WO2017085829A1 - Method for manufacturing lead dioxide electrode - Google Patents

Method for manufacturing lead dioxide electrode Download PDF

Info

Publication number
WO2017085829A1
WO2017085829A1 PCT/JP2015/082508 JP2015082508W WO2017085829A1 WO 2017085829 A1 WO2017085829 A1 WO 2017085829A1 JP 2015082508 W JP2015082508 W JP 2015082508W WO 2017085829 A1 WO2017085829 A1 WO 2017085829A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
lead dioxide
pulse
anode
lead
Prior art date
Application number
PCT/JP2015/082508
Other languages
French (fr)
Japanese (ja)
Inventor
修敏 李
官 国清
里提 阿布
Original Assignee
国立大学法人弘前大学
時空化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人弘前大学, 時空化学株式会社 filed Critical 国立大学法人弘前大学
Priority to JP2017551459A priority Critical patent/JP6384887B2/en
Priority to PCT/JP2015/082508 priority patent/WO2017085829A1/en
Publication of WO2017085829A1 publication Critical patent/WO2017085829A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for producing a lead dioxide electrode.
  • Hydrogen emits zero CO 2 during combustion and is expected as a clean energy source to replace fossil fuels.
  • the hydrogen production method based on the electrolysis of water using renewable energy such as sunlight, wind power, and hydropower does not emit any CO 2 , so it is highly expected as a clean hydrogen production method. .
  • an electrode for electrolysis of water an electrode in which a platinum particle catalyst is fixed on a carbon substrate is used.
  • platinum is expensive and has a limited amount of resources, development of a technique for reducing the amount of platinum used and a platinum alternative catalyst and / or electrode is required.
  • Patent Document 1 As a method for reducing the amount of platinum used, for example, in Patent Document 1, platinum ion as an anode and a carbon base material as a cathode are subjected to electrolytic treatment in dilute sulfuric acid, whereby platinum ions dissolved in a small amount in dilute sulfuric acid are obtained. Techniques for depositing on a carbon substrate are disclosed. Moreover, as a platinum alternative electrode for electrolysis of water, for example, in Patent Document 2, a base metal oxide layer is formed on the surface of a conductive base material, and a noble metal such as gold or silver is formed on the base metal oxide layer. A supported electrode is disclosed.
  • Non-Patent Documents 1 to 3 it is reported that lead dioxide is used as an electrode for iodate production or an electrode for lead storage battery, but it is used as an electrode for electrolysis of water. Is not known.
  • Non-Patent Documents 2 and 3 disclose techniques for improving the specific surface area of an electrode by forming nanowire-shaped lead dioxide on a conductive substrate such as carbon.
  • a conductive substrate such as carbon.
  • the method reported above forms nanowire-shaped lead dioxide using a porous alumina film as a template, the manufacturing process is complicated.
  • the present invention has been made in view of the current state of the prior art described above, and in a simple process, when used as an anode in water electrolysis, at the cathode to the same extent or more than when using a platinum electrode. It aims at providing the method of manufacturing the lead dioxide electrode which can generate hydrogen.
  • the present inventors have surprisingly performed electrodeposition treatment in an aqueous solution containing a divalent lead compound and an inorganic acid using the conductive substrate as an anode.
  • a lead dioxide electrode that can generate hydrogen at the cathode to the same extent or more than when using a platinum electrode when used as an anode in electrolysis of water by performing a pulse electrodeposition process. We found that it can be manufactured. Based on this finding, the present inventors have completed the present invention by further research.
  • Item 1 A method for producing a lead dioxide electrode, comprising a step of performing pulse electrodeposition treatment in an aqueous solution containing a divalent lead compound and an inorganic acid using an electroconductive substrate as an anode.
  • Item 2. Item 2. The method according to Item 1, wherein the pulse electrodeposition treatment is a pulse voltage method, a pulse current method, or a unipolar pulse voltage method.
  • the pulse voltage method is an electrodeposition process performed under the conditions of a high-end applied voltage: 1.5 to 5 V, a low-end applied voltage: 1 V, a pulse time: 0.1 to 3 seconds, and the number of pulses: 100 to 1000 times.
  • the pulse current method is an electrodeposition process performed under the conditions of a high-end applied current: 1 to 500 mA, a low-end applied current: 0 mA, a pulse time: 0.1 to 3 seconds, and the number of pulses: 100 to 1000 times Item 3.
  • the unipolar pulse voltage method is performed under the conditions of high-end applied voltage: 0.5 to 3 V, open circuit state (current: 0 A), pulse time: 0.1 to 3 seconds, and number of pulses: 100 to 1000 times.
  • Item 6. 6. A lead dioxide electrode produced by the method according to any one of items 1 to 5.
  • a lead dioxide electrode characterized in that nanorod-shaped lead dioxide is formed on a conductive substrate.
  • Item 8. A lead dioxide electrode, wherein sheet-shaped lead dioxide is formed on a conductive substrate.
  • Item 9. The lead dioxide electrode according to any one of Items 6 to 8, which is an electrode for electrolysis of water.
  • Item 9-2. Use of the lead dioxide electrode according to any one of items 6 to 8 as an electrode for water electrolysis.
  • a lead dioxide electrode capable of generating hydrogen at the cathode to the same extent or more than when a platinum electrode is used when used as an anode in water electrolysis by a simple method. Can be manufactured.
  • FIG. 6 is a schematic view of an electrolysis apparatus used in Production Examples 1 to 6 and Test Examples.
  • 2 is a SEM image of the carbon paper surface after electrodeposition treatment in Production Example 1.
  • 6 is a SEM image of the carbon paper surface after electrodeposition treatment in Production Example 2.
  • 6 is a SEM image of the carbon paper surface after electrodeposition treatment in Production Example 3.
  • 6 is an SEM image of the carbon paper surface after electrodeposition treatment in Production Example 4.
  • 6 is a SEM image of the carbon paper surface after electrodeposition treatment in Production Example 5.
  • 14 is a SEM image of the carbon paper surface after electrodeposition treatment in Production Example 6. It is a figure which shows the result (hydrogen generation amount with respect to an applied voltage) of the performance evaluation test of the electrode performed by the test example.
  • the manufacturing method of the lead dioxide electrode of this invention includes the process of performing a pulse electrodeposition process in the aqueous solution containing a bivalent lead compound and an inorganic acid by making an electroconductive base material into an anode. Through this process, lead dioxide is deposited on the conductive substrate.
  • a conductive substrate is used as the anode when performing the pulse electrodeposition process.
  • the conductive base material is not particularly limited as long as it is a base material capable of depositing lead dioxide on the conductive base material by performing pulse electrodeposition treatment and can be used as an electrode.
  • Examples of the conductive substrate include carbon, nickel, nickel-phosphorus alloy, nickel-tungsten alloy, stainless steel, titanium, iron, copper, and conductive glass.
  • the anode may contain components other than the conductive base material within the range in which the effects of the present invention can be obtained.
  • the shape of the conductive substrate is not particularly limited, and can be appropriately selected depending on the purpose of use and required performance.
  • Examples of the shape include a sheet shape, a plate shape, a rod shape, and a mesh shape. Specifically, a carbon sheet, a nickel plating plate, etc. can be illustrated.
  • the cathode used in the pulse electrodeposition treatment is not particularly limited as long as it is an insoluble electrode, and a known one can be used.
  • an electrode made of carbon, platinum group metal, gold, or the like can be used.
  • the platinum group metal include platinum (Pt), palladium (Pd), ruthenium (Ru), rhodium (Rh), osmium (Os), and iridium (Ir), and platinum (Pt) is particularly preferable.
  • the platinum group metal contained in the cathode may contain one or more of the above metal species. Further, the platinum group metal may be contained in the state of an alloy, a metal oxide or the like.
  • the shape of the cathode is not particularly limited and can be appropriately selected depending on the purpose of use and required performance.
  • Examples of the shape include a metal wire, a sheet shape, a plate shape, a rod shape, and a mesh shape. Specifically, a spiral platinum wire, a platinum plate, etc. can be illustrated.
  • an aqueous solution containing a divalent lead compound and an inorganic acid is used as an electrolytic solution for performing the pulse electrodeposition treatment.
  • the divalent lead compound include lead nitrate (Pb (NO 3 ) 2 ), lead chloride (PbCl 2 ), lead sulfate (PbSO 4 ) and the like.
  • the inorganic acid include nitric acid, sulfuric acid, hydrochloric acid and the like. Of these, nitric acid is preferably used as the inorganic acid when lead nitrate is used as the divalent lead compound, and hydrochloric acid is preferably used as the inorganic acid when lead chloride is used as the divalent lead compound. When lead sulfate is used as the lead compound, sulfuric acid is preferably used.
  • the concentration of the divalent lead compound in the electrolytic solution is not particularly limited as long as lead dioxide can be deposited on the above-described conductive substrate by pulse electrodeposition treatment, and is, for example, about 0.01 to 10M. Preferably, it is about 0.01 to 5M, more preferably about 0.01 to 2M, and particularly preferably about 0.05 to 1M.
  • the concentration of the inorganic acid in the electrolytic solution is not particularly limited, and is, for example, about 0.01 to 10M, preferably about 0.01 to 5M, more preferably about 0.01 to 2M, and particularly preferably about 0.05 to 1M. It is.
  • the pH of the electrolytic solution is not particularly limited as long as it can cause lead dioxide to be deposited on the above-described conductive substrate by pulse electrodeposition treatment.
  • it is less than 6, preferably about 0 to 4, more preferably It is about 0-2.
  • pulse electrodeposition treatment is performed in an aqueous solution containing a divalent lead compound and an inorganic acid using the conductive substrate as an anode.
  • the following reactions (1) to (5) occur in the anode and the cathode, and the divalent lead ions contained in the electrolytic solution are electrodeposited on the electrode, whereby the anode.
  • Lead dioxide is deposited on the conductive substrate.
  • the pulse electrodeposition treatment performed in the method of the present invention is an electrodeposition treatment capable of controlling the electrodeposition rate of metal ions.
  • PPM pulse voltage method
  • PGM pulse current method
  • UPED unipolar pulse Voltage method
  • the pulse voltage method is an electrodeposition treatment method in which a high end voltage and a low end voltage are applied at a constant cycle.
  • the conditions of the pulse voltage method are not particularly limited as long as lead dioxide can be deposited on the conductive substrate.
  • high-end applied voltage 1.5 to 5 V
  • low-end applied voltage 1 V
  • pulse The time can be 0.1 to 3 seconds
  • the number of pulses can be 100 to 1000.
  • FIG. 1 there can be mentioned conditions of a high-end applied voltage: 2 V, a low-end applied voltage: 1 V, and a pulse time: 1 second.
  • the pulse current method is an electrodeposition treatment method in which a high-end current and a low-end current are applied at a constant cycle.
  • the conditions of the pulse current method are not particularly limited as long as lead dioxide can be deposited on the conductive substrate.
  • high-end applied current 1 to 500 mA
  • low-end applied current 0 mA
  • pulse time It can be performed under the conditions of 0.1 to 3 seconds and the number of pulses: 100 to 1000 times.
  • FIG. 2 there can be mentioned conditions of high-end applied current: 20 mA, low-end applied current: 0 mA, and pulse time: 1 second.
  • the unipolar pulse voltage method is an electrodeposition treatment method in which application of a high-end voltage and an open circuit state (current: 0 A) are repeated at a constant cycle.
  • the conditions of the unipolar pulse voltage method are not particularly limited as long as lead dioxide can be deposited on the conductive substrate.
  • high-end applied voltage 0.5 to 3 V
  • open circuit state current: 0A
  • pulse time 0.1 to 3 seconds
  • number of pulses 100 to 1000 times.
  • FIG. 3 there can be mentioned conditions of a high-end applied voltage: 2 V, an open circuit state (current: 0 A), and a pulse time: 2.5 seconds.
  • the temperature of the electrolytic solution during the pulse electrodeposition treatment is not particularly limited, and is, for example, about 0 to 50 ° C., preferably 20 to 30 ° C.
  • a reference electrode when performing the pulse electrodeposition process, a reference electrode, an electrolyzer, a power source, control software, and the like are required in addition to the anode, the cathode, and the electrolytic solution. These are not particularly limited, and known ones can be used according to the purpose.
  • a silver / silver chloride electrode Al / AgCl electrode
  • a mercury / mercury chloride electrode Hg / HgCl 2 electrode
  • a standard hydrogen electrode or the like.
  • the shape of lead dioxide deposited on the conductive substrate can be controlled according to the type of pulse electrodeposition treatment.
  • nanorod-shaped lead dioxide which will be described later, can be deposited on a conductive substrate.
  • the electrodeposition treatment by the polar pulse voltage method is performed, sheet-shaped lead dioxide described later can be deposited on the conductive substrate.
  • the method of the present invention can include a step of washing and drying the conductive substrate on which lead dioxide is deposited, if necessary, after performing the pulse electrodeposition treatment described above.
  • Lead dioxide electrode The present invention also includes a lead dioxide electrode obtained by the method of the present invention described above.
  • the lead dioxide electrode obtained by the method of the present invention described above is one in which lead dioxide is deposited on a conductive substrate.
  • the lead dioxide is preferably deposited on the conductive substrate in a nanorod shape or a sheet shape. Since the specific surface area is increased when lead dioxide is deposited in the form of nanorods or sheets on the conductive base material, it is an excellent electrode with many electrode active points.
  • the size of one nanorod is not particularly limited.
  • the width is about 10 to 1000 nm and the length is long. Is about 100 to 9000 nm, preferably about 100 to 900 nm in width and about 1000 to 9000 nm in length.
  • the size of the sheet is not particularly limited, but for example, the width is about 100 nm to 9000 nm. Can be mentioned.
  • the lead dioxide electrode of the present invention has a large specific surface area due to the presence of lead dioxide in the form of a nanorod or a sheet on a conductive substrate. Become. Therefore, when the lead dioxide electrode is used as an anode in water electrolysis, the amount of hydrogen generated at the cathode can be increased.
  • the lead dioxide electrode of the present invention can be preferably used as an electrode for water electrolysis or an anode for water electrolysis.
  • the present invention also includes a method for producing hydrogen by electrolysis of water using the lead dioxide electrode described above.
  • the method for producing hydrogen of the present invention includes a step of performing electrolytic treatment in an aqueous solution using the above-described lead dioxide electrode as an anode.
  • the cathode used in the method for producing hydrogen of the present invention is not particularly limited as long as it is an electrode generally used as a cathode in water electrolysis, and a known one can be used.
  • an electrode made of a noble metal such as carbon, platinum, or gold can be used.
  • the aqueous solution used in the method for producing hydrogen of the present invention is not particularly limited as long as it is an aqueous solution containing components generally used in water electrolysis, and known ones can be used. Moreover, halogens, such as iodine bromine, a sulfate ion, etc. can also be included. When an aqueous solution containing iodine is used, iodate ions are generated at the anode.
  • the conditions for the electrolytic treatment are not particularly limited, and can be appropriately selected according to the purpose.
  • the above-mentioned lead dioxide electrode is used as an anode
  • a platinum plate is used as a cathode
  • an aqueous solution in which iodine powder is dissolved is used as an electrolytic solution
  • a voltage of 1 V or more is applied to the anode.
  • the following reactions (6) and (7) occur at the anode and the cathode, and hydrogen can be generated at the cathode.
  • the rate of hydrogen generation can be increased by increasing the voltage applied to the anode.
  • iodate ions IO 3 ⁇
  • the hydrogen produced by the method for producing hydrogen of the present invention can be preferably used as a fuel for fuel cells, hydrogen engines and the like.
  • Production Example 1 Production of Electrode by Pulse Voltage Method (PPM)
  • electrodeposition treatment was performed by the pulse voltage method (PPM) according to the following procedure using the electrolytic apparatus shown in FIG.
  • an electrolytic solution an aqueous solution containing 0.1 M lead nitrate and 0.1 M nitric acid was used.
  • carbon paper (1 cm ⁇ 1 cm; manufactured by Toray Industries, Inc.) as a working electrode
  • a spiral platinum wire (diameter 1 mm, length 15 mm; manufactured by BAS) as a counter electrode
  • an Ag / AgCl electrode (manufactured by BAS) as a reference electrode
  • an electrochemical measurement device (Princeton Applied Research) was used, and Versastudio (Princeton Applied Research) was used as control software.
  • Each electrode is connected to the power supply so that the carbon paper is the anode and the spiral platinum wire is the cathode, and the high-end applied voltage is 2 V, the low-end applied voltage is 1 V, the pulse time is 1 second, and the number of pulses is 200 times.
  • Electrolytic treatment was performed. The temperature of the electrolytic solution was 25 ° C. After the electrodeposition treatment, the carbon paper was washed and dried, and the surface of the carbon paper was observed with a scanning electron microscope (SEM). The SEM image is shown in FIG.
  • nanorod-shaped lead dioxide having a width of about 300 nm and a length of about 5000 nm is uniformly deposited on the carbon paper. I found out.
  • Production Example 2 Production of Electrode by Pulse Current Method (PGM)
  • electrodeposition treatment was performed by the pulse current method (PGM) according to the following procedure using the electrolytic apparatus shown in FIG. Note that the same electrolyte solution, working electrode, counter electrode, reference electrode, electrochemical measurement device, and control software as those in Production Example 1 were used.
  • Each electrode is connected to a power source so that the carbon paper is the anode and the spiral platinum wire is the cathode, under the conditions of high-end applied current: 20 mA, low-end applied current: 0 mA, pulse time: 1 second, number of pulses: 200 times Electrodeposition treatment was performed. The temperature of the electrolytic solution was 25 ° C. After the electrodeposition treatment, the carbon paper was washed and dried, and the surface of the carbon paper was observed with a scanning electron microscope (SEM). An SEM image is shown in FIG.
  • nanorod-shaped lead dioxide having a width of about 300 nm and a length of about 1000 nm was uniformly deposited on the carbon paper by the pulse current method.
  • Production Example 3 Production of Electrode by Unipolar Pulse Voltage Method (UPED)
  • electrodeposition treatment was performed by the unipolar pulse voltage method (UPED) according to the following procedure using the electrolytic apparatus shown in FIG. . Note that the same electrolyte solution, working electrode, counter electrode, reference electrode, electrochemical measurement device, and control software as those in Production Example 1 were used.
  • Each electrode is connected to the power supply so that the carbon paper is the anode and the spiral platinum wire is the cathode, the high-end applied voltage: 2 V, the open circuit state (current: 0 A), the pulse time: 1 second, the number of pulses: 200 times Electrolytic treatment was performed under conditions. The temperature of the electrolytic solution was 25 ° C. After the electrodeposition treatment, the carbon paper was washed and dried, and the surface of the carbon paper was observed with a scanning electron microscope (SEM). The SEM image is shown in FIG.
  • Production Example 4 Production of Electrode by Cyclic Voltammetry (CV)
  • electrodeposition was performed by cyclic voltammetry (CV) according to the following procedure using the electrolytic apparatus shown in FIG. Note that the same electrolyte solution, working electrode, counter electrode, reference electrode, electrochemical measurement device, and control software as those in Production Example 1 were used.
  • Each electrode was connected to a power source such that the carbon paper was the anode and the spiral platinum wire was the cathode, and the electrolytic treatment was performed under the conditions of voltage range: 0 V to 2 V, scanning speed: 50 mV / s, cycle number: 10 times. .
  • the temperature of the electrolytic solution was 25 ° C.
  • the carbon paper was washed and dried, and then the surface of the carbon paper was observed with a scanning electron microscope (SEM). An SEM image is shown in FIG.
  • Production Example 5 Production of Electrode by Constant Current Method (GM)
  • electrodeposition treatment was performed by the constant current method (GM) using the electrolytic apparatus shown in FIG. 4 according to the following procedure. Note that the same electrolyte solution, working electrode, counter electrode, reference electrode, electrochemical measurement device, and control software as those in Production Example 1 were used.
  • Each electrode was connected to a power source such that the carbon paper was the anode and the spiral platinum wire was the cathode, and the electrodeposition treatment was performed under the conditions of current: 20 mA and electrolysis time: 200 seconds. The temperature of the electrolytic solution was 25 ° C. After the electrodeposition treatment, the carbon paper was washed and dried, and the surface of the carbon paper was observed with a scanning electron microscope (SEM). The SEM image is shown in FIG.
  • Production Example 6 Production of Electrode by Constant Voltage Method (PM)
  • electrodeposition treatment was performed by the constant voltage method (GM) according to the following procedure using the electrolytic apparatus shown in FIG. Note that the same electrolyte solution, working electrode, counter electrode, reference electrode, electrochemical measurement device, and control software as those in Production Example 1 were used.
  • Each electrode was connected to a power source such that the carbon paper was the anode and the spiral platinum wire was the cathode, and the electrodeposition treatment was performed under the conditions of voltage: 2 V and electrolysis time: 200 seconds. The temperature of the electrolytic solution was 25 ° C. After the electrodeposition treatment, the carbon paper was washed and dried, and the surface of the carbon paper was observed with a scanning electron microscope (SEM). An SEM image is shown in FIG.
  • particulate lead dioxide was deposited on the carbon paper by the constant voltage method.
  • Test Example Performance Evaluation Test of Lead Dioxide Electrode
  • the performance (hydrogen generation ability) evaluation test of the lead dioxide electrode produced in Production Examples 1 to 6 was performed according to the following procedure using the electrolytic apparatus shown in FIG. went. As a control, the same test was performed on a platinum plate.
  • An aqueous solution containing 0.04 M iodine (I 2 ) and 0.2 M bromine (Br 2 ) was used as the electrolyte aqueous solution.
  • an Ag / AgCl electrode manufactured by BAS
  • an electrochemical measurement device manufactured by Princeton Applied Research
  • Versastudio manufactured by Princeton Applied Research
  • Each electrode is connected to a power source so that the working electrode is an anode and the counter electrode is a cathode, and electrolysis is performed for 10 minutes under the conditions of applied voltage: 0.8 to 2 V, scanning speed: 2 mV / s, and Tafel polarization. The performance of each electrode was evaluated using a curve. The test results are shown in FIG.
  • the lead dioxide electrode produced by the pulse current method is an excellent electrode capable of achieving the same amount of hydrogen generation at the cathode as that of platinum.
  • the pulse voltage method (PPM) It has been found that the lead dioxide electrode produced by the polar pulse voltage method (UPED) is a very excellent electrode with a higher amount of hydrogen generation at the cathode than platinum.
  • both of the electrodes produced by the pulse voltage method (PPM) and the pulse current method (PGM) were deposited.
  • the lead dioxide is in the form of nanorods
  • the electrode produced by the unipolar pulse voltage method (UPED) is different in the form of lead dioxide due to the difference in the production method, as the precipitated lead dioxide is in the form of a sheet.
  • UPED unipolar pulse voltage method

Abstract

The present invention addresses the problem of providing a method for manufacturing with a simple process a lead dioxide electrode that is capable, when used as the anode in electrolysis of water, of generating hydrogen at the cathode at the same level or higher than when a platinum electrode is used. The present invention provides a method for manufacturing a lead dioxide electrode comprising a step for performing pulse electrodeposition in an aqueous solution containing a divalent lead compound and an inorganic acid using an electrically conductive substrate as the anode.

Description

二酸化鉛電極の製造方法Method for producing lead dioxide electrode
 本発明は二酸化鉛電極の製造方法に関する。 The present invention relates to a method for producing a lead dioxide electrode.
 水素は燃焼時にCO排出がゼロであり、化石燃料に代わるクリーンなエネルギー源として期待されている。特に、太陽光、風力、水力等の再生可能なエネルギーを電力とする水の電気分解法による水素製造方法は一切COを排出しないことから、クリーンな水素製造方法として大きな期待が寄せられている。 Hydrogen emits zero CO 2 during combustion and is expected as a clean energy source to replace fossil fuels. In particular, the hydrogen production method based on the electrolysis of water using renewable energy such as sunlight, wind power, and hydropower does not emit any CO 2 , so it is highly expected as a clean hydrogen production method. .
 一般に、水の電気分解用の電極としては、炭素基材上に白金粒子触媒を固定したものが用いられている。しかしながら、白金は価格が高く、資源量にも限りがあるため、白金の使用量を低減する技術や白金代替触媒及び/又は電極の開発が求められている。 Generally, as an electrode for electrolysis of water, an electrode in which a platinum particle catalyst is fixed on a carbon substrate is used. However, since platinum is expensive and has a limited amount of resources, development of a technique for reducing the amount of platinum used and a platinum alternative catalyst and / or electrode is required.
 白金の使用量を低減する方法としては、例えば、特許文献1において、白金をアノード、炭素基材をカソードとして、希硫酸中で電解処理を行うことにより、希硫酸中に微量溶解した白金イオンを炭素基材上に析出させる技術が開示されている。また、水の電気分解用の白金代替電極としては、例えば、特許文献2において、導電性基材の表面に卑金属酸化物層を形成し、当該卑金属酸化物層上に金、銀等の貴金属を担持させた電極が開示されている。 As a method for reducing the amount of platinum used, for example, in Patent Document 1, platinum ion as an anode and a carbon base material as a cathode are subjected to electrolytic treatment in dilute sulfuric acid, whereby platinum ions dissolved in a small amount in dilute sulfuric acid are obtained. Techniques for depositing on a carbon substrate are disclosed. Moreover, as a platinum alternative electrode for electrolysis of water, for example, in Patent Document 2, a base metal oxide layer is formed on the surface of a conductive base material, and a noble metal such as gold or silver is formed on the base metal oxide layer. A supported electrode is disclosed.
国際公開第2010/029162号International Publication No. 2010/029162 国際公開第2013/005252号International Publication No. 2013/005252
 本発明者らは、上記のような従来技術の現状に鑑みて、水の電気分解用の電極素材として使用可能な白金代替素材を鋭意探索していたところ、二酸化鉛(PbO)を電極素材として使用できないかという着想に至った。 In view of the current state of the prior art as described above, the present inventors have been diligently searching for a platinum alternative material that can be used as an electrode material for water electrolysis. As a result, lead dioxide (PbO 2 ) is used as an electrode material. I came up with the idea of not being able to use it.
 二酸化鉛は、例えば、上記非特許文献1~3において、ヨウ素酸塩の製造用電極や鉛蓄電池用電極として使用されることが報告されているが、水の電気分解用の電極として用いられることは知られていない。 For example, in the above Non-Patent Documents 1 to 3, it is reported that lead dioxide is used as an electrode for iodate production or an electrode for lead storage battery, but it is used as an electrode for electrolysis of water. Is not known.
 また、非特許文献2及び3には、炭素等の導電性基材上にナノワイヤ形状の二酸化鉛を形成させることにより、電極の比表面積を向上させる技術が開示されている。しかしながら、上記で報告されている方法は、多孔質のアルミナ膜をテンプレートとすることによりナノワイヤ形状の二酸化鉛を形成させることから、製造プロセスが煩雑である。 Also, Non-Patent Documents 2 and 3 disclose techniques for improving the specific surface area of an electrode by forming nanowire-shaped lead dioxide on a conductive substrate such as carbon. However, since the method reported above forms nanowire-shaped lead dioxide using a porous alumina film as a template, the manufacturing process is complicated.
 本発明は、上記した従来技術の現状に鑑みてなされたものであり、簡便なプロセスにより、水の電気分解におけるアノードとして用いた場合に白金電極を用いた場合と同程度又はそれ以上にカソードにおいて水素を発生させることができる二酸化鉛電極を製造する方法を提供することを目的とする。 The present invention has been made in view of the current state of the prior art described above, and in a simple process, when used as an anode in water electrolysis, at the cathode to the same extent or more than when using a platinum electrode. It aims at providing the method of manufacturing the lead dioxide electrode which can generate hydrogen.
 本発明者らは、上記した目的を達成すべく鋭意研究を重ねた結果、驚くべきことに、導電性基材をアノードとし、2価の鉛化合物及び無機酸を含む水溶液中で電着処理を行う際に、パルス電着処理を行うことにより、水の電気分解におけるアノードとして用いた場合に白金電極を用いた場合と同程度又はそれ以上にカソードにおいて水素を発生させることができる二酸化鉛電極を製造できることを見出した。本発明者らは、かかる知見に基づき、さらなる研究を重ねることにより、本発明を完成させるに至った。 As a result of intensive studies to achieve the above-mentioned object, the present inventors have surprisingly performed electrodeposition treatment in an aqueous solution containing a divalent lead compound and an inorganic acid using the conductive substrate as an anode. A lead dioxide electrode that can generate hydrogen at the cathode to the same extent or more than when using a platinum electrode when used as an anode in electrolysis of water by performing a pulse electrodeposition process. We found that it can be manufactured. Based on this finding, the present inventors have completed the present invention by further research.
 即ち、本発明は、代表的には以下の項に記載の主題を包含する。
項1.
導電性基材をアノードとして、2価の鉛化合物及び無機酸を含む水溶液中でパルス電着処理を行う工程を含む、二酸化鉛電極の製造方法。
項2.
前記パルス電着処理が、パルス電圧法、パルス電流法、又は単極性パルス電圧法である、上記項1に記載の方法。
項3.
前記パルス電圧法が、高端印加電圧:1.5~5V、低端印加電圧:1V、パルス時間:0.1~3秒、及びパルス回数:100~1000回の条件で行う電着処理である、上記項2に記載の方法。
項4.
前記パルス電流法が、高端印加電流:1~500mA、低端印加電流:0mA、パルス時間:0.1~3秒、及びパルス回数:100~1000回の条件で行う電着処理である、上記項2に記載の方法。
項5.
前記単極性パルス電圧法が、高端印加電圧:0.5~3V、開回路状態(電流:0A)、パルス時間:0.1~3秒、及びパルス回数:100~1000回の条件で行う電着処理である、上記項2に記載の方法。
項6.
上記項1~5のいずれかに記載の方法により製造された二酸化鉛電極。
項7.
導電性基材上に、ナノロッド形状の二酸化鉛が形成されていることを特徴とする、二酸化鉛電極。
項8.
導電性基材上に、シート形状の二酸化鉛が形成されていることを特徴とする、二酸化鉛電極。
項9-1.
水の電気分解用電極である、上記項6~8のいずれかに記載の二酸化鉛電極。
項9-2.
上記項6~8のいずれかに記載の二酸化鉛電極の、水の電気分解用電極としての使用。
項10.
上記項6~8のいずれかに記載の二酸化鉛電極をアノードとして、水溶液中で電解処理を行う工程を含む、水素の製造方法。
That is, the present invention typically includes the subject matters described in the following sections.
Item 1.
A method for producing a lead dioxide electrode, comprising a step of performing pulse electrodeposition treatment in an aqueous solution containing a divalent lead compound and an inorganic acid using an electroconductive substrate as an anode.
Item 2.
Item 2. The method according to Item 1, wherein the pulse electrodeposition treatment is a pulse voltage method, a pulse current method, or a unipolar pulse voltage method.
Item 3.
The pulse voltage method is an electrodeposition process performed under the conditions of a high-end applied voltage: 1.5 to 5 V, a low-end applied voltage: 1 V, a pulse time: 0.1 to 3 seconds, and the number of pulses: 100 to 1000 times. The method according to Item 2 above.
Item 4.
The pulse current method is an electrodeposition process performed under the conditions of a high-end applied current: 1 to 500 mA, a low-end applied current: 0 mA, a pulse time: 0.1 to 3 seconds, and the number of pulses: 100 to 1000 times Item 3. The method according to Item 2.
Item 5.
The unipolar pulse voltage method is performed under the conditions of high-end applied voltage: 0.5 to 3 V, open circuit state (current: 0 A), pulse time: 0.1 to 3 seconds, and number of pulses: 100 to 1000 times. Item 3. The method according to Item 2, which is a landing process.
Item 6.
6. A lead dioxide electrode produced by the method according to any one of items 1 to 5.
Item 7.
A lead dioxide electrode, characterized in that nanorod-shaped lead dioxide is formed on a conductive substrate.
Item 8.
A lead dioxide electrode, wherein sheet-shaped lead dioxide is formed on a conductive substrate.
Item 9-1.
Item 9. The lead dioxide electrode according to any one of Items 6 to 8, which is an electrode for electrolysis of water.
Item 9-2.
9. Use of the lead dioxide electrode according to any one of items 6 to 8 as an electrode for water electrolysis.
Item 10.
9. A method for producing hydrogen, comprising a step of performing electrolytic treatment in an aqueous solution using the lead dioxide electrode according to any one of items 6 to 8 as an anode.
 本発明の方法によれば、簡便な方法により、水の電気分解におけるアノードとして用いた場合に白金電極を用いた場合と同程度又はそれ以上にカソードにおいて水素を発生させることができる二酸化鉛電極を製造することができる。 According to the method of the present invention, a lead dioxide electrode capable of generating hydrogen at the cathode to the same extent or more than when a platinum electrode is used when used as an anode in water electrolysis by a simple method. Can be manufactured.
パルス電圧法(PPM)の条件の一例を示す図である。It is a figure which shows an example of the conditions of a pulse voltage method (PPM). パルス電流法(PGM)の条件の一例を示す図である。It is a figure which shows an example of the conditions of a pulse current method (PGM). 単極性パルス電圧法(UPED)の条件の一例を示す図である。It is a figure which shows an example of the conditions of a unipolar pulse voltage method (UPED). 製造例1~6及び試験例で使用した電解装置の概略図である。FIG. 6 is a schematic view of an electrolysis apparatus used in Production Examples 1 to 6 and Test Examples. 製造例1における電着処理後のカーボンペーパ表面のSEM画像である。2 is a SEM image of the carbon paper surface after electrodeposition treatment in Production Example 1. 製造例2における電着処理後のカーボンペーパ表面のSEM画像である。6 is a SEM image of the carbon paper surface after electrodeposition treatment in Production Example 2. 製造例3における電着処理後のカーボンペーパ表面のSEM画像である。6 is a SEM image of the carbon paper surface after electrodeposition treatment in Production Example 3. 製造例4における電着処理後のカーボンペーパ表面のSEM画像である。6 is an SEM image of the carbon paper surface after electrodeposition treatment in Production Example 4. 製造例5における電着処理後のカーボンペーパ表面のSEM画像である。6 is a SEM image of the carbon paper surface after electrodeposition treatment in Production Example 5. 製造例6における電着処理後のカーボンペーパ表面のSEM画像である。14 is a SEM image of the carbon paper surface after electrodeposition treatment in Production Example 6. 試験例で行った電極の性能評価試験の結果(印加電圧に対する水素発生量)を示す図である。It is a figure which shows the result (hydrogen generation amount with respect to an applied voltage) of the performance evaluation test of the electrode performed by the test example.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
二酸化鉛電極の製造方法
 本発明の二酸化鉛電極の製造方法は、導電性基材をアノードとして、2価の鉛化合物及び無機酸を含む水溶液中でパルス電着処理を行う工程を含む。当該工程により、導電性基材上に二酸化鉛が析出する。
2. Manufacturing method of lead dioxide electrode The manufacturing method of the lead dioxide electrode of this invention includes the process of performing a pulse electrodeposition process in the aqueous solution containing a bivalent lead compound and an inorganic acid by making an electroconductive base material into an anode. Through this process, lead dioxide is deposited on the conductive substrate.
 本発明の方法では、パルス電着処理を行う際のアノードとして導電性基材を使用する。当該導電性基材としては、パルス電着処理を行うことにより当該導電性基材上に二酸化鉛を析出させることができる基材であって、電極として使用できるものであれば特に制限されない。導電性基材としては、例えば、炭素、ニッケル、ニッケル-リン合金、ニッケル-タングステン合金、ステンレス、チタン、鉄、銅、導電ガラスなどが挙げられる。また、アノードには、本発明の効果が得られる範囲内で、導電性基材以外の成分が含まれていてもよい。 In the method of the present invention, a conductive substrate is used as the anode when performing the pulse electrodeposition process. The conductive base material is not particularly limited as long as it is a base material capable of depositing lead dioxide on the conductive base material by performing pulse electrodeposition treatment and can be used as an electrode. Examples of the conductive substrate include carbon, nickel, nickel-phosphorus alloy, nickel-tungsten alloy, stainless steel, titanium, iron, copper, and conductive glass. In addition, the anode may contain components other than the conductive base material within the range in which the effects of the present invention can be obtained.
 導電性基材の形状は特に制限されず、使用目的や要求される性能により適宜選択することができる。形状としては、例えば、シート状、板状、棒状、メッシュ状などが挙げられる。具体的には、カーボンシート、ニッケルめっき板などを例示することができる。 The shape of the conductive substrate is not particularly limited, and can be appropriately selected depending on the purpose of use and required performance. Examples of the shape include a sheet shape, a plate shape, a rod shape, and a mesh shape. Specifically, a carbon sheet, a nickel plating plate, etc. can be illustrated.
 本発明の方法においてパルス電着処理を行う際のカソードとしては不溶性電極であれば特に制限されず、公知のものを使用することができる。例えば、炭素、白金族金属、金などを素材とする電極を用いることができる。白金族金属としては、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)、ロジウム(Rh)、オスミウム(Os)、及びイリジウム(Ir)が挙げられ、中でも白金(Pt)が好ましい。カソードに含まれる白金族金属は、上記した金属種を1種単独で又は2種以上含んでいてもよい。また、白金族金属は、合金、金属酸化物等の状態で含まれていてもよい。 In the method of the present invention, the cathode used in the pulse electrodeposition treatment is not particularly limited as long as it is an insoluble electrode, and a known one can be used. For example, an electrode made of carbon, platinum group metal, gold, or the like can be used. Examples of the platinum group metal include platinum (Pt), palladium (Pd), ruthenium (Ru), rhodium (Rh), osmium (Os), and iridium (Ir), and platinum (Pt) is particularly preferable. The platinum group metal contained in the cathode may contain one or more of the above metal species. Further, the platinum group metal may be contained in the state of an alloy, a metal oxide or the like.
 カソードの形状は特に制限されず、使用目的や要求される性能により適宜選択することができる。形状としては、例えば、金属線、シート状、板状、棒状、メッシュ状などが挙げられる。具体的には、螺旋状白金線、白金板などを例示することができる。 The shape of the cathode is not particularly limited and can be appropriately selected depending on the purpose of use and required performance. Examples of the shape include a metal wire, a sheet shape, a plate shape, a rod shape, and a mesh shape. Specifically, a spiral platinum wire, a platinum plate, etc. can be illustrated.
 本発明の方法では、パルス電着処理を行う際の電解液として2価の鉛化合物及び無機酸を含む水溶液を使用する。2価の鉛化合物としては、硝酸鉛(Pb(NO)、塩化鉛(PbCl)、硫酸鉛(PbSO)などが挙げられる。また、無機酸としては、硝酸、硫酸、塩酸などが挙げられる。中でも、2価の鉛化合物として硝酸鉛を用いる場合には無機酸として硝酸を用いることが好ましく、2価の鉛化合物として塩化鉛を用いる場合には無機酸として塩酸を用いることが好ましく、2価の鉛化合物として硫酸鉛を用いる場合には硫酸を用いることが好ましい。 In the method of the present invention, an aqueous solution containing a divalent lead compound and an inorganic acid is used as an electrolytic solution for performing the pulse electrodeposition treatment. Examples of the divalent lead compound include lead nitrate (Pb (NO 3 ) 2 ), lead chloride (PbCl 2 ), lead sulfate (PbSO 4 ) and the like. Examples of the inorganic acid include nitric acid, sulfuric acid, hydrochloric acid and the like. Of these, nitric acid is preferably used as the inorganic acid when lead nitrate is used as the divalent lead compound, and hydrochloric acid is preferably used as the inorganic acid when lead chloride is used as the divalent lead compound. When lead sulfate is used as the lead compound, sulfuric acid is preferably used.
 電解液中の2価の鉛化合物の濃度は、パルス電着処理により上記した導電性基材上に二酸化鉛を析出させることができる範囲であれば特に制限されず、例えば0.01~10M程度、好ましくは0.01~5M程度、より好ましくは0.01~2M程度、特に好ましくは0.05~1M程度である。 The concentration of the divalent lead compound in the electrolytic solution is not particularly limited as long as lead dioxide can be deposited on the above-described conductive substrate by pulse electrodeposition treatment, and is, for example, about 0.01 to 10M. Preferably, it is about 0.01 to 5M, more preferably about 0.01 to 2M, and particularly preferably about 0.05 to 1M.
 電解液中の無機酸の濃度は特に制限されず、例えば0.01~10M程度、好ましくは0.01~5M程度、より好ましくは0.01~2M程度、特に好ましくは0.05~1M程度である。 The concentration of the inorganic acid in the electrolytic solution is not particularly limited, and is, for example, about 0.01 to 10M, preferably about 0.01 to 5M, more preferably about 0.01 to 2M, and particularly preferably about 0.05 to 1M. It is.
 電解液のpHは、パルス電着処理により上記した導電性基材上に二酸化鉛を析出させることができる範囲であれば特に制限されず、例えば6未満、好ましくは0~4程度、より好ましくは0~2程度である。 The pH of the electrolytic solution is not particularly limited as long as it can cause lead dioxide to be deposited on the above-described conductive substrate by pulse electrodeposition treatment. For example, it is less than 6, preferably about 0 to 4, more preferably It is about 0-2.
 本発明の方法では、導電性基材をアノードとして、2価の鉛化合物及び無機酸を含む水溶液中でパルス電着処理を行う。パルス電着処理を行うことにより、アノード及びカソードにおいて下記の(1)~(5)の反応が起こり、電解液中に含まれる2価の鉛イオンが電極に電着することにより、アノードである導電性基材上に二酸化鉛が析出する。 In the method of the present invention, pulse electrodeposition treatment is performed in an aqueous solution containing a divalent lead compound and an inorganic acid using the conductive substrate as an anode. By performing the pulse electrodeposition treatment, the following reactions (1) to (5) occur in the anode and the cathode, and the divalent lead ions contained in the electrolytic solution are electrodeposited on the electrode, whereby the anode. Lead dioxide is deposited on the conductive substrate.
(アノード反応)
O→OH+H+e (1)
Pb2++OH→Pb(OH)2+ (2)
Pb(OH)2++HO→Pb(OH) 2++H+e (3)
Pb(OH) 2+→PbO+2H (4)
(カソード反応)
2H+2e→H (5)
(Anode reaction)
H 2 O → OH · + H + + e (1)
Pb 2+ + OH · → Pb (OH) 2+ (2)
Pb (OH) 2+ + H 2 O → Pb (OH) 2 2+ + H + + e (3)
Pb (OH) 2 2+ → PbO 2 + 2H + (4)
(Cathode reaction)
2H + + 2e → H 2 (5)
 本発明の方法において行うパルス電着処理は、金属イオンの電着速度を制御できる電着処理であり、具体的には、パルス電圧法(PPM)、パルス電流法(PGM)、又は単極性パルス電圧法(UPED)である。 The pulse electrodeposition treatment performed in the method of the present invention is an electrodeposition treatment capable of controlling the electrodeposition rate of metal ions. Specifically, the pulse voltage method (PPM), the pulse current method (PGM), or the unipolar pulse Voltage method (UPED).
 パルス電圧法(PPM)は、高端電圧と低端電圧とを一定周期で印加する電着処理方法である。パルス電圧法の条件としては導電性基材上に二酸化鉛を析出させることができる条件であれば特に制限されず、例えば、高端印加電圧:1.5~5V、低端印加電圧:1V、パルス時間:0.1~3秒、パルス回数:100~1000回の条件で行うことができる。より具体的な例としては、図1に示すように、高端印加電圧:2V、低端印加電圧:1V、パルス時間:1秒の条件を挙げることができる。 The pulse voltage method (PPM) is an electrodeposition treatment method in which a high end voltage and a low end voltage are applied at a constant cycle. The conditions of the pulse voltage method are not particularly limited as long as lead dioxide can be deposited on the conductive substrate. For example, high-end applied voltage: 1.5 to 5 V, low-end applied voltage: 1 V, pulse The time can be 0.1 to 3 seconds, and the number of pulses can be 100 to 1000. As a more specific example, as shown in FIG. 1, there can be mentioned conditions of a high-end applied voltage: 2 V, a low-end applied voltage: 1 V, and a pulse time: 1 second.
 パルス電流法(PGM)は、高端電流と低端電流とを一定周期で印加する電着処理方法である。パルス電流法の条件としては導電性基材上に二酸化鉛を析出させることができる条件であれば特に制限されず、例えば、高端印加電流:1~500mA、低端印加電流:0mA、パルス時間:0.1~3秒、パルス回数:100~1000回の条件で行うことができる。より具体的な例としては、図2に示すように、高端印加電流:20mA、低端印加電流:0mA、パルス時間:1秒の条件を挙げることができる。 The pulse current method (PGM) is an electrodeposition treatment method in which a high-end current and a low-end current are applied at a constant cycle. The conditions of the pulse current method are not particularly limited as long as lead dioxide can be deposited on the conductive substrate. For example, high-end applied current: 1 to 500 mA, low-end applied current: 0 mA, pulse time: It can be performed under the conditions of 0.1 to 3 seconds and the number of pulses: 100 to 1000 times. As a more specific example, as shown in FIG. 2, there can be mentioned conditions of high-end applied current: 20 mA, low-end applied current: 0 mA, and pulse time: 1 second.
 単極性パルス電圧法(UPED)は、高端電圧の印加と開回路状態(電流:0A)とを一定周期で繰り返し行う電着処理方法である。単極性パルス電圧法の条件としては導電性基材上に二酸化鉛を析出させることができる条件であれば特に制限されず、例えば、高端印加電圧:0.5~3V、開回路状態(電流:0A)、パルス時間:0.1~3秒、パルス回数:100~1000回の条件で行うことができる。より具体的な例としては、図3に示すように、高端印加電圧:2V、開回路状態(電流:0A)、パルス時間:2.5秒の条件を挙げることができる。 The unipolar pulse voltage method (UPED) is an electrodeposition treatment method in which application of a high-end voltage and an open circuit state (current: 0 A) are repeated at a constant cycle. The conditions of the unipolar pulse voltage method are not particularly limited as long as lead dioxide can be deposited on the conductive substrate. For example, high-end applied voltage: 0.5 to 3 V, open circuit state (current: 0A), pulse time: 0.1 to 3 seconds, number of pulses: 100 to 1000 times. As a more specific example, as shown in FIG. 3, there can be mentioned conditions of a high-end applied voltage: 2 V, an open circuit state (current: 0 A), and a pulse time: 2.5 seconds.
 パルス電着処理を行う際の電解液の温度は特に制限されず、例えば0~50℃程度、好ましくは20~30℃である。 The temperature of the electrolytic solution during the pulse electrodeposition treatment is not particularly limited, and is, for example, about 0 to 50 ° C., preferably 20 to 30 ° C.
 また、パルス電着処理を行う際、アノード、カソード及び電解液の他、参照電極、電解装置、電源、制御ソフトウェア等が必要である。これらは、特に制限されず、目的に応じて公知のものを使用することができる。例えば、参照電極としては、銀/塩化銀電極(Ag/AgCl電極)、水銀/塩化水銀電極(Hg/HgCl電極)、標準水素電極などを使用することができる。 Further, when performing the pulse electrodeposition process, a reference electrode, an electrolyzer, a power source, control software, and the like are required in addition to the anode, the cathode, and the electrolytic solution. These are not particularly limited, and known ones can be used according to the purpose. For example, as the reference electrode, a silver / silver chloride electrode (Ag / AgCl electrode), a mercury / mercury chloride electrode (Hg / HgCl 2 electrode), a standard hydrogen electrode, or the like can be used.
 なお、本発明の方法では、パルス電着処理の種類に応じて、導電性基材上に析出する二酸化鉛の形状を制御することができる。限定的な解釈を望むものではないが、パルス電圧法又はパルス電流法による電着処理を行った場合には、導電性基材上に後述するナノロッド形状の二酸化鉛を析出させることができ、単極性パルス電圧法による電着処理を行った場合には、導電性基材上に後述するシート形状の二酸化鉛を析出させることができる。 In the method of the present invention, the shape of lead dioxide deposited on the conductive substrate can be controlled according to the type of pulse electrodeposition treatment. Although a limited interpretation is not desired, when an electrodeposition treatment by a pulse voltage method or a pulse current method is performed, nanorod-shaped lead dioxide, which will be described later, can be deposited on a conductive substrate. When the electrodeposition treatment by the polar pulse voltage method is performed, sheet-shaped lead dioxide described later can be deposited on the conductive substrate.
 また、本発明の方法は、上記したパルス電着処理を行った後、必要に応じて、二酸化鉛が析出した導電性基材を洗浄及び乾燥する工程を含むことができる。 Further, the method of the present invention can include a step of washing and drying the conductive substrate on which lead dioxide is deposited, if necessary, after performing the pulse electrodeposition treatment described above.
二酸化鉛電極
 本発明は、また、上記した本発明の方法により得られる二酸化鉛電極を包含する。上記した本発明の方法により得られる二酸化鉛電極は、導電性基材上に二酸化鉛が析出したものである。
Lead dioxide electrode The present invention also includes a lead dioxide electrode obtained by the method of the present invention described above. The lead dioxide electrode obtained by the method of the present invention described above is one in which lead dioxide is deposited on a conductive substrate.
 本発明の二酸化鉛電極において、二酸化鉛はナノロッド形状又はシート形状で導電性基材上に析出していることが好ましい。導電性基材上に二酸化鉛がナノロッド形状又はシート形状で析出することにより比表面積が大きくなることから、電極活性点の多い優れた電極となる。 In the lead dioxide electrode of the present invention, the lead dioxide is preferably deposited on the conductive substrate in a nanorod shape or a sheet shape. Since the specific surface area is increased when lead dioxide is deposited in the form of nanorods or sheets on the conductive base material, it is an excellent electrode with many electrode active points.
 本発明の二酸化鉛電極において、二酸化鉛がナノロッド形状で導電性基材上に析出している場合、当該ナノロッド一本のサイズについては特に制限されないが、例えば、幅が10~1000nm程度、長さが100~9000nm程度のもの、好ましくは、幅が100~900nm程度、長さが1000~9000nm程度のものが挙げられる。また、本発明の二酸化鉛電極において、二酸化鉛がシート形状で導電性基材上に析出している場合、当該シートのサイズについては特に制限されないが、例えば、幅が100nm~9000nm程度のものが挙げられる。 In the lead dioxide electrode of the present invention, when lead dioxide is deposited in the form of nanorods on a conductive substrate, the size of one nanorod is not particularly limited. For example, the width is about 10 to 1000 nm and the length is long. Is about 100 to 9000 nm, preferably about 100 to 900 nm in width and about 1000 to 9000 nm in length. Further, in the lead dioxide electrode of the present invention, when lead dioxide is deposited on the conductive substrate in the form of a sheet, the size of the sheet is not particularly limited, but for example, the width is about 100 nm to 9000 nm. Can be mentioned.
 本発明の二酸化鉛電極は、上記の通り、導電性基材上に二酸化鉛がナノロッド形状又はシート形状で存在していることにより比表面積が大きくなることから、電極活性点の多い優れた電極となる。そのため、当該二酸化鉛電極を水の電気分解におけるアノードとして用いる場合には、カソードにおける水素の発生量を増加させることができる。換言すると、本発明の二酸化鉛電極は、水の電気分解用電極又は水の電気分解用アノードとして好ましく使用することができる。 As described above, the lead dioxide electrode of the present invention has a large specific surface area due to the presence of lead dioxide in the form of a nanorod or a sheet on a conductive substrate. Become. Therefore, when the lead dioxide electrode is used as an anode in water electrolysis, the amount of hydrogen generated at the cathode can be increased. In other words, the lead dioxide electrode of the present invention can be preferably used as an electrode for water electrolysis or an anode for water electrolysis.
水素の製造方法
 本発明は、また、上記した二酸化鉛電極を用いた、水の電気分解による水素の製造方法を包含する。本発明の水素の製造方法は、上記した二酸化鉛電極をアノードとして水溶液中で電解処理を行う工程を含む。
Method for Producing Hydrogen The present invention also includes a method for producing hydrogen by electrolysis of water using the lead dioxide electrode described above. The method for producing hydrogen of the present invention includes a step of performing electrolytic treatment in an aqueous solution using the above-described lead dioxide electrode as an anode.
 本発明の水素の製造方法において用いるカソードとしては、一般に水の電気分解においてカソードとして用いられる電極であれば特に制限されず、公知のものを使用することができる。例えば、炭素、白金、金などの貴金属などを素材とする電極を用いることができる。 The cathode used in the method for producing hydrogen of the present invention is not particularly limited as long as it is an electrode generally used as a cathode in water electrolysis, and a known one can be used. For example, an electrode made of a noble metal such as carbon, platinum, or gold can be used.
 また、本発明の水素の製造方法において用いる水溶液としては、一般に水の電気分解において用いられる成分を含む水溶液であれば特に制限されず、公知のものを使用することができる。また、ヨウ素臭素などのハロゲン、硫酸イオンなどを含むこともできる。なお、ヨウ素を含む水溶液を用いる場合、アノードにおいてヨウ素酸イオンが生成される。 The aqueous solution used in the method for producing hydrogen of the present invention is not particularly limited as long as it is an aqueous solution containing components generally used in water electrolysis, and known ones can be used. Moreover, halogens, such as iodine bromine, a sulfate ion, etc. can also be included. When an aqueous solution containing iodine is used, iodate ions are generated at the anode.
 また、電解処理の条件についても特に制限されず、目的に合わせて適宜選択することができる。 Also, the conditions for the electrolytic treatment are not particularly limited, and can be appropriately selected according to the purpose.
 本発明の水素の製造方法の具体的な例を挙げると、上記した二酸化鉛電極をアノード、白金板をカソードとし、ヨウ素粉末を溶解した水溶液を電解液として、アノードに1V以上の電圧を印加することにより、アノード及びカソードにおいて下記(6)及び(7)の反応が起こり、カソードにおいて水素を生成させることができる。また、アノードへの印加電圧を増加させることにより、水素の生成速度を上昇させることができる。さらに、アノードにおいては、ヨウ素酸イオン(IO )が生成されることから、ヨウ素酸(HIO)の製造方法としても有用である。 As a specific example of the method for producing hydrogen according to the present invention, the above-mentioned lead dioxide electrode is used as an anode, a platinum plate is used as a cathode, an aqueous solution in which iodine powder is dissolved is used as an electrolytic solution, and a voltage of 1 V or more is applied to the anode. Thus, the following reactions (6) and (7) occur at the anode and the cathode, and hydrogen can be generated at the cathode. In addition, the rate of hydrogen generation can be increased by increasing the voltage applied to the anode. Furthermore, since iodate ions (IO 3 ) are produced at the anode, it is also useful as a method for producing iodic acid (HIO 3 ).
(アノード反応)
6HO+I→12H+2IO +10e (6)
(カソード反応)
2H+2e→H
(Anode reaction)
6H 2 O + I 2 → 12H + + 2IO 3 + 10e (6)
(Cathode reaction)
2H + + 2e → H 2
 本発明の水素の製造方法により製造された水素は、燃料電池や水素エンジンなどの燃料として好ましく使用することができる。 The hydrogen produced by the method for producing hydrogen of the present invention can be preferably used as a fuel for fuel cells, hydrogen engines and the like.
 以下、製造例及び試験例を挙げて本発明をさらに詳細に説明するが、本発明は下記の例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to production examples and test examples, but the present invention is not limited to the following examples.
製造例1:パルス電圧法(PPM)による電極の作製
 本製造例では、図4に示す電解装置を用いて、以下の手順に従ってパルス電圧法(PPM)により電着処理を行った。
Production Example 1: Production of Electrode by Pulse Voltage Method (PPM) In this production example, electrodeposition treatment was performed by the pulse voltage method (PPM) according to the following procedure using the electrolytic apparatus shown in FIG.
 電解液として、0.1M硝酸鉛及び0.1M硝酸を含む水溶液を用いた。また、作用電極としてカーボンペーパ(1cm×1cm;東レ社製)、対電極として螺旋状白金線(直径1mm、長さ15mm;BAS社製)、参照電極としてAg/AgCl電極(BAS社製)をそれぞれ用いた。また、電気化学測定装置(プリンストンアプライドリサーチ社製)を用い、制御ソフトウェアとしてVersasutudio(プリンストンアプライドリサーチ社製)を用いた。 As an electrolytic solution, an aqueous solution containing 0.1 M lead nitrate and 0.1 M nitric acid was used. In addition, carbon paper (1 cm × 1 cm; manufactured by Toray Industries, Inc.) as a working electrode, a spiral platinum wire (diameter 1 mm, length 15 mm; manufactured by BAS) as a counter electrode, and an Ag / AgCl electrode (manufactured by BAS) as a reference electrode Each was used. In addition, an electrochemical measurement device (Princeton Applied Research) was used, and Versastudio (Princeton Applied Research) was used as control software.
 カーボンペーパがアノード、螺旋状白金線がカソードとなるように各電極を電源に接続し、高端印加電圧:2V、低端印加電圧:1V、パルス時間:1秒、パルス回数:200回の条件で電解処理を行った。なお、電解液の温度は、25℃とした。電着処理後、カーボンペーパを洗浄及び乾燥し、走査型電子顕微鏡(SEM)でカーボンペーパの表面を観察した。SEM画像を図5に示す。 Each electrode is connected to the power supply so that the carbon paper is the anode and the spiral platinum wire is the cathode, and the high-end applied voltage is 2 V, the low-end applied voltage is 1 V, the pulse time is 1 second, and the number of pulses is 200 times. Electrolytic treatment was performed. The temperature of the electrolytic solution was 25 ° C. After the electrodeposition treatment, the carbon paper was washed and dried, and the surface of the carbon paper was observed with a scanning electron microscope (SEM). The SEM image is shown in FIG.
 図5から明らかなように、パルス電圧法により電着処理を行うことにより、カーボンペーパ上に、一本あたり、幅:約300nm、長さ:約5000nmのナノロッド形状の二酸化鉛が均一に析出していることが分かった。 As is apparent from FIG. 5, by performing the electrodeposition treatment by the pulse voltage method, nanorod-shaped lead dioxide having a width of about 300 nm and a length of about 5000 nm is uniformly deposited on the carbon paper. I found out.
製造例2:パルス電流法(PGM)による電極の作製
 本製造例では、図4に示す電解装置を用いて、以下の手順に従ってパルス電流法(PGM)により電着処理を行った。なお、電解液、作用電極、対電極、参照電極、電気化学測定装置、及び制御ソフトウェアは製造例1と同様のものを用いた。
Production Example 2: Production of Electrode by Pulse Current Method (PGM) In this production example, electrodeposition treatment was performed by the pulse current method (PGM) according to the following procedure using the electrolytic apparatus shown in FIG. Note that the same electrolyte solution, working electrode, counter electrode, reference electrode, electrochemical measurement device, and control software as those in Production Example 1 were used.
 カーボンペーパがアノード、螺旋状白金線がカソードとなるように各電極を電源に接続し、高端印加電流:20mA、低端印加電流:0mA、パルス時間:1秒、パルス回数:200回の条件で電着処理を行った。なお、電解液の温度は、25℃とした。電着処理後、カーボンペーパを洗浄及び乾燥し、走査型電子顕微鏡(SEM)でカーボンペーパの表面を観察した。SEM画像を図6に示す。 Each electrode is connected to a power source so that the carbon paper is the anode and the spiral platinum wire is the cathode, under the conditions of high-end applied current: 20 mA, low-end applied current: 0 mA, pulse time: 1 second, number of pulses: 200 times Electrodeposition treatment was performed. The temperature of the electrolytic solution was 25 ° C. After the electrodeposition treatment, the carbon paper was washed and dried, and the surface of the carbon paper was observed with a scanning electron microscope (SEM). An SEM image is shown in FIG.
 図6から明らかなように、パルス電流法により、カーボンペーパ上に、一本あたり幅:約300nm、長さ:約1000nmのナノロッド形状の二酸化鉛が均一に析出していることが分かった。 As is apparent from FIG. 6, it was found that nanorod-shaped lead dioxide having a width of about 300 nm and a length of about 1000 nm was uniformly deposited on the carbon paper by the pulse current method.
製造例3:単極性パルス電圧法(UPED)による電極の作製
 本製造例では、図4に示す電解装置を用いて、以下の手順に従って単極性パルス電圧法(UPED)により電着処理を行った。なお、電解液、作用電極、対電極、参照電極、電気化学測定装置、及び制御ソフトウェアは製造例1と同様のものを用いた。
Production Example 3: Production of Electrode by Unipolar Pulse Voltage Method (UPED) In this production example, electrodeposition treatment was performed by the unipolar pulse voltage method (UPED) according to the following procedure using the electrolytic apparatus shown in FIG. . Note that the same electrolyte solution, working electrode, counter electrode, reference electrode, electrochemical measurement device, and control software as those in Production Example 1 were used.
 カーボンペーパがアノード、螺旋状白金線がカソードとなるように各電極を電源に接続し、高端印加電圧:2V、開回路状態(電流:0A)、パルス時間:1秒、パルス回数:200回の条件で電解処理を行った。なお、電解液の温度は、25℃とした。電着処理後、カーボンペーパを洗浄及び乾燥し、走査型電子顕微鏡(SEM)でカーボンペーパの表面を観察した。SEM画像を図7に示す。 Each electrode is connected to the power supply so that the carbon paper is the anode and the spiral platinum wire is the cathode, the high-end applied voltage: 2 V, the open circuit state (current: 0 A), the pulse time: 1 second, the number of pulses: 200 times Electrolytic treatment was performed under conditions. The temperature of the electrolytic solution was 25 ° C. After the electrodeposition treatment, the carbon paper was washed and dried, and the surface of the carbon paper was observed with a scanning electron microscope (SEM). The SEM image is shown in FIG.
 図7から明らかなように、単極性パルス電圧法により、カーボンペーパ上にシート形状の二酸化鉛が析出していることが分かった。 As is clear from FIG. 7, it was found that sheet-shaped lead dioxide was deposited on the carbon paper by the unipolar pulse voltage method.
製造例4:サイクリックボルタンメトリー法(CV)による電極の作製
 本製造例では、図4に示す電解装置を用いて、以下の手順に従ってサイクリックボルタンメトリー法(CV)により電着処理を行った。なお、電解液、作用電極、対電極、参照電極、電気化学測定装置、及び制御ソフトウェアは製造例1と同様のものを用いた。
Production Example 4: Production of Electrode by Cyclic Voltammetry (CV) In this production example, electrodeposition was performed by cyclic voltammetry (CV) according to the following procedure using the electrolytic apparatus shown in FIG. Note that the same electrolyte solution, working electrode, counter electrode, reference electrode, electrochemical measurement device, and control software as those in Production Example 1 were used.
 カーボンペーパがアノード、螺旋状白金線がカソードとなるように各電極を電源に接続し、電圧範囲:0V~2V、走査速度:50mV/s、サイクル回数:10回の条件で電解処理を行った。なお、電解液の温度は、25℃とした。電着処理後、カーボンペーパを洗浄及び乾燥した後、走査型電子顕微鏡(SEM)でカーボンペーパの表面を観察した。SEM画像を図8に示す。 Each electrode was connected to a power source such that the carbon paper was the anode and the spiral platinum wire was the cathode, and the electrolytic treatment was performed under the conditions of voltage range: 0 V to 2 V, scanning speed: 50 mV / s, cycle number: 10 times. . The temperature of the electrolytic solution was 25 ° C. After the electrodeposition treatment, the carbon paper was washed and dried, and then the surface of the carbon paper was observed with a scanning electron microscope (SEM). An SEM image is shown in FIG.
 図8から明らかなように、サイクリックボルタンメトリー法により、カーボンペーパ上に球体形状の二酸化鉛が析出していることが分かった。 As is clear from FIG. 8, it was found that spherical lead dioxide was deposited on the carbon paper by the cyclic voltammetry method.
製造例5:定電流法(GM)による電極の作製
 本製造例では、図4に示す電解装置を用いて、以下の手順に従って定電流法(GM)により電着処理を行った。なお、電解液、作用電極、対電極、参照電極、電気化学測定装置、及び制御ソフトウェアは製造例1と同様のものを用いた。
Production Example 5: Production of Electrode by Constant Current Method (GM) In this production example, electrodeposition treatment was performed by the constant current method (GM) using the electrolytic apparatus shown in FIG. 4 according to the following procedure. Note that the same electrolyte solution, working electrode, counter electrode, reference electrode, electrochemical measurement device, and control software as those in Production Example 1 were used.
 カーボンペーパがアノード、螺旋状白金線がカソードとなるように各電極を電源に接続し、電流:20mA、電解時間:200秒の条件で電着処理を行った。なお、電解液の温度は、25℃とした。電着処理後、カーボンペーパを洗浄及び乾燥し、走査型電子顕微鏡(SEM)でカーボンペーパの表面を観察した。SEM画像を図9に示す。 Each electrode was connected to a power source such that the carbon paper was the anode and the spiral platinum wire was the cathode, and the electrodeposition treatment was performed under the conditions of current: 20 mA and electrolysis time: 200 seconds. The temperature of the electrolytic solution was 25 ° C. After the electrodeposition treatment, the carbon paper was washed and dried, and the surface of the carbon paper was observed with a scanning electron microscope (SEM). The SEM image is shown in FIG.
 図9から明らかなように、定電流法により、カーボンペーパ上に緻密な網状の二酸化鉛が析出していることが分かった。 As is clear from FIG. 9, it was found that dense net-like lead dioxide was deposited on the carbon paper by the constant current method.
製造例6:定電圧法(PM)による電極の作製
 本製造例では、図4に示す電解装置を用いて、以下の手順に従って定電圧法(GM)により電着処理を行った。なお、電解液、作用電極、対電極、参照電極、電気化学測定装置、及び制御ソフトウェアは製造例1と同様のものを用いた。
Production Example 6 Production of Electrode by Constant Voltage Method (PM) In this production example, electrodeposition treatment was performed by the constant voltage method (GM) according to the following procedure using the electrolytic apparatus shown in FIG. Note that the same electrolyte solution, working electrode, counter electrode, reference electrode, electrochemical measurement device, and control software as those in Production Example 1 were used.
 カーボンペーパがアノード、螺旋状白金線がカソードとなるように各電極を電源に接続し、電圧:2V、電解時間:200秒の条件で電着処理を行った。なお、電解液の温度は、25℃とした。電着処理後、カーボンペーパを洗浄及び乾燥し、走査型電子顕微鏡(SEM)でカーボンペーパの表面を観察した。SEM画像を図10に示す。 Each electrode was connected to a power source such that the carbon paper was the anode and the spiral platinum wire was the cathode, and the electrodeposition treatment was performed under the conditions of voltage: 2 V and electrolysis time: 200 seconds. The temperature of the electrolytic solution was 25 ° C. After the electrodeposition treatment, the carbon paper was washed and dried, and the surface of the carbon paper was observed with a scanning electron microscope (SEM). An SEM image is shown in FIG.
 図10から明らかなように、定電圧法により、カーボンペーパ上に粒子状の二酸化鉛が析出していることが分かった。 As is clear from FIG. 10, it was found that particulate lead dioxide was deposited on the carbon paper by the constant voltage method.
試験例:二酸化鉛電極の性能評価試験
 本試験例では、図4に示す電解装置を用いて、以下の手順に従って製造例1~6で作製した二酸化鉛電極の性能(水素発生能)評価試験を行った。また、対照として、白金板についても同様の試験を行った。
Test Example: Performance Evaluation Test of Lead Dioxide Electrode In this test example, the performance (hydrogen generation ability) evaluation test of the lead dioxide electrode produced in Production Examples 1 to 6 was performed according to the following procedure using the electrolytic apparatus shown in FIG. went. As a control, the same test was performed on a platinum plate.
 電解質水溶液として、0.04Mヨウ素(I)及び0.2M臭素(Br)を含む水溶液を用いた。作用電極として製造例1~6で作製した二酸化鉛電極のいずれか又は白金板(2cm×2cm;BAS社製)を、対電極として螺旋状白金線(直径1mm、長さ15mm;BAS社製)を、参照電極としてAg/AgCl電極(BAS社製)をそれぞれ用いた。また、電気化学測定装置(プリンストンアプライドリサーチ社製)を用い、制御及び測定ソフトウェアとしてVersasutudio(プリンストンアプライドリサーチ社製)を用いた。 An aqueous solution containing 0.04 M iodine (I 2 ) and 0.2 M bromine (Br 2 ) was used as the electrolyte aqueous solution. One of the lead dioxide electrodes prepared in Production Examples 1 to 6 as a working electrode or a platinum plate (2 cm × 2 cm; manufactured by BAS), and a spiral platinum wire (diameter 1 mm, length 15 mm; manufactured by BAS) as a counter electrode As a reference electrode, an Ag / AgCl electrode (manufactured by BAS) was used. In addition, an electrochemical measurement device (manufactured by Princeton Applied Research) was used, and Versastudio (manufactured by Princeton Applied Research) was used as control and measurement software.
 上記した作用電極がアノード、対電極がカソードとなるように各電極を電源に接続し、印加電圧:0.8~2V、走査速度:2mV/sの条件で10分間電解処理を行い、ターフェル分極曲線を用いて各電極の性能を評価した。試験結果を図11に示す。 Each electrode is connected to a power source so that the working electrode is an anode and the counter electrode is a cathode, and electrolysis is performed for 10 minutes under the conditions of applied voltage: 0.8 to 2 V, scanning speed: 2 mV / s, and Tafel polarization. The performance of each electrode was evaluated using a curve. The test results are shown in FIG.
 図11から明らかなように、印加電圧が約1.2Vを超えると、カソードにおける水素の発生反応が開始されることが確認された。また、製造例1~6で作製した二酸化鉛電極を用いた場合にはいずれも、印加電圧の増加とともにカソードにおける水素発生量が増加することが確認された。中でも、アノードとして製造例1で作製した二酸化鉛電極及び製造例3で作製した二酸化鉛電極を用いた場合には、白金を用いた場合よりも10分間の電解処理によりカソードにおいて発生した水素量が多く、また、アノードとして製造例2で作成した二酸化鉛電極を用いた場合には、10分間の電解処理によりカソードにおいて発生した水素量が白金を用いた場合と同程度であることが確認された。以上のことから、パルス電流法(PGM)により作製された二酸化鉛電極は、白金と同程度のカソードにおける水素発生量を達成できる優れた電極であること、さらに、パルス電圧法(PPM)及び単極性パルス電圧法(UPED)により作製された二酸化鉛電極は、白金よりもカソードにおける水素発生量の高い非常に優れた電極であることが分かった。 As is clear from FIG. 11, it was confirmed that when the applied voltage exceeds about 1.2 V, the hydrogen generation reaction at the cathode is started. In addition, it was confirmed that when the lead dioxide electrodes prepared in Production Examples 1 to 6 were used, the amount of hydrogen generated at the cathode increased as the applied voltage increased. In particular, when the lead dioxide electrode produced in Production Example 1 and the lead dioxide electrode produced in Production Example 3 were used as the anode, the amount of hydrogen generated at the cathode by the electrolytic treatment for 10 minutes was higher than when platinum was used. In addition, when the lead dioxide electrode prepared in Production Example 2 was used as the anode, it was confirmed that the amount of hydrogen generated at the cathode by electrolytic treatment for 10 minutes was almost the same as when platinum was used. . From the above, the lead dioxide electrode produced by the pulse current method (PGM) is an excellent electrode capable of achieving the same amount of hydrogen generation at the cathode as that of platinum. Furthermore, the pulse voltage method (PPM) It has been found that the lead dioxide electrode produced by the polar pulse voltage method (UPED) is a very excellent electrode with a higher amount of hydrogen generation at the cathode than platinum.
 なお、本発明者らは、このように電極の製法の差異により水素発生能に差異が生じる理由として、パルス電圧法(PPM)及びパルス電流法(PGM)により作製された電極ではいずれも析出した二酸化鉛がナノロッド形状であり、単極性パルス電圧法(UPED)により作製された電極では析出した二酸化鉛がシート形状であったように、製法の差異により析出する二酸化鉛の形状が異なり、さらに、これらの製法により析出した二酸化鉛の形状はいずれも比表面積が大きく、二酸化鉛の電極活性点が多いことが理由のひとつであると考えている。 In addition, as for the reason why the present inventors made a difference in the hydrogen generation ability due to the difference in the electrode manufacturing method, both of the electrodes produced by the pulse voltage method (PPM) and the pulse current method (PGM) were deposited. The lead dioxide is in the form of nanorods, and the electrode produced by the unipolar pulse voltage method (UPED) is different in the form of lead dioxide due to the difference in the production method, as the precipitated lead dioxide is in the form of a sheet, One of the reasons is that the shape of lead dioxide deposited by these production methods has a large specific surface area and a large number of electrode active sites of lead dioxide.

Claims (10)

  1. 導電性基材をアノードとして、2価の鉛化合物及び無機酸を含む水溶液中でパルス電着処理を行う工程を含む、二酸化鉛電極の製造方法。 A method for producing a lead dioxide electrode, comprising a step of performing pulse electrodeposition treatment in an aqueous solution containing a divalent lead compound and an inorganic acid using an electroconductive substrate as an anode.
  2. 前記パルス電着処理が、パルス電圧法、パルス電流法、又は単極性パルス電圧法である、請求項1に記載の方法。 The method according to claim 1, wherein the pulse electrodeposition process is a pulse voltage method, a pulse current method, or a unipolar pulse voltage method.
  3. 前記パルス電圧法が、高端印加電圧:1.5~5V、低端印加電圧:1V、パルス時間:0.1~3秒、及びパルス回数:100~1000回の条件で行う電着処理である、請求項2に記載の方法。 The pulse voltage method is an electrodeposition process performed under the conditions of a high-end applied voltage: 1.5 to 5 V, a low-end applied voltage: 1 V, a pulse time: 0.1 to 3 seconds, and the number of pulses: 100 to 1000 times. The method according to claim 2.
  4. 前記パルス電流法が、高端印加電流:1~500mA、低端印加電流:0mA、パルス時間:0.1~3秒、及びパルス回数:100~1000回の条件で行う電着処理である、請求項2に記載の方法。 The pulse current method is an electrodeposition process performed under the conditions of a high-end applied current: 1 to 500 mA, a low-end applied current: 0 mA, a pulse time: 0.1 to 3 seconds, and the number of pulses: 100 to 1000 times. Item 3. The method according to Item 2.
  5. 前記単極性パルス電圧法が、高端印加電圧:0.5~3V、開回路状態(電流:0A)、パルス時間:0.1~3秒、及びパルス回数:100~1000回の条件で行う電着処理である、請求項2に記載の方法。 The unipolar pulse voltage method is performed under the conditions of high-end applied voltage: 0.5 to 3 V, open circuit state (current: 0 A), pulse time: 0.1 to 3 seconds, and number of pulses: 100 to 1000 times. The method according to claim 2, which is a landing process.
  6. 請求項1~5のいずれかに記載の方法により製造された二酸化鉛電極。 A lead dioxide electrode produced by the method according to any one of claims 1 to 5.
  7. 導電性基材上に、ナノロッド形状の二酸化鉛が形成されていることを特徴とする、二酸化鉛電極。 A lead dioxide electrode, characterized in that nanorod-shaped lead dioxide is formed on a conductive substrate.
  8. 導電性基材上に、シート形状の二酸化鉛が形成されていることを特徴とする、二酸化鉛電極。 A lead dioxide electrode, wherein sheet-shaped lead dioxide is formed on a conductive substrate.
  9. 水の電気分解用電極である、請求項6~8のいずれかに記載の二酸化鉛電極。 The lead dioxide electrode according to any one of claims 6 to 8, which is an electrode for electrolysis of water.
  10. 請求項6~8のいずれかに記載の二酸化鉛電極をアノードとして、水溶液中で電解処理を行う工程を含む、水素の製造方法。 A method for producing hydrogen, comprising a step of performing an electrolytic treatment in an aqueous solution using the lead dioxide electrode according to any one of claims 6 to 8 as an anode.
PCT/JP2015/082508 2015-11-19 2015-11-19 Method for manufacturing lead dioxide electrode WO2017085829A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017551459A JP6384887B2 (en) 2015-11-19 2015-11-19 Method for producing lead dioxide electrode
PCT/JP2015/082508 WO2017085829A1 (en) 2015-11-19 2015-11-19 Method for manufacturing lead dioxide electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082508 WO2017085829A1 (en) 2015-11-19 2015-11-19 Method for manufacturing lead dioxide electrode

Publications (1)

Publication Number Publication Date
WO2017085829A1 true WO2017085829A1 (en) 2017-05-26

Family

ID=58719138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082508 WO2017085829A1 (en) 2015-11-19 2015-11-19 Method for manufacturing lead dioxide electrode

Country Status (2)

Country Link
JP (1) JP6384887B2 (en)
WO (1) WO2017085829A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7337338B2 (en) 2018-08-24 2023-09-04 時空化学株式会社 Method for producing catalyst for removing VOC and method for removing VOC

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108103518B (en) * 2018-01-23 2023-04-18 陕西师范大学 Composite electrode device for repairing white lead on surface of cultural relic and preparation method and repair method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243291A (en) * 1987-03-30 1988-10-11 Agency Of Ind Science & Technol Production of anode for ion exchange membrane
CN102534654A (en) * 2010-12-17 2012-07-04 北京有色金属研究总院 Method for manufacturing lead dioxide electrode plate on metal substrate
JP2014141711A (en) * 2013-01-24 2014-08-07 Toppan Printing Co Ltd Production method of microstructure, and composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243291A (en) * 1987-03-30 1988-10-11 Agency Of Ind Science & Technol Production of anode for ion exchange membrane
CN102534654A (en) * 2010-12-17 2012-07-04 北京有色金属研究总院 Method for manufacturing lead dioxide electrode plate on metal substrate
JP2014141711A (en) * 2013-01-24 2014-08-07 Toppan Printing Co Ltd Production method of microstructure, and composite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.MUKIMIN ET AL.: "Oxidation of remazol brilliant bluer(RB.19)with in situ electro-generated active chlorine using Ti/PbO2 electrode", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 95, 19 July 2012 (2012-07-19), pages 1 - 9, XP028500971 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7337338B2 (en) 2018-08-24 2023-09-04 時空化学株式会社 Method for producing catalyst for removing VOC and method for removing VOC

Also Published As

Publication number Publication date
JPWO2017085829A1 (en) 2018-03-29
JP6384887B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP5806618B2 (en) Method for reducing graphene oxide and method for producing electrode material using the method
KR20020042650A (en) Method of preparing catalyzed porous carbon electrode for fuel cell
KR102200474B1 (en) Bifunctional electrocatalyst for water electrolysis with high oxygen vacancy and nanoporous structure, a manufacturing method thereof, and battery for water electrolysis including the electrocatalyst
WO2017154134A1 (en) Method for manufacturing electrode for electrolysis of water
Li et al. Novel phosphorus-doped PbO 2–MnO 2 bicontinuous electrodes for oxygen evolution reaction
KR101566458B1 (en) Method for improving activity of oxygen evolution reaction and Ni catalysts used therein
JP7353599B2 (en) Electrode catalyst and its manufacturing method, and hydrogen manufacturing method
KR102237529B1 (en) Bifunctional electrocatalyst for water electrolysis with high oxygen vacancy and nanoporous structure, a manufacturing method thereof, and battery for water electrolysis including the electrocatalyst
JP5664370B2 (en) Method for producing catalyst fine particles
WO2015133127A1 (en) Carbon dioxide reduction electrode and carbon dioxide reduction device in which same is used
JP7125707B2 (en) Electrode manufacturing method, electrode and hydrogen manufacturing method
JP6384887B2 (en) Method for producing lead dioxide electrode
JP2014229516A (en) Method of producing catalyst for fuel cell
WO2013005252A1 (en) Electrode for electrolysis, method for producing same, and electrolysis apparatus
JP7142862B2 (en) Electrode manufacturing method, electrode and hydrogen manufacturing method
WO2012126062A1 (en) Catalysts and methods of use
KR101860763B1 (en) Non-precious Metal Electrocatalyst, Proton Exchange Membrane Water Electrolyzer Using The Same And Method For Preparing The Same
WO2014136798A1 (en) Catalyst for solid polymer fuel cell cathodes and method for producing catalyst for solid polymer fuel cell cathodes
KR20170106608A (en) The catalyst for reducing carbon dioxide and oxydizing formic acid and preparation therof
Garakani et al. Electrodeposition of nano-structured PbO2 on glassy carbon electrodes by FFT continuous cyclic voltammetry
JP2008138282A (en) Anode for alkaline electrolysis
CN108736029B (en) Hollow sphere chain structure silver-platinum ruthenium composite material and application thereof in electrocatalytic oxidation of ethanol
JP2015199002A (en) Apparatus and method for production of core-shell catalyst
Abdullah Mirzaie et al. High-Stability Platinum Nano-Electrocatalyst Synthesized by Cyclic Voltammetry for Oxygen Reduction Reaction
JP7367435B2 (en) electrochemical reaction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551459

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908769

Country of ref document: EP

Kind code of ref document: A1