WO2017085904A1 - 研磨組成物及び研磨方法 - Google Patents

研磨組成物及び研磨方法 Download PDF

Info

Publication number
WO2017085904A1
WO2017085904A1 PCT/JP2016/004685 JP2016004685W WO2017085904A1 WO 2017085904 A1 WO2017085904 A1 WO 2017085904A1 JP 2016004685 W JP2016004685 W JP 2016004685W WO 2017085904 A1 WO2017085904 A1 WO 2017085904A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polishing
abrasive grains
polishing composition
functional group
Prior art date
Application number
PCT/JP2016/004685
Other languages
English (en)
French (fr)
Inventor
義弘 野島
光人 高橋
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2017085904A1 publication Critical patent/WO2017085904A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition and a polishing method.
  • CMP chemical mechanical polishing
  • a semiconductor substrate is held, and the held semiconductor substrate is pressed onto a polishing pad attached on a surface plate. Further, the semiconductor substrate and the polishing pad are relatively moved while supplying a polishing composition containing abrasive grains and a reagent onto the polishing pad. At this time, due to the chemical reaction by the reagent and the mechanical polishing effect by the abrasive grains, the unevenness of the substrate surface can be shaved and the surface can be flattened (for example, see Patent Document 1).
  • the abrasive grain size is reduced, or an additive made of a water-soluble polymer having an effect of protecting the surface of the object to be polished is added. These have the effect of reducing the polishing rate, and are not desirable from the viewpoint of the cost of the polishing process.
  • improvement of the polishing rate and suppression of generation of defects are generally in a trade-off relationship, and it is difficult to achieve both reduction of defects and polishing rate in the polishing process.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a polishing composition capable of achieving both a reduction in defects in a polishing process and a high polishing rate.
  • the present invention provides a polishing composition
  • a polishing composition comprising abrasive grains, wherein the abrasive grains have a surface modified with two or more types of organic compounds, and the two or more types of organic compounds.
  • Each has a functional group (A) that reacts with the abrasive grains to form a chemical bond and a functional group (B) other than that, and the two or more organic compounds are the functional group (B).
  • the functional group (B) forms a reversible bond with each other or interacts by a hydrogen bond.
  • a carboxyl group and an amino group form an amide bond, which can be converted back to the original carboxyl group and amino group by hydrolysis. Under an aqueous solution, the carboxyl group and amino group form a bond by a reversible reaction. Is in a state of being.
  • two or more different functional groups (B) may be present on the surface of the modified abrasive grains. it can. If it is an abrasive grain which has such a structure, the secondary aggregate with a large particle size by the interaction between abrasive grains through several types of functional group (B) which exists in the surface of the abrasive grain in polishing liquid Form.
  • the secondary aggregate is formed by reversible chemical bonds or hydrogen bonds, and the secondary aggregate is crushed or plastically deformed by the pressure applied between the substrate to be polished and the polishing pad. It is possible to reduce defects while maintaining the above.
  • the abrasive grains may be abrasive grains used for polishing materials such as metals, metal oxides, and metal nitrides, and examples thereof include oxides or hydroxides of silicon, titanium, zirconium, or aluminum.
  • abrasive grains used for polishing materials such as metals, metal oxides, and metal nitrides, and examples thereof include oxides or hydroxides of silicon, titanium, zirconium, or aluminum.
  • metal oxides or hydroxides selected from the group consisting of titanium, zirconium and aluminum are included.
  • the primary particle diameter of the abrasive grains is preferably 5 nm or more and less than 40 nm.
  • the primary particle diameter of the abrasive grains is 5 nm or more, a sufficient polishing rate can be secured, and if the primary particle diameter of the abrasive grains is less than 40 nm, polishing defects such as scratches can be further reduced.
  • the functional group (B) preferably contains any one selected from an amino group, a carboxyl group, a ureido group, a sulfo group, and a mercapto group.
  • the secondary agglomeration state of the abrasive grains can be controlled by changing the type and ratio of the plural types of functional groups (B) for any group selected from these, thereby improving the polishing rate and the defect suppression effect. It becomes possible to control according to the purpose.
  • the said organic compound is a silane compound which has a structure of Formula (1).
  • X—Si— (R 1 ) (R 2 ) (R 3 ) (Wherein, R 1, R 2, R 3: an alkoxy group, an alkyl group, a hydroxyl group, or H, X: The above functional group (B), an alkyl group having the above functional group (B), or an aryl group having the above functional group (B).
  • a silane coupling agent is exemplified as the organic compound for modifying the above abrasive grains.
  • the present invention provides a polishing method characterized by polishing a semiconductor substrate using the above polishing composition.
  • Polishing using the polishing composition of the present invention can maintain a high polishing rate and reduce defects in the semiconductor substrate after polishing.
  • the semiconductor substrate to be polished can be a single crystal silicon substrate.
  • the polishing method of the present invention can be suitably used particularly for polishing a single crystal silicon substrate.
  • the polishing composition of the present invention controls the secondary aggregation state by the interaction between the functional groups present on the surface of the abrasive grains, and the secondary aggregate is crushed or plastically deformed during the polishing process.
  • the polishing composition of the present invention can reduce defects while maintaining the polishing rate.
  • the polishing composition of the present invention contains abrasive grains. And this abrasive grain has the surface modified with two or more kinds of organic compounds. Further, the two or more kinds of organic compounds each have a functional group (A) that reacts with the abrasive grains and a functional group (B) other than the functional group, and the functional group (B) has a reversible bond with each other. They are formed or interact with each other through hydrogen bonds, and two or more kinds of organic compounds each have different functional groups (B).
  • the surface of the abrasive grains contained in the polishing composition of the present invention has an organic compound having a functional group (B) other than the functional group (A) in addition to the functional group (A) that reacts with the abrasive grains.
  • a functional group (B) there are two or more types.
  • two or more different functional groups (B) can be present on the surface of the modified abrasive grains. If it is an abrasive grain which has such a structure, a particle size is large by controlling the interaction between abrasive grains via a plurality of types of functional groups (B) present on the surface of the abrasive grain in the polishing liquid.
  • a secondary aggregate is formed.
  • these secondary agglomerates are formed by reversible chemical bonds or hydrogen bonds, and the secondary agglomerates are caused by the pressure applied between the substrate to be polished and the polishing pad. Aggregates can be crushed or plastically deformed. For this reason, although it is small, it can behave as a secondary aggregate having a large particle size, and the polishing efficiency can be improved. Further, when the secondary aggregate is crushed or plastically deformed by applying pressure, it behaves as primary particles having a small original particle size, so that generation of defects can be suppressed. Such an effect makes it possible to reduce defects while maintaining the polishing rate.
  • the structure of the functional group (A) may be changed by a reaction with the abrasive grains accompanying the modification.
  • a silane coupling agent having a methoxy group is used as an organic compound
  • the methoxy group of the silane coupling agent is hydrolyzed, and then dehydrated and condensed with an OH group or the like on the surface of the abrasive grains, so that atoms ( For example, a bond such as a metal atom) and Si—O— (metal atom) may be formed.
  • the present invention is not limited to this, and the abrasive grains may be modified with an organic compound by other reactions.
  • a method for modifying the surface of the abrasive grains with an organic compound can be freely selected.
  • the following method can be used.
  • the surface of the abrasive grains can be modified with the organic compound by dropping and mixing the organic compound directly on the powdery abrasive grains.
  • an organic compound is added thereto, and then the abrasive grains are collected to obtain abrasive grains whose surface is modified with an organic compound. it can.
  • the coverage in particular of the 2 or more types of organic compound which modifies the surface of an abrasive grain is not restrict
  • the functional group may be changed by dispersing the abrasive grains in a solvent and chemically changing the organic compound in a state where the organic compound is added thereto.
  • the organic compound that modifies the abrasive grain surface can be appropriately selected according to the purpose.
  • this silane compound those having the structure of the formula (1) are preferably used.
  • the silane compound for example, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, and 1- [3- (trimethoxysilyl) propyl] urea can be used.
  • the functional group (B) of the organic compound is selected from a functional group capable of forming a reversible bond with each other or a functional group that interacts with a hydrogen bond.
  • the functional group (B) preferably contains any one selected from an amino group, a carboxyl group, a ureido group, a sulfo group, and a mercapto group.
  • two or more organic compounds have different functional groups (B) from each other, and the functional groups (B) form a bond by a reversible reaction.
  • the functional groups (B) interact with each other by forming a hydrogen bond
  • each functional group (B) is any one of an amino group, a carboxyl group, a ureido group, a sulfo group, and a mercapto group.
  • a secondary aggregate is formed by the interaction between the abrasive grains, and the secondary aggregate is crushed or plastically deformed during the polishing process, so that the effect of the present invention is further exhibited.
  • the combination and ratio of functional groups (B) different from each other in two or more kinds of organic materials are not particularly limited, and can be appropriately adjusted according to the polishing object.
  • two or more kinds of organic compounds may have different functional groups (A), or may have the same functional group (A).
  • the functional group (A) is not limited as long as it is a functional group capable of reacting with the surface of the abrasive grains and forming a chemical bond.
  • a functional group (A) an alkoxy group, a silanol group, etc. can be used, for example.
  • abrasive grains containing at least one metal oxide or hydroxide selected from the group consisting of titanium, zirconium, or aluminum can be suitably used.
  • the primary particle diameter of the abrasive grains in the polishing composition of the present invention is preferably 5 nm or more and less than 40 nm. If the primary particle diameter of the abrasive grains is 5 nm or more, a high polishing rate can be maintained, and if the primary particle diameter is relatively small abrasive grains having a primary particle diameter of less than 40 nm, the generation of scratches can be suppressed.
  • the primary particle diameter of the abrasive grains is measured by measuring a particle image obtained by a transmission electron microscope (TEM) or a scanning electron microscope (SEM), and has a maximum diameter in a fixed direction of 100 or more particles, that is, a Feret diameter. It can be obtained by calculating an average value (average primary particle size).
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the shape of the primary particles of the abrasive grains is not particularly limited, and may be a spherical shape or a square shape. Further, the crystal structure is not particularly limited, and may be amorphous, single crystal, or polycrystalline. The shape and crystal structure of the primary particles of the abrasive grains can be appropriately selected according to the purpose.
  • the content of abrasive grains is preferably 0.1% by mass or more and 10% by mass or less, and particularly preferably 0.4% by mass or more and 5% by mass or less. If the abrasive content is 0.1% by mass or more, a high polishing rate can be obtained, and if it is 10% by mass or less, defects such as scratches are hardly generated.
  • the pH of the polishing composition of the present invention is not particularly limited and can be appropriately selected according to the polishing object.
  • the kind of pH adjuster for adjusting the pH of the polishing composition is not particularly limited, and the base is an aqueous potassium hydroxide solution, a tetramethylammonium hydroxide solution, and aqueous ammonia, and the acid is nitric acid, acetic acid, sulfuric acid, and Oxalic acid can be used.
  • the polishing composition of the present invention may contain a water-soluble polymer, and it is preferable to use a nonionic surfactant or an anionic surfactant as the water-soluble polymer. More specifically, for example, polyvinyl pyrrolidone, polyvinyl alcohol, polyacrylamide, polyethylene glycol, polyoxyalkylene alkyl ether, and polyether are preferably used as the nonionic surfactant.
  • a nonionic surfactant for example, polyacrylic acid or a salt thereof, polysulfonic acid or a salt thereof, polycarboxylic acid or a salt thereof is preferably used.
  • polishing composition of the present invention a polishing method using the polishing composition of the present invention will be described.
  • a case where a semiconductor substrate is polished on one side will be described as an example.
  • the present invention is not limited to this, and the polishing composition of the present invention can also be used for double-side polishing.
  • the single-side polishing apparatus is a single-side polishing apparatus 10 including a surface plate 3 to which a polishing pad 4 is attached, a polishing composition supply mechanism 5, a polishing head 2, and the like. Can do.
  • the semiconductor substrate W is held by the polishing head 2, the polishing composition 1 of the present invention is supplied onto the polishing pad 4 from the polishing composition supply mechanism 5, and the surface plate 3 and the polishing head 2. Each is rotated to bring the surface of the semiconductor substrate W into sliding contact with the polishing pad 4 to perform polishing.
  • the semiconductor substrate W to be polished can be a single crystal silicon substrate.
  • the polishing method of the present invention is suitably used for polishing a single crystal silicon substrate, can perform polishing at a high polishing rate, and can obtain a single crystal silicon substrate with few defects after polishing.
  • polishing method using the polishing composition of the present invention As described above, with the polishing method using the polishing composition of the present invention, a high polishing rate can be obtained, and generation of defects due to polishing on the surface of the semiconductor substrate can be suppressed.
  • Example 1 Zirconium oxide with a primary particle size of 6 nm is dispersed in alcohol to form a 10% by mass dispersion, and 3% by mass of 3-aminopropyltriethoxysilane and ⁇ -carboxyethyltriethoxysilane are added with stirring for 2 hours. Then, the surface of zirconium oxide was modified with these two kinds of organic compounds by collecting abrasive grains by centrifugation. At this time, the functional groups (A) of the two kinds of organic compounds are both ethoxy groups, and the functional groups (B) are amino groups and carboxyl groups, respectively.
  • the zirconium oxide was dispersed in pure water so as to have a content of 1.0% by mass, and a potassium hydroxide solution was added so that the pH of the solution was 11.5 to prepare a polishing composition.
  • Example 2 Zirconium oxide with a primary particle size of 6 nm is dispersed in water to make a 10 mass% dispersion, 3 mass% of 3-mercaptopropyltrimethoxysilane is added, and a small amount of hydrogen peroxide is added while heating and stirring at 50 ° C., The mercapto group contained in 3-mercaptopropyltrimethoxysilane was reacted to form a sulfo group.
  • the zirconium oxide was dispersed in pure water so as to have a content of 1.0% by mass, and a potassium hydroxide solution was added so that the pH of the solution was 11.5 to prepare a polishing composition.
  • Example 3 Zirconium oxide with a primary particle size of 6 nm is dispersed in water to make a 10 mass% dispersion, 3 mass% of 3-mercaptopropyltrimethoxysilane is added, and a small amount of hydrogen peroxide is added while heating and stirring at 50 ° C., The mercapto group contained in 3-mercaptopropyltrimethoxysilane was reacted to form a sulfo group.
  • the functional groups (A) of these two kinds of organic compounds are a methoxy group and an ethoxy group, respectively, and the functional groups (B) are a mercapto group and a carboxyl group, respectively.
  • a polishing composition was prepared by dispersing this zirconium oxide in pure water so as to have a content of 1.0% by mass, and further adding a potassium hydroxide solution so that the pH of the solution was 11.5.
  • Example 4 Titanium oxide with a primary particle size of 15 nm is dispersed in alcohol to form a 10% by mass dispersion. While stirring, 3% by mass of 3-aminopropyltriethoxysilane and 3-mercaptopropyltrimethoxysilane are added and stirred for 2 hours. Then, the surface of zirconium oxide was modified with these two kinds of organic compounds by collecting abrasive grains by centrifugation. At this time, the functional groups (A) of the two kinds of organic compounds are an ethoxy group and a methoxy group, respectively, and the functional groups (B) are an amino group and a mercapto group, respectively.
  • the titanium oxide was dispersed in pure water so that the content was 1.0% by mass, and a potassium hydroxide solution was added so that the pH of the solution was 11.5 to prepare a polishing composition.
  • Titanium oxide having a primary particle diameter of 15 nm and zirconium hydroxide having a primary particle diameter of 10 nm are dispersed in water at a ratio of 1: 1 to form a 10% by mass dispersion, and 3% by mass of 3-mercaptopropyltrimethoxysilane is added. While heating and stirring at 50 ° C., a small amount of hydrogen peroxide was added to react with the mercapto group to form a sulfo group. To the solution after the reaction, 3% by mass of 3-aminopropyltriethoxysilane was added, and the reaction was continued for 2 hours with stirring.
  • the abrasive grains were collected by centrifugation, so that two types of titanium oxide and zirconium hydroxide surfaces were obtained.
  • the organic compound was modified.
  • the functional groups (A) of the two kinds of organic compounds are a methoxy group and an ethoxy group, respectively, and the functional groups (B) are an amino group and a sulfo group.
  • a polishing composition was prepared by dispersing this zirconium hydroxide in pure water so that the content was 1.0% by mass, and further adding a potassium hydroxide solution so that the pH of the solution was 11.5.
  • Example 6 Aluminum oxide having a primary particle diameter of 37 nm and zirconium hydroxide having a primary particle diameter of 10 nm are dispersed in alcohol at a ratio of 1: 1 to obtain a 10% by mass dispersion, and 3 aminopropyltriethoxysilane and 1- [ 3- (trimethoxysilyl) propyl] urea was added at 3% each, and the reaction was continued for 2 hours with stirring, and then the abrasive grains were collected by centrifugation, so that the surface of the aluminum oxide and zirconium hydroxide was coated with two kinds of organic compounds. Qualified with At this time, the functional groups (A) of the two kinds of organic compounds are an ethoxy group and a methoxy group, respectively, and the functional groups (B) are an amino group and a ureido group, respectively.
  • the functional groups (A) of the two kinds of organic compounds are an ethoxy group and a methoxy group, respectively
  • the functional groups (B) are an
  • Example 7 Aluminum oxide having a primary particle size of 48 nm is dispersed in alcohol to form a 10% by mass dispersion, and 3% by mass of 3-aminopropyltriethoxysilane and 1- [3- (trimethoxysilyl) propyl] urea with stirring. After adding and reacting with stirring for 2 hours, the surface of the aluminum oxide was modified with two kinds of organic compounds by collecting abrasive grains by centrifugation.
  • the functional groups (A) in the two kinds of organic compounds are an ethoxy group and a methoxy group, respectively, and the functional groups (B) are an amino group and a ureido group, respectively.
  • the polishing liquid was adjusted by dispersing in pure water so that the content of the aluminum oxide was 1.0% by weight, and further adding a potassium hydroxide solution so that the pH of the solution was 11.5.
  • Example 8 Zirconium oxide with a primary particle size of 3 nm is dispersed in alcohol to form a 10% by mass dispersion, and 3% by mass of 3-aminopropyltriethoxysilane and ⁇ -carboxyethyltriethoxysilane are added with stirring for 2 hours. Then, the surface of zirconium oxide was modified with these two kinds of organic compounds by collecting abrasive grains by centrifugation. At this time, the functional groups (A) of the two kinds of organic compounds are both ethoxy groups, and the functional groups (B) are amino groups and carboxyl groups, respectively.
  • a polishing composition was prepared by dispersing this zirconium oxide in pure water so as to have a content of 1.0% by mass, and further adding a potassium hydroxide solution so that the pH of the solution was 11.5.
  • Comparative Example 2 Disperse titanium oxide with a primary particle size of 15 nm in alcohol to make a 10% by mass dispersion, add 3% by mass of 3-aminopropyltriethoxysilane while stirring, continue stirring for 2 hours, and then centrifuge.
  • the titanium oxide surface was modified with one kind of organic compound by collecting the abrasive grains. This titanium oxide was dispersed in pure water so that the content was 1.0% by mass, and a potassium hydroxide solution was added so that the pH of the solution was 11.5 to prepare a polishing composition.
  • polishing compositions of Examples 1 to 7 and Comparative Examples 1 and 2 described above single-side polishing of a single crystal silicon substrate having a diameter of 12 inches (300 mm) was performed under the following polishing conditions.
  • a polishing apparatus Poli-762 (G & P Technology, Inc.) was used, and SUBA400 (manufactured by Nitta Haas Co., Ltd.) was used as a polishing pad.
  • the load applied to the single crystal silicon substrate as the substrate to be polished was 193 g / cm 2 , the platen rotation speed was 70 rpm, the head rotation speed was 70 rpm, and the supply amount of the polishing composition was 400 mL / min.
  • an LPD defect (0.100 ⁇ m or more) on the substrate surface was evaluated by visual inspection with a condenser lamp in a dark room and a surface inspection apparatus (SP-1 manufactured by KLA-Tencor). In the visual inspection, those in which defects were observed were judged as rejected, and those in which no defects were observed were judged as acceptable.
  • Table 1 summarizes the polishing rate of polishing using the polishing compositions of Examples 1 to 8 and Comparative Examples 1 and 2, results of visual inspection, and the number of LPD defects.
  • Examples 1 to 8 have a higher polishing rate than Comparative Examples 1 and 2, no relatively large defects as observed by visual inspection, and fine defects such as LPD. The number of is also small. That is, it was confirmed that the polishing composition of the present invention can secure a high polishing rate and suppress the occurrence of defects due to polishing.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Abstract

本発明は、砥粒を含む研磨組成物であって、前記砥粒が表面を2種類以上の有機化合物により修飾されたものであり、前記2種類以上の有機化合物は、それぞれ前記砥粒と反応し、化学結合を形成する官能基(A)とそれ以外の官能基(B)を有するものであり、前記官能基(B)は互いに可逆的な結合を形成する、又は水素結合により相互作用するものであることを特徴とする研磨組成物を提供する。これにより、研磨加工工程における欠陥の低減と研磨速度を両立させることができる研磨組成物が提供される。

Description

研磨組成物及び研磨方法
 本発明は、研磨組成物及び研磨方法に関する。
 半導体集積回路の製造技術の向上に伴い半導体素子の高集積化、高速動作が求められるようになり、半導体素子における微細回路の製造工程において要求される半導体基板表面の平坦性はより厳しくなってきている。そのため、化学機械研磨(Chemical Mechanical Polishing:CMP)は半導体素子の製造工程に不可欠な技術となっている。
 CMPでは、半導体基板を保持し、定盤上に貼り付けた研磨パッド上に保持した半導体基板を押し付ける。また、砥粒や試薬を含む研磨組成物を研磨パッド上に供給しながら半導体基板と研磨パッドを相対的に運動させる。このとき、試薬による化学的な反応及び砥粒による機械的な研磨効果により、基板表面の凹凸を削り、表面を平坦化することができる(例えば、特許文献1参照)。
 近年では半導体素子の微細化が進むにつれて、従来では問題とならなかったより小さいサイズのLPD(Light Point Defects)などの研磨加工に起因する微細な欠陥が半導体素子の特性・歩留りに影響するようになり研磨加工工程における欠陥の低減要求がますます厳しくなっている。このような要求に対し研磨加工における欠陥を低減させる方法として砥粒サイズを小さくしたり、研磨対象物の表面保護の効果を持つ水溶性高分子からなる添加剤を加えたりといったことがなされているが、これらは研磨速度を低減させる効果もあり、研磨工程にかかるコストの観点からも望ましくない。
特開2015-168818号公報
 上述のように、研磨加工における欠陥を低減させる方法として砥粒サイズを小さくしたり、研磨対象物の表面保護の効果を持つ水溶性高分子からなる添加剤を加えたりといったことがなされているが、これらは研磨速度を低減させる効果もあり、研磨工程のコストの観点から望ましくない。このように、一般的に研磨速度の向上と欠陥の発生の抑制はトレードオフの関係にあり研磨加工工程における欠陥の低減と研磨速度を両立させることは困難であるという問題があった。
 本発明は前述のような問題に鑑みてなされたもので、研磨加工工程における欠陥の低減と高い研磨速度を両立させることができる研磨組成物を提供することを目的とする。
 上記目的を達成するために、本発明は、砥粒を含む研磨組成物であって、前記砥粒が表面を2種類以上の有機化合物により修飾されたものであり、前記2種類以上の有機化合物は、それぞれ前記砥粒と反応し、化学結合を形成する官能基(A)とそれ以外の官能基(B)を有するものであり、前記2種類以上の有機化合物は、前記官能基(B)が互いに異なるものであり、かつ、前記官能基(B)は互いに可逆的な結合を形成する、又は水素結合により相互作用するものであることを特徴とする研磨組成物を提供する。例えばカルボキシル基とアミノ基はアミド結合を形成するがこれは加水分解により元のカルボキシル基とアミノ基に戻ることができ、水溶液下ではカルボキシル基とアミノ基は可逆的な反応により結合を形成している状態にある。
 このように、砥粒を上記2種類以上の有機化合物により修飾されたものとすることにより、修飾された砥粒の表面には、2種類以上の互いに異なる官能基(B)を存在させることができる。このような構成を有する砥粒であれば、研磨液中の砥粒の表面に存在する複数の種類の官能基(B)を介して砥粒間の相互作用により粒径の大きい2次凝集体を形成する。この2次凝集体は可逆的な化学結合あるいは水素結合により形成されており、被研磨基板と研磨パッド間にかかる圧力によりこの2次凝集体が解砕あるいは塑性的な変形を起こすことにより研磨速度を維持したまま欠陥を低減させることが可能となる。
 このとき、前記砥粒は金属や金属酸化物、金属窒化物等の材料の研磨に用いられる砥粒を用いることができ、ケイ素、チタン、ジルコニウム、又はアルミニウムの酸化物又は水酸化物が例示される。また、本発明においては特にチタン、ジルコニウム、アルミニウムからなる群から選ばれる金属の酸化物又は水酸化物を1種類以上含むものであることが好ましい。
 また、前記砥粒の1次粒子径が5nm以上40nm未満のものであることが好ましい。
 砥粒の1次粒子径が5nm以上であれば十分な研磨速度を確保でき、砥粒の1次粒子径が40nm未満であればスクラッチ等の研磨欠陥をより低減できる。
 また、前記官能基(B)が、アミノ基、カルボキシル基、ウレイド基、スルホ基、及びメルカプト基から選ばれるいずれかを含むものであることが好ましい。
 これらから選ばれるいずれかの基を、複数種の官能基(B)の種類、比率を変更することで砥粒の2次凝集状態を制御することができ、それにより研磨速度及び欠陥抑制効果を目的に応じ制御することが可能となる。
 また、前記有機化合物が式(1)の構造を有するシラン化合物であることが好ましい。
[式(1)] X-Si-(R)(R)(R
(但し、R1、R、R:アルコキシ基、アルキル基、水酸基、又はH、
 X:上記の官能基(B)、上記の官能基(B)を有するアルキル基、又は上記の官能基(B)を有するアリール基である。)
 上記の砥粒を修飾する有機化合物としては、シランカップリング剤が例示される。
 また、上記目的を達成するために、本発明は、上記の研磨組成物を用いて半導体基板を研磨することを特徴とする研磨方法を提供する。
 本発明の研磨組成物を用いた研磨であれば、高い研磨速度を維持できるうえに、研磨後の半導体基板の欠陥を低減できる。
 このとき、前記研磨する半導体基板を単結晶シリコン基板とすることができる。
 本発明の研磨方法は、特に単結晶シリコン基板の研磨に好適に使用できる。
 本発明の研磨組成物は、砥粒表面に存在する官能基間の相互作用により2次凝集状態を制御し、研磨工程中にこの2次凝集体が解砕あるいは塑性的な変形を起こすことで研磨効率の向上と欠陥発生の抑制を両立させることにより、本発明の研磨組成物は研磨速度を維持したまま欠陥を低減させることができる。
本発明の研磨方法において使用できる片面研磨装置の一例を示した概略図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 上述のように、半導体素子の微細化が進むにつれ、CMP等の研磨におけるLPD等の微細な欠陥の低減要求が高まっている。しかし、欠陥の低減と同時に、高い研磨速度も確保しなければならないが、欠陥の低減と研磨速度の維持はトレードオフの関係にあり、これらを両立させることは困難であるという問題があった。
 そこで、本発明者らはこのような問題を解決すべく鋭意検討を重ね、以下に説明する本発明の研磨組成物を完成させた。
 本発明の研磨組成物は砥粒を含む。そして、この砥粒は表面を2種類以上の有機化合物により修飾されたものである。さらに、この2種類以上の有機化合物は、それぞれ、砥粒と反応する官能基(A)とそれ以外の官能基(B)を有するものであり、官能基(B)が互いに可逆的な結合を形成する、又は水素結合により相互作用するものであることを特徴とし、かつ2種類以上の有機化合物がそれぞれ有する官能基(B)が互いに異なるものである。
 このように、本発明の研磨組成物に含まれる砥粒の表面には、砥粒と反応する官能基(A)の他に、官能基(A)以外の官能基(B)を有する有機化合物が2種類以上存在する。砥粒を上記2種類以上の有機化合物により修飾されたものとすることにより、修飾された砥粒の表面には、2種類以上の互いに異なる官能基(B)を存在させることができる。このような構成を有する砥粒であれば、研磨液中の砥粒の表面に存在する複数の種類の官能基(B)を介して砥粒間の相互作用を制御することで粒径の大きい2次凝集体を形成する。この2次凝集体は粒子同士が強く結合し解砕できない通常の凝集体と異なり、可逆的な化学結合あるいは水素結合により形成されており、被研磨基板と研磨パッド間にかかる圧力により2次凝集体が解砕あるいは塑性的な変形を起こすことができる。このため粒子径が小さいにも関わらず粒径が大きな2次凝集体として振る舞うことができ研磨効率を向上させることができる。また圧力が加わることでこの2次凝集体が解砕あるいは塑性的な変形をすることで本来の粒径の小さい1次粒子として振る舞うため欠陥の発生を抑制することができる。この様な効果により、研磨速度を維持したまま欠陥を低減させることが可能となる。なお、修飾に伴う砥粒との反応により官能基(A)は構造が変化しても良い。例えば、メトキシ基を有するシランカップリング剤を有機化合物として用いる場合、シランカップリング剤のメトキシ基は加水分解し、その後、砥粒表面のOH基等と脱水縮合して、砥粒表面の原子(例えば金属原子)とSi-O-(金属原子)のような結合を形成しても良い。ただし、これに限られず、他の反応により砥粒を有機化合物で修飾しても良い。
 また、有機化合物により砥粒の表面を修飾する方法は自由に選択できるが、例えば以下のような手法を用いることができる。例えば、粉末状の砥粒に直接有機化合物を滴下し、混合することで、有機化合物により砥粒の表面を修飾できる。また他にも、例えば、アルコールや水等の溶媒に砥粒を分散させ、そこに有機化合物を添加し、その後、砥粒を回収すれば表面を有機化合物により修飾された砥粒を得ることができる。なお、砥粒の表面を修飾する2種以上の有機化合物の被覆率は特に制限されず、研磨対象物に応じ適宜調整可能である。また、溶媒中に砥粒を分散させ、そこに有機化合物を添加した状態で有機化合物を化学変化させ、官能基を変化させても良い。
 砥粒表面を修飾する有機化合物は目的に応じ適宜選択できる。このシラン化合物としては式(1)の構造を有するものが好適に用いられる。シラン化合物としては、例えば、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、及び1-[3-(トリメトキシシリル)プロピル]尿素を用いることができる。
 また、本発明において、有機化合物が有する官能基(B)は、互いに可逆的な結合を形成することが可能である官能基、又は水素結合により相互作用する官能基から選択される。官能基(B)として、アミノ基、カルボキシル基、ウレイド基、スルホ基、及びメルカプト基から選ばれるいずれかを含むものであることが好ましい。
 上述のように、本発明では、2種以上の有機化合物が、それぞれ互いに異なる官能基(B)が互いに異なるものであり、かつ官能基(B)同士が可逆的な反応による結合を形成する、又は官能基(B)同士が水素結合を形成することにより相互作用するものであり、特に、各官能基(B)がアミノ基、カルボキシル基、ウレイド基、スルホ基、及びメルカプト基のいずれかの基を有する場合、砥粒間の相互作用により2次凝集体が形成され、研磨工程中にこの2次凝集体が解砕あるいは塑性的な変形をすることにより、本発明の効果がより発揮される。
 なお、2種以上の有機物において互いに異なる官能基(B)の組み合わせ及びその比率は、特に限定されず、研磨対象物に応じ適宜調整可能である。
 また、官能基(A)に関しては、2種類以上の有機化合物がそれぞれ互いに異なる官能基(A)を有していても良いし、同じ官能基(A)を有していても良い。官能基(A)は砥粒の表面と反応し、化学結合を形成することができる官能基であればよく、その種類は制限されない。官能基(A)としては、例えば、アルコキシ基及びシラノール基等を使用できる。
 本発明の研磨組成物において、チタン、ジルコニウム、又はアルミニウムからなる群から選ばれる金属の酸化物又は水酸化物を1種類以上含む砥粒を好適に用いることができる。
 また、本発明の研磨組成物中における砥粒の1次粒子径が5nm以上40nm未満であることが好ましい。砥粒の1次粒子径が5nm以上であれば、高い研磨速度を維持でき、一次粒径が40nm未満の比較的小さな砥粒であれば、スクラッチの発生を抑制することができる。
 砥粒の1次粒子径は透過型電子顕微鏡(TEM)あるいは走査型電素顕微鏡(SEM)により得られる粒子画像を計測し、粒子100個以上の定方向最大径、即ちフェレ(Feret)径の平均値(平均一次粒子径)を計算することで得ることができる。
 砥粒の1次粒子の形状は特に制限されず、球形や角型の形状であってもよい。また、結晶構造についても特に制限されずアモルファスや単結晶、多結晶であっても良い。砥粒の1次粒子の形状、結晶構造は目的に応じ適宜選択できる。
 本発明の研磨組成物における、砥粒の含有量は0.1質量%以上10質量%以下が好ましく、0.4質量%以上5質量%以下であることが特に好ましい。砥粒の含有量が0.1質量%以上であれば高い研磨速度を得ることができ、また、10質量%以下であればスクラッチ等の欠陥が発生し難い。
 本発明の研磨組成物のpHは特に制限されず、研磨対象物に合わせ適宜選択できる。研磨組成物のpHを調節するためのpH調整剤の種類は特に限定されず、塩基としては水酸化カリウム水溶液、水酸化テトラメチルアンモニウム溶液、及びアンモニア水、酸としては硝酸、酢酸、硫酸、及びシュウ酸等が使用できる。
 また、本発明の研磨組成物は水溶性高分子を含んでも良く、水溶性高分子としてノニオン性界面活性剤、アニオン性界面活性剤を用いることが好ましい。より具体的には、ノニオン性界面活性剤として、例えば、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリルアミド、ポリエチレングリコール、ポリオキシアルキレンアルキルエーテル、ポリエーテルが好適に用いられる。一方、アニオン性界面活性剤としては、例えば、ポリアクリル酸あるいはその塩、ポリスルホン酸あるいはその塩、ポリカルボン酸あるいはその塩などが好適に用いられる。
 次に、本発明の研磨組成物を使用した研磨方法について説明する。以下では、半導体基板を片面研磨する場合を例に説明するが、もちろんこれに限定されることはなく、本発明の研磨組成物は両面研磨などにも用いることができる。
 片面研磨装置は、例えば、図1に示すように、研磨パッド4が貼り付けられた定盤3と、研磨組成物供給機構5と、研磨ヘッド2等から構成された片面研磨装置10とすることができる。
 このような研磨装置10では、研磨ヘッド2で半導体基板Wを保持し、研磨組成物供給機構5から研磨パッド4上に本発明の研磨組成物1を供給するとともに、定盤3と研磨ヘッド2をそれぞれ回転させて半導体基板Wの表面を研磨パッド4に摺接させることにより研磨を行う。
 このとき、研磨する半導体基板Wを単結晶シリコン基板とすることができる。本発明の研磨方法は単結晶シリコン基板の研磨に好適に用いられ、高い研磨速度で研磨を実施でき、研磨後の欠陥が少ない単結晶シリコン基板を得ることができる。
 以上のように、本発明の研磨組成物を用いた研磨方法であれば、高い研磨速度が得られ、かつ、半導体基板の表面に研磨による欠陥が発生することを抑制できる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
 1次粒子径6nmの酸化ジルコニウムをアルコール中に分散させ10質量%分散液とし、撹拌しながら3-アミノプロピルトリエトキシシラン及びβ-カルボキシエチルトリエトキシシランをそれぞれ3%質量添加し、2時間撹拌を続け反応させた後、遠心分離により砥粒を回収することで酸化ジルコニウムの表面をこれら2種類の有機化合物で修飾した。このとき2種類の有機化合物の官能基(A)はいずれもエトキシ基、官能基(B)はそれぞれアミノ基、カルボキシル基である。
 続いて、この酸化ジルコニウムを含有量が1.0質量%となるよう純水に分散させ、さらに溶液のpHが11.5となるように水酸化カリウム溶液を加えて研磨組成物を調製した。
(実施例2)
 1次粒子径6nmの酸化ジルコニウムを水中に分散させ10質量%分散液とし、3-メルカプトプロピルトリメトキシシランを3質量%添加し、50℃で加熱・撹拌をしながら過酸化水素を少量加え、3-メルカプトプロピルトリメトキシシランに含まれるメルカプト基を反応させスルホ基とした。反応後の溶液に、3-アミノプロピルトリエトキシシランを3%質量添加し、2時間撹拌を続け反応させた後、遠心分離により砥粒を回収することで酸化ジルコニウムの表面を2種類の有機化合物で修飾した。この2種類の有機化合物の官能基(A)はそれぞれメトキシ基及びエトキシ基であり、官能基(B)はそれぞれスルホ基及びアミノ基である。
 続いて、この酸化ジルコニウムを含有量が1.0質量%となるよう純水に分散させ、さらに溶液のpHが11.5となるように水酸化カリウム溶液を加えて研磨組成物を調製した。
(実施例3)
 1次粒子径6nmの酸化ジルコニウムを水中に分散させ10質量%分散液とし、3-メルカプトプロピルトリメトキシシランを3質量%添加し、50℃で加熱・撹拌をしながら過酸化水素を少量加え、3-メルカプトプロピルトリメトキシシランに含まれるメルカプト基を反応させスルホ基とした。反応後の溶液に、β-カルボキシエチルトリエトキシシランを3質量%添加し、2時間撹拌を続け反応させた後、遠心分離により砥粒を回収することで酸化ジルコニウムの表面を2種類の有機化合物で修飾した。この2種類の有機化合物の官能基(A)はそれぞれメトキシ基及びエトキシ基であり、官能基(B)はそれぞれメルカプト基及びカルボキシル基である。
 この酸化ジルコニウムを含有量が1.0質量%となるよう純水に分散させ、さらに溶液のpHが11.5となるように水酸化カリウム溶液を加えて研磨組成物を調製した。
(実施例4)
 1次粒子径15nmの酸化チタンをアルコール中に分散させ10質量%分散液とし、撹拌しながら3-アミノプロピルトリエトキシシラン及び3-メルカプトプロピルトリメトキシシランをそれぞれ3質量%添加し、2時間撹拌を続け反応させた後、遠心分離により砥粒を回収することで酸化ジルコニウムの表面をこれら2種類の有機化合物で修飾した。このとき2種類の有機化合物の官能基(A)はそれぞれエトキシ基及びメトキシ基、さらに官能基(B)はそれぞれアミノ基、メルカプト基である。
 この酸化チタンを含有量が1.0質量%となるよう純水に分散させ、さらに溶液のpHが11.5となるように水酸化カリウム溶液を加えて研磨組成物を調製した。
(実施例5)
 1次粒子径15nmの酸化チタンと1次粒子径10nmの水酸化ジルコニウムを1:1の割合で水中に分散させ10質量%分散液とし、3-メルカプトプロピルトリメトキシシランを3質量%添加し、50℃で加熱・撹拌をしながら過酸化水素を少量加えメルカプト基と反応させスルホ基とした。反応後の溶液に、3-アミノプロピルトリエトキシシランを3質量%添加し、2時間撹拌を続け反応させた後、遠心分離により砥粒を回収することで酸化チタン及び水酸化ジルコニウム表面を2種類の有機化合物で修飾した。このとき2種類の有機化合物の官能基(A)はそれぞれメトキシ基及びエトキシ基、官能基(B)はアミノ基及びスルホ基である。
 この水酸化ジルコニウムを含有量が1.0質量%となるよう純水に分散させ、さらに溶液のpHが11.5となるように水酸化カリウム溶液を加えて研磨組成物を調製した。
(実施例6)
 1次粒子径37nmの酸化アルミニウムと1次粒子径10nmの水酸化ジルコニウムを1:1の割合でアルコール中に分散させ10質量%分散液とし、撹拌しながら3アミノプロピルトリエトキシシラン及び1-[3-(トリメトキシシリル)プロピル]尿素をそれぞれ3%添加し、2時間撹拌を続け反応させた後、遠心分離により砥粒を回収することで酸化アルミニウム及び水酸化ジルコニウム表面を2種類の有機化合物で修飾した。このとき2種類の有機化合物の官能基(A)はそれぞれエトキシ基及びメトキシ基であり、官能基(B)はそれぞれアミノ基及びウレイド基である。
 この酸化アルミニウムと酸化ジルコニウムの混合物を含有量が1.0質量%となるよう純水に分散させ、さらに溶液のpHが11.5となるように水酸化カリウム溶液を加えて研磨組成物を調製した。
(実施例7)
 1次粒子径48nmの酸化アルミニウムをアルコール中に分散させ10質量%分散液とし、撹拌しながら3-アミノプロピルトリエトキシシラン及び1-[3-(トリメトキシシリル)プロピル]尿素をそれぞれ3質量%添加し、2時間撹拌を続け反応させた後、遠心分離により砥粒を回収することで酸化アルミニウム表面を2種類の有機化合物により修飾した。2種類の有機化合物における官能基(A)はそれぞれエトキシ基及びメトキシ基であり、官能基(B)はそれぞれアミノ基及びウレイド基である。
 この酸化アルミニウムの含有量が1.0重量%となるよう純水に分散させ、さらに溶液のpHが11.5となるように水酸化カリウム溶液を加えて研磨液を調整した。
(実施例8)
 1次粒子径3nmの酸化ジルコニウムをアルコール中に分散させ10質量%分散液とし、撹拌しながら3-アミノプロピルトリエトキシシラン及びβ-カルボキシエチルトリエトキシシランをそれぞれ3%質量添加し、2時間撹拌を続け反応させた後、遠心分離により砥粒を回収することで酸化ジルコニウムの表面をこれら2種類の有機化合物で修飾した。このとき2種類の有機化合物の官能基(A)はいずれもエトキシ基、官能基(B)はそれぞれアミノ基、カルボキシル基である。
 この酸化ジルコニウムを含有量が1.0質量%となるよう純水に分散させ、さらに溶液のpHが11.5となるように水酸化カリウム溶液を加えて研磨組成物を調製した。
(比較例1)
 1次粒子径6nmの酸化ジルコニウムを含有量が1.0質量%となるよう純水に分散させ、さらに溶液のpHが11.5となるように水酸化カリウム溶液を加えて研磨組成物を調製した。
(比較例2)
 1次粒子径15nmの酸化チタンをアルコール中に分散させ10質量%分散液とし、撹拌しながら3-アミノプロピルトリエトキシシランを3質量%添加し、2時間撹拌を続け反応させた後、遠心分離により砥粒を回収することで酸化チタン表面を1種類の有機化合物により修飾した。この酸化チタンを含有量が1.0質量%となるよう純水に分散させ、さらに溶液のpHが11.5となるように水酸化カリウム溶液を加えて研磨組成物を調製した。
 上記の実施例1~7及び比較例1、2の研磨組成物をそれぞれ用いて、下記の研磨条件により直径12インチ(300mm)の単結晶シリコン基板の片面研磨を行った。研磨装置はPoli-762(G&P Technology, Inc.)、研磨パッドとしてSUBA400(ニッタ・ハース(株)製)を使用した。被研磨基板である単結晶シリコン基板に加える加重を193g/cmとし、定盤回転数を70rpm、ヘッド回転数を70rpmとし、研磨組成物の供給量を400mL/minとした。
 研磨後の半導体基板を公知技術であるSC-1(29%アンモニア水、30%過酸化水素水、純水の混合溶液、体積比率:アンモニア水:過酸化水素水:純水=1:1:10、75℃、5分浸漬)及びSC-2(30%塩酸、30%過酸化水素水、純水の混合溶液、体積比率:塩酸:過酸化水素水:純水=1:1:10、75℃、5分浸漬)によるRCA洗浄を行った。その後、研磨工程における欠陥評価として暗室内で集光灯による目視検査、並びに表面検査装置(KLA-Tencor社製SP-1)により基板表面上のLPD欠陥(0.100μm以上)を評価した。目視検査においては欠陥が観察されたものを不合格、欠陥が観察されなかったものを合格として判定した。
 実施例1~8、比較例1、2の研磨組成物を用いた研磨の研磨速度、目視検査の結果、及びLPD欠陥数を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、実施例1~8は、比較例1、2に比べ、研磨速度が大きく、目視検査により観察されるような比較的大きい欠陥もなく、またLPDのような微細な欠陥の数も少ない。つまり、本発明の研磨組成物は、高い研磨レートを確保し、かつ、研磨に起因する欠陥の発生を抑制できることが確認された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (7)

  1.  砥粒を含む研磨組成物であって、
     前記砥粒が表面を2種類以上の有機化合物により修飾されたものであり、
     前記2種類以上の有機化合物は、それぞれ前記砥粒と反応し、化学結合を形成する官能基(A)とそれ以外の官能基(B)を有するものであり、
     前記2種類以上の有機化合物は、前記官能基(B)が互いに異なるものであり、
     前記官能基(B)は互いに可逆的な結合を形成する、又は水素結合により相互作用するものであることを特徴とする研磨組成物。
  2.  前記官能基(B)が、アミノ基、カルボキシル基、ウレイド基、スルホ基、及びメルカプト基から選ばれるいずれかを含むものであることを特徴とする請求項1に記載の研磨組成物。
  3.  前記有機化合物が式(1)の構造を有するシラン化合物であることを特徴とする請求項1又は請求項2に記載の研磨組成物。
    [式(1)] X-Si-(R)(R)(R
    (但し、R1、R、R:アルコキシ基、アルキル基、水酸基、又はH、
     X:請求項1に記載の官能基(B)、請求項1に記載の官能基(B)を有するアルキル基、又は請求項1に記載の官能基(B)を有するアリール基である。)
  4.  前記砥粒がチタン、ジルコニウム、又はアルミニウムからなる群から選ばれる酸化物又は水酸化物を1種類以上含むものであることを特徴とする請求項1から請求項3のいずれか1項に記載の研磨組成物。
  5.  前記砥粒の1次粒子径が5nm以上40nm未満のものであることを特徴とする請求項1から請求項4のいずれか1項に記載の研磨組成物。
  6.  請求項1から請求項5のいずれか1項に記載の研磨組成物を用いて半導体基板を研磨することを特徴とする研磨方法。
  7.  前記研磨する半導体基板を単結晶シリコン基板とすることを特徴とする請求項6に記載の研磨方法。
PCT/JP2016/004685 2015-11-16 2016-10-25 研磨組成物及び研磨方法 WO2017085904A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015223811A JP6408453B2 (ja) 2015-11-16 2015-11-16 研磨組成物及び研磨方法
JP2015-223811 2015-11-16

Publications (1)

Publication Number Publication Date
WO2017085904A1 true WO2017085904A1 (ja) 2017-05-26

Family

ID=58718655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004685 WO2017085904A1 (ja) 2015-11-16 2016-10-25 研磨組成物及び研磨方法

Country Status (3)

Country Link
JP (1) JP6408453B2 (ja)
TW (1) TW201730298A (ja)
WO (1) WO2017085904A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530845B (zh) * 2018-10-29 2021-03-26 陕西航空电气有限责任公司 一种去除整流管芯片表面焊料氧化层的工具
KR102589505B1 (ko) * 2020-03-03 2023-10-13 삼성에스디아이 주식회사 구리 연마용 cmp 슬러리 조성물 및 이를 이용한 구리 막 연마 방법
KR102619857B1 (ko) * 2020-05-20 2023-12-29 삼성에스디아이 주식회사 텅스텐 연마용 cmp 슬러리 조성물 및 이를 이용한 텅스텐 연마 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520283A (ja) * 1999-07-07 2003-07-02 キャボット マイクロエレクトロニクス コーポレイション シラン改質砥粒を含有するcmp組成物
JP2006147993A (ja) * 2004-11-24 2006-06-08 Hitachi Chem Co Ltd Cmp用研磨液及び研磨方法
JP2011518051A (ja) * 2008-04-18 2011-06-23 サンーゴバン アブレイシブズ,インコーポレイティド 砥粒の親水性および疎水性シラン表面改質
CN102127373A (zh) * 2011-01-06 2011-07-20 清华大学 一种高去除低划伤的硅片化学机械抛光组合物及制备方法
JP2013520547A (ja) * 2010-02-24 2013-06-06 ビーエーエスエフ ソシエタス・ヨーロピア 研磨物品、その製造方法及びその使用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267273A (ja) * 2000-01-11 2001-09-28 Sumitomo Chem Co Ltd 金属用研磨材、研磨組成物及び研磨方法
JP6130316B2 (ja) * 2014-03-11 2017-05-17 信越化学工業株式会社 研磨組成物及び研磨方法並びに研磨組成物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520283A (ja) * 1999-07-07 2003-07-02 キャボット マイクロエレクトロニクス コーポレイション シラン改質砥粒を含有するcmp組成物
JP2006147993A (ja) * 2004-11-24 2006-06-08 Hitachi Chem Co Ltd Cmp用研磨液及び研磨方法
JP2011518051A (ja) * 2008-04-18 2011-06-23 サンーゴバン アブレイシブズ,インコーポレイティド 砥粒の親水性および疎水性シラン表面改質
JP2013520547A (ja) * 2010-02-24 2013-06-06 ビーエーエスエフ ソシエタス・ヨーロピア 研磨物品、その製造方法及びその使用方法
CN102127373A (zh) * 2011-01-06 2011-07-20 清华大学 一种高去除低划伤的硅片化学机械抛光组合物及制备方法

Also Published As

Publication number Publication date
JP6408453B2 (ja) 2018-10-17
TW201730298A (zh) 2017-09-01
JP2017092373A (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
CN1168794C (zh) 用于氧化物cmp的组合物
JP4963825B2 (ja) 研磨用シリカゾルおよびそれを含有してなる研磨用組成物
JP3457144B2 (ja) 研磨用組成物
TW201825398A (zh) 氧化鈰系複合微粒子分散液、其製造方法及含有氧化鈰系複合微粒子分散液之研磨用磨粒分散液
JPWO2005110679A1 (ja) 研磨用組成物
JPWO2007046420A1 (ja) 酸化セリウムスラリー、酸化セリウム研磨液及びこれらを用いた基板の研磨方法
KR20170065533A (ko) Cmp 연마제 및 그 제조방법, 그리고 기판의 연마방법
WO2005093805A1 (ja) 半導体研磨用組成物
WO2017085904A1 (ja) 研磨組成物及び研磨方法
WO2016199340A1 (ja) 研磨組成物及びその製造方法並びに研磨方法
US20060032149A1 (en) Polishing slurry, method of producing same, and method of polishing substrate
JP3782771B2 (ja) 研磨用砥粒及び研磨剤の製造方法
TWI488952B (zh) Cmp研磿液以及使用此cmp研磨液的研磨方法以及半導體基板的製造方法
JP2007153692A (ja) 異方形状シリカゾルの製造方法
JP2002246341A (ja) シリカ膜の化学機械研磨用の研磨スラリー
JP5375025B2 (ja) 研磨液
JP2021127442A (ja) 研磨用組成物、研磨方法および半導体基板の製造方法
CN104650736A (zh) 一种化学机械抛光液及其应用
JP2001200243A (ja) 研摩材及びその製造方法、ならびにそれを使用した研摩方法
JP2020023408A (ja) セリア系微粒子分散液、その製造方法およびセリア系微粒子分散液を含む研磨用砥粒分散液
JP2015113399A (ja) 研磨剤および研磨方法
KR20220060342A (ko) 코어가 산화세륨 입자로 코팅된 복합 입자의 제조방법 및 이의 의해 제조된 복합입자
KR101117525B1 (ko) 산화세륨 연마입자 및 그 제조방법
JP7038031B2 (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液
JP7117225B2 (ja) セリア系複合微粒子分散液、その製造方法及びセリア系複合微粒子分散液を含む研磨用砥粒分散液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865908

Country of ref document: EP

Kind code of ref document: A1