JP7367435B2 - electrochemical reaction device - Google Patents

electrochemical reaction device Download PDF

Info

Publication number
JP7367435B2
JP7367435B2 JP2019180302A JP2019180302A JP7367435B2 JP 7367435 B2 JP7367435 B2 JP 7367435B2 JP 2019180302 A JP2019180302 A JP 2019180302A JP 2019180302 A JP2019180302 A JP 2019180302A JP 7367435 B2 JP7367435 B2 JP 7367435B2
Authority
JP
Japan
Prior art keywords
electrode
oxidation reaction
oxidation
reaction
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019180302A
Other languages
Japanese (ja)
Other versions
JP2021055150A (en
Inventor
博昭 若山
直彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2019180302A priority Critical patent/JP7367435B2/en
Publication of JP2021055150A publication Critical patent/JP2021055150A/en
Application granted granted Critical
Publication of JP7367435B2 publication Critical patent/JP7367435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、電気化学反応デバイスに関する。 The present invention relates to electrochemical reaction devices.

酸化反応用電極と還元反応用電極との間を電気的に接続し、バイアス電圧を印加することで、酸化反応用電極で水を酸化して酸素を生成し、還元反応用電極で二酸化炭素を還元してギ酸等を生成する電気化学反応デバイスが知られている(例えば、特許文献1)。 By electrically connecting the oxidation reaction electrode and the reduction reaction electrode and applying a bias voltage, the oxidation reaction electrode oxidizes water to generate oxygen, and the reduction reaction electrode generates carbon dioxide. Electrochemical reaction devices that generate formic acid and the like by reduction are known (for example, Patent Document 1).

また、非特許文献1には、マンガン酸化物を酸化触媒として使用した酸化反応用電極が開示されている。 Further, Non-Patent Document 1 discloses an electrode for oxidation reaction using manganese oxide as an oxidation catalyst.

また、非特許文献2には、酸化イリジウムを酸化触媒として使用した酸化反応用電極が開示されている。 Further, Non-Patent Document 2 discloses an electrode for an oxidation reaction using iridium oxide as an oxidation catalyst.

特開2017-125242号公報Japanese Patent Application Publication No. 2017-125242

Dr. Zaki N. Zahran, Dr. Eman A. Mohamed, Dr. Takehiro Ohta, Prof. Yoshinori Naruta, ”Electrocatalytic Water Oxidation by a Highly Active and Robust α-Mn2O3Thin Film Sintered on a Fluorine-Doped Tin Oxide Electrode”, ChemCatChem, Vol.8, No.3, pp.532-535, 2016Dr. Zaki N. Zahran, Dr. Eman A. Mohamed, Dr. Takehiro Ohta, Prof. Yoshinori Naruta, “Electrocatalytic Water Oxidation by a Highly Active and Robust α-Mn2O3Thin Film Sintered on a Fluorine-Doped Tin Oxide Electrode”, ChemCatChem , Vol.8, No.3, pp.532-535, 2016 Takeo Arai et al, ”A monolithic device for CO2 photoreduction to generate liquid organic substances in a single-compartment reactor”, Energy Environ. Sci., 2-15, 8, 1998-2002Takeo Arai et al, “A monolithic device for CO2 photoreduction to generate liquid organic substances in a single-compartment reactor”, Energy Environ. Sci., 2-15, 8, 1998-2002

ところで、非特許文献1や2に記載の酸化反応用電極では、酸化触媒の触媒活性が低いため、過電圧が高くなり、良好な電極反応を行うことが困難である。すなわち、電圧を高くしないと、酸化反応用電極での電極反応が起こらず、また、電極反応が起こっても、酸化反応用電極に流れる電流が小さい。その結果、電気化学反応デバイスの消費電力が増大する場合があり、また、電極反応を効率良く行うために、触媒量を増やしたり電極面積を大きくしたりする必要があり、高コスト化やデバイスの大型化等が懸念される。 By the way, in the electrodes for oxidation reactions described in Non-Patent Documents 1 and 2, the catalytic activity of the oxidation catalyst is low, so the overvoltage becomes high and it is difficult to perform a good electrode reaction. That is, unless the voltage is increased, no electrode reaction will occur at the oxidation reaction electrode, and even if the electrode reaction occurs, the current flowing through the oxidation reaction electrode will be small. As a result, the power consumption of the electrochemical reaction device may increase, and in order to perform the electrode reaction efficiently, it is necessary to increase the amount of catalyst or enlarge the electrode area, which increases the cost and reduces the device size. There are concerns about larger size, etc.

そこで、本発明の目的は、低い電圧で酸化反応用電極での電極反応を起こし、酸化反応用電極に流れる電流を増加させることが可能な電気化学反応デバイスを提供することである。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an electrochemical reaction device capable of causing an electrode reaction at an oxidation reaction electrode at a low voltage and increasing the current flowing through the oxidation reaction electrode.

本発明の実施形態に係る電気化学反応デバイスは、水を酸化する酸化反応用電極と、炭素化合物又はプロトンを還元する還元反応用電極と、pH4以上の電解液と、を備え、前記酸化反応用電極は、酸化触媒を有し、前記酸化触媒は、MTiP(MはNi、Fe、Cy、Co、Mnからなる群から選択される)で表されるチタンリン含有化合物粒子及び酸化イリジウム粒子のうちの少なくともいずれか1つと、酸化ルテニウム粒子と、を含む。 An electrochemical reaction device according to an embodiment of the present invention includes an electrode for an oxidation reaction that oxidizes water, an electrode for a reduction reaction that reduces a carbon compound or a proton, and an electrolytic solution with a pH of 4 or more, The electrode has an oxidation catalyst, and the oxidation catalyst is selected from titanium phosphorus-containing compound particles represented by MTiP (M is selected from the group consisting of Ni, Fe, Cy, Co, and Mn) and iridium oxide particles . At least one of them and ruthenium oxide particles are included.

また、前記電気化学反応デバイスにおいて、前記酸化触媒は、前記酸化ルテニウム粒子とNiTiPで表される前記チタンリン含有化合物粒子とを含む、前記酸化ルテニウム粒子とFeTiPで表される前記チタンリン含有化合物粒子とを含む、前記酸化ルテニウム粒子と前記NiTiPで表される前記チタンリン含有化合物粒子と前記酸化イリジウム粒子とを含む、又は前記酸化ルテニウム粒子と前記FeTiPで表される前記チタンリン含有化合物粒子と前記酸化イリジウム粒子とを含むことが好ましい。 Further, in the electrochemical reaction device, the oxidation catalyst includes the ruthenium oxide particles and the titanium phosphorus-containing compound particles represented by NiTiP, and the ruthenium oxide particles and the titanium phosphorus-containing compound particles represented by FeTiP. comprising the ruthenium oxide particles , the titanium phosphorus-containing compound particles represented by the NiTiP, and the iridium oxide particles, or the ruthenium oxide particles and the titanium phosphorus-containing compound particles represented by the FeTiP, and the iridium oxide particles . It is preferable to include.

本発明の実施形態によれば、低い電圧で酸化反応用電極での電極反応を起こし、酸化反応用電極に流れる電流を増加させることが可能な電気化学反応デバイスを提供することができる。 According to the embodiments of the present invention, it is possible to provide an electrochemical reaction device that can cause an electrode reaction in the oxidation reaction electrode at a low voltage and increase the current flowing through the oxidation reaction electrode.

本実施形態に係る電気化学反応デバイスの構成を示す図である。FIG. 1 is a diagram showing the configuration of an electrochemical reaction device according to the present embodiment. 本実施形態に係る酸化反応用電極の構成を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing the configuration of an oxidation reaction electrode according to the present embodiment. 実施例1の酸化反応用電極の電流量測定の結果を示す図である。3 is a diagram showing the results of measuring the amount of current of the oxidation reaction electrode of Example 1. FIG. 比較例1の酸化反応用電極の電流量測定の結果を示す図である。3 is a diagram showing the results of measuring the amount of current of the oxidation reaction electrode of Comparative Example 1. FIG. 実施例2の酸化反応用電極の電流量測定の結果を示す図である。3 is a diagram showing the results of measuring the amount of current of the oxidation reaction electrode of Example 2. FIG. 実施例3の酸化反応用電極の電流量測定の結果を示す図である。FIG. 7 is a diagram showing the results of measuring the amount of current of the electrode for oxidation reaction in Example 3. 実施例4の酸化反応用電極の電流量測定の結果を示す図である。FIG. 7 is a diagram showing the results of measuring the amount of current of the electrode for oxidation reaction in Example 4. 実施例5の酸化反応用電極の電流量測定の結果を示す図である。FIG. 7 is a diagram showing the results of measuring the amount of current of the oxidation reaction electrode of Example 5. 実施例6の酸化反応用電極の電流量測定の結果を示す図である。FIG. 7 is a diagram showing the results of measuring the amount of current of the oxidation reaction electrode of Example 6. 実施例7の酸化反応用電極の電流量測定の結果を示す図である。FIG. 7 is a diagram showing the results of measuring the amount of current of the oxidation reaction electrode of Example 7. 実施例8の酸化反応用電極の電流量測定の結果を示す図である。FIG. 7 is a diagram showing the results of measuring the amount of current of the electrode for oxidation reaction in Example 8. 実施例9の酸化反応用電極の電流量測定の結果を示す図である。FIG. 7 is a diagram showing the results of measuring the amount of current of the oxidation reaction electrode of Example 9. 実施例10の酸化反応用電極の電流量測定の結果を示す図である。FIG. 7 is a diagram showing the results of measuring the amount of current of the oxidation reaction electrode of Example 10. 実施例11の酸化反応用電極の電流量測定の結果を示す図である。FIG. 7 is a diagram showing the results of measuring the amount of current of the oxidation reaction electrode of Example 11.

本発明の実施形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. This embodiment is an example of implementing the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る電気化学反応デバイスの構成を示す図である。図1に示すように、電気化学反応デバイス100は、還元反応用電極102、酸化反応用電極104、電解液106を含んで構成される。また、図1に示す電気化学反応デバイス100では、太陽電池セル108、窓材110及び枠材112を備えている。 FIG. 1 is a diagram showing the configuration of an electrochemical reaction device according to this embodiment. As shown in FIG. 1, the electrochemical reaction device 100 includes a reduction reaction electrode 102, an oxidation reaction electrode 104, and an electrolyte 106. Further, the electrochemical reaction device 100 shown in FIG. 1 includes a solar cell 108, a window material 110, and a frame material 112.

還元反応用電極102は、還元反応によって炭素化合物又はプロトンを還元するために利用される電極である。還元反応用電極102は、炭素化合物又はプロトンを還元することができる電極であれば、その形態は特に限定されないが、例えば、基板と、基板上に配置される導電層と、導電層上に配置される導電体層と、を有する。 The reduction reaction electrode 102 is an electrode used to reduce a carbon compound or proton by a reduction reaction. The form of the reduction reaction electrode 102 is not particularly limited as long as it is an electrode capable of reducing carbon compounds or protons, but for example, it may include a substrate, a conductive layer disposed on the substrate, or a conductive layer disposed on the conductive layer. and a conductor layer.

基板は、還元反応用電極102を構造的に支持する部材であり、特に材料が限定されるものではないが、例えば、ガラス基板等とされる。また、基板は、例えば、金属又は半導体を含んでもよい。基板として用いられる金属は、特に限定されるものではないが、銀(Ag)、金(Au)、銅(Cu)、亜鉛(Zn)、インジウム(In)、カドミウム(Cd)、スズ(Sn)、パラジウム(Pd)、鉛(Pb)を含むことが好適である。基板として用いられる半導体は、特に限定されるものではないが、酸化チタン(TiO)、シリコン(Si)、チタン酸ストロンチウム(SrTiO)、酸化亜鉛(ZnO)、酸化タンタル(Ta)等とすることが好適である。 The substrate is a member that structurally supports the reduction reaction electrode 102, and is not particularly limited in material, but may be, for example, a glass substrate. Further, the substrate may include, for example, a metal or a semiconductor. Metals used as the substrate are not particularly limited, but include silver (Ag), gold (Au), copper (Cu), zinc (Zn), indium (In), cadmium (Cd), and tin (Sn). , palladium (Pd), and lead (Pb). Semiconductors used as the substrate are not particularly limited, but include titanium oxide (TiO 2 ), silicon (Si), strontium titanate (SrTiO 3 ), zinc oxide (ZnO), and tantalum oxide (Ta 2 O 5 ). etc. is preferable.

導電層は、還元反応用電極102における集電を効果的にするために設けられる。導電層は、特に限定されるものではないが、酸化インジウム錫(ITO)、フッ素ドープ酸化錫(FTO)、酸化亜鉛(ZnO)等とすることが好適である。特に、熱的及び化学的な安定性を考慮するとフッ素ドープ酸化錫(FTO)を用いることが好適である。 The conductive layer is provided to effectively collect current at the reduction reaction electrode 102. The conductive layer is not particularly limited, but is preferably made of indium tin oxide (ITO), fluorine-doped tin oxide (FTO), zinc oxide (ZnO), or the like. In particular, in consideration of thermal and chemical stability, it is preferable to use fluorine-doped tin oxide (FTO).

導電体層は、還元触媒を含む導電体から構成される。導電体層は、導電体に還元触媒を担持させることで構成することができる。導電体は、例えば、カーボン材料(C)を含む材料から構成することができる。カーボン材料は、例えば、カーボンナノチューブ、グラフェン及びグラファイトの少なくとも1つを含むことが好適である。グラフェン及びグラファイトであればサイズが1nm以上1μm以下であることが好適である。カーボンナノチューブであれば直径が1nm以上40nm以下であることが好適である。導電体は、エタノール等の液体に混ぜ合わせたカーボン材料をスプレーで塗布し、加熱することによって形成することができる。スプレーの代わりに、スピンコートによって塗布してもよい。また、スピンコートを用いず、直接溶液を滴下して乾かして塗布してもよい。 The conductor layer is composed of a conductor containing a reduction catalyst. The conductor layer can be formed by supporting a reduction catalyst on a conductor. The conductor can be made of a material containing a carbon material (C), for example. The carbon material preferably includes at least one of carbon nanotubes, graphene, and graphite, for example. In the case of graphene and graphite, the size is preferably 1 nm or more and 1 μm or less. In the case of carbon nanotubes, it is preferable that the diameter is 1 nm or more and 40 nm or less. The conductor can be formed by spraying a carbon material mixed with a liquid such as ethanol and heating the mixture. Instead of spraying, it may be applied by spin coating. Alternatively, the solution may be directly dropped and dried without using spin coating.

還元触媒は、還元触媒機能を有する材料であれば特に限定されないが、例えば、錯体触媒とすることが好適である。錯体触媒は、例えば、ルテニウム錯体とすることが好適である。錯体触媒は、例えば、[Ru{4,4’-di(1-H-1-pyrrolypropyl carbonate)-2,2’-bipyridine}(CO)(MeCN)Cl]、[Ru{4,4’-di(1-H-1-pyrrolypropyl carbonate)-2,2’-bipyridine}(CO)Cl]、[Ru{4,4’-di(1-H-1-pyrrolypropyl carbonate)-2,2’-bipyridine}(CO)、[Ru{4,4’-di(1-H-1-pyrrolypropyl carbonate)-2,2’-bipyridine}(CO)(CHCN)Cl]等とすることができる。 The reduction catalyst is not particularly limited as long as it is a material that has a reduction catalyst function, but for example, a complex catalyst is suitable. The complex catalyst is preferably a ruthenium complex, for example. The complex catalyst is, for example, [Ru{4,4'-di(1-H-1-pyrrolypropyl carbonate)-2,2'-bipyridine}(CO)(MeCN)Cl 2 ], [Ru{4,4' -di(1-H-1-pyrrolypropyl carbonate)-2,2'-bipyridine}(CO) 2 Cl 2 ], [Ru{4,4'-di(1-H-1-pyrrolypropyl carbonate)-2, 2'-bipyridine}(CO) 2 ] n , [Ru{4,4'-di(1-H-1-pyrrolypropyl carbonate)-2,2'-bipyridine}(CO)(CH 3 CN) Cl 2 ] etc.

導電体層は、例えば、錯体触媒をアセトニトリル(MeCN)溶液に溶解した液を導電体の上に塗布することで作製することができる。また、導電体層は、電解重合法により作製することもできる。例えば、作用極として導電体の電極、対極にフッ素含有酸化錫(FTO)で被覆したガラス基板、参照電極にAg/Ag電極を用い、錯体触媒を含む電解液中においてAg/Ag電極に対して負電圧となるようにカソード電流を流した後、Ag/Ag電極に対して正電位となるようにアノード電流を流すことにより作製することができる。電解質の溶液には、例えば、アセトニトリル(MeCN)、電解質には、例えば、Tetrabutylammoniumperchlorate(TBAP)を用いることができる。 The conductor layer can be produced, for example, by applying a solution prepared by dissolving a complex catalyst in an acetonitrile (MeCN) solution onto the conductor. Moreover, the conductor layer can also be produced by an electrolytic polymerization method. For example, a conductive electrode is used as the working electrode, a glass substrate coated with fluorine-containing tin oxide (FTO) is used as the counter electrode, and an Ag/ Ag + electrode is used as the reference electrode. It can be manufactured by passing a cathode current so as to have a negative voltage with respect to the Ag/Ag + electrode, and then passing an anode current so as to have a positive potential with respect to the Ag/Ag + electrode. For the electrolyte solution, for example, acetonitrile (MeCN) can be used, and for the electrolyte, for example, Tetrabutylammonium perchlorate (TBAP) can be used.

このように形成された導電体層は、基板上に配置された導電層上に担持、塗布又は貼付される。これにより、基板、基板上に配置された導電層、導電層上に配置された導電体層を含む還元反応用電極が作製される。 The conductive layer formed in this way is supported, coated, or pasted on the conductive layer disposed on the substrate. As a result, a reduction reaction electrode including a substrate, a conductive layer disposed on the substrate, and a conductive layer disposed on the conductive layer is produced.

酸化反応用電極104は、酸化反応によって水を酸化するために利用される電極である。図2は、本実施形態に係る酸化反応用電極の構成を示す断面模式図である。図2に示すように、酸化反応用電極104は、基板114、導電層115、酸化触媒層116を有する。なお、図1に示す電気化学反応デバイス100では、酸化反応用電極104の酸化触媒層116が、還元反応用電極102の導電体層と対向するように配置されている。酸化反応用電極104の基板114は、還元反応用電極102の基板と同じ材料でよい。 The oxidation reaction electrode 104 is an electrode used to oxidize water by an oxidation reaction. FIG. 2 is a schematic cross-sectional view showing the configuration of the oxidation reaction electrode according to this embodiment. As shown in FIG. 2, the oxidation reaction electrode 104 includes a substrate 114, a conductive layer 115, and an oxidation catalyst layer 116. In the electrochemical reaction device 100 shown in FIG. 1, the oxidation catalyst layer 116 of the oxidation reaction electrode 104 is arranged to face the conductor layer of the reduction reaction electrode 102. The substrate 114 of the oxidation reaction electrode 104 may be made of the same material as the substrate of the reduction reaction electrode 102.

導電層115は、酸化反応用電極104における集電を効果的にするために設けられる。導電層115は、特に限定されるものではないが、酸化インジウム錫(ITO)、フッ素ドープ酸化錫(FTO)、酸化亜鉛(ZnO)等とすることが好適である。特に、熱的及び化学的な安定性を考慮するとフッ素ドープ酸化錫(FTO)を用いることが好適である。 The conductive layer 115 is provided to effectively collect current at the oxidation reaction electrode 104. The conductive layer 115 is preferably made of indium tin oxide (ITO), fluorine-doped tin oxide (FTO), zinc oxide (ZnO), or the like, although it is not particularly limited. In particular, in consideration of thermal and chemical stability, it is preferable to use fluorine-doped tin oxide (FTO).

酸化触媒層116は、酸化触媒を含んで構成される。酸化触媒は、酸化触媒機能を有する材料である。酸化触媒は、MTiP(MはNi、Fe、Cr、Co、Mnからなる群から選択される)で表されるチタンリン含有化合物及び酸化イリジウム(IrOx)のうちの少なくともいずれか1つと、酸化ルテニウム(RuOx)とを含む。すなわち、酸化触媒は、(1)酸化ルテニウムと酸化イリジウムとを含む、(2)酸化ルテニウムとMTiP(MはNi、Fe、Cr、Co、Mnからなる群から選択される)で表されるチタンリン含有化合物とを含む、又は(3)酸化ルテニウムとMTiP(MはNi、Fe、Cr、Co、Mnからなる群から選択される)で表されるチタンリン含有化合物と酸化イリジウムとを含む。なお、以下では、上記(1)及び(2)を二元触媒と称し、上記(3)を三元触媒と称する。 The oxidation catalyst layer 116 includes an oxidation catalyst. The oxidation catalyst is a material that has an oxidation catalyst function. The oxidation catalyst includes at least one of a titanium phosphorus-containing compound represented by MTiP (M is selected from the group consisting of Ni, Fe, Cr, Co, and Mn) and iridium oxide (IrOx), and ruthenium oxide ( RuOx). That is, the oxidation catalyst includes (1) ruthenium oxide and iridium oxide, (2) ruthenium oxide and titanium phosphorus represented by MTiP (M is selected from the group consisting of Ni, Fe, Cr, Co, and Mn). or (3) ruthenium oxide, a titanium phosphorus-containing compound represented by MTiP (M is selected from the group consisting of Ni, Fe, Cr, Co, and Mn), and iridium oxide. Note that, hereinafter, (1) and (2) above will be referred to as a two-way catalyst, and (3) above will be referred to as a three-way catalyst.

酸化触媒層116は、酸化ルテニウム、酸化イリジウム、チタンリン含有化合物が分散したスラリーを導電層115上に塗布し、乾燥炉内において所定温度・時間保持して乾燥させることにより形成される。なお、乾燥後、超純水で洗浄することが好ましい。また、スラリーの塗布及び乾燥を複数回繰り返してもよい。 The oxidation catalyst layer 116 is formed by applying a slurry in which a compound containing ruthenium oxide, iridium oxide, and titanium phosphorus is dispersed onto the conductive layer 115, and drying the slurry by maintaining it at a predetermined temperature and time in a drying oven. Note that after drying, it is preferable to wash with ultrapure water. Further, the application and drying of the slurry may be repeated multiple times.

電解液106は、pH4以上の電解液であれば特に限定されないが、酸化還元反応中におけるpH変動を抑える点で、例えば、リン酸緩衝水溶液やホウ酸緩衝水溶液等が好ましい。なお、還元反応用電極102において炭素化合物を還元する場合には、電解液106中に二酸化炭素等の炭素化合物が溶解されている。図1に示す電気化学反応デバイス100では、例えば、電解液106の供給用タンクを設け、ポンプによって、タンク内の電解液106を還元反応用電極102と酸化反応用電極104との間に設けられた間隙に供給する。 The electrolytic solution 106 is not particularly limited as long as it has a pH of 4 or more, but is preferably, for example, a phosphate buffered aqueous solution or a boric acid buffered aqueous solution in terms of suppressing pH fluctuations during the redox reaction. Note that when a carbon compound is reduced in the reduction reaction electrode 102, a carbon compound such as carbon dioxide is dissolved in the electrolytic solution 106. In the electrochemical reaction device 100 shown in FIG. 1, for example, a tank for supplying an electrolytic solution 106 is provided, and a pump supplies the electrolytic solution 106 in the tank between the reduction reaction electrode 102 and the oxidation reaction electrode 104. supply to the gap.

図1に示す太陽電池セル108は、還元反応用電極102と酸化反応用電極104との間に適切なバイアス電圧を印加する装置である。図1に示すように、太陽電池セル108の正極に酸化反応用電極104を接続し、太陽電池セル108の負極に還元反応用電極102を接続することで、両電極にバイアス電圧を印加する。バイアス電圧を印加する装置は、太陽電池セル108に限定されるものではなく、例えば、化学電池(一次電池、二次電池等を含む)、定電圧源等が挙げられる。 The solar cell 108 shown in FIG. 1 is a device that applies an appropriate bias voltage between the reduction reaction electrode 102 and the oxidation reaction electrode 104. As shown in FIG. 1, the oxidation reaction electrode 104 is connected to the positive electrode of the solar cell 108, and the reduction reaction electrode 102 is connected to the negative electrode of the solar cell 108, thereby applying a bias voltage to both electrodes. The device that applies the bias voltage is not limited to the solar cell 108, and includes, for example, a chemical battery (including a primary battery, a secondary battery, etc.), a constant voltage source, and the like.

図1に示す窓材110は、太陽電池セル108を保護する部材である。太陽電池セル108に対しては、受光面側に窓材110を設けることが好適である。窓材110は、太陽電池セル108において発電に寄与する波長の光を透過する部材とし、例えば、ガラス、プラスチック等とすることができる。 The window material 110 shown in FIG. 1 is a member that protects the solar cell 108. For the solar cell 108, it is preferable to provide a window material 110 on the light-receiving surface side. The window material 110 is a member that transmits light of a wavelength that contributes to power generation in the solar cell 108, and can be made of, for example, glass, plastic, or the like.

還元反応用電極102、酸化反応用電極104、太陽電池セル108及び窓材110は、枠材112によって構造的に支持されている。 The reduction reaction electrode 102, the oxidation reaction electrode 104, the solar cell 108, and the window material 110 are structurally supported by a frame material 112.

図1に示す電気化学反応デバイス100では、還元反応用電極102及び酸化反応用電極104の表面にpH4以上の電解液106を供給した状態で、太陽電池セル108により、還元反応用電極102と酸化反応用電極104との間にバイアス電圧を印加する。これにより、酸化反応用電極104では、電解液106中の水が酸化されて、酸素が生成され(式(1))、還元反応用電極102では、電解液106中の炭素化合物、例えばCOが還元されて、一酸化炭素やギ酸等が生成されたり(式(2)、(3))、プロトンが還元されて水素が生成されたりする(式(4))。両電極で生成された生成物は、電気化学反応デバイス100から排出され、外部の回収用タンクに回収される。
酸化反応:2HO→O+4H+4e (1)
還元反応:CO+2H+2e→CO+HO (2)
:CO+2H+2e→HCOOH (3)
:2H+2e→H (4)
In the electrochemical reaction device 100 shown in FIG. 1, while an electrolytic solution 106 having a pH of 4 or more is supplied to the surfaces of the reduction reaction electrode 102 and the oxidation reaction electrode 104, the reduction reaction electrode 102 and the oxidation reaction electrode 102 are A bias voltage is applied between the reaction electrode 104 and the reaction electrode 104 . As a result, at the oxidation reaction electrode 104, water in the electrolyte 106 is oxidized to generate oxygen (formula (1)), and at the reduction reaction electrode 102, carbon compounds in the electrolyte 106, such as CO 2 is reduced to produce carbon monoxide, formic acid, etc. (formulas (2), (3)), or protons are reduced to produce hydrogen (formula (4)). The products generated at both electrodes are discharged from the electrochemical reaction device 100 and collected in an external collection tank.
Oxidation reaction: 2H 2 O → O 2 +4H + +4e - (1)
Reduction reaction: CO 2 + 2H + + 2e - → CO + H 2 O (2)
:CO 2 +2H + +2e - →HCOOH (3)
:2H + +2e - →H 2 (4)

ここで、本実施形態における酸化反応用電極104では、酸化触媒として、前述した二元触媒や三元触媒が用いられている。そして、このような酸化触媒は、高い触媒活性を有するため、酸化反応の過電圧が低くなり、良好な電極反応を行うことが可能となる。すなわち、低い電圧で酸化反応用電極104での電極反応(上記(1)の反応)が起こり、また、酸化反応用電極104に流れる電流を増加させることができる。その結果、例えば、電気化学反応デバイスの消費電力の低下、触媒量や電極面積の低減に伴う、低コスト化やデバイスの小型化等を図ることができる。 Here, in the oxidation reaction electrode 104 in this embodiment, the aforementioned two-way catalyst or three-way catalyst is used as the oxidation catalyst. Since such an oxidation catalyst has high catalytic activity, the overvoltage of the oxidation reaction becomes low, making it possible to perform a good electrode reaction. That is, the electrode reaction (the reaction (1) above) occurs at the oxidation reaction electrode 104 at a low voltage, and the current flowing through the oxidation reaction electrode 104 can be increased. As a result, for example, it is possible to reduce the power consumption of the electrochemical reaction device, reduce the amount of catalyst, and reduce the area of the electrodes, resulting in lower costs and smaller devices.

酸化触媒は、例えば、酸化反応用電極104に流れる電流を増加させることができる点で、酸化ルテニウムとNiTiPとを含む、酸化ルテニウムとFeTiPとを含む、酸化ルテニウムとNiTiPと酸化イリジウムとを含む、又は酸化ルテニウムとFeTiPと酸化イリジウムとを含むことが好ましい。 The oxidation catalyst can increase the current flowing through the oxidation reaction electrode 104, and includes, for example, ruthenium oxide and NiTiP, ruthenium oxide and FeTiP, ruthenium oxide, NiTiP, and iridium oxide. Alternatively, it is preferable to include ruthenium oxide, FeTiP, and iridium oxide.

酸化触媒が二元触媒の場合、酸化触媒中の酸化ルテニウムの含有量は、10質量%以上90質量%以下の範囲であることが好ましく、酸化触媒中の酸化イリジウム又はチタンリン含有化合物の含有量は、10質量%以上90質量%以下の範囲であることが好ましい。また、酸化触媒が三元触媒の場合、酸化触媒中の酸化ルテニウムの含有量は、10質量%以上90質量%以下の範囲が好ましく、酸化触媒中の酸化イリジウムの含有量は、10質量%以上90質量%以下の範囲であることが好ましく、酸化触媒中のチタンリン化合物の含有量は、10質量%以上90質量%以下の範囲が好ましい。酸化触媒中の各成分の含有量が上記範囲を満たす場合、上記範囲を満たさない場合と比較して、酸化反応用電極104に流れる電流量が増加する場合がある。 When the oxidation catalyst is a binary catalyst, the content of ruthenium oxide in the oxidation catalyst is preferably in the range of 10% by mass or more and 90% by mass or less, and the content of iridium oxide or titanium phosphorus-containing compound in the oxidation catalyst is , preferably in a range of 10% by mass or more and 90% by mass or less. Furthermore, when the oxidation catalyst is a three-way catalyst, the content of ruthenium oxide in the oxidation catalyst is preferably in the range of 10% by mass or more and 90% by mass or less, and the content of iridium oxide in the oxidation catalyst is preferably 10% by mass or more. The content of the titanium phosphorous compound in the oxidation catalyst is preferably in the range of 90% by mass or less, and preferably in the range of 10% by mass or more and 90% by mass or less. When the content of each component in the oxidation catalyst satisfies the above range, the amount of current flowing through the oxidation reaction electrode 104 may increase compared to the case where the content does not meet the above range.

以下、実施例を挙げ、本発明をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

<実施例1>
<酸化反応用電極の作製>
1mMの塩化イリジウム酸(IV)カリウム(KIrCl)水溶液25mlと1mMの塩化ルテニウム(RuCl)水溶液25mlとの混合溶液に、10wt%の水酸化ナトリウム(NaOH)水溶液を加えて、pH13に調整した溶液を得た。当該溶液を氷水で1時間冷却した後、3M硝酸(HNO)水溶液を滴下してpH1に調整し、酸化イリジウム(IrOx)/酸化ルテニウム(RuOx)のナノコロイド水溶液を得た。この溶液に1.5wt%NaOH水溶液を滴下してpH12に調整した。
<Example 1>
<Preparation of electrode for oxidation reaction>
A 10 wt% sodium hydroxide (NaOH) aqueous solution was added to a mixed solution of 25 ml of a 1 mM potassium chloride iridate (IV) (K 2 IrCl 6 ) aqueous solution and 25 ml of a 1 mM ruthenium chloride (RuCl 3 ) aqueous solution to adjust the pH to 13. A prepared solution was obtained. After cooling the solution with ice water for 1 hour, a 3M nitric acid (HNO 3 ) aqueous solution was added dropwise to adjust the pH to 1 to obtain an iridium oxide (IrOx)/ruthenium oxide (RuOx) nanocolloid aqueous solution. A 1.5 wt % NaOH aqueous solution was added dropwise to this solution to adjust the pH to 12.

上記溶液をFTO基板上に100μl塗布し、乾燥炉内にて60℃で乾燥した。乾燥後、析出した塩を超純水で洗浄し、酸化反応用電極を得た。酸化反応用電極の大きさは、10cm×10cmである。 100 μl of the above solution was applied onto the FTO substrate and dried at 60° C. in a drying oven. After drying, the precipitated salt was washed with ultrapure water to obtain an electrode for oxidation reaction. The size of the oxidation reaction electrode is 10 cm x 10 cm.

<比較例1>
1mMの塩化イリジウム酸(IV)カリウム(KIrCl)水溶液25mlと1mMの塩化ルテニウム(RuCl)水溶液25mlとの混合溶液を1mMの塩化イリジウム酸(IV)カリウム(KIrCl)水溶液25mlに代えて、酸化イリジウム(IrOx)のナノコロイド水溶液を得たこと以外は、実施例1と同様にして、酸化反応用電極を作製した。
<Comparative example 1>
A mixed solution of 25 ml of 1 mM potassium chloriridate (IV) chloride (IV) (K 2 IrCl 6 ) aqueous solution and 25 ml of 1 mM ruthenium chloride (RuCl 3 ) aqueous solution was added to 25 ml of 1 mM potassium chloriridate (IV) potassium chloride (IV) (K 2 IrCl 6 ) aqueous solution. An oxidation reaction electrode was produced in the same manner as in Example 1, except that an aqueous nanocolloidal solution of iridium oxide (IrOx) was obtained instead.

(電流量の測定)
実施例1及び比較例1の酸化反応用電極に流れる電流を、電気化学アナライザー(ALS610)を使用し、三電極方式で測定した。三電極方式では、容器内に電解液を満たして、電解液中に作用極として上記作製した酸化反応用電極、対極として白金電極、参照電極としてHg/HgSOを浸漬した。電解液は、pH6.8である、0.1モルのリン酸バッファ水溶液(KHPO+KHPO)を用いた。各電極を電気化学アナライザーに接続し、電圧を1.2Vまで掃引し、酸化反応用電極に流れる電流値を測定した。
(Measurement of current amount)
The current flowing through the oxidation reaction electrodes of Example 1 and Comparative Example 1 was measured using an electrochemical analyzer (ALS610) using a three-electrode method. In the three-electrode method, a container was filled with an electrolytic solution, and the oxidation reaction electrode prepared above as a working electrode, a platinum electrode as a counter electrode, and Hg/Hg 2 SO 4 as a reference electrode were immersed in the electrolytic solution. As the electrolytic solution, a 0.1 mol phosphate buffer aqueous solution (K 2 HPO 4 +KH 2 PO 4 ) having a pH of 6.8 was used. Each electrode was connected to an electrochemical analyzer, the voltage was swept to 1.2 V, and the value of the current flowing through the oxidation reaction electrode was measured.

図3は、実施例1の酸化反応用電極の電流量測定の結果を示す図であり、図4は、比較例1の酸化反応用電極の電流量測定の結果を示す図である。縦軸の電流密度(mA/cm)は、上記測定した電流値を酸化反応用電極の面積で除した値である。 FIG. 3 is a diagram showing the results of measuring the amount of current of the electrode for oxidation reaction of Example 1, and FIG. 4 is a diagram showing the results of measuring the amount of current of the electrode for oxidation reaction of Comparative Example 1. The current density (mA/cm 2 ) on the vertical axis is the value obtained by dividing the measured current value by the area of the oxidation reaction electrode.

図3に示すように、実施例1は、比較例1と比べて、低い電圧から電極反応が起こり、また同じ電圧では、多くの電流が流れた。したがって、実施例1のように、酸化イリジウムと酸化ルテニウムを含む酸化触媒を用いることで、酸化反応用電極での酸化反応を効率良く行えることが示された。 As shown in FIG. 3, in Example 1, electrode reaction occurred at a lower voltage than in Comparative Example 1, and at the same voltage, a large amount of current flowed. Therefore, as in Example 1, it was shown that by using an oxidation catalyst containing iridium oxide and ruthenium oxide, the oxidation reaction at the oxidation reaction electrode could be performed efficiently.

<実施例2>
1mMの塩化ルテニウム(RuCl)水溶液25mlに、10wt%の水酸化ナトリウム(NaOH)水溶液を加えて、pH13に調整した溶液を得た。当該溶液を氷水で1時間冷却した後、3M硝酸(HNO)水溶液を滴下してpH1に調整し、酸化ルテニウム(RuOx)のナノコロイド水溶液を得た。この溶液に1.5wt%NaOH水溶液を滴下してpH12に調整した後、NiTP粒子(粒径150nm)を40質量部添加した。
<Example 2>
A 10 wt % sodium hydroxide (NaOH) aqueous solution was added to 25 ml of a 1 mM ruthenium chloride (RuCl 3 ) aqueous solution to obtain a solution adjusted to pH 13. After cooling the solution with ice water for 1 hour, a 3M nitric acid (HNO 3 ) aqueous solution was added dropwise to adjust the pH to 1 to obtain a nanocolloidal aqueous solution of ruthenium oxide (RuOx). After adjusting the pH to 12 by dropping a 1.5 wt % NaOH aqueous solution into this solution, 40 parts by mass of NiTP particles (particle size 150 nm) were added.

上記溶液をFTO基板上に100μl塗布し、乾燥炉内にて60℃で乾燥した。乾燥後、析出した塩を超純水で洗浄し、酸化反応用電極を得た。酸化反応用電極の大きさは、10cm×10cmである。 100 μl of the above solution was applied onto the FTO substrate and dried at 60° C. in a drying oven. After drying, the precipitated salt was washed with ultrapure water to obtain an electrode for oxidation reaction. The size of the oxidation reaction electrode is 10 cm x 10 cm.

<実施例3>
NiTP粒子をFeTiP粒子(粒径180nm)に代えたこと以外は、実施例2と同様に酸化反応用電極を作製した。
<Example 3>
An electrode for oxidation reaction was produced in the same manner as in Example 2, except that the NiTP particles were replaced with FeTiP particles (particle size: 180 nm).

<実施例4>
NiTP粒子をCrTiP粒子(粒径170nm)に代えたこと以外は、実施例2と同様に酸化反応用電極を作製した。
<Example 4>
An electrode for oxidation reaction was produced in the same manner as in Example 2, except that the NiTP particles were replaced with CrTiP particles (particle size: 170 nm).

<実施例5>
NiTP粒子をCoTiP粒子(粒径140nm)に代えたこと以外は、実施例2と同様に酸化反応用電極を作製した。
<Example 5>
An electrode for oxidation reaction was produced in the same manner as in Example 2, except that the NiTP particles were replaced with CoTiP particles (particle size: 140 nm).

<実施例6>
NiTP粒子をMnTiP粒子(粒径160nm)に代えたこと以外は、実施例2と同様に酸化反応用電極を作製した。
<Example 6>
An electrode for oxidation reaction was produced in the same manner as in Example 2, except that the NiTP particles were replaced with MnTiP particles (particle size: 160 nm).

<実施例7>
1mMの塩化イリジウム酸(IV)カリウム(KIrCl)水溶液25mlと1mMの塩化ルテニウム(RuCl)水溶液25mlとの混合溶液に、10wt%の水酸化ナトリウム(NaOH)水溶液を加えて、pH13に調整した溶液を得た。当該溶液を氷水で1時間冷却した後、3M硝酸(HNO)水溶液を滴下してpH1に調整し、酸化イリジウム(IrOx)/酸化ルテニウム(RuOx)のナノコロイド水溶液を得た。この溶液に1.5wt%NaOH水溶液を滴下してpH12に調整した後、NiTP粒子(粒径150nm)を40質量部添加した。
<Example 7>
A 10 wt% sodium hydroxide (NaOH) aqueous solution was added to a mixed solution of 25 ml of a 1 mM potassium chloride iridate (IV) (K 2 IrCl 6 ) aqueous solution and 25 ml of a 1 mM ruthenium chloride (RuCl 3 ) aqueous solution to adjust the pH to 13. A prepared solution was obtained. After cooling the solution with ice water for 1 hour, a 3M nitric acid (HNO 3 ) aqueous solution was added dropwise to adjust the pH to 1 to obtain an iridium oxide (IrOx)/ruthenium oxide (RuOx) nanocolloid aqueous solution. After adjusting the pH to 12 by dropping a 1.5 wt % NaOH aqueous solution into this solution, 40 parts by mass of NiTP particles (particle size 150 nm) were added.

上記溶液をFTO基板上に100μl塗布し、乾燥炉内にて60℃で乾燥した。乾燥後、析出した塩を超純水で洗浄し、酸化反応用電極を得た。酸化反応用電極の大きさは、10cm×10cmである。 100 μl of the above solution was applied onto the FTO substrate and dried at 60° C. in a drying oven. After drying, the precipitated salt was washed with ultrapure water to obtain an electrode for oxidation reaction. The size of the oxidation reaction electrode is 10 cm x 10 cm.

<実施例8>
NiTP粒子をFeTiP粒子(粒径180nm)に代えたこと以外は、実施例7と同様に酸化反応用電極を作製した。
<Example 8>
An electrode for oxidation reaction was produced in the same manner as in Example 7 except that NiTP particles were replaced with FeTiP particles (particle size 180 nm).

<実施例9>
NiTP粒子をCrTiP粒子(粒径170nm)に代えたこと以外は、実施例7と同様に酸化反応用電極を作製した。
<Example 9>
An electrode for oxidation reaction was produced in the same manner as in Example 7, except that the NiTP particles were replaced with CrTiP particles (particle size: 170 nm).

<実施例10>
NiTP粒子をCoTiP粒子(粒径140nm)に代えたこと以外は、実施例7と同様に酸化反応用電極を作製した。
<Example 10>
An electrode for oxidation reaction was produced in the same manner as in Example 7, except that the NiTP particles were replaced with CoTiP particles (particle size: 140 nm).

<実施例11>
NiTP粒子をMnTiP粒子(粒径160nm)に代えたこと以外は、実施例7と同様に酸化反応用電極を作製した。
<Example 11>
An electrode for oxidation reaction was produced in the same manner as in Example 7, except that the NiTP particles were replaced with MnTiP particles (particle size: 160 nm).

実施例1と同様に、実施例2~11の酸化反応用電極に流れる電流量を測定した。図5~14は、実施例2~11の酸化反応用電極の電流量測定の結果を示す図である。図5~14に示すように、実施例2~11は、比較例1と比べて、低い電圧から電極反応が起こり、また同じ電圧では、多くの電流が流れた。したがって、実施例2~11のように、MTiP(MはNi、Fe、Cr、Co、Mnからなる群から選択される)で表されるチタンリン含有化合物と酸化ルテニウムとを含む酸化触媒、又はMTiP(MはNi、Fe、Cr、Co、Mnからなる群から選択される)で表されるチタンリン含有化合物と酸化ルテニウムと酸化イリジウムとを含む酸化触媒を用いることで、酸化反応用電極での酸化反応を効率良く行えることが示された。また、実施例1~11の中では、実施例2、3、7,8が、他の実施例と比べて、同じ電圧を印加した場合に多くの電流が流れた。 As in Example 1, the amount of current flowing through the oxidation reaction electrodes of Examples 2 to 11 was measured. 5 to 14 are diagrams showing the results of measuring the amount of current of the oxidation reaction electrodes of Examples 2 to 11. As shown in FIGS. 5 to 14, in Examples 2 to 11, electrode reactions occurred at lower voltages than in Comparative Example 1, and more current flowed at the same voltage. Therefore, as in Examples 2 to 11, an oxidation catalyst containing a titanium phosphorus-containing compound represented by MTiP (M is selected from the group consisting of Ni, Fe, Cr, Co, and Mn) and ruthenium oxide, or MTiP By using an oxidation catalyst containing a titanium phosphorus-containing compound represented by (M is selected from the group consisting of Ni, Fe, Cr, Co, and Mn), ruthenium oxide, and iridium oxide, oxidation at the oxidation reaction electrode is possible. It was shown that the reaction could be carried out efficiently. Furthermore, among Examples 1 to 11, a larger amount of current flowed in Examples 2, 3, 7, and 8 than in the other Examples when the same voltage was applied.

(電解液のpHの評価)
<実施例12>
容器内に電解液を満たして、電解液中に作用極として実施例1の酸化反応用電極、対極として白金電極、参照電極としてHg/HgSOを浸漬した三電極式セルを作製した。電解液は、pH6.8である、0.1モルのリン酸バッファ水溶液(KHPO+KHPO)を用いた。各電極を電気化学アナライザーに接続し、電圧を1.3Vで3600秒通電し、電流値を測定した。
(Evaluation of pH of electrolyte)
<Example 12>
A three-electrode cell was prepared by filling a container with an electrolytic solution and immersing the oxidation reaction electrode of Example 1 as a working electrode, a platinum electrode as a counter electrode, and Hg/Hg 2 SO 4 as a reference electrode in the electrolytic solution. As the electrolytic solution, a 0.1 mol phosphate buffer aqueous solution (K 2 HPO 4 +KH 2 PO 4 ) having a pH of 6.8 was used. Each electrode was connected to an electrochemical analyzer, a voltage of 1.3 V was applied for 3600 seconds, and the current value was measured.

<比較例2>
電解液として、pH2.4である、0.1モルのクエン酸リチウム緩衝液を用いたこと以外は、実施例12と同様に、電流値を測定した。
<Comparative example 2>
The current value was measured in the same manner as in Example 12, except that a 0.1 molar lithium citrate buffer having a pH of 2.4 was used as the electrolyte.

実施例12と比較例2を比べると、比較例2の1時間後の電流値は実施例12の電流値の17%であった。比較例2では、電解液のpHが低く酸性が強いため、酸化反応用電極から酸化ルテニウムが溶出し、電流値が低くなったと考えられる。 Comparing Example 12 and Comparative Example 2, the current value of Comparative Example 2 after 1 hour was 17% of the current value of Example 12. In Comparative Example 2, the pH of the electrolytic solution was low and the acidity was strong, so it is thought that ruthenium oxide was eluted from the oxidation reaction electrode, resulting in a low current value.

100 電気化学反応デバイス、102 還元反応用電極、104 酸化反応用電極、106 電解液、108 太陽電池セル、110 窓材、112 枠材、114 基板、115 導電層、116 酸化触媒層。
Reference Signs List 100 electrochemical reaction device, 102 electrode for reduction reaction, 104 electrode for oxidation reaction, 106 electrolyte, 108 solar cell, 110 window material, 112 frame material, 114 substrate, 115 conductive layer, 116 oxidation catalyst layer.

Claims (2)

水を酸化する酸化反応用電極と、
炭素化合物又はプロトンを還元する還元反応用電極と、
pH4以上の電解液と、を備え、
前記酸化反応用電極は、酸化触媒を有し、
前記酸化触媒は、MTiP(MはNi、Fe、Cr、Co、Mnからなる群から選択される)で表されるチタンリン含有化合物粒子及び酸化イリジウム粒子のうちの少なくともいずれか1つと、酸化ルテニウム粒子と、を含むことを特徴とする電気化学反応デバイス。
An oxidation reaction electrode that oxidizes water;
a reduction reaction electrode that reduces a carbon compound or proton;
An electrolytic solution with a pH of 4 or more,
The oxidation reaction electrode has an oxidation catalyst,
The oxidation catalyst includes at least one of titanium phosphorus-containing compound particles represented by MTiP (M is selected from the group consisting of Ni, Fe, Cr, Co, and Mn) and iridium oxide particles , and ruthenium oxide particles . An electrochemical reaction device comprising:
前記酸化触媒は、前記酸化ルテニウム粒子とNiTiPで表される前記チタンリン含有化合物粒子とを含む、前記酸化ルテニウム粒子とFeTiPで表される前記チタンリン含有化合物粒子とを含む、前記酸化ルテニウム粒子と前記NiTiPで表される前記チタンリン含有化合物粒子と前記酸化イリジウム粒子とを含む、又は前記酸化ルテニウム粒子と前記FeTiPで表される前記チタンリン含有化合物粒子と前記酸化イリジウム粒子とを含むことを特徴とする請求項1に記載の電気化学反応デバイス。 The oxidation catalyst includes the ruthenium oxide particles and the titanium phosphorus-containing compound particles represented by NiTiP, and the ruthenium oxide particles and the NiTiP, which include the ruthenium oxide particles and the titanium phosphorus-containing compound particles represented by FeTiP. A claim characterized in that the titanium phosphorus - containing compound particles represented by : 1. The electrochemical reaction device according to 1.
JP2019180302A 2019-09-30 2019-09-30 electrochemical reaction device Active JP7367435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019180302A JP7367435B2 (en) 2019-09-30 2019-09-30 electrochemical reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019180302A JP7367435B2 (en) 2019-09-30 2019-09-30 electrochemical reaction device

Publications (2)

Publication Number Publication Date
JP2021055150A JP2021055150A (en) 2021-04-08
JP7367435B2 true JP7367435B2 (en) 2023-10-24

Family

ID=75272313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019180302A Active JP7367435B2 (en) 2019-09-30 2019-09-30 electrochemical reaction device

Country Status (1)

Country Link
JP (1) JP7367435B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132006A (en) 2014-01-15 2015-07-23 株式会社豊田中央研究所 crystalline electrode material and insoluble electrode
JP2019197667A (en) 2018-05-10 2019-11-14 株式会社豊田中央研究所 Bipolar plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964788A (en) * 1982-09-30 1984-04-12 Asahi Chem Ind Co Ltd Electrolytic electrode and construction thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132006A (en) 2014-01-15 2015-07-23 株式会社豊田中央研究所 crystalline electrode material and insoluble electrode
JP2019197667A (en) 2018-05-10 2019-11-14 株式会社豊田中央研究所 Bipolar plate

Also Published As

Publication number Publication date
JP2021055150A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
KR20020042650A (en) Method of preparing catalyzed porous carbon electrode for fuel cell
JP2018043193A (en) Light-transmitting oxygen evolution catalyst and production method of the same, and chemical reactor using the same
JP6774165B2 (en) Photochemical reaction device, electrode for oxidation reaction and electrode for reduction reaction used for it
Ding et al. Abnormal effects of cations (Li+, Na+, and K+) on photoelectrochemical and electrocatalytic water splitting
JP6525816B2 (en) Process for oxidizing water, cell for oxidizing water, water oxidation catalyst, and electrode for electrochemical water oxidation
WO2015120858A1 (en) A solar rechargeable redox flow cell
JP2018141227A (en) Method for producing ethylene in larger amount by electrochemically reducing carbon dioxide, electrolytic apparatus, carbon dioxide reduction electrode and carbon dioxide reduction catalyst
Thomassen et al. Supported nanostructured Ir and IrRu electrocatalysts for oxygen evolution in PEM electrolysers
JP5675224B2 (en) Visible light water splitting catalyst and photoelectrode manufacturing method
JP2017125242A (en) Electrode for reductive reaction and reaction device prepared therewith
JP7367435B2 (en) electrochemical reaction device
JP7104500B2 (en) Electrodes for chemical reactions and electrochemical cells using them
Fotouhi et al. ZnO/Polytyramine nanocomposite film: Facile electrosynthesis and high performance electrocatalytic activity toward methanol oxidation
JP5398048B2 (en) Photoelectrochemical energy conversion system and photoelectrochemical water splitting system
JP6950384B2 (en) Electrode for reduction reaction
Arunachalam et al. Durable bias-free solar Water-Splitting cell composed of n+ p-Si/Nb2O5/NiPt photocathode and W: BiVO4/NiCo (O-OH) 2 photoanode
JP2020153000A (en) Electrochemical reaction device
JP7482598B2 (en) Chemical reaction device and solar energy utilization system using the same
JP6384887B2 (en) Method for producing lead dioxide electrode
Kuwabara et al. Electrocatalytic activity of electrodeposited cobalt oxide films to produce oxygen gas from water
JP2019052347A (en) Electrode for oxidation reaction and electrode for reduction reaction, and electrochemical cell and artificial photosynthesis apparatus using the same
JP3870802B2 (en) Oxygen reduction electrode and battery using the same
JP2023084962A (en) Oxidation reaction electrode and electrochemical reaction device
RU2564095C1 (en) Fuel-cell anode based on molybdenum bronzes and platinum and method of its manufacturing
Kim et al. Solar Driven 15.7% Hydrogen Conversion by Harmony of Light Harvesting, Electron Transporting Bridge, and S‐Defection in a Self‐Assembled Microscale CuS/rGO/CP Photoanode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7367435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150