integer
Prior art date
Application number
PCT/JP2016/083417
Other languages
English (en)
French (fr)
Inventor
聡裕 関口
佳奈 水沼
啓一朗 山本
菜緒 米木
知宏 林
寛 雑賀
純平 今野
祐喜 小林
学道 佐藤
直子 飯河
貴美子 渕上
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to EP16866237.7A priority Critical patent/EP3378494A4/en
Priority to US15/776,802 priority patent/US20180334540A1/en
Priority to JP2017551846A priority patent/JP6851977B2/ja
Publication of WO2017086235A1 publication Critical patent/WO2017086235A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection

Definitions

  • the present invention relates to a polymer derivative of a macrolide compound, its production method and its use.
  • the macrolide compound used in the present invention has an affinity for FKBP type immunophilin and has a common activity of inhibiting peptidyl-prolyl isomerase and / or rotamase enzyme activity.
  • macrolide compounds include tricyclo compounds including rapamycin, tacrolimus (FK506), ascomycin and the like.
  • a macrolide compound or a pharmaceutically acceptable salt thereof has excellent immunosuppressive action, antibacterial activity, and other pharmacological activities. Therefore, rejection of organ or tissue transplantation, graft-versus-host reaction,
  • Patent Document 1 describes that it is useful for the treatment and prevention of autoimmune diseases and infectious diseases.
  • Tacrolimus is widely used to treat rejection after organ transplantation, graft-versus-host disease after bone marrow transplantation, refractory active ulcerative colitis, etc.
  • tacrolimus is poorly soluble in water (2.4 to 3.6 ⁇ M, room temperature) and has low bioavailability when administered orally.
  • the therapeutic range of tacrolimus is narrow, and the pharmacokinetics between individuals and within individuals are large, making it difficult to control blood concentration.
  • Known factors for tacrolimus pharmacokinetics include low solubility in water, the expression level of P-glycoprotein and drug metabolizing enzyme CYP3A in the gastrointestinal mucosa, and individual differences in genotype (Non-patent Document 1, 2).
  • nephrotoxicity is caused by a decrease in blood flow and glomerular filtration rate due to the vasoconstrictive action of renal arterioles, and in addition, a lack of nutritional supply to tubular cells.
  • Pancreatic toxicity is the onset of abnormal glucose tolerance due to suppression of insulin production from pancreatic ⁇ cells mainly based on insulin mRNA transcription inhibition of pancreatic ⁇ cells. These toxicities are expressed depending on the plasma concentration of tacrolimus.
  • Non Patent Literature 3 As a side effect of the central nervous system of tacrolimus, reversible posterior leukoencephalopathy syndrome, hypertensive encephalopathy, etc. have been reported in humans (including 0.1-0.5% including post-marketing surveillance). In addition, intravenous administration of tacrolimus to rats has been observed to induce mild respiratory distress, decreased locomotor activity, prone position, and stereotypical behavior. (Non Patent Literature 3)
  • the bonding mode of the polymer and the drug includes a case where the polymer and the drug are covalently bonded and a case where the polymer and the drug are physically adsorbed.
  • the drug covalently bonded to the polymer is released from the polymer by a hydrolysis reaction or the like in the body.
  • the drug physically adsorbed on the polymer is gradually released from the polymer in the body regardless of a chemical reaction such as a hydrolysis reaction. In either case, the enzyme is not involved in the release of the drug from the polymer, but the difference in the binding mode between the polymer and the drug is thought to cause a difference in the release mechanism of the drug.
  • Patent Document 2 and Patent Document 3 describe a polymer derivative obtained from a copolymer composed of polyethylene glycols and polyaspartic acid and a drug.
  • a copolymer and a drug are physically adsorbed.
  • the sustained release property of the polymer derivative is due to the gradual dissociation of the drug from the copolymer, and selectively exhibits a medicinal effect on the affected area and has few side effects.
  • Patent Document 4 discloses a method for obtaining a compound in which tacrolimus is physically adsorbed on a polymer composed of alkyl substituted polylactide (MPEG-hexPLA). However, there is no description regarding the specific transfer of blood concentration or tacrolimus to the affected area.
  • MPEG-hexPLA alkyl substituted polylactide
  • Non-Patent Document 4 reports a PEGylated tacrolimus synthesized by chemically binding tacrolimus to a PEG polymer.
  • PEGylated tacrolimus has not been more effective than tacrolimus on inflammatory disease model animals such as adjuvant arthritic mice and lupus nephritic mice.
  • Non-Patent Document 5 has a report on micelles synthesized by physically adsorbing tacrolimus on a poly (ethylene glycol) ester-poly caprolactone (PEG-PCL) polymer.
  • PEG-PCL tacrolimus micelles are more effective in improving inflammation in mice with DSS-induced ulcerative colitis compared to tacrolimus, such as suppression of weight loss, suppression of colonic shortening, colonic bleeding, and loss of crypt cells. It has been revealed.
  • PEG-PCL tacrolimus micelles are administered once a day for 12 consecutive days in order to show an inflammation-improving effect, so this compound is considered unable to maintain a long blood concentration.
  • Non-Patent Documents 6 and 7 have reports on micelles synthesized by physically adsorbing tacrolimus on a polymer composed of poly caprolactone-b-poly (ethylene oxide) (PCL-b-PEO).
  • PCL-b-PEO tacrolimus micelles are described to be gradually taken up into cells compared to tacrolimus. It has also been shown that PCL-b-PEO tacrolimus micelle improves spontaneous motility in rats with sciatic nerve injury model by administering 5 mg / kg three times in the tail vein at 6-day intervals.
  • PCL-b-PEO tacrolimus micelles are specialized in functions as neuroprotective agents rather than functions as immunosuppressants. it is conceivable that.
  • Non-Patent Document 8 reports a nanoparticle synthesized by physically adsorbing tacrolimus on a polymer composed of poly (lactic-co-glycic acid) (PLGA) or pH-sensitive Eudragit P-4135F.
  • the nanoparticles exhibit a higher inflammation-improving effect than tacrolimus on collagen-induced arthritis and DSS-induced colitis mice.
  • PLGA poly (lactic-co-glycic acid)
  • pH-sensitive Eudragit P-4135F pH-sensitive Eudragit P-4135F
  • the object of the present invention is to provide a novel immunosuppressive agent or anti-cancer agent that accumulates the drug at the site of inflammation, has a higher effect at a low dose, and maintains a target blood trough concentration to reduce the long administration interval and toxicity.
  • a novel immunosuppressive agent or anti-cancer agent that accumulates the drug at the site of inflammation, has a higher effect at a low dose, and maintains a target blood trough concentration to reduce the long administration interval and toxicity.
  • the present inventor has found that a polymer derivative of tacrolimus in which an alcoholic hydroxyl group of tacrolimus is bonded to a carboxy group of a side chain of a copolymer comprising a polyethylene glycol segment and a polyamino acid derivative solves the problems of the present invention. .
  • the present invention relates to the following [1] to [18].
  • [1] A polymer derivative of tacrolimus in which an alcoholic hydroxyl group of tacrolimus is bonded to a carboxy group of a side chain of a copolymer comprising a polyethylene glycol segment and a polyamino acid derivative.
  • [2] The polymer derivative of tacrolimus according to [1], wherein the polyamino acid derivative is a polyaspartic acid derivative.
  • R 1 represents a hydrogen atom or an alkyl group having carbon atoms (C1 to C6)
  • R 2 represents a bonding group
  • R 3 represents a hydrogen atom or an acyl group having carbon atoms (C1 to C6)
  • R 4 represents an alcoholic hydroxyl group residue of tacrolimus
  • R 5 each independently represents a hydrophobic substituent and —N (R 6 ) CONH (R 7 ) (R 6 and R 7 are the same or different.
  • a cyclic alkyl group having a carbon number (C3 to C6) or an alkyl group having a carbon number (C1 to C5) optionally substituted with a tertiary amino group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , X and t are the same as those in general formula (1), and k, l, m, n, o, p and q are each 0 or It is a positive integer of 200 or less, k + 1 is an integer of 1 to 200, and k + 1 + m + n + o + p + q is an integer of 3 to 200, and the sequence order of each repeating unit of the polyamino acid derivative is arbitrary.
  • [5] The polymer derivative of tacrolimus according to [3] or [4], wherein X is a bond.
  • X is a bond
  • R 5 is a hydrophobic substituent and —N (R 6 ) CONH (R 7 ) (R 6 and R 7 may be the same or different, and the number of carbon atoms (C3 to C6)
  • the polymer derivative of tacrolimus according to the above [5] which is an alkyl group having a carbon number (C1 to C5) optionally substituted with a cyclic alkyl group or a tertiary amino group.
  • [7] The polymer derivative of tacrolimus according to [3] or [4] above, wherein the bonding group of X is an aspartic acid derivative.
  • the bonding group of X is an aspartic acid derivative, R 5 is a hydrophobic substituent, and —N (R 6 ) CONH (R 7 ) (R 6 , R 7 may be the same or different,
  • the bonding group of X is represented by the following general formula (3) or general formula (4).
  • R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having carbon atoms (C1 to C8), and R 10 is NH 2 , an optionally substituted carbon group (C1 to C8).
  • the hydrophobic substituent is an alkoxy group having a carbon number (C1 to C30), an alkenyloxy group having a carbon number (C1 to C30), an alkylamino group having a carbon number (C1 to C30), or a carbon number (C2 to C60).
  • R 1 is an alkyl group having a carbon number (C1 to C6)
  • R 2 is an alkylene group having a carbon number (C2 to C6)
  • R 3 is an acyl group having a carbon number (C1 to C6).
  • R 1 is an alkyl group having a carbon number (C1 to C3)
  • R 2 is an alkylene group having a carbon number (C2 to C4)
  • R 3 is an acyl group having a carbon number (C1 to C3).
  • R 1 is an alkyl group having carbon atoms (C1 to C6)
  • R 2 is an alkylene group having carbon atoms (C2 to C6)
  • R 3 is an acyl group having carbon atoms (C1 to C6)
  • T is an integer of 50 to 1500
  • k + l + m + n + o + p + q is an integer of 4 to 150.
  • the polymer derivative of tacrolimus according to any one of [4] to [11] above.
  • R 1 is an alkyl group having a carbon number (C1 to C3)
  • R 2 is an alkylene group having a carbon number (C2 to C4)
  • R 3 is an acyl group having a carbon number (C1 to C3).
  • T is an integer of 100 to 1500
  • k + l + m + n + o + p + q is an integer of 8 to 120.
  • the polymer derivative of tacrolimus of the present invention is characterized in that an alcoholic hydroxyl group of tacrolimus is ester-bonded to a carboxy group of a side chain of a copolymer comprising a polyethylene glycol segment and a polyamino acid derivative.
  • This polymer derivative is considered to form an aggregate with a highly hydrophilic polyethylene glycol segment as an outer shell in water and an inner shell as a highly hydrophobic side chain in water.
  • This polymer derivative is stable in vivo, can release tacrolimus in an enzyme-independent manner, exhibits high accumulation at the inflammatory site, and is excellent in therapeutic effect at a low dose.
  • the release of physiologically active substances independent of enzymes and the maintenance of blood concentration make it unnecessary to control the dose based on blood kinetics (blood trough concentration) and significantly improve safety. There is expected.
  • - ⁇ -represents the compound of Example 1 shows changes over time in tacrolimus concentration in rat blood.
  • - ⁇ -represents the compound of Example 5 shows changes over time in tacrolimus concentration in rat blood.
  • - ⁇ -represents the compound of Example 5 shows changes over time in tacrolimus concentration in rat blood.
  • - ⁇ -represents the compound of Example 5 shows changes over time in tacrolimus concentration in rat blood.
  • - ⁇ -represents the compound of Example 5 represents the compound of Example 6
  • - ⁇ - represents the compound of Example 7
  • - ⁇ -represents the compound of Example 8 represents the compound of Example 8.
  • the time course of the relative body weight of rats is shown.
  • the compound was 50 mg / kg, and -O- represents the change in body weight after a single administration of physiological saline (Saline).
  • Saline physiological saline
  • the time course of the relative body weight of rats is shown.
  • -O- indicates changes in body weight after a single administration of a mixture of Cremophor and ethanol (Vehicle).
  • 2 is a drawing-substituting photograph in which a cerebral cortical pathological section of a rat is observed at various magnifications.
  • the left figure shows the pathological section of the solvent control administration group, and the right figure shows the pathological section of the individual who died by tacrolimus administration.
  • 2 is a drawing-substituting photograph showing drug accumulation of the compounds of Examples 9 to 15 in mouse DSS colitis.
  • the time-dependent change of the inflammation score of rat collagen arthritis is shown.
  • - ⁇ -represents tacrolimus The time-dependent change of the inflammation score of rat collagen arthritis is shown.
  • the time-dependent change of the inflammation score of rat collagen arthritis is shown.
  • the time-dependent change of the inflammation score of rat collagen arthritis is shown.
  • the time-dependent change of the inflammation score of rat collagen arthritis is shown.
  • the polymer derivative of tacrolimus of the present invention is characterized in that an alcoholic hydroxyl group of tacrolimus is ester-bonded to a carboxy group of a side chain of a copolymer comprising a polyethylene glycol segment and a polyamino acid derivative.
  • an alcoholic hydroxyl group of tacrolimus is ester-bonded to a carboxy group of a side chain of a copolymer comprising a polyethylene glycol segment and a polyamino acid derivative.
  • the copolymer comprising the polyethylene glycol segment and the polyamino acid derivative in the present invention includes a graft polymer and a block polymer, and preferably includes a block polymer.
  • the molecular weight of the copolymer comprising a polyethylene glycol segment and a polyamino acid derivative is usually about 500 to 500,000, preferably about 600 to 100,000, and more preferably 800 to 80,000.
  • the molecular weight is a peak top molecular weight measured by a GPC method based on a polyethylene glycol standard product.
  • the average number of carboxy groups per molecule of a copolymer comprising a polyethylene glycol segment and a polyamino acid derivative is about 3 to 200, preferably 4 to 150, and more preferably 8 to 120. .
  • the number of carboxy groups is determined by neutralization titration with alkali.
  • the polyethylene glycol segment in the present invention includes polyethylene glycol modified at both ends or at one end, and the modifying groups at both ends may be the same or different.
  • the terminal modifying group include an alkyl group having a carbon number (C1 to C6) which may have a substituent. Specific examples include a methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, dimethoxyethyl group, diethoxyethyl group and the like.
  • Preferred examples include an alkyl group having a carbon number (C1 to C4) which may have a substituent.
  • the polyethylene glycol modified at one end is preferably alkoxy polyethylene glycol, and more preferably methoxy polyethylene glycol.
  • the average molecular weight of the polyethylene glycol segment is usually about 300 to 500,000, preferably about 500 to 100,000, and more preferably about 1,000 to 50,000.
  • polyamino acid derivative in the present invention examples include polyglutamic acid derivatives, polyaspartic acid derivatives, polylysine derivatives, polyornithine derivatives, polytyrosine derivatives, polyserine derivatives, polythreonine derivatives, and preferably polyasparagine having a carboxy group as a reactive substituent.
  • examples thereof include acid derivatives and polyglutamic acid derivatives.
  • These polyamino acid derivatives having a side chain carboxy group may be an ⁇ -amide bond type polymer, an amide bond type polymer with a side chain carboxy group, or a ⁇ -amide bond type polymer. Or a mixture thereof.
  • a polyaspartic acid derivative is preferable.
  • Tacrolimus is represented by the following formula (I). There are a plurality of alcoholic hydroxyl groups of tacrolimus, but the substitution position is not limited as long as it is an alcoholic hydroxyl group.
  • Examples of the structure of the polymer derivative of tacrolimus of the present invention include the following general formula (1) [wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms (C1 to C6), R 2 represents a linking group, R 3 represents a hydrogen atom or an acyl group having a carbon number (C1 to C6), R 4 represents a residue of an alcoholic hydroxyl group of tacrolimus, and R 5 each independently represents a hydrophobic substituent and —N (R 6 ) CONH (R 7 ) (R 6 , R 7 may be the same or different, and may be substituted with a cyclic alkyl group having 3 carbon atoms (C3-C6) or a tertiary amino group (C1-C6).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms (C1 to C6)
  • R 2 represents a linking group
  • R 3 represents a hydrogen atom or an acyl group having
  • C5) is an alkyl group selected from the group consisting of :)
  • X is a bond or a linking group
  • t represents an integer of 5 to 11500
  • d e, f, or g is a positive number of 0 or 200 or less, respectively.
  • d is an integer from 1 to 200
  • D + e + f + g is an integer of 3 to 200.
  • the following general formula (2) [wherein t and R 1 to R 7 have the same definitions as in general formula (1), and k, l, m, n, o, p and q are 0 or 200, respectively.
  • alkyl group having a carbon number (C1 to C6) in R 1 of the general formula (1) and the general formula (2) a linear or branched alkyl group having a straight chain or branched chain carbon number (C1 to C6) is used.
  • a linear or branched alkyl group having a carbon number (C1 to C4) is particularly preferred, a linear or branched alkyl group having a carbon number (C1 to C3).
  • Examples of the linear or branched alkyl group having a carbon number (C1 to C6) include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and a t-butyl group.
  • a methyl group there are a methyl group, an ethyl group, an n-propyl group, and an i-propyl group, and a methyl group is particularly preferable.
  • the linking group represented by R 2 in the general formula (1) and the general formula (2) is not particularly limited, but includes an alkylene group having a carbon number (C2 to C6), and an alkylene group having a carbon number (C2 to C4).
  • Group is preferable, and examples thereof include ethylene group, trimethylene group, butylene group, and trimethylene group is particularly preferable.
  • the acyl group having a carbon number (C1 to C6) in R 3 of the general formula (1) and the general formula (2) is not particularly limited, and examples thereof include a formyl group, an acetyl group, a propionyl group, and a pivaloyl group.
  • An acetyl group is particularly preferable.
  • the alcoholic hydroxyl group of tacrolimus as R 4 in the general formulas (1) and (2) is not particularly limited as long as it is an alcoholic hydroxyl group that forms an ester bond with a carboxylic acid moiety of the polymer by a dehydrating condensing agent.
  • R 5 in the general formula (1) and the general formula (2) may have a hydrophobic substituent.
  • hydrophobic substituent examples include an alkoxy group having a carbon number (C1 to C30), an alkenyloxy group having a carbon number (C1 to C30), an alkylamino group having a carbon number (C1 to C30), and a carbon number (C2 to C60). And a dialkylamino group having a carbon number (C1 to C30), and amino acid derivative residues.
  • the alkoxy group having a carbon number (C1 to C20) is not particularly limited, and examples thereof include an octyloxy group, a decyloxy group, a dodecyloxy group, a tetradecyloxy group, a hexadecyloxy group, and an octadecyloxy group.
  • the alkenyloxy group having the carbon number (C1 to C20) is not particularly limited, and examples thereof include 9-hexadecenyloxy group, cis-9-octadecenyloxy group, cis, cis-9,12-octa A decadienyloxy group etc. are mentioned.
  • the alkylamino group having a carbon number (C1 to C20) is not particularly limited, and examples thereof include an octylamino group, a decylamino group, a dodecylamino group, a tetradecylamino group, a hexadecylamino group, and an octadecylamino group.
  • the dialkylamino group having a carbon number (C2 to C40) is not particularly limited, and examples thereof include a dimethylamino group, a diethylamino group, a dibutylamino group, a dicyclohexylamino group, a dioctylamino group, and a dinonylamino group.
  • the alkenylamino group having the carbon number (C1 to C20) is not particularly limited, and examples thereof include 9-hexadecenylamino group, cis-9-octadecenylamino group, cis, cis-9,12-octa Examples include decadienylamino group.
  • amino acid derivative residue examples include tryptophan derivative residue, phenylalanine derivative residue, isoleucine derivative residue, leucine derivative residue, valine derivative residue and the like, preferably tryptophan derivative residue, isoleucine derivative residue.
  • a phenylalanine derivative residue examples include tryptophanyl-methyl ester group, tryptophanyl-ethyl ester group, tryptophanyl-benzyl ester group, tryptophanyl-cholesterol ester group represented by the following formulas (5-1) to (5-4) Is mentioned.
  • isoleucine derivative residue examples include isoleucinyl-methyl ester group, isoleucinyl-ethyl ester group, isoleucinyl-benzyl ester group, and isoleucinyl-cholesterol ester group represented by the following formulas (6-1) to (6-4). Is mentioned.
  • phenylalanine derivative residue examples include phenylalaninyl-methyl ester group, phenylalaninyl-ethyl ester group, phenylalaninyl-benzyl ester group represented by the following formulas (7-1) to (7-4), And phenylalaninyl-cholesterol ester group.
  • hydrophobic substituent examples include fluorescent groups such as 2- (2-aminoethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one group, BODIPY TR Cadaverine residue, Alexa Fluor ( (Registered trademark) 594 Cadaverine residue, Texas Red (registered trademark) Cadaverine residue, ATTO 594 amino residues and the like are also included.
  • R 5 in the general formula (1) and the general formula (2) may be —N (R 6 ) CONH (R 7 ).
  • R 6 and R 7 may be the same or different, and may be a cyclic alkyl group having a carbon number (C3 to C6) or an alkyl group having a carbon number (C1 to C5) optionally substituted with a tertiary amino group. is there.
  • the cyclic alkyl having a carbon number (C3 to C6) include a cyclohexyl group.
  • Examples of the alkyl group (C1 to C5) optionally substituted with a tertiary amino group include an ethyl group, an isopropyl group, and a 3-dimethylaminopropyl group.
  • the tertiary amino group of the alkyl group having a carbon number (C1 to C5) which may be substituted with a tertiary amino group is a dimethylamino group, a diethylamino
  • the average value of the total ⁇ -aspartic acid number in the polymer derivative of tacrolimus represented by the general formula (1) is represented by d + e + f + g, and is about 3 to 200, preferably about 6 to 150, particularly preferably. Is 10 to 120.
  • the ratio of tacrolimus-bound aspartic acid number (d) to the total ⁇ -aspartic acid number (d + e + f + g) is 1 to 100%, preferably 2 to 90%, more preferably 3 to 60%.
  • the ⁇ -aspartic acid number (d) is 3 to 200, preferably about 4 to 150, particularly preferably about 8 to 120.
  • Preferred combinations of the hydrophobic substituent of R 5 and R 6 and R 7 in —N (R 6 ) CONH (R 7 ) include the compounds shown in the table below.
  • the average value of the total aspartic acid number in the polymer derivative of tacrolimus represented by the general formula (2) is represented by k + 1 / m + n + o + p + q, which is about 3 to 200, preferably about 4 to 150, and particularly preferably 8 ⁇ 120.
  • the ratio of the number of aspartic acid bound to tacrolimus (k + 1) to the total number of aspartic acids (k + 1 / m + n + o + p + q) in the polymer derivative of tacrolimus represented by the general formula (2) is 1 to 100%, preferably 2 to 90%, more preferably Is 3 to 60%.
  • the number of aspartic acids (k + 1) to which tacrolimus is bound is 1 to 200, preferably about 1 to 100, and particularly preferably about 1 to 90.
  • the ratio of ⁇ -aspartic acid (k + m + o) to the total aspartic acid number (k + 1 / m + n + o + p + q) is 1 to 80%, preferably 1 to 50%. This ratio can be changed as appropriate by, for example, selecting deprotection conditions for the protecting group of polyaspartic acid.
  • t is an average value and is an integer of about 5 to 11,500, preferably an integer of about 50 to 3000, and particularly preferably an integer of about 100 to 1500. is there.
  • X in the general formula (1) and the general formula (2) is a bond or a bond group between the R 4 and R 5 and a side chain carbonyl group of the polyamino acid main chain.
  • the linking group is not particularly limited as long as it is a linking group having both functional groups capable of binding to the binding functional groups of R 4 and R 5 and the side chain carboxy group of the polyamino acid derivative at both ends. Is not to be done.
  • the terminal bondable functional group on the R 4 and R 5 side of X is preferably a carboxy group, an oxycarboxy group, or an aminocarboxy group.
  • R 4 and R 5 have an amino group and / or a hydroxyl group in the molecule
  • these binding functional groups include the amide bond, ester bond, urethane bond, carbonate bond, and urea bond with the amino group and / or hydroxyl group.
  • the other terminal-binding functional group on the side chain carboxy group side of X is preferably an amino group, a hydroxyl group or a thiol group.
  • These binding functional groups can form a side chain carboxy group and an amide bond, an ester bond, or a thioester bond.
  • X is a carbon number (C1) that may have a substituent in which one end group is a carboxy group, an oxycarboxy group or an aminocarboxy group, and the other end group is an amino group, a hydroxyl group or a thiol group. Is preferably an alkylene group or alkenylene group of C8). Specific examples of X include those listed in the table below, but are not limited to these as long as they do not affect the synthesis or performance of the polymer derivative of the present invention. Any X is bonded to the side chain carboxy group by an amide bond, an ester bond or a thioester bond.
  • a hydrogen atom may be modified with an appropriate substituent.
  • substituents include a hydroxyl group, an amino group, a halogen atom, an alkyl group having a carbon number (C1 to C8), an alkylcarbonylalkoxy group having a carbon number (C1 to C8), and an alkylcarbonylamide group having a carbon number (C1 to C8).
  • X is preferably —CO— (CH 2 ) y —NH— or —CO— (CH 2 ) y —O—.
  • —CO— (CH 2 ) y —NH— has a carboxy group capable of forming an amide bond or an ester bond with R 4 and R 5 and an amino group capable of forming an amide bond with the side chain carboxy group. is there.
  • an amino acid derivative may be used as X.
  • the N-terminal amino group of the amino acid is amide-bonded to the side chain carboxy group
  • the C-terminal carboxy group is amide-bonded or ester-bonded to the amino group or hydroxyl group of R 4 and R 5.
  • the amino acid used as the linking group may be a natural amino acid or a non-natural amino acid, and any of L-form and D-form can be used without particular limitation.
  • hydrocarbon amino acids such as glycine, ⁇ -alanine, alanine, leucine and phenylalanine
  • acidic amino acids such as aspartic acid and glutamic acid
  • basic amino acids such as lysine, arginine and histidine
  • the amino acid derivative as X is preferably an aspartic acid derivative.
  • the aspartic acid derivative is an aspartic acid derivative linking group in which an ⁇ -carboxy group functions as a linking group for R 4 and R 5 and the ⁇ -carboxy group is an amide.
  • an aspartic acid derivative in which a ⁇ -carboxy group functions as a bonding group for R 4 and R 5 and the ⁇ -carboxy group is an amide may be used.
  • the alkyl amide having a carbon number (C1-20) which may have a substituent When the other carboxy group that is not a linking group of R 4 and R 5 is an amide, the alkyl amide having a carbon number (C1-20) which may have a substituent, and a substituent
  • An aromatic amide having a carbon number (C5 to C20) which may be present, an aralkylamide having a carbon number (C7 to C20) which may have a substituent, or an amino acid residue in which a carboxy group is protected may be mentioned.
  • alkylamide having a carbon number (C1-20) which may have a substituent of the aspartic acid derivative examples include, for example, methylamide, ethylamide, isopropylamide, t-butylamide, cyclohexylamide, dodecylamide, octadecylamide and the like. Can be mentioned.
  • aromatic amide having a carbon number (C5 to C20) which may have a substituent of the aspartic acid derivative include phenylamide, 4-methoxyphenylamide, 4-dimethylaminophenylamide, 4-hydroxyphenyl. Examples include amides.
  • aralkyl amide having a carbon number (C7 to C20) which may have a substituent of the aspartic acid derivative include benzylamide, 2-phenylethylamide, 4-phenylbutyramide, 8-phenyloctylamide and the like. Is mentioned.
  • amino acid amide in which the carboxy group of the aspartic acid derivative is protected examples include glycinyl-methyl ester, alanyl-methyl ester, leucinyl-methyl ester, isoleucinyl-methyl ester, valinyl-methyl ester, phenylalanyl-methyl ester, Examples include alanyl-ethyl ester, leucinyl-ethyl ester, isoleucinyl-ethyl ester, alanyl-butyl ester, and leucinyl-butyl ester.
  • X can also be an aspartic acid derivative linking group or a maleic acid derivative linking group represented by the following general formula (3) or general formula (4).
  • R 8 and R 9 each independently represent a hydrogen atom or an alkylamino group having a carbon number (C1 to C8)
  • R 10 represents NH 2 , substituted A linear (C1-C20) linear, branched or cyclic alkylamino group which may have a group, a linear (C7-C20) linear chain which may have a substituent Selected from the group consisting of a branched or cyclic aralkylamino group, an optionally substituted aromatic amino group having 5 to 20 carbon atoms, and an amino acid binding residue in which a carboxy group is protected.
  • CX-CY is C—C or a Z ⁇ C ⁇ C (double bond).
  • the alkyl group having carbon atoms (C1 to C8) in R 8 and R 9 is a linear, branched or cyclic alkyl group having carbon atoms (C1 to C8).
  • the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-hexyl group.
  • the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • the linear, branched or cyclic alkylamino group having a carbon number (C1 to C20) which may have a substituent is, for example, a methylamino group, an ethylamino group, an isopropylamino group, Examples thereof include t-butylamino group, cyclohexylamino group, n-octylamino group, dodecylamino group, and octadecylamino group.
  • Examples of the linear, branched or cyclic aralkylamino group having a carbon number (C7 to C20) which may have a substituent include, for example, benzylamino group, 2-phenylethylamino group, 4-phenylbutyl An amino group, 8-phenyloctylamino group, etc. are mentioned.
  • Examples of the aromatic amino group having a carbon number (C5 to C20) which may have a substituent include an anilino group, a 4-methoxyanilino group, a 4-dimethylaminoanilino group, and a 4-hydroxyanilino group. Etc.
  • R 10 may be an amino acid binding residue in which a carboxy group is protected.
  • the amino acid binding residue in which the carboxy group is protected include a glycinyl-methyl ester group represented by the following formula (8) and alaninyl-methyl represented by the following formulas (9-1) to (9-3).
  • a side chain carboxy group of a copolymer comprising a polyethylene glycol segment and a polyamino acid derivative and an alcoholic hydroxyl group of tacrolimus are ester-bonded in an organic solvent using a dehydration condensing agent. This manufacturing method is also included in the present invention.
  • DMF formamide
  • DI 1,3-dimethyl-2-imidazolidinone
  • NMP N-methylpyrrolidone
  • DCC diisopropylcarbodiimide
  • EDCI 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • EDCI 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinolinone
  • DMAP N, N-dimethylaminopyridine
  • a polymer derivative of tacrolimus is produced by an operation such as ordinary separation and purification.
  • a polymer derivative of tacrolimus in which R 5 is a —N (R 6 ) CONH (R 7 ) group can also be obtained using the above carbodiimides as a condensing agent.
  • R 5 is an alkoxy group having a carbon number (C1 to C30), an alkenyloxy group having a carbon number (C1 to C30), an alkylamino group having a carbon number (C1 to C30), a dialkylamino group having a carbon number (C2 to C60),
  • the polymer carboxy group is activated by the above method. Method of reacting the corresponding alcohol, amino acid with protected amine or carboxy group under basic conditions, activation of the corresponding alcohol, amino acid with protected amine or carboxy group, etc.
  • a dialkylamino group, a C1-C30 alkenylamino group, an amino acid derivative residue, and the like may be introduced.
  • the production method of the polymer derivative of tacrolimus of the present invention is not limited to the above method.
  • the polymer derivative of tacrolimus of the present invention has a property of gradually releasing tacrolimus after administration into a living body, and has a use as a medicine containing the tacrolimus as an active ingredient.
  • the use of the polymer derivative of tacrolimus of the present invention as a pharmaceutical is not particularly limited as long as it is a disease having a therapeutic effect by the tacrolimus.
  • it is suitable for pharmaceuticals used for treatment of autoimmune diseases, inflammatory diseases, allergic diseases, suppression of rejection in organ transplantation and bone marrow transplantation, and the like.
  • Particularly preferred is a medicament for the treatment of autoimmune diseases or inflammatory diseases.
  • the autoimmune disease include rheumatoid arthritis, systemic lupus erythematosus, and ulcerative colitis.
  • the inflammatory disease include interstitial pneumonia.
  • the medicament containing the polymer derivative of tacrolimus of the present invention may have other additives that are usually accepted as pharmaceuticals.
  • additives include excipients, extenders, fillers, binders, wetting agents, disintegrants, lubricants, surfactants, dispersants, buffers, preservatives, solubilizers, preservatives, flavoring agents. Agents, soothing agents, stabilizers, tonicity agents and the like.
  • the medicament containing the polymer derivative of tacrolimus of the present invention may be prepared as a pharmaceutical preparation for treatment.
  • the preparation can be administered by any method such as oral, injection, intrarectal administration, intraportal administration, mixing with organ perfusate, and local administration to the affected organ, preferably parenteral administration.
  • Intravenous administration by injection, intraarterial administration or local administration to the affected organ is more preferable, and usually, for example, water, physiological saline, 5% glucose or mannitol solution, water-soluble organic solvent (eg, glycerol, ethanol, dimethyl) Sulfoxide, N-methylpyrrolidone, polyethylene glycol, cremophor and the like, and a mixture thereof) and a mixture of water and the water-soluble organic solvent are used.
  • water-soluble organic solvent eg, glycerol, ethanol, dimethyl
  • the dose of the tacrolimus polymer derivative of the present invention can be naturally changed depending on the sex, age, physiological condition, pathological condition, etc. of the patient, but parenterally, usually 0.01 to 500 mg / m 2 , preferably 0.1 to 250 mg / m 2 is administered. Administration by injection is performed in veins, arteries, affected areas (inflamed areas) and the like.
  • the polymer derivative of tacrolimus of the present invention accumulates in the affected area and has a higher effect than tacrolimus alone at a low dose.
  • the polymer derivative of tacrolimus of the present invention is an immunosuppressive agent or anti-inflammatory agent useful for the treatment and prevention of rejection of organs or tissues, graft-versus-host reaction, autoimmune diseases, and infectious diseases. is there.
  • Synthesis Example 1 Synthesis of polyethylene glycol- ⁇ -polyaspartic acid block copolymer (polyethylene glycol molecular weight 12000, polyaspartic acid polymerization number 20.9) (Compound 1) One-terminal methoxy group and one-terminal 3-aminopropyl group polyethylene glycol (SUNBRIGHT MEPA-12T, NOF Corporation, average molecular weight 12 kilodalton, 100.0 g) was dissolved in DMSO (1900 mL), and ⁇ -benzyl-L -Aspartic acid-N-carboxylic acid anhydride (BLA-NCA, 55.3 g, 27 equivalents) was added, and the mixture was stirred at 32.5 ° C. overnight.
  • BLA-NCA ⁇ -benzyl-L -Aspartic acid-N-carboxylic acid anhydride
  • the reaction solution was dropped into a mixed solvent of ethanol (4000 mL) and diisopropyl ether (16000 mL) over 1 hour and stirred at room temperature for 1 hour.
  • the precipitate was collected by filtration and dried in vacuo to obtain a solid (142.7 g).
  • the obtained solid (140.0 g) was dissolved in DMF (1400 mL), acetic anhydride (4.4 mL) was added, and the mixture was stirred at 35 ° C. for 3 hr.
  • the reaction solution was dropped into a mixed solvent of ethanol (1400 mL) and diisopropyl ether (12600 mL) over 1 hour and stirred at room temperature for 1 hour.
  • the precipitate was collected by filtration and dried in vacuo to obtain a solid (133.7 g).
  • the obtained solid (50.0 g) was dissolved in DMF (500 mL), 10% palladium-carbon (5.0 g) was added, and hydrogenolysis was performed at 35 ° C. for 24 hours.
  • Activated carbon (10.0 g) was added to the reaction mixture and stirred for 1 hour, and 10% palladium-carbon was filtered off.
  • the filtrate was dropped into a mixed solvent of ethyl acetate (1100 mL) and diisopropyl ether (6000 mL) over 1 hour, and stirred at room temperature for 1 hour.
  • the precipitate was collected by filtration and dried in vacuo to give a solid (41.1 g).
  • Synthesis Example 2 Synthesis of polyethylene glycol- ⁇ -polyaspartic acid block copolymer (polyethylene glycol molecular weight 12000, polyaspartic acid polymerization number 40) (compound 2) According to the method described in Synthesis Example 1, by using 51.25 equivalents of ⁇ -benzyl-L-aspartic acid-N-carboxylic acid anhydride to polyethylene glycol having one end methoxy group and one end 3-aminopropyl group The title compound 2 was obtained. The number of aspartic acids polymerized in one molecule of this compound based on a titration value using 0.1 N potassium hydroxide was about 40.8.
  • the reaction solution was dropped into a mixed solvent of ethanol (40 mL) and diisopropyl ether (160 mL) and stirred.
  • the precipitate was collected by filtration and dried in vacuo to obtain a solid (1.87 g).
  • the obtained solid (1.7 g) was dissolved in NMP (36 mL), 10% palladium-carbon (180 mg) was added, and hydrogenolysis was performed overnight at room temperature.
  • Activated carbon (390 mg) was added to the reaction solution and stirred for 1 hour, and then 10% palladium-carbon was filtered off.
  • the filtrate was added dropwise to a mixed solvent of ethanol (70 mL) and diisopropyl ether (630 mL) and stirred.
  • the precipitate was collected by filtration and dried in vacuo to give compound 4 (1.24 g).
  • Synthesis Example 5 Synthesis of amide conjugate of polyethylene glycol- ⁇ -polyaspartic acid block copolymer and aspartic acid-1-glycine methyl ester (polyethylene glycol molecular weight 12000, polyaspartic acid polymerization number 40.8) (Compound 5)
  • Compound 2 1.5 g was dissolved in NMP (27 mL), and at 25 ° C., Compound 3 (1.8 g), diisopropylethylamine (978 ⁇ L), HOBt ⁇ H 2 O (671 mg), and DIPCI (1.12 mL) were added. In addition, it was stirred overnight.
  • the reaction solution was added dropwise to a mixed solvent of ethanol (75 mL) and diisopropyl ether (300 mL) and stirred.
  • the precipitate was collected by filtration and dried in vacuo to obtain a solid (2.3 g).
  • the obtained solid (2.3 g) was dissolved in NMP (35 mL), 10% palladium-carbon (400 mg) was added, and hydrogenolysis was performed overnight at room temperature.
  • Activated carbon (800 mg) was added to the reaction solution and stirred for 1 hour, and then 10% palladium-carbon was filtered off.
  • the filtrate was added dropwise to diisopropyl ether (500 mL) and stirred.
  • the precipitate was collected by filtration and dried in vacuo to give compound 5 (2.26 g).
  • Synthesis Example 6 Synthesis of polyethylene glycol- ⁇ , ⁇ -polyaspartic acid block copolymer (polyethylene glycol molecular weight 12000, polyaspartic acid polymerization number 23.8) (Compound 6) One-terminal methoxy group and one-terminal 3-aminopropyl group polyethylene glycol (SUNBRIGHT MEPA-12T, NOF Corporation, average molecular weight 12 kilodalton, 75 g) was dissolved in DMSO (1.43 L), and ⁇ -benzyl-L -Aspartic acid-N-carboxylic anhydride (BLA-NCA, 45 g, 29 equivalents) was added and stirred at 32.0 ° C. overnight.
  • BLA-NCA ⁇ -benzyl-L -Aspartic acid-N-carboxylic anhydride
  • the reaction solution was dropped into a mixed solvent of ethanol (3 L) and diisopropyl ether (12 L) over 1 hour and stirred at room temperature for 1 hour.
  • the precipitate was collected by filtration and dried in vacuo to obtain a solid (106 g).
  • the obtained solid (105 g) was dissolved in DMF (1.05 L), acetic anhydride (3.3 mL) was added, and the mixture was stirred at 35 ° C. for 3 hr.
  • the reaction solution was dropped into a mixed solvent of ethanol (1.05 L) and diisopropyl ether (9.45 L) over 1 hour, and stirred at room temperature for 1 hour.
  • the precipitate was collected by filtration and dried in vacuo to obtain a solid (103 g).
  • the obtained solid (100 g) was dissolved in MeCN (2 L), 0.2 N sodium hydroxide (2 L) was added, and hydrolysis was performed at 23 ° C. for 3 hours. After 2N hydrochloric acid was added to the reaction solution for neutralization, acetonitrile was removed by concentration under reduced pressure to obtain a concentrated solution. The concentrate was washed 3 times with ethyl acetate (2 L). The aqueous layer was concentrated under reduced pressure, the pH of the solution was adjusted to 11.0 with 1N aqueous sodium hydroxide solution, sodium chloride (100 g) was added, then partition adsorption resin column chromatography, followed by ion exchange resin column chromatography.
  • the reaction solution was dropped into a mixed solvent of ethanol (40 mL) and diisopropyl ether (160 mL) and stirred.
  • the precipitate was collected by filtration and dried in vacuo to obtain a solid (1.88 g).
  • the obtained solid (1.75 g) was dissolved in DMF (35 mL), 10% palladium-carbon (175 mg) was added, and hydrogenolysis was performed overnight at room temperature.
  • Activated carbon (384 mg) was added to the reaction solution and stirred for 2 hours, and then 10% palladium-carbon was filtered off.
  • the filtrate was added dropwise to a mixed solvent of ethanol (45 mL) and diisopropyl ether (405 mL) and stirred.
  • the precipitate was collected by filtration and dried in vacuo to give compound 7 (1.44 g).
  • Example 1 In general formula (2), R 1 is a methyl group, R 2 is a trimethylene group, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is an isopropylaminocarbonylisopropylamino group, X is a bond, and an average value of t Is a polymer derivative (compound 8) having an average value of k + l + m + n + o + p + q of 23.8 and an average value of k + l of 5.3
  • Compound 6 (832 mg) and tacrolimus (540 mg) were dissolved in DMF (8.9 mL), and DMAP (16.4 mg) and DIPCI (474 ⁇ L) were added at 15 ° C.
  • Example 2 In general formula (2), R 1 is a methyl group, R 2 is a trimethylene group, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is a tryptophanyl-cholesterol ester group (formula (5-4)) and isopropyl
  • a high molecular derivative (compound 9) having an aminocarbonylisopropylamino group, an X bond, an average value of t 272, and an average value of k + l + m + n + o + p + q is 23.8 N- (tert-butoxycarbonyl) -L-tryptophan (3.54 g) and cholesterol (3.0 g) were dissolved in dichloromethane (38.8 mL), and DMAP (948.0 mg) and EDCI (793.3 mg) were added.
  • Example 3 In the general formula (2), R 1 is a methyl group, R 2 is a trimethylene group, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is an isopropylaminocarbonylisopropylamino group, X is a general formula (3) A polymer derivative (compound) in which R 8 and R 9 are hydrogen atoms, CY-CZ is CH—CH, R 10 is a glycinyl-methyl ester group, an average value of t is 272, and an average value of k + l + m + n + o + p + q is 23.8 10) Compound 7 (339 mg), tacrolimus (150 mg), and DMAP (22.3 mg) were dissolved in NMP (2.4 mL), and DIPCI (129 ⁇ L) was added at 25 ° C.
  • R 8 and R 9 are hydrogen atoms
  • CY-CZ is CH—CH
  • R 10 is a glycinyl-
  • Example 4 In general formula (1), R 1 is a methyl group, R 2 is a trimethylene group, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is an isopropylaminocarbonylisopropylamino group, X is a bond, and an average value of t Is a polymer derivative (compound 11) having an average value of 20.9 and d + e + f + g of 20.9 Compound 1 (588 mg) and tacrolimus (307 mg) are dissolved in DMF (8.5 mL), and N, N-dimethylaminopyridine (DMAP) (9.1 mg) and DIPCI (260 ⁇ L) are added at 25 ° C. and stirred overnight. did.
  • DMAP N, N-dimethylaminopyridine
  • the reaction solution was added dropwise to diisopropyl ether (255 mL) and stirred.
  • the precipitate was collected by filtration, the solid obtained by vacuum drying was dissolved in acetonitrile (24 mL), purified water (24 mL) and ion exchange resin (12 mL) were added, and the mixture was stirred for 3 hours, and then the ion exchange resin was filtered. Separated. The filtrate was concentrated under reduced pressure and then freeze-dried to obtain Compound 11 (623 mg).
  • the tacrolimus content of Compound 11 was calculated to be 11.2%.
  • Example 5 In general formula (1), R 1 is a methyl group, R 2 is a trimethylene group, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is an octadecylamino group and an isopropylaminocarbonylisopropylamino group, X is bonded, Polymer derivative (compound 12) having an average value of t of 272 and an average value of d + e + f + g of 20.9 Compound 1 (516 mg), tacrolimus (300 mg) and octadecylamine (40 mg) were dissolved in NMP (5 mL), and DMAP (46 mg) and DIPCI (230 ⁇ L) were added at 30 ° C.
  • Example 6 In general formula (1), R 1 is a methyl group, R 2 is a trimethylene group, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is an octadecylamino group and an isopropylaminocarbonylisopropylamino group, X is bonded, Polymer derivative (compound 13) having an average value of t of 272 and an average value of d + e + f + g of 40.8 Compound 2 (337 mg), tacrolimus (330 mg), and octadecylamine (44 mg) were dissolved in NMP (5.5 mL), and DMAP (50 mg) and DIPCI (253 ⁇ L) were added at 25 ° C.
  • Example 7 In general formula (1), R 1 is a methyl group, R 2 is a trimethylene group, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is an octadecylamino group and isopropylaminocarbonylisopropylamino group, and X is a general formula (3), R 8 and R 9 are hydrogen atoms, CY-CZ is CH—CH, R 10 is a glycinyl-methyl ester group, the average value of t is 272, and the average value of d + e + f + g is 20.9 Molecular derivative (compound 14) Compound 4 (849 mg), tacrolimus (515 mg), octadecylamine (47.4 mg) and DMAP (52.1 mg) were dissolved in NMP (6 mL), and DIPCI (657 ⁇ L) was added at 35 ° C.
  • Example 8 In general formula (1), R 1 is a methyl group, R 2 is a trimethylene group, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is an octadecylamino group and isopropylaminocarbonylisopropylamino group, and X is a general formula (3), R 8 and R 9 are hydrogen atoms, CY-CZ is CH—CH, R 10 is a glycinyl-methyl ester group, the average value of t is 272, and the average value of d + e + f + g is 40.8 Molecular derivative (compound 15) Compound 5 (357 mg), tacrolimus (330 mg), octadecylamine (29.5 mg), and DMAP (33.4 mg) were dissolved in NMP (4 mL), DIPCI (168 ⁇ L) was added at 35 ° C., and the mixture was stirred overnight.
  • NMP 4 mL
  • DIPCI 168
  • the reaction solution was added dropwise to diisopropyl ether (120 mL) and stirred.
  • the precipitate was collected by filtration, the solid obtained by vacuum drying was dissolved in acetonitrile (11 mL), purified water (11 mL) and ion exchange resin (5.5 mL) were added, and the mixture was stirred for 3 hours, and then ion exchange resin. Was filtered off.
  • the filtrate was concentrated under reduced pressure and then lyophilized to obtain Compound 15 (424 mg).
  • the tacrolimus content of Compound 15 was calculated to be 17.4%.
  • Example 9 In general formula (2), R 1 is a methyl group, R 2 is trimethylene, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is 2- (2-aminoethoxy) -9- (diethylamino) -5H A benzo [a] phenoxazin-5-one residue and an isopropylaminocarbonylisopropylamino group, a X bond, an average value of t 272, and an average value of k + 1 + m + n + o + p + q of 23.8 (compound 16) Compound 6 (524.7 mg), tacrolimus (340.7 mg), 2- (2-aminoethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one (manufactured by Fujimoto Molecular Chemical Co., Ltd.) 8 mg) was dissolved in DMF (5.7 mL), and DMAP (10.4 mg) and DIPCI (301.8
  • Example 10 In general formula (2), R 1 is a methyl group, R 2 is trimethylene, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is a tryptophanyl-cholesterol ester group (formula (5-4)), 2- (2-Aminoethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one residue and isopropylaminocarbonylisopropylamino group, X is bonded, t is 272, and k + l + m + n + o + p + q is the average Derivative of which is 23.8 (compound 17) N- (tert-butoxycarbonyl) -L-tryptophan (3.54 g) and cholesterol (3.0 g) were dissolved in dichloromethane (38.8 mL), and DMAP (948.0 mg) and EDCI (793.3 mg) were added.
  • Compound 17 was calculated to have a tacrolimus content of 15.3% and a 2- (2-aminoethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one content of 0.59%.
  • Example 11 In the general formula (2), R 1 is a methyl group, R 2 is a trimethylene group, R 3 is an acetyl group, R 4 is tacrolimus, and R 5 is 2- (2-aminoethoxy) -9- (diethylamino)- 5H-benzo [a] phenoxazin-5-one residue and isopropylaminocarbonylisopropylamino group,
  • X is the general formula (3)
  • R 8 and R 9 are hydrogen atoms
  • CY-CZ is CH—CH
  • Compound 7 (197 mg), tacrolimus (85.2 mg), 2- (2-aminoethoxy) -9- (diethylamino) -5H-benzo [a]
  • Compound 17 was calculated to have a tacrolimus content of 19.8% and a 2- (2-aminoethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one content of 0.74%.
  • Example 12 In the general formula (1), R 1 is a methyl group, R 2 is trimethylene, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is 2- (2-aminoethoxy) -9- (diethylamino) -5H A benzo [a] phenoxazin-5-one residue and an isopropylaminocarbonylisopropylamino group, a X bond, an average value of t 272, and an average value of d + e + f + g of 20.3 (compound 19) Compound 1 (224 mg), tacrolimus (117 mg), 2- (2-aminoethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one (manufactured by Fujimoto Molecular Chemical Co., Ltd.) (1.5 mg) Was dissolved in DMF (3.6 mL), DMAP (3.5 mg) and DIPCI (101 ⁇ L) were added at 25 °
  • Example 13 In the general formula (1), R 1 is a methyl group, R 2 is trimethylene, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is an octadecylamino group, 2- (2-aminoethoxy) -9- ( (Diethylamino) -5H-benzo [a] phenoxazin-5-one residue and isopropylaminocarbonylisopropylamino group, X is a bond, average value of t is 272, and average value of d + e + f + g is 20.9 Compound 20) Compound 1 (157 mg), tacrolimus (91 mg), octadecylamine (12 mg), 2- (2-aminoethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one (manufactured by Fujimoto Molecular Chemical Co., Ltd.) ) (1.5 mg) was dissolved in NMP
  • Compound 20 was calculated to have a tacrolimus content of 13.2% and a 2- (2-aminoethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one content of 0.70%.
  • Example 14 In the general formula (1), R 1 is a methyl group, R 2 is trimethylene, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is an octadecylamino group, 2- (2-aminoethoxy) -9- ( (Diethylamino) -5H-benzo [a] phenoxazin-5-one residue and isopropylaminocarbonylisopropylamino group, X is bonded, t is 272, and d + e + f + g is 40.8 Compound 21) Compound 2 (99 mg), tacrolimus (97 mg), octadecylamine (13 mg), 2- (2-aminoethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one (manufactured by Fujimoto Molecular Chemical Co., Ltd.) ) (1.5 mg) was dissolved in NMP (1.6 mL),
  • Example 15 In the general formula (1), R 1 is a methyl group, R 2 is trimethylene, R 3 is an acetyl group, R 4 is tacrolimus, R 5 is an octadecylamino group, 2- (2-aminoethoxy) -9- ( Diethylamino) -5H-benzo [a] phenoxazin-5-one residue and isopropylaminocarbonylisopropylamino group, having a structure of the general formula (3) as a linking group for X, R 8 and R 9 are hydrogen atoms, CY-CZ is CH-CH, R 10 is a glycinyl-methyl ester group, an average value of t is 272, and an average value of d + e + f + g is 20.9 (compound 22) Compound 4 (302 mg), tacrolimus (181 mg), octadecylamine (16.8 mg), 2- (2-aminoethoxy) -9- (die
  • Compound 22 was calculated to have a tacrolimus content of 17.6% and a 2- (2-aminoethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one content of 0.46%.
  • Example 16 Polymer derivative of PEG-pGlu-Ac and tacrolimus (Compound 23) DMF (3 mL) and tacrolimus (85 mg) were added to PEG-pGlu-Ac (PEG: average molecular weight 12000; polyglutamic acid: average polymerization number 22) (0.28 g) prepared by the method described in Japanese Patent No. 4745664 The solution was dissolved at 35 ° C., DMAP (5.1 mg) and DIPCI (0.15 mL) were added at 15 ° C., and the mixture was stirred overnight. After 21.5 hours, DIPCI (0.074 mL) was added and the reaction temperature was raised to 25 ° C. and stirred for 3 hours.
  • DMAP 5.1 mg
  • DIPCI 0.15 mL
  • the reaction solution was added dropwise to diisopropyl ether (30 mL) over 10 minutes and stirred at room temperature for 2 hours.
  • the precipitate was collected by filtration and washed with diisopropyl ether.
  • the resulting precipitate was dissolved in acetonitrile (10 mL), and then purified water (10 mL) and an ion exchange resin (Dow Chemical Dowex 50 (H + ), 5 mL). Was added. After stirring for 3 hours, the ion exchange resin was filtered off and freeze-dried to obtain Compound 24 (0.36 g) represented by the following formula (13).
  • the tacrolimus content was calculated to be 21%.
  • R 15 is a tacrolimus residue
  • R 16 is an isopropylaminocarbonylisopropylamino group
  • an average value of t is 272
  • an average value of r + s + u + v is 22, and an average value of r is 5.5
  • the average value of t is 272, the average value of r + s + u + v is 22, the average value of r is 1, the average value of s is 10, and R 12 is 2- (2-aminoethoxy) -9- (diethylamino) ) -5H-benzo [a] phenoxazin-5-one residue, R 13 is 4-phenylbutylamino group, R 14 is isopropylaminocarbonylisopropylamino group)
  • the content of 2- (2-aminoethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one in the present invention is determined according to the following HPLC conditions. It was calculated from the consumption rate of ethoxy) -9- (diethylamino) -5H-benzo [a] phenoxazin-5-one.
  • the tacrolimus content of the compound in the present invention was calculated from the consumption rate of tacrolimus in the reaction solution measured under the following HPLC conditions.
  • Test Example 1 Drug Release Test in Phosphate Buffered Saline Solution The compounds of Examples 1 to 8 and Example 16 were dissolved in phosphate buffered saline (pH 7.4) to 1.0 mg / mL, It was left at a constant temperature at 37 ° C. The amount of released tacrolimus was measured over time by HPLC, and the ratio of the amount of released tacrolimus to the total amount of tacrolimus in the used compound was determined. The results of Examples 1 to 3 and Example 16 are shown in FIG. 1, and the results of Examples 4 to 8 are shown in FIG.
  • Test Example 2 Change in Rat Blood Concentration
  • Tacrolimus or 5 mg / kg of the compound of Examples 1 to 8 was administered to an 8-week-old female SD rat (Nippon Charles River Co., Ltd.) in a single tail vein once in each group. 5 minutes after administration, 1, 6, 24, 72, and 168 hours (up to 72 hours for tacrolimus), the jugular vein was exposed under isoflurane anesthesia, and 0.3 mL of blood was collected over time. Tacrolimus in the collected blood Concentration was measured.
  • the results of Examples 1 to 4 and tacrolimus are shown in FIG. 3, and the results of Examples 5 to 8 and tacrolimus are shown in FIG. Table 3 shows the blood concentration parameters of each compound. However, the results of Examples 1 to 8 are the concentration and parameters of tacrolimus cut out from micelles.
  • Test Example 3 Rat Single Toxicity Test Tacrolimus or Example 1 was administered to female DA rats (Japan SLC Co., Ltd.) at the doses shown in Tables 4 and 5, respectively, and general symptoms were observed over time. Went.
  • FIG. 5 shows the relative body weight when Example 1 was administered
  • FIG. 6 shows the relative body weight when tacrolimus was administered.
  • prone position, sedation, and decreased locomotor activity were observed immediately after administration at 20 mg / kg or more.
  • decreased locomotor activity, prone position, fluency, convulsions, staggered walking, and malpnea were observed, and one half of each group died.
  • neuronal vacuolation was observed in the cerebral cortex of the dead rat.
  • rats administered with the compound of Example 1 no death was observed even in the 50 mg / kg administration group which is the highest dose.
  • the lethal dose of tacrolimus is lower than 20 mg / kg, and the lethal dose of the compound of Example 1 is higher than 50 mg / kg.
  • the tacrolimus group may have died of central nervous system disorders.
  • the compound of Example 1 has a Cmax lower than that of tacrolimus by derivatizing tacrolimus with a polymer derivation, the transfer of the drug to the brain is suppressed, and can be administered up to a higher dose than tacrolimus. It was thought.
  • Test Example 4 Accumulation of Fluorescently Labeled Polymer Derivatives at Inflamed Sites in Mouse DSS Colitis Ulcerative colon by allowing 2% dextran sulfate sodium (DSS) solution to freely drink in C57BL / 6J mice (Charles River Japan Co., Ltd.) Triggered a flame.
  • physiological saline solution (5 mg / kg) of the compounds of Examples 9 to 15 was administered into the tail vein of 3 animals in each group.
  • Nile Red was dissolved in absolute ethanol and Cremophor, diluted with physiological saline, and administered into the tail vein. 24 hours after administration, frozen pathological sections of the large intestine were prepared, and fluorescence was observed. The results are shown in FIG.
  • Test Example 5 Anti-inflammatory effect on rat collagen arthritis (1) Collagen arthritis was induced by intradermal administration of 0.3 mg of bovine articular cartilage-derived type II collagen (immune grade: Collagen Technical Training Co., Ltd.) to the back of 9-week-old female DA rats (Japan SLC, Inc.) . On the day of type II collagen sensitization and on the 7th, 14th and 21st days after sensitization, physiological saline solution (5 mg / kg) of the compound of Example 1 was administered into the tail vein of 3 mice in each group. As a control drug, tacrolimus hydrate was dissolved in absolute ethanol and cremophor, diluted with physiological saline and administered into the tail vein. Arthritis was judged by visual scoring. The results are shown in FIG.
  • Test Example 6 Anti-inflammatory effect on rat collagen-induced arthritis (2) A physiological saline solution (5 mg / kg) of the compound of Examples 1 to 8 was administered into the tail vein of 5 animals in each group. A non-administered group was set as a control. Otherwise, the anti-inflammatory effect was examined in the same manner as in Test Example 5.
  • the results of the compounds of Examples 1 and 4 are shown in FIG. 10, the results of the compounds of Examples 1 and 3 are shown in FIG. 11, the results of the compounds of Examples 1, 2, 5 and 6 are shown in FIG.
  • the results for compounds 7 and 8 are shown in FIG. 13, respectively.
  • the compound of the present invention releases the drug over a long period of time and improves the retention of tacrolimus in blood. In addition, it exhibits high accumulation at the site of inflammation, and has a higher arthritis inhibitory effect at low doses and long administration intervals. It has also been shown to reduce toxicity by maintaining the highest blood concentration at a low dose.
  • Test Example 7 Accumulation of Fluorescently Labeled Polymer Derivative at Inflammatory Site in Rat Collagen Arthritis By Intradermally Administering 0.3 mg of Bovine Articular Cartilage-Derived Type II Collagen to 10 Week Old Female DA Rat Collagen arthritis was induced.
  • the compound of Synthetic Example 8 was administered into the tail vein of the collagen arthritis induced group and the non-induced group, and frozen pathological sections of the hindlimb tarsal joint were prepared 24 hours after the administration, and fluorescence was observed. The results are shown in FIG.
  • the compound of Synthesis Example 8 accumulates at a higher concentration in the tarsal joint of the arthritis-induced group compared to the arthritis-non-induced group.
  • the compound of Synthesis Example 8 was confirmed to accumulate at sites where acute inflammation was observed, such as surrounding edema sites and inflammatory cell infiltration sites.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Polymers & Plastics (AREA)
  • Transplantation (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Polyamides (AREA)

Abstract

本願発明の課題は、患部への高い集積性を示し、個人差なく血中濃度が一定に維持されることによって、有効性と安全性が顕著に向上し、血中動態(血中トラフ濃度)による投与量のコントロールが不要となる製剤を得ることである。本願発明は、ポリエチレングリコールセグメント及び側鎖にカルボキシ基を有するポリマー部分からなる共重合体の側鎖のカルボキシ基にタクロリムスのアルコール性水酸基が結合していることを特徴とするタクロリムスの高分子誘導体に関する。

Description

マクロライド系免疫抑制剤の高分子誘導体
 本発明はマクロライド系化合物の高分子誘導体、その製造方法及びその用途に関する。
 本発明において使用されるマクロライド系化合物は、FKBP型イムノフィリンに対する親和性を有し、かつペプチジル-プロリルイソメラーゼ及び/またはロタマーゼ酵素活性を阻害するという共通の活性を有する。マクロライド系化合物の例としては、ラパマイシン、タクロリムス(FK506)、アスコマイシンなどを含むトリシクロ化合物がある。
 マクロライド系化合物または医薬として許容されるその塩は、優れた免疫抑制作用、抗菌活性、およびその他の薬理活性を有し、その為、臓器あるいは組織の移植に対する拒絶反応、移植片対宿主反応、自己免疫疾患、および感染症等の治療および予防に有用であることが、例えば、特許文献1等に記載されている。
 タクロリムスは臓器移植後の拒絶反応抑制、骨髄移植後の移植片対宿主病、難治性の活動期潰瘍性大腸炎などの治療に汎用されている。しかしながら、タクロリムスは水に難溶(2.4~3.6μM、室温)であり、経口投与時のバイオアベイラビリティーが低い。また、タクロリムスの治療域は狭く、体内動態の個体間・個体内変動が大きいため、血中濃度のコントロールが困難な薬物である。タクロリムスの体内動態変動因子として、水への低い溶解度や、消化管粘膜でのP-糖タンパク質や薬物代謝酵素CYP3Aの発現量及び遺伝子型の個体差などが知られている(非特許文献1、2)。
 タクロリムスの主な副作用の一つに腎毒性および膵臓毒性がある。腎毒性は、腎細動脈の血管収縮作用により血流量および糸球体濾過量低下が起こり、さらに尿細管細胞への栄養補給が滞ることが原因である。膵臓毒性は主に膵β細胞のインシュリンmRNA転写阻害に基づく膵β細胞からのインシュリン産生抑制による耐糖能異常発症である。これらの毒性は、タクロリムスの血漿中濃度に依存して発現する。
 タクロリムスの中枢神経系の副作用として、ヒトでは可逆性後白質脳症症候群・高血圧性脳症等が報告されている(市販後調査を含め0.1~0.5%未満)。また、ラットへのタクロリムスの静脈内投与が、軽度の呼吸促迫、自発運動低下、腹臥位、常同行動等を誘発することが認められている。(非特許文献3)
 ポリマーと薬剤が結合することにより、薬剤の水溶性が向上したり、生体内における薬物動態が改善し、その結果として薬効の増強、副作用の軽減、薬効の持続性などの実用上優れた効果が得られることが知られている。ポリマーと薬剤の結合様式は、ポリマーと薬剤が共有結合する場合とポリマーと薬剤とが物理的に吸着する場合とがある。ポリマーと共有結合した薬剤は、体内において加水分解反応などによりポリマーから放出される。一方、ポリマーに物理的に吸着した薬剤は、加水分解反応のような化学反応に因らず、体内においてポリマーから薬剤が徐々に放出する。いずれもポリマーからの薬剤の放出に酵素は関与しないが、ポリマーと薬剤の結合様式の違いは、薬剤の放出機構に違いをもたらすと考えられる。
 特許文献2及び特許文献3には、ポリエチレングリコール類及びポリアスパラギン酸からなる共重合体と薬剤から得られる高分子誘導体が記載されている。特許文献2及び特許文献3に記載の該高分子誘導体は、共重合体と薬剤が物理的に吸着している。該高分子誘導体の徐放性は共重合体から徐々に薬剤が解離することに起因し、患部に選択的に薬効を示すとともに副作用が少ない。
 特許文献4には、タクロリムスをalkyl substituted polylactide (MPEG-hexPLA)から成るポリマーに物理的に吸着させた化合物を得る方法が開示されている。しかしながら、血中濃度あるいはタクロリムスが患部へ特異的に移行することに関して記載はない。
 非特許文献4には、PEGポリマーにタクロリムスを化学的に結合させて合成したPEG化タクロリムスについて報告がある。しかしながら、PEG化タクロリムスはアジュバント関節炎マウス及びループス腎炎マウスなどの炎症疾患モデル動物に対し、タクロリムス以上の効果が得られていない。
 非特許文献5には、Poly (ethylene glycol) esters-Poly caprolactone(PEG-PCL)ポリマーにタクロリムスを物理的に吸着させて合成されたミセルについての報告がある。PEG-PCLタクロリムスミセルはDSS誘発潰瘍性大腸炎マウスに対し、タクロリムスと比較して体重減少の抑制、大腸の短縮化抑制及び大腸の出血や陰窩細胞の消失などの炎症改善効果が高いことが明らかにされている。しかしながら、PEG-PCLタクロリムスミセルが炎症改善効果を示すためには、1日1回12日間連続で投与していることから、この化合物では血中濃度を長く維持することができないと考えられる。
 非特許文献6及び7には、Poly caprolactone-b-poly(ethylene oxide)(PCL-b-PEO)から成るポリマーにタクロリムスを物理的に吸着させて合成したミセルについての報告がある。PCL-b-PEOタクロリムスミセルは、タクロリムスと比較して細胞内に徐々に取り込まれることが記載されている。また、PCL-b-PEOタクロリムスミセルは5mg/kgを6日間隔で3回尾静脈内投与することにより、坐骨神経損傷モデルラットの自発運動性を改善することが示されている。しかしながら、PCL-b-PEOタクロリムスミセルから遊離したタクロリムスは脳に高く集積することから、PCL-b-PEOタクロリムスミセルは免疫抑制剤としての機能よりも、神経保護剤としての機能に特化していると考えられる。
 非特許文献8には、poly(lactic-co-glycolic acid)(PLGA)またはpH感受性Eudragit P-4135Fから成るポリマーにタクロリムスを物理的に吸着させて合成したナノパーティクルについての報告がある。該ナノパーティクルはコラーゲン誘発関節炎及びDSS誘発大腸炎マウスに対し、タクロリムスよりも高い炎症改善効果を示している。しかしながら、該ナノパーティクルが炎症改善効果を示すためには、1日1回12日間連続で投与していることから、この化合物では血中濃度を長く維持することができないと考えられる。さらに、腎障害の指標であるBUN、血清クレアチニン、クレアチニンクリアランスに対する改善作用も十分ではなかった。
 現在までに、患部への高い集積性を示し、個人差なく血中濃度が一定に維持されることによって、タクロリムスに比べて有効性と安全性が顕著に向上し、血中動態(血中トラフ濃度)による投与量のコントロールが不要となる製剤は未だなく、その開発が求められている。
国際公開93/005059号 国際公開2003/000771号 国際公開2004/082718号 国際公開2013/157664号
Transplantation 1999、67、p.333-335 Pharm.Res.1998、15、p.1609-1613 藤沢薬品工業株式会社(現アステラス製薬株式会社)プログラフカプセル(0.5mg、1mg、5mg)プログラフ注射液(5mg)に関する資料 53頁 平成13年6月部会審議 承認申請資料概要 Arch.Pharm.Res.2011、34、1301-1310 J.Biomed.Nanotechnol.2013、9、p.147-157 Drug.Deliv.2000、7、p.139-145 Biochim.Biophys.Acta.1999、1421、p.32-38 Int.J.Pharm.2006、316、p.138-143
 本発明の目的は、薬剤を炎症部位に集積させ低投与量でより高い効果を有し、また目標血中トラフ濃度で維持させることにより長い投与間隔及び毒性を軽減する新規な免疫抑剤又は抗炎症剤を提供することにある。
 本発明者はポリエチレングリコールセグメント及びポリアミノ酸誘導体からなる共重合体の側鎖のカルボキシ基にタクロリムスのアルコール性水酸基が結合しているタクロリムスの高分子誘導体が本発明の課題を解決することを見出した。
 本発明は以下の[1]~[18]に関する。
[1]ポリエチレングリコールセグメント及びポリアミノ酸誘導体からなる共重合体の側鎖のカルボキシ基にタクロリムスのアルコール性水酸基が結合しているタクロリムスの高分子誘導体。
[2]ポリアミノ酸誘導体がポリアスパラギン酸誘導体である前記[1]に記載のタクロリムスの高分子誘導体。
[3]下記一般式(1)
Figure JPOXMLDOC01-appb-C000004
 [式中、Rは水素原子又は炭素数(C1~C6)のアルキル基を示し、Rは結合基を示し、Rは水素原子又は炭素数(C1~C6)のアシル基を示し、Rはタクロリムスのアルコール性水酸基の残基を示し、Rはそれぞれ独立して、疎水性置換基及び-N(R)CONH(R)(R、Rは同一でも異なっていてもよい、炭素数(C3~C6)の環状アルキル基又は三級アミノ基で置換されていてもよい炭素数(C1~C5)のアルキル基である。)からなる群から選択され、Xは結合又は結合基であり、tは5~11500の整数を示し、dは1~200の整数を示し、且つe、f及びgは各々0または200以下の正の整数を示し、d+e+f+gは3~200の整数を示し、ポリアミノ酸誘導体の各繰り返し単位の配列順は任意である。]で表される前記[1]又は[2]に記載のタクロリムスの高分子誘導体。
[4]下記一般式(4)
Figure JPOXMLDOC01-appb-C000005
 [式中、R、R、R、R、R、X及びtは一般式(1)と同一であり、k、l、m、n、o、p及びqは各々0または200以下の正の整数であり、k+lは1~200の整数であり、且つk+l+m+n+o+p+qは3~200の整数であり、ポリアミノ酸誘導体の各繰り返し単位の配列順は任意である。]で表される前記[1]又は[2]に記載のタクロリムスの高分子誘導体。
[5]Xが結合である前記[3]又は[4]に記載のタクロリムスの高分子誘導体。
[6]Xが結合であり、Rが疎水性置換基及び-N(R)CONH(R)(R、Rは同一でも異なっていてもよい、炭素数(C3~C6)の環状アルキル基又は三級アミノ基で置換されていてもよい炭素数(C1~C5)のアルキル基である。)である前記[5]に記載のタクロリムスの高分子誘導体。
[7]Xの結合基がアスパラギン酸誘導体である前記[3]又は[4]に記載のタクロリムスの高分子誘導体。
[8]Xの結合基がアスパラギン酸誘導体であり、Rが疎水性置換基及び-N(R)CONH(R)(R、Rは同一でも異なっていてもよい、炭素数(C3~C6)の環状アルキル基又は三級アミノ基で置換されていてもよい炭素数(C1~C5)のアルキル基である。)である前記[7]に記載のタクロリムスの高分子誘導体。
[9]Xの結合基が、下記一般式(3)又は一般式(4)
Figure JPOXMLDOC01-appb-C000006
 [式中、R、Rはそれぞれ独立して水素原子又は炭素数(C1~C8)のアルキル基を示し、R10はNH、置換基を有していても良い炭素数(C1~C20)の直鎖状、分岐鎖状又は環状のアルキルアミノ基、置換基を有していても良い炭素数(C7~C20)の直鎖状、分岐鎖状又は環状のアラルキルアミノ基、置換基を有していても良い炭素数(C5~C20)の芳香族アミノ基及びカルボキシ基が保護されたアミノ酸結合残基からなる群から選択される1種以上の基を示し、CY-CZはCH-CH若しくはC=C(二重結合)を示す。]である前記[3]又は[4]に記載のタクロリムスの高分子化合物。
[10]R、Rが共に水素原子であり、CY-CZがCH-CHである前記[9]に記載のタクロリムスの高分子化合物。
[11]疎水性置換基が炭素数(C1~C30)のアルコキシ基、炭素数(C1~C30)のアルケニルオキシ基、炭素数(C1~C30)のアルキルアミノ基、炭素数(C2~C60)のジアルキルアミノ基、炭素数(C1~C30)のアルケニルアミノ基、およびアミノ酸誘導体残基からなる群から選択される前記[3]乃至[10]の何れかに記載のタクロリムスの高分子誘導体。
[12]Rが炭素数(C1~C6)のアルキル基であり、Rが炭素数(C2~C6)のアルキレン基であり、Rが炭素数(C1~C6)のアシル基であり、tが50~1500の整数であり、d+e+f+gが4~150の整数である前記[3]、[5]乃至[10]の何れかに記載のタクロリムスの高分子誘導体。
[13]Rが炭素数(C1~C3)のアルキル基であり、Rが炭素数(C2~C4)のアルキレン基であり、Rが炭素数(C1~C3)のアシル基であり、tが100~1500の整数であり、d+e+f+gが8~120の整数である前記[3]、[5]乃至[11]の何れかに記載のタクロリムスの高分子誘導体。
[14]Rが炭素数(C1~C6)のアルキル基であり、Rが炭素数(C2~C6)のアルキレン基であり、Rが炭素数(C1~C6)のアシル基であり、tが50~1500の整数であり、k+l+m+n+o+p+qが4~150の整数である前記[4]乃至[11]の何れかに記載のタクロリムスの高分子誘導体。
[15]Rが炭素数(C1~C3)のアルキル基であり、Rが炭素数(C2~C4)のアルキレン基であり、Rが炭素数(C1~C3)のアシル基であり、tが100~1500の整数であり、k+l+m+n+o+p+qが8~120の整数である前記[4]乃至[11]の何れかに記載のタクロリムスの高分子誘導体。
[16]Rがメチル基であり、Rがトリメチレン基であり、Rがアセチル基である前記[3]乃至[15]の何れかに記載のタクロリムスの高分子誘導体。
[17]ポリエチレングリコールセグメント及びポリアスパラギン酸誘導体からなる共重合体の側鎖のカルボキシ基にタクロリムスのアルコール性水酸基を有機溶媒中、脱水縮合剤を用いてエステル結合させることを特徴とする前記[1]乃至[16]の何れかに記載のタクロリムスの高分子誘導体の製造方法。
[18]前記[1]乃至[17]の何れかに記載のタクロリムスの高分子誘導体を有効成分とするマクロライド系免疫抑制剤。
 本発明のタクロリムスの高分子誘導体は、ポリエチレングリコールセグメント及びポリアミノ酸誘導体からなる共重合体の側鎖のカルボキシ基にタクロリムスのアルコール性水酸基がエステル結合していることを特徴とする。この高分子誘導体は、その構造上、水中で親水性の高いポリエチレングリコールセグメントを外殻、疎水性の高い側鎖を内殻とした凝集体を形成すると考えられる。この高分子誘導体は生体内において安定であり、酵素非依存的にタクロリムスを徐放することができ、炎症部位への高い集積性を示し、低投与量で治療効果に優れている。また、酵素に依存しない生理活性物質の放出及び血中濃度の維持が可能であることによって、血中動態(血中トラフ濃度)による投与量のコントロールが不要となり、安全性が顕著に向上することが期待される。
酵素非存在下における薬剤放出の経時変化を示す。-●-は実施例1の化合物、-○-は実施例2、-■-は実施例3の化合物、-□-は実施例16の化合物をそれぞれ表す。 酵素非存在下における薬剤放出の経時変化を示す。-●-は実施例4の化合物、-○-は実施例5の化合物、-■-は実施例6の化合物、-□-は実施例7の化合物、-▲-は実施例8の化合物をそれぞれ表す。 ラット血中におけるタクロリムス濃度の経時変化を示す。-●-は実施例1の化合物、-■-は実施例2の化合物、-△-は実施例3の化合物、-◇-は実施例4の化合物、-*-はタクロリムスをそれぞれ表す。 ラット血中におけるタクロリムス濃度の経時変化を示す。-●-は実施例5の化合物、-■-は実施例6の化合物、-△-は実施例7の化合物、-◇-は実施例8の化合物、-*-はタクロリムスをそれぞれ表す。 ラットの相対体重の経時変化を示す。-■-は実施例1の化合物を20mg/kg、-◆-は実施例1の化合物を30mg/kg、-▲-は実施例1の化合物を40mg/kg、-●-は実施例1の化合物を50mg/kg、-○-は生理食塩水(Saline)を単回投与したときの体重変化をそれぞれ示す。 ラットの相対体重の経時変化を示す。-■-はタクロリムスを20mg/kg、-◆-はタクロリムスを30mg/kg、-○-はクレモホールとエタノールの混合液(Vehicle)を単回投与したときの体重変化をそれぞれ示す。 ラットの大脳皮質病理切片を各倍率で観察した図面代用写真である。左図は溶媒対照投与群の病理切片、右図はタクロリムス投与により死亡した個体の病理切片をそれぞれ示す。 マウスDSS大腸炎における、実施例9乃至15の化合物の薬剤集積を示す図面代用写真である。 ラットコラーゲン関節炎の炎症スコアの経時変化を示す。-●-は実施例1の化合物、-○-はタクロリムスをそれぞれ表す。 ラットコラーゲン関節炎の炎症スコアの経時変化を示す。-▲-は実施例1の化合物、-■-は実施例4の化合物、-●-は未投与群をそれぞれ表す。 ラットコラーゲン関節炎の炎症スコアの経時変化を示す。-▲-は実施例1の化合物、-■-は実施例3の化合物、-●-は未投与群をそれぞれ表す。 ラットコラーゲン関節炎の炎症スコアの経時変化を示す。-▲-は実施例1の化合物、-■-は実施例2の化合物、-◆-は実施例5の化合物、-*-は実施例6の化合物、-●-は未投与群をそれぞれ表す。 ラットコラーゲン関節炎の炎症スコアの経時変化を示す。-▲-は実施例1の化合物、-■-は実施例7の化合物、-◆-は実施例8の化合物、-●-は未投与群をそれぞれ表す。 ラットコラーゲン関節炎誘発における、合成例8の化合物の薬剤集積を示す図面代用写真である。左図は関節炎非誘発群、右図は関節炎誘発群をそれぞれ示す。
 本発明のタクロリムスの高分子誘導体は、ポリエチレングリコールセグメント及びポリアミノ酸誘導体からなる共重合体の側鎖のカルボキシ基にタクロリムスのアルコール性水酸基がエステル結合していることを特徴とする。以下に、その詳細について説明する。
 本発明におけるポリエチレングリコールセグメント及びポリアミノ酸誘導体からなる共重合体には、グラフト型ポリマーやブロック型ポリマーが含まれ、好ましくはブロック型ポリマーが挙げられる。
 ポリエチレングリコールセグメント及びポリアミノ酸誘導体からなる共重合体の分子量は、通常500~500、000程度であり、好ましくは600~100、000程度であり、更に好ましくは800~80、000である。なお、本明細書中において分子量とは、ポリエチレングリコール標準品を基準とした、GPC法により測定されるピークトップ分子量である。
 ポリエチレングリコールセグメント及びポリアミノ酸誘導体からなる共重合体の1分子あたりのカルボキシ基の数は、平均で、3~200個程度であり、4~150個が好ましく、より好ましくは8~120個である。カルボキシ基の数はアルカリによる中和滴定により求められる。
 本発明におけるポリエチレングリコールセグメントには、両末端又は、片方の末端が修飾されたポリエチレングリコールも含まれ、両末端の修飾基は同一でも異なってもよい。末端の修飾基としては、置換基を有してもよい炭素数(C1~C6)のアルキル基が挙げられる。具体的にはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ジメトキシエチル基、ジエトキシエチル基等が挙げられる。好ましくは置換基を有してもよい炭素数(C1~C4)のアルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ジメトキシエチル基等が挙げられる。片方の末端が修飾されたポリエチレングリコールとしては、好ましくはアルコキシポリエチレングリコールであり、更に好ましくはメトキシポリエチレングリコールが挙げられる。
 ポリエチレングリコールセグメントの平均分子量は通常300~500,000程度であり、好ましくは500~100,000程度、更に好ましくは1,000~50,000程度である。
 本発明におけるポリアミノ酸誘導体はポリグルタミン酸誘導体、ポリアスパラギン酸誘導体、ポリリシン誘導体、ポリオルニチン誘導体、ポリチロシン誘導体、ポリセリン誘導体、ポリトレオニン誘導体が挙げられ、好ましくは反応性置換基としてカルボキシ基を有するポリアスパラギン酸誘導体またはポリグルタミン酸誘導体が挙げられる。これらの側鎖カルボキシ基を有するポリアミノ酸誘導体は、α-アミド結合型重合体であっても、側鎖カルボキシ基とのアミド結合型重合体であっても、β-アミド結合型重合体であっても、その混合物であってもよい。ポリアミノ酸誘導体としてはポリアスパラギン酸誘導体が好ましい。
 タクロリムスは、下記式(I)で表される。タクロリムスのアルコール性水酸基は、複数あるが、アルコール性水酸基であれば置換位置は限定されない。
Figure JPOXMLDOC01-appb-C000007
 本発明のタクロリムスの高分子誘導体の構造例として、下記一般式(1)[式中、Rは水素原子又は炭素数(C1~C6)のアルキル基を示し、Rは結合基を示し、Rは水素原子又は炭素数(C1~C6)のアシル基を示し、Rはタクロリムスのアルコール性水酸基の残基を示し、Rはそれぞれ独立して、疎水性置換基及び-N(R)CONH(R)(R、Rは同一でも異なっていてもよい、炭素数(C3~C6)の環状アルキル基又は三級アミノ基で置換されていてもよい炭素数(C1~C5)のアルキル基である。)からなる群から選択され、Xは結合又は結合基であり、tは5~11500の整数を示し、d、e、f若しくはgは各々0または200以下の正の整数を示し、且つdは1~200の整数を示し、d+e+f+gは3~200の整数を示す。]及び下記一般式(2)[式中、t及びR~Rは一般式(1)と定義が同一であり、k、l、m、n、o、p及びqは各々0または200以下の正の整数を示し、且つk+lは1~200の整数を示し、k+l+m+n+o+p+qは3~200の整数を示す。]で表される化合物が挙げられる。なお、各繰り返し単位の配列順は合成時に制御不可能であり、一般式(1)及び一般式(2)に記載のものに限られない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 一般式(1)及び一般式(2)のRにおける炭素数(C1~C6)のアルキル基としては直鎖又は分岐鎖の炭素数(C1~C6)の直鎖又は分岐鎖のアルキル基が挙げられ、好ましくは炭素数(C1~C4)の直鎖又は分岐鎖のアルキル基であり、特に好ましくは炭素数(C1~C3)の直鎖又は分岐鎖のアルキル基である。炭素数(C1~C6)の直鎖又は分岐鎖のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基等が挙げられ、好ましくはメチル基、エチル基、n-プロピル基、i-プロピル基があり、特にメチル基が好ましい。
 一般式(1)及び一般式(2)のRで表される結合基としては、特に限定されないが炭素数(C2~C6)のアルキレン基が挙げられ、炭素数(C2~C4)のアルキレン基が好ましく、例えば、エチレン基、トリメチレン基、ブチレン基等が挙げられ、特にトリメチレン基が好ましい。
 一般式(1)及び一般式(2)のRにおける炭素数(C1~C6)のアシル基としては特に限定されないが、例えば、ホルミル基、アセチル基、プロピオニル基、ピバロイル基等が挙げられ、特にアセチル基が好ましい。
 一般式(1)及び一般式(2)のRであるタクロリムスのアルコール性水酸基は、ポリマーのカルボン酸部分と脱水縮合剤によりエステル結合をするアルコール性水酸基であれば置換位置は特に限定されない。
 一般式(1)及び一般式(2)のRは疎水性置換基を取り得る。
 該疎水性置換基としては、炭素数(C1~C30)のアルコキシ基、炭素数(C1~C30)のアルケニルオキシ基、炭素数(C1~C30)のアルキルアミノ基、炭素数(C2~C60)のジアルキルアミノ基、炭素数(C1~C30)のアルケニルアミノ基、およびアミノ酸誘導体残基が挙げられる。
 特に好ましくは炭素数(C1~C20)のアルコキシ基、炭素数(C1~C20)のアルケニルオキシ基、炭素数(C1~C20)のアルキルアミノ基、炭素数(C2~C40)ジアルキルアミノ基、炭素数(C1~C20)のアルケニルアミノ基、およびアミノ酸誘導体残基である。
 前記炭素数(C1~C20)のアルコキシ基としては特に限定されないが、例えば、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、テトラデシルオキシ基、ヘキサデシルオキシ基、オクタデシルオキシ基等が挙げられる。
 前記炭素数(C1~C20)のアルケニルオキシ基としては特に限定されないが、例えば、9-ヘキサデセニルオキシ基、cis-9-オクタデセニルオキシ基、cis、cis-9,12-オクタデカジエニルオキシ基等が挙げられる。
 前記炭素数(C1~C20)のアルキルアミノ基としては特に限定されないが、例えば、オクチルアミノ基、デシルアミノ基、ドデシルアミノ基、テトラデシルアミノ基、ヘキサデシルアミノ基、オクタデシルアミノ基等が挙げられる。
 前記炭素数(C2~C40)のジアルキルアミノ基としては特に限定されないが、例えば、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、ジシクロヘキシルアミノ基、ジオクチルアミノ基、ジノニルアミノ基等が挙げられる。
 前記炭素数(C1~C20)のアルケニルアミノ基としては特に限定されないが、例えば、9-ヘキサデセニルアミノ基、cis-9-オクタデセニルアミノ基、cis、cis-9,12-オクタデカジエニルアミノ基等が挙げられる。
 前記アミノ酸誘導体残基としては、例えば、トリプトファン誘導体残基、フェニルアラニン誘導体残基、イソロイシン誘導体残基、ロイシン誘導体残基、バリン誘導体残基等が挙げられ、好ましくはトリプトファン誘導体残基、イソロイシン誘導体残基、フェニルアラニン誘導体残基である。
 トリプトファン誘導体残基としては、例えば、下記式(5-1)~(5-4)で示される、トリプトファニル-メチルエステル基、トリプトファニル-エチルエステル基、トリプトファニル-ベンジルエステル基、トリプトファニル-コレステロールエステル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 イソロイシン誘導体残基としては、例えば、下記式(6-1)~(6-4)で示される、イソロイシニル-メチルエステル基、イソロイシニル-エチルエステル基、イソロイシニル-ベンジルエステル基、イソロイシニル-コレステロールエステル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 フェニルアラニン誘導体残基としては、例えば、下記式(7-1)~(7-4)で示される、フェニルアラニニル-メチルエステル基、フェニルアラニニル-エチルエステル基、フェニルアラニニル-ベンジルエステル基、フェニルアラニニル-コレステロールエステル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 該疎水性置換基としては蛍光基、例えば、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン基、BODIPY TR Cadaverine残基、Alexa Fluor(登録商標) 594 Cadaverine残基、Texas Red(登録商標) Cadaverine残基、ATTO
 594 amine残基等も含まれる。
 一般式(1)及び一般式(2)のRは-N(R)CONH(R)を取り得る。ここでR、Rは同一でも異なっていてもよい、炭素数(C3~C6)の環状アルキル基又は三級アミノ基で置換されていてもよい炭素数(C1~C5)のアルキル基である。
 炭素数(C3~C6)の環状アルキルとしては、例えば、シクロヘキシル基等が挙げられる。
 三級アミノ基で置換されていてもよい炭素数(C1~C5)のアルキル基としては、例えば、エチル基、イソプロピル基、3-ジメチルアミノプロピル基等が挙げられる。
 三級アミノ基で置換されていてもよい炭素数(C1~C5)のアルキル基の三級アミノ基はジメチルアミノ基、ジエチルアミノ基等である。
 一般式(1)で表されるタクロリムスの高分子誘導体における全α-アスパラギン酸数の平均値はd+e+f+gで表され、3~200個程度であり、好ましくは6~150個程度であり、特に好ましくは10~120個である。
 全α-アスパラギン酸数(d+e+f+g)に対するタクロリムスの結合したアスパラギン酸数(d)の割合は1~100%、好ましくは2~90%、更に好ましくは3~60%である。又、α-アスパラギン酸数(d)として3~200個、好ましくは4~150個程度、特に好ましくは8~120個程度である。
 Rの疎水性置換基及び-N(R)CONH(R)中のR、Rの好ましい組合せとしては、下表に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-T000013
 一般式(2)で表されるタクロリムスの高分子誘導体における全アスパラギン酸数の平均値はk+l+m+n+o+p+qで表され、3~200個程度であり、好ましくは4~150個程度であり、特に好ましくは8~120個である。
 一般式(2)で表されるタクロリムスの高分子誘導体における全アスパラギン酸数(k+l+m+n+o+p+q)に対するタクロリムスの結合したアスパラギン酸数(k+l)の割合は1~100%、好ましくは2~90%、更に好ましくは3~60%である。又、タクロリムスの結合したアスパラギン酸数(k+l)は1~200個、好ましくは1~100個程度、特に好ましくは1~90個程度である。
 全アスパラギン酸数(k+l+m+n+o+p+q)に対するα-アスパラギン酸(k+m+o)の割合は1~80%であり、好ましくは1~50%である。この割合は、例えば、ポリアスパラギン酸の保護基の脱保護条件等を選ぶことにより適宜変えることができる。
 一般式(1)及び一般式(2)のtは平均値であり、5~11500程度の整数であるが、好ましくは50~3000程度の整数であり、特に好ましくは100~1500程度の整数である。
 前記一般式(1)及び一般式(2)におけるXは、結合又は前記R、Rと、ポリアミノ酸主鎖の側鎖カルボニル基との結合基である。該結合基としては、R、Rの結合性官能基と、該ポリアミノ酸誘導体の側鎖カルボキシ基に対して、それぞれ結合可能な官能基を両末端に有する結合基であれば、特に限定されるものではない。
 XのR、R側の末端結合性官能基としては、カルボキシ基、オキシカルボキシ基、アミノカルボキシ基が好ましい。R、Rが分子中にアミノ基及び/又は水酸基を有することから、これらの結合性官能基は、該アミノ基及び/又は水酸基とアミド結合、エステル結合、ウレタン結合、カーボネート結合及びウレア結合する。
 Xのもう一方の、前記側鎖カルボキシ基側の末端結合性官能基としては、アミノ基、水酸基又はチオール基が好ましい。これらの結合性官能基は、側鎖カルボキシ基とアミド結合、エステル結合、チオエステル結合できる。
 すなわちXは、一方の末端基がカルボキシ基、オキシカルボキシ基又はアミノカルボキシ基であり、もう一方の末端基がアミノ基、水酸基又はチオール基である置換基を有していても良い炭素数(C1~C8)のアルキレン基又はアルケニレン基であることが好ましい。
 Xの具体例は下表に記載の物が挙げられるが、本発明の高分子誘導体の合成又は性能に影響を与えないものであればこれらに限られない。いずれのXも、側鎖カルボキシ基とはアミド結合、エステル結合又はチオエステル結合する。
Figure JPOXMLDOC01-appb-T000014
 前記Xのアルキレン基は、水素原子が適当な置換基により修飾されていても良い。該置換基としては、水酸基、アミノ基、ハロゲン原子、炭素数(C1~C8)のアルキル基、炭素数(C1~C8)のアルキルカルボニルアルコキシ基、炭素数(C1~C8)のアルキルカルボニルアミド基、炭素数(C1~C8)のアルキルカルボニルアルキルアミド基、炭素数(C1~C8)のアルキルアリール基、炭素数(C1~C8)のアルコキシ基、炭素数(C1~C8)のアルキルアミノ基、炭素数(C1~C8)のアシルアミド基、炭素数(C1~C8)のアルコキシカルボニルアミノ基等を挙げることができる。
 Xとしては-CO-(CH-NH-、-CO-(CH-O-が好ましい。特に好ましくは、R、Rとアミド結合又はエステル結合することができるカルボキシ基を有すると共に、該側鎖カルボキシ基とアミド結合できるアミノ基を有する-CO-(CH-NH-である。
 X中のyとして好ましくは1乃至6であり、さらに好ましくは1、2、4、又は6である。
 最も好ましいXとしては-CO-(CH-NH-(y=1、2、4、又は6)である。
 Xとして挙げた置換基を有していても良い-CO-(CH-NH-において、yが1の場合はアミノ酸骨格と同義である。したがって、Xとして、アミノ酸誘導体を用いても良い。
 アミノ酸誘導体を結合基とする場合、アミノ酸のN末アミノ基が前記側鎖カルボキシ基とアミド結合し、C末カルボキシ基が該R、Rのアミノ基又は水酸基とアミド結合又はエステル結合する態様の結合基として用いられる。
 結合基として用いられるアミノ酸は、天然アミノ酸または非天然アミノ酸であってよく、L体、D体のいずれでも特に限定されずに用いることができる。例えば、グリシン、β-アラニン、アラニン、ロイシン、フェニルアラニン等の炭化水素系アミノ酸、アスパラギン酸、グルタミン酸等の酸性アミノ酸、リジン、アルギニン、ヒスチジン等の塩基性アミノ酸等を用いることができる。
 Xとしてのアミノ酸誘導体はアスパラギン酸誘導体が好ましい。該アスパラギン酸誘導体としては、α-カルボキシ基が前記R、Rの結合基として機能し、β-カルボキシ基がアミド体であるアスパラギン酸誘導体結合基である。または、β-カルボキシ基が前記R、Rの結合基として機能し、α-カルボキシ基がアミド体であるアスパラギン酸誘導体であっても良い。該R、Rの結合基ではない、もう一方のカルボキシ基がアミド体である場合は、置換基を有していても良い炭素数(C1~20)のアルキルアミド、置換基を有していても良い炭素数(C5~C20)の芳香族アミド、置換基を有していても良い炭素数(C7~C20)のアラルキルアミド又はカルボキシ基が保護されたアミノ酸残基等が挙げられる。
 該アスパラギン酸誘導体の置換基を有していても良い炭素数(C1~20)のアルキルアミドとしては、例えば、メチルアミド、エチルアミド、イソプロピルアミド、t-ブチルアミド、シクロヘキシルアミド、ドデシルアミド、オクタデシルアミド等が挙げられる。
 該アスパラギン酸誘導体の置換基を有していても良い炭素数(C5~C20)の芳香族アミドとしては、例えば、フェニルアミド、4-メトキシフェニルアミド、4-ジメチルアミノフェニルアミド、4-ヒドロキシフェニルアミド等が挙げられる。該アスパラギン酸誘導体の置換基を有していても良い炭素数(C7~C20)のアラルキルアミドとしては、例えば、ベンジルアミド、2-フェニルエチルアミド、4-フェニルブチルアミド、8-フェニルオクチルアミド等が挙げられる。該アスパラギン酸誘導体のカルボキシ基が保護されたアミノ酸アミドとしては、例えば、グリシニル-メチルエステル、アラニル-メチルエステル、ロイシニル-メチルエステル、イソロイシニル-メチルエステル、バリニル-メチルエステル、フェニルアラニル-メチルエステル、アラニル-エチルエステル、ロイシニル-エチルエステル、イソロイシニル-エチルエステル、アラニル-ブチルエステル、ロイシニル-ブチルエステル等が挙げられる。
 前記Xは、下記一般式(3)又は一般式(4)で示されるアスパラギン酸誘導体結合基又はマレイン酸誘導体結合基もとり得る。
Figure JPOXMLDOC01-appb-C000015
 ここで、一般式(3)及び一般式(4)中、R、Rはそれぞれ独立して水素原子又は炭素数(C1~C8)のアルキルアミノ基を示し、R10はNH、置換基を有していても良い炭素数(C1~C20)の直鎖状、分岐鎖状又は環状のアルキルアミノ基、置換基を有していても良い炭素数(C7~C20)の直鎖状、分岐鎖状又は環状のアラルキルアミノ基、置換基を有していても良い炭素数(C5~C20)の芳香族アミノ基、及びカルボキシ基が保護されたアミノ酸結合残基からなる群から選択される1種以上の基を示し、CX-CYはCH-CH若しくはZ配置のC=C(二重結合)である。
 R、Rにおける、炭素数(C1~C8)のアルキル基は、直鎖状、分岐鎖状又は環状の炭素数(C1~C8)のアルキル基である。
 直鎖状アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-へキシル基等を挙げることができる。
 分岐鎖状アルキル基としては、例えば、イソプロピル基、t-ブチル基、1-メチル-プロピル基、2-メチル-プロピル基、2,2-ジメチルプロピル基等が挙げられる。
 環状アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 R10において、置換基を有していても良い炭素数(C1~C20)の直鎖状、分岐鎖状又は環状のアルキルアミノ基とは、例えばメチルアミノ基、エチルアミノ基、イソプロピルアミノ基、t-ブチルアミノ基、シクロヘキシルアミノ基、n-オクチルアミノ基、ドデシルアミノ基、オクタデシルアミノ基が挙げられる。
 置換基を有していても良い炭素数(C7~C20)の直鎖状、分岐鎖状又は環状のアラルキルアミノ基としては、例えば、ベンジルアミノ基、2-フェニルエチルアミノ基、4-フェニルブチルアミノ基、8-フェニルオクチルアミノ基等が挙げられる。
 置換基を有していても良い炭素数(C5~C20)の芳香族アミノ基としては、例えば、アニリノ基、4-メトキシアニリノ基、4-ジメチルアミノアニリノ基、4-ヒドロキシアニリノ基等が挙げられる。
 また、前記R10は、カルボキシ基が保護されたアミノ酸結合残基であっても良い。カルボキシ基が保護されたアミノ酸結合残基としては、例えば、下記式(8)で表されるグリシニル-メチルエステル基、下記式(9-1)~(9-3)で表されるアラニニル-メチルエステル基、アラニニル-エチルエステル基、アラニニル-ブチルエステル基、下記式(10-1)~(10-3)で表されるロイシニル-メチルエステル基、ロイシニル-エチルエステル基、ロイシニル-ブチルエステル基、下記式(11)で表されるバリニル-メチルエステル基、下記式(12)で表されるフェニルアラニニル-メチルエステル基、等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 本発明のタクロリムスの高分子誘導体は、ポリエチレングリコールセグメント及びポリアミノ酸誘導体からなる共重合体の側鎖のカルボキシ基と、タクロリムスのアルコール性水酸基とを有機溶媒中、脱水縮合剤を用いてエステル結合させることにより得られ、本製造方法も本発明に含まれる。すなわち、ポリエチレングリコール構造部分-ポリアスパラギン酸のブロック共重合体と、必要に応じて反応させる基以外の官能基を保護したタクロリムスとを、両者が溶解する有機溶媒中、好ましくはN,N-ジメチルホルムアミド(DMF)、1,3-ジメチル-2-イミダゾリジノン(DMI)、N-メチルピロリドン(NMP)等の非プロトン性極性溶媒中、0~180℃、好ましくは5~50℃でジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIPCI)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDCI)、1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキシキノリノン(EEDQ)等の脱水縮合剤を用いた反応に付す製造方法である。又、縮合反応の際にN,N-ジメチルアミノピリジン(DMAP)等の反応補助剤を用いてもよい。縮合反応後、必要に応じて脱保護を行い、通常の分離精製等の操作によりタクロリムスの高分子誘導体が製造される。
 又、Rが-N(R)CONH(R)基であるタクロリムスの高分子誘導体は、上記のカルボジイミド類を縮合剤として用いても得られる。
 Rに炭素数(C1~C30)のアルコキシ基、炭素数(C1~C30)のアルケニルオキシ基、炭素数(C1~C30)のアルキルアミノ基、炭素数(C2~C60)のジアルキルアミノ基、炭素数(C1~C30)のアルケニルアミノ基、およびアミノ酸誘導体残基(カルボキシ基が保護されたアミノ酸を含む)等を導入する方法としては、ポリマーのカルボキシ基を上記の方法にて活性化してから添加したい量の対応するアルコール、対応するアミンやカルボキシ基が保護されたアミノ酸等を塩基性条件下で反応させる方法、対応するアルコール、対応するアミンやカルボキシ基が保護されたアミノ酸等を活性化させてからポリマーに反応させる方法等も可能である。ポリマーを精製した後に同様の反応でポリマー中の未反応のカルボン酸基を再活性化させることができ、ここにタクロリムスのアルコール性水酸基を縮合させてもよい。或いは異なるアルコール、アミン等を繰り返し反応させて、Rの種々の置換基の混成体を合成し、次いでタクロリムスのアルコール性水酸基を縮合させてもよい。又、タクロリムスを縮合させた後に炭素数(C1~C30)のアルコキシ基、炭素数(C1~C30)のアルケニルオキシ基、炭素数(C1~C30)のアルキルアミノ基、炭素数(C2~C60)のジアルキルアミノ基、炭素数(C1~C30)のアルケニルアミノ基、およびアミノ酸誘導体残基等を導入してもよい。
 ただし、本発明のタクロリムスの高分子誘導体の製造法は上記の方法に限定されるわけではない。
 本発明のタクロリムスの高分子誘導体は、生体内に投与後、タクロリムスを徐々に遊離する性質を有し、該タクロリムスを有効成分とする医薬としての用途を有する。
 本発明のタクロリムスの高分子誘導体の医薬品としての用途は、該タクロリムスにより治療効果を奏する疾病であれば特に限定されるものではない。例えば、自己免疫疾患、炎症性疾患、アレルギー性疾患、臓器移植及び骨髄移植における拒絶反応の抑制等の治療に用いられる医薬に適する。特に好ましくは、自己免疫疾患あるいは炎症性疾患の治療用医薬である。自己免疫疾患としては、関節リウマチ、全身性エリテマトーデス、潰瘍性大腸炎等を挙げることができ、炎症性疾患としては、間質性肺炎等が挙げられる。
 本発明のタクロリムスの高分子誘導体を含む医薬は、医薬品として通常容認される他の添加剤を有していても良い。該添加剤としては、賦形剤、増量剤、充填剤、結合剤、湿潤剤、崩壊剤、潤滑剤、界面活性剤、分散剤、緩衝剤、保存剤、溶解補助剤、防腐剤、矯味矯臭剤、無痛化剤、安定化剤及び等張化剤等が挙げられる。
 本発明のタクロリムスの高分子誘導体を含む医薬は、治療用の医薬品製剤として調製されても良い。該製剤としては、経口、注射、直腸内投与、門脈内投与、臓器の灌流液に混合、患部臓器への局所投与等いずれの投与方法でも可能であるが、好ましくは非経口的投与であり、注射による静脈内投与、動脈内投与又は患部臓器への局所投与がより好ましく、通常、例えば、水、生理食塩水、5%ブドウ糖又はマンニトール液、水溶性有機溶媒(例えば、グリセロール、エタノール、ジメチルスルホキシド、N-メチルピロリドン、ポリエチレングリコール、クレモホール等及びそれらの混合液)並びに水と該水溶性有機溶媒の混合液等が使用される。
 本発明のタクロリムスの高分子誘導体の投与量は、患者の性別、年齢、生理的状態、病態等により当然変更され得るが、非経口的に、通常、成人1日当たり、活性成分として0.01~500mg/m、好ましくは0.1~250mg/mを投与する。注射による投与は、静脈、動脈、患部(炎症部)等に行われる。
 本発明のタクロリムスの高分子誘導体は患部に集積し、低投与量でタクロリムス単剤より高い効果を有する。また、酵素に依存しない生理活性物質の放出及び血中濃度の維持が可能であることから、血中動態(血中トラフ濃度)による投与量のコントロールが不要となり、長い投与間隔及び安全性が顕著に向上する。このため、本発明のタクロリムスの高分子誘導体は臓器あるいは組織の移植に対する拒絶反応、移植片対宿主反応、自己免疫疾患、および感染症等の治療および予防に有用な免疫抑制剤又は抗炎症剤である。
 以下、本発明を実施例により更に説明する。ただし、本発明がこれらの実施例に限定されるものではない。また、本発明の化合物は必要に応じて製剤化を行った後に使用した。
 合成例1 ポリエチレングリコール-α-ポリアスパラギン酸ブロック共重合体(ポリエチレングリコール分子量12000、ポリアスパラギン酸重合数20.9)の合成(化合物1)
 片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-12T、日油社製、平均分子量12キロダルトン、100.0g)をDMSO(1900mL)に溶解後、γ-ベンジル-L-アスパラギン酸-N-カルボン酸無水物(BLA-NCA、55.3g、27当量)を加え、32.5℃にて一夜攪拌した。反応液を、エタノール(4000mL)及びジイソプロピルエーテル(16000mL)の混合溶媒中に1時間かけて滴下し、室温にて1時間攪拌した。沈殿物を濾取後、真空乾燥し固形物(142.7g)を得た。得られた固形物(140.0g)をDMF(1400mL)に溶解し、無水酢酸(4.4mL)を加えて35℃にて3時間撹拌した。反応液を、エタノール(1400mL)及びジイソプロピルエーテル(12600mL)の混合溶媒中に1時間かけて滴下し、室温にて1時間攪拌した。沈殿物を濾取後、真空乾燥し固形物(133.7g)を得た。得られた固形物(50.0g)をDMF(500mL)に溶解後、10%パラジウム-炭素(5.0g)を加えて、35℃にて24時間加水素分解を行った。反応液に活性炭(10.0g)を加えて1時間撹拌した後、10%パラジウム-炭素を濾別した。濾液を、酢酸エチル(1100mL)及びジイソプロピルエーテル(6000mL)の混合溶媒中に1時間かけて滴下し、室温にて1時間攪拌した。沈殿物を濾取後、真空乾燥し固形物(41.1g)を得た。固形物を5%食塩水(2500mL)に溶解し、2規定の水酸化ナトリウム水溶液にて溶解液のpHを11.0に調製後、分配吸着樹脂カラムクロマトグラフィー、続いてイオン交換樹脂カラムクロマトグラフィーを用いて精製し、溶出した溶液を減圧濃縮した後、凍結乾燥することによって、化合物1(37.5g)を得た。0.1規定の水酸化カリウムを用いた滴定値に基づく本化合物1分子中のアスパラギン酸の重合数は約20.9であった。
 合成例2 ポリエチレングリコール-α-ポリアスパラギン酸ブロック共重合体(ポリエチレングリコール分子量12000、ポリアスパラギン酸重合数40)の合成(化合物2)
 合成例1記載の方法に準じ、片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコールに対してγ-ベンジル-L-アスパラギン酸-N-カルボン酸無水物を51.25当量用いることにより、表記化合物2を得た。0.1規定の水酸化カリウムを用いた滴定値に基づく本化合物1分子中のアスパラギン酸の重合数は約40.8であった。
 合成例3 アスパラギン酸-1-グリシニルメチルエステル-4-ベンジルエステル塩酸塩の合成(化合物3)
 N-(t-ブトキシカルボニル)アスパラギン酸-4-ベンジルエステル(12.01g)と、L-グリシンメチルエステル塩酸塩(4.65g)をDMF(180mL)に溶解後、1-エチル-3-[3-(ジメチルアミノ)プロピル]カルボジイミド塩酸塩(EDCI)(10.66g)、1-ヒドロキシベンゾトリアゾール1水和物(HOBt・HO)(6.82g)、ジイソプロピルエチルアミン(6.3mL)を加え、2.5時間撹拌した。反応液に水を加え、酢酸エチルにて抽出し、5%クエン酸水溶液,飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄した。硫酸ナトリウムで乾燥後、減圧濃縮にて酢酸エチルを除去後、シリカゲルカラムクロマトグラフィーによる精製を行い、真空乾燥して白色粉末(13.79g)を得た。この白色粉末(12.41g)を4規定の塩酸-ジオキサン溶液(150mL)に溶解後、室温で4.5時間撹拌した。反応液を減圧濃縮後、酢酸エチル(100mL)を加え再度減圧濃縮し、真空乾燥して化合物3(10.58g)を得た。
 合成例4 ポリエチレングリコール-α-ポリアスパラギン酸ブロック共重合体とアスパラギン酸-1-グリシンメチルエステルのアミド結合体(ポリエチレングリコール分子量12000、ポリアスパラギン酸重合数20.9)の合成(化合物4)
 化合物1(1.4g)をNMP(25mL)に溶解し、25℃にて化合物3(1.0g),ジイソプロピルエチルアミン(725μL)、HOBt・HO(342mg)、ジイソプロピルカルボジイミド(DIPCI)(937μL)を加えて一夜撹拌した。反応液をエタノール(40mL)及びジイソプロピルエーテル(160mL)の混合溶媒中に滴下し、撹拌した。沈殿物を濾取後、真空乾燥し固形物(1.87g)を得た。得られた固形物(1.7g)をNMP(36mL)に溶解後、10%パラジウム-炭素(180mg)を加えて、室温下で一夜加水素分解を行った。反応液に活性炭(390mg)を加えて1時間撹拌した後、10%パラジウム-炭素を濾別した。濾液を、エタノール(70mL)及びジイソプロピルエーテル(630mL)の混合溶媒中に滴下し、攪拌した。沈殿物を濾取後、真空乾燥し化合物4(1.24g)を得た。
 合成例5 ポリエチレングリコール-α-ポリアスパラギン酸ブロック共重合体とアスパラギン酸-1-グリシンメチルエステルのアミド結合体(ポリエチレングリコール分子量12000、ポリアスパラギン酸重合数40.8)の合成(化合物5)
 化合物2(1.5g)をNMP(27mL)に溶解し、25℃にて化合物3(1.8g)、ジイソプロピルエチルアミン(978μL)、HOBt・HO(671mg)、DIPCI(1.12mL)を加えて一夜撹拌した。反応液をエタノール(75mL)及びジイソプロピルエーテル(300mL)の混合溶媒中に滴下し、撹拌した。沈殿物を濾取後、真空乾燥し固形物(2.3g)を得た。得られた固形物(2.3g)をNMP(35mL)に溶解後、10%パラジウム-炭素(400mg)を加えて、室温下で一夜加水素分解を行った。反応液に活性炭(800mg)を加えて1時間撹拌した後、10%パラジウム-炭素を濾別した。濾液を、ジイソプロピルエーテル(500mL)に滴下し、攪拌した。沈殿物を濾取後、真空乾燥し化合物5(2.26g)を得た。
 合成例6 ポリエチレングリコール-α,β-ポリアスパラギン酸ブロック共重合体(ポリエチレングリコール分子量12000、ポリアスパラギン酸重合数23.8)の合成(化合物6)
 片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-12T、日油社製、平均分子量12キロダルトン、75g)をDMSO(1.43L)に溶解後、γ-ベンジル-L-アスパラギン酸-N-カルボン酸無水物(BLA-NCA、45g、29当量)を加え、32.0℃にて一夜攪拌した。反応液を、エタノール(3L)及びジイソプロピルエーテル(12L)の混合溶媒中に1時間かけて滴下し、室温にて1時間攪拌した。沈殿物を濾取後、真空乾燥し固形物(106g)を得た。得られた固形物(105g)をDMF(1.05L)に溶解し、無水酢酸(3.3mL)を加えて35℃にて3時間撹拌した。反応液を、エタノール(1.05L)及びジイソプロピルエーテル(9.45L)の混合溶媒中に1時間かけて滴下し、室温にて1時間攪拌した。沈殿物を濾取後、真空乾燥し固形物(103g)を得た。得られた固形物(100g)をMeCN(2L)に溶解後、0.2規定の水酸化ナトリウム(2L)を加えて、23℃にて3時間加水分解を行った。反応液に2規定の塩酸を加えて中和した後、減圧濃縮にてアセトニトリルを除去し、濃縮液を得た。酢酸エチル(2L)を用い濃縮液を3回洗浄した。水層を減圧濃縮後、1規定の水酸化ナトリウム水溶液にて溶解液のpHを11.0に調製し、食塩(100g)を添加後、分配吸着樹脂カラムクロマトグラフィー、続いてイオン交換樹脂カラムクロマトグラフィーを用いて精製し、溶出した溶液を減圧濃縮した後、凍結乾燥し、化合物6(75.4g)を得た。0.1規定の水酸化カリウムを用いた滴定値に基づく本化合物1分子中のアスパラギン酸の重合数は23.8であった。
 合成例7 ポリエチレングリコール-α,β-ポリアスパラギン酸ブロック共重合体とアスパラギン酸-1-グリシンメチルエステルのアミド結合体(ポリエチレングリコール分子量12000、ポリアスパラギン酸重合数23.8)の合成(化合物7)
 化合物6(1.24g)をDMF(20mL)に溶解し、25℃にて化合物3(992mg)、ジイソプロピルエチルアミン(536μL)、HOBt・HO(30.6mg)、DIPCI(616μL)を加えて一夜撹拌した。反応液をエタノール(40mL)及びジイソプロピルエーテル(160mL)の混合溶媒中に滴下し、撹拌した。沈殿物を濾取後、真空乾燥し固形物(1.88g)を得た。得られた固形物(1.75g)をDMF(35mL)に溶解後、10%パラジウム-炭素(175mg)を加えて、室温下で一夜加水素分解を行った。反応液に活性炭(384mg)を加えて2時間撹拌した後、10%パラジウム-炭素を濾別した。濾液をエタノール(45mL)及びジイソプロピルエーテル(405mL)の混合溶媒中に滴下し、攪拌した。沈殿物を濾取後、真空乾燥し化合物7(1.44g)を得た。
 実施例1 一般式(2)においてRがメチル基、Rがトリメチレン基、Rがアセチル基、Rがタクロリムス、Rがイソプロピルアミノカルボニルイソプロピルアミノ基、Xが結合、tの平均値が272、k+l+m+n+o+p+qの平均値が23.8、k+lの平均値が5.3である高分子誘導体(化合物8)
 化合物6(832mg)、タクロリムス(540mg)をDMF(8.9mL)に溶解し,15℃にてDMAP(16.4mg)、DIPCI(474μL)を加えて一夜撹拌した。反応液をジイソプロピルエーテル(270mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(28mL)に溶解後、精製水(28mL)及びイオン交換樹脂(14mL)を加え、3時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物8(980mg)を得た。化合物8のタクロリムス含量は20.8%と計算された。
 実施例2 一般式(2)においてRがメチル基、Rがトリメチレン基、Rがアセチル基、Rがタクロリムス、Rがトリプトファニル-コレステロールエステル基(式(5-4))及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xが結合、tの平均値が272、k+l+m+n+o+p+qの平均値が23.8である高分子誘導体(化合物9)
 N-(tert-ブトキシカルボニル)-L-トリプトファン(3.54g)、コレステロール(3.0g)をジクロロメタン(38.8mL)に溶解し、DMAP(948.0mg)、EDCI(793.3mg)を加えて一夜撹拌した。反応液に飽和塩化アンモニウム水溶液を加え、ジクロロメタン抽出した。硫酸ナトリウムで乾燥後、減圧濃縮にてジクロロメタンを除去後、シリカゲルカラムクロマトグラフィーによる精製を行い、真空乾燥して白色粉末(3.13g)を得た。この白色粉末(3.13g)を4規定の塩酸-ジオキサン溶液(23.25mL)に溶解後、室温で3時間撹拌した。反応液にアセトンを加え固体を析出させた後、沈殿物を濾取し、真空乾燥により白色粉末(2.69g)を得た.
 この白色粉末(60.6mg)、化合物6(308mg)、タクロリムス(200.0mg)をNMP(3.3mL)に溶解し、25℃にてジイソプロピルエチルアミン(25.4μL)、DMAP(30.4mg)、DIPCI(153μL)を加えて一夜撹拌した。反応液をジイソプロピルエーテル(100mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(10.4mL)に溶解後、精製水(10.4mL)及びイオン交換樹脂(5.2mL)を加え、2.5時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物9(420mg)を得た。化合物9のタクロリムス含量は19.3%と計算された。
 実施例3 一般式(2)においてRがメチル基、Rがトリメチレン基、Rがアセチル基、Rがタクロリムス、Rがイソプロピルアミノカルボニルイソプロピルアミノ基、Xが一般式(3)であり、R及びRが水素原子、CY-CZがCH-CH、R10がグリシニル-メチルエステル基、tの平均値が272、k+l+m+n+o+p+qの平均値が23.8である高分子誘導体(化合物10)
 化合物7(339mg)、タクロリムス(150mg)、DMAP(22.3mg)をNMP(2.4mL)に溶解し、25℃にてDIPCI(129μL)を加えて1夜撹拌した。反応液をジイソプロピルエーテル(75mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(10mL)に溶解後、精製水(10mL)及びイオン交換樹脂(5mL)を加え、1時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物10(349mg)を得た。化合物10のタクロリムス含量は22.5%と計算された。
 実施例4 一般式(1)でRがメチル基、Rがトリメチレン基、Rがアセチル基、Rがタクロリムス、Rがイソプロピルアミノカルボニルイソプロピルアミノ基、Xが結合、tの平均値が272、d+e+f+gの平均値が20.9である高分子誘導体(化合物11)
 化合物1(588mg)、タクロリムス(307mg)をDMF(8.5mL)に溶解し、25℃にてN,N-ジメチルアミノピリジン(DMAP)(9.1mg)、DIPCI(260μL)を加えて一夜撹拌した。反応液をジイソプロピルエーテル(255mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(24mL)に溶解後、精製水(24mL)及びイオン交換樹脂(12mL)を加え、3時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物11(623mg)を得た。化合物11のタクロリムス含量は11.2%と計算された。
 実施例5 一般式(1)でRがメチル基、Rがトリメチレン基、Rがアセチル基、Rがタクロリムス、Rがオクタデシルアミノ基及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xが結合、tの平均値が272、d+e+f+gの平均値が20.9である高分子誘導体(化合物12)
 化合物1(516mg)、タクロリムス(300mg)、オクタデシルアミン(40mg)をNMP(5mL)に溶解し、30℃にてDMAP(46mg)、DIPCI(230μL)を加えて一夜撹拌した。反応液をジイソプロピルエーテル(155mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(17mL)に溶解後、精製水(17mL)及びイオン交換樹脂(8.7mL)を加え、3時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物12(620mg)を得た。化合物12のタクロリムス含量は14.1%と計算された。
 実施例6 一般式(1)でRがメチル基、Rがトリメチレン基、Rがアセチル基、Rがタクロリムス、Rがオクタデシルアミノ基及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xが結合、tの平均値が272、d+e+f+gの平均値が40.8である高分子誘導体(化合物13)
 化合物2(337mg)、タクロリムス(330mg)、オクタデシルアミン(44mg)をNMP(5.5mL)に溶解し、25℃にてDMAP(50mg)、DIPCI(253μL)を加えて一夜撹拌した。反応液をジイソプロピルエーテル(165mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(17mL)に溶解後、精製水(17mL)及びイオン交換樹脂(8.7mL)を加え、3時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物13(507mg)を得た。化合物13のタクロリムス含量は23.6%と計算された。
 実施例7 一般式(1)でRがメチル基、Rがトリメチレン基、Rがアセチル基、Rがタクロリムス、Rがオクタデシルアミノ基及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xが一般式(3)であり、R及びRが水素原子、CY-CZがCH-CH、R10がグリシニル-メチルエステル基、tの平均値が272、d+e+f+gの平均値が20.9である高分子誘導体(化合物14)
 化合物4(849mg)、タクロリムス(515mg)、オクタデシルアミン(47.4mg)、DMAP(52.1mg)をNMP(6mL)に溶解し、35℃にてDIPCI(657μL)を加えて2夜撹拌した。反応液をジイソプロピルエーテル(200mL)に滴下し、撹拌した。沈殿物を濾取後、真空乾燥し固形物(886mg)を得た。得られた固形物をアセトニトリル(30mL)に溶解後、精製水(30mL)及びイオン交換樹脂(18mL)を加え、1時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮し、凍結乾燥することによって、化合物14(0.87g)を得た。化合物14のタクロリムス含量は15.7%と計算された。
 実施例8 一般式(1)でRがメチル基、Rがトリメチレン基、Rがアセチル基、Rがタクロリムス、Rがオクタデシルアミノ基及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xが一般式(3)であり、R及びRが水素原子、CY-CZがCH-CH、R10がグリシニル-メチルエステル基、tの平均値が272、d+e+f+gの平均値が40.8である高分子誘導体(化合物15)
 化合物5(357mg)、タクロリムス(330mg)、オクタデシルアミン(29.5mg)、DMAP(33.4mg)をNMP(4mL)に溶解し、35℃にてDIPCI(168μL)を加えて2夜撹拌した。反応液をジイソプロピルエーテル(120mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(11mL)に溶解後、精製水(11mL)及びイオン交換樹脂(5.5mL)を加え、3時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物15(424mg)を得た。化合物15のタクロリムス含量は17.4%と計算された。
 実施例9 一般式(2)でRがメチル基、Rがトリメチレン、Rがアセチル基、Rがタクロリムス、Rが2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン残基及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xが結合、tの平均値が272、k+l+m+n+o+p+qの平均値が23.8である高分子誘導体(化合物16)
 化合物6(524.7mg)、タクロリムス(340.7mg)、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン(藤本分子化学社製)(8mg)をDMF(5.7mL)に溶解し、15℃にてDMAP(10.4mg)、DIPCI(301.8μL)を加えて一夜撹拌した。反応液をジイソプロピルエーテル(170mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(10mL)に溶解後、精製水(10mL)及びイオン交換樹脂(16mL)を加え、3時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物16(627mg)を得た。化合物16のタクロリムス含量は24.8%、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン含量は1.2%と計算された。
 実施例10 一般式(2)でRがメチル基、Rがトリメチレン、Rがアセチル基、Rがタクロリムス、Rがトリプトファニル-コレステロールエステル基(式(5-4))、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン残基及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xが結合、tの平均値が272、k+l+m+n+o+p+qの平均値が23.8である高分子誘導体(化合物17)
 N-(tert-ブトキシカルボニル)-L-トリプトファン(3.54g)、コレステロール(3.0g)をジクロロメタン(38.8mL)に溶解し、DMAP(948.0mg)、EDCI(793.3mg)を加えて一夜撹拌した。反応液に飽和塩化アンモニウム水溶液を加え、ジクロロメタン抽出した。硫酸ナトリウムで乾燥後、減圧濃縮にてジクロロメタンを除去後、シリカゲルカラムクロマトグラフィーによる精製を行い、真空乾燥して白色粉末(3.13g)を得た。この白色粉末(3.13g)を4規定の塩酸-ジオキサン溶液(23.25mL)に溶解後、室温で3時間撹拌した。反応液にアセトンを加え固体を析出させた後、沈殿物を濾取し、真空乾燥により白色粉末(2.69g)を得た。
 この白色粉末(32.3mg)、化合物6(163.8mg)、タクロリムス(106.4mg)、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン(藤本分子化学社製)(1.5mg)をNMP(1.8mL)に溶解し、30℃にてジイソプロピルエチルアミン(13.5μL)、DMAP(16.2mg)、DIPCI(81.6μL)を加えて一夜撹拌した。反応液をジイソプロピルエーテル(50mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(6mL)に溶解後、精製水(6mL)及びイオン交換樹脂(3mL)を加え、4時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物17を得た。化合物17のタクロリムス含量は15.3%、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン含量は0.59%と計算された。
 実施例11 一般式(2)においてRがメチル基、Rがトリメチレン基、Rがアセチル基、Rがタクロリムス、Rが2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン残基及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xが一般式(3)であり、R及びRが水素原子、CY-CZがCH-CH、R10がグリシニル-メチルエステル基、tの平均値が272、k+l+m+n+o+p+qの平均値が23.8である高分子誘導体(化合物18)
 化合物7(197mg)、タクロリムス(85.2mg)、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン(藤本分子化学社製)(2mg)、DMAP(12.9mg)をNMP(1.4mL)に溶解し、25℃にてDIPCI(75μL)を加えて1夜撹拌した。反応液をジイソプロピルエーテル(40mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(6mL)に溶解後、精製水(6mL)及びイオン交換樹脂(3mL)を加え、1時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物18(132mg)を得た。化合物17のタクロリムス含量は19.8%、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン含量は0.74%と計算された。
 実施例12 一般式(1)でRがメチル基、Rがトリメチレン、Rがアセチル基、Rがタクロリムス、Rが2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン残基及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xが結合、tの平均値が272、d+e+f+gの平均値が20.3である高分子誘導体(化合物19)
 化合物1(224mg)、タクロリムス(117mg)、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン(藤本分子化学社製)(1.5mg)をDMF(3.6mL)に溶解し、25℃にてDMAP(3.5mg)、DIPCI(101μL)を加えて一夜撹拌した。反応液をジイソプロピルエーテル(108mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(12mL)に溶解後、精製水(12mL)及びイオン交換樹脂(6mL)を加え、3時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物19(246mg)を得た。化合物19のタクロリムス含量は9.3%、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン含量は0.51%と計算された。
 実施例13 一般式(1)でRがメチル基、Rがトリメチレン、Rがアセチル基、Rがタクロリムス、Rがオクタデシルアミノ基、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン残基及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xが結合、tの平均値が272、d+e+f+gの平均値が20.9である高分子誘導体(化合物20)
 化合物1(157mg)、タクロリムス(91mg)、オクタデシルアミン(12mg)、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン(藤本分子化学社製)(1.5mg)をNMP(1.5mL)に溶解し、30℃にてDMAP(14mg)、DIPCI(70μL)を加えて一夜撹拌した。反応液をジイソプロピルエーテル(45mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(5.2mL)に溶解後、精製水(5.2mL)及びイオン交換樹脂(2.6mL)を加え、3時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物20(192mg)を得た。化合物20のタクロリムス含量は13.2%、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン含量は0.70%と計算された。
 実施例14 一般式(1)でRがメチル基、Rがトリメチレン、Rがアセチル基、Rがタクロリムス、Rがオクタデシルアミノ基、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン残基及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xが結合、tの平均値が272、d+e+f+gの平均値が40.8である高分子誘導体(化合物21)
 化合物2(99mg)、タクロリムス(97mg)、オクタデシルアミン(13mg)、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン(藤本分子化学社製)(1.5mg)をNMP(1.6mL)に溶解し,25℃にてDMAP(15mg)、DIPCI(74μL)を加えて一夜撹拌した。反応液をジイソプロピルエーテル(48mL)に滴下し、撹拌した。沈殿物を濾取し、真空乾燥により得られた固形物をアセトニトリル(5mL)に溶解後、精製水(5mL)及びイオン交換樹脂(2.5mL)を加え、3時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物21(141mg)を得た。化合物21のタクロリムス含量は24.8%、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン含量は0.89%と計算された。
 実施例15 一般式(1)でRがメチル基、Rがトリメチレン、Rがアセチル基、Rがタクロリムス、Rがオクタデシルアミノ基、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン残基及びイソプロピルアミノカルボニルイソプロピルアミノ基、Xの結合基として一般式(3)の構造を有し、R、Rが水素原子、CY-CZがCH-CH、R10がグリシニル-メチルエステル基,tの平均値が272、d+e+f+gの平均値が20.9である高分子誘導体(化合物22)
 化合物4(302mg)、タクロリムス(181mg)、オクタデシルアミン(16.8mg)、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン(藤本分子化学社製)(1.96mg)、DMAP(18.4mg)をNMP(2mL)に溶解し、35℃にてDIPCI(93.4μL)を加えて2夜撹拌した。反応液をジイソプロピルエーテル(64mL)に滴下し、撹拌した。沈殿物を濾取後、真空乾燥し固形物(316mg)を得た。得られた固形物をアセトニトリル(10mL)に溶解後、精製水(10mL)及びイオン交換樹脂(6mL)を加え、0.5時間撹拌した後、イオン交換樹脂を濾別した。濾液を減圧濃縮した後、凍結乾燥することによって、化合物22(282mg)を得た。化合物22のタクロリムス含量は17.6%、2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン含量は0.46%と計算された。
 実施例16 PEG-pGlu-Acとタクロリムスの高分子誘導体(化合物23)
 特許第4745664号に記載された方法にて製造したPEG-pGlu-Ac(PEG:平均分子量12000;ポリグルタミン酸:平均重合数22)(0.28g)にDMF(3mL)とタクロリムス(85mg)を加え、35℃にて溶解し、15℃にてDMAP(5.1mg)、DIPCI(0.15mL)を加えて、一夜撹拌した。21.5時間後、DIPCI(0.074mL)を加え、反応温度を25℃に上げ、3時間撹拌した。反応液をジイソプロピルエーテル(30mL)に10分かけて滴下し、室温にて2時間撹拌した。析出物を濾取してジイソプロピルエーテルで洗浄後、得られた析出物をアセトニトリル(10mL)に溶解後、精製水(10mL)とイオン交換樹脂(ダウケミカル製ダウエックス50(H)、5mL)を加えた。3時間撹拌後、イオン交換樹脂を濾去し、凍結乾燥を行い、下記式(13)で表される化合物24(0.36g)を得た。タクロリムス含量は21%と計算された。
Figure JPOXMLDOC01-appb-C000017
 (式中、R15がタクロリムス残基、R16がイソプロピルアミノカルボニルイソプロピルアミノ基、tの平均値が272、r+s+u+vの平均値が22、rの平均値が5.5)
 合成例8 2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オンで標識した高分子誘導体(化合物24)
 特許第4745664号に記載された方法にて製造したPEG-pGlu-Ac(PEG:平均分子量12000;ポリグルタミン酸:平均重合数22)(2.03g)にDMF(50mL)を加え、35℃にて溶解し、25℃にて2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン(59mg)、DMT-MM(53mg)を加えて、一夜撹拌した。22時間後、DMT-MM(26mg)を加え、さらに1.5時間撹拌した.反応液をジイソプロピルエーテル(480mL)とエタノール(120mL)の混合溶液に15分かけて滴下し、室温にて4時間撹拌した。析出物を濾取してジイソプロピルエーテルとエタノールの混合溶液(100mL)で洗浄後、得られた析出物を乾燥し、下記式(14)で表される高分子誘導体(1.89g)を得た。
Figure JPOXMLDOC01-appb-C000018
 (式中、tの平均値は272、r+s+u+vの平均値が22、rの平均値が1、sとuの平均値が0、vの平均値が21であり、R12は2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン残基)
 得られた高分子誘導体(0.50g)、4-フェニルブチルアミン(60μL)、及びDMAP(84mg)にDMF(10mL)を加え、35℃にて溶解し、室温にてDIPCI(211μL)を加えて、一夜撹拌した。23.5時間後、DIPCI(106μL)を加え、さらに2時間撹拌した。反応液をジイソプロピルエーテル(200mL)とエタノール(50mL)の混合溶液に滴下し、室温にて4時間撹拌した。析出物を濾取してジイソプロピルエーテルとエタノールの混合溶液(50mL)で洗浄後、得られた析出物をアセトニトリル(15mL)に溶解後、精製水(5mL)とイオン交換樹脂(ダウケミカル製ダウエックス50(H)、10mL)を加えた。3時間撹拌後、イオン交換樹脂を濾去し、凍結乾燥を行い、下記式(15)で表される化合物24(0.50g)を得た。化合物24の2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン含量は2%と計算された。
Figure JPOXMLDOC01-appb-C000019
 (式中、tの平均値は272、r+s+u+vの平均値が22、rの平均値はl、sの平均値は10であり、R12は2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン残基、R13は4-フェニルブチルアミノ基、R14はイソプロピルアミノカルボニルイソプロピルアミノ基)
 本発明における2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オン含量は、以下のHPLC条件により測定した反応溶液中の2-(2-アミノエトキシ)-9-(ジエチルアミノ)-5H-ベンゾ[a]フェノキサジン-5-オンの消費率から算出した。
 HPLCの分析条件カラム:Inertsil ODS-3、4.6φ×150mmカラム温度:40℃溶離液 A液:0.1%リン酸水溶液、B液:アセトニトリルグラジェント:B液%(時間、分)、10(0)、10(0.01)、50(12.0)、50(15.0)、10(15.01)、stop(20.0)流速:1.0mL/分検出器(検出波長):UV(254nm)
 本発明における化合物のタクロリムス含量は、以下のHPLC条件により測定した反応溶液中のタクロリムスの消費率から算出した。
 HPLCの分析条件
  カラム:Shim-pack XR-ODSIII、2.0φ×200mm
  カラム温度:40℃
  溶離液 A液:0.1%リン酸水溶液、B液:アセトニトリルA液/B液=80/20
  流速:0.5mL/分
  検出器(検出波長):UV(254nm)
 試験例1 リン酸緩衝生理食塩水中の薬剤放出性試験
 実施例1~8及び実施例16の化合物をリン酸緩衝生理食塩水(pH7.4)に1.0mg/mLとなるように溶解し、37℃にて定温放置した。放出されたタクロリムス量をHPLCにて経時的に測定し、使用した化合物中の全タクロリムス量に対する放出されたタクロリムス量の割合を求めた。実施例1乃至3及び実施例16の結果を図1に、実施例4乃至8の結果を図2に示す。
 この結果、本発明の化合物は酵素非存在下、薬剤を徐放することが示された。
 試験例2 ラット血中濃度推移
 8週齢雌性SDラット(日本チャールズ・リバー株式会社)にタクロリムスまたは実施例1乃至8の化合物5mg/kgを各群2匹ずつ単回尾静脈内投与した。投与後5分、1、6、24、72及び168時間後(タクロリムスは72時間まで)にイソフルラン麻酔下で頸静脈を露出し、継時的に0.3mLずつ採血し、採取血液中のタクロリムス濃度を測定した。実施例1乃至4及びタクロリムスの結果を図3に、実施例5乃至8及びタクロリムスの結果を図4に示す。また、各化合物の血中濃度パラメータを表3に示す。ただし実施例1乃至8の結果はミセルから切り出されたタクロリムスの濃度及びパラメータである。
Figure JPOXMLDOC01-appb-T000020
 この結果、実施例1乃至8はタクロリムスに比べ血中濃度半減期及びMRTinf.の延長を示し、タクロリムス単剤と比較して血中での滞留性が向上していることが明らかである。
 試験例3 ラット単回毒性試験
 雌性DAラット(日本エスエルシー株式会社)にタクロリムスまたは実施例1を表4及び表5に示す投与量でそれぞれ単回尾静脈投与し、継時的に一般症状観察を行った。実施例1投与時の相対体重を図5、タクロリムス投与時の相対体重を図6に示す。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 タクロリムス投与群では20mg/kg以上で投与直後に腹臥位、鎮静、自発運動の低下が認められた。投与後2日目には自発運動低下、腹臥位、流涎、痙攣、よろめき歩行、不正呼吸が認められ、各群1/2例が死亡した。死亡したラットの大脳皮質には図7に示すように、神経細胞の空胞化が認められた。一方、実施例1の化合物を投与したラットは、最高用量である50mg/kg投与群においても死亡例は見られなかった。
 試験例3の結果より、タクロリムスの致死量は20mg/kgより低く、実施例1の化合物の致死量は50mg/kgより高いと言える。タクロリムス投与群は中枢神経障害によって死亡した可能性があった。一方、実施例1の化合物は、タクロリムスを高分子誘導体化することにより、タクロリムスよりもCmaxが低くなったため、薬剤の脳への移行性が抑制され、タクロリムスよりも高投与量まで投与可能になったと考えられた。
 試験例4 マウスDSS大腸炎における炎症部位への蛍光標識高分子誘導体の集積
 2%デキストラン硫酸ナトリウム(DSS)溶液をC57BL/6Jマウス(日本チャールズ・リバー株式会社)に自由飲水させることで潰瘍性大腸炎を誘発させた。2%DSS溶液を飲水後4日目に実施例9乃至15の化合物の生理食塩水溶液(5mg/kg)を各郡3匹ずつ尾静脈内に投与した。対照薬としてナイルレッドを無水エタノール及びクレモホールに溶解後、生理食塩水で希釈し尾静脈内に投与した。投与後24時間後に大腸の凍結病理切片を作成し、蛍光を観察した。結果を図8に示す。
 試験例4の結果より、対照薬であるナイルレッドと比較して実施例9乃至15は大腸の炎症部位に多く集積していることが明らかである.
 試験例5 ラットコラーゲン関節炎に対する抗炎症効果(1)
 ウシ関節軟骨由来タイプIIコラーゲン(免疫グレード:コラーゲン技術研修会有限会社)0.3mgを9週齢雌性DAラット(日本エスエルシー株式会社)の背部に皮内投与することにより、コラーゲン関節炎を誘発した。タイプIIコラーゲン感作日及び感作後7日、14日、21日目に実施例1の化合物の生理食塩水溶液(5mg/kg)を各群3匹ずつ尾静脈内に投与した。対照薬としてタクロリムス水和物を無水エタノール及びクレモホールに溶解後、生理食塩水で希釈し尾静脈内に投与した。関節炎の判定は、目視によるスコア化により行った。結果を図9に示す。
 試験例6 ラットコラーゲン誘導関節炎に対する抗炎症効果(2)
 実施例1乃至8の化合物の生理食塩水溶液(5mg/kg)を各群5匹ずつ尾静脈内に投与した。対照としては未投与群を設定した。他は試験例5と同様にして抗炎症効果を検討した。実施例1及び4の化合物の結果を図10に、実施例1及び3の化合物の結果を図11に、実施例1、2、5及び6の化合物の結果を図12実施例1、2、7及び8の化合物の結果を図13にそれぞれ示す。
 以上の結果より、本発明の化合物は、長時間に渡り薬剤を徐放し、タクロリムスの血中滞留性を向上させることが確かめられた。また、炎症部位に高い集積性を示し、低投与量及び長い投与間隔でより高い関節炎抑制効果を有する。また、最高血中濃度を低用量で維持させることにより毒性を軽減することが示された。
 試験例7 ラットコラーゲン関節炎における炎症部位への蛍光標識高分子誘導体の集積
 ウシ関節軟骨由来タイプIIコラーゲン0.3mgを10週齢雌性DAラット(日本エスエルシー株式会社)に皮内投与することにより、コラーゲン関節炎を誘発した。コラーゲン関節炎誘発群及び非誘発群に対して合成例8の化合物を尾静脈内投与し、投与後24時間後に後肢足根関節の凍結病理切片を作製し、蛍光を観察した。結果を図14に示す。
 この結果、合成例8の化合物は、関節炎非誘発群と比較して関節炎誘発群の足根関節により高濃度で集積することが明らかとなった。また、関節炎誘発群において合成例8の化合物は周囲の水腫部位、炎症細胞浸潤部位等、急性炎症が認められる部位での集積が確認された。

Claims (18)

  1.  ポリエチレングリコールセグメント及びポリアミノ酸誘導体からなる共重合体の側鎖のカルボキシ基にタクロリムスのアルコール性水酸基が結合しているタクロリムスの高分子誘導体。
  2.  ポリアミノ酸誘導体がアスパラギン酸誘導体である請求項1に記載のタクロリムスの高分子誘導体。
  3.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
     [式中、Rは水素原子又は炭素数(C1~C6)のアルキル基を示し、Rは結合基を示し、Rは水素原子又は炭素数(C1~C6)のアシル基を示し、Rはタクロリムスのアルコール性水酸基の残基を示し、Rはそれぞれ独立して、疎水性置換基及び-N(R)CONH(R)(R、Rは同一でも異なっていてもよい、炭素数(C3~C6)の環状アルキル基又は三級アミノ基で置換されていてもよい炭素数(C1~C5)のアルキル基である。)からなる群から選択され、Xは結合又は結合基であり、tは5~11500の整数を示し、dは1~200の整数を示し、且つe、f及びgは各々0または200以下の正の整数を示し、d+e+f+gは3~200の整数を示し、ポリアミノ酸誘導体の各繰り返し単位の配列順は任意である。]で表される請求項1又は請求項2に記載のタクロリムスの高分子誘導体。
  4.  下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
     [式中、Rは水素原子又は(C1~C6)アルキル基を示し、Rは結合基を示し、Rは水素原子又は(C1~C6)アシル基を示し、Rはタクロリムスのアルコール性水酸基の残基を示し、Rはそれぞれ独立して、疎水性置換基及び-N(R)CONH(R)(R、Rは同一でも異なっていてもよい、炭素数(C3~C6)の環状アルキル基又は三級アミノ基で置換されていてもよい炭素数(C1~C5)のアルキル基である。)からなる群から選択され、Xは結合又は結合基であり、tは5~11500の整数を示し、k、l、m、n、o、p及びqは各々0または200以下の正の整数を示し、且つk+lは1~200の整数を示し、k+l+m+n+o+p+qは3~200の整数を示し、ポリアミノ酸誘導体の各繰り返し単位の配列順は任意である。]で表される請求項1又は請求項2に記載のタクロリムスの高分子誘導体。
  5.  Xが結合である請求項3又は請求項4に記載のタクロリムスの高分子誘導体。
  6.  Rが疎水性置換基及び-N(R)CONH(R)(R、Rは同一でも異なっていてもよく炭素数(C3~C6)の環状アルキル基又は三級アミノ基で置換されていてもよい炭素数(C1~C5)のアルキル基である。)である請求項5に記載のタクロリムスの高分子誘導体。
  7.  Xの結合基がアスパラギン酸誘導体である請求項3又は請求項4に記載のタクロリムスの高分子誘導体。
  8.  Rが疎水性置換基及び-N(R)CONH(R)(R、Rは同一でも異なっていてもよく炭素数(C3~C6)の環状アルキル基又は三級アミノ基で置換されていてもよい炭素数(C1~C5)のアルキル基である。)である請求項7に記載のタクロリムスの高分子誘導体。
  9.  Xの結合基が、下記一般式(3)又は一般式(4)
    Figure JPOXMLDOC01-appb-C000003
     [式中、R、Rはそれぞれ独立して水素原子または炭素数(C1~C8)のアルキル基を示し、R10はNH、置換基を有していても良い炭素数(C1~C20)の直鎖状、分岐鎖状又は環状のアルキルアミノ基、置換基を有していても良い炭素数(C7~C20)の直鎖状、分岐鎖状又は環状のアラルキルアミノ基、置換基を有していても良い炭素数(C5~C20)の芳香族アミノ基及びカルボキシ基が保護されたアミノ酸結合残基からなる群から選択される1種以上の基を示し、CY-CZはCH-CH若しくはC=C(二重結合)を示す。]である請求項3又は請求項4に記載のタクロリムスの高分子化合物。
  10.  R、Rが共に水素原子であり、CY-CZがCH-CHである請求項9に記載のタクロリムスの高分子化合物。
  11.  疎水性置換基が炭素数(C1~C30)のアルコキシ基、炭素数(C1~C30)のアルケニルオキシ基、炭素数(C1~C30)のアルキルアミノ基、炭素数(C2~C60)のジアルキルアミノ基、炭素数(C1~C30)のアルケニルアミノ基、およびアミノ酸誘導体残基からなる群から選択される請求項3乃至10の何れか一項に記載のタクロリムスの高分子誘導体。
  12.  Rが炭素数(C1~C6)のアルキル基であり、Rが炭素数(C2~C6)のアルキレン基であり、Rが炭素数(C1~C6)のアシル基であり、tが50~1500の整数であり、d+e+f+gが4~150の整数である請求項3、5乃至11の何れか一項に記載のタクロリムスの高分子誘導体。
  13.  Rが炭素数(C1~C3)のアルキル基であり、Rが炭素数(C2~C4)のアルキレン基であり、Rが炭素数(C1~C3)のアシル基であり、tが100~1500の整数であり、d+e+f+gが8~120の整数である請求項3、5乃至11の何れか一項に記載のタクロリムスの高分子誘導体。
  14.  Rが炭素数(C1~C6)のアルキル基であり、Rが炭素数(C2~C6)のアルキレン基であり、Rが炭素数(C1~C6)のアシル基であり、tが50~1500の整数であり、k+l+m+n+o+p+qが4~150の整数である請求項4乃至11の何れか一項に記載のタクロリムスの高分子誘導体。
  15.  Rが炭素数(C1~C3)のアルキル基であり、Rが炭素数(C2~C4)のアルキレン基であり、Rが炭素数(C1~C3)のアシル基であり、tが100~1500の整数であり、k+l+m+n+o+p+qが8~120の整数である請求項4乃至11の何れか一項に記載のタクロリムスの高分子誘導体。
  16.  Rがメチル基であり、Rがトリメチレン基であり、Rがアセチル基である請求項3乃至15の何れか一項に記載のタクロリムスの高分子誘導体。
  17.  ポリエチレングリコールセグメント及びポリアスパラギン酸誘導体からなる共重合体の側鎖のカルボキシ基にタクロリムスのアルコール性水酸基を有機溶媒中、脱水縮合剤を用いてエステル結合させることを特徴とする請求項1乃至請求項16の何れか一項に記載のタクロリムスの高分子誘導体の製造方法。
  18.  請求項1乃至17の何れか一項に記載のタクロリムスの高分子誘導体を有効成分とするマクロライド系免疫抑制剤。
PCT/JP2016/083417 2015-11-18 2016-11-10 マクロライド系免疫抑制剤の高分子誘導体 WO2017086235A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16866237.7A EP3378494A4 (en) 2015-11-18 2016-11-10 POLYMERIC DERIVATIVE OF MACROLIDE-TYPE IMMUNOSUPPRESSOR
US15/776,802 US20180334540A1 (en) 2015-11-18 2016-11-10 Polymeric Derivative Of Macrolide Immunosuppressant
JP2017551846A JP6851977B2 (ja) 2015-11-18 2016-11-10 マクロライド系免疫抑制剤の高分子誘導体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-225900 2015-11-18
JP2015225900 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017086235A1 true WO2017086235A1 (ja) 2017-05-26

Family

ID=58718890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083417 WO2017086235A1 (ja) 2015-11-18 2016-11-10 マクロライド系免疫抑制剤の高分子誘導体

Country Status (5)

Country Link
US (1) US20180334540A1 (ja)
EP (1) EP3378494A4 (ja)
JP (1) JP6851977B2 (ja)
TW (1) TW201720465A (ja)
WO (1) WO2017086235A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3400945A4 (en) 2016-01-08 2019-09-11 Nippon Kayaku Kabushiki Kaisha POLYMER DERIVATIVE OF MACROLIDE IMMUNOSUP PRESSIVA

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003860A1 (en) * 1997-07-15 1999-01-28 Kuhnil Pharmaceutical Co., Ltd. Water soluble polymer-tacrolimus conjugated compounds and process for preparing the same
WO2006120914A1 (ja) * 2005-05-11 2006-11-16 Nippon Kayaku Kabushiki Kaisha シチジン系代謝拮抗剤の高分子誘導体
WO2007111211A1 (ja) * 2006-03-28 2007-10-04 Nippon Kayaku Kabushiki Kaisha タキサン類の高分子結合体
WO2008041610A1 (fr) * 2006-10-03 2008-04-10 Nippon Kayaku Kabushiki Kaisha Mélange d'un dérivé de résorcinol avec un polymère

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421827B (zh) * 2009-05-15 2014-07-30 日本化药株式会社 具有羟基的生理活性物质的高分子结合体
RU2732612C2 (ru) * 2015-02-23 2020-09-21 Ниппон Каяку Кабусики Каися Блок-сополимерный конъюгат физиологически активного вещества

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003860A1 (en) * 1997-07-15 1999-01-28 Kuhnil Pharmaceutical Co., Ltd. Water soluble polymer-tacrolimus conjugated compounds and process for preparing the same
WO2006120914A1 (ja) * 2005-05-11 2006-11-16 Nippon Kayaku Kabushiki Kaisha シチジン系代謝拮抗剤の高分子誘導体
WO2007111211A1 (ja) * 2006-03-28 2007-10-04 Nippon Kayaku Kabushiki Kaisha タキサン類の高分子結合体
WO2008041610A1 (fr) * 2006-10-03 2008-04-10 Nippon Kayaku Kabushiki Kaisha Mélange d'un dérivé de résorcinol avec un polymère

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DUBOK CHOI, ET AL.: "Effects of Water-soluble Tacrolimus-PEG Conjugate on Insulin-dependent Diabetes Mellitus and Systemic Lupus Erythematosus", ARCHIVES OF PHARMACAL RESEARCH, vol. 34, no. 8, 11 September 2011 (2011-09-11), pages 1301 - 1310, XP019950689 *
See also references of EP3378494A4 *
YONGSEOG CHUNG; HOON CHO: "Preparation of Highly Water Soluble Tacrolimus Derivatives: Poly(Ethylene Glycol) Esters as Potential Prodrugs.", ARCHIVES OF PHARMACAL RESEARCH, vol. 27, no. 8, 1 August 2004 (2004-08-01), pages 878 - 883, XP055383555 *

Also Published As

Publication number Publication date
EP3378494A1 (en) 2018-09-26
TW201720465A (zh) 2017-06-16
US20180334540A1 (en) 2018-11-22
JP6851977B2 (ja) 2021-03-31
EP3378494A4 (en) 2019-07-31
JPWO2017086235A1 (ja) 2018-08-30

Similar Documents

Publication Publication Date Title
ES2488841T3 (es) Derivados de alto peso molecular de camptotecinas
US8323669B2 (en) Polymer conjugate of taxane
US8703878B2 (en) High-molecular weight conjugate of steroids
JP5544357B2 (ja) 水酸基を有する生理活性物質の高分子結合体
US20160279164A1 (en) High-Molecular Weight Conjugate Of Resorcinol Derivatives
US20100004403A1 (en) High-Molecular Weight Conjugate of Combretastatins
JP5181347B2 (ja) ポドフィロトキシン類の高分子結合体
JP5856069B2 (ja) 新規なシチジン系代謝拮抗剤の高分子誘導体
KR20170120568A (ko) 생리활성물질결합 블록 공중합체
WO2017086235A1 (ja) マクロライド系免疫抑制剤の高分子誘導体
JP2018012694A (ja) ラパマイシン類結合ブロック共重合体
JP6830907B2 (ja) マクロライド系免疫抑制剤の高分子誘導体
JP6924191B2 (ja) 新規な高分子誘導体、及びそれらを用いた新規な高分子誘導体イメージングプローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551846

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15776802

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016866237

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016866237

Country of ref document: EP

Effective date: 20180618