JP5675224B2 - Visible light water splitting catalyst and photoelectrode manufacturing method - Google Patents

Visible light water splitting catalyst and photoelectrode manufacturing method Download PDF

Info

Publication number
JP5675224B2
JP5675224B2 JP2010194528A JP2010194528A JP5675224B2 JP 5675224 B2 JP5675224 B2 JP 5675224B2 JP 2010194528 A JP2010194528 A JP 2010194528A JP 2010194528 A JP2010194528 A JP 2010194528A JP 5675224 B2 JP5675224 B2 JP 5675224B2
Authority
JP
Japan
Prior art keywords
visible light
photoelectrode
tantalum
tantalum oxynitride
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010194528A
Other languages
Japanese (ja)
Other versions
JP2012050913A (en
Inventor
中西 治通
治通 中西
竜 阿部
竜 阿部
正信 東
正信 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Toyota Motor Corp
Original Assignee
Hokkaido University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Toyota Motor Corp filed Critical Hokkaido University NUC
Priority to JP2010194528A priority Critical patent/JP5675224B2/en
Publication of JP2012050913A publication Critical patent/JP2012050913A/en
Application granted granted Critical
Publication of JP5675224B2 publication Critical patent/JP5675224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Fuel Cell (AREA)

Description

本発明は、新規な可視光水分解用触媒および光電極の製造方法に関し、さらに詳しくは可視光照射に対して長時間に渡って光触媒機能を維持する光電極を与え得る可視光水分解用触媒および光電極の製造方法に関する。   The present invention relates to a novel visible light water splitting catalyst and a method for producing a photoelectrode, and more specifically, a visible light water splitting catalyst capable of providing a photoelectrode that maintains a photocatalytic function for a long time with respect to visible light irradiation. And a method of manufacturing a photoelectrode.

近年、地球温暖化を防止するため、さらには可採可能燃料の枯渇に対する取り組みとして水素を主要なエネルギー源と想定した水素社会実現に向け、燃料電池、水素製造技術、水素貯蔵・輸送技術などの開発が活発になされている。
水素は、現在、石炭・石油や天然ガスなどの化石燃料を原料として製造することができるが、将来的には、水・バイオマスなどの非化石燃料と太陽光などのクリーンエネルギーとを用いた水素製造技術が望まれている。
In recent years, in order to prevent global warming, and to realize a hydrogen society where hydrogen is assumed to be a major energy source as an effort to deplete renewable fuels, fuel cells, hydrogen production technologies, hydrogen storage and transport technologies, etc. Development is active.
Currently, hydrogen can be produced using fossil fuels such as coal, oil and natural gas, but in the future, hydrogen using non-fossil fuels such as water and biomass and clean energy such as sunlight will be used. Manufacturing technology is desired.

ところで、太陽光などの光を受光して光起電力を発生し、その起電力により電気化学反応を引き起こす金属酸化物半導体が知られている。
半導体にそのバンドギャップ以上のエネルギーを持つ光が吸収されると、価電子帯の電子が伝導帯に励起されて励起電子が生成し、一方で価電子帯には正孔が生成する。かかる励起電子および正孔は、それぞれ強い還元力および酸化力を有することから、半導体に接触した分子種に酸化還元作用を及ぼす。この酸化還元作用は光触媒作用と呼ばれており、光触媒作用を示し得る半導体は光触媒と呼ばれている。この光触媒を導電性基板上に固定化したものを光電極と呼び、これを白金などの対極と組み合わせ、両極間に適切な外部電圧を印加した状態にしておいて光電極に光照射することによって、水を水素と酸素に分解することが可能である。
By the way, metal oxide semiconductors that receive light such as sunlight and generate a photovoltaic force and cause an electrochemical reaction by the electromotive force are known.
When light having energy higher than the band gap is absorbed by the semiconductor, electrons in the valence band are excited to the conduction band to generate excited electrons, while holes are generated in the valence band. Such excited electrons and holes have a strong reducing power and oxidizing power, respectively, and thus exert a redox action on molecular species in contact with the semiconductor. This redox action is called photocatalysis, and a semiconductor that can show photocatalysis is called a photocatalyst. This photocatalyst immobilized on a conductive substrate is called a photoelectrode, and this is combined with a counter electrode such as platinum, and an appropriate external voltage is applied between the two electrodes, and the photoelectrode is irradiated with light. It is possible to decompose water into hydrogen and oxygen.

そして、光触媒用の金属酸化物としては、バンドギャップの小さい材料であることが求められ、二酸化チタン(TiO)、酸化タングステン(WO)、三酸化二鉄(Fe)などが知られている。しかし、二酸化チタンは太陽光スペクトルの約380nmより長い波長の光に対してほとんど感度がない(すなわち、光電流応答性を示さない)という問題がある。また、酸化タングステンは波長約460nm以下の光に対して、三酸化二鉄は波長約540nm以下の光に対して光電流応答性を示すが、そのレベルが低く実用性は低いと考えられている。 As a metal oxide for photocatalyst, a material having a small band gap is required, and titanium dioxide (TiO 2 ), tungsten oxide (WO 3 ), diiron trioxide (Fe 2 O 3 ), etc. are known. It has been. However, titanium dioxide has a problem that it is almost insensitive to light having a wavelength longer than about 380 nm in the solar spectrum (that is, does not exhibit photocurrent response). Tungsten oxide exhibits photocurrent responsiveness to light with a wavelength of about 460 nm or less, and ferric trioxide to light with a wavelength of about 540 nm or less, but its level is considered to be low and practicality is low. .

このため、バンドギャップが小さく、太陽光スペクトルの約380nmより長い波長の光に対して光電流応答性を示し且つそのレベルが高い材料として、タンタルを含む酸化物や酸窒化物あるいは窒化物が提案されている。
例えば、特許文献1には、X(=II、III、IV、V)族酸化物からなるp型酸化物半導体であって、半導体中にY(≦X)族窒化物の少なくとも1つ、例えば、LiN、BeN、MgN、AlN、GaNなどからなる金属−窒素結合を有するようにした化学的電気的に安定で、紫外線だけに応答して光触媒を実現し得るp型酸化物半導体が記載されている。そして具体例として、Nb2(1−X)Ta(但し、0≦x≦1)のp型酸化物半導体が記載されている。しかし、前記のp型酸化物半導体を用いて光照射により水から水素を生成し得ることは示されていない。
For this reason, oxides, oxynitrides or nitrides containing tantalum have been proposed as materials with a small band gap, high photocurrent response to light with a wavelength longer than about 380 nm in the solar spectrum, and a high level of such materials. Has been.
For example, Patent Document 1 discloses a p-type oxide semiconductor made of an X (= II, III, IV, V) group oxide, and at least one of Y (≦ X) group nitrides in the semiconductor, for example, A p-type oxide semiconductor is described which has a metal-nitrogen bond composed of LiN, BeN, MgN, AlN, GaN, etc. and is chemically and electrically stable and capable of realizing a photocatalyst in response to only ultraviolet rays. Yes. As a specific example, a p-type oxide semiconductor of Nb 2 (1-X) Ta X O 5 (where 0 ≦ x ≦ 1) is described. However, it has not been shown that hydrogen can be generated from water by light irradiation using the p-type oxide semiconductor.

また、特許文献2には、細孔構造を有する窒化タンタルに助触媒を担持させたメソポーラス窒化タンタル(Ta)が光触媒効果を有すること、前記助触媒の量は窒化タンタルの量の0.05〜5.0質量%が好ましく、前記助触媒がPt、NiO、RuOからなる群から選択されること、そして具体例として助触媒のPtを担持させた細孔窒化タンタルが犠牲試薬としてのメタノールを80容積%含むメタノール水溶液中で可視光(λ≧420nm)の光照射により1時間当たり13.0マイクロモルの水素を発生したことが記載されている。 Patent Document 2 discloses that mesoporous tantalum nitride (Ta 3 N 5 ) in which a promoter is supported on tantalum nitride having a pore structure has a photocatalytic effect, and the amount of the promoter is 0 of the amount of tantalum nitride. The cocatalyst is selected from the group consisting of Pt, NiO, and RuO 2 , and, as a specific example, pore tantalum nitride carrying Pt of the cocatalyst is used as the sacrificial reagent. It is described that 13.0 micromol of hydrogen was generated per hour by irradiation with visible light (λ ≧ 420 nm) in an aqueous methanol solution containing 80% by volume of methanol.

また、特許文献3には、一般式:Ba5−XLaTa15−X(0.25≦x≦1)で表わされるタンタル系酸窒化物が600nm付近までの可視光を吸収する光触媒効果を有すること、前記タンタル系酸窒化物に助触媒としてPt、NiO又はRuOを担持させたものは水を光分解して水素を生成する光触媒として有効に機能すること、そして具体例として助触媒のNiO又はRuOを担持させたBa4.5La0.5Ta14.50.5が290nm又は400nmより長波長の光照射により水素と酸素が生成したこと、NiOを担持させたBa5−XLaTa15−X(x=0.25、0.5、0.75、1.0)を用いて290nmより長波長の光照射により水素と酸素が生成したことが記載されている。しかし、水素発生量の経時的な変化を定量的に示すデータは示されていない。 Patent Document 3 discloses that a tantalum-based oxynitride represented by the general formula: Ba 5-X La X Ta 4 O 15-X N X (0.25 ≦ x ≦ 1) emits visible light up to about 600 nm. Having a photocatalytic effect of absorbing, Pt, NiO or RuO 2 supported on the tantalum-based oxynitride as a co-catalyst functions effectively as a photocatalyst for photolyzing water to produce hydrogen; As an example, Ba 4.5 La 0.5 Ta 4 O 14.5 N 0.5 supporting NiO or RuO 2 as a cocatalyst produced hydrogen and oxygen by light irradiation with a wavelength longer than 290 nm or 400 nm, Hydrogen is irradiated by light irradiation with a wavelength longer than 290 nm using Ba 5-X La X Ta 4 O 15-X N X (x = 0.25, 0.5, 0.75, 1.0) supporting NiO. And oxygen produced It is described. However, there is no data that quantitatively shows changes with time in the amount of hydrogen generation.

さらに、非特許文献1には、タンタルの酸窒化物:TaONを導電性基板上に積層させてネッキング処理したTaON単独の光電極、およびこのTaONに水の酸化用触媒であるIrOを担持させたIrO−TaON光電極が記載されており、IrO−TaON光電極はTaON単独の光電極に比べて継続的な光吸収後の光電流およびN含量の低下が抑制され、TaON単独光電極の場合には5分間の継続的な光吸収により電流が約12mAから0mAに低下するのに対してIrO−TaON光電極では60分間の継続的な光吸収により、電流が初期の約12mAから60分後の約2mAに約17%に低下したものの低下が抑制されたことが示されている。しかし、IrO−TaON光電極によっても1時間の継続的な光吸収による光触媒機能低下の抑制は不十分であり、またIrOが高価であることから工業化の観点からも実用化は困難である。 Further, Non-Patent Document 1 discloses a TaON single photoelectrode obtained by laminating tantalum oxynitride: TaON on a conductive substrate and carrying out necking treatment, and IrO 2 which is a catalyst for oxidizing water on this TaON. An IrO 2 -TaON photoelectrode is described, and the IrO 2 -TaON photoelectrode suppresses a decrease in photocurrent and N content after continuous light absorption compared to a TaON single photoelectrode, and the TaON single photoelectrode In this case, the current decreases from about 12 mA to 0 mA due to the continuous light absorption for 5 minutes, whereas the current from the initial about 12 mA is obtained for the IrO 2 -TaON photoelectrode due to the continuous light absorption for 60 minutes. It is shown that the decrease was reduced to about 17% at about 2 mA after 60 minutes, but the decrease was suppressed. However, even with an IrO 2 -TaON photoelectrode, the suppression of the photocatalytic function deterioration due to continuous light absorption for 1 hour is insufficient, and since IrO 2 is expensive, it is difficult to put it into practical use from the viewpoint of industrialization. .

特開2001−322814号公報JP 2001-322814 A 特開2007−022858号公報JP 2007-022858 A 特開2007−175659号公報JP 2007-175659 A

Journal of American Chemioal Society、Volume132、Issue34、11825−12156(2010)Journal of American Chemical Society, Volume132, Issue34, 11825-12156 (2010)

このように、従来技術によれば、太陽光に代表される光エネルギーに対して長時間に渡って光触媒機能を維持し得る可視光水分解用触媒および光電極を得ることはできなかったのである。
従って、本発明の目的は、可視光照射に対して長時間に渡って光触媒機能を維持する光電極を与え得る可視光水分解用触媒を提供することである。
また、本発明の他の目的は、可視光照射に対して長時間に渡って光触媒機能を維持し得る光電極の製造方法を提供することである。
Thus, according to the prior art, it was not possible to obtain a visible light water splitting catalyst and a photoelectrode that can maintain a photocatalytic function for a long time with respect to light energy represented by sunlight. .
Accordingly, an object of the present invention is to provide a visible light water splitting catalyst capable of providing a photoelectrode that maintains a photocatalytic function for a long time with respect to visible light irradiation.
Another object of the present invention is to provide a method for producing a photoelectrode capable of maintaining a photocatalytic function for a long time with respect to visible light irradiation.

本発明は、タンタルの酸窒化物粒子に助触媒としてCoOが、前記タンタルの酸窒化物粒子に対して0.1〜50質量%の担持量(但し、Co換算で0.01質量%以上1質量%以下の範囲に相当する担持量を除く。)で担持されてなる可視光水分解用触媒に関する。
また、本発明は、タンタルの酸窒化物粒子に助触媒としてCoOを、前記タンタルの酸窒化物粒子に対して0.1〜50質量%の担持量(但し、Co換算で0.01質量%以上1質量%以下の範囲に相当する担持量を除く。)で担持させる工程、タンタルの酸窒化物粒子を導電性基板上に固定する工程、およびタンタルの酸窒化物粒子に電子移動を促進するネッキング処理を施す工程、を含む光電極の製造方法に関する。
In the present invention, CoO as a co-catalyst for tantalum oxynitride particles is supported in an amount of 0.1 to 50% by mass with respect to the tantalum oxynitride particles (provided that 0.01% by mass or more in terms of Co is 1 to 1% by mass). The catalyst for visible light water splitting, which is supported by the above method , excluding the supported amount corresponding to the range of mass% or less .
Further, the present invention provides CoO as a co-catalyst for the tantalum oxynitride particles and a supported amount of 0.1 to 50% by mass with respect to the tantalum oxynitride particles (provided that 0.01% by mass in terms of Co). (Excluding the loading amount corresponding to the range of 1% by mass or less), the step of fixing the tantalum oxynitride particles on the conductive substrate, and the electron transfer to the tantalum oxynitride particles. The present invention relates to a photoelectrode manufacturing method including a step of performing a necking process.

本発明によれば、可視光照射に対して長時間に渡って光触媒機能を維持する光電極を与え得る可視光水分解用触媒を得ることができる。
さらに、本発明によれば、可視光照射に対して長時間に渡って光触媒機能を維持し得る光電極を容易に得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the visible light water splitting catalyst which can provide the photoelectrode which maintains a photocatalytic function over a long time with respect to visible light irradiation can be obtained.
Furthermore, according to this invention, the photoelectrode which can maintain a photocatalytic function over a long time with respect to visible light irradiation can be obtained easily.

本発明の可視光水分解用触媒においては、光触媒としてのタンタルの酸窒化物粒子に助触媒としてのCoOを担持させたものであることが必要であり、これによって太陽光に代表される可視光照射に対して長時間に渡って光触媒機能を維持し得る。
また、本発明の光電極においては、タンタルの酸窒化物粒子に助触媒としてCoOを担持させる工程、タンタルの酸窒化物粒子を導電性基板上に固定する工程、およびタンタルの酸窒化物粒子に電子移動を促進するネッキング処理を施す工程、を含むことが必要であり、これによって太陽光に代表される可視光照射に対して長時間に渡って光触媒機能を維持し得て、特殊な装置を用いることなく簡便で安価に光電極を得ることが可能となる。
In the visible light water splitting catalyst of the present invention, it is necessary that tantalum oxynitride particles as a photocatalyst carry CoO as a co-catalyst. The photocatalytic function can be maintained for a long time with respect to irradiation.
In the photoelectrode of the present invention, the step of supporting CoO as a co-catalyst on the tantalum oxynitride particles, the step of fixing the tantalum oxynitride particles on the conductive substrate, and the tantalum oxynitride particles It is necessary to include a step of performing a necking process that promotes electron transfer, which can maintain a photocatalytic function for a long time against visible light irradiation typified by sunlight, and a special device. A photoelectrode can be obtained easily and inexpensively without using it.

本明細書において、可視光照射に対して長時間に渡って光触媒機能を維持し得るとは、後述の実施例の欄に詳述される測定法によって測定して、1時間以上(継続して1時間以上、又は断続的な場合は合計時間が1時間以上)光吸収させた後の光電流密度が光照射初期の値の50%以上維持されることを意味する。   In the present specification, the fact that the photocatalytic function can be maintained over a long period of time with respect to visible light irradiation is measured for 1 hour or longer (continuously) as measured by the measurement method described in detail in the Examples section below. This means that the photocurrent density after light absorption is maintained at 50% or more of the initial value of light irradiation.

本発明においては、タンタルの酸窒化物粒子と助触媒としてのCoOとを組み合わせて用いることが必要である。
前記のタンタルの酸窒化物粒子は、例えば市販の酸化タンタル粒子を適した温度、例えば500〜900℃で30分間〜24時間程度加熱下にアンモニアと接触させることによって、粉末として得ることができる。
また、本発明においては、前記タンタルの酸窒化物粒子の一部、好適には50質量%以下を他の光触媒機能を有する他の金属化合物の粒子と組み合わせて用い得る。前記の他の金属化合物としては、Taの窒化物、酸化物あるいはSc、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、La、Hf、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Ceから選ばれる少なくとも1種の金属と酸素、窒素、硫黄、又はフッ素との化合物や、前記金属とTaと酸素、窒素、硫黄、又はフッ素との二元又は三元金属化合物などが挙げられる。タンタルの酸窒化物粒子と前記他の金属化合物の粒子とを組み合わせることによって、より広い波長範囲の光照射によって水の分解反応を達成し得る可能性がある。
また、本発明の可視光水分解用触媒がp型半導体特性又はn型半導体特性を示す必要がある場合は、半導体業界において周知の手段を用いて不純物元素をドープさせることによってp型又はn型とし得る。
In the present invention, it is necessary to use a combination of tantalum oxynitride particles and CoO as a promoter.
The tantalum oxynitride particles can be obtained, for example, by bringing commercially available tantalum oxide particles into contact with ammonia under heating at a suitable temperature, for example, 500 to 900 ° C. for about 30 minutes to 24 hours.
In the present invention, a part of the tantalum oxynitride particles, preferably 50% by mass or less, may be used in combination with other metal compound particles having other photocatalytic functions. Examples of the other metal compounds include Ta nitride, oxide, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Tc, and Ru. At least one metal selected from Rh, Pd, Ag, Cd, In, Sn, Sb, Te, La, Hf, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, and Ce And a binary or ternary metal compound of the metal with Ta and oxygen, nitrogen, sulfur, or fluorine. By combining the tantalum oxynitride particles and the other metal compound particles, there is a possibility that a water decomposition reaction can be achieved by light irradiation in a wider wavelength range.
In addition, when the visible light water splitting catalyst of the present invention needs to exhibit p-type semiconductor characteristics or n-type semiconductor characteristics, p-type or n-type can be obtained by doping an impurity element using means well known in the semiconductor industry. It can be.

前記のCoOは、例えばタンタルの酸窒化物粒子にコバルト塩、例えば硝酸コバルト、塩化コバルト、酢酸コバルト、蟻酸コバルト、コバルトアセチルアセトナートなど、特に硝酸コバルトの水溶液を加えた後、乾燥し、適した温度、例えば300〜500℃で15分〜10時間程度加熱して、コバルト塩の陰イオンを分解することによって、タンタルの酸窒化物粒子上に生成させ得る。
好適な態様において、例えば、タンタルの酸窒化物粒子を水に加えて分散させた混合物に前記コバルト塩を加えてよく混合した後、前記のように乾燥・加熱して、コバルト塩の陰イオンを分解してタンタルの酸窒化物粒子上にCoOを高分散させて、CoOを生成させ得る。
The CoO is suitable, for example, after adding an aqueous solution of cobalt nitrate, such as cobalt nitrate, cobalt chloride, cobalt acetate, cobalt formate, cobalt acetylacetonate, etc., to tantalum oxynitride particles, followed by drying. It can be produced on tantalum oxynitride particles by decomposing cobalt salt anions by heating at a temperature of, for example, 300 to 500 ° C. for about 15 minutes to 10 hours.
In a preferred embodiment, for example, the cobalt salt is added to a mixture of tantalum oxynitride particles dispersed in water and mixed well, and then dried and heated as described above, to thereby remove the anion of the cobalt salt. It can be decomposed to highly disperse CoO on tantalum oxynitride particles to produce CoO.

本発明の可視光水分解用触媒において、助触媒であるCoOの担持量はタンタルの酸窒化物粒子に生じた電子あるいは正孔を効率よく受け取り、その表面で効率よく酸化又は還元反応を進行させるために、タンタルの酸窒化物粒子に対して0.1〜50質量%、特に1〜25質量%であることが好適であり、また数nm〜数十nmの微粒子であり得る。   In the visible light water decomposition catalyst of the present invention, the amount of CoO as a cocatalyst is efficiently received from electrons or holes generated in the tantalum oxynitride particles, and the oxidation or reduction reaction proceeds efficiently on the surface thereof. Therefore, the content is preferably 0.1 to 50% by mass, particularly 1 to 25% by mass with respect to the tantalum oxynitride particles, and may be fine particles of several nm to several tens of nm.

本発明において「助触媒」とは、一般には光触媒粒子の表面に担持された状態において、光触媒からの電子又は正孔を受け取って、水の還元による水素生成又は水の酸化による酸素生成を促進するものである。
本発明においては、前記のCoOの一部、好適には50質量%以下を他の助触媒機能を有する他の金属化合物の粒子と組み合わせて用い得る。前記の他の金属化合物としては特定の結晶構造を示す金属又は金属と酸素、窒素、硫黄、又はフッ素との化合物が挙げられる。そして、水の還元を促進する助触媒材料としては、Ru、Rh、Pd、Ag、Ir、Pt、Auなどの金属単体又は金属酸化物が、水の酸化を促進する助触媒材料としては、Cr、Mn、Fe、Ni、Cu、Mo、Ru、Rh、Irなどの金属単体又は金属酸化物が挙げられ、特に、Mn、Mo、Ru、Rh、Irなどの金属の酸化物が挙げられる。
In the present invention, the term “co-catalyst” generally promotes hydrogen generation by reduction of water or oxygen generation by oxidation of water by receiving electrons or holes from the photocatalyst while being supported on the surface of the photocatalyst particles. Is.
In the present invention, a part of the CoO, preferably 50% by mass or less, may be used in combination with other metal compound particles having other promoter functions. Examples of the other metal compound include a metal having a specific crystal structure or a compound of metal, oxygen, nitrogen, sulfur, and fluorine. As a promoter material for promoting the reduction of water, a simple metal or a metal oxide such as Ru, Rh, Pd, Ag, Ir, Pt, or Au is used as a promoter material for promoting the oxidation of water. , Mn, Fe, Ni, Cu, Mo, Ru, Rh, Ir, and the like, and metal oxides such as Mn, Mo, Ru, Rh, and Ir are mentioned.

本発明の可視光水分解用触媒により可視光照射に対して長時間に渡って光触媒機能が維持される理論的解明はなされていないが、後述の実施例の欄に示されるように長時間の可視光照射後にN/Taがほとんど減少していないことから、タンタルの酸窒化物自体が光吸収によって生じた電子又は正孔によって自己還元又は自己酸化される反応が助触媒のCoOによって抑制されたことも寄与していると考えられる。   Although the theoretical elucidation that the photocatalytic function is maintained for a long time with respect to visible light irradiation by the visible light water splitting catalyst of the present invention has not been made, as shown in the Examples section below, Since N / Ta hardly decreased after irradiation with visible light, the reaction in which tantalum oxynitride itself was self-reduced or self-oxidized by electrons or holes generated by light absorption was suppressed by CoO as a cocatalyst. It is thought that this also contributed.

本発明における光電極は、タンタルの酸窒化物粒子に助触媒としてCoOを担持させる工程、タンタルの酸窒化物粒子を導電性基板上に固定する工程、およびタンタルの酸窒化物粒子に電子移動を促進するネッキング処理を施す工程によって得ることができる。
前記の導電性基板としては、特に制限はなく、例えば各種金属板が挙げられ、特に光電極を得るための工程において適用される雰囲気下における熱処理に対して高い耐性を有するチタン板が好適である。また、作製した光電極の裏側から光照射を受けることにより導電性基板近傍の光触媒内に生成した電荷が再結合することなく効率よく導電性基板まで移動し得て、照射した光が有効に利用され得るために、透明な導電性基板が好適に用いられ得る。透明な導電性基板としては、例えばFTO(フッ素ドープ酸化スズ)基板やガラス基板上にチタン等の金属をスパッタリングによって極薄くコーティングした導電性基板が挙げられる。
In the photoelectrode according to the present invention, the tantalum oxynitride particles carry CoO as a co-catalyst, the tantalum oxynitride particles are fixed on a conductive substrate, and the tantalum oxynitride particles transfer electrons. It can be obtained by a step of applying a necking treatment to be promoted.
There is no restriction | limiting in particular as said electroconductive board | substrate, For example, various metal plates are mentioned, The titanium plate which has high tolerance with respect to the heat processing in the atmosphere especially applied in the process for obtaining a photoelectrode is suitable. . In addition, by receiving light irradiation from the back side of the fabricated photoelectrode, the charges generated in the photocatalyst near the conductive substrate can be efficiently transferred to the conductive substrate without recombination, and the irradiated light is effectively used. In order to be able to be used, a transparent conductive substrate can be preferably used. Examples of the transparent conductive substrate include an FTO (fluorine-doped tin oxide) substrate and a conductive substrate obtained by coating a metal such as titanium on a glass substrate extremely thinly by sputtering.

本発明における光電極の製造方法において、第1の態様として、タンタルの酸窒化物粒子に助触媒としてCoOを予め担持させて導電性基板上に固定し、次いで電子移動を促進するネッキング処理を施す。
前記の態様においては、先ず前記の導電性基板上にタンタルの酸窒化物粒子に助触媒としてCoOを予め担持させて固定する。
前記の導電性基板上にタンタルの酸窒化物粒子に助触媒としてCoOを予め担持させて固定する方法としては、例えば前記の光触媒としてのタンタルの酸窒化物粒子に助触媒としてのCoOが担持されてなる可視光水分解用触媒を溶媒中に懸濁させて電気泳動法を用いて導電性基板上に前記可視光水分解用触媒を積層させる方法、あるいは前記可視光水分解用触媒を含む粘性ペーストを作製して導電性基板上に塗布する方法や、前記可視光水分解用触媒を含むスラリーを作製して浸漬被覆法又は噴霧法のいずれかで導電性基板上に被覆する方法が挙げられ、特に、電気泳動法を用いると均一な多孔質薄膜を再現性よく形成し得て、また膜厚の調整等も容易であることから好適である。
前記の電気泳動法としては、例えば可視光水分解用触媒の粒子を、ヨウ素を加えたアセトン溶液中で電圧、例えば5〜50Vの直流電圧を0.1〜10分間程度加えることによって実施し得る。電気泳動法によって導電性基板上にタンタルの酸窒化物粒子に助触媒としてCoOを担持させた後、通常アセトンを用いて洗浄後、室温で乾燥させて、可視光水分解用触媒の薄膜を形成した導電性基板を得ることができる。
In the method for producing a photoelectrode according to the present invention, as a first aspect, a tantalum oxynitride particle is preloaded with CoO as a cocatalyst and fixed on a conductive substrate, and then a necking treatment for promoting electron transfer is performed. .
In the above-described embodiment, first, CoO is previously supported and fixed as a promoter on the tantalum oxynitride particles on the conductive substrate.
As a method for preliminarily supporting CoO as a co-catalyst on the tantalum oxynitride particles on the conductive substrate, CoO as a co-catalyst is supported on the tantalum oxynitride particles as the photocatalyst, for example. A method of suspending the visible light water decomposition catalyst in a solvent and laminating the visible light water decomposition catalyst on a conductive substrate using electrophoresis, or a viscosity containing the visible light water decomposition catalyst Examples thereof include a method of preparing a paste and applying it on a conductive substrate, and a method of preparing a slurry containing the visible light water decomposition catalyst and coating it on the conductive substrate by either a dip coating method or a spray method. In particular, it is preferable to use an electrophoresis method because a uniform porous thin film can be formed with good reproducibility and the film thickness can be easily adjusted.
The electrophoresis method can be carried out, for example, by applying a voltage, for example, a direct current voltage of 5 to 50 V for about 0.1 to 10 minutes in an acetone solution to which iodine is added for visible light water splitting catalyst particles. . After carrying CoO as a co-catalyst on tantalum oxynitride particles on a conductive substrate by electrophoresis, it is usually washed with acetone and then dried at room temperature to form a visible light water decomposition catalyst thin film An electrically conductive substrate can be obtained.

本発明の光電極の製造方法の第1の態様においては、前記の工程で可視光水分解用触媒の薄膜を形成した導電性基板に、電子移動を促進するためにネッキング処理を施す。
前記のネッキング処理としては、タンタルの酸窒化物粒子間に有効な接合を形成し得る処理が挙げられ、例えば光電極の可視光水分解用触媒粒子にタンタル塩を含む溶液を含浸させて、任意の雰囲気下、例えば大気中又は不活性雰囲気下に比較的低温、例えば100〜750℃、特に200〜500℃で5分間〜5時間程度加熱する熱処理工程が挙げられる。
前記のタンタル塩としては、特に制限はなく例えば、五塩化タンタル(TaCl5)、五ヨウ化タンタル(TaI5)、五フッ化タンタル(TaF5)、五臭化タンタル(TaBr5)などが挙げられる。
前記のタンタル塩を含む溶液を与える溶媒としては、特に制限はなく、例えばメタノール、エタノールなどのアルコール、水などが挙げられる。
In the first aspect of the method for producing a photoelectrode according to the present invention, a necking treatment is applied to the conductive substrate on which the thin film of the visible light water decomposition catalyst has been formed in the above-described step in order to promote electron transfer.
Examples of the necking treatment include a treatment capable of forming an effective bond between tantalum oxynitride particles. For example, a catalyst particle for visible light water splitting of a photoelectrode is impregnated with a solution containing a tantalum salt, and is optionally added. A heat treatment step of heating at a relatively low temperature, for example, 100 to 750 ° C., particularly 200 to 500 ° C., for about 5 minutes to 5 hours in the atmosphere of, for example, air or an inert atmosphere.
The tantalum salt is not particularly limited, and examples thereof include tantalum pentachloride (TaCl 5 ), tantalum pentaiodide (TaI 5 ), tantalum pentafluoride (TaF 5 ), and tantalum pentabromide (TaBr 5 ). It is done.
There is no restriction | limiting in particular as a solvent which gives the solution containing the said tantalum salt, For example, alcohol, such as methanol and ethanol, water etc. are mentioned.

また、本発明の方法の第1の態様においては、前記のネッキング処理に、アンモニアの存在下に加熱するアンモニアによる熱処理をさらに加えてもよい。前記のアンモニアによる熱処理は、例えばアンモニアの存在下、例えば1〜100mL/分のアンモニアの流通下、比較的低温、例えば350〜600℃で5分間〜5時間程度加熱することによって行われ得る。   In the first aspect of the method of the present invention, a heat treatment with ammonia that is heated in the presence of ammonia may be further added to the necking treatment. The heat treatment with ammonia can be performed, for example, by heating at a relatively low temperature, for example, 350 to 600 ° C. for about 5 minutes to 5 hours in the presence of ammonia, for example, in a flow of ammonia of 1 to 100 mL / min.

前記の導電性基板に可視光水分解用触媒の薄膜を形成した光電極では、可視光水分解用触媒粒子が物理的に接触しているのみであり、粒子間における電子移動が起こり難く、光照射によって生成した電子が効率よく導電性基板まで集積されにくく、高い光電流を得ることが困難となる傾向にある。これに対して、光電極の可視光水分解用触媒粒子にタンタル塩を含む溶液の含浸およびそれに続く熱処理工程からなるネッキング処理を施すことによって、可視光水分解用触媒粒子間に効果的なネッキング、すなわち電子移動のための接合を形成させることが可能となる。   In the photoelectrode in which a thin film of visible light water splitting catalyst is formed on the conductive substrate, the visible light water splitting catalyst particles are only in physical contact, and electron transfer between the particles hardly occurs. Electrons generated by irradiation are not easily integrated up to the conductive substrate, and it tends to be difficult to obtain a high photocurrent. On the other hand, effective necking between visible light water decomposition catalyst particles is performed by impregnating the catalyst particles for visible light water decomposition of the photoelectrode with a solution containing a tantalum salt and subsequent necking treatment. That is, a junction for electron transfer can be formed.

あるいは、本発明の方法の第2の態様においては、タンタルの酸窒化物粒子を導電性基板上に固定し、次いで電子移動を促進するネッキング処理を施し、好適にはさらにアンモニアによる熱処理をさらに施した後、タンタルの酸窒化物粒子上に助触媒としてのCoOを担持させる。
この第2の態様における、タンタルの酸窒化物粒子の導電性基板上への固定、電子移動を促進するネッキング処理およびタンタルの酸窒化物粒子上への助触媒としてのCoOの担持は、前記の第1の態様と実質的に同様に行い得る。
また、前記の付加的なアンモニアによる熱処理は、タンタルの酸窒化物粒子への助触媒としてのCoOの担持の後に行ってもよい。
Alternatively, in the second aspect of the method of the present invention, the tantalum oxynitride particles are fixed on a conductive substrate, and then a necking treatment that promotes electron transfer is performed, and further a heat treatment with ammonia is preferably performed. After that, CoO as a promoter is supported on the tantalum oxynitride particles.
In this second embodiment, the fixing of the tantalum oxynitride particles onto the conductive substrate, the necking treatment for promoting electron transfer, and the loading of CoO as a promoter on the tantalum oxynitride particles are performed as described above. This can be performed in substantially the same manner as in the first aspect.
The heat treatment with additional ammonia may be performed after supporting CoO as a cocatalyst on tantalum oxynitride particles.

前記の本発明の方法によって得られる光電極は、光電気化学的分解に適用し得る。
例えば、光電極に一定の電位が印加される。電位の印加は、通常の性能評価においては作用極、対極および参照極を用い、作用極に電位を印加するいわゆる「3極式」が用いられるが、工業的応用に際しては参照極を用いず作用極と対極のみを用い、両極間に電位を印加するいわゆる「2極式」によって行い得る。n型半導体特性を示す可視光水分解用触媒を光電極化して作用極として用いる場合は、そのような光電極上において水の酸化による酸素生成が起こり、対極において水の還元による水素生成が進行する。これに対して、p型半導体特性を示す可視光水分解用触媒を光電極化して作用極として用いる場合は、そのような光電極上において水の還元による水素生成が起こり、対極において水の酸化による酸素生成が進行する。
The photoelectrode obtained by the method of the present invention can be applied to photoelectrochemical decomposition.
For example, a constant potential is applied to the photoelectrode. In the normal performance evaluation, the so-called “three-pole type” in which the potential is applied to the working electrode is used for the application of the potential, but in the case of industrial application, the operation is performed without using the reference electrode. This can be performed by a so-called “bipolar type” in which only a pole and a counter electrode are used and a potential is applied between both poles. When a visible light water splitting catalyst exhibiting n-type semiconductor characteristics is used as a photoelectrode and used as a working electrode, oxygen is generated by oxidation of water on such a photoelectrode, and hydrogen is generated by reduction of water at the counter electrode. . On the other hand, when a visible light water splitting catalyst exhibiting p-type semiconductor properties is used as a working electrode as a working electrode, hydrogen is generated by reduction of water on such a photoelectrode, and water is oxidized at the counter electrode. Oxygen production proceeds.

本発明における光電極と組み合わせて用い得る対極としては、通常の電解反応で用いられる電極が挙げられ、作用極から対極を伝わって供給される電荷を効率よく反応させるために、実効表面積が大きいものが好適である。また、水の還元による水素生成用対極としては白金やニッケルからなるメッシュ電極が、水の酸化による酸素生成用対極としては酸化ルテニウムや酸化イリジウムのメッシュ又は多孔質電極が挙げられる。
または、n型半導体特性を有する可視光水分解用触媒を用いた光電極を酸素生成用として、p型半導体特性を有する可視光水分解用触媒を用いた光電極を水素生成用として用いて、両極を短絡もしくは両極間に適切な電位を印加させながら光照射を行うことにより、前記対極を使用せずに水を分解する(すなわち、水素を生成させる)ことも可能である。
The counter electrode that can be used in combination with the photoelectrode in the present invention includes an electrode used in a normal electrolytic reaction, and has a large effective surface area in order to efficiently react charges supplied from the working electrode through the counter electrode. Is preferred. Examples of the counter electrode for hydrogen generation by reduction of water include a mesh electrode made of platinum or nickel, and examples of the counter electrode for oxygen generation by water oxidation include a ruthenium oxide or iridium oxide mesh or a porous electrode.
Alternatively, a photoelectrode using a visible light water splitting catalyst having n-type semiconductor characteristics is used for oxygen generation, and a photoelectrode using a visible light water splitting catalyst having p-type semiconductor characteristics is used for hydrogen generation, It is also possible to decompose water (that is, generate hydrogen) without using the counter electrode by irradiating light while short-circuiting both electrodes or applying an appropriate potential between both electrodes.

また、電位を印加する際に用いる支持電解質としては、例えば硫酸ナトリウム、水酸化ナトリウム、硫酸、硫酸カリウム、水酸化カリウム、塩化ナトリウム、塩化カリウム、リン酸ナトリウム、リン酸カリウム、リン酸、硝酸、過塩素酸ナトリウム、過塩素酸カリウム、過塩素酸などが挙げられ、上記一定の電位において反応に寄与しないことから硫酸ナトリウム、リン酸ナトリウム、水酸化ナトリウム、リン酸、硫酸を好適に挙げることができる。これらの電解質は、水溶液のpHを1〜13の間に調整するために適宜混合して用いることが望ましい。この際に、用いる可視光水分解用触媒の腐食が起こらないpH領域に調整した水溶液を用いることが望ましい。   Examples of the supporting electrolyte used when applying the potential include sodium sulfate, sodium hydroxide, sulfuric acid, potassium sulfate, potassium hydroxide, sodium chloride, potassium chloride, sodium phosphate, potassium phosphate, phosphoric acid, nitric acid, Examples include sodium perchlorate, potassium perchlorate, and perchloric acid, and sodium sulfate, sodium phosphate, sodium hydroxide, phosphoric acid, and sulfuric acid are preferable because they do not contribute to the reaction at the above-described constant potential. it can. These electrolytes are desirably mixed and used as appropriate in order to adjust the pH of the aqueous solution between 1 and 13. At this time, it is desirable to use an aqueous solution adjusted to a pH range in which the visible light water splitting catalyst used does not corrode.

以下、本発明の実施例および比較例を示す。以下の各例は例示であって本発明の範囲を限定するものではない。
以下の各例において、得られた可視光水分解用触媒および光電極の分析および評価は以下に示す方法によって行った。なお、以下の測定法は例示であって、他の同等の装置、条件を用いて測定し得る。
Examples of the present invention and comparative examples are shown below. The following examples are illustrative and do not limit the scope of the invention.
In each of the following examples, analysis and evaluation of the obtained visible light water splitting catalyst and photoelectrode were carried out by the following methods. In addition, the following measuring methods are illustrations, Comprising: It can measure using another equivalent apparatus and conditions.

1)結晶相の測定
X線回折装置(理学電気社製「Rigaku Mini Flex2」)を用いて試料を測定した。
2)形状観察
走査型電子顕微鏡(キーエンス「VE−9800」)を用いて光電極の形状(膜厚等)を測定した。
3)化学組成分析
X線光電子分光装置(日本電子社製「JPC−9010MC」)を用いて試料の組成分析を行った。
1) Measurement of crystal phase A sample was measured using an X-ray diffractometer ("Rigaku Mini Flex2" manufactured by Rigaku Corporation).
2) Shape observation The shape (film thickness etc.) of the photoelectrode was measured using the scanning electron microscope (Keyence "VE-9800").
3) Chemical composition analysis The composition analysis of the sample was performed using the X-ray photoelectron spectrometer ("JPC-9010MC" by JEOL Ltd.).

4)光電流値の測定
パイレックス硝子社製のセル(内容積100mL)を用いて、以下の操作により光電流値の測定を行った。
対極に白金メッシュ電極を、参照電極に銀−塩化銀(Ag/AgCl)電極を用いた。超純水に0.1mol/L相当の硫酸ナトリウムを溶かして反応水溶液(pH6.0)とした。これをセル内に50mL入れて、アルゴンガスによるバブリングを30分間行うことによって、セル内の水溶液中に溶存する空気をアルゴンに置換した。ポテンシオスタット(Princeton Applied Research社製、PARSTAT2263)を用いて作用極に印加する電位を負から正に走査しながら可視光照射を行い、この際に対極との間に流れた電流値を測定した。これを作用極の面積当たりの電流密度(mA/cm)として評価した。光源として紫外線カットオフフィルター(HOYA社製、L−42)を装着したキセノンランプ(Cermax社製、300W)を用いて、波長400nm以上の可視光のみ(照射波長範囲:400〜700nm)を照射した。
4) Measurement of photocurrent value Photocurrent value was measured by the following operation using a cell (internal volume: 100 mL) manufactured by Pyrex Glass.
A platinum mesh electrode was used as the counter electrode, and a silver-silver chloride (Ag / AgCl) electrode was used as the reference electrode. Sodium sulfate equivalent to 0.1 mol / L was dissolved in ultrapure water to obtain a reaction aqueous solution (pH 6.0). 50 mL of this was put into the cell, and bubbling with argon gas was performed for 30 minutes, whereby the air dissolved in the aqueous solution in the cell was replaced with argon. Using a potentiostat (Princeton Applied Research, PARSTAT 2263), visible light was irradiated while scanning the potential applied to the working electrode from negative to positive, and the current value flowing between the counter electrode was measured. . This was evaluated as a current density (mA / cm 2 ) per area of the working electrode. Using a xenon lamp (manufactured by Cermax, 300 W) equipped with an ultraviolet cut-off filter (manufactured by HOYA, L-42) as a light source, only visible light having a wavelength of 400 nm or more (irradiation wavelength range: 400 to 700 nm) was irradiated. .

5)定電位測定
光電極の安定性を評価するために、一定の電位を印加した状態において可視光照射を行い、その光電流密度の経時変化を追跡評価した。
6)光電極を用いた水の光電気化学的分解
気密性を有するパイレックス硝子社製のセル、作成した光電極を作用極、白金ワイヤーを対極として、ポテンシオスタット(Princeton Applied Research社製、PARSTAT2263)を用いて作用極に一定の電位を印加しながら、前記4)に記載した波長400nm以上の可視光照射を行った。この際に生成した気体(水素および酸素)をセルに直接接続したガスクロマトグラフ(アジレントテクノロジー社製)を用いて定性・定量分析した。この際の支持電解質水溶液としては前記4)に記載したのと同様に硫酸ナトリウム水溶液を用いた。
5) Constant potential measurement In order to evaluate the stability of the photoelectrode, visible light was irradiated in a state where a constant potential was applied, and the change with time of the photocurrent density was followed and evaluated.
6) Photoelectrochemical decomposition of water using a photoelectrode A cell made by Pyrex Glass having airtightness, a created photoelectrode as a working electrode, a platinum wire as a counter electrode, and a potentiostat (manufactured by Princeton Applied Research, PARSTAT 2263) ) Was applied with visible light having a wavelength of 400 nm or more as described in 4) above while applying a constant potential to the working electrode. Qualitative and quantitative analysis was performed using a gas chromatograph (manufactured by Agilent Technologies) in which the gas (hydrogen and oxygen) produced at this time was directly connected to the cell. As the supporting electrolyte aqueous solution at this time, an aqueous sodium sulfate solution was used in the same manner as described in 4) above.

実施例1
酸窒化タンタル粒子の合成
石英製のボートに市販の酸化タンタル(高純度化学研究所製)10gを、幅2cm、長さ3cm、深さ2cm程度となるように充填し、これを石英管(外形3cm、内径2.6cm、長さ60cm)の中央に配置し、両側に気密用のキャップ(ステンレス製)を装着してセラミック環状炉に設置した。窒素を100mL/分で10分間流通させて残存空気を除去した後に、流通気体をアンモニアに切り替えて100mL/分で10分間流通させた。次いで、アンモニアの流量を60mL/分に調整し、環状炉の温度を室温から850℃まで約1時間かけて昇温させ、850℃に達してから24時間保持した。その後、自然冷却によって200℃まで温度が下がった段階で再び気体を窒素(100mL/分)に切り替えてアンモニアを窒素に置換し、さらに室温まで温度が下がった段階で気密用キャップを外して、石英製ボートを取り出し、粉末を回収した。
得られた粉末についてX線回折装置を用いた分析により、酸窒化タンタル(TaON)であることを確認した。
Example 1
Synthesis of tantalum oxynitride particles A quartz boat is filled with 10 g of a commercially available tantalum oxide (manufactured by High-Purity Chemical Laboratory) so as to have a width of 2 cm, a length of 3 cm, and a depth of about 2 cm. 3 cm, an inner diameter of 2.6 cm, and a length of 60 cm), and an airtight cap (made of stainless steel) was mounted on both sides and installed in a ceramic annular furnace. Nitrogen was allowed to flow at 100 mL / min for 10 minutes to remove residual air, and then the flow gas was switched to ammonia and allowed to flow at 100 mL / min for 10 minutes. Subsequently, the flow rate of ammonia was adjusted to 60 mL / min, and the temperature of the annular furnace was increased from room temperature to 850 ° C. over about 1 hour, and was maintained for 24 hours after reaching 850 ° C. After that, when the temperature is lowered to 200 ° C. by natural cooling, the gas is switched to nitrogen (100 mL / min) again to replace ammonia with nitrogen, and when the temperature is further lowered to room temperature, the hermetic cap is removed, and the quartz is removed. The boat made was taken out and the powder was collected.
The obtained powder was confirmed to be tantalum oxynitride (TaON) by analysis using an X-ray diffractometer.

酸窒化タンタル粒子への酸化コバル助触媒の担持
得られた酸窒化タンタル(TaON)粒子1gを少量の超純水とともに蒸発皿に入れ、超音波洗浄機内に10分間静置して粒子を十分に分散させた。この分散液に、0.1mol/Lの硝酸コバルト水溶液を、酸窒化タンタル粒子に対して酸化コバルト(CoO)として5wt%になるように加えてよく混合し、約80℃で加熱して徐々に水分を蒸発させた後、電気炉で400℃、30分間焼成することにより硝酸を分解して、CoO助触媒を酸窒化タンタル粒子上に高分散に担持させて、酸化コバルトを担持させた酸窒化タンタル粒子を得た。
Cobalt oxide cocatalyst supported on tantalum oxynitride particles 1 g of the obtained tantalum oxynitride (TaON) particles are placed in an evaporating dish together with a small amount of ultrapure water, and left in an ultrasonic cleaner for 10 minutes to obtain sufficient particles. Dispersed. To this dispersion, a 0.1 mol / L cobalt nitrate aqueous solution is added to the tantalum oxynitride particles so as to be 5 wt% as cobalt oxide (CoO), and the mixture is thoroughly mixed, heated at about 80 ° C. and gradually mixed. After evaporating the water, the nitric acid is decomposed by firing at 400 ° C. for 30 minutes in an electric furnace, and the CoO promoter is supported on the tantalum oxynitride particles in a highly dispersed manner, and the oxynitride is supported with cobalt oxide. Tantalum particles were obtained.

電気泳動法による多孔質薄膜光電極の作製
得られた酸化コバルト−酸窒化タンタル粒子40mgを、ヨウ素10mgを含むアセトン50mLに加えて、超音波洗浄機内で10分間静置させて粒子を分散させた。得られた分散液にチタン板(長さ50mm、幅15mm、厚さ1mm)を2枚、約8mmの間隔を持たせて垂直に浸し、両チタン板の間にポテンシオスタット(Princeton Applied Research社製、PARSTAT2263)を用いて10Vの電圧を3分間印加して、陰極側のチタン板上に粒子を積層させた。なお、酸化コバルト−酸窒化タンタル粒子を積層させる面積は電極の一部(長さ40mm、幅15mm)とした。チタン板を溶液から取り出し、アセトンで洗浄した後に室温で乾燥した。
得られた積層チタン板は、平均で30〜40mgの酸化コバルト−酸窒化タンタル粒子が積層され、走査電子顕微鏡による観察から膜厚はおよそ1.5〜2.0μmであることが確認された。
Production of Porous Thin Film Photoelectrode by Electrophoresis Method 40 mg of the obtained cobalt oxide-tantalum oxynitride particles were added to 50 mL of acetone containing 10 mg of iodine and allowed to stand for 10 minutes in an ultrasonic cleaner to disperse the particles. . Two titanium plates (length: 50 mm, width: 15 mm, thickness: 1 mm) were immersed in the obtained dispersion vertically with an interval of about 8 mm, and a potentiostat (Princeton Applied Research, manufactured by Princeton Applied Research, Using PARSTAT 2263), a voltage of 10 V was applied for 3 minutes to laminate the particles on the cathode side titanium plate. Note that the area where the cobalt oxide-tantalum oxynitride particles are laminated is a part of the electrode (length 40 mm, width 15 mm). The titanium plate was removed from the solution, washed with acetone, and then dried at room temperature.
In the obtained laminated titanium plate, 30 to 40 mg of cobalt oxide-tantalum oxynitride particles were laminated on average, and it was confirmed by observation with a scanning electron microscope that the film thickness was about 1.5 to 2.0 μm.

塩化タンタル溶液を用いたネッキング処理
得られた酸化コバルト−酸窒化タンタル粒子積層チタン板:薄膜電極に、0.1mol/Lに調整した塩化タンタル−メタノール溶液を10μL滴下し、乾燥させた。この操作を10回繰り返した後、電気炉を用いて空気中、400℃で30分間焼成した。
Necking treatment using a tantalum chloride solution The obtained cobalt oxide-tantalum oxynitride particle laminated titanium plate: 10 μL of a tantalum chloride-methanol solution adjusted to 0.1 mol / L was dropped on a thin film electrode and dried. After repeating this operation 10 times, it was baked for 30 minutes at 400 ° C. in air using an electric furnace.

アンモニアによる熱処理
得られたネッキング処理光電極を、石英管(外形3cm、内径2.6cm、長さ60cm)の中央に配置し、両側に気密用のキャップ(ステンレス製)を装着してセラミック環状炉に設置した。窒素を100mL/分で10分間流通させて残存空気を除去した後に、流通気体をアンモニアに切り替えて20mL/分に調整し、環状炉の温度を室温から450℃まで約30分間かけて昇温させ、450℃に達してから1時間保持した。その後、自然冷却によって200℃まで温度が下がった段階で再び気体を窒素(100mL/分)に切り替えてアンモニアを窒素に置換し、さらに室温まで温度が下がった段階で気密用キャップを外して、光電極を取り出した。
Heat treatment with ammonia The resulting necked photoelectrode is placed in the center of a quartz tube (outer diameter 3 cm, inner diameter 2.6 cm, length 60 cm), and airtight caps (made of stainless steel) are attached to both sides of the ceramic annular furnace. Installed. After nitrogen was circulated at 100 mL / min for 10 minutes to remove residual air, the circulating gas was switched to ammonia and adjusted to 20 mL / min, and the temperature of the annular furnace was increased from room temperature to 450 ° C. over about 30 minutes. The temperature was maintained for 1 hour after reaching 450 ° C. After that, when the temperature is lowered to 200 ° C. by natural cooling, the gas is switched again to nitrogen (100 mL / min) to replace ammonia with nitrogen, and when the temperature is further lowered to room temperature, the hermetic cap is removed. The electrode was removed.

測定および評価
上記の一連の工程によって得られた酸化コバルト−酸窒化タンタル光電極を用いて、光電流値測定を行った。作用極の電位を銀−塩化銀参照電極に対して−1Vから+1Vまで走査した際の、−0.5V、0V、+0.5Vそして+1Vにおける光電流密度はそれぞれ0.54mA/cm、0.92mA/cm、1.95mA/cm、4.15mA/cmとなった。
次に、作用極の電位を銀−塩化銀参照電極に対して+0.4Vに固定し、1時間連続して可視光照射を行った際の光電流値の経時変化を追跡した。光照射開始直後、30分後、1時間後の光電流密度はそれぞれ、0.96mA/cm、0.94mA/cm、0.94mA/cmとなった。XPSを用いて算出した電極におけるタンタルに対する窒素の比(N/Ta)は、1時間の定電位測定前後で0.37および0.31となった。
Measurement and Evaluation Photocurrent values were measured using the cobalt oxide-tantalum oxynitride photoelectrode obtained by the series of steps described above. When the working electrode potential is scanned from -1 V to +1 V with respect to the silver-silver chloride reference electrode, the photocurrent densities at -0.5 V, 0 V, +0.5 V, and +1 V are 0.54 mA / cm 2 and 0, respectively. It was 0.92 mA / cm 2 , 1.95 mA / cm 2 , and 4.15 mA / cm 2 .
Next, the potential of the working electrode was fixed to +0.4 V with respect to the silver-silver chloride reference electrode, and the change with time in the photocurrent value when the visible light irradiation was performed continuously for 1 hour was followed. The photocurrent densities immediately after the start of light irradiation, 30 minutes later and 1 hour later were 0.96 mA / cm 2 , 0.94 mA / cm 2 and 0.94 mA / cm 2 , respectively. The ratio of nitrogen to tantalum (N / Ta) in the electrode calculated using XPS was 0.37 and 0.31 before and after constant potential measurement for 1 hour.

また、前記の一連の工程によって得られた酸化コバルト−酸窒化タンタル光電極を用いて水の光電気化学的分解を行った。
作用極の電位を白金対極に対して+0.6Vに固定して、前記の可視光照射を行った。4時間の光照射によって、水素と酸素はそれぞれ、64.5μmolおよび32.0μmolとなった。外部回路に流れた電子数から算出した水素生成の電流効率は約92%となった。
Moreover, the photoelectrochemical decomposition of water was performed using the cobalt oxide-tantalum oxynitride photoelectrode obtained by the series of steps.
The potential of the working electrode was fixed to +0.6 V with respect to the platinum counter electrode, and the visible light irradiation was performed. By irradiation with light for 4 hours, hydrogen and oxygen became 64.5 μmol and 32.0 μmol, respectively. The current efficiency of hydrogen generation calculated from the number of electrons flowing in the external circuit was about 92%.

実施例2
酸窒化タンタル粒子に担持させる酸化コバルトの量を3wt%に変えた他は実施例1と同様にして、酸化コバルト−酸窒化タンタル粒子および光電極を作製し、評価を行った。
作用極の電位を銀−塩化銀参照電極に対して−1Vから+1Vまで走査した際の、−0.5V、0V、+0.5Vそして+1Vにおける光電流密度はそれぞれ0.40mA/cm、0.85mA/cm、1.55mA/cm、2.33mA/cmとなった。
次に、作用極の電位を銀−塩化銀参照電極に対して+0.4Vに固定し、1時間連続して可視光照射を行った際の光電流値の経時変化を追跡した。光照射開始直後、30分後、1時間後の光電流密度はそれぞれ、0.75mA/cm、0.66mA/cm、0.58mA/cmとなった。XPSを用いて算出した電極におけるタンタルに対する窒素の比(N/Ta)は、1時間の定電位測定前後で0.39および0.32となった。
Example 2
Cobalt oxide-tantalum oxynitride particles and a photoelectrode were prepared and evaluated in the same manner as in Example 1 except that the amount of cobalt oxide supported on the tantalum oxynitride particles was changed to 3 wt%.
When the working electrode potential is scanned from -1 V to +1 V with respect to the silver-silver chloride reference electrode, the photocurrent densities at -0.5 V, 0 V, +0.5 V, and +1 V are 0.40 mA / cm 2 and 0, respectively. It became 0.85 mA / cm 2 , 1.55 mA / cm 2 , 2.33 mA / cm 2 .
Next, the potential of the working electrode was fixed to +0.4 V with respect to the silver-silver chloride reference electrode, and the change with time in the photocurrent value when the visible light irradiation was performed continuously for 1 hour was followed. Immediately after the start of light irradiation, the photocurrent densities after 30 minutes and 1 hour were 0.75 mA / cm 2 , 0.66 mA / cm 2 , and 0.58 mA / cm 2 , respectively. The ratio of nitrogen to tantalum (N / Ta) in the electrode calculated using XPS was 0.39 and 0.32 before and after the constant potential measurement for 1 hour.

実施例3
酸窒化タンタル粒子に担持させる酸化コバルトの量を7wt%に変えた他は実施例1と同様にして、酸化コバルト−酸窒化タンタル粒子および光電極を作製し、評価を行った。
作用極の電位を銀−塩化銀参照電極に対して−1Vから+1Vまで走査した際の、−0.5V、0V、+0.5Vそして+1Vにおける光電流密度はそれぞれ0.40mA/cm、0.85mA/cm、1.55mA/cm、2.33mA/cmとなった。
次に、作用極の電位を銀−塩化銀参照電極に対して+0.4Vに固定し、1時間連続して可視光照射を行った際の光電流値の経時変化を追跡した。光照射開始直後、30分後、1時間後の光電流密度はそれぞれ、0.70mA/cm、0.63mA/cm、0.63mA/cmとなった。XPSを用いて算出した電極におけるタンタルに対する窒素の比(N/Ta)は、1時間の定電位測定前後で0.35および0.33となった。
Example 3
Cobalt oxide-tantalum oxynitride particles and a photoelectrode were prepared and evaluated in the same manner as in Example 1 except that the amount of cobalt oxide supported on the tantalum oxynitride particles was changed to 7 wt%.
When the working electrode potential is scanned from -1 V to +1 V with respect to the silver-silver chloride reference electrode, the photocurrent densities at -0.5 V, 0 V, +0.5 V, and +1 V are 0.40 mA / cm 2 and 0, respectively. It became 0.85 mA / cm 2 , 1.55 mA / cm 2 , 2.33 mA / cm 2 .
Next, the potential of the working electrode was fixed to +0.4 V with respect to the silver-silver chloride reference electrode, and the change with time in the photocurrent value when the visible light irradiation was performed continuously for 1 hour was followed. Immediately after the start of light irradiation, the photocurrent densities after 30 minutes and 1 hour were 0.70 mA / cm 2 , 0.63 mA / cm 2 , and 0.63 mA / cm 2 , respectively. The ratio of nitrogen to tantalum (N / Ta) in the electrode calculated using XPS was 0.35 and 0.33 before and after constant potential measurement for 1 hour.

実施例4
塩化タンタル溶液を用いたネッキング処理を行ったが、その後のアンモニアによる熱処理を行わなかった他は実施例1と同様にして、酸化コバルト−酸窒化タンタル粒子および光電極を作製し、評価を行った。
作用極の電位を銀−塩化銀参照電極に対して−1Vから+1Vまで走査した際の、−0.5V、0V、+0.5Vそして+1Vにおける光電流密度はそれぞれ0.21mA/cm、0.35mA/cm、0.89mA/cm、1.25mA/cmとなった。
次に、作用極の電位を銀−塩化銀参照電極に対して+0.4Vに固定し、1時間連続して可視光照射を行った際の光電流値の経時変化を追跡した。光照射開始直後、30分後、1時間後の光電流密度はそれぞれ、0.28mA/cm、0.24mA/cm、0.23mA/cmとなった。XPSを用いて算出した電極におけるタンタルに対する窒素の比(N/Ta)は、1時間の定電位測定前後で0.25および0.22となった。
Example 4
Cobalt oxide-tantalum oxynitride particles and a photoelectrode were prepared and evaluated in the same manner as in Example 1 except that a necking treatment using a tantalum chloride solution was performed but no subsequent heat treatment with ammonia was performed. .
When the working electrode potential is scanned from −1 V to +1 V with respect to the silver-silver chloride reference electrode, the photocurrent densities at −0.5 V, 0 V, +0.5 V, and +1 V are 0.21 mA / cm 2 , 0, respectively. .35 mA / cm 2 , 0.89 mA / cm 2 , and 1.25 mA / cm 2 .
Next, the potential of the working electrode was fixed to +0.4 V with respect to the silver-silver chloride reference electrode, and the change with time in the photocurrent value when the visible light irradiation was performed continuously for 1 hour was followed. Immediately after the start of light irradiation, photocurrent densities after 30 minutes and 1 hour were 0.28 mA / cm 2 , 0.24 mA / cm 2 , and 0.23 mA / cm 2 , respectively. The ratio of nitrogen to tantalum (N / Ta) in the electrode calculated using XPS was 0.25 and 0.22 before and after constant potential measurement for 1 hour.

比較例1
酸窒化タンタル粒子に酸化コバルトを担持させなかった他は実施例1と同様にして、酸窒化タンタル粒子および光電極を作製し、評価を行った。
作用極の電位を銀−塩化銀参照電極に対して−1Vから+1Vまで走査した際の、−0.5V、0V、+0.5Vそして+1Vにおける光電流密度はそれぞれ0.31mA/cm、0.63mA/cm、1.22mA/cm、2.01mA/cmとなった。
次に、作用極の電位を銀−塩化銀参照電極に対して+0.4Vに固定し、1時間連続して可視光照射を行った際の光電流値の経時変化を追跡した。光照射開始直後、30分後、1時間後の光電流密度はそれぞれ、0.70mA/cm、0.05mA/cm、0.00mA/cmとなった。XPSを用いて算出した電極におけるタンタルに対する窒素の比(N/Ta)は、1時間の定電位測定前後で0.59および0.16となった。
Comparative Example 1
Tantalum oxynitride particles and a photoelectrode were prepared and evaluated in the same manner as in Example 1 except that cobalt oxide was not supported on the tantalum oxynitride particles.
When the working electrode potential is scanned from -1 V to +1 V with respect to the silver-silver chloride reference electrode, the photocurrent densities at -0.5 V, 0 V, +0.5 V, and +1 V are 0.31 mA / cm 2 and 0, respectively. It was 0.63 mA / cm 2 , 1.22 mA / cm 2 , and 2.01 mA / cm 2 .
Next, the potential of the working electrode was fixed to +0.4 V with respect to the silver-silver chloride reference electrode, and the change with time in the photocurrent value when the visible light irradiation was performed continuously for 1 hour was followed. Immediately after the start of light irradiation, the photocurrent densities after 30 minutes and 1 hour were 0.70 mA / cm 2 , 0.05 mA / cm 2 , and 0.00 mA / cm 2 , respectively. The ratio of nitrogen to tantalum (N / Ta) in the electrode calculated using XPS was 0.59 and 0.16 before and after constant potential measurement for 1 hour.

比較例2
電気泳動して得られた酸化コバルト−酸窒化タンタル粒子積層チタン板の塩化タンタル溶液を用いたネッキング処理を施さなかった他は実施例1と同様にして、酸化コバルト−酸窒化タンタル粒子および光電極を作製して、評価を行った。
作用極の電位を銀−塩化銀参照電極に対して−1Vから+1Vまで走査した際の、−0.5V、0V、+0.5Vそして+1Vにおける光電流密度はそれぞれ0mA/cm、0mA/cm、0.01mA/cm、0.05mA/cmとなった。
次に、作用極の電位を銀−塩化銀参照電極に対して+0.4Vに固定し、1時間連続して可視光照射を行った際の光電流値の経時変化を追跡した。光照射開始直後、30分後、1時間後の光電流密度はそれぞれ、0.01mA/cm、0.01mA/cm、0.01mA/cmとなった。XPSを用いて算出した電極におけるタンタルに対する窒素の比(N/Ta)は、1時間の定電位測定前後で0.35および0.33となった。
Comparative Example 2
Cobalt oxide-tantalum oxynitride particles and a photoelectrode were obtained in the same manner as in Example 1 except that the necking treatment using the tantalum chloride solution of the cobalt oxide-tantalum oxynitride particle laminated titanium plate obtained by electrophoresis was not performed. Were made and evaluated.
When the potential of the working electrode is scanned from -1 V to +1 V with respect to the silver-silver chloride reference electrode, the photocurrent densities at -0.5 V, 0 V, +0.5 V, and +1 V are 0 mA / cm 2 and 0 mA / cm, respectively. 2 , 0.01 mA / cm 2 and 0.05 mA / cm 2 .
Next, the potential of the working electrode was fixed to +0.4 V with respect to the silver-silver chloride reference electrode, and the change with time in the photocurrent value when the visible light irradiation was performed continuously for 1 hour was followed. Immediately after the start of light irradiation, the photocurrent densities after 30 minutes and 1 hour were 0.01 mA / cm 2 , 0.01 mA / cm 2 , and 0.01 mA / cm 2 , respectively. The ratio of nitrogen to tantalum (N / Ta) in the electrode calculated using XPS was 0.35 and 0.33 before and after constant potential measurement for 1 hour.

実施例5
酸窒化タンタル粒子に酸化コバルトを担持させないで用い、電気泳動・ネッキング処理・アンモニアによる熱処理を行った後、硝酸コバルト水溶液を滴下し、これを電気炉で400℃、30分間焼成して5wt%相当の酸化コバルトを担持させた他は実施例1と同様にして光電極を作製し、評価を行った。
作用極の電位を銀−塩化銀参照電極に対して−1Vから+1Vまで走査した際の、−0.5V、0V、+0.5Vそして+1Vにおける光電流密度はそれぞれ0.45mA/cm、0.87mA/cm、1.79mA/cm、2.65mA/cmとなった。
次に、作用極の電位を銀−塩化銀参照電極に対して+0.4Vに固定し、1時間連続して可視光照射を行った際の光電流値の経時変化を追跡した。光照射開始直後、30分後、1時間後の光電流密度はそれぞれ、0.80mA/cm、0.65mA/cm、0.57mA/cmとなった。XPSを用いて算出した電極におけるタンタルに対する窒素の比(N/Ta)は、1時間の定電位測定前後で0.30および0.25となった。
Example 5
Cobalt oxide is used on tantalum oxynitride particles, and after electrophoresis, necking treatment, and heat treatment with ammonia, a cobalt nitrate aqueous solution is dropped, and this is fired at 400 ° C. for 30 minutes in an electric furnace, corresponding to 5 wt% A photoelectrode was prepared and evaluated in the same manner as in Example 1 except that the cobalt oxide was supported.
When the working electrode potential is scanned from -1 V to +1 V with respect to the silver-silver chloride reference electrode, the photocurrent densities at -0.5 V, 0 V, +0.5 V, and +1 V are 0.45 mA / cm 2 and 0, respectively. It became 0.87 mA / cm 2 , 1.79 mA / cm 2 , 2.65 mA / cm 2 .
Next, the potential of the working electrode was fixed to +0.4 V with respect to the silver-silver chloride reference electrode, and the change with time in the photocurrent value when the visible light irradiation was performed continuously for 1 hour was followed. Immediately after the start of light irradiation, the photocurrent densities after 30 minutes and 1 hour were 0.80 mA / cm 2 , 0.65 mA / cm 2 , and 0.57 mA / cm 2 , respectively. The ratio of nitrogen to tantalum (N / Ta) in the electrode calculated using XPS was 0.30 and 0.25 before and after constant potential measurement for 1 hour.

実施例1〜5の結果と比較例1〜2の結果との比較から、可視光照射の1時間連続照射という長時間照射後、実施例1〜5の本発明の酸窒化タンタル粒子のネッキング処理を施した酸化コバルト−酸窒化タンタル粒子積層チタン板の構成の光電極では電流密度がいずれも70%以上のレベルで維持されたのに対して、比較例1のCoOを担持しない可視光水分解用触媒を用いた光電極では電流密度がほぼ0%に低下し、比較例2のネッキング処理をしないで得られた光電極は電流密度の絶対値が低い。さらに、CoOを担持した可視光水分解用触媒を用いた光電極では、いずれの場合もN/Taの低下が少ない。
また、実施例1〜3、5の結果と実施例4の結果との比較から、酸化コバルト−酸窒化タンタル粒子積層チタン板:薄膜電極のアンモニアによる熱処理が電流密度の絶対値を増大させる効果を有していることが理解される。
さらに、実施例1〜3の結果と実施例5の結果との比較から、予め導電性基板に固定した酸化コバルト−酸窒化タンタル粒子にネッキング処理、次いでアンモニアによる熱処理を適用して得られる光電極は、最後に酸化コバルトを担持させて得られる光電極と比べて可視光照射を1時間連続照射後に75%以上というより高いレベルで電流密度が維持されている。
From the comparison between the results of Examples 1 to 5 and the results of Comparative Examples 1 and 2, the necking treatment of the tantalum oxynitride particles of the present invention of Examples 1 to 5 was performed after long-time irradiation of continuous irradiation of visible light for 1 hour. In the photoelectrode having the structure of the cobalt oxide-tantalum oxynitride particle-laminated titanium plate subjected to the above, the current density was maintained at a level of 70% or more, whereas the visible light water splitting not supporting CoO of Comparative Example 1 In the photoelectrode using the catalyst for use, the current density is reduced to almost 0%, and the photoelectrode obtained without the necking treatment of Comparative Example 2 has a low absolute value of the current density. Further, in any case of the photoelectrode using the visible light water splitting catalyst supporting CoO, the decrease in N / Ta is small.
Further, from the comparison between the results of Examples 1 to 3 and 5 and the result of Example 4, the effect of increasing the absolute value of the current density by the heat treatment of the cobalt oxide-tantalum oxynitride particle laminated titanium plate: thin film electrode with ammonia. It is understood that it has.
Further, from the comparison between the results of Examples 1 to 3 and the result of Example 5, a photoelectrode obtained by applying a necking treatment to a cobalt oxide-tantalum oxynitride particle previously fixed to a conductive substrate and then a heat treatment with ammonia. The current density is maintained at a higher level of 75% or more after continuous irradiation with visible light for 1 hour as compared with the photoelectrode obtained by finally supporting cobalt oxide.

本発明によって、可視光照射に対して長時間に渡って光触媒機能を維持し得る太陽光を利用して水を分解して水素を製造し得る可視光水分解用触媒を得ることができ、この可視光水分解用触媒を用いて太陽光と水とから水素を発生し得る光電極を簡便で安価に得ることが可能となる。   According to the present invention, it is possible to obtain a visible light water decomposition catalyst capable of producing hydrogen by decomposing water using sunlight that can maintain a photocatalytic function for a long time with respect to visible light irradiation. A photoelectrode capable of generating hydrogen from sunlight and water using a visible light water splitting catalyst can be obtained simply and inexpensively.

Claims (5)

タンタルの酸窒化物粒子に助触媒としてCoOが、前記タンタルの酸窒化物粒子に対して0.1〜50質量%の担持量(但し、Co換算で0.01質量%以上1質量%以下の範囲に相当する担持量を除く。)で担持されてなる可視光水分解用触媒。 CoO as a co-catalyst for the tantalum oxynitride particles is supported in an amount of 0.1 to 50% by mass with respect to the tantalum oxynitride particles (however, 0.01% by mass to 1% by mass in terms of Co) The catalyst for visible light water splitting is supported by (1 ) excluding the supported amount corresponding to the range . タンタルの酸窒化物粒子に助触媒としてCoOを、前記タンタルの酸窒化物粒子に対して0.1〜50質量%の担持量(但し、Co換算で0.01質量%以上1質量%以下の範囲に相当する担持量を除く。)で担持させる工程、タンタルの酸窒化物粒子を導電性基板上に固定する工程、およびタンタルの酸窒化物粒子に電子移動を促進するネッキング処理を施す工程、を含む光電極の製造方法。 CoO as a co-catalyst for the tantalum oxynitride particles is supported in an amount of 0.1 to 50% by mass with respect to the tantalum oxynitride particles (however, 0.01% by mass to 1% by mass in terms of Co) A step of supporting the tantalum oxynitride particles on the conductive substrate, and a step of performing a necking treatment to promote electron transfer to the tantalum oxynitride particles, The manufacturing method of the photoelectrode containing this. 前記ネッキング処理が、光電極の可視光水分解用触媒粒子にタンタル塩を含む溶液を含浸させる工程およびそれに続く熱処理工程を含む請求項に記載の製造方法。 The manufacturing method according to claim 2 , wherein the necking treatment includes a step of impregnating a catalyst particle for visible light water decomposition of a photoelectrode with a solution containing a tantalum salt, and a subsequent heat treatment step. 前記熱処理工程が、100〜750℃で5分間〜5時間加熱する方法である請求項2又は3に記載の製造方法。 The manufacturing method according to claim 2 or 3, wherein the heat treatment step is a method of heating at 100 to 750 ° C for 5 minutes to 5 hours. 前記ネッキング処理後に、アンモニアによる熱処理工程をさらに含む請求項2〜4のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 2 to 4 , further comprising a heat treatment step with ammonia after the necking treatment.
JP2010194528A 2010-08-31 2010-08-31 Visible light water splitting catalyst and photoelectrode manufacturing method Expired - Fee Related JP5675224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010194528A JP5675224B2 (en) 2010-08-31 2010-08-31 Visible light water splitting catalyst and photoelectrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010194528A JP5675224B2 (en) 2010-08-31 2010-08-31 Visible light water splitting catalyst and photoelectrode manufacturing method

Publications (2)

Publication Number Publication Date
JP2012050913A JP2012050913A (en) 2012-03-15
JP5675224B2 true JP5675224B2 (en) 2015-02-25

Family

ID=45904922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010194528A Expired - Fee Related JP5675224B2 (en) 2010-08-31 2010-08-31 Visible light water splitting catalyst and photoelectrode manufacturing method

Country Status (1)

Country Link
JP (1) JP5675224B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213958B2 (en) * 2012-10-09 2017-10-18 国立大学法人 千葉大学 Fuel cell
JP6170352B2 (en) * 2013-06-21 2017-07-26 Toto株式会社 Method for producing photocatalyst material
WO2016080548A1 (en) 2014-11-21 2016-05-26 三菱化学株式会社 Method for manufacturing composite photocatalyst, and composite photocatalyst
KR101709021B1 (en) * 2015-12-16 2017-02-22 서울대학교산학협력단 Manufacturing method of photoelectrode for electrochemical hydrogen production
JPWO2017110217A1 (en) 2015-12-22 2018-09-13 富士フイルム株式会社 Photocatalytic electrode and artificial photosynthesis module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889804A (en) * 1994-09-19 1996-04-09 Nikon Corp Photocatalyst
JP4070624B2 (en) * 2003-01-31 2008-04-02 独立行政法人科学技術振興機構 Method for improving photocatalytic activity comprising metal nitride and metal oxynitride having visible light responsiveness
JP4873864B2 (en) * 2004-01-22 2012-02-08 昭和電工株式会社 Metal oxide dispersion and coating method thereof
JP2006176835A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Method for manufacturing water electrolysis apparatus
JP2006297300A (en) * 2005-04-21 2006-11-02 Nissan Motor Co Ltd Semiconductor photoelectrode, its production method, and light energy converter
CN102369312B (en) * 2009-04-15 2014-11-05 松下电器产业株式会社 Hydrogen generating device
JP5765678B2 (en) * 2010-02-25 2015-08-19 三菱化学株式会社 Photocatalyst for photowater splitting reaction and method for producing photocatalyst for photowater splitting reaction

Also Published As

Publication number Publication date
JP2012050913A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
Jang et al. Photoelectrochemical water splitting with p‐type metal oxide semiconductor photocathodes
Yu et al. Fabrication and kinetic study of a ferrihydrite-modified BiVO4 photoanode
Li et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency
Kumagai et al. Hybrid photocathode consisting of a CuGaO 2 p-type semiconductor and a Ru (II)–Re (I) supramolecular photocatalyst: non-biased visible-light-driven CO 2 reduction with water oxidation
Kim et al. Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in tandem: a dual absorber artificial leaf
Tan et al. Exploring the different roles of particle size in photoelectrochemical and photocatalytic water oxidation on BiVO4
Erbs et al. Visible-light-induced oxygen generation from aqueous dispersions of tungsten (VI) oxide
McDowell et al. Improved stability of polycrystalline bismuth vanadate photoanodes by use of dual-layer thin TiO2/Ni coatings
Hu et al. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films
JP4997454B2 (en) Semiconductor electrode and energy conversion system using the same
Yang et al. Molybdenum doped CuWO4 nanoflake array films as an efficient photoanode for solar water splitting
JP6774165B2 (en) Photochemical reaction device, electrode for oxidation reaction and electrode for reduction reaction used for it
JP5999548B2 (en) Photocatalyst and method for producing the same
JP5675224B2 (en) Visible light water splitting catalyst and photoelectrode manufacturing method
Tolod et al. Visible light-driven catalysts for water oxidation: towards solar fuel biorefineries
Grigioni et al. Photoactivity and stability of WO3/BiVO4 photoanodes: effects of the contact electrolyte and of Ni/Fe oxyhydroxide protection
JP5904545B2 (en) Visible light responsive semiconductor photoelectrode
Kawase et al. Maximizing Oxygen Evolution Performance on a Transparent NiFeO x/Ta3N5 Photoelectrode Fabricated on an Insulator
JP5642459B2 (en) Photocatalyst electrode, hydrogen generator, and hydrogen generation method
Sordello et al. Photoelectrochemical performance of the Ag (III)-based oxygen-evolving catalyst
Zafeiropoulos et al. Rational Design of Photoelectrodes for the Fully Integrated Polymer Electrode Membrane–Photoelectrochemical Water-Splitting System: A Case Study of Bismuth Vanadate
Lee et al. Platinum single-atom catalysts anchored on a heterostructure cupric oxide/copper foam for accelerating photoelectrochemical hydrogen evolution reaction
JP2019127646A (en) Electrolysis system and artificial photosynthesis system
Momeni et al. Developing an efficient approach for preparation of high-performance visible-light assisted ethanol electro-oxidation materials based on Pd, Pt and Pd–Pt nanoparticles supported on iron doped titania nanotube films
Liu et al. ZnSe sensitized and Co-Pi catalyzed TiO2 nanowire array photoanode for solar-driven water splitting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141224

LAPS Cancellation because of no payment of annual fees