JP5765678B2 - Photocatalyst for photowater splitting reaction and method for producing photocatalyst for photowater splitting reaction - Google Patents

Photocatalyst for photowater splitting reaction and method for producing photocatalyst for photowater splitting reaction Download PDF

Info

Publication number
JP5765678B2
JP5765678B2 JP2010041040A JP2010041040A JP5765678B2 JP 5765678 B2 JP5765678 B2 JP 5765678B2 JP 2010041040 A JP2010041040 A JP 2010041040A JP 2010041040 A JP2010041040 A JP 2010041040A JP 5765678 B2 JP5765678 B2 JP 5765678B2
Authority
JP
Japan
Prior art keywords
reaction
photocatalyst
water
photo
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010041040A
Other languages
Japanese (ja)
Other versions
JP2011173102A (en
Inventor
一成 堂免
一成 堂免
前田 和彦
和彦 前田
諳珂 熊
諳珂 熊
寺西 利治
利治 寺西
泰三 吉永
泰三 吉永
瀬戸山 亨
亨 瀬戸山
伸子 仮屋
伸子 仮屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
University of Tokyo NUC
University of Tsukuba NUC
Original Assignee
Mitsubishi Chemical Corp
University of Tokyo NUC
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, University of Tokyo NUC, University of Tsukuba NUC filed Critical Mitsubishi Chemical Corp
Priority to JP2010041040A priority Critical patent/JP5765678B2/en
Publication of JP2011173102A publication Critical patent/JP2011173102A/en
Application granted granted Critical
Publication of JP5765678B2 publication Critical patent/JP5765678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Description

本発明は、光水分解反応用光触媒および光水分解反応用光触媒の製造方法に関し、詳細には、酸化反応および還元反応用の助触媒を併せ持ち、可視光領域の光を利用して水分解反応を行う光触媒に関する。   The present invention relates to a photocatalyst for photowater splitting reaction and a method for producing a photocatalyst for photowater splitting reaction, and in particular, has a cocatalyst for oxidation reaction and reduction reaction, and uses the light in the visible light region for water splitting reaction. It is related with the photocatalyst which performs.

太陽エネルギーなどの再生可能エネルギーを利用した高性能な光エネルギー変換システムを実用化することは、地球温暖化の抑制、および枯渇しつつある化石資源依存からの脱却を目指す観点から、近年になって急激にその重要性が増している。中でも、太陽エネルギーを用いて水を分解し水素を製造する技術は、現行の石油精製、アンモニア、メタノールの原料供給技術としてのみならず、燃料電池をベースとした来たる水素エネルギー社会において、必須とされる技術である。   In recent years, the practical application of high-performance light energy conversion systems that use renewable energy such as solar energy has been aimed at controlling global warming and moving away from the depletion of fossil resources. Its importance is increasing rapidly. Above all, the technology that decomposes water using solar energy to produce hydrogen is indispensable not only in the current petroleum refining, ammonia and methanol raw material supply technology, but also in the future hydrogen energy society based on fuel cells. Technology.

光触媒による水分解反応は、1970年代から広く研究されている(非特許文献1)。これらの光触媒においては、例えばZrOのように単独で十分な活性を示すものもあるが、多くの場合、助触媒が大きな役割を果たしている。様々な光触媒において、水素発生用(還元反応用)の助触媒としてPtなどの貴金属や、RuO、NiOなどを光触媒上に担持すると、反応速度が著しく向上することが知られている(非特許文献1)。 The water splitting reaction using a photocatalyst has been extensively studied since the 1970s (Non-patent Document 1). Among these photocatalysts, for example, ZrO 2 alone has sufficient activity, but in many cases, the cocatalyst plays a big role. In various photocatalysts, it is known that when a noble metal such as Pt, RuO 2 , NiO or the like is supported on a photocatalyst as a co-catalyst for hydrogen generation (reduction reaction), the reaction rate is remarkably improved (non-patent) Reference 1).

光触媒粒子上での酸性水溶液中における水の分解反応は、次のように推定されている。すなわち、
O +2h→1/2O2+2H(1)
2H+2e→H(2)
助触媒の効果は、これら反応の活性化エネルギーを低下させて反応を促進することにある。しかしながら、助触媒が
+1/2O→HO (3)
で表される燃焼反応を触媒してしまうと、これは水分解反応の逆反応であるので好ましくない。従って、助触媒には(1)、(2) は触媒しながらも(3)は触媒しないものが使用される。
The decomposition reaction of water in the acidic aqueous solution on the photocatalyst particles is estimated as follows. That is,
H 2 O + 2h + → 1 / 2O 2 + 2H + (1)
2H + + 2e → H 2 (2)
The effect of the cocatalyst is to promote the reaction by reducing the activation energy of these reactions. However, the promoter is H 2 + 1 / 2O 2 → H 2 O (3)
It is not preferable to catalyze the combustion reaction represented by the formula, since this is the reverse reaction of the water splitting reaction. Accordingly, the promoter used is one that catalyzes (1) and (2) but not (3).

1981年にTiOにPtとRuOの二種類の助触媒を担持すると水素生成速度が向上する例が報告され、それぞれ還元反応用、酸化反応用の助触媒として機能していると説明されているが(非特許文献2)、その後、この追試に成功したという例は見当たらない。現在では、TiOをはじめとする水を完全分解できる安定な光触媒は一般的にバンドギャップが大きく、かつ価電子帯上端のエネルギー準位がO/HOの酸化還元電位よりも十分に低い準位にあるため、必ずしも酸素発生用(酸化反応用)の助触媒は効果がないと考えられており(非特許文献3、4)、水素発生用(還元反応用)の助触媒を用いた研究が活発に行われている。 Examples of the bearing of the two types of cocatalyst Pt and RuO 2 in TiO 2 hydrogen production rate is improved was reported in 1981, for each reduction reaction is described as functioning as a promoter for oxidation reactions However (Non-Patent Document 2), there has been no example of success in this additional test. At present, stable photocatalysts capable of completely decomposing water such as TiO 2 generally have a large band gap, and the energy level at the top of the valence band is sufficiently higher than the redox potential of O 2 / H 2 O. Since it is at a low level, it is considered that a promoter for oxygen generation (for oxidation reaction) is not necessarily effective (Non-patent Documents 3 and 4), and a promoter for hydrogen generation (for reduction reaction) is used. There has been active research.

太陽光はそのエネルギーの大部分が可視光領域にあるため、太陽光で効率的に水分解を行うためには、光触媒が可視光領域の光を利用できることが好ましい。2000年以降になって可視光領域の光エネルギーで犠牲試薬を使用せずに水を完全分解することができ、かつ水中で安定である光触媒が発表されるようになった(非特許文献4)。これら光触媒でもPtなどの貴金属やRuO、NiOを水素発生用助触媒として使用すると効果があることが報告されている(非特許文献1、5)。 Since most of the energy of sunlight is in the visible light region, it is preferable that the photocatalyst can utilize light in the visible light region in order to efficiently perform water splitting with sunlight. Since 2000, a photocatalyst that can completely decompose water without using a sacrificial reagent with light energy in the visible light region and is stable in water has been announced (Non-Patent Document 4). . It has been reported that these photocatalysts are also effective when noble metals such as Pt, RuO 2 , and NiO are used as hydrogen generation promoters (Non-patent Documents 1 and 5).

一段階での水の完全分解反応を実現できる可視光応答型の光触媒はこれまで還元反応用の助触媒としてRh2−xCrを担持したGaN:ZnO(非特許文献6)などが知られている。これは400nm付近での水分解反応の量子収率が5%程度であり、太陽光を利用した水素製造用の光触媒として注目されている。しかしながら、これらを産業的に利用するためには、更なる性能の向上が望まれていた。 As for the visible light responsive photocatalyst capable of realizing the complete decomposition reaction of water in one step, GaN: ZnO (Non-patent Document 6) carrying Rh 2-x Cr x O 3 has been used as a co-catalyst for the reduction reaction so far. Are known. This has attracted attention as a photocatalyst for hydrogen production using sunlight, because the quantum yield of water splitting reaction around 400 nm is about 5%. However, in order to use these industrially, further improvement in performance has been desired.

一方、これら可視光応答型の光触媒では、IrO、RuOなどの酸化反応用の助触媒が反応を促進することが知られている(非特許文献7、8)。しかしながらこれらは全て犠牲試薬としてAgイオンを含む系や、IO /IもしくはFe3+/Fe2+ などのメディエーターを含む系で、一段階での水の完全分解反応における酸化反応助触媒の効果は実証されていなかった。 On the other hand, in these visible light responsive photocatalysts, it is known that promoters for oxidation reactions such as IrO 2 and RuO 2 promote the reaction (Non-patent Documents 7 and 8). However, these are all systems containing Ag + ions as a sacrificial reagent, or systems containing mediators such as IO 3 / I or Fe 3+ / Fe 2+ , which are oxidation promoters in the complete decomposition reaction of water in one step. The effect has not been demonstrated.

すなわち、還元反応用、酸化反応用の両方の助触媒を担持した光触媒がそれぞれの効果を発揮するような光触媒はいまだ製造されておらず、その製造方法も見出されていなかった。   That is, no photocatalyst has yet been produced, and no production method has been found for a photocatalyst carrying a cocatalyst for both a reduction reaction and an oxidation reaction to exert their respective effects.

Chem.Soc.Rev.,2009,38,253-278Chem.Soc.Rev., 2009,38,253-278 J. Am. Chem. Soc., 1981, 103, 4685-4690.J. Am. Chem. Soc., 1981, 103, 4685-4690. J. Photochem. Photobio. A:Chem 108, (1997) 1-35J. Photochem. Photobio. A: Chem 108, (1997) 1-35 日本化学会誌 1984, (2), 258-263.Journal of the Chemical Society of Japan 1984, (2), 258-263. J. Phys. Chem. C, 2007, 111, 7851 - 7861.J. Phys. Chem. C, 2007, 111, 7851-7861. Chem. Mater. 2010, 22, 612-623.Chem. Mater. 2010, 22, 612-623. J. Phys. Chem. A 2002, 106, 6750-6753.J. Phys. Chem. A 2002, 106, 6750-6753. Chem. Mater. 2008, 20, 1299-1307.Chem. Mater. 2008, 20, 1299-1307.

そこで、本発明は、光水分解反応用の触媒であって、光半導体上に酸化反応用および還元反応用双方の助触媒を併せ持ち、光照射下における光水分解反応速度を飛躍的に増大させることができる、効率的で工業的に有利な水分解反応用光触媒、およびその製造方法を提供することを目的とする。   Therefore, the present invention is a catalyst for photo-water splitting reaction, which has both an oxidation catalyst and a co-catalyst for reduction reaction on the optical semiconductor, and dramatically increases the photo-water splitting reaction rate under light irradiation. It is an object to provide an efficient and industrially advantageous photocatalyst for water splitting reaction, and a method for producing the same.

本発明者らは、上記の課題を解決すべく鋭意検討し、以下の事項を見出すに至った。
(1)光半導体粒子を合成し、この粒子に酸化反応用の助触媒および還元反応用の助触媒を担持する。図1はその概念図である。これら助触媒は、水の還元、もしくは酸化反応を触媒しながらも、水分解の最終生成物である水素と酸素から水を生成する反応は触媒しないものを選択する。
The present inventors diligently studied to solve the above problems, and have found the following matters.
(1) The photo semiconductor particles are synthesized, and a co-catalyst for oxidation reaction and a co-catalyst for reduction reaction are supported on the particles. FIG. 1 is a conceptual diagram thereof. These cocatalysts are selected so as to catalyze the reduction or oxidation reaction of water but do not catalyze the reaction of generating water from hydrogen and oxygen, which are the final products of water splitting.

(2)それぞれの助触媒を効果的に担持するための手法として、光電着担持法(光還元析出担持法ともいう)と吸着担持法の二種類の手法で行う。助触媒の担持方法としては、含浸担持などの吸着法が一般的であるが、二種類の助触媒それぞれを吸着法で担持すると、吸着サイトをコントロールできないため、一方の助触媒がもう一方の助触媒を被覆してしまったり、互いの助触媒が接触して再結合中心になってしまい効果が出なくなるといった問題があった。これに対し、片方の助触媒は従来どおり吸着法で担持し、もう片方の助触媒(好ましくは還元反応助触媒)を光電着法で担持させるようにすれば、少なくとも後者は光触媒の還元サイトに選択的に担持させることになるので(公知文献J. Phys. Chem. C 2007, 111, 7554-7560)、上記問題は低減される。なお、ここでいう光電着法(光電析法ともよばれる)とは、金属塩を光によって還元し、光半導体粒子表面へ担持させる方法である。   (2) As methods for effectively supporting the respective cocatalysts, there are two types of methods: a photoadsorption support method (also referred to as a photoreduction deposition support method) and an adsorption support method. Adsorption methods such as impregnation are generally used as methods for supporting the cocatalyst. However, if each of the two types of cocatalyst is supported by the adsorption method, the adsorption site cannot be controlled. There is a problem that the catalyst is coated or the cocatalysts come into contact with each other to become a recombination center, resulting in no effect. On the other hand, if one promoter is supported by the adsorption method as usual and the other promoter (preferably the reduction reaction promoter) is supported by the photo-deposition method, at least the latter is at the reduction site of the photocatalyst. Since this is selectively supported (known document J. Phys. Chem. C 2007, 111, 7554-7560), the above problem is reduced. Here, the photo-deposition method (also referred to as the photo-deposition method) is a method in which a metal salt is reduced by light and supported on the surface of the optical semiconductor particles.

(3)助触媒の量は少なすぎても効果がなく、多すぎると助触媒自身が光を吸収・散乱するなどして光触媒の光吸収を妨げたり、再結合中心として働いたりしてかえって触媒活性が低下することが知られている。還元反応用の助触媒の担持量の最適範囲は、文献(Chem. Mater. 2001, 13, 1194-1199、J. Phys. Chem. B 2005, 109, 21915-21921、J. Phys. Chem. B 2006, 110, 13753-13758、Journal of Catalysis 243 (2006) 303-308)によって、光半導体粒子基準で0.1〜4質量%であることが既に知られている。従って、助触媒の担持量としては、光半導体粒子を基準(100質量%)として、酸化反応助触媒の金属担持量は、好ましくは0.01質量%以上1質量%以下、より好ましくは0.01質量以上0.5質量%以下、さらに好ましくは0.01質量%以上0.1質量%以下であり、還元反応助触媒の金属担持量は、好ましくは0.01質量%以上20質量%以下、好ましくは0.01質量%以上15質量%以下、さらに好ましくは0.01質量%以上10質量%以下である。   (3) If the amount of the cocatalyst is too small, there is no effect. If the amount is too large, the cocatalyst itself absorbs and scatters light, thereby preventing the photocatalyst from absorbing light or acting as a recombination center. It is known that the activity decreases. The optimum range of the amount of the cocatalyst for the reduction reaction is described in the literature (Chem. Mater. 2001, 13, 1194-1199, J. Phys. Chem. B 2005, 109, 21915-21921, J. Phys. Chem. B 2006, 110, 13753-13758, Journal of Catalysis 243 (2006) 303-308), it is already known that the content is 0.1 to 4% by mass based on the optical semiconductor particles. Accordingly, the amount of the promoter supported is preferably 0.01% by mass or more and 1% by mass or less, more preferably 0. 0% by mass based on the optical semiconductor particles (100% by mass). 01 mass% or more and 0.5 mass% or less, More preferably, it is 0.01 mass% or more and 0.1 mass% or less, The metal loading of a reduction reaction promoter is preferably 0.01 mass% or more and 20 mass% or less. Preferably, it is 0.01 mass% or more and 15 mass% or less, More preferably, it is 0.01 mass% or more and 10 mass% or less.

以上の検討事項を元に、本発明者らは以下の発明を完成させた。なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記するが、これにより本発明が図示の形態に限定されるものではない。   Based on the above considerations, the present inventors have completed the following invention. In order to facilitate understanding of the present invention, reference numerals in the accompanying drawings are added in parentheses, but the present invention is not limited to the illustrated embodiment.

第1の本発明は、光半導体(10)、酸化反応助触媒(20)および還元反応助触媒(30)を備え、光半導体(10)に酸化反応助触媒(20)および還元反応助触媒(30)が担持されてなる光水分解反応用光触媒であって、光半導体(10)が、420nm以上の光を利用するものであり、酸化反応助触媒(20)および還元反応助触媒(30)として2種類以上の助触媒が担持されたものであり、かつ還元反応助触媒(30)が光半導体(10)に還元された状態で担持されたものであり、かつ光水分解反応用光触媒が水を分解して水素および酸素を生成するものであることを特徴とする光水分解反応用光触媒(100)である。
The first aspect of the present invention includes an optical semiconductor (10), an oxidation reaction promoter (20), and a reduction reaction promoter (30). The optical semiconductor (10) includes an oxidation reaction promoter (20) and a reduction reaction promoter ( 30) is a photocatalyst for photo-water splitting reaction, wherein the optical semiconductor (10) utilizes light of 420 nm or more , and an oxidation reaction promoter (20) and a reduction reaction promoter (30). two or more cocatalysts are those is carried, and reduction promoter (30) all SANYO supported in a reduced state to an optical semiconductor (10), and the light water decomposition reaction photocatalyst as There is a light water decomposition reaction photocatalytic, characterized in der Rukoto which produce hydrogen and oxygen by decomposing water (100).

第1の本発明において、光半導体(10)は、400nm〜1000nmの光(好ましくは420nm〜800nm)を吸収し、かつその価電子帯上端がO/OH(塩基性溶液中)またはO/HO(中性、酸性溶液中)の酸化還元電位よりも低く、かつ伝導体下端がHO/H(中性、塩基性溶液中)またはH/H(酸性溶液中)の酸化還元電位よりも高い光半導体粒子であることが好ましく、該光半導体粒子は二種以上の混合物であってもよい。 In the first invention, the optical semiconductor (10) absorbs light of 400 nm to 1000 nm (preferably 420 nm to 800 nm), and the upper end of its valence band is O 2 / OH (in a basic solution) or O 2 / H 2 O (neutral, in acidic solution) lower than the redox potential and the lower end of the conductor is H 2 O / H 2 (neutral, in basic solution) or H + / H 2 (acidic solution) It is preferable that the photo-semiconductor particles have a higher oxidation-reduction potential in the middle), and the photo-semiconductor particles may be a mixture of two or more.

第1の本発明において、酸化反応助触媒(20)の金属担持量は、光半導体(10)を100質量%として、0.01質量%以上1質量%以下であることが好ましく、還元反応助触媒(30)の金属担持量は、光半導体(10)を100質量%として、0.01質量%以上20質量%以下であることが好ましい。   In the first aspect of the present invention, the amount of the metal supported by the oxidation reaction promoter (20) is preferably 0.01% by mass or more and 1% by mass or less based on 100% by mass of the optical semiconductor (10). The amount of the metal supported on the catalyst (30) is preferably 0.01% by mass or more and 20% by mass or less, based on 100% by mass of the optical semiconductor (10).

第1の本発明において、酸化反応助触媒(20)は、第2〜14族の金属、該金属の金属間化合物、合金、または、これらの酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物、あるいは、これらの混合物のいずれかであることが好ましい。ここで、「金属間化合物」とは、2種以上の金属元素から形成される化合物であり、金属間化合物を構成する成分原子比は必ずしも化学量論比でなく、広い組成範囲をもつものをいう。「これらの酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物」とは、第2〜14族の金属、該金属の金属間化合物、または、合金の酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物をいう。「これらの混合物」とは、以上例示した化合物のいずれか二以上の混合物をいう。また、「酸化物」、「複合酸化物」には、金属の一部が部分的に酸化されているものも含む。また、「窒化物」「硫化物」には金属の一部が部分的に窒化もしくは硫化されているものを含み、「酸窒化物」「酸硫化物」には、酸化物が一部窒化されているものおよび一部硫化されているもの、窒化物もしくは硫化物が一部酸化されているものを含む。   In the first aspect of the present invention, the oxidation reaction promoter (20) is a group 2-14 metal, an intermetallic compound of the metal, an alloy, or an oxide, composite oxide, nitride, or oxynitride thereof. , Sulfide, oxysulfide, or a mixture thereof. Here, the “intermetallic compound” is a compound formed from two or more kinds of metal elements, and the atomic ratio of the components constituting the intermetallic compound is not necessarily a stoichiometric ratio, but has a wide composition range. Say. “These oxides, composite oxides, nitrides, oxynitrides, sulfides, oxysulfides” are the metals of Group 2-14, intermetallic compounds of these metals, or oxides, composites of alloys Oxides, nitrides, oxynitrides, sulfides, oxysulfides. “A mixture thereof” refers to a mixture of any two or more of the compounds exemplified above. The “oxide” and “composite oxide” include those in which a part of the metal is partially oxidized. “Nitride” and “sulfide” include those in which a part of the metal is partially nitrided or sulfided, and “oxynitride” and “oxysulfide” are partially nitrided oxides. And those that are partially sulfided, nitrides or sulfides that are partially oxidized.

第1の本発明において、還元反応助触媒(30)は、第3〜13族の金属、該金属の金属間化合物、合金、または、これらの酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物、炭化物、窒化物、あるいは、これらの混合物のいずれかであることが好ましい。ここで、「金属間化合物」は上記と同様であり、「これらの酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物、炭化物、窒化物」とは、第3〜13族の金属、該金属の金属間化合物、合金の酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物、炭化物または窒化物をいう。「これらの混合物」とは、以上例示した化合物のいずれか二以上の混合物をいう。また、「酸化物」、「複合酸化物」には、金属の一部が部分的に酸化されているものも含み、「酸窒化物」には、部分的に窒化された酸化物も含む。また、「窒化物」「硫化物」には金属の一部が部分的に窒化もしくは硫化されているものを含み、「酸窒化物」「酸硫化物」には、酸化物が一部窒化されているものおよび一部硫化されているもの、窒化物もしくは硫化物が一部酸化されているものを含む。   In the first invention, the reduction reaction promoter (30) is a group 3-13 metal, an intermetallic compound of the metal, an alloy, or an oxide, composite oxide, oxynitride, or sulfide thereof. , Oxysulfides, carbides, nitrides, or mixtures thereof. Here, the “intermetallic compound” is the same as described above, and “these oxides, composite oxides, oxynitrides, sulfides, oxysulfides, carbides, nitrides” are group 3 to group 13 It refers to a metal, an intermetallic compound of the metal, an oxide of an alloy, a composite oxide, an oxynitride, a sulfide, an oxysulfide, a carbide, or a nitride. “A mixture thereof” refers to a mixture of any two or more of the compounds exemplified above. In addition, “oxide” and “composite oxide” include those in which a part of the metal is partially oxidized, and “oxynitride” also includes partially nitrided oxide. “Nitride” and “sulfide” include those in which a part of the metal is partially nitrided or sulfided, and “oxynitride” and “oxysulfide” are partially nitrided oxides. And those that are partially sulfided, nitrides or sulfides that are partially oxidized.

第1の本発明において、光半導体(10)は、GaN:ZnO,ZnGeN:ZnO,LaTiON,CaNbON,TaON,Ta,SmTi,LaIn2−xTi、あるいは、Cr,Ta,Ni,SbまたはRhでドープもしくは共ドープしたKTaO,SrTiOまたはTiOのいずれかであることが好ましい。なお、「Cr,Ta,Ni,SbまたはRhでドープもしくは共ドープしたKTaO,SrTiOまたはTiO」は、「KTaO:M」、「SrTiO:M」、「TiO:M」と表示され、この場合Mは、Cr,Ta,Ni,SbまたはRhを表し、これら金属がドープされていることを示す。また、共ドープされている場合は、Mは「M1/M2」と表され、これはM1とM2が共ドープされていること表しており、M1とM2は上記したMと同様の金属を表す。 In the first aspect of the present invention, the optical semiconductor (10) includes GaN: ZnO, ZnGeN 2 : ZnO, LaTiO 2 N, CaNbO 2 N, TaON, Ta 3 N 5 , Sm 2 Ti 2 O 5 S 2 , and La x In. 2-x Ti 2 O 5 S 2 , or KTaO 3 , SrTiO 3 or TiO 2 doped or co-doped with Cr, Ta, Ni, Sb or Rh is preferred. “KTaO 3 , SrTiO 3, or TiO 2 doped or co-doped with Cr, Ta, Ni, Sb, or Rh” is “KTaO 3 : M”, “SrTiO 3 : M”, “TiO 2 : M”. In this case, M represents Cr, Ta, Ni, Sb or Rh, indicating that these metals are doped. In the case of co-doping, M is expressed as “M1 / M2”, which indicates that M1 and M2 are co-doped, and M1 and M2 represent the same metal as M described above. .

第2の本発明は、光半導体(10)に、酸化反応助触媒(20)と還元反応助触媒(30)を担持させた光水分解反応用光触媒(100)の製造方法であって、
光水分解反応用光触媒(100)が420nm以上の光を利用するものであり、
酸化反応助触媒(20)を吸着担持法により、光半導体(10)に担持させて光触媒中間体を形成する第一工程(S2)、および、還元反応助触媒(30)を光電着担持法により光触媒中間体に担持させる第二工程(S3)、を含む、光水分解反応用光触媒の製造方法である。
The second aspect of the present invention is a method for producing a photocatalyst (100) for water-splitting reaction in which an oxidation reaction promoter (20) and a reduction reaction promoter (30) are supported on an optical semiconductor (10),
The photocatalyst (100) for photohydrolysis reaction uses light of 420 nm or more,
The first step (S2) of forming the photocatalyst intermediate by supporting the oxidation reaction cocatalyst (20) on the photo semiconductor (10) by the adsorption carrying method, and the reduction reaction cocatalyst (30) by the photoadsorption carrying method. It is a manufacturing method of the photocatalyst for photo-water-splitting reaction including the 2nd process (S3) made to carry | support to a photocatalyst intermediate body.

後者の助触媒を光電着担持法により担持させることで、後者の助触媒は光半導体(10)の還元サイトに選択的に担持されることになり、このため、二種の助触媒、好ましくは後者の吸着サイトをコントロールできるので、一方の助触媒が他方の助触媒を被覆したり、互いの助触媒が接触して再結合中心になってしまい効果が出なくなるといった問題を抑制し、優れた性能を有する光水分解反応用光触媒(100)を製造できる。   By supporting the latter co-catalyst by the photo-deposition support method, the latter co-catalyst is selectively supported on the reduction site of the optical semiconductor (10). For this reason, two types of co-catalysts, preferably Since the latter adsorption site can be controlled, it is possible to suppress problems such as one of the promoters covering the other promoter and the mutual promoters coming into contact with each other to become recombination centers, resulting in no effect. A photocatalyst (100) for photowater splitting reaction having performance can be produced.

本発明の光水分解反応用光触媒(100)は、所定の光半導体(10)に、酸化反応助触媒(20)および還元反応助触媒(30)の両方を担持してなることで、可視光領域の光を利用して、高い活性で水分解反応を行うことができる。   The photocatalyst (100) for the water-splitting reaction of the present invention is formed by supporting both an oxidation reaction promoter (20) and a reduction reaction promoter (30) on a predetermined optical semiconductor (10). The water splitting reaction can be performed with high activity using the light in the region.

本発明の光水分解反応用光触媒の触媒設計の概念図である。It is a conceptual diagram of the catalyst design of the photocatalyst for photo-water decomposition reaction of this invention. 光半導体10のエネルギー構造を示した説明図である。3 is an explanatory diagram showing an energy structure of the optical semiconductor 10. FIG. 本発明の光水分解反応用光触媒100の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the photocatalyst 100 for water-splitting reaction of this invention. (a)および(b)は、光触媒による水分解活性評価装置の模式図である。(A) And (b) is a schematic diagram of the water splitting activity evaluation apparatus by a photocatalyst. 実施例1、比較例1および比較例2における光水分解によるガス発生量時間変化である。It is a gas generation amount time change by optical water splitting in Example 1, Comparative Example 1 and Comparative Example 2. 実施例1における助触媒担持量の光触媒活性に対する影響を示す図である。It is a figure which shows the influence with respect to photocatalytic activity of the amount of promoter support in Example 1. FIG. 実施例2および比較例3における光水分解によるガス発生量時間変化である。It is a gas generation amount time change by optical water splitting in Example 2 and Comparative Example 3. 実施例2における助触媒担持量の光触媒活性に対する影響を示す図である。It is a figure which shows the influence with respect to photocatalytic activity of the amount of promoter support in Example 2. FIG. 比較例4および比較例5における光水分解によるガス発生量時間変化である。It is a gas generation amount time change by the photo-water decomposition in the comparative example 4 and the comparative example 5. FIG.

<光水分解用光触媒>
図1に本発明の光水分解反応用光触媒100の触媒設計を表した概念図を示す。本発明の光水分解反応用光触媒100は、光半導体10、酸化反応助触媒20および還元反応助触媒30を備え、光半導体10に酸化反応助触媒20および還元反応助触媒30が担持されてなる。図1において、「C.B.」とは、Conduction Band(伝導帯)を示し、「V.B.」とは、Valence Band(価電子帯)を示す。光半導体10にバンドギャップ以上のエネルギーの光(hν)を照射すると、価電子帯の電子が伝導帯へと励起される。励起された電子(e)は、水素イオンを還元し水素を発生させるが、このときの還元反応を助けるのが還元反応助触媒30である。また、価電子帯に形成された正孔(h)は、水を酸化し酸素を発生させるが、このときの酸化反応を助けるのが酸化反応助触媒20である。
<Photocatalyst for water splitting>
FIG. 1 is a conceptual diagram showing the catalyst design of the photocatalyst 100 for photo-water splitting reaction of the present invention. The photocatalyst 100 for water-splitting reaction of the present invention includes a photo semiconductor 10, an oxidation reaction co-catalyst 20 and a reduction reaction co-catalyst 30, and the photo semiconductor 10 carries the oxidation reaction co-catalyst 20 and the reduction reaction co-catalyst 30. . In FIG. 1, “CB” indicates a conduction band (conduction band), and “V.B.” indicates a Valence band (valence band). When the optical semiconductor 10 is irradiated with light (hν) having energy greater than the band gap, electrons in the valence band are excited to the conduction band. The excited electrons (e ) reduce hydrogen ions to generate hydrogen. The reduction reaction promoter 30 assists the reduction reaction at this time. The holes (h + ) formed in the valence band oxidize water and generate oxygen. The oxidation reaction promoter 20 assists the oxidation reaction at this time.

(光半導体10)
図2に、光半導体10のエネルギー構造を示した。光半導体10を構成する光触媒としては、次の条件を満たしていればいかなる化合物でもよい。(1)光照射によって生成する電子(e)の電位が水素イオンもしくは水分子を水素分子に還元できる電位(H/H)よりも負であること、かつ光照射によって生成する正孔(h)の電位が水もしくは水酸化物イオンを酸素分子に酸化できる電位(O/HO)よりも正であること。(2)光半導体10が水溶液中で光照射され、水分解反応が進行しても安定であること。
(Optical semiconductor 10)
FIG. 2 shows the energy structure of the optical semiconductor 10. As a photocatalyst which comprises the optical semiconductor 10, what kind of compound may be sufficient if the following conditions are satisfy | filled. (1) The potential of electrons (e ) generated by light irradiation is more negative than the potential (H + / H 2 ) capable of reducing hydrogen ions or water molecules to hydrogen molecules, and holes generated by light irradiation. The potential of (h + ) is more positive than the potential (O 2 / H 2 O) that can oxidize water or hydroxide ions to oxygen molecules. (2) The optical semiconductor 10 is stable even if it is irradiated with light in an aqueous solution and the water splitting reaction proceeds.

光半導体10としては、可視光応答型の光半導体を用いることができ、具体的には、BiWO,BiYWO,In(ZnO),InTaO,InTaO:Ni(「光半導体:M」は、光半導体にMをドープしていることを示す。以下同様。),TiO:Ni,TiO:Ru,TiORh,TiO:Ni/Ta(「光半導体:M1/M2」は、光半導体にM1とM2を共ドープしていることを示す。以下同様。),TiO:Ni/Nb,TiO:Cr/Sb,TiO:Ni/Sb,TiO:Sb/Cu,TiO:Rh/Sb,TiO:Rh/Ta,TiO:Rh/Nb,SrTiO:Ni/Ta,SrTiO:Ni/Nb,SrTiO:Cr,SrTiO:Cr/Sb,SrTiO:Cr/Ta,SrTiO:Cr/Nb,SrTiO:Cr/W,SrTiO:Mn,SrTiO:Ru,SrTiO:Rh,SrTiO:Rh/Sb,SrTiO:Ir,CaTiO:Rh,LaTi:Cr,LaTi:Cr/Sb,LaTi:Fe,PbMoO:Cr,RbPbNb10,HPbNb10,PbBiNb,BiVO,BiCuVO,BiSnVO,SnNb,AgNbO,AgVO,AgLi1/3Ti2/3,AgLi1/3Sn2/3,などの酸化物、LaTiON,Ca0.25La0.75TiO2.250.75,TaON,CaNbON,CaTaON,SrTaON,BaTaON,LaTaON,YTa,(Ga1−xZn)(N1−x),(Zn1+xGe)(N)(xは、0−1の数値を表す),TiN,などの酸窒化物、Ta,GaN:Mgなどの窒化物、CdSなどの硫化物、CdSeなどのセレン化物、LnTi(Ln:Pr,Nd,Sm,Gd,Tb,Dy,Ho,およびEr)やLa,Inを含むオキシサルファイド化合物(Chemistry Letters、2007,36,854−855)を含むことができるが、ここに例示した材料に限定されるものではない。 As the optical semiconductor 10, a visible light responsive optical semiconductor can be used. Specifically, Bi 2 WO 6 , BiYWO 6 , In 2 O 3 (ZnO) 3 , InTaO 4 , InTaO 4 : Ni (“ “Optical semiconductor: M” indicates that the optical semiconductor is doped with M. The same applies hereinafter.), TiO 2 : Ni, TiO 2 : Ru, TiO 2 Rh, TiO 2 : Ni / Ta (“optical semiconductor: “M1 / M2” indicates that the optical semiconductor is co-doped with M1 and M2. The same applies hereinafter.), TiO 2 : Ni / Nb, TiO 2 : Cr / Sb, TiO 2 : Ni / Sb, TiO 2 : Sb / Cu, TiO 2: Rh / Sb, TiO 2: Rh / Ta, TiO 2: Rh / Nb, SrTiO 3: Ni / Ta, SrTiO 3: Ni / Nb, SrTiO 3: Cr, SrTiO 3: Cr / Sb, SrTiO 3 : Cr / Ta, SrTiO 3 : Cr / Nb, SrTiO 3 : Cr / W, SrTiO 3 : Mn, SrTiO 3 : Ru, SrTiO 3 : Rh, SrTiO 3 : Rh / Sb, SrTiO 3 : Ir, CaTiO 3 : Rh, La 2 Ti 2 O 7 : Cr, La 2 Ti 2 O 7 : Cr / Sb, La 2 Ti 2 O 7 : Fe, PbMoO 4 : Cr, RbPb 2 Nb 3 O 10 , HPb 2 Nb 3 O 10, PbBi 2 Nb 2 O 9, BiVO 4, BiCu 2 VO 6, BiSn 2 VO 6, SnNb 2 O 6, AgNbO 3, AgVO 3, AgLi 1/3 Ti 2/3 O 2, AgLi 1 / 3 Sn 2/3 O 2, oxides such as, LaTiO 2 N, Ca 0.25 La 0.75 TiO 2.25 N 0 75, TaON, CaNbO 2 N, CaTaO 2 N, SrTaO 2 N, BaTaO 2 N, LaTaO 2 N, Y 2 Ta 2 O 5 N 2, (Ga 1-x Zn x) (N 1-x O x), (Zn 1 + x Ge) (N 2 O x ) (x represents a numerical value of 0-1), oxynitrides such as TiN x O y F z , nitrides such as Ta 3 N 5 , GaN: Mg, Oxysulfide compounds including sulfides such as CdS, selenides such as CdSe, Ln 2 Ti 2 S 2 O 5 (Ln: Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er) and La, In ( Chemistry Letters, 2007, 36, 854-855), but is not limited to the materials exemplified herein.

また、本発明における光半導体10としては、前記可視光応答型光半導体のほかに、紫外光応答型の光半導体に増感剤を担持したものを用いることもできる。紫外光応答型の光半導体とは、具体的には、TiO,CaTiO,SrTiO,SrTi,SrTi,KLaTi10,RbLaTi10,CsLaTi10,CsLaTiNbO10,LaTiO,LaTi,LaTi,LaTi:Ba,KaLaZr0.3Ti0.7,LaCaTi,KTiNbO,NaTi13,BaTi,GdTi,YTi,(NaTi,KTi,KTi,CsTi,H−CsTi(H−CsはCsがHでイオン交換されていることを示す。以下同様),CsTi11,CsTi13,H−CsTiNbO,H−CsTiNbO,SiO−pillared KTi,SiO−pillared KTi2.7Mn0.3(J. Mol. Catal. A: Chem. 2000, 155, 131))(以上、チタン酸化物);ZrO,Na13Further, as the optical semiconductor 10 in the present invention, in addition to the visible light responsive optical semiconductor, an ultraviolet light responsive optical semiconductor carrying a sensitizer can also be used. Specific examples of the ultraviolet light-responsive optical semiconductor include TiO 2 , CaTiO 3 , SrTiO 3 , Sr 3 Ti 2 O 7 , Sr 4 Ti 3 O 7 , K 2 La 2 Ti 3 O 10 , and Rb 2 La. 2 Ti 3 O 10 , Cs 2 La 2 Ti 3 O 10 , CsLaTi 2 NbO 10 , La 2 TiO 5 , La 2 Ti 3 O 9 , La 2 Ti 2 O 7 , La 2 Ti 2 O 7 : Ba, KaLaZr 0 .3 Ti 0.7 O 4 , La 4 CaTi 5 O 7 , KTiNbO 5 , Na 2 Ti 6 O 13 , BaTi 4 O 9 , Gd 2 Ti 2 O 7 , Y 2 Ti 2 O 7 , (Na 2 Ti 3 O 7 , K 2 Ti 2 O 5 , K 2 Ti 4 O 9 , Cs 2 Ti 2 O 5 , H + -Cs 2 Ti 2 O 5 (H + -Cs is ion-exchanged when Cs is H + The same applies hereinafter), Cs 2 Ti 5 O 11 , Cs 2 Ti 6 O 13 , H + -CsTiNbO 5 , H + -CsTi 2 NbO 7 , SiO 2 -pillared K 2 Ti 4 O 9 , SiO 2- pillared K 2 Ti 2.7 Mn 0.3 O 7 (J. Mol. Catal. A: Chem. 2000, 155, 131)) (titanium oxide); ZrO 2 , Na 2 W 4 O 13 ;

Nb17,RbNb17,CaNb,SrNb,BaNb15,NaCaNb10,ZnNb,CsNb11,LaNbO(H−KLaNb,H−RbLaNb,H−CsLaNb,H−KCaNb10,SiO−pillared KCaNb10(Chem.Mater.1996,8,2534.),H−RbCaNb10,H−CsCaNb10,H−KSrNb10,H−KCANaNb13)(以上、Nb酸化物); K 4 Nb 6 O 17 , Rb 4 Nb 6 O 17 , Ca 2 Nb 2 O 7 , Sr 2 Nb 2 O 7 , Ba 5 Nb 4 O 15 , NaCa 2 Nb 3 O 10 , ZnNb 2 O 6 , Cs 2 Nb 4 O 11 , La 3 NbO 7 (H + -KLaNb 2 O 7 , H + -RbLaNb 2 O 7 , H + -CsLaNb 2 O 7 , H + -KCa 2 Nb 3 O 10 , SiO 2 -pillared KCa 2 Nb 3 O 10 (Chem. Mater. 1996, 8, 2534.), H + -RbCa 2 Nb 3 O 10 , H + -CsCa 2 Nb 3 O 10 , H + -KSr 2 Nb 3 O 10 , H + -KCA 2 NaNb 4 O 13 ) (above, Nb oxide);

Ta,KPrTa15,KTaSi13,KTa12,LiTaO,NaTaO,KTaO,AgTaO,KTaO:Zr,NaTaO:La,NaTaO:Sr,NaTa,KTa(pyrochlore),KTa(pyrochlore),CaTa,SrTa,BaTa,NiTa,RbTa17,HLa2/3Ta,KSr1.5Ta10,LiCaTa10,KBaTa10,SrTa15,BaTa15,H1.8Sr0.81Bi0.19Ta,Mg−Ta oxide(Chem.Mater.2004 16, 4304−4310),LaTaO,LaTaO(以上、タンタル酸化物); Ta 2 O 5 , K 2 PrTa 5 O 15 , K 3 Ta 3 Si 2 O 13 , K 3 Ta 3 B 2 O 12 , LiTaO 3 , NaTaO 3 , KTaO 3 , AgTaO 3 , KTaO 3 : Zr, NaTaO 3 : La, NaTaO 3 : Sr, Na 2 Ta 2 O 6 , K 2 Ta 2 O 6 (pyrochlore), K 2 Ta 2 O 6 (pyrochlore), CaTa 2 O 6 , SrTa 2 O 6 , BaTa 2 O 6 , NiTa 2 O 6 , Rb 4 Ta 6 O 17 , H 2 La 2/3 Ta 2 O 7 , K 2 Sr 1.5 Ta 3 O 10 , LiCa 2 Ta 3 O 10 , KBa 2 Ta 3 O 10 , Sr 5 Ta 4 O 15, Ba 5 Ta 4 O 15, H 1.8 Sr 0.81 Bi 0.19 Ta 2 O 7, Mg-Ta oxide Chem.Mater.2004 16, 4304-4310), LaTaO 4 , La 3 TaO 7 ( or, tantalum oxide);

PbWO,RbWNbO,RbWTaO,CeO:Sr,BaCeO,(Bi,BiMo,BaBiTi15,BiTiNbO,PbMoO,(NaBi)0.5MoO,(AgBi)0.5MoO,(NaBi)WO,(AgBi)0.5WO,Ga1.14In0.86,Ti1.5Zr1.5(PO),NaInO,CaIn,SrIn,LaInO,YxIn−xO,NaSbO,CaSb,CaSb,SrSb,SrSnO,ZnGa,ZnGeO,LiInGeO,Ga,Ga:Znなどである。また、増感剤としては、[Ru(bpy)2+、エリスロシン(erythrosine),亜鉛ポルフィリン、CdSなどがある。 PbWO 4, RbWNbO 6, RbWTaO 6 , CeO 2: Sr, BaCeO 3, (Bi 2 W 2 O 9, Bi 2 Mo 2 O 9, BaBi 4 Ti 4 O 15, Bi 3 TiNbO 9, PbMoO 4, (NaBi) 0.5 MoO 4 , (AgBi) 0.5 MoO 4 , (NaBi) WO 4 , (AgBi) 0.5 WO 4 , Ga 1.14 In 0.86 O 3 , Ti 1.5 Zr 1.5 ( PO 4) 4), NaInO 2 , CaIn 2 O 4, SrIn 2 O 4, LaInO 3, YxIn 2 -xO 3, NaSbO 3, CaSb 2 O 6, Ca 2 Sb 2 O 7, Sr 2 Sb 2 O 7, Sr 2 SnO 4 , ZnGa 2 O 4 , Zn 2 GeO 4 , LiInGeO 4 , Ga 2 O 3 , Ga 2 O 3 : Zn, and the like. Examples of the sensitizer include [Ru (bpy) 3 ] 2+ , erythrosine, zinc porphyrin, CdS and the like.

また、光半導体10としては、前記可視光応答型光半導体に、p型もしくはn型光半導体を表面に吸着させ、p−n接合を形成させたものを使用することができる。用いる光半導体としては、CuO,CuO,CuI,Cu(InGa)S,Cu(InGa)Se,CuGaS,CuGaSSe,CuGaSe,CdS,CdTe,CdZnTe,CdSe,CuZnSnS,CuGa,CuInS,Cu(InAl)Se,CuIn,CuAlO,CuGaO,SrCu,GaP,GaAs,GaAsP,GaN,InP,InAs,GaInAsP,GaSb,Si,SiC,Ge,ZnS,Feなどの無機系半導体、およびフラーレン誘導体、ポルフィリン誘導体、フタロシアニン誘導体、ポリチオフェン誘導体等の有機系半導体を使用することができるが、ここに例示した材料に限定されるものではない。 Moreover, as the optical semiconductor 10, the visible light response type optical semiconductor can be used in which a p-type or n-type optical semiconductor is adsorbed on the surface and a pn junction is formed. The optical semiconductor used, CuO, Cu 2 O, CuI , Cu (InGa) S 2, Cu (InGa) Se 2, CuGaS 2, CuGaSSe, CuGaSe 2, CdS, CdTe, CdZnTe, CdSe, Cu 2 ZnSnS 4, CuGa 5 S 8 , CuInS 2 , Cu (InAl) Se 2 , CuIn 5 S 8 , CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , GaP, GaAs, GaAsP, GaN, InP, InAs, GaInAsP, GaSb, Si, SiC, Inorganic semiconductors such as Ge, ZnS, and Fe 2 O 3 and organic semiconductors such as fullerene derivatives, porphyrin derivatives, phthalocyanine derivatives, and polythiophene derivatives can be used, but the materials are not limited to those exemplified here. Absent.

光半導体10としては、前記可視光応答型光半導体が、可視光を直接使用することができ、また製造面での有利さから好ましく、中でも、GaN:ZnO,ZnGeN:ZnO,LaTiON,CaNbON,TaON,Ta,SmTi,LaIn2−xTi、あるいは、Cr,Ta,Ni,SbまたはRhでドープもしくは共ドープしたKTaO,SrTiOまたはTiOのいずれかであることが好ましい。 As the optical semiconductor 10, the visible light responsive optical semiconductor can directly use visible light, and is preferable in terms of manufacturing advantages. Among them, GaN: ZnO, ZnGeN 2 : ZnO, LaTiO 2 N, CaNbO 2 N, TaON, Ta 3 N 5, Sm 2 Ti 2 O 5 S 2, La x in 2-x Ti 2 O 5 S 2, or doped or co-doped with Cr, Ta, Ni, Sb or Rh KTaO 3 , SrTiO 3 or TiO 2 is preferred.

さらに、光半導体10としては、中でも、LaTiON,CaNbON,Ga1−xZn1−x(xは、0〜1の数値を表す。),SmTiを用いることが、光触媒活性が高いこと、地上における存在量が豊富であること、価格が低い点から好ましい。 Furthermore, as the optical semiconductor 10, among others, LaTiO 2 N, CaNbO 2 N, Ga 1-x Zn x N 1-x O x (x represents a numerical value of 0 to 1 ), Sm 2 Ti 2 S 2. Use of O 5 is preferable from the viewpoint of high photocatalytic activity, abundance on the ground, and low cost.

光半導体10は、粒子であることが好ましく、その一次粒子の粒径は、特に限定されるものではないが、通常0.001μm以上、好ましくは0.005μm以上であり、通常500μm以下であり、好ましくは10μm以下である。光半導体10の粒子径は、XRD、TEM、SEM法等公知の手段によって適宜測定することができる。   The optical semiconductor 10 is preferably a particle, and the particle size of the primary particle is not particularly limited, but is usually 0.001 μm or more, preferably 0.005 μm or more, and usually 500 μm or less, Preferably it is 10 micrometers or less. The particle diameter of the optical semiconductor 10 can be appropriately measured by a known means such as XRD, TEM, or SEM method.

(酸化反応助触媒20および還元反応助触媒30)
上記光半導体10には、酸化反応助触媒20(酸素発生側)および還元反応助触媒30(水素発生側)の双方の助触媒を担持する。酸化反応助触媒20としては、第2〜14族の金属、該金属の金属間化合物、合金、または、これらの酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物、あるいは、これらの混合物のいずれかを用いることが好ましい。ここで、「金属間化合物」とは、2種以上の金属元素から形成される化合物であり、金属間化合物を構成する成分原子比は必ずしも化学量論比でなく、広い組成範囲をもつものをいう。「これらの酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物」とは、第2〜14族の金属、該金属の金属間化合物、または、合金の酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物をいう。「これらの混合物」とは、以上例示した化合物のいずれか二以上の混合物をいう。
(Oxidation reaction promoter 20 and reduction reaction promoter 30)
The optical semiconductor 10 supports both the oxidation reaction promoter 20 (oxygen generation side) and the reduction reaction promoter 30 (hydrogen generation side). As the oxidation reaction promoter 20, a metal of Group 2-14, an intermetallic compound of the metal, an alloy, or an oxide, composite oxide, nitride, oxynitride, sulfide, oxysulfide, Alternatively, it is preferable to use any of these mixtures. Here, the “intermetallic compound” is a compound formed from two or more kinds of metal elements, and the atomic ratio of the components constituting the intermetallic compound is not necessarily a stoichiometric ratio, but has a wide composition range. Say. “These oxides, composite oxides, nitrides, oxynitrides, sulfides, oxysulfides” are the metals of Group 2-14, intermetallic compounds of these metals, or oxides, composites of alloys Oxides, nitrides, oxynitrides, sulfides, oxysulfides. “A mixture thereof” refers to a mixture of any two or more of the compounds exemplified above.

本発明における酸化反応助触媒20としては、好ましくは、Mg,Ti,Mn,Fe,Co,Ni,Cu,Ga,Ru,Rh,Pd,Ag,Cd,In,Ce,Ta,W,Ir,PtまたはPbの金属、これらの酸化物または複合酸化物であり、より好ましくは、Mn,Co,Ni,Ru,Rh,Irの金属、これらの酸化物または複合酸化物であり、さらに好ましくは、Ir,MnO,MnO,Mn,Mn,CoO,Co,NiCo,RuO,Rh,IrOである。 The oxidation reaction promoter 20 in the present invention is preferably Mg, Ti, Mn, Fe, Co, Ni, Cu, Ga, Ru, Rh, Pd, Ag, Cd, In, Ce, Ta, W, Ir, Pt or Pb metal, oxide or composite oxide thereof, more preferably metal of Mn, Co, Ni, Ru, Rh, Ir, oxide or composite oxide thereof, and further preferably Ir, MnO, a MnO 2, Mn 2 O 3, Mn 3 O 4, CoO, Co 3 O 4, NiCo 2 O 4, RuO 2, Rh 2 O 3, IrO 2.

本発明における還元反応助触媒30としては、第3〜13族の金属、該金属の金属間化合物、合金、または、これらの酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物、炭化物、窒化物、あるいは、これらの混合物のいずれかを用いることが好ましい。ここで、「金属間化合物」は上記と同様であり、「これらの酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物、炭化物、窒化物」とは、第3〜13族の金属、該金属の金属間化合物、合金の酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物、炭化物または窒化物をいう。「これらの混合物」とは、以上例示した化合物のいずれか二以上の混合物をいう。   As the reduction reaction co-catalyst 30 in the present invention, a Group 3-13 metal, an intermetallic compound of the metal, an alloy, or an oxide, composite oxide, oxynitride, sulfide, oxysulfide thereof, It is preferable to use any one of carbide, nitride, or a mixture thereof. Here, the “intermetallic compound” is the same as described above, and “these oxides, composite oxides, oxynitrides, sulfides, oxysulfides, carbides, nitrides” are group 3 to group 13 It refers to a metal, an intermetallic compound of the metal, an oxide of an alloy, a composite oxide, an oxynitride, a sulfide, an oxysulfide, a carbide, or a nitride. “A mixture thereof” refers to a mixture of any two or more of the compounds exemplified above.

還元反応助触媒30としては、好ましくは、Pt,Pd,Rh,Ru,Ni,Au,Fe,NiO,RuO,IrO,Rh,および、Cr−Rh複合酸化物,コアシェル型Rh/Cr,Pt/Cr等を挙げることができる。 The reducing reaction assistant catalyst 30, preferably, Pt, Pd, Rh, Ru , Ni, Au, Fe, NiO, RuO 2, IrO 2, Rh 2 O 3, and, Cr-Rh complex oxide, core-shell Rh / Cr 2 O 3 , Pt / Cr 2 O 3 and the like.

上記した助触媒の担持量としては、酸化反応助触媒20の金属担持量は、特に限定されないが、光半導体10を基準(100質量%)として、通常0.01質量%以上、1質量%以下、好ましくは上限が0.5質量%以下、より好ましくは上限が0.1質量%以下である。還元反応助触媒30の金属担持量は、特に限定されないが、光半導体10を基準(100質量%)として、通常0.01質量%以上、20質量%以下、好ましくは上限が15質量%以下、より好ましくは上限が10質量%以下である。
ここでいう「金属担持量」とは、担持させた助触媒中の金属元素が占める量をいう。
As the amount of the above-mentioned promoter, the amount of the metal supported by the oxidation reaction promoter 20 is not particularly limited, but is usually 0.01% by mass or more and 1% by mass or less based on the optical semiconductor 10 (100% by mass). The upper limit is preferably 0.5% by mass or less, and more preferably the upper limit is 0.1% by mass or less. The amount of metal supported on the reduction reaction promoter 30 is not particularly limited, but is usually 0.01% by mass or more and 20% by mass or less, preferably 15% by mass or less, based on the optical semiconductor 10 (100% by mass). More preferably, the upper limit is 10% by mass or less.
As used herein, “metal loading” refers to the amount occupied by the metal element in the supported promoter.

<光水分解反応用光触媒の製造方法>
次に、本発明の光水分解用光触媒100の製造方法について説明する。なお、以下に示す製造方法は、あくまで本発明の光触媒を製造するための方法の一実施形態であって、他の方法を排除する趣旨ではない。
<Method for producing photocatalyst for photo-water splitting reaction>
Next, the manufacturing method of the photocatalyst 100 for water splitting of this invention is demonstrated. In addition, the manufacturing method shown below is one Embodiment for the method for manufacturing the photocatalyst of this invention to the last, Comprising: It is not the meaning which excludes another method.

図3にフローチャートを示したように、本発明の光水分解反応用光触媒100の製造方法は、光半導体10を準備する工程(S1)、該光半導体10に酸化反応助触媒20または還元反応助触媒30のいずれか一方を吸着担持法により担持させて光触媒中間体を形成する第一工程(S2)、および、第一工程で担持していない方の助触媒を光電着担持法により光触媒中間体に担持させる第二工程(S3)、を含んでいる。   As shown in the flowchart in FIG. 3, the method for producing a photocatalyst 100 for water-splitting reaction according to the present invention includes the step of preparing the optical semiconductor 10 (S 1), A first step (S2) in which any one of the catalysts 30 is supported by an adsorption supporting method to form a photocatalyst intermediate, and a cocatalyst that is not supported in the first step is subjected to a photocatalytic intermediate by a photoadsorption supporting method. A second step (S3) to be carried on the substrate.

工程S1の具体的形態としては、可視光を吸収して光半導体特性を示す光半導体10を調製する方法があり、例えば、GaN:ZnOを準備する方法として、J. Am. Chem. Soc. 2005, 127, 8286.記載の方法が挙げられる。   As a specific form of step S1, there is a method of preparing an optical semiconductor 10 that absorbs visible light and exhibits optical semiconductor characteristics. For example, as a method of preparing GaN: ZnO, J. Am. Chem. Soc. 2005 , 127, 8286.

工程S2および工程S3の具体的形態を説明する。
ここで光電着担持法とは、光半導体粒子と金属塩を共存させ、光照射によって金属塩を還元し、金属もしくは金属化合物として光半導体粒子上に担持する方法をいう。
まず、THF、エタノールなどの溶媒に、酸化反応助触媒20もしくは還元反応助触媒30のいずれか一方の助触媒ナノ粒子もしくは助触媒粒子の前駆体を分散させる。この分散液に、調製した光半導体10を懸濁させる。この懸濁液を1〜12時間撹拌し、助触媒ナノ粒子もしくは助触媒粒子の前駆体を光半導体の表面へ吸着させる。懸濁させている際に、超音波処理を行ってもよい。これにより、助触媒ナノ粒子もしくは助触媒粒子の前駆体の光半導体の表面への吸着を促進させることができる。また、助触媒ナノ粒子もしくは助触媒粒子の前駆体の粒子径としては、特に限定されないが、通常1nm以上、好ましくは2nm以上、通常100nm以下、好ましくは50nm以下である。
The specific form of process S2 and process S3 is demonstrated.
Here, the photodeposition support method refers to a method in which a photo semiconductor particle and a metal salt coexist, the metal salt is reduced by light irradiation, and supported on the photo semiconductor particle as a metal or a metal compound.
First, the promoter nanoparticle or the precursor of the promoter particle of either the oxidation reaction promoter 20 or the reduction reaction promoter 30 is dispersed in a solvent such as THF or ethanol. The prepared optical semiconductor 10 is suspended in this dispersion. This suspension is stirred for 1 to 12 hours to adsorb the promoter nanoparticle or the precursor of the promoter particle to the surface of the optical semiconductor. Sonication may be performed during suspension. Thereby, adsorption | suction to the surface of the optical semiconductor of the promoter nanoparticle or the precursor of a promoter particle can be promoted. The particle diameter of the promoter nanoparticle or the precursor of the promoter particle is not particularly limited, but is usually 1 nm or more, preferably 2 nm or more, usually 100 nm or less, preferably 50 nm or less.

上記懸濁液をろ過、または、溶媒をドライアップした後、空気中、50〜500℃で、0.5〜12時間焼成する。このようにして調製した光触媒中間体に、更にもう片方の助触媒を担持させるため、次に担持する助触媒の前駆体を溶解させた溶液(溶媒としては、上記の工程S1におけるものと同様のものを使用できる。)に光触媒中間体を懸濁させる。この懸濁液に、可視光領域の光(λ≧420nm)を室温で空気および酸素の非存在下において数時間照射し、助触媒となる金属もしくは金属酸化物を光電着担持させる。担持する助触媒の種類に応じてこの光電着の手順を繰り返し行う。なお、使用する光半導体10、助触媒(前駆体)20、30の種類に応じて、焼成温度、光電着に要する時間は異なる。   The suspension is filtered or the solvent is dried up and then calcined in air at 50 to 500 ° C. for 0.5 to 12 hours. In order to support the other promoter on the photocatalyst intermediate prepared in this way, a solution in which the precursor of the promoter to be subsequently supported is dissolved (the solvent is the same as in Step S1 above). Can be used.) The photocatalytic intermediate is suspended. This suspension is irradiated with light in the visible light region (λ ≧ 420 nm) at room temperature in the absence of air and oxygen for several hours, and a metal or a metal oxide serving as a cocatalyst is supported on the electrodeposition. This photodeposition procedure is repeated depending on the type of promoter supported. The firing temperature and the time required for the photo-deposition vary depending on the type of the optical semiconductor 10 and the cocatalysts (precursors) 20 and 30 used.

助触媒ナノ粒子は、例えば、保護基としてPVA(ポリビニルアルコール)やPVP(ポリビニルピロリドン)を使用するコロイド法など(Polymer J. 1999, 31, 1127-1132., Angew. Chem., Int. Ed. 2007, 46, 5397-5401)に従って合成することができる。   The co-catalyst nanoparticles can be obtained, for example, by a colloid method using PVA (polyvinyl alcohol) or PVP (polyvinyl pyrrolidone) as a protecting group (Polymer J. 1999, 31, 1127-1132., Angew. Chem., Int. Ed. 2007, 46, 5397-5401).

助触媒粒子の前駆体としては、助触媒金属の水酸化物、塩化物、硝酸塩、炭酸塩、酢酸塩、シュウ酸塩、リン酸塩のほか、各種アルコラート、フェノラート、カルボキシラート、アセチルアセトナート、チオラート、チオカルボキシラート錯体、アンミン錯体、各種アミン錯体、各種置換ピリジン、イミダゾール、ビピリジン、ターピリジン、フェナンスロリン、ポルフィリン錯体、各種ニトリル錯体等を使用することができるが、ここに例示した材料に限定されるものではない。   Examples of the precursor of the promoter particles include hydroxides, chlorides, nitrates, carbonates, acetates, oxalates and phosphates of various promoter metals, various alcoholates, phenolates, carboxylates, acetylacetonates, Thiolate, thiocarboxylate complex, ammine complex, various amine complexes, various substituted pyridines, imidazole, bipyridine, terpyridine, phenanthroline, porphyrin complex, various nitrile complexes, etc. can be used, but are limited to the materials exemplified here Is not to be done.

上記した本発明の製造方法において、第一工程(S2)では、酸化反応助触媒20を担持させて、その後の第二工程(S3)では、還元反応助触媒30を担持させることが好ましい。第一工程(S2)において、助触媒を担持後、焼成処理を行うが、第一工程(S2)において先に還元反応助触媒30を担持して焼成処理をすると、還元反応助触媒30の活性が低下してしまう虞があるため、上記の順番とすることが好ましい。   In the production method of the present invention described above, it is preferable that the oxidation reaction promoter 20 is supported in the first step (S2), and the reduction reaction promoter 30 is supported in the subsequent second step (S3). In the first step (S2), after carrying the cocatalyst, a calcination treatment is performed. In the first step (S2), if the reduction reaction cocatalyst 30 is carried first and the calcination treatment is performed, the activity of the reduction reaction cocatalyst 30 is increased. Therefore, the above order is preferable.

(粒子径の測定条件)
以下の実施例において、光半導体の粒子径は、走査型電子顕微鏡(Scanning electron microscope、以下SEM。)により測定した。
測定装置:日立製作所社製:S−4700
(Measurement conditions of particle size)
In the following examples, the particle diameter of the optical semiconductor was measured with a scanning electron microscope (hereinafter referred to as SEM).
Measuring device: Hitachi, Ltd .: S-4700

また、助触媒の粒子径は、透過型電子顕微鏡(Transmission electron microscope、以下、TEM。)により測定した。
測定装置:日本電子(JEOL)社製 JEM−1011
加速電圧:100kV
The particle diameter of the promoter was measured with a transmission electron microscope (hereinafter referred to as TEM).
Measuring device: JEM-1011 manufactured by JEOL
Acceleration voltage: 100 kV

(実施例1、比較例1、2)
<GaN:ZnO(ZnO/GaN≒0.13(モル比))の調製>
1.08gのGaと0.94gのZnOを混合し、アンモニア気流下(250mL・min−1)、825℃で13時間窒化処理を行った。光触媒の生成はXRD(X−ray diffraction)およびEDX(energy dispersive X−ray)によって確認した。拡散反射スペクトルの測定により、調製した光触媒GaN:ZnOのバンドギャップエネルギーは2.68eVであった。
SEM観察による光半導体粒子GaN:ZnOの粒子径は100〜500nmであった。
(Example 1, Comparative Examples 1 and 2)
<Preparation of GaN: ZnO (ZnO / GaN≈0.13 (molar ratio))>
1.08 g of Ga 2 O 3 and 0.94 g of ZnO were mixed, and nitriding was performed at 825 ° C. for 13 hours under an ammonia stream (250 mL · min −1 ). The formation of the photocatalyst was confirmed by XRD (X-ray diffusion) and EDX (energy dispersive X-ray). The band gap energy of the prepared photocatalyst GaN: ZnO was 2.68 eV by measuring the diffuse reflection spectrum.
The particle diameter of the optical semiconductor particles GaN: ZnO by SEM observation was 100 to 500 nm.

<MnOナノ粒子の調製>
窒素雰囲気下でエタノール(30mL)、蒸留水(40mL)、ヘキサン(70mL)の混合溶媒中にMnCl・4HO(40mmol)とオレイン酸ナトリウム(80mmol)を溶解し、70℃で一晩加熱した。分液漏斗で有機相を分取し、溶媒を留去した後、生成したマンガン−オレイン酸錯体(0.4mmol)を1−オクタデカン(10mL)中で次のような手順で加熱処理を行った。混合物を減圧下120℃で1時間加熱し、続いて温度を10℃・min−1で300℃まで昇温した。300℃でマグネチックスターラーで30分間撹拌した後、室温まで冷却した。生成物を酢酸エチルで洗浄した後、THFに分散させてMnOナノ粒子を得た。TEMでの観察の結果、MnOナノ粒子の平均直径は、9.2±0.4nmであった。
<Preparation of MnO nanoparticles>
Under a nitrogen atmosphere, dissolve MnCl 2 .4H 2 O (40 mmol) and sodium oleate (80 mmol) in a mixed solvent of ethanol (30 mL), distilled water (40 mL), and hexane (70 mL), and heat at 70 ° C. overnight. did. After separating the organic phase with a separatory funnel and distilling off the solvent, the produced manganese-oleic acid complex (0.4 mmol) was heated in 1-octadecane (10 mL) in the following procedure. . The mixture was heated at 120 ° C. under reduced pressure for 1 hour, and then the temperature was raised to 300 ° C. at 10 ° C. · min −1 . The mixture was stirred at 300 ° C. with a magnetic stirrer for 30 minutes and then cooled to room temperature. The product was washed with ethyl acetate and then dispersed in THF to obtain MnO nanoparticles. As a result of observation by TEM, the average diameter of the MnO nanoparticles was 9.2 ± 0.4 nm.

<Mn/GaN:ZnOの調製>
調製したGaN:ZnOをMnOナノ粒子(GaN:ZnOに対して、0.01〜0.5質量%Mn)を分散させたTHFに懸濁した。超音波処理を行った後、16−ヒドロキシヘキサデカン酸(20μmol)を含むTHF(5mL)を懸濁液に加え、3時間撹拌した。この処理で全てのMnOナノ粒子はGaN:ZnO表面に吸着した。MnOの吸着したGaN:ZnOを空気中で室温から5K・min−1の速度で400℃まで昇温し、トータルで3時間焼成した。焼成後、MnOはMnに変化したが、粒子サイズに大きな変化は見られなかった。MnOナノ粒子が全量吸着していることはUV−VISスペクトルで確認されており、MnのGaN:ZnOに対する金属担持量は、仕込み量と同じく0.01〜0.5質量%である。
<Preparation of Mn 3 O 4 / GaN: ZnO>
The prepared GaN: ZnO was suspended in THF in which MnO nanoparticles (0.01 to 0.5 mass% Mn with respect to GaN: ZnO) were dispersed. After sonication, THF (5 mL) containing 16-hydroxyhexadecanoic acid (20 μmol) was added to the suspension and stirred for 3 hours. By this treatment, all MnO nanoparticles were adsorbed on the GaN: ZnO surface. GaN: ZnO adsorbed with MnO was heated from room temperature to 400 ° C. at a rate of 5 K · min −1 in air and calcined for a total of 3 hours. After firing, MnO changed to Mn 3 O 4 , but no significant change in particle size was observed. It has been confirmed by UV-VIS spectrum that the entire amount of MnO nanoparticles is adsorbed, and the amount of metal supported on GaN: ZnO by Mn is 0.01 to 0.5% by mass, similar to the charged amount.

<Rh/Cr(core/shell)/GaN:ZnO/Mnの調製>
Mn/GaN:ZnO(0.13g)をNaRhCl(GaN:ZnOに対して1質量%Rh)水溶液に懸濁し、図4(a)に示す装置を用い、空気の非存在下で可視光(λ>420nm)を4時間照射しRh(III)を金属Rhに光還元した。Rhの析出の後、得られたサンプルをKCrO水溶液(0.8mM、GaN:ZnOに対して
1.5質量%Cr)に懸濁し、再度可視光(λ>420nm)を4時間照射しKCrOをCrに還元した。光照射はカットオフフィルターを備えた300Wキセノンランプを使用した。光照射時には冷却水を使用し溶液温度を室温に保つようにした。生成物を蒸留水でよく洗浄し、70℃で一晩乾燥させた。RhのGaN:ZnOに対する金属担持量は、0.75 質量%であり、CrのGaN:ZnOに対する金属担持量は、0.31質量%である。
<Preparation of Rh / Cr 2 O 3 (core / shell) / GaN: ZnO / Mn 3 O 4 >
Mn 3 O 4 / GaN: ZnO (0.13 g) is suspended in an aqueous solution of Na 3 RhCl 6 (1% by mass Rh with respect to GaN: ZnO), and air is not present using the apparatus shown in FIG. Under visible light (λ> 420 nm) was irradiated for 4 hours to photoreduct Rh (III) to metal Rh. After precipitation of Rh, the obtained sample was suspended in an aqueous K 2 CrO 4 solution (0.8 mM, 1.5 mass% Cr with respect to GaN: ZnO), and again irradiated with visible light (λ> 420 nm) for 4 hours. K 2 CrO 4 was reduced to Cr 2 O 3 . For the light irradiation, a 300 W xenon lamp equipped with a cutoff filter was used. Cooling water was used during light irradiation to keep the solution temperature at room temperature. The product was washed thoroughly with distilled water and dried at 70 ° C. overnight. The metal loading of Rh on GaN: ZnO is 0.75% by mass, and the metal loading of Cr on GaN: ZnO is 0.31% by mass.

<Rh/Cr/GaN:ZnOの調製>
前記Rh/Cr/GaN:ZnO/Mnの調製で述べた手法で、原料として、Mn/GaN:ZnO(0.13g)の代わりにGaN:ZnO(0.13g)を使用した他は同様にして、Rh/Cr/GaN:ZnOを調製した。RhのGaN:ZnOに対する金属担持量は、0.75質量%であり、CrのGaN:ZnOに対する金属担持量は、0.31質量%である。
<Preparation of Rh / Cr 2 O 3 / GaN: ZnO>
In the method described in the preparation of Rh / Cr 2 O 3 / GaN: ZnO / Mn 3 O 4 , GaN: ZnO (0.13 g) was used instead of Mn 3 O 4 / GaN: ZnO (0.13 g) as a raw material. Rh / Cr 2 O 3 / GaN: ZnO was prepared in the same manner except that was used. The metal loading of Rh on GaN: ZnO is 0.75% by mass, and the metal loading of Cr on GaN: ZnO is 0.31% by mass.

<光水分解反応>
光照射装置は、図4(a)に示す装置を使用した(300Wキセノンランプ(λ>420nm)とカットオフフィルターを備えている。)。上記で調製した光触媒0.1gと100mL純水とを閉鎖循環系に接続した反応容器内で数回脱気し、空気の残っていないことを確認した。その後に光照射を開始し、ガスの生成量を測定した。生成ガスの定量はガスクロマトグラフィーを使用した。
<Light water splitting reaction>
As the light irradiation device, the device shown in FIG. 4A was used (equipped with a 300 W xenon lamp (λ> 420 nm) and a cutoff filter). The photocatalyst 0.1 g prepared above and 100 mL pure water were degassed several times in a reaction vessel connected to a closed circulation system, and it was confirmed that no air remained. Thereafter, light irradiation was started, and the amount of gas produced was measured. Gas chromatography was used for quantification of the product gas.

上記で調製した、「Mn/GaN:ZnO」(比較例1)、「Rh/Cr/GaN:ZnO」(比較例2)、および「Rh/Cr/GaN:ZnO/Mn」(実施例1)の光水分解反応活性を比較した結果を図5に示した。
図5に示すように、酸化反応助触媒であるMnのみを担持した「Mn/GaN:ZnO」(比較例1)は水分解活性を示さなかった。一方還元反応助触媒であるRh/Cr(core−shell)のみを担持した「Rh/Cr/GaN:ZnO」(比較例2)に比べて、両方の助触媒を担持した「Rh/Cr/GaN:ZnO/Mn」(実施例1)(図5のデータに記載の触媒のMn担持量は0.05質量%である。)は、より高い水分解活性を示し、その活性は従来型触媒である「Rh/Cr/GaN:ZnO」(比較例2)の約1.8倍であった。このことから光触媒上に酸化還元用双方の助触媒を担持することの有効性が示された。
“Mn 3 O 4 / GaN: ZnO” (Comparative Example 1), “Rh / Cr 2 O 3 / GaN: ZnO” (Comparative Example 2), and “Rh / Cr 2 O 3 / GaN: FIG. 5 shows the result of comparison of the photohydrolysis activity of “ZnO / Mn 3 O 4 ” (Example 1).
As shown in FIG. 5, “Mn 3 O 4 / GaN: ZnO” (Comparative Example 1) carrying only Mn 3 O 4 as an oxidation reaction co-catalyst did not show water splitting activity. On the other hand, both promoters were supported as compared with “Rh / Cr 2 O 3 / GaN: ZnO” (Comparative Example 2) supporting only the reduction reaction promoter Rh / Cr 2 O 3 (core-shell). “Rh / Cr 2 O 3 / GaN: ZnO / Mn 3 O 4 ” (Example 1) (Mn supported amount of the catalyst described in the data of FIG. 5 is 0.05 mass%) is higher water. The decomposition activity was shown, and the activity was about 1.8 times that of the conventional catalyst “Rh / Cr 2 O 3 / GaN: ZnO” (Comparative Example 2). This demonstrates the effectiveness of loading both promoters for redox on the photocatalyst.

また、図6に、「Rh/Cr/GaN:ZnO/Mn」を用いた場合における、水分解反応におけるMn担持量の影響を調べた結果を示した(図4(a)の装置を使用、触媒:0.1g、純水100mL、300Wキセノンランプとカットオフフィルター)。図6に示すように、Mn担持量は0.05質量%で最も高い水分解活性を示し、最適担持量は0.01〜0.1質量%であることが分かった。なお、図6に示したMn担持量(質量%)の基準は、光半導体つまり、「GaN:ZnO」である。 FIG. 6 shows the results of examining the influence of the amount of Mn supported in the water splitting reaction when “Rh / Cr 2 O 3 / GaN: ZnO / Mn 3 O 4 ” is used (FIG. 4 (a ), Catalyst: 0.1 g, pure water 100 mL, 300 W xenon lamp and cutoff filter). As shown in FIG. 6, it was found that the supported amount of Mn was 0.05% by mass and the highest water splitting activity was obtained, and the optimum supported amount was 0.01 to 0.1% by mass. The reference for the amount of Mn supported (mass%) shown in FIG. 6 is an optical semiconductor, that is, “GaN: ZnO”.

(実施例2、比較例3)
<Ruナノ粒子の調製>
公知文献(Polymer J. 1999, 31, 1127-1132.)に従いRuナノ粒子を調製した。PVP K−300(ポリ(N−ビニル−2−ピロリドン)、mw=40,000)2.0mmolとRuCl3HO 0.05mmolをエタノール−水混合溶媒(エタノール:水=1:1 v/v)に溶解して50mLとした。混合液を95〜100℃で2時間加熱還流した。
(Example 2, Comparative Example 3)
<Preparation of Ru nanoparticles>
Ru nanoparticles were prepared according to known literature (Polymer J. 1999, 31, 1127-1132.). 2.0 mmol of PVP K-300 (poly (N-vinyl-2-pyrrolidone), mw = 40,000) and 0.05 mmol of RuCl 3 3H 2 O were mixed with ethanol-water (ethanol: water = 1: 1 v / Dissolved in v) to 50 mL. The mixture was heated to reflux at 95-100 ° C. for 2 hours.

<RuO/GaN:ZnOの調製>
前記Mn/GaN:ZnOの調製で述べた手法で、原料にRuナノ粒子を使用したこと、焼成時間をトータルで2時間としたことの他は同様にして、「RuO/GaN:ZnO」を調製した。RuのGaN:ZnOに対する金属担持量は、0.01〜0.1質量%であった。
<Preparation of RuO 2 / GaN: ZnO>
In the same manner as described in the preparation of Mn 3 O 4 / GaN: ZnO, except that Ru nanoparticles were used as raw materials and the firing time was set to 2 hours in total, “RuO 2 / GaN: ZnO "was prepared. The amount of metal supported on GaN: ZnO in Ru was 0.01 to 0.1% by mass.

<Rh/Cr(core/shell)/GaN:ZnO/RuOの調製>
前記「Rh/Cr/GaN:ZnO/Mn」の調製で述べた手法で、原料にRuO/GaN:ZnOを使用した他は同様にして、「Rh/Cr(core/shell)/GaN:ZnO/RuO」を調製した。RhのGaN:ZnOに対する金属担持量は、0.75質量%であり、CrのGaN:ZnOに対する金属担持量は、0.31質量%であった。
<Preparation of Rh / Cr 2 O 3 (core / shell) / GaN: ZnO / RuO 2 >
Wherein: the "Rh / Cr 2 O 3 / GaN ZnO / Mn 3 O 4 " procedure described in the preparation of, RuO 2 / GaN raw material: other using ZnO in the same manner, "Rh / Cr 2 O 3 (Core / shell) / GaN: ZnO / RuO 2 ”was prepared. The amount of metal supported on GaN: ZnO in Rh was 0.75% by mass, and the amount of metal supported on GaN: ZnO in Cr was 0.31% by mass.

前記のようにして調製した「Rh/Cr/GaN:ZnO」(比較例3)、および、「Rh/Cr/GaN:ZnO/RuO」(実施例2)の光水分解反応活性を図4(b)に示す装置で評価し、比較した結果を図7に示した(触媒:0.15g、純水400mL、450W高圧水銀ランプ(λ>400nm)およびNaNO溶液フィルター)。なお、図7のデータに記載の「Rh/Cr/GaN:ZnO/RuO」触媒のRu担持量は0.03質量%である。 Optical water of “Rh / Cr 2 O 3 / GaN: ZnO” (Comparative Example 3) and “Rh / Cr 2 O 3 / GaN: ZnO / RuO 2 ” (Example 2) prepared as described above. The degradation reaction activity was evaluated by the apparatus shown in FIG. 4B, and the comparison results are shown in FIG. 7 (catalyst: 0.15 g, pure water 400 mL, 450 W high-pressure mercury lamp (λ> 400 nm) and NaNO 2 solution filter ). Note that the amount of Ru supported on the “Rh / Cr 2 O 3 / GaN: ZnO / RuO 2 ” catalyst described in the data of FIG. 7 is 0.03% by mass.

実施例1の場合と同様に、還元反応助触媒であるRh/Cr(core−shell)のみを担持した「Rh/Cr/GaN:ZnO」(比較例3)に比べて、両方の助触媒を担持した「Rh/Cr/GaN:ZnO/RuO」(実施例2)はより高い水分解活性を示し、その活性は従来型触媒である「Rh/Cr/GaN:ZnO」(比較例3)の約1.5倍であった。 Similar to the case of Example 1, compared with “Rh / Cr 2 O 3 / GaN: ZnO” (Comparative Example 3) supporting only the reduction reaction promoter Rh / Cr 2 O 3 (core-shell). “Rh / Cr 2 O 3 / GaN: ZnO / RuO 2 ” (Example 2) carrying both cocatalysts showed higher water splitting activity, the activity of which is a conventional catalyst “Rh / Cr 2 It was about 1.5 times that of “O 3 / GaN: ZnO” (Comparative Example 3).

また、図8に、「Rh/Cr/GaN:ZnO/RuO」を用いた場合における水分解反応におけるRu担持量の影響を調べた結果を示した。図8に示すように、Ru担持量は0.03質量%で最も高い水分解活性を示し、最適担持量は0.01〜0.05質量%であることが分かった(図4(b)の装置使用、触媒:0.15g、純水400mL、450W高圧水銀ランプ(λ>400nm)およびNaNO溶液フィルター)。なお、図8に示したRu担持量(質量%)の基準は、光半導体つまり、「GaN:ZnO」である。 FIG. 8 shows the results of examining the effect of the amount of Ru supported in the water splitting reaction when “Rh / Cr 2 O 3 / GaN: ZnO / RuO 2 ” is used. As shown in FIG. 8, it was found that the Ru loading amount showed the highest water splitting activity at 0.03% by mass, and the optimum loading amount was 0.01 to 0.05% by mass (FIG. 4B). Apparatus use, catalyst: 0.15 g, pure water 400 mL, 450 W high pressure mercury lamp (λ> 400 nm) and NaNO 2 solution filter). In addition, the reference | standard of Ru load (mass%) shown in FIG. 8 is an optical semiconductor, ie, "GaN: ZnO."

(比較例4、5)
<両吸着担持によるRhCr2−x/GaN:ZnO/Mnの調製>
公知文献(J. Phys. Chem. B 2006, 110, 13753-13758)に従って調製を行った。前記Mn/GaN:ZnO(0.3g〜0.4g)をNaRhCl・2HO(GaN:ZnOに対して1.0質量%Rh),Cr(NO)・9HO(GaN:ZnOに対して1.5質量%Cr)を含む3mL〜4mL水溶液に懸濁し、蒸発皿内、ウォーターバス上でガラス棒で撹拌しながら溶媒を蒸発乾燥させた。その後空気中400℃で焼成した。
(Comparative Examples 4 and 5)
<Rh x Cr 2-x O 3 / GaN with both adsorption carrier: Preparation of ZnO / Mn 3 O 4>
The preparation was carried out according to known literature (J. Phys. Chem. B 2006, 110, 13753-13758). The Mn 3 O 4 /GaN:ZnO(0.3g~0.4g) the Na 3 RhCl 6 · 2H 2 O (GaN: 1.0 % by weight relative to ZnO Rh), Cr (NO) 3 · 9H 2 It was suspended in a 3 mL to 4 mL aqueous solution containing O (1.5 mass% Cr with respect to GaN: ZnO), and the solvent was evaporated and dried while stirring with a glass rod in an evaporating dish on a water bath. Thereafter, it was fired at 400 ° C. in air.

<RhCr2−x/GaN:ZnOの調製>
前記RhCr2−x/GaN:ZnO/Mnの調製で述べた手法で、原料として、Mn/GaN:ZnOの代わりにGaN:ZnOを使用した他は同様にして、「RhCr2−x/GaN:ZnO」を調製した。
<Rh x Cr 2-x O 3 / GaN: Preparation of ZnO>
Wherein Rh x Cr 2-x O 3 / GaN: In the procedure described in the preparation of ZnO / Mn 3 O 4, as a raw material, Mn 3 O 4 / GaN: GaN instead of ZnO: other using ZnO is similarly Te, "Rh x Cr 2-x O 3 / GaN: ZnO " was prepared.

前記のようにして調製した、「RhCr2−x/GaN:ZnO」(比較例4)、および、「RhCr2−x/GaN:ZnO/Mn」(比較例5)の光水分解反応活性を図4(a)に示す装置で比較した結果を図9に示した(触媒:0.1g、純水100mL、300Wキセノンランプ(λ>420nm))。 Were prepared as described above, "Rh x Cr 2-x O 3 / GaN: ZnO " (Comparative Example 4), and "Rh x Cr 2-x O 3 / GaN: ZnO / Mn 3 O 4 " ( FIG. 9 shows the result of comparison of the photowater decomposition reaction activity of Comparative Example 5) with the apparatus shown in FIG. 4A (catalyst: 0.1 g, pure water 100 mL, 300 W xenon lamp (λ> 420 nm)).

図9に示すように、還元反応助触媒のみを担持した「RhCr2−x/GaN:ZnO」(比較例4)と、酸化反応および還元反応用の助触媒を双方とも吸着法によって担持した「RhCr2−x/GaN:ZnO/Mn」(比較例5)の光水分解反応活性はほとんど変わらなかった。これは、光電着担持法ではRhメタルの上に選択的に析出していたCrが、吸着担持では酸化反応側の助触媒であるMn上にも析出してしまい、Mnの助触媒機能を阻害していると推定される。このことから、両助触媒を担持するにあたっては、少なくとも一方を光電着によって担持することが重要であることが明らかである。 As shown in FIG. 9, carrying only reduction cocatalyst "Rh x Cr 2-x O 3 / GaN: ZnO " (Comparative Example 4) and, an adsorption method both the co-catalyst for the oxidation and reduction reactions The photohydrolysis activity of “Rh x Cr 2 -x O 3 / GaN: ZnO / Mn 3 O 4 ” (Comparative Example 5) supported by (3) was hardly changed. This is because Cr 2 O 3 that was selectively deposited on the Rh metal in the photo-deposition support method was also deposited on Mn 3 O 4 that is the cocatalyst on the oxidation reaction side in the adsorption support. It is presumed to inhibit the promoter function of 3 O 4 . From this, it is clear that it is important to support at least one of the two co-catalysts by photoelectron deposition.

以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う光水分解用光触媒および光水分解用光触媒の製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   While the present invention has been described in connection with embodiments that are presently the most practical and preferred, the present invention is not limited to the embodiments disclosed herein. Rather, it can be changed as appropriate without departing from the spirit or concept of the invention that can be read from the claims and the entire specification, and the photocatalyst for photowater splitting and the method for producing the photocatalyst for photowater splitting accompanying such changes are also included. It should be understood as being included within the scope of the present invention.

本発明は、可視光を利用して水分解反応を行う光触媒の設計および作製手法に新たな可能性を提供する。また、本発明の光触媒を利用して、これまでよりも更に効率的に水分解を進行させるシステムを構築できる。本発明によると、光触媒を用いた効果的な水分解による水素製造技術が提供できる。   The present invention provides a new possibility for a photocatalyst design and production method for performing a water splitting reaction using visible light. Moreover, the system which advances water decomposition more efficiently than before can be constructed | assembled using the photocatalyst of this invention. According to the present invention, a hydrogen production technique by effective water splitting using a photocatalyst can be provided.

100 光水分解反応用光触媒
10 光半導体
20 酸化反応助触媒
30 還元反応助触媒
100 Photocatalyst for water splitting reaction 10 Optical semiconductor 20 Oxidation reaction promoter 30 Reduction reaction promoter

Claims (8)

光半導体、酸化反応助触媒および還元反応助触媒を備え、該光半導体に該酸化反応助触媒および還元反応助触媒が担持されてなる光水分解反応用光触媒であって、
前記光半導体が、420nm以上の光を利用する、GaN:ZnO、ZnGeN :ZnO、LaTiO N、CaNbO N、TaON、およびTa のいずれかであり、
前記酸化反応助触媒および前記還元反応助触媒として2種類以上の助触媒が担持されたものであり、
前記還元反応助触媒および前記酸化反応助触媒が、それぞれ水の還元および酸化反応を触媒しながらも、水分解の最終生成物である水素と酸素とから水を生成する反応は触媒しないものであり、
前記還元反応助触媒が前記光半導体に還元された状態で担持されたものであり、かつ
前記光水分解反応用光触媒が水を分解して水素および酸素を生成するものであることを特徴とする光水分解反応用光触媒。
A photocatalyst for photo-water splitting reaction comprising a photo semiconductor, an oxidation reaction co-catalyst and a reduction reaction co-catalyst, wherein the photo-semiconductor carries the oxidation reaction co-catalyst and the reduction reaction co-catalyst,
Said optical semiconductor utilizes more light 420nm, GaN: ZnO, ZnGeN 2 : ZnO, is either LaTiO 2 N, CaNbO 2 N, TaON, and Ta 3 N 5,
Two or more kinds of promoters are supported as the oxidation reaction promoter and the reduction reaction promoter.
The reduction reaction cocatalyst and the oxidation reaction cocatalyst catalyze the reduction and oxidation reaction of water, respectively, but do not catalyze the reaction of generating water from hydrogen and oxygen, which are the final products of water splitting. ,
The reduction reaction co-catalyst is supported on the optical semiconductor in a reduced state, and the photocatalyst for photo-water splitting reaction decomposes water to generate hydrogen and oxygen. Photocatalyst for photo-water splitting reaction.
前記酸化反応助触媒の金属担持量が、前記光半導体を100質量%として、0.01質量%以上1質量%以下であり、還元反応助触媒の金属担持量が、前記光半導体を100質量%として、0.01質量%以上20質量%以下である、請求項1に記載の光水分解反応用光触媒。 The amount of the metal supported by the oxidation reaction promoter is 0.01% by mass or more and 1% by mass or less based on 100% by mass of the optical semiconductor, and the amount of the metal supported by the reduction reaction promoter is 100% by mass of the optical semiconductor. The photocatalyst for photo-water splitting reaction according to claim 1, wherein the content is 0.01% by mass or more and 20% by mass or less. 前記酸化反応助触媒が、Mn、Co、Ni、Ru、RhもしくはIrの、酸化物もしくは複合酸化物、または、これらの混合物である請求項1又は2に記載の光水分解反応用光触媒。 The oxidation reaction cocatalyst, Mn, Co, Ni, Ru, and Rh or Ir, oxide or composite oxide, or the light water decomposition reaction photocatalyst according to claim 1 or 2 a mixture thereof. 前記還元反応助触媒が、NiO、RuO 、Rh 、Cr−Rh複合酸化物、コアシェル型Rh/Cr 、Pt/Cr 、または、これらの混合物である、請求項1〜のいずれかに記載の光水分解反応用光触媒。 The reduction reaction cocatalyst, NiO, RuO 2, Rh 2 O 3, Cr-Rh complex oxide, core-shell Rh / Cr 2 O 3, Pt / Cr 2 O 3, or a mixture thereof, according to claim The photocatalyst for photo-water splitting reaction according to any one of 1 to 3 . 前記還元反応助触媒が、光電着担持法により担持されたものであることを特徴とする、請求項1〜のいずれかに記載の光水分解反応用光触媒。 The photocatalyst for photo-water splitting reaction according to any one of claims 1 to 4 , wherein the reduction reaction co-catalyst is supported by a photodeposition support method. 前記光触媒の一次粒子の粒径が、0.001μm以上500μm以下であることを特徴とする、請求項1〜のいずれかに記載の光水分解反応用光触媒。 The particle size of the primary particles of the photocatalyst, and wherein the at 500μm or less than 0.001 [mu] m, according to claim 1-5 light water decomposition reaction photocatalyst according to any one of. 前記還元反応助触媒が、前記光半導体に前記酸化反応助触媒を吸着担持した後に、前記光半導体の還元サイトに担持されたものであることを特徴とする、請求項1〜のいずれかに記載の光水分解反応用光触媒。 The reduction reaction cocatalyst, after adsorbing carrying the oxidation reaction cocatalyst to said optical semiconductor, and characterized in that supported on the reduction site of said optical semiconductor, in any one of claims 1 to 6 The photocatalyst for photo-water decomposition reaction as described. 光半導体に、酸化反応助触媒と還元反応助触媒とを担持させた光水分解反応用光触媒の製造方法であって、
前記光水分解反応用光触媒が420nm以上の光を利用する、GaN:ZnO、ZnGeN :ZnO、LaTiO N、CaNbO N、TaON、およびTa のいずれかであり、
前記還元反応助触媒および前記酸化反応助触媒が、それぞれ水の還元および酸化反応を触媒しながらも、水分解の最終生成物である水素と酸素とから水を生成する反応は触媒しないものであり、
前記酸化反応助触媒を吸着担持法により、前記光半導体に担持させて光触媒中間体を形成する第一工程、および、前記還元反応助触媒を光電着担持法により前記光触媒中間体に担持させる第二工程、を含む、光水分解反応用光触媒の製造方法。
A method for producing a photocatalyst for a photohydrolysis reaction in which an oxidation reaction promoter and a reduction reaction promoter are supported on an optical semiconductor,
The light water decomposition reaction photocatalyst utilize more light 420nm, GaN: ZnO, ZnGeN 2 : ZnO, is either LaTiO 2 N, CaNbO 2 N, TaON, and Ta 3 N 5,
The reduction reaction cocatalyst and the oxidation reaction cocatalyst catalyze the reduction and oxidation reaction of water, respectively, but do not catalyze the reaction of generating water from hydrogen and oxygen, which are the final products of water splitting. ,
A first step of supporting the oxidation reaction cocatalyst on the photo semiconductor by an adsorption supporting method to form a photocatalyst intermediate; and a second step of supporting the reduction reaction cocatalyst on the photocatalytic intermediate by a photoadsorption supporting method. A process for producing a photocatalyst for photo-water splitting reaction.
JP2010041040A 2010-02-25 2010-02-25 Photocatalyst for photowater splitting reaction and method for producing photocatalyst for photowater splitting reaction Active JP5765678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010041040A JP5765678B2 (en) 2010-02-25 2010-02-25 Photocatalyst for photowater splitting reaction and method for producing photocatalyst for photowater splitting reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041040A JP5765678B2 (en) 2010-02-25 2010-02-25 Photocatalyst for photowater splitting reaction and method for producing photocatalyst for photowater splitting reaction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015058528A Division JP2015131300A (en) 2015-03-20 2015-03-20 Photocatalyst for photolytic water decomposition reaction, and method for producing the photocatalyst

Publications (2)

Publication Number Publication Date
JP2011173102A JP2011173102A (en) 2011-09-08
JP5765678B2 true JP5765678B2 (en) 2015-08-19

Family

ID=44686490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041040A Active JP5765678B2 (en) 2010-02-25 2010-02-25 Photocatalyst for photowater splitting reaction and method for producing photocatalyst for photowater splitting reaction

Country Status (1)

Country Link
JP (1) JP5765678B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675224B2 (en) * 2010-08-31 2015-02-25 トヨタ自動車株式会社 Visible light water splitting catalyst and photoelectrode manufacturing method
JP2013056323A (en) * 2011-09-09 2013-03-28 Japan Science & Technology Agency Treatment plate, and treatment method
WO2013128543A1 (en) * 2012-02-27 2013-09-06 独立行政法人産業技術総合研究所 Environment-resistant visible-light-responsive photocatalyst film structure, and co-catalyst for photocatalyst
US20150251172A1 (en) * 2012-09-21 2015-09-10 Toto Ltd. Composite photocatalyst, and photocatalyst material
CN103252251A (en) * 2013-05-22 2013-08-21 江南大学 Preparation method of co-doped ZnO nano material
JP6044992B2 (en) * 2013-06-28 2016-12-14 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6320249B2 (en) * 2013-09-10 2018-05-09 国立大学法人 東京大学 Novel oxysulfide, method for producing oxysulfide, photocatalyst using the same, electrode for photohydrolysis reaction, and method for producing hydrogen
JP6265410B2 (en) * 2013-10-02 2018-01-24 国立研究開発法人物質・材料研究機構 Method for producing core-shell photocatalyst
JP2015116535A (en) * 2013-12-18 2015-06-25 トヨタ自動車株式会社 Catalyst for water-splitting reaction
JP6338049B2 (en) * 2014-02-07 2018-06-06 学校法人東京理科大学 Photocatalytic semiconductor element, photocatalytic oxidation-reduction reaction apparatus and photoelectrochemical reaction execution method
JP6497590B2 (en) 2015-02-03 2019-04-10 パナソニックIpマネジメント株式会社 Method of decomposing water, water splitting device and anode electrode for oxygen generation
JP6415369B2 (en) * 2015-03-26 2018-10-31 昭和シェル石油株式会社 Photocatalytic device
CN106637273B (en) * 2015-10-30 2018-12-18 同济大学 Carbon-coating coats chromium strontium titanate doping/titania nanotube optoelectronic pole and preparation and application
CN105543889A (en) * 2015-12-07 2016-05-04 南京大学 Perovskite structure oxynitride photocatalytic water splitting anode material and preparation method thereof
JP6674098B2 (en) * 2016-05-31 2020-04-01 富士通株式会社 Photoexcitation material, photochemical electrode, and method for producing photoexcitation material
JP6803065B2 (en) * 2016-11-09 2020-12-23 国立大学法人 筑波大学 Photocatalyst and its manufacturing method
JP7222893B2 (en) * 2017-08-09 2023-02-15 三菱ケミカル株式会社 Transparent electrode for oxygen generation, manufacturing method thereof, tandem-type water-splitting reaction electrode provided with the same, and oxygen generator using the same
WO2020153080A1 (en) * 2019-01-25 2020-07-30 シャープ株式会社 Photocatalytic sheet
WO2020153399A1 (en) * 2019-01-25 2020-07-30 シャープ株式会社 Photocatalyst, photocatalyst cluster, and photocatalyst production method
JP2020142213A (en) * 2019-03-07 2020-09-10 三菱ケミカル株式会社 Photocatalyst with cocatalyst supported on the surface, and method for producing the photocatalyst
CN112403478A (en) * 2020-11-26 2021-02-26 深圳瀚光科技有限公司 Preparation method of bismuth vanadate composite material for formaldehyde degradation
CN114405548B (en) * 2021-12-30 2023-02-14 福州大学 Composite photocatalyst metal phthalocyanine/lanthanum titanate and preparation method and application thereof
CN115739147B (en) * 2022-06-16 2024-03-08 江南大学 Long afterglow/red phosphorus composite material, preparation method thereof and application thereof in malachite green degradation
CN116272983B (en) * 2023-03-17 2024-06-14 华东师范大学 Ru/MnOxPreparation and application of nano photo-thermal catalytic material
CN117504892B (en) * 2023-12-14 2024-04-30 中国水产科学研究院渔业机械仪器研究所 La-Fe co-doped SrTiO3/TiO2Composite material, preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306963A (en) * 2001-04-13 2002-10-22 Toshiba Corp Photocatalyst substance absorbing visible light, method for decomposing water and method for fixing carbon
JP4803414B2 (en) * 2004-01-16 2011-10-26 学校法人東京理科大学 Novel Z-scheme-type photocatalytic system for complete decomposition of visible light active water and method for complete decomposition of water using said catalyst
JP4528944B2 (en) * 2004-09-22 2010-08-25 学校法人東京理科大学 Photocatalyst carrying Ir oxide cocatalyst in oxidative atmosphere in the presence of nitrate ion and method for producing the same
JP2009195809A (en) * 2008-02-20 2009-09-03 Ricoh Co Ltd Photocatalyst aggregate and photoreaction device
JP5775248B2 (en) * 2008-03-21 2015-09-09 国立大学法人 東京大学 Photocatalyst material, organic matter decomposition method, interior member, air cleaning device, oxidizer manufacturing device

Also Published As

Publication number Publication date
JP2011173102A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP5765678B2 (en) Photocatalyst for photowater splitting reaction and method for producing photocatalyst for photowater splitting reaction
Maeda et al. Development of novel photocatalyst and cocatalyst materials for water splitting under visible light
Kumar et al. Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation
Vu et al. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight‐driven photocatalytic reduction of CO2 into fuels
Li et al. One-dimensional copper-based heterostructures toward photo-driven reduction of CO 2 to sustainable fuels and feedstocks
Lingampalli et al. Recent progress in the photocatalytic reduction of carbon dioxide
JP5787347B2 (en) Immobilized photocatalyst for water splitting and method for producing hydrogen and / or oxygen
Rather et al. A Cu+ 1/Cu0-TiO2 mesoporous nanocomposite exhibits improved H2 production from H2O under direct solar irradiation
Wang et al. Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors
Liu et al. Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review
JP2015131300A (en) Photocatalyst for photolytic water decomposition reaction, and method for producing the photocatalyst
CN107075696B (en) Photocatalytic hydrogen production from water by a catalyst having a P-N junction and a plasma material
Hattori et al. Efficient hydrogen production from formic acid using TiO 2-supported AgPd@ Pd nanocatalysts
Izumi Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond
Pacquette et al. Fabrication of an oxysulfide of bismuth Bi2O2S and its photocatalytic activity in a Bi2O2S/In2O3 composite
Shen et al. Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials
Abdelkader et al. Synthesis, characterization and UV-A light photocatalytic activity of 20 wt% SrO–CuBi2O4 composite
Lopes et al. Growth of BiVO4 nanoparticles on a Bi2O3 surface: effect of heterojunction formation on visible irradiation-driven catalytic performance
JP2014046236A (en) Semiconductor hetero particle
Izumi Recent advances (2012–2015) in the photocatalytic conversion of carbon dioxide to fuels using solar energy: Feasibilty for a new energy
Jeyalakshmi et al. Titania based catalysts for photoreduction of carbon dioxide: Role of modifiers
EP2841196A1 (en) Photocatalyst, method for preparation, photolysis system
JP2018058065A (en) Promoter for oxygen generating photocatalyst, and oxygen generating photocatalyst that supports the promoter, and complex and method for producing the complex
Agopcan et al. A new sulfur source for the preparation of efficient Cd (1-x) ZnxS photocatalyst for hydrogen evolution reaction
Zhang et al. Effect of loading of Pt-decorated TiO2 on the enhancement of aerobic photo-oxidation of benzyl alcohol

Legal Events

Date Code Title Description
A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5765678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250