WO2020153399A1 - Photocatalyst, photocatalyst cluster, and photocatalyst production method - Google Patents

Photocatalyst, photocatalyst cluster, and photocatalyst production method Download PDF

Info

Publication number
WO2020153399A1
WO2020153399A1 PCT/JP2020/002112 JP2020002112W WO2020153399A1 WO 2020153399 A1 WO2020153399 A1 WO 2020153399A1 JP 2020002112 W JP2020002112 W JP 2020002112W WO 2020153399 A1 WO2020153399 A1 WO 2020153399A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode active
active material
photocatalyst
positive electrode
Prior art date
Application number
PCT/JP2020/002112
Other languages
French (fr)
Japanese (ja)
Inventor
恵 笠原
昌洋 辻本
福井 篤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2020568184A priority Critical patent/JP7133042B2/en
Publication of WO2020153399A1 publication Critical patent/WO2020153399A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present disclosure relates to a Z-scheme type (two-step photoexcitation type) photocatalyst using a negative electrode active material and a positive electrode active material, a photocatalytic cluster, and a method for producing the same.
  • This international application claims priority based on Japanese Patent Application No. 2019-11344, Japanese Patent Application No. 2019-011352, and Japanese Patent Application No. 2019-011354 filed on January 25, 2019, respectively. All the contents disclosed in Japanese Patent Application No. 2019-11344, Japanese Patent Application No. 2019-011352, and Japanese Patent Application No. 2019-011354 are incorporated in the present international application.
  • Patent Document 1 discloses a photocatalyst material, in which first photocatalyst particles for hydrogen generation and second photocatalyst particles for oxygen generation are connected by conductive particles, as a photocatalyst for generating hydrogen and oxygen by water decomposition. It is disclosed.
  • the conductive particles serve as a carrier transporter that moves carriers (electrons) between the first photocatalyst particles and the second photocatalyst particles.
  • the conductive particles those having a smaller particle size than the catalyst particles (first photocatalyst particles and second photocatalyst particles) are used.
  • the first photocatalyst particles and the second photocatalyst particles respectively increase the coverage of the conductive particles.
  • the movement paths of carriers of the first photocatalyst particles and the second photocatalyst particles must be increased.
  • the first photocatalyst particles and the second photocatalyst particles each increase the coverage of the conductive particles, so that the conductive particles prevent contact between the substance to be decomposed and the first photocatalyst particles or the second photocatalyst particles. It As a result, the reaction efficiency of the first photocatalyst particles and the second photocatalyst particles decreases.
  • the present disclosure has been made in view of the above problems, and an object thereof is to provide a photocatalyst with improved reaction efficiency and a method for producing the same.
  • a photocatalyst is a carrier transporter, a plurality of negative electrode active materials that are smaller than the particle size of the carrier transporter and cover a part of the carrier transporter, and a carrier.
  • a plurality of positive electrode active materials each having a particle size smaller than that of the transporter and covering a part of the carrier transporter.
  • a photocatalyst with improved reaction efficiency a photocatalyst cluster including the photocatalyst, and a method for producing the photocatalyst are realized.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the photocatalyst of Embodiment 1.
  • FIG. 4 is a flowchart showing a manufacturing process of the photocatalyst according to the first embodiment.
  • 3 is a schematic cross-sectional view showing the configuration of another embodiment of the photocatalyst according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing the structure of the photocatalyst according to the second embodiment.
  • (a)-(c) is a figure which shows the preparation process of the secondary particle of the negative electrode active material or positive electrode active material of the photocatalyst which concerns on Embodiment 2.
  • FIG. 9 is a schematic cross-sectional view showing the structure of the photocatalyst according to the third embodiment.
  • (A)-(d) is a figure which shows the manufacturing process of the photocatalyst which concerns on Embodiment 3.
  • FIG. 11 is a graph showing the results of an acetaldehyde decomposition experiment using the photocatalyst according to the third embodiment. It is a schematic cross section which shows the structure of the photocatalyst which concerns on Embodiment 4.
  • (A)-(d) is a figure which shows the manufacturing process of the photocatalyst which concerns on Embodiment 4.
  • 11 is a graph showing the results of an acetaldehyde decomposition experiment using the photocatalyst according to the fourth embodiment. It is a schematic cross section which shows the structure of the photocatalyst which concerns on Embodiment 5.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the photocatalyst 10 according to the first embodiment.
  • the photocatalyst 10 is composed of the negative electrode active material 2, the positive electrode active material 3, and the carrier transporter 4. Specifically, the photocatalyst 10 is a composite particle in which the surface of the carrier transporter 4 in the form of particles is covered with the negative electrode active material 2 and the positive electrode active material 3 which are both in the form of particles. The negative electrode active material 2 and the positive electrode active material 3 have smaller particle sizes than the carrier transporter 4.
  • the average particle size of the negative electrode active material 2 and the positive electrode active material 3 is preferably 5 nm or more and 60 ⁇ m or less. When the average particle diameter of the negative electrode active material 2 and the positive electrode active material 3 is less than 5 nm, sufficient light absorption may not be obtained. Further, when the average particle diameter of the negative electrode active material 2 and the positive electrode active material 3 exceeds 60 ⁇ m, it is necessary to design the particle diameter of the carrier transport body 4 to be larger, which may reduce the carrier transport efficiency. Further, it is preferable that the average particle size of the negative electrode active material 2 and the average particle size of the positive electrode active material 3 do not differ greatly, and the particle size ratio of the negative electrode active material 2 and the positive electrode active material 3 is 1:5 to 5:1. It is preferably in the range of.
  • the average particle size of the carrier transporter 4 is preferably 50 nm or more and 100 ⁇ m or less. When the average particle diameter of the carrier transporter 4 is less than 50 nm, the numbers of the negative electrode active material 2 and the positive electrode active material 3 which coat the carrier transporter 4 may be small. On the other hand, if the average particle diameter of the carrier transport material 4 exceeds 100 ⁇ m, the carrier transport efficiency may decrease.
  • the particle size ratio of the negative electrode active material 2 and the positive electrode active material 3 to the carrier transporter 4 is preferably 0.05 or more and 1 or less, respectively. It is more preferably 0.1 or more and 0.5 or less. When this particle size ratio is less than 0.1, the surface areas of the negative electrode active material 2 and the positive electrode active material 3 are smaller than the volume of the carrier transporter 4 in the photocatalyst 10. As a result, the reaction efficiency of the photocatalyst 10 is reduced.
  • both the negative electrode active material 2 and the positive electrode active material 3 can function as a photocatalyst in response to visible light, but the Z scheme effect is reduced. Also in this case, the reaction efficiency of the photocatalyst 10 is reduced.
  • the surface area of the negative electrode active material 2 and the positive electrode active material 3 in the photocatalyst 10 becomes appropriate by setting the respective particle diameter ratios of the negative electrode active material 2, the positive electrode active material 3, and the carrier transporter 4 in an appropriate range, The reaction efficiency of the photocatalyst 10 can be improved.
  • the coverage of the carrier transporter 4 is preferably 50% or more, more preferably 90% or less.
  • the coverage of the carrier transporter 4 is less than 50%, the surface area on which the photocatalyst 10 functions becomes insufficient and the reaction efficiency becomes low.
  • the coverage of the carrier transporting material body 4 exceeds 90%, the probability that the negative electrode active material 2 and the positive electrode active material 3 contact each other becomes high, electron transfer occurs between both particles, and the Z scheme effect is reduced.
  • the negative electrode active material 2 is an electrode for reducing a decomposed substance and is a photocatalyst having a reducing ability.
  • the negative electrode active material 2 is preferably a material having a conduction band level that is lower than the redox potential of hydrogen.
  • the valence band level of the negative electrode active material 2 is not particularly limited, but is preferably more base. Thereby, the light absorption wavelength of the negative electrode active material 2 can be made longer.
  • Such negative electrode active material 2 preferably contains, for example, any one of titanium oxide, strontium titanate, and tantalate.
  • An example of the tantalate salt is potassium tantalate.
  • the negative electrode active material 2 contains a platinum group element such as Pt, Rh, Ru, Pd, Os, Ir or the like.
  • the negative electrode active material 2 may be doped with lanthanoid such as La or Ce by 0.5% to 10%.
  • the negative electrode active material 2 may carry a sensitizing dye in order to widen the wavelength range capable of absorbing light.
  • a sensitizer used in the field of dye-sensitized solar cells can be appropriately used.
  • the material of the sensitizer is not particularly limited, but a wider absorption wavelength width is preferable.
  • organic sensitizers such as organic dyes and metal complex dyes, commonly used inorganic sensitizers such as SbCl 4 and quantum dots can be used.
  • the positive electrode active material 3 is an electrode for oxidizing a decomposed substance and is a photocatalyst having an oxidizing ability.
  • the positive electrode active material 3 is preferably a material having a valence band level that is nobler than the redox potential of oxygen.
  • the conduction band level of the positive electrode active material 3 is not particularly limited, but it is preferably noble. This is because the light absorption wavelength of the positive electrode active material 3 can be made longer.
  • Such a positive electrode active material 3 preferably contains, for example, any one of iron (III) oxide, tungsten oxide, and vanadate. Bismuth vanadate can be mentioned as an example of vanadate.
  • the positive electrode active material 3 may carry a sensitizer.
  • the carrier transporter 4 is a material that serves as a carrier transport path between the negative electrode active material 2 and the positive electrode active material 3.
  • the carrier may be an electron or a hole.
  • the carrier transporter 4 is not particularly limited as long as it is a material generally used for carrier transport, and for example, an inorganic material such as copper iodide (CuI) or nickel oxide (NiO) can be used.
  • the carrier transporter 4 is any one of PEDOT (polyethylenedioxythiophene), PEDOT-PSS (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid)), and Spiro-OMeTAD.
  • a hole transporting material including can be used.
  • the carrier transporter 4 may use an electron transporting material containing any of fullerene, fullerene derivative, silole compound, and triazine compound.
  • the Fermi level of the carrier transporter 4 is at a position more negative than the electron energy level at the upper end of the valence band of the negative electrode active material 2, and the conduction band of the positive electrode active material 3. The position is more positive than the electron energy level at the lower end.
  • FIG. 2 is a process diagram showing a manufacturing procedure of the photocatalyst 10 according to the first embodiment.
  • the material of each member of the photocatalyst 10 described here and the method used in each step are examples.
  • the manufacturing process of the photocatalyst 10 includes a negative electrode active material preparation process, a positive electrode active material preparation process, a carrier transporter preparation process, and a composite particle formation process.
  • the negative electrode active material preparation step is a step of preparing the negative electrode active material 2.
  • the positive electrode active material preparation step is a step of preparing the positive electrode active material 3.
  • the carrier transporter preparation step is a step of preparing the carrier transporter 4. These steps can be carried out independently.
  • the composite particle forming step is a step of forming the photocatalyst 10 which is a composite particle from the prepared negative electrode active material 2, positive electrode active material 3 and carrier transporter 4.
  • each step will be described.
  • Sr:Ti 1 with strontium carbonate powder (Kanto Kagaku, purity 99.9%, powder baked in advance at 200° C. for 1 hour) and rutile titanium oxide powder (Kanto Kagaku, purity 99.0%).
  • strontium carbonate powder Kanto Kagaku, purity 99.9%, powder baked in advance at 200° C. for 1 hour
  • rutile titanium oxide powder Kanto Kagaku, purity 99.0%.
  • the powder and rhodium oxide (Rh 2 O 3 , purity 99.9%) were mixed in ethanol, and the dried powder was calcined at 1100° C. for 6 hours.
  • the negative electrode active material 2 a powder composed of 4% La and 4% Rh-doped SrTiO 3 (Sr 0.96 La 0.04 Ti 0.96 Rh 0.04 O 3 ) particles was produced.
  • the lanthanum oxide powder (La 2 O 3 ) a powder having a purity of 99.99% manufactured by Kanto Kagaku Co., Ltd., which was previously baked at 1000° C. for 10 hours was used.
  • BiVO4 powder 0.5 g was placed in a magnetic crucible, and Co(NO 3 ) 2 (manufactured by Wako Pure Chemical Industries, 99.5%) was used as a cocatalyst raw material so that CoO was 0.5 wt %. Then, a small amount of pure water was added. The BiVO 4 powder was thoroughly suspended by ultrasonic waves and then evaporated to dryness in a water bath. Finally, it was baked in an electric furnace at 300° C. in the atmosphere for 2 hours. Thus, BiVO 4 powder carrying CoO x as the positive electrode active material 3 was produced.
  • Co(NO 3 ) 2 manufactured by Wako Pure Chemical Industries, 99.5%
  • a copper iodide solution was prepared by dissolving copper iodide (CuI) in acetonitrile (both manufactured by Sigma-Aldrich) so as to be 1 mol/L and stirring.
  • a copper iodide solution was dropped on a glass substrate placed on a hot plate set at 100° C. to obtain a white powder.
  • This white powder was pulverized with a bead mill to prepare copper iodide fine particles having an average particle diameter of 2.5 ⁇ m as the carrier transporter 4.
  • the composite particle forming step In the composite particle forming step, the negative electrode active material 2, the positive electrode active material 3, and the carrier transporter 4 are mixed while applying the shearing force obtained in each of the above steps. By mixing while applying shearing force, the negative electrode active material 2 and the positive electrode active material 3 having a small particle size are attached to the surface of the carrier transport body 4, and the negative electrode active material 2 and the positive electrode active material 3 are attached to the surface of the carrier transport body 4.
  • the photocatalyst 10 fixed so as to be embedded can be manufactured.
  • a high speed air impact method is used for the hybridization system of Nara Machinery Co., Ltd.
  • a mixer equipped with a high-speed stirring blade such as a mechanofusion system of Hosokawa Micron Co., Ltd. that utilizes a crusher is suitable.
  • the rotation speed of the high-speed stirring blade can be set arbitrarily depending on the mixer used and the combination of the materials to be mixed, but when a hybridization system is used, the peripheral speed may be about 10 to 130 m/s.
  • the surface of the carrier transporter 4 has a plurality of negative electrode active materials 2 each having a smaller particle size than the carrier transporter 4, and a plurality of smaller than the particle size of the carrier transporter 4.
  • the positive electrode active material 3 is used for coating.
  • the photocatalyst 10 can improve the Z scheme effect and the reaction efficiency more than the conventional Z scheme type photocatalyst.
  • the plurality of negative electrode active materials 2 and the plurality of positive electrode active materials 3 randomly cover the surface of the carrier transporter 4, and Since the coverage of the surface of the carrier transporter 4 with the negative electrode active material 2 and the positive electrode active material 3 is larger than in the conventional case, the light is absorbed by the negative electrode active material 2 or the positive electrode active material 3 regardless of the direction of light irradiation. This can be suppressed and the Z scheme effect can be exhibited.
  • the adhesion between the carrier transporter 4 and the negative electrode active material 2 and the positive electrode active material 3 is also improved. This is because the negative electrode active materials 2 or the positive electrode active materials 3 are bonded to each other on the surface of the carrier transporter 4 and the bonding prevents the peeling of the negative electrode active material 2 and the positive electrode active material 3.
  • the photocatalyst 10 according to the first embodiment does not require a base material or the like for supporting the photocatalyst 10, and the photocatalyst 10 can be easily manufactured into particles.
  • the photocatalyst 10 produced in the form of particles can be used by being dispersed in a solvent and used in a wide variety of applications such as spraying.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of another embodiment of the photocatalyst 10 according to the first embodiment.
  • the photocatalyst 10A is a composite particle in which the surface of the particulate carrier transporter 4 is covered with the negative electrode active material 2 and the positive electrode active material 3 which are both particulate.
  • the negative electrode active material 2 and the positive electrode active material 3 do not have to have the same ratio, and an appropriate ratio is selected depending on their respective absorption wavelength ranges, the decomposition ability as the visible light responsive photocatalyst, and the like. ..
  • the ratio of Rh-doped SrTiO 3 and BiVO 4 is selected according to the quantum yield of visible light.
  • the ratio (weight ratio) of the negative electrode active material 2 and the positive electrode active material 3 is preferably in the range of 2:8 to 8:2. Outside of this range, the carriers transported between the negative electrode active material 2 and the positive electrode active material 3 may have a large distance passing through the carrier transport body 4, and the reaction efficiency in the photocatalyst 11 may decrease.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the photocatalyst 10B according to the second embodiment.
  • the photocatalyst 10B is a composite particle in which the surface of the particulate carrier transporter 4 is covered with the negative electrode active material 2 and the positive electrode active material 3 which are both particulate. ..
  • the negative electrode active material 2 and the positive electrode active material 3 are each configured by secondary particles (aggregates of primary particles) in which the primary particles 21 and the primary particles 31 are aggregated. Note that only one of the negative electrode active material 2 and the positive electrode active material 3 may be the secondary particles formed by aggregating the primary particles 21 and 31.
  • the secondary particles may contain the carrier transporting material 4a in advance. Further, the carrier transport substance 4 a contained in the secondary particles comes into contact with the carrier transport body 4.
  • the average particle size of the carrier transport material 4a is larger than the average particle size of the carrier transport body 4 and smaller than the average particle size of the negative electrode active material 2 or the positive electrode active material 3.
  • the carrier transporter 4 and the carrier transport substance 4a may be the same substance or different substances.
  • the carrier transport material 4a contained in the negative electrode active material 2 may be a hole transport material
  • the positive electrode active material 3 is used.
  • the carrier-transporting substance 4a contained in may be an electron-transporting substance.
  • the Fermi level of each carrier transport substance 4a needs to be selected so that carriers are transported.
  • FIG. 5 is a diagram showing a manufacturing process of the negative electrode active material 2 or the positive electrode active material 3 to be the secondary particles. This will be described below with reference to FIG. However, the materials and methods used in the following manufacturing steps are examples.
  • the porous body layer 7 made of the primary particles 21 or 31 of the negative electrode active material 2 or the positive electrode active material 3 is formed on the base material 6.
  • a titanium oxide paste manufactured by Solaronix, product name: D/SP
  • D/SP titanium oxide paste having an average particle diameter of 20 nm, which is the primary particle 21
  • an aqueous slurry containing fine particles of tungsten oxide (WO 3 ) (particle size: 100 ⁇ m, manufactured by Kishida Chemical Co., Ltd.) is applied by the doctor blade method and then dried at 120° C.
  • a copper iodide (CuI) solution 8 is dropped onto the porous body layer 7 and spin coated ( 2000 rpm, 30s) and so on.
  • This copper iodide solution is prepared, for example, by dissolving copper iodide (CuI) in acetonitrile so as to be 1 mol/L and stirring.
  • the copper iodide solution dropped onto the porous body layer 7 permeates into the porous body layer 7.
  • the substrate 6 on which the porous layer 7 containing the carrier transport substance 4a is formed is immersed in a container (not shown) containing pure water, and as shown in FIG. It is crushed by laser ablation by irradiating laser light L having a wavelength of 1024 nm and a frequency of 14000 Hz.
  • a device for irradiating the laser light L for example, a device manufactured by Seishin Shoji can be used.
  • the porous body layer 7 is pulverized into fine particles while peeling off the porous body layer 7 from the base material 6.
  • the negative electrode active material 2 or the positive electrode active material 3 as secondary particles as shown in FIG. 4 can be produced.
  • the manufacturing process of the negative electrode active material 2 or the positive electrode active material 3 to be the secondary particles described above can be applied to the [negative electrode active material preparation step] and the [positive electrode active material preparation step] in FIG. That is, in the [negative electrode active material preparation step] or the [positive electrode active material preparation step], if the negative electrode active material 2 or the positive electrode active material 3 to be the secondary particles is produced, the same [composite particle forming step] as that of the first embodiment is performed. ], the photocatalyst 10B according to the second embodiment can be manufactured.
  • a copper iodide solution Before dripping, it may be immersed in a solution containing a sensitizer prepared in advance for 24 hours.
  • the sensitizer can be supported on the positive electrode active material 3 to be the secondary particles by the same method. Further, the negative electrode active material 2 or the positive electrode active material 3 carrying the sensitizer is preferably in contact with the carrier transporter 4.
  • Coulomb interaction may be used to prevent the negative electrode active material 2 and the positive electrode active material 3 from aggregating with each other.
  • the carrier transporter 4 contains an anionic polymer and the negative electrode active material 2 and the positive electrode active material 3 contain a cationic polymer can be considered.
  • the carrier transporter 4 containing the anionic polymer is obtained.
  • the carrier transporter 4 containing the anionic polymer is obtained.
  • the negative electrode active material 2 and the positive electrode active material 3 are used as the secondary particles described in the third embodiment, and the cationic polymer is dispersed in the carrier transport material 4a contained in the secondary particles.
  • the negative electrode active material 2 and the positive electrode active material 3 containing a conductive polymer can be produced.
  • the carrier transporter 4 and the negative electrode active material 2 and the positive electrode active material 3 interact with the carrier transporter 4 due to Coulomb interaction between different charges of the polymers adsorbed on the surface.
  • the negative electrode active material 2 and the positive electrode active material 3 attract each other, and the carrier transporters 4 and the negative electrode active materials 2 and/or the positive electrode active materials 3 repel each other. This prevents the negative electrode active material 2 and the positive electrode active material 3 from aggregating in the [composite particle forming step], and the negative electrode active material 2 and the positive electrode active material 3 satisfactorily coat the surface of the carrier transporter 4.
  • the polymer used in the above manufacturing process may be removed by heating or baking the photocatalyst after the [composite particle forming step].
  • FIG. 6 is a schematic cross-sectional view showing the structure of the photocatalyst 10C according to the third embodiment.
  • the photocatalyst 10C includes a carrier transporter 4, a negative electrode 20 provided on a part of the surface of the carrier transporter 4, and a positive electrode 30 provided on another part of the surface of the carrier transporter 4.
  • the negative electrode 20 and the positive electrode 30 are separated from each other via the carrier transporter 4.
  • the negative electrode 20 is an electrode for reducing a substance to be decomposed, and is formed by sintering a granular negative electrode active material 2. More specifically, the negative electrode 2 is preferably formed from two or more types of negative electrode active materials 2 having different average particle sizes.
  • the negative electrode 20 is composed of a set of the first negative electrode active material 2a and the second negative electrode active material 2b. The carriers generated by the first negative electrode active material 2a and the second negative electrode active material 2b are conducted to the carrier transporter via the respective contact points. In the present embodiment, it is more preferable that the average particle size of the first negative electrode active material 2a is larger than the average particle size of the second negative electrode active material 2b.
  • the average particle size of the first negative electrode active material 2a is preferably 100 nm or more and 600 nm or less.
  • the average particle size of the second negative electrode active material 2b is preferably 5 nm or more and 100 nm or less, and more preferably 10 nm or more and 50 nm or less. That is, the particle size distribution of the negative electrode active material 2 in the negative electrode 20 has at least two peaks.
  • the average particle size of the first negative electrode active material 2a and the second negative electrode active material 2b can be measured by a laser diffraction/scattering particle size distribution measuring device or the like.
  • the density of the negative electrode active material 2 contained in one photocatalyst 10C is preferably 1 ⁇ 10 7 pieces/mm 2 to 1 ⁇ 10 13 pieces/mm 2 per unit area of the carrier transporter 4.
  • the density of the negative electrode active material 2 contained in one photocatalyst 10C can be measured by an electron beam microanalyzer or the like.
  • the first negative electrode active material 2a and the second negative electrode active material 2b to be the negative electrode active material 2 can be appropriately selected from the negative electrode active materials 2 listed in the first embodiment.
  • the first negative electrode active material 2a and the second negative electrode active material 2b may be the same kind of compounds or different kinds of compounds. It is more preferable to use the same kind of compound, because the negative electrode 20 can be formed without considering the energy level relationship between the first negative electrode active material 2a and the second negative electrode active material 2b and the degree of adhesion.
  • the mixing ratio of the second negative electrode active material 2b with respect to the total of the first negative electrode active material 2a and the second negative electrode active material 2b is preferably 10% to 90%, more preferably 30% to 70%. ..
  • the mixing ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b is less than 10%, the pore diameter of the negative electrode 2 increases and the surface area of the negative electrode 20 decreases. Therefore, there is concern that the reaction efficiency may decrease.
  • the mixing ratio of the second negative electrode active material 2b with respect to the total of the first negative electrode active material 2a and the second negative electrode active material 2b exceeds 90%, the pore diameter in the negative electrode 20 becomes small, resulting in a reaction product or formation. There is concern that the diffusion of substances may be hindered and the reaction efficiency may decrease.
  • the negative electrode 20 may carry a sensitizer for broadening the absorption wavelength of light.
  • the sensitizer can be appropriately selected from the materials listed in Embodiment Mode 1.
  • the carrier transporter 4 is not particularly limited as long as it is a material generally used for carrier transport, and can be appropriately selected from the carrier transporters 4 listed in the first embodiment.
  • the thickness of the carrier transporter 4 is preferably 0.5 ⁇ m to 50 ⁇ m.
  • the positive electrode 30 is an electrode for oxidizing a substance to be decomposed, and is formed as a layer containing the positive electrode active material 3.
  • the positive electrode 30 is preferably a porous layer and has a surface area of preferably 10 m 2 /g to 100 m 2 /g.
  • the particle size of the granular positive electrode active material 3 contained in the positive electrode 30 is preferably 10 nm to 500 ⁇ m.
  • the aggregate of the granular positive electrode active materials 3 allows the carriers to be conducted to the carrier transporter 4 via the contact points of the respective positive electrode active materials 3.
  • the material used for the positive electrode active material 3 is appropriately selected from the materials listed as the positive electrode active material 3 in the first embodiment.
  • the coverage of the carrier transporter 4 with respect to the positive electrode 30 is preferably 5 to 80%.
  • the coverage of the carrier transporter 4 can be measured by observing a cross-section SEM or the like.
  • the photocatalyst 10C is a composite particle having the negative electrode 20, the carrier transporter 4, and the positive electrode 30, and the average particle size S (see FIG. 6) of the photocatalyst 10C is 100 nm to 1000 ⁇ m.
  • the redox reaction can be efficiently performed in the photocatalyst 10C which is the composite particle.
  • the average particle size S of the photocatalyst 10C is too small, the light absorption ability of the photocatalyst 10C is small and the catalyst ability may be reduced.
  • the average particle size S of the photocatalyst 10C is too large, the surface area may decrease, and the reaction efficiency of the catalytic reaction may decrease.
  • an SEM image of the photocatalyst 10C is taken by using SEM.
  • a plurality of (for example, 10) particles are randomly extracted from the SEM image using image analysis software, and the areas of these particles are obtained.
  • the average particle size S is obtained.
  • the manufacturing process of the photocatalyst 10C according to the third embodiment will be described with reference to FIG. Note that the material used for each member of the photocatalyst 10C and the method used in each step described with reference to FIG. 7 are examples.
  • FIG. 7A shows a negative electrode film forming step of forming the negative electrode film 200 to be the negative electrode 20 on the base material 100.
  • the paste-like first solution in which the containing paste is mixed at a predetermined ratio is applied onto the substrate 100, dried, and then baked at a predetermined temperature for a predetermined time. As a result, the negative electrode film 200 is formed on the base material 100.
  • the method of applying the paste containing the first negative electrode active material 2a and the second negative electrode active material 2b to the base material 100 is not particularly limited, but may be screen printing or a doctor blade method.
  • a sensitizer is applied to the negative electrode 2
  • the base material 100 having the negative electrode film 200 formed thereon is dipped in a solution containing a sensitizer prepared in advance to form the negative electrode 20 carrying the sensitizer.
  • the negative electrode film 200 is formed.
  • FIG. 7B shows the carrier transport film forming step of forming the carrier transport film 400 containing the carrier transport material, which becomes the carrier transport body 4, on the negative electrode film 200.
  • the carrier transport film forming step for example, the carrier transport material is dissolved in an organic solvent and stirred to form a second solution containing the carrier transport material. Then, a solution containing the carrier transport material is dropped on the negative electrode film 200, and spin coating (2000 rpm, 30 s) or the like is performed. As a result, the carrier transport film 400 is formed on the negative electrode film 200.
  • a dip coating method or a drop casting method can be used in addition to the spin coating method.
  • the negative electrode film 200 is a porous body formed by sintering a mixture of the first negative electrode active material 2a and the second negative electrode active material 2b, it is dropped onto the negative electrode film 200. Part of the carrier transport material penetrates into the negative electrode film 200.
  • FIG. 7C shows a positive electrode film forming step of forming the positive electrode film 300 to be the positive electrode 30 on the carrier transport film 400.
  • an aqueous slurry as a third solution containing fine particles of the positive electrode active material 3 is applied to the carrier transport film 400 and then dried.
  • the method of applying the water slurry containing fine particles of the positive electrode active material 3 to the carrier transport film 400 is not particularly limited, but it can be performed by screen printing or a doctor blade method. As a result, the positive electrode film 300 is formed on the carrier transport film 400.
  • the base material 100 on which the laminated body including the negative electrode film 200, the carrier transporting film 400, and the positive electrode film 300 is formed is immersed in a container (not shown) containing pure water, and the wavelength is, for example, 300 nm to 11000 nm and the frequency is 10000 nm. It is crushed by laser ablation by irradiating a laser beam L of up to 1,000,000 Hz (see FIG. 7D).
  • a device for irradiating the laser light L for example, a device manufactured by Seishin Shoji can be used. As a result, the laminate is pulverized into fine particles while peeling the laminate from the base material 100.
  • the photocatalyst particles 10C shown in FIG. 6 are formed.
  • the step of forming fine particles is not limited to the above method.
  • the laminated body may be cut off to be separated from the substrate, and then finely divided by pulverizing with a mill or the like.
  • the negative electrode film 200, the carrier transporting film 400, and the positive electrode film 300 are laminated in this order on the base material 100.
  • the stacking order may be reversed, and the positive electrode film 300, the carrier transporting film 400, and the negative electrode film 200 may be stacked in this order on the base material 100.
  • the negative electrode 20 is formed of two types of negative electrode active materials 2 having different average particle sizes, that is, the first negative electrode active material 2a and the second negative electrode active material 2b. Then, by adjusting the mixing ratio of the first negative electrode active material 2a and the second negative electrode active material 2b, it becomes easy to adjust the size of the pores in the negative electrode 20, and as a result, the carrier transporter to the negative electrode 2 can be obtained. It becomes easy to adjust the degree of penetration of No. 4 appropriately. Specifically, if the proportion of the second negative electrode active material 2b, which is a smaller particle, is reduced, the pores of the negative electrode 20 become larger, and the permeability of the carrier transporter 4 becomes larger (permeation becomes easier). On the contrary, if the proportion of the second negative electrode active material 2b is increased, the pores of the negative electrode 20 become smaller, and the permeability of the carrier transporter 4 becomes smaller (it becomes difficult for the carrier transporter 4 to permeate).
  • Example 1 A commercially available titanium paste containing titanium oxide particles having an average particle diameter of 400 nm (trade name: PST-400C, manufactured by JGC Catalysts and Chemicals) as the first negative electrode active material 2a and titanium oxide having an average particle diameter of 20 nm as the second negative electrode active material 2b.
  • a titanium oxide paste containing particles manufactured by Solaronix, trade name: D/SP was used, and the ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b was 30%. The following titanium oxide paste was prepared.
  • the above titanium oxide paste is applied by screen printing to a 20 mm ⁇ 40 mm substrate (Blue plate glass, manufactured by Nippon Sheet Glass Co., Ltd.) 100, dried at 120° C., and baked at 500° C. for 1 h to give a thickness on the substrate.
  • a 6 ⁇ m negative electrode film 200 was formed.
  • copper iodide manufactured by Sigma-Aldrich
  • propyl sulfide manufactured by Sigma-Aldrich
  • a carrier transport material to prepare a copper iodide solution having a copper iodide content of 1 mol/L.
  • the copper iodide solution prepared above was dropped onto the negative electrode film 200, and a carrier transporting film 400 having a thickness of 6 ⁇ m was formed on the negative electrode film 200 by a spin coater (Mikasa, 2000 rpm, 30 s).
  • an aqueous slurry prepared by dispersing tungsten oxide (particle size 100 nm, manufactured by Kishida Chemical Co., Ltd.) in 1 ml of water as the positive electrode active material 3 is applied on the carrier transport film 400 by the doctor blade method, and then dried at 120° C. for 10 minutes. It was Thus, the positive electrode film 300 having a thickness of 18 ⁇ m was formed on the carrier transport film 400.
  • the laminated body in which the base material 100, the negative electrode film 200, the carrier transporting film 300, and the positive electrode film 400 are laminated is permeated into a container containing pure water, and pure water is obtained by using a laser irradiation device (manufactured by Seishin Trading Co., Ltd.).
  • the laminated body immersed in water was irradiated with laser light having a wavelength of 1024 nm and a frequency of 14000 Hz for 60 seconds to pulverize the laminated body.
  • the peeled base material 100 and the photocatalyst 10C in which the negative electrode 20, the carrier transporter 4, and the positive electrode 30 were laminated in this order were separated by a sieve having a diameter of 500 ⁇ m to obtain the photocatalyst of Example 1.
  • Example 2 was performed in the same manner as in Example 1 except that the titanium oxide paste was adjusted such that the ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b was 50%. The photocatalyst particles of Example 1 and the sample of Example 2 were obtained.
  • Example 3 In the same manner as in Example 1, except that the titanium oxide paste was adjusted such that the ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b was 70%. The photocatalyst and the sample of Example 3 were obtained.
  • Example 4 A sample of Example 4 was obtained in the same manner as in Example 1 except that the titanium oxide paste containing only the first negative electrode active material 2a was used. That is, in the photocatalyst negative electrode 20 of Example 4, the ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b was 0%.
  • Example 5 A sample of Example 5 was obtained in the same manner as in Example 1 except that the titanium oxide paste containing only the second negative electrode active material 2b was used. That is, in the photocatalyst negative electrode 20 of Comparative Example 2, the ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b was 100%.
  • FIG. 8 is a graph showing the results of an acetaldehyde decomposition experiment using the photocatalyst 10C according to Examples 1 to 5.
  • the horizontal axis represents the small particle ratio (the ratio of the second negative electrode active material 2b included in the negative electrode 20), and the vertical axis represents the time (day) required for acetaldehyde decomposition.
  • the small particle ratio is shown by the area ratio of the first negative electrode active material 2a and the second negative electrode active material 2b in the SEM image of the negative electrode 20.
  • the acetaldehyde decomposition time is 6 days, and the small particle ratio is 30%.
  • the acetaldehyde decomposition time decreases as it increases to 50%, and it becomes about 3 days when the small particle ratio is 50%.
  • the acetaldehyde decomposition time increases as the small particle proportion increases to 70% and 100%, and when the small particle proportion is 100% (Comparative Example 2, negative electrode 2 is the second particle 2b only), it takes about 10 days. There is.
  • the reaction rate in the photocatalyst 10C varies depending on the small particle ratio in the negative electrode 20, that is, the mixing ratio of the first negative electrode active material 2a and the second negative electrode active material 2b, and the small particle ratio is too large. It has been revealed that the reaction rate is lowered if it is too much. This is because the size of the pores in the negative electrode 2 is adjusted by adjusting the mixing ratio of the first negative electrode active material 2a and the second negative electrode active material 2b, and the carrier transport efficiency in the carrier transporter 4 and the negative electrode 20 reaction efficiency. It is thought that this was due to the balance being maintained.
  • a method of adjusting the mixing ratio of the first negative electrode active material 2a and the second negative electrode active material 2b is to strictly adjust the average particle diameter of each of the first negative electrode active material 2a and the second negative electrode active material 2b. It is a method of easily adjusting the size of the pores in the negative electrode 2. Therefore, it is possible to use the commercially available negative electrode active material 2 as the first negative electrode active material 2a and the second negative electrode active material 2b.
  • the negative electrode 20 is formed of two types of the first negative electrode active material 2a and the second negative electrode active material 2b is illustrated, but the negative electrode 20 is formed into three or more types of negative electrode active materials having different average particle sizes. It may be formed by adjusting the mixing ratio of three or more kinds of negative electrode active materials.
  • FIG. 9 is a side view showing the configuration of the photocatalyst 10D according to the fourth embodiment.
  • the photocatalyst 1D includes a carrier transporter 4, a negative electrode 20A provided on a part of the surface of the carrier transporter 4, and a positive electrode 4 provided on another part of the surface of the carrier transporter 4.
  • the negative electrode 20A and the positive electrode 4 are separated from each other via the carrier transporter 4.
  • Photocatalyst particles 10D according to the fourth embodiment have a structure having negative electrode 20A in place of negative electrode 20 in the third embodiment, and carrier transporter 4 and positive electrode 30 are similar to photocatalyst 1 in the first embodiment.
  • the composition is a side view showing the configuration of the photocatalyst 10D according to the fourth embodiment.
  • the negative electrode 20A is formed of a first negative electrode active material 2a having a large average particle size and a second negative electrode active material 2b having a small average particle size, as in the negative electrode 20 in the third embodiment.
  • the negative electrode 20 has a single-layer structure formed by mixing the first negative electrode active material 2a and the second negative electrode active material 2b
  • the negative electrode 20A has a first layer mainly containing the first negative electrode active material 2a.
  • 2A and the second layer 2B mainly containing the second negative electrode active material 2b have a multilayer structure.
  • the first layer 2A is formed on the carrier transporter 4, and the second layer 2B is formed on the first layer 2A.
  • the layer thickness of the negative electrode 20A is preferably 100 nm to 50 ⁇ m.
  • the layer thickness of the negative electrode 20A is less than 100 nm, the amount of light absorption decreases and the reaction efficiency decreases.
  • the layer thickness exceeds 50 ⁇ m the diffusion distance of the reaction product and the product increases, and the reaction efficiency decreases.
  • the ratio of the layer thickness of the second layer 2B in the negative electrode 20A is preferably 10% to 90%, more preferably 20% to 80%.
  • the manufacturing process of the photocatalyst 10D according to the fourth embodiment will be described with reference to FIG. Note that the material used for each member of the photocatalyst 10D and the method used in each step described with reference to FIG. 10 are examples.
  • FIG. 10A is a negative electrode film forming step of forming a first negative electrode film 200a to be the first layer 2A of the negative electrode 20A and a second negative electrode film 200b to be the second layer 2B of the negative electrode 2 on the base material 100. Is shown.
  • this negative electrode film forming step first, a paste containing the second particles 2b that is the negative electrode active material 2 is applied onto the substrate 10, dried, and then baked at 300° C. to 550° C. for 30 minutes to 2 hours. The two negative electrode film 200b is formed.
  • a paste containing the first negative electrode active material 2a which is the negative electrode active material 2 and has an average particle size larger than that of the second negative electrode active material 2b, is applied on the second negative electrode film 200b by screen printing, dried, and then dried.
  • the first negative electrode film 200a is formed by baking at 550° C. for 30 minutes to 2 hours.
  • FIG. 10B shows a carrier transport film forming step of forming the carrier transport film 400, which becomes the carrier transport body 4, and which contains the carrier transport material, on the first negative electrode film 200a.
  • FIG. 10C shows a positive electrode film forming step of forming the positive electrode film 300 to be the positive electrode 30 on the carrier transport film 400. These steps are the same as the steps for manufacturing the photocatalyst 10C in the first embodiment.
  • the base material 100 on which the laminated body including the second negative electrode film 200b, the first negative electrode film 200a, the carrier transport film 400, and the positive electrode film 300 is formed is immersed in a container (not shown) containing pure water, for example, Then, it is pulverized by laser ablation by irradiating laser light L having a wavelength of 300 nm to 11000 nm and a frequency of 10000 Hz to 1000000 Hz (see FIG. 10D). As a result, the laminate is pulverized into fine particles while peeling the laminate from the base material 100. As a result, the photocatalyst 10D shown in FIG. 9 is formed.
  • the negative electrode 20A has a multilayer structure including a first layer 2A mainly containing the first negative electrode active material 2a and a second layer 2B mainly containing the second negative electrode active material 2b. ing.
  • the pores of the negative electrode 20B become large, and the penetration degree of the carrier transporter 4 becomes large (it becomes easy to penetrate).
  • the pores of the negative electrode 20A are small, and the permeability of the carrier transporter 4 is small (it becomes difficult for them to penetrate).
  • the pore diameter is large and the carrier transporting material easily permeates into the negative electrode 20A, so that the carrier transporting efficiency can be increased and the second layer separated from the carrier transporter 4 can be used.
  • the layer 2B since the pore diameter is small and the surface area is large, the reaction efficiency of decomposition by light can be increased. Furthermore, by adjusting the thickness ratio of the first layer 2A and the second layer 2B, it becomes easy to balance the carrier transport efficiency in the carrier transporter 4 and the reaction efficiency of the negative electrode 20A.
  • Titanium oxide paste manufactured by Solaronix, product name: D/SP
  • titanium oxide particles having an average particle diameter of 20 nm as the second negative electrode active material 2b
  • a 20 mm ⁇ 40 mm substrate blue plate glass, manufactured by Nippon Sheet Glass Co., Ltd.
  • a second film 200B of the negative electrode film 200 having a thickness (second film thickness) of 3 ⁇ m on the base material.
  • a commercially available titanium paste containing titanium oxide particles having an average particle diameter of 400 nm (manufactured by JGC Catalysts & Chemicals Co., Ltd., trade name: PST-400C) was applied onto the second layer by screen printing as the first negative electrode active material 2a, After drying at 120° C., it was baked at 500° C. for 1 h to form a first film 200A of a negative electrode film having a thickness (thickness of the first film 200A) of 7 ⁇ m on the second film 200B. Thus, a negative electrode film having a film thickness ratio of the first film 200A and the second film 200B of 7:3 was formed.
  • Example 6 After the formation of the negative electrode film 200, the photocatalyst 10D of Example 6 was obtained through the carrier transport film forming process, the positive electrode film forming process, and the microparticulation process as in Example 1. Then, in the same manner as in Example 1, a sample of Example 6 was obtained.
  • Example 7 The total film thickness of the first film 200A and the second film 200B was the same as that of the negative electrode film of Example 6, and the film thickness ratio between the first film 200A and the second film 200B was 5:5.
  • the photocatalyst 10D of Example 7 and the sample of Example 7 were obtained in the same manner as in Example 6.
  • Example 8 The total thickness of the first film 200A and the second film 200B was the same as that of the negative electrode film 200 of Example 6, and the film thickness ratio between the first film 200A and the second film 200B was 3:7. A photocatalyst of Example 8 and a sample of Example 8 were obtained in the same manner as in Example 6.
  • FIG. 11 is a graph showing the results of an acetaldehyde decomposition experiment using the photocatalyst 10D according to the fourth embodiment.
  • the horizontal axis represents the second layer thickness ratio (thickness ratio of the second layer 2B in the thickness of the negative electrode 20A), and the vertical axis represents the time (day) required for acetaldehyde decomposition.
  • the acetaldehyde decomposition time is 6 days, and the second layer thickness is The acetaldehyde decomposition time decreases as the ratio increases to 30% and 50%, and is about 2 days when the second layer thickness ratio is 50%. Furthermore, the acetaldehyde decomposition time increases as the second layer thickness ratio increases to 70% and 100%, and when the second layer thickness ratio is 100% (Example 5, negative electrode 20 is the second negative electrode active material 2b only). It has been about 10 days.
  • reaction rate in the photocatalyst 10D changes depending on the second layer thickness ratio in the negative electrode 20, and that the reaction rate decreases if the second layer thickness ratio is too small or too large. .. It is considered that this is because the carrier transport efficiency in the carrier transporter 4 and the reaction efficiency of the negative electrode 20 were balanced by adjusting the second layer thickness ratio.
  • the shortest acetaldehyde decomposition time is about 2 days, which is shorter than the shortest acetaldehyde decomposition time (about 3 days) of the photocatalyst 10C according to the third embodiment.
  • the negative electrode 20A has a multi-layered structure, and the reaction field of light absorption and decomposition material (that is, the second layer 2B) and the field that carries carrier transport (that is, the first layer 2A) are separated, and the effect as a photocatalyst is obtained. It is suggested that can be improved.
  • the method of adjusting the thickness ratio of the first layer 2A and the second layer 2B does not require strict adjustment of the average particle diameter of each of the first negative electrode active material 2a and the second negative electrode active material 2b, and This is a method that can easily adjust the balance between the carrier transport efficiency of the transporter 4 and the reaction efficiency of the negative electrode 2. Therefore, it is possible to use commercially available negative electrode active materials as the first negative electrode active material 2a and the second negative electrode active material 2b.
  • the negative electrode 20A has a two-layer structure including the first layer 2A and the second layer 2B.
  • the first layer 2A is composed of only the first negative electrode active material 2a
  • the second layer 2B is composed of only the second negative electrode active material 2b.
  • the present disclosure is not limited to this, and the first layer 2A and the second layer 2B are formed by mixing the first negative electrode active material 2a and the second negative electrode active material 2b, respectively.
  • the mixing ratios may be different from each other. That is, the structure may be such that the small particle proportion of the second layer 2B separated from the carrier transport body 4 is made larger than the small particle proportion of the first layer 2A close to the carrier transport body 4.
  • the structure may be such that the small particle ratio in the first layer 2A is 30% and the small particle ratio in the second layer 2B is 70%.
  • the first layer 2A may be composed of only the first negative electrode active material 2a and the second layer 2B may be composed of the first negative electrode active material 2a and the second negative electrode active material 2b. It may be composed of the first negative electrode active material 2a and the second negative electrode active material 2b, and the second layer 2B may be composed of only the second negative electrode active material 2b.
  • the negative electrode 20A may have a multi-layer structure having three or more layers.
  • the structure may be such that the layer closer to the carrier transporter 4 has a smaller proportion of small particles, and the layer further away from the carrier transporter 4 has a larger proportion of small particles.
  • the above third and fourth embodiments have a structure in which the negative electrode 20 includes two or more kinds of negative electrode active materials 2 having different average particle sizes.
  • the present disclosure is not limited thereto, and the positive electrode 30 may have a structure including two or more kinds of positive electrode active materials having different average particle diameters depending on the substance to be decomposed. That is, the particle size distribution of the positive electrode active material 3 in the positive electrode 30 may have two or more peaks.
  • FIG. 12 is a side view showing the configuration of the photocatalyst 10E according to the fifth embodiment.
  • the photocatalyst 10E covers the carrier transporter, the negative electrode 20 provided on a part of the surface of the carrier transporter, the positive electrode 30 provided on another part of the surface of the carrier transporter 4, and the surface of the negative electrode 20.
  • the first insulating layer 5A and the second insulating layer 5B that covers the surface of the positive electrode 4 are provided. Since the configuration is the same as that of the third or fourth embodiment except that the first insulating layer 5A and the second insulating layer 5B are provided, the description thereof will be omitted.
  • the first insulating layer 5A and the second insulating layer 5B are formed of a porous body containing an insulating material.
  • an insulating substance for example, a material having a high conduction band level such as glass, zirconium oxide, silicon oxide, aluminum oxide, or niobium oxide can be used.
  • both the first insulating layer 5A and the second insulating layer 5B are light-transmitting porous bodies.
  • the insulating layers 5A and 5B are preferably formed by sintering insulating particles 5p made of a large number of insulating substances.
  • the average particle size of the insulating particles 5p is preferably 1 nm or more and 600 nm or less, and more preferably 200 nm or more and 600 nm or less. When the average particle diameter of the insulating particles 5p is less than 1 nm, the decomposition target may be clogged in the holes of the insulating layers 5A and 5B.
  • the particle diameters of the insulating particles 5p are preferably as uniform as possible (small particle size distribution).
  • the insulating film 500A to be the insulating layer 5A is formed on the base material 100 [first insulating film forming step]. Including. Further, in the manufacturing method of the present embodiment, in the [negative electrode film forming step] of the third embodiment, the negative electrode film 200 to be the negative electrode 20 is not formed on the substrate 100, but the negative electrode film is formed on the insulating film 500A. Form 200. Further, in the manufacturing method of the present embodiment, in the positive electrode film forming step of the third embodiment, the insulating film 500B to be the insulating layer 5B is further formed on the positive electrode film 300 [second insulating film forming step]. including.
  • a paste containing insulating particles 5p for example, a paste containing zirconia particles (manufactured by Sigma-Aldrich)
  • a paste containing the insulating particles 5p is applied on the substrate 100, dried at 100° C. to 150° C., and then baked at 300° C. to 700° C. for several hours.
  • the solvent contained in the paste containing the insulating particles 5p can be appropriately selected from an aqueous solvent or an organic solvent.
  • the method of applying the paste containing the insulating particles 5p to the base material 100 may be a known method, and examples thereof include screen printing.
  • a paste containing the insulating particles 5p is prepared as in the first insulating film forming step. Then, a paste containing the insulating particles 5p is applied on the positive electrode film 300, dried at 100° C. to 150° C., and then baked at 300° C. to 700° C. for several hours. As a result, the insulating film 500B is formed on the positive electrode film 300.
  • the photocatalyst 10E according to the present embodiment is obtained by going through the atomizing step as in the third embodiment.
  • the photocatalyst according to the tenth embodiment includes an insulating layer 5A formed so as to cover a part of the surface of the negative electrode and an insulating layer 5B formed so as to cover a part of the surface of the positive electrode. Therefore, it is possible to suppress direct contact between one negative electrode of the two photocatalysts and the other positive electrode in the state where the plurality of photocatalysts are dispersed in the dispersion medium or in the dispersion medium or in the state where clusters are formed. it can. That is, it is possible to suppress the generation of leak current between the one negative electrode of the two photocatalysts and the other positive electrode, and to keep the reaction efficiency of the photocatalyst high.
  • the photocatalyst disclosed in the present embodiment includes both the insulating layer 5A and the insulating layer 5B, the photocatalyst includes a porous insulating layer that covers at least one of the negative electrode and the positive electrode. May be.
  • the above-mentioned photocatalysts 10 to 10E are preferably used in a state in which a plurality of photocatalysts are dispersed in a dispersion medium or in a state in which a plurality of photocatalysts are fixed to each other in random directions to form clusters.
  • the dispersion medium may be an aqueous dispersion medium such as water or an organic dispersion medium such as ethanol, methanol or terpineol.
  • Each of the photocatalysts 10 to 10E, which have random directions in the dispersion medium or the clusters, can exhibit the photocatalytic function regardless of the incident direction of light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

This photocatalyst is provided with: a carrier transport body; a plurality of negative electrode active materials which have a smaller particle size than the carrier transport body and which partially cover the carrier transport body; and a plurality of positive electrode active materials which have a smaller particle size than the carrier transport body and which partially cover the carrier transport body.

Description

光触媒、光触媒クラスター、および光触媒の製造方法Photocatalyst, photocatalyst cluster, and method for producing photocatalyst
 本開示は、負極活物質と正極活物質とを用いたZスキーム型(二段階光励起型)の光触媒、光触媒クラスターおよびその製造方法に関する。本国際出願は、2019年1月25日に出願した日本国特許出願2019-11344号および日本国特許出願第2019-011352号、日本国特許出願2019-011354号のそれぞれに基づく優先権を主張するものであり、日本国特許出願2019-11344号および日本国特許出願第2019-011352号、日本国特許出願2019-011354号のそれぞれにおいて開示された全内容を本国際出願に援用する。 The present disclosure relates to a Z-scheme type (two-step photoexcitation type) photocatalyst using a negative electrode active material and a positive electrode active material, a photocatalytic cluster, and a method for producing the same. This international application claims priority based on Japanese Patent Application No. 2019-11344, Japanese Patent Application No. 2019-011352, and Japanese Patent Application No. 2019-011354 filed on January 25, 2019, respectively. All the contents disclosed in Japanese Patent Application No. 2019-11344, Japanese Patent Application No. 2019-011352, and Japanese Patent Application No. 2019-011354 are incorporated in the present international application.
 生活の安心・安全性への要求が高まる一方、省エネや資源削減などの要求がある中、光触媒による殺菌・抗菌効果が従来技術として利用されている。 Demand for safety and security in daily life is increasing, while there are demands for energy saving and resource reduction. Photocatalytic sterilization and antibacterial effects are used as conventional technology.
 光触媒の一種として、Zスキーム型の光触媒が知られている。特許文献1には、水分解によって水素と酸素とを生成する光触媒として、水素発生用の第1光触媒粒子と酸素発生用の第2光触媒粒子とを導電性粒子にて接続してなる光触媒材が開示されている。この光触媒材では、導電性粒子が第1光触媒粒子と第2光触媒粒子との間でキャリア(電子)を移動させるキャリア輸送体となる。また、導電性粒子には、触媒粒子(第1光触媒粒子および第2光触媒粒子)よりも粒径の小さいものが使用されている。 A Z-scheme type photocatalyst is known as a type of photocatalyst. Patent Document 1 discloses a photocatalyst material, in which first photocatalyst particles for hydrogen generation and second photocatalyst particles for oxygen generation are connected by conductive particles, as a photocatalyst for generating hydrogen and oxygen by water decomposition. It is disclosed. In this photocatalyst material, the conductive particles serve as a carrier transporter that moves carriers (electrons) between the first photocatalyst particles and the second photocatalyst particles. Further, as the conductive particles, those having a smaller particle size than the catalyst particles (first photocatalyst particles and second photocatalyst particles) are used.
特開2017-124393号公報JP, 2017-124393, A
 特許文献1の光触媒では、第1光触媒粒子および第2光触媒粒子のZスキーム効果を十分に発現させるためには、第1光触媒粒子と第2光触媒粒子がそれぞれ導電性粒子の被覆率を大きくし、第1光触媒粒子と第2光触媒粒子のキャリアの移動経路を増やさなければならない。一方で、第1光触媒粒子と第2光触媒粒子がそれぞれ導電性粒子の被覆率を大きくすることで、導電性粒子によって分解対象の物質と第1光触媒粒子や第2光触媒粒子との接触が阻害される。その結果、第1光触媒粒子や第2光触媒粒における反応効率が低下する。 In the photocatalyst of Patent Document 1, in order to sufficiently exhibit the Z scheme effect of the first photocatalyst particles and the second photocatalyst particles, the first photocatalyst particles and the second photocatalyst particles respectively increase the coverage of the conductive particles, The movement paths of carriers of the first photocatalyst particles and the second photocatalyst particles must be increased. On the other hand, the first photocatalyst particles and the second photocatalyst particles each increase the coverage of the conductive particles, so that the conductive particles prevent contact between the substance to be decomposed and the first photocatalyst particles or the second photocatalyst particles. It As a result, the reaction efficiency of the first photocatalyst particles and the second photocatalyst particles decreases.
 本開示は、上記課題に鑑みてなされたものであり、反応効率を改善した光触媒およびその製造方法を提供することを目的とする。 The present disclosure has been made in view of the above problems, and an object thereof is to provide a photocatalyst with improved reaction efficiency and a method for producing the same.
 上記の課題を解決するために、本開示の一態様である光触媒は、キャリア輸送体と、キャリア輸送体の粒径よりも小さく、キャリア輸送体の一部を覆う複数の負極活物質と、キャリア輸送体の粒径よりも小さく、キャリア輸送体の一部を覆う複数の正極活物質と、を備えている。 In order to solve the above problems, a photocatalyst according to one embodiment of the present disclosure is a carrier transporter, a plurality of negative electrode active materials that are smaller than the particle size of the carrier transporter and cover a part of the carrier transporter, and a carrier. A plurality of positive electrode active materials each having a particle size smaller than that of the transporter and covering a part of the carrier transporter.
 本開示の一態様によれば、反応効率が改善された光触媒、該光触媒を含む光触媒クラスターおよび該光触媒の製造方法が実現される。 According to one aspect of the present disclosure, a photocatalyst with improved reaction efficiency, a photocatalyst cluster including the photocatalyst, and a method for producing the photocatalyst are realized.
実施の形態1の光触媒の構成を示す模式断面図である。3 is a schematic cross-sectional view showing the configuration of the photocatalyst of Embodiment 1. FIG. 実施の形態1に係る光触媒の製造工程を示すフローチャートである。4 is a flowchart showing a manufacturing process of the photocatalyst according to the first embodiment. 実施の形態1に係る光触媒の別の実施の形態の構成を示す模式断面図である。3 is a schematic cross-sectional view showing the configuration of another embodiment of the photocatalyst according to Embodiment 1. FIG. 実施の形態2に係る光触媒の構成を示す模式断面図である。FIG. 6 is a schematic cross-sectional view showing the structure of the photocatalyst according to the second embodiment. (a)~(c)は、実施の形態2に係る光触媒の負極活物質または正極活物質の二次粒子の作成工程を示す図である。(a)-(c) is a figure which shows the preparation process of the secondary particle of the negative electrode active material or positive electrode active material of the photocatalyst which concerns on Embodiment 2. 実施の形態3に係る光触媒の構成を示す模式断面図である。FIG. 9 is a schematic cross-sectional view showing the structure of the photocatalyst according to the third embodiment. (a)~(d)は、実施の形態3に係る光触媒の製造工程を示す図である。(A)-(d) is a figure which shows the manufacturing process of the photocatalyst which concerns on Embodiment 3. FIG. 実施の形態3にかかる光触媒を用いてアセトアルデヒド分解実験を行った結果を示すグラフである。11 is a graph showing the results of an acetaldehyde decomposition experiment using the photocatalyst according to the third embodiment. 実施の形態4に係る光触媒の構成を示す模式断面図である。It is a schematic cross section which shows the structure of the photocatalyst which concerns on Embodiment 4. (a)~(d)は、実施の形態4に係る光触媒の製造工程を示す図である。(A)-(d) is a figure which shows the manufacturing process of the photocatalyst which concerns on Embodiment 4. 実施の形態4にかかる光触媒を用いてアセトアルデヒド分解実験を行った結果を示すグラフである。11 is a graph showing the results of an acetaldehyde decomposition experiment using the photocatalyst according to the fourth embodiment. 実施の形態5に係る光触媒の構成を示す模式断面図である。It is a schematic cross section which shows the structure of the photocatalyst which concerns on Embodiment 5.
 〔実施の形態1〕
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。図1は、本実施の形態1に係る光触媒10の構成を表す模式断面図である。
[Embodiment 1]
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the configuration of the photocatalyst 10 according to the first embodiment.
 〔光触媒10の構成〕
 光触媒10は、負極活物質2、正極活物質3、およびキャリア輸送体4によって構成されている。具体的には、光触媒10は、粒子状であるキャリア輸送体4の表面を、共に粒子状である負極活物質2および正極活物質3によって被覆した複合粒子である。負極活物質2および正極活物質3は、キャリア輸送体4よりも粒径が小さい。
[Structure of Photocatalyst 10]
The photocatalyst 10 is composed of the negative electrode active material 2, the positive electrode active material 3, and the carrier transporter 4. Specifically, the photocatalyst 10 is a composite particle in which the surface of the carrier transporter 4 in the form of particles is covered with the negative electrode active material 2 and the positive electrode active material 3 which are both in the form of particles. The negative electrode active material 2 and the positive electrode active material 3 have smaller particle sizes than the carrier transporter 4.
 負極活物質2および正極活物質3の平均粒径は、5nm以上60μm以下であることが好ましい。負極活物質2および正極活物質3の平均粒径が5nm未満の場合、十分な光吸収が得られない虞がある。また、負極活物質2および正極活物質3の平均粒径が60μmを超えると、キャリア輸送体4の粒径をさらに大きく設計する必要があり、キャリア輸送効率が低下する虞がある。また、負極活物質2の平均粒径と正極活物質3の平均粒径とは大きく異ならないことが好ましく、負極活物質2と正極活物質3との粒径比が1:5~5:1の範囲であることが好ましい。 The average particle size of the negative electrode active material 2 and the positive electrode active material 3 is preferably 5 nm or more and 60 μm or less. When the average particle diameter of the negative electrode active material 2 and the positive electrode active material 3 is less than 5 nm, sufficient light absorption may not be obtained. Further, when the average particle diameter of the negative electrode active material 2 and the positive electrode active material 3 exceeds 60 μm, it is necessary to design the particle diameter of the carrier transport body 4 to be larger, which may reduce the carrier transport efficiency. Further, it is preferable that the average particle size of the negative electrode active material 2 and the average particle size of the positive electrode active material 3 do not differ greatly, and the particle size ratio of the negative electrode active material 2 and the positive electrode active material 3 is 1:5 to 5:1. It is preferably in the range of.
 また、キャリア輸送体4の平均粒径は、50nm以上100μm以下であることが好ましい。キャリア輸送体4の平均粒径が50nm未満の場合、キャリア輸送体4を被覆する負極活物質2および正極活物資3の数が少なくなる虞がある。一方で、キャリア輸送材4の平均粒径が100μmを超えると、キャリアの輸送効率が低下する虞がある。 The average particle size of the carrier transporter 4 is preferably 50 nm or more and 100 μm or less. When the average particle diameter of the carrier transporter 4 is less than 50 nm, the numbers of the negative electrode active material 2 and the positive electrode active material 3 which coat the carrier transporter 4 may be small. On the other hand, if the average particle diameter of the carrier transport material 4 exceeds 100 μm, the carrier transport efficiency may decrease.
 負極活物質2および正極活物質3とキャリア輸送体4との粒径比(負極活物質2または正極活物質3/キャリア輸送体4)は、それぞれ0.05以上1以下であることが好ましく、0.1以上0.5以下であることがより好ましい。この粒径比が0.1未満の場合、光触媒10に占めるキャリア輸送体4の体積に比して、負極活物質2および正極活物質3の表面積が小さくなる。その結果、光触媒10の反応効率が低下する。一方、粒径比が0.5を超えると、負極活物質2および正極活物質3において、キャリア輸送体4と電気的に接続していない(接触していない)部分の表面積が増大する。この場合、負極活物質2および正極活物質3ともに可視光に応答して光触媒として機能することはできるが、Zスキーム効果が減少する。この場合も、光触媒10の反応効率は低下する。すなわち、負極活物質2と正極活物質3とキャリア輸送体4とのそれぞれの粒径比を適切な範囲とすることで、光触媒10における負極活物質2および正極活物質3の表面積が適切となり、光触媒10の反応効率を向上させることができる。 The particle size ratio of the negative electrode active material 2 and the positive electrode active material 3 to the carrier transporter 4 (negative electrode active material 2 or positive electrode active material 3/carrier transporter 4) is preferably 0.05 or more and 1 or less, respectively. It is more preferably 0.1 or more and 0.5 or less. When this particle size ratio is less than 0.1, the surface areas of the negative electrode active material 2 and the positive electrode active material 3 are smaller than the volume of the carrier transporter 4 in the photocatalyst 10. As a result, the reaction efficiency of the photocatalyst 10 is reduced. On the other hand, when the particle size ratio exceeds 0.5, the surface areas of the portions of the negative electrode active material 2 and the positive electrode active material 3 that are not electrically connected (not in contact) with the carrier transporter 4 increase. In this case, both the negative electrode active material 2 and the positive electrode active material 3 can function as a photocatalyst in response to visible light, but the Z scheme effect is reduced. Also in this case, the reaction efficiency of the photocatalyst 10 is reduced. That is, the surface area of the negative electrode active material 2 and the positive electrode active material 3 in the photocatalyst 10 becomes appropriate by setting the respective particle diameter ratios of the negative electrode active material 2, the positive electrode active material 3, and the carrier transporter 4 in an appropriate range, The reaction efficiency of the photocatalyst 10 can be improved.
 また、キャリア輸送体4の被覆率は50%以上であることが好ましく、さらに90%以下であることが好ましい。キャリア輸送体4の被覆率が50%未満の場合、光触媒10が機能する表面積が不十分となり反応効率が低くなる。キャリア輸送材体4の被覆率が90%を超えると、負極活物質2と正極活物質3が接触する確率が高くなり、両粒子間で電子移動が生じ、Zスキーム効果が減少する。 The coverage of the carrier transporter 4 is preferably 50% or more, more preferably 90% or less. When the coverage of the carrier transporter 4 is less than 50%, the surface area on which the photocatalyst 10 functions becomes insufficient and the reaction efficiency becomes low. When the coverage of the carrier transporting material body 4 exceeds 90%, the probability that the negative electrode active material 2 and the positive electrode active material 3 contact each other becomes high, electron transfer occurs between both particles, and the Z scheme effect is reduced.
 負極活物質2は、分解物質を還元するための電極であり、還元能を有する光触媒である。負極活物質2は、水素の酸化還元電位より卑である伝導帯準位をもつ材料であることが好ましい。また、負極活物質2の価電子帯準位は特に限定されないが、より卑であることが好ましい。これにより、負極活物質2の光の吸収波長をより長波長化することができる。このような負極活物質2としては、例えば、酸化チタン、チタン酸ストロンチウム、タンタル酸塩の何れかを含むことが好ましい。タンタル酸塩の一例としては、タンタル酸カリウムを挙げることができる。 The negative electrode active material 2 is an electrode for reducing a decomposed substance and is a photocatalyst having a reducing ability. The negative electrode active material 2 is preferably a material having a conduction band level that is lower than the redox potential of hydrogen. Moreover, the valence band level of the negative electrode active material 2 is not particularly limited, but is preferably more base. Thereby, the light absorption wavelength of the negative electrode active material 2 can be made longer. Such negative electrode active material 2 preferably contains, for example, any one of titanium oxide, strontium titanate, and tantalate. An example of the tantalate salt is potassium tantalate.
 また、負極活物質2は、負極活物質2の伝導帯準位をより分解物質の酸化還元電位よりも卑にするために、Pt、Rh、Ru、Pd、Os、Irなどの白金族元素またはLa、Ceなどのランタノイドを負極活物質2に対して0.5%~10%ドーピングされていてもよい。また、負極活物質2は、光の吸収可能な波長範囲を広げるために、増感色素が担持されていてもよい。増感剤は、色素増感太陽電池の分野で用いられる増感剤が適宜使用できる。増感剤の材料は特に限定されるものではないが、吸収波長幅が広いほど好ましい。具体的には、有機色素、金属錯体色素などの有機増感剤、SbClなどの一般的に用いられる無機増感剤、量子ドットなどが使用できる。 In order to make the conduction band level of the negative electrode active material 2 more base than the redox potential of the decomposed substance, the negative electrode active material 2 contains a platinum group element such as Pt, Rh, Ru, Pd, Os, Ir or the like. The negative electrode active material 2 may be doped with lanthanoid such as La or Ce by 0.5% to 10%. Further, the negative electrode active material 2 may carry a sensitizing dye in order to widen the wavelength range capable of absorbing light. As the sensitizer, a sensitizer used in the field of dye-sensitized solar cells can be appropriately used. The material of the sensitizer is not particularly limited, but a wider absorption wavelength width is preferable. Specifically, organic sensitizers such as organic dyes and metal complex dyes, commonly used inorganic sensitizers such as SbCl 4 and quantum dots can be used.
 正極活物質3は、分解物質を酸化するための電極であり、酸化能を有する光触媒である。正極活物質3は、酸素の酸化還元電位より貴である価電子帯準位をもつ材料であることが好ましい。また、正極活物質3の伝導帯準位は特に限定されないが、より貴であることが好ましい。これにより、正極活物質3の光の吸収波長をより長波長化することができるためである。このような正極活物質3としては、例えば、酸化鉄(III)、酸化タングステン、バナジウム酸塩の何れかを含むことが好ましい。バナジウム酸塩の一例としては、バナジウム酸ビスマスを挙げることができる。正極活物質3は、負極活物質2同様に、増感剤を担持されていてもよい。 The positive electrode active material 3 is an electrode for oxidizing a decomposed substance and is a photocatalyst having an oxidizing ability. The positive electrode active material 3 is preferably a material having a valence band level that is nobler than the redox potential of oxygen. The conduction band level of the positive electrode active material 3 is not particularly limited, but it is preferably noble. This is because the light absorption wavelength of the positive electrode active material 3 can be made longer. Such a positive electrode active material 3 preferably contains, for example, any one of iron (III) oxide, tungsten oxide, and vanadate. Bismuth vanadate can be mentioned as an example of vanadate. Like the negative electrode active material 2, the positive electrode active material 3 may carry a sensitizer.
 キャリア輸送体4は、負極活物質2と正極活物質3の間におけるキャリアの輸送経路となる材料である。ここで、キャリアとは電子であってもよく、正孔であってもよい。キャリア輸送体4は、一般的にキャリア輸送に使用される材料であれば特に限定はなく、例えば、ヨウ化銅(CuI)、酸化ニッケル(NiO)などの無機材料を用いることができる。または、キャリア輸送体4は、PEDOT(ポリエチレンジオキシチオフエン)、PEDOT‐PSS(ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))、および、Spiro‐OMeTAD等の何れかを含むホール輸送材料を用いることができる。または、キャリア輸送体4は、フラーレン、フラーレン誘導体、シロール系化合物、トリアジン系化合物の何れかを含む電子輸送材料を用いてもよい。 The carrier transporter 4 is a material that serves as a carrier transport path between the negative electrode active material 2 and the positive electrode active material 3. Here, the carrier may be an electron or a hole. The carrier transporter 4 is not particularly limited as long as it is a material generally used for carrier transport, and for example, an inorganic material such as copper iodide (CuI) or nickel oxide (NiO) can be used. Alternatively, the carrier transporter 4 is any one of PEDOT (polyethylenedioxythiophene), PEDOT-PSS (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid)), and Spiro-OMeTAD. A hole transporting material including can be used. Alternatively, the carrier transporter 4 may use an electron transporting material containing any of fullerene, fullerene derivative, silole compound, and triazine compound.
 また、キャリア輸送を効率的に行うため、キャリア輸送体4のフェルミ準位は、負極活物質2の価電子帯上端の電子エネルギー準位よりも負な位置であり、正極活物質3の伝導帯下端の電子エネルギー準位よりも正な位置である。 Further, in order to carry out carrier transport efficiently, the Fermi level of the carrier transporter 4 is at a position more negative than the electron energy level at the upper end of the valence band of the negative electrode active material 2, and the conduction band of the positive electrode active material 3. The position is more positive than the electron energy level at the lower end.
 〔光触媒10の製造工程〕
 続いて、本実施の形態1に係る光触媒10の製造工程を、図2を参照して説明する。図2は、本実施の形態1に係る光触媒10の製造手順を示す工程図である。尚、ここで説明する光触媒10の各部材の材料および各工程で用いる方法は一例である。
[Production process of photocatalyst 10]
Next, the manufacturing process of the photocatalyst 10 according to the first embodiment will be described with reference to FIG. FIG. 2 is a process diagram showing a manufacturing procedure of the photocatalyst 10 according to the first embodiment. In addition, the material of each member of the photocatalyst 10 described here and the method used in each step are examples.
 光触媒10の製造工程は、図2に示すように、負極活物質準備工程、正極活物質準備工程、キャリア輸送体準備工程および複合粒子形成工程とを含んでいる。負極活物質準備工程は、負極活物質2を準備する工程である。正極活物質準備工程は、正極活物質3を準備する工程である。キャリア輸送体準備工程は、キャリア輸送体4を準備する工程である。これらの工程は、それぞれ独立して実施することができる。複合粒子形成工程は、準備された負極活物質2、正極活物質3およびキャリア輸送体4から複合粒子である光触媒10を形成する工程である。以下、各工程について説明する。 As shown in FIG. 2, the manufacturing process of the photocatalyst 10 includes a negative electrode active material preparation process, a positive electrode active material preparation process, a carrier transporter preparation process, and a composite particle formation process. The negative electrode active material preparation step is a step of preparing the negative electrode active material 2. The positive electrode active material preparation step is a step of preparing the positive electrode active material 3. The carrier transporter preparation step is a step of preparing the carrier transporter 4. These steps can be carried out independently. The composite particle forming step is a step of forming the photocatalyst 10 which is a composite particle from the prepared negative electrode active material 2, positive electrode active material 3 and carrier transporter 4. Hereinafter, each step will be described.
 〔負極活物質準備工程〕
 以下は、負極活物質2として、LaおよびRhをドープしたSrTiOを用いる場合の例を記載する。この例に限定されず、負極活物質2に採用できる粒子であれば、市販のものを用いてもよい。
[Negative electrode active material preparation step]
Hereinafter, an example of using SrTiO 3 doped with La and Rh as the negative electrode active material 2 will be described. The particles are not limited to this example, and commercially available particles may be used as long as they can be used for the negative electrode active material 2.
 炭酸ストロンチウム粉末(関東化学製、純度99.9%、事前に200℃で1時間焼成した粉末)とルチル型酸化チタン粉末(関東化学製、純度99.0%)とを、Sr:Ti=1.05:1(モル比)となるように乳鉢で混合し、1150℃で10時間焼成することで、まずSrTiO粉末を得た。さらに、Sr:La=0.96:0.04(モル比)、および、Ti:Rh=0.96:0.04(モル比)となるように、得られたSrTiO粉末と、酸化ランタン粉末と、酸化ロジウム(Rh、純度99.9%)とをエタノール中で混合させ、乾燥させた粉末を1100℃で6時間焼成した。これにより、負極活物質2として、4%Laおよび4%RhドープSrTiO(Sr0.96La0.04Ti0.96Rh0.04)粒子からなる粉末を作製した。尚、酸化ランタン粉末(La)としては、関東化学製の純度99.99%のものを、事前に1000℃で10時間焼成した粉末を用いた。 Sr:Ti=1 with strontium carbonate powder (Kanto Kagaku, purity 99.9%, powder baked in advance at 200° C. for 1 hour) and rutile titanium oxide powder (Kanto Kagaku, purity 99.0%). First, SrTiO 3 powder was obtained by mixing in a mortar so as to have a molar ratio of 0.055 and baking at 1150° C. for 10 hours. Furthermore, the obtained SrTiO 3 powder and lanthanum oxide were adjusted so that Sr:La=0.96:0.04 (molar ratio) and Ti:Rh=0.96:0.04 (molar ratio). The powder and rhodium oxide (Rh 2 O 3 , purity 99.9%) were mixed in ethanol, and the dried powder was calcined at 1100° C. for 6 hours. Thus, as the negative electrode active material 2, a powder composed of 4% La and 4% Rh-doped SrTiO 3 (Sr 0.96 La 0.04 Ti 0.96 Rh 0.04 O 3 ) particles was produced. As the lanthanum oxide powder (La 2 O 3 ), a powder having a purity of 99.99% manufactured by Kanto Kagaku Co., Ltd., which was previously baked at 1000° C. for 10 hours was used.
 〔正極活物質準備工程〕
 CoOが担持されたBiVO粒子を液固相法により作製した。具体的には、まず、KCO(関東化学製,99.5%)およびV(和光純薬製,99.0%)をK:V=3.03:5(モル比)になるようにメノー乳鉢に入れ、エタノール(10mL)を添加した後30分間混合した。次いで、得られた混合物を磁性るつぼに入れて、電気炉にて大気中450℃で5時間焼成した。焼成後、焼成体を室温まで放冷させた後、解砕した。得られた粉末を、100mlの水およびBi(NO・5HO(和光純薬製,99.9%)が入った300ml三角フラスコに入れて(Bi:V=1:1)、70℃で10時間、攪拌子を用いて1500rpmで撹拌した。得られた沈殿物を吸引濾過により回収して水洗浄を行った後、乾燥器にて60℃で12時間乾燥させて、BiVO粉末を得た。得られたBiVO4粉末0.5gを磁性るつぼに入れ、助触媒の原料としてCoOが0.5wt%になるように、Co(NO(和光純薬製,99.5%)を磁性るつぼに入れ、純水を少量加えた。超音波でBiVO粉末を十分に懸濁した後、湯浴で蒸発乾燥させた。最後に、電気炉にて大気中300℃で2時間焼成した。これにより、正極活物質3としてCoOが担持されたBiVO粉末を作製した。
[Cathode active material preparation step]
BiVO 4 particles carrying CoO x were prepared by a liquid-solid method. Specifically, first, K 2 CO 3 (manufactured by Kanto Kagaku Co., 99.5%) and V 2 O 5 (manufactured by Wako Pure Chemical Industries, 99.0%) were mixed with K:V=3.03:5 (molar ratio). ) Was placed in a mortar and pestle, ethanol (10 mL) was added, and the mixture was mixed for 30 minutes. Then, the obtained mixture was put in a magnetic crucible and fired in an electric furnace at 450° C. in the atmosphere for 5 hours. After firing, the fired body was allowed to cool to room temperature and then crushed. The resulting powder, 100 ml of water and Bi (NO 3) 3 · 5H 2 O ( manufactured by Wako Pure Chemical Industries, Ltd., 99.9%) was placed in the entered was 300ml Erlenmeyer flask (Bi: V = 1: 1 ), The mixture was stirred at 70° C. for 10 hours at 1500 rpm using a stirring bar. The obtained precipitate was collected by suction filtration, washed with water, and then dried at 60° C. for 12 hours in a drier to obtain BiVO 4 powder. 0.5 g of the obtained BiVO4 powder was placed in a magnetic crucible, and Co(NO 3 ) 2 (manufactured by Wako Pure Chemical Industries, 99.5%) was used as a cocatalyst raw material so that CoO was 0.5 wt %. Then, a small amount of pure water was added. The BiVO 4 powder was thoroughly suspended by ultrasonic waves and then evaporated to dryness in a water bath. Finally, it was baked in an electric furnace at 300° C. in the atmosphere for 2 hours. Thus, BiVO 4 powder carrying CoO x as the positive electrode active material 3 was produced.
 〔キャリア輸送体準備工程〕
 1mol/Lとなるようヨウ化銅(CuI)をアセトニトリル(何れもシグマアルドリッチ製)へ溶解し撹拌することでヨウ化銅溶液を作成した。100℃設定のホットプレート上に置いたガラス基材上にヨウ化銅溶液を滴下して白色粉末を得た。この白色粉末をビーズミルで粉砕し、キャリア輸送体4として平均粒径2.5μmのヨウ化銅微粒子を作製した。
[Carrier transporter preparation process]
A copper iodide solution was prepared by dissolving copper iodide (CuI) in acetonitrile (both manufactured by Sigma-Aldrich) so as to be 1 mol/L and stirring. A copper iodide solution was dropped on a glass substrate placed on a hot plate set at 100° C. to obtain a white powder. This white powder was pulverized with a bead mill to prepare copper iodide fine particles having an average particle diameter of 2.5 μm as the carrier transporter 4.
 〔複合粒子形成工程〕
 複合粒子形成工程では、上記の各工程で得られた剪断力を加えながら、負極活物質2および正極活物質3、キャリア輸送体4を混合する。剪断力を加えながら混合することで、キャリア輸送体4表面により粒径の小さい負極活物質2および正極活物質3が付着し、キャリア輸送体4の表面に負極活物質2および正極活物質3が埋め込まれるように固定化された光触媒10が作製できる。
[Composite particle forming step]
In the composite particle forming step, the negative electrode active material 2, the positive electrode active material 3, and the carrier transporter 4 are mixed while applying the shearing force obtained in each of the above steps. By mixing while applying shearing force, the negative electrode active material 2 and the positive electrode active material 3 having a small particle size are attached to the surface of the carrier transport body 4, and the negative electrode active material 2 and the positive electrode active material 3 are attached to the surface of the carrier transport body 4. The photocatalyst 10 fixed so as to be embedded can be manufactured.
 剪断力を加えながら、負極活物質2および正極活物質3、キャリア輸送体4を混合する装置としては、高速気流中衝撃法を利用する(株)奈良機械製作所のハイブリダイゼーションシステムや、摩砕式粉砕機を利用するホソカワミクロン(株)のメカノフュージョンシステムなどの高速攪拌羽根を備えた混合機が好適である。高速攪拌羽根の回転速度は、使用する混合機や混合する材料の組み合わせによって任意に設定できるが、ハイブリダイゼーションシステムを用いる場合、周速10~130m/s程度でよい。 As a device for mixing the negative electrode active material 2, the positive electrode active material 3, and the carrier transporter 4 while applying a shearing force, a high speed air impact method is used for the hybridization system of Nara Machinery Co., Ltd. A mixer equipped with a high-speed stirring blade such as a mechanofusion system of Hosokawa Micron Co., Ltd. that utilizes a crusher is suitable. The rotation speed of the high-speed stirring blade can be set arbitrarily depending on the mixer used and the combination of the materials to be mixed, but when a hybridization system is used, the peripheral speed may be about 10 to 130 m/s.
 本実施の形態1に係る光触媒10は、キャリア輸送体4の表面を、キャリア輸送体4の粒径よりもさらに小さい複数の負極活物質2と、キャリア輸送体4の粒径よりも小さい複数の正極活物質3とによって被覆する構成である。 In the photocatalyst 10 according to the first embodiment, the surface of the carrier transporter 4 has a plurality of negative electrode active materials 2 each having a smaller particle size than the carrier transporter 4, and a plurality of smaller than the particle size of the carrier transporter 4. The positive electrode active material 3 is used for coating.
 上記の構成を備えたことで、光触媒10において、負極活物質2と正極活物質3の光が受光できる表面積を大きくすることができる。さらに、1つのキャリア輸送体4に複数の負極活物質2および正極活物質3が被覆されたことで、負極活物質2と正極活物質3において輸送経路が増える。そのため、光触媒10は、従来のZスキーム型の光触媒よりもZスキーム効果の改善と反応効率を改善することができる。 By providing the above configuration, it is possible to increase the surface area of the photocatalyst 10 capable of receiving the light of the negative electrode active material 2 and the positive electrode active material 3. Further, since one carrier transporter 4 is coated with the plurality of negative electrode active materials 2 and the positive electrode active materials 3, the transport paths in the negative electrode active material 2 and the positive electrode active material 3 increase. Therefore, the photocatalyst 10 can improve the Z scheme effect and the reaction efficiency more than the conventional Z scheme type photocatalyst.
 従来(特許文献1)の光触媒材は、大粒子である触媒粒子の表面を小粒子である導電性粒子(キャリア輸送体)が被覆するものであったため、導電性粒子による被覆率に関し、Zスキーム効果と触媒粒子における反応効率とがトレードオフの関係になっていた。 In the conventional (patent document 1) photocatalyst material, the surface of the catalyst particles which are large particles is coated with the conductive particles (carrier transporter) which is the small particle. There was a trade-off relationship between the effect and the reaction efficiency of the catalyst particles.
 また、本実施の形態1に係る光触媒の製造方法で製造された光触媒10は、複数の負極活物質2および複数の正極活物質3がランダムにキャリア輸送体4の表面を覆っており、かつ、従来よりも負極活物質2および正極活物質3によるキャリア輸送体4の表面の被覆率が大きいので、どの方向からの光が照射されても負極活物質2または正極活物質3に光が吸収されることを抑制し、Zスキーム効果を発現することができる。 Further, in the photocatalyst 10 manufactured by the method for manufacturing a photocatalyst according to the first embodiment, the plurality of negative electrode active materials 2 and the plurality of positive electrode active materials 3 randomly cover the surface of the carrier transporter 4, and Since the coverage of the surface of the carrier transporter 4 with the negative electrode active material 2 and the positive electrode active material 3 is larger than in the conventional case, the light is absorbed by the negative electrode active material 2 or the positive electrode active material 3 regardless of the direction of light irradiation. This can be suppressed and the Z scheme effect can be exhibited.
 また、本実施の形態1に係る光触媒の製造方法で製造された光触媒10においては、キャリア輸送体4との負極活物質2および正極活物質3それぞれとの密着性も改善される。これは、キャリア輸送体4の表面で負極活物質2同士または正極活物質3同士が結合し、この結合によっても負極活物質2および正極活物質3の剥離が防止されるためである。 Further, in the photocatalyst 10 manufactured by the method for manufacturing a photocatalyst according to the first embodiment, the adhesion between the carrier transporter 4 and the negative electrode active material 2 and the positive electrode active material 3 is also improved. This is because the negative electrode active materials 2 or the positive electrode active materials 3 are bonded to each other on the surface of the carrier transporter 4 and the bonding prevents the peeling of the negative electrode active material 2 and the positive electrode active material 3.
 また、本実施形態1に係る光触媒10では、光触媒10を担持するための基材などは不要であり、容易に光触媒10を粒子状に製造できる。粒子状に製造される光触媒10は、溶媒に分散させて利用し、スプレーなど幅広い用途に使用できる。 In addition, the photocatalyst 10 according to the first embodiment does not require a base material or the like for supporting the photocatalyst 10, and the photocatalyst 10 can be easily manufactured into particles. The photocatalyst 10 produced in the form of particles can be used by being dispersed in a solvent and used in a wide variety of applications such as spraying.
 また、図3は、実施の形態1に係る光触媒10の別の実施の形態の構成を表す模式断面図である。光触媒10Aは、実施の形態1における光触媒10と同様に、粒子状であるキャリア輸送体4の表面を、共に粒子状である負極活物質2および正極活物質3によって被覆した複合粒子である。但し、光触媒10Aでは、負極活物質2および正極活物質3の比率は同じである必要はなく、それぞれの吸収波長域や、可視光応答光触媒としての分解能力等により適切な比率が選択されている。 Further, FIG. 3 is a schematic cross-sectional view showing the configuration of another embodiment of the photocatalyst 10 according to the first embodiment. Like the photocatalyst 10 in the first embodiment, the photocatalyst 10A is a composite particle in which the surface of the particulate carrier transporter 4 is covered with the negative electrode active material 2 and the positive electrode active material 3 which are both particulate. However, in the photocatalyst 10A, the negative electrode active material 2 and the positive electrode active material 3 do not have to have the same ratio, and an appropriate ratio is selected depending on their respective absorption wavelength ranges, the decomposition ability as the visible light responsive photocatalyst, and the like. ..
 例えば、負極活物質2がRhドープSrTiO、正極活物質3がBiVOである場合、可視光の量子収率に応じてRhドープSrTiOとBiVOの比率を選択する。これにより、負極活物質2で発生した光励起正孔と正極活物質3で発生した光励起電子との数が釣り合い、光触媒10Aを効率的なZスキーム型光触媒として機能させることができる。 For example, when the negative electrode active material 2 is Rh-doped SrTiO 3 and the positive electrode active material 3 is BiVO 4 , the ratio of Rh-doped SrTiO 3 and BiVO 4 is selected according to the quantum yield of visible light. Thereby, the number of photoexcited holes generated in the negative electrode active material 2 and the number of photoexcited electrons generated in the positive electrode active material 3 are balanced, and the photocatalyst 10A can function as an efficient Z scheme type photocatalyst.
 負極活物質2および正極活物質3の比率(重量比)は、2:8~8:2の範囲であることが望ましい。この範囲外になると、負極活物質2と正極活物質3との間で輸送されるキャリアが、キャリア輸送体4を通る距離が大きくなり、光触媒11における反応効率が低下する虞がある。 The ratio (weight ratio) of the negative electrode active material 2 and the positive electrode active material 3 is preferably in the range of 2:8 to 8:2. Outside of this range, the carriers transported between the negative electrode active material 2 and the positive electrode active material 3 may have a large distance passing through the carrier transport body 4, and the reaction efficiency in the photocatalyst 11 may decrease.
 〔実施の形態2〕
 図4は、本実施の形態2に係る光触媒10Bの構成を表す模式断面図である。光触媒10Bは、実施の形態1における光触媒10と同様に、粒子状であるキャリア輸送体4の表面を、共に粒子状である負極活物質2および正極活物質3によって被覆した複合粒子とされている。但し、光触媒10Bでは、負極活物質2および正極活物質3は、それぞれ一次粒子21および一次粒子31が凝集した二次粒子(一次粒子の集合体)により備え構成されている。尚、一次粒子21、31が凝集した二次粒子とされるのは負極活物質2および正極活物質3の何れか一方のみであってもよい。
[Embodiment 2]
FIG. 4 is a schematic cross-sectional view showing the configuration of the photocatalyst 10B according to the second embodiment. Like the photocatalyst 10 in the first embodiment, the photocatalyst 10B is a composite particle in which the surface of the particulate carrier transporter 4 is covered with the negative electrode active material 2 and the positive electrode active material 3 which are both particulate. .. However, in the photocatalyst 10B, the negative electrode active material 2 and the positive electrode active material 3 are each configured by secondary particles (aggregates of primary particles) in which the primary particles 21 and the primary particles 31 are aggregated. Note that only one of the negative electrode active material 2 and the positive electrode active material 3 may be the secondary particles formed by aggregating the primary particles 21 and 31.
 負極活物質2または正極活物質3を一次粒子21、31が凝集した二次粒子とする場合、該二次粒子内では、キャリア輸送体4から距離が離れた一次粒子21、31が存在する。このため、電気的接続の観点から、二次粒子には予めキャリア輸送物質4aを含ませておいてもよい。また、二次粒子に含まれるキャリア輸送物質4aは、キャリア輸送体4に接触する。キャリア輸送物質4aの平均粒径は、キャリア輸送体4の平均粒径よりも大きく、負極活物質2または正極活物質3の平均粒径よりも小さい。こうすることで、二次粒子内で発生したキャリアを、キャリア輸送物質4aを通して効率的にキャリア輸送体4まで輸送することができる。 When the negative electrode active material 2 or the positive electrode active material 3 is a secondary particle in which the primary particles 21 and 31 are aggregated, the primary particles 21 and 31 distant from the carrier transporter 4 are present in the secondary particles. Therefore, from the viewpoint of electrical connection, the secondary particles may contain the carrier transporting material 4a in advance. Further, the carrier transport substance 4 a contained in the secondary particles comes into contact with the carrier transport body 4. The average particle size of the carrier transport material 4a is larger than the average particle size of the carrier transport body 4 and smaller than the average particle size of the negative electrode active material 2 or the positive electrode active material 3. By doing so, the carriers generated in the secondary particles can be efficiently transported to the carrier transporter 4 through the carrier transport material 4a.
 また、この場合、キャリア輸送体4とキャリア輸送物質4aは、同じ物質であってもよいし、あるいは異なる物質であってもよい。例えば、負極活物質2を二次粒子とする場合、負極活物質2に含まれるキャリア輸送物質4aは正孔輸送物質としてもよく、正極活物質3を二次粒子とする場合、正極活物質3に含まれるキャリア輸送物質4aは電子輸送物質としてもよい。但し、各キャリア輸送物質4aのフェルミ準位はキャリアが輸送されるように選択する必要がある。 Further, in this case, the carrier transporter 4 and the carrier transport substance 4a may be the same substance or different substances. For example, when the negative electrode active material 2 is a secondary particle, the carrier transport material 4a contained in the negative electrode active material 2 may be a hole transport material, and when the positive electrode active material 3 is a secondary particle, the positive electrode active material 3 is used. The carrier-transporting substance 4a contained in may be an electron-transporting substance. However, the Fermi level of each carrier transport substance 4a needs to be selected so that carriers are transported.
 図5は、二次粒子となる負極活物質2または正極活物質3の作製工程を示す図である。図5を参照して以下に説明する。但し、以下の作製工程で用いる材料および方法は一例である。 FIG. 5 is a diagram showing a manufacturing process of the negative electrode active material 2 or the positive electrode active material 3 to be the secondary particles. This will be described below with reference to FIG. However, the materials and methods used in the following manufacturing steps are examples.
 まず、図5(a)に示すように、基材6上に、負極活物質2または正極活物質3における一次粒子21または31からなる多孔体層7を形成する。例えば、負極活物質2を作製する場合は、一次粒子21である平均粒径20nmの酸化チタンペースト(Solaronix社製、商品名:D/SP)を基材6上にスクリーン印刷で塗布し、120℃で乾燥後、500℃で1h焼成する。また、正極活物質3を作製する場合は、酸化タングステン(WO)の微粒子(粒径100um,キシダ化学社製)を含む水スラリーをドクターブレード法で塗布後、120℃で乾燥させる。 First, as shown in FIG. 5A, the porous body layer 7 made of the primary particles 21 or 31 of the negative electrode active material 2 or the positive electrode active material 3 is formed on the base material 6. For example, when the negative electrode active material 2 is produced, a titanium oxide paste (manufactured by Solaronix, product name: D/SP) having an average particle diameter of 20 nm, which is the primary particle 21, is applied onto the base material 6 by screen printing, and 120 After drying at ℃, it is baked at 500 ℃ for 1 h. When the positive electrode active material 3 is manufactured, an aqueous slurry containing fine particles of tungsten oxide (WO 3 ) (particle size: 100 μm, manufactured by Kishida Chemical Co., Ltd.) is applied by the doctor blade method and then dried at 120° C.
 こうして形成された多孔体層7にキャリア輸送物質4aを含ませるため、図5(b)に示すように、ヨウ化銅(CuI)溶液8を多孔体層7上へ滴下して、スピンコート(2000rpm、30s)等を行う。このヨウ化銅溶液は、例えば、1mol/Lとなるようヨウ化銅(CuI)をアセトニトリルへ溶解して撹拌することで作成する。多孔体層7へ滴下されたるヨウ化銅溶液は多孔体層7内に浸透する。 In order to include the carrier transport substance 4a in the porous body layer 7 thus formed, as shown in FIG. 5B, a copper iodide (CuI) solution 8 is dropped onto the porous body layer 7 and spin coated ( 2000 rpm, 30s) and so on. This copper iodide solution is prepared, for example, by dissolving copper iodide (CuI) in acetonitrile so as to be 1 mol/L and stirring. The copper iodide solution dropped onto the porous body layer 7 permeates into the porous body layer 7.
 こうして、キャリア輸送物質4aを含ませた多孔体層7が形成された基材6を、純水の入った容器(不図示)に浸漬し、図5(c)に示すように、例えば、波長1024nm、周波数14000Hzのレーザ光Lを照射するレーザアブレーションにより粉砕する。このレーザ光Lの照射装置としては、例えば、西進商事製の装置を用いることができる。これにより、基材6から多孔体層7を剥離しつつ、多孔体層7を粉砕して微粒子化する。この結果、図4に示すような二次粒子としての負極活物質2または正極活物質3が作製できる。 In this way, the substrate 6 on which the porous layer 7 containing the carrier transport substance 4a is formed is immersed in a container (not shown) containing pure water, and as shown in FIG. It is crushed by laser ablation by irradiating laser light L having a wavelength of 1024 nm and a frequency of 14000 Hz. As a device for irradiating the laser light L, for example, a device manufactured by Seishin Shoji can be used. As a result, the porous body layer 7 is pulverized into fine particles while peeling off the porous body layer 7 from the base material 6. As a result, the negative electrode active material 2 or the positive electrode active material 3 as secondary particles as shown in FIG. 4 can be produced.
 上述した二次粒子となる負極活物質2または正極活物質3の作製工程は、図2における〔負極活物質準備工程〕および〔正極活物質準備工程〕に適用可能である。すなわち、〔負極活物質準備工程〕または〔正極活物質準備工程〕において、二次粒子となる負極活物質2または正極活物質3を作製すれば、実施の形態1と同様の〔複合粒子形成工程〕によって本実施の形態2に係る光触媒10Bを作製することができる。 The manufacturing process of the negative electrode active material 2 or the positive electrode active material 3 to be the secondary particles described above can be applied to the [negative electrode active material preparation step] and the [positive electrode active material preparation step] in FIG. That is, in the [negative electrode active material preparation step] or the [positive electrode active material preparation step], if the negative electrode active material 2 or the positive electrode active material 3 to be the secondary particles is produced, the same [composite particle forming step] as that of the first embodiment is performed. ], the photocatalyst 10B according to the second embodiment can be manufactured.
 上述した光触媒10Bにおいて、負極活物質2または正極活物質3における光吸収幅が小さく電流が低い場合には、二次粒子となる負極活物質2に光の吸収波長を広くするための増感剤を担持させてよい。 In the above-described photocatalyst 10B, when the light absorption width in the negative electrode active material 2 or the positive electrode active material 3 is small and the current is low, a sensitizer for widening the light absorption wavelength in the negative electrode active material 2 serving as secondary particles. May be supported.
 光触媒10Bにおいて、二次粒子となる負極活物質2に増感剤を担持させる場合には、基材上に負極活物質2の一次粒子21からなる多孔体層を形成した後、ヨウ化銅溶液の滴下前に、予め調製しておいた増感剤を含む溶液に24h浸漬させればよい。 In the photocatalyst 10B, when a sensitizer is carried on the negative electrode active material 2 which becomes the secondary particles, after forming a porous layer made of the primary particles 21 of the negative electrode active material 2 on the substrate, a copper iodide solution Before dripping, it may be immersed in a solution containing a sensitizer prepared in advance for 24 hours.
 尚、増感剤は、同様の方法で二次粒子となる正極活物質3において担持させることも可能である。また、増感剤を担持した負極活物質2または正極活物質3は、キャリア輸送体4と接触していることが好ましい。 Note that the sensitizer can be supported on the positive electrode active material 3 to be the secondary particles by the same method. Further, the negative electrode active material 2 or the positive electrode active material 3 carrying the sensitizer is preferably in contact with the carrier transporter 4.
 また、図2に示す〔複合粒子形成工程〕において、負極活物質2および正極活物質3同士が凝集することを防止するために、クーロン相互作用を用いてもよい。具体的には、キャリア輸送体4にはアニオン性ポリマーを含ませ、負極活物質2および正極活物質3にはカチオン性ポリマーを含ませる方法が考えられる。 In the [composite particle forming step] shown in FIG. 2, Coulomb interaction may be used to prevent the negative electrode active material 2 and the positive electrode active material 3 from aggregating with each other. Specifically, a method in which the carrier transporter 4 contains an anionic polymer and the negative electrode active material 2 and the positive electrode active material 3 contain a cationic polymer can be considered.
 例えば、図2の〔キャリア輸送体準備工程〕においてキャリア輸送体4の粒子を作製する際に、溶媒であるアセトニトリルにアニオン性ポリマーを分散させることで、アニオン性ポリマーを含ませたキャリア輸送体4を作製することができる。また、負極活物質2および正極活物質3については、これらを実施の形態3にて説明した二次粒子とし、二次粒子に含ませるキャリア輸送物質4aにカチオン性ポリマーを分散させることで、カチオン性ポリマーを含ませた負極活物質2および正極活物質3を作製することができる。 For example, when the particles of the carrier transporter 4 are prepared in the [carrier transporter preparing step] of FIG. 2, by dispersing the anionic polymer in acetonitrile as a solvent, the carrier transporter 4 containing the anionic polymer is obtained. Can be produced. Further, regarding the negative electrode active material 2 and the positive electrode active material 3, these are used as the secondary particles described in the third embodiment, and the cationic polymer is dispersed in the carrier transport material 4a contained in the secondary particles. The negative electrode active material 2 and the positive electrode active material 3 containing a conductive polymer can be produced.
 このように、〔複合粒子形成工程〕においてキャリア輸送体4と、負極活物質2および正極活物質3とにおいて、表面に吸着させたポリマーの異なる電荷同士によるクーロン相互作用により、キャリア輸送体4と負極活物質2および正極活物質3とは引き寄せ合い、キャリア輸送体4同士および負極活物質2同士および/または正極活物質3同士は反発する。これにより、〔複合粒子形成工程〕において、負極活物質2および正極活物質3が凝集することを防止し、キャリア輸送体4の表面を負極活物質2および正極活物質3が良好に被覆することができる。尚、上記製造過程で使用したポリマーは、〔複合粒子形成工程〕後に光触媒を加熱または焼成することで除去すればよい。 As described above, in the [composite particle forming step], the carrier transporter 4 and the negative electrode active material 2 and the positive electrode active material 3 interact with the carrier transporter 4 due to Coulomb interaction between different charges of the polymers adsorbed on the surface. The negative electrode active material 2 and the positive electrode active material 3 attract each other, and the carrier transporters 4 and the negative electrode active materials 2 and/or the positive electrode active materials 3 repel each other. This prevents the negative electrode active material 2 and the positive electrode active material 3 from aggregating in the [composite particle forming step], and the negative electrode active material 2 and the positive electrode active material 3 satisfactorily coat the surface of the carrier transporter 4. You can The polymer used in the above manufacturing process may be removed by heating or baking the photocatalyst after the [composite particle forming step].
 〔実施の形態3〕
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。図6は、本実施の形態3に係る光触媒10Cの構成を表す模式断面図である。光触媒10Cは、キャリア輸送体4と、キャリア輸送体4の表面の一部に設けられた負極20と、キャリア輸送体4の表面の他の一部に設けられた正極30とを備える。負極20と正極30とは、キャリア輸送体4を介して互いに離れている。
[Embodiment 3]
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. FIG. 6 is a schematic cross-sectional view showing the structure of the photocatalyst 10C according to the third embodiment. The photocatalyst 10C includes a carrier transporter 4, a negative electrode 20 provided on a part of the surface of the carrier transporter 4, and a positive electrode 30 provided on another part of the surface of the carrier transporter 4. The negative electrode 20 and the positive electrode 30 are separated from each other via the carrier transporter 4.
 負極20は、分解対象の物質を還元するための電極であり、粒状の負極活物質2が焼結されて形成されている。より具体的には、負極2は、平均粒径が互いに異なる2種類以上の負極活物質2から形成されることが好ましい。以下の例では、負極20は、第一負極活物質2aと第二負極活物質2bの集合によって構成されている。第1負極活物質2aおよび第2負極活物質2bで生成されたキャリアは、それぞれの接触点を介して、キャリア輸送体まで伝導する。本実施形態では、第一負極活物質2aの平均粒径が第二負極活物質2bの平均粒径よりも大きいものとすることがさらに好ましい。 The negative electrode 20 is an electrode for reducing a substance to be decomposed, and is formed by sintering a granular negative electrode active material 2. More specifically, the negative electrode 2 is preferably formed from two or more types of negative electrode active materials 2 having different average particle sizes. In the following example, the negative electrode 20 is composed of a set of the first negative electrode active material 2a and the second negative electrode active material 2b. The carriers generated by the first negative electrode active material 2a and the second negative electrode active material 2b are conducted to the carrier transporter via the respective contact points. In the present embodiment, it is more preferable that the average particle size of the first negative electrode active material 2a is larger than the average particle size of the second negative electrode active material 2b.
 第一負極活物質2aの平均粒径は、100nm以上600nm以下であることが好ましい。第二負極活物質2bの平均粒径は、5nm以上100nm以下であることが好ましく、10nm以上50nm以下であることがより好ましい。つまり、負極20における負極活物質2の粒度分布は、少なくとも2つ以上のピークを有する。ここで、第一負極活物質2aおよび第二負極活物質2bの平均粒径は、レーザ回折散乱式粒度分布測定器などにより測定することができる。 The average particle size of the first negative electrode active material 2a is preferably 100 nm or more and 600 nm or less. The average particle size of the second negative electrode active material 2b is preferably 5 nm or more and 100 nm or less, and more preferably 10 nm or more and 50 nm or less. That is, the particle size distribution of the negative electrode active material 2 in the negative electrode 20 has at least two peaks. Here, the average particle size of the first negative electrode active material 2a and the second negative electrode active material 2b can be measured by a laser diffraction/scattering particle size distribution measuring device or the like.
 また、1個の光触媒10Cに含まれる負極活物質2の密度は、キャリア輸送体4の単位面積当たり1×10個/mm~1×1013個/mmであることが好ましい。1個の光触媒10Cに含まれる負極活物質2の密度は、電子線マイクロアナライザなどにより測定することができる。 The density of the negative electrode active material 2 contained in one photocatalyst 10C is preferably 1×10 7 pieces/mm 2 to 1×10 13 pieces/mm 2 per unit area of the carrier transporter 4. The density of the negative electrode active material 2 contained in one photocatalyst 10C can be measured by an electron beam microanalyzer or the like.
 負極活物質2となる第一負極活物質2aおよび第二負極活物質2bは、実施の形態1で列挙された負極活物質2から適宜選択できる。第一負極活物質2aと第二負極活物質2bは、互いに同じ種類の化合物であってもよく、異なる種類の化合物であってもよい。同種の化合物の場合は、第一負極活物質2aと第二活物質2bとのエネルギー準位の関係や接着度を気にすることなく負極20を形成することができるのでより好ましい。 The first negative electrode active material 2a and the second negative electrode active material 2b to be the negative electrode active material 2 can be appropriately selected from the negative electrode active materials 2 listed in the first embodiment. The first negative electrode active material 2a and the second negative electrode active material 2b may be the same kind of compounds or different kinds of compounds. It is more preferable to use the same kind of compound, because the negative electrode 20 can be formed without considering the energy level relationship between the first negative electrode active material 2a and the second negative electrode active material 2b and the degree of adhesion.
 第一負極活物質2aと第二負極活物質2bとの合計に対する第二負極活物質2bの混合割合は、10%~90%であることが好ましく、さらに30%~70%であることが好ましい。第一負極化活物質2aと第二負極活物質2bとの合計に対する第二負極活物質2bの混合割合が10%未満であると、負極2の細孔径が大きくなり、負極20の表面積が小さくなり、反応効率の低下が懸念される。一方で、第一負極活物質2aと第二負極活物質2bとの合計に対する第二負極活物質2bの混合割合が90%を超えると、負極20内の細孔径が小さくなり、反応物や生成物の拡散が阻害され、反応効率の低下が懸念される。 The mixing ratio of the second negative electrode active material 2b with respect to the total of the first negative electrode active material 2a and the second negative electrode active material 2b is preferably 10% to 90%, more preferably 30% to 70%. .. When the mixing ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b is less than 10%, the pore diameter of the negative electrode 2 increases and the surface area of the negative electrode 20 decreases. Therefore, there is concern that the reaction efficiency may decrease. On the other hand, when the mixing ratio of the second negative electrode active material 2b with respect to the total of the first negative electrode active material 2a and the second negative electrode active material 2b exceeds 90%, the pore diameter in the negative electrode 20 becomes small, resulting in a reaction product or formation. There is concern that the diffusion of substances may be hindered and the reaction efficiency may decrease.
 また、負極20は、光の吸収波長を広くするための増感剤を担持していてもよい。増感剤は、実施の形態1で列挙した材料から適宜選択することができる。 Further, the negative electrode 20 may carry a sensitizer for broadening the absorption wavelength of light. The sensitizer can be appropriately selected from the materials listed in Embodiment Mode 1.
 キャリア輸送体4は、一般的にキャリア輸送に使用される材料であれば特に限定はなく、実施の形態1で列挙されたキャリア輸送体4から適宜選択できる。本形態4の場合、キャリア輸送体4の厚みは、0.5um~50umであることが好ましい。 The carrier transporter 4 is not particularly limited as long as it is a material generally used for carrier transport, and can be appropriately selected from the carrier transporters 4 listed in the first embodiment. In the case of Embodiment 4, the thickness of the carrier transporter 4 is preferably 0.5 μm to 50 μm.
 正極30は、分解対象の物質を酸化するための電極であり、正極活物質3を含む層として形成されている。正極30は、多孔質層であることが好ましく、表面積は、10m/g~100m/gであることが好ましい。正極30に含まれる粒状の正極活物質3の粒径は10nm~500μmであることが好ましい。粒状の正極活物質3が集合することで、それぞれの正極活物質3の接触点を介して、キャリア輸送体4までキャリアが伝導する。正極活物質3に用いられる材料は、実施の形態1で正極活物質3として列挙された材料から適宜選択される。 The positive electrode 30 is an electrode for oxidizing a substance to be decomposed, and is formed as a layer containing the positive electrode active material 3. The positive electrode 30 is preferably a porous layer and has a surface area of preferably 10 m 2 /g to 100 m 2 /g. The particle size of the granular positive electrode active material 3 contained in the positive electrode 30 is preferably 10 nm to 500 μm. The aggregate of the granular positive electrode active materials 3 allows the carriers to be conducted to the carrier transporter 4 via the contact points of the respective positive electrode active materials 3. The material used for the positive electrode active material 3 is appropriately selected from the materials listed as the positive electrode active material 3 in the first embodiment.
 正極30に対してキャリア輸送体4の被覆率は、5~80%であることが好ましい。キャリア輸送体4の被覆率は、断面SEM観察などにより測定することができる。 The coverage of the carrier transporter 4 with respect to the positive electrode 30 is preferably 5 to 80%. The coverage of the carrier transporter 4 can be measured by observing a cross-section SEM or the like.
 このように、光触媒10Cは、負極20とキャリア輸送体4と正極30とを有する複合粒子であり、光触媒10Cの平均粒径S(図6参照)は100nm~1000umとなる。これにより、複合粒子である光触媒10C内で酸化還元反応を効率よく行わせることができる。光触媒10Cの平均粒径Sが小さすぎる場合は、光触媒10Cの光吸収能力が小さく触媒能力が低下する恐れがある。一方、光触媒10Cの平均粒径Sが大きすぎる場合は、表面積が減少し、触媒反応の反応効率が低下する恐れがある。光触媒1の平均粒径Sの測定方法は、まず、SEMを用いて、光触媒10CのSEM像を撮影する。そのあと、画像解析ソフトを用いて、SEM画像から無作為に複数(例えば10個)の粒子を抽出し、それらの粒子の面積を求める。次にその抽出した各粒子が球形であると仮定して、平均粒径Sを求める。 As described above, the photocatalyst 10C is a composite particle having the negative electrode 20, the carrier transporter 4, and the positive electrode 30, and the average particle size S (see FIG. 6) of the photocatalyst 10C is 100 nm to 1000 μm. Thereby, the redox reaction can be efficiently performed in the photocatalyst 10C which is the composite particle. When the average particle size S of the photocatalyst 10C is too small, the light absorption ability of the photocatalyst 10C is small and the catalyst ability may be reduced. On the other hand, if the average particle size S of the photocatalyst 10C is too large, the surface area may decrease, and the reaction efficiency of the catalytic reaction may decrease. In the method for measuring the average particle size S of the photocatalyst 1, first, an SEM image of the photocatalyst 10C is taken by using SEM. After that, a plurality of (for example, 10) particles are randomly extracted from the SEM image using image analysis software, and the areas of these particles are obtained. Next, assuming that each of the extracted particles is spherical, the average particle size S is obtained.
 続いて、本実施の形態3に係る光触媒10Cの製造工程を、図7を参照して説明する。尚、図7を用いて説明する光触媒10Cの各部材の材料および各工程で用いる方法は一例である。 Next, the manufacturing process of the photocatalyst 10C according to the third embodiment will be described with reference to FIG. Note that the material used for each member of the photocatalyst 10C and the method used in each step described with reference to FIG. 7 are examples.
 (負極膜形成工程)
 図7(a)は、基材100上に、負極20となる負極膜200を形成する負極膜形成工程を示している。この負極膜形成工程では、負極活物質2となる第一負極活物質2aを含むペーストと、負極活物質2となり、第一負極活物質2aよりも平均粒径が小さい第二負極活物質2bを含むペーストとを所定の割合で混合したペースト状の第1溶液を基材100上に塗布し、乾燥後、所定の温度で所定の時間焼成する。これにより、基材100上に負極膜200が形成される。基材100に第一負極活物質2aおよび第二負極活物質2bを含むペーストを塗布する方法は、特に限定されないが、スクリーン印刷やドクターブレード法で実施することができる。負極2に増感剤を付与する場合は、この後、予め調製しておいた増感剤を含む溶液に負極膜200を形成した基材100を浸漬させ、増感剤を担持した負極20となる負極膜200を形成する。
(Negative electrode film forming step)
FIG. 7A shows a negative electrode film forming step of forming the negative electrode film 200 to be the negative electrode 20 on the base material 100. In this negative electrode film forming step, a paste containing the first negative electrode active material 2a which becomes the negative electrode active material 2 and a second negative electrode active material 2b which becomes the negative electrode active material 2 and has an average particle diameter smaller than that of the first negative electrode active material 2a. The paste-like first solution in which the containing paste is mixed at a predetermined ratio is applied onto the substrate 100, dried, and then baked at a predetermined temperature for a predetermined time. As a result, the negative electrode film 200 is formed on the base material 100. The method of applying the paste containing the first negative electrode active material 2a and the second negative electrode active material 2b to the base material 100 is not particularly limited, but may be screen printing or a doctor blade method. When a sensitizer is applied to the negative electrode 2, after that, the base material 100 having the negative electrode film 200 formed thereon is dipped in a solution containing a sensitizer prepared in advance to form the negative electrode 20 carrying the sensitizer. The negative electrode film 200 is formed.
 (キャリア輸送膜形成工程)
 図7(b)は、負極膜200上に、キャリア輸送体4となる、キャリア輸送材料を含むキャリア輸送膜400を形成するキャリア輸送膜形成工程を示している。このキャリア輸送膜形成工程では、例えば、キャリア輸送材料を有機溶媒へ溶解して撹拌することでキャリア輸送材料を含む第2溶液を作成する。そして、当該キャリア輸送材料を含む溶液を負極膜200上へ滴下して、スピンコート(2000rpm、30s)等を行う。これにより、負極膜200上にキャリア輸送膜400が形成される。キャリア輸送材料を含む溶液を負極膜200上に塗布する方法は、スピンコート法以外にもディップコーティング法やドロップキャスト法が利用できる。また、キャリア輸送膜形成工程において、負極膜200は第一負極活物質2aと第二負極活物質2bとの混合物を焼結してなる多孔質体であるため、負極膜200上へ滴下されるキャリア輸送材料の一部は負極膜200内に浸透する。
(Carrier transport film forming process)
FIG. 7B shows the carrier transport film forming step of forming the carrier transport film 400 containing the carrier transport material, which becomes the carrier transport body 4, on the negative electrode film 200. In the carrier transport film forming step, for example, the carrier transport material is dissolved in an organic solvent and stirred to form a second solution containing the carrier transport material. Then, a solution containing the carrier transport material is dropped on the negative electrode film 200, and spin coating (2000 rpm, 30 s) or the like is performed. As a result, the carrier transport film 400 is formed on the negative electrode film 200. As a method of applying the solution containing the carrier transport material onto the negative electrode film 200, a dip coating method or a drop casting method can be used in addition to the spin coating method. Further, in the carrier transport film forming step, since the negative electrode film 200 is a porous body formed by sintering a mixture of the first negative electrode active material 2a and the second negative electrode active material 2b, it is dropped onto the negative electrode film 200. Part of the carrier transport material penetrates into the negative electrode film 200.
 (正極膜形成工程)
 図7(c)は、キャリア輸送膜400上に、正極30となる正極膜300を形成する正極膜形成工程を示している。この正極膜形成工程では、例えば、正極活物質3の微粒子を含む第3溶液として水スラリーをキャリア輸送膜400に塗布後、乾燥させる。キャリア輸送膜400に正極活物質3の微粒子を含む水スラリーを塗布する方法は、特に限定されないが、スクリーン印刷やドクターブレード法で実施することができる。これにより、キャリア輸送膜400上に正極膜300が形成される。
(Positive electrode film forming step)
FIG. 7C shows a positive electrode film forming step of forming the positive electrode film 300 to be the positive electrode 30 on the carrier transport film 400. In this positive electrode film forming step, for example, an aqueous slurry as a third solution containing fine particles of the positive electrode active material 3 is applied to the carrier transport film 400 and then dried. The method of applying the water slurry containing fine particles of the positive electrode active material 3 to the carrier transport film 400 is not particularly limited, but it can be performed by screen printing or a doctor blade method. As a result, the positive electrode film 300 is formed on the carrier transport film 400.
 (微粒子化工程)
 こうして、負極膜200、キャリア輸送膜400および正極膜300からなる積層体が形成された基材100を、純水の入った容器(不図示)に浸漬し、例えば、波長300nm~11000nm、周波数10000~1000000Hzのレーザ光Lを照射するレーザアブレーションにより粉砕する(図7(d)参照)。このレーザ光Lの照射装置としては、例えば、西進商事製の装置を用いることができる。これにより、基材100から、上記積層体を剥離しつつ、上記積層体を粉砕して微粒子化する。この結果、図6に示す光触媒粒子10Cが形成される。微粒子化の工程は上記方法に限定されることなく、例えば積層体を切削することで基板から剥離させた後、ミルなどを用いて粉砕することで微粒子化してもよい。
(Particulation process)
Thus, the base material 100 on which the laminated body including the negative electrode film 200, the carrier transporting film 400, and the positive electrode film 300 is formed is immersed in a container (not shown) containing pure water, and the wavelength is, for example, 300 nm to 11000 nm and the frequency is 10000 nm. It is crushed by laser ablation by irradiating a laser beam L of up to 1,000,000 Hz (see FIG. 7D). As a device for irradiating the laser light L, for example, a device manufactured by Seishin Shoji can be used. As a result, the laminate is pulverized into fine particles while peeling the laminate from the base material 100. As a result, the photocatalyst particles 10C shown in FIG. 6 are formed. The step of forming fine particles is not limited to the above method. For example, the laminated body may be cut off to be separated from the substrate, and then finely divided by pulverizing with a mill or the like.
 尚、上記説明の製造工程では、基材100上に、負極膜200、キャリア輸送膜400、正極膜300の順で積層している。しかしながら、積層順序はこの逆であってもよく、基材100上に、正極膜300、キャリア輸送膜400、負極膜200の順で積層を行うことも可能である。但し、この場合は、最後に積層される負極膜200にキャリア輸送膜300を浸透させにくくなるため、図7に示す順序で積層を行うことが好適である。また、図7に示す順序で積層を行うことで、負極膜200のみに増感剤を担持させることも容易となる。 In the manufacturing process described above, the negative electrode film 200, the carrier transporting film 400, and the positive electrode film 300 are laminated in this order on the base material 100. However, the stacking order may be reversed, and the positive electrode film 300, the carrier transporting film 400, and the negative electrode film 200 may be stacked in this order on the base material 100. However, in this case, since it becomes difficult for the carrier transport film 300 to permeate into the negative electrode film 200 that is finally stacked, it is preferable to stack in the order shown in FIG. 7. Further, by stacking in the order shown in FIG. 7, it becomes easy to support the sensitizer only on the negative electrode film 200.
 本実施の形態3に係る光触媒10Cは、負極20が、平均粒径が互いに異なる2種類の負極活物質2、すなわち第一負極活物質2aおよび第二負極活物質2bによって形成されている。そして、第一負極活物質2aおよび第二負極活物質2bの配合割合を調整することで、負極20における細孔の大きさを調整することが容易となり、その結果、負極2へのキャリア輸送体4の浸透度を適切に調整することが容易となる。具体的には、より小粒子である第二負極活物質2bの割合を少なくすれば、負極20の細孔が大きくなり、キャリア輸送体4の浸透度は大きくなる(浸透しやすくなる)。逆に、第二負極活物質2bの割合を多くすれば、負極20の細孔が小さくなり、キャリア輸送体4の浸透度は小さくなる(浸透しにくくなる)。 In the photocatalyst 10C according to the third embodiment, the negative electrode 20 is formed of two types of negative electrode active materials 2 having different average particle sizes, that is, the first negative electrode active material 2a and the second negative electrode active material 2b. Then, by adjusting the mixing ratio of the first negative electrode active material 2a and the second negative electrode active material 2b, it becomes easy to adjust the size of the pores in the negative electrode 20, and as a result, the carrier transporter to the negative electrode 2 can be obtained. It becomes easy to adjust the degree of penetration of No. 4 appropriately. Specifically, if the proportion of the second negative electrode active material 2b, which is a smaller particle, is reduced, the pores of the negative electrode 20 become larger, and the permeability of the carrier transporter 4 becomes larger (permeation becomes easier). On the contrary, if the proportion of the second negative electrode active material 2b is increased, the pores of the negative electrode 20 become smaller, and the permeability of the carrier transporter 4 becomes smaller (it becomes difficult for the carrier transporter 4 to permeate).
 以下に本実施の形態3の具体的な実施例に基づいて効果を説明する。 The effect will be described below based on a specific example of the third embodiment.
 (実施例1)
 第一負極活物質2aとして平均粒径400nmの酸化チタン粒子を含む市販のチタンペースト(日揮触媒化成社製、商品名:PST-400C)と第二負極活物質2bとして平均粒径20nmの酸化チタン粒子を含む酸化チタンペースト(Solaronix社製、商品名:D/SP)とを、第一負極活物質2aと第二負極活物質2bとの合計に対する第二負極活物質2bの割合が30%となる酸化チタンペーストを調整した。
(Example 1)
A commercially available titanium paste containing titanium oxide particles having an average particle diameter of 400 nm (trade name: PST-400C, manufactured by JGC Catalysts and Chemicals) as the first negative electrode active material 2a and titanium oxide having an average particle diameter of 20 nm as the second negative electrode active material 2b. A titanium oxide paste containing particles (manufactured by Solaronix, trade name: D/SP) was used, and the ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b was 30%. The following titanium oxide paste was prepared.
 そのあと、上記の酸化チタンペーストをスクリーン印刷で20mm×40mmの基材(青板硝子、日本板硝子社製)100に塗布し、120℃で乾燥後、500℃1hで焼成し、基材上に厚み6μmの負極膜200を形成した。 After that, the above titanium oxide paste is applied by screen printing to a 20 mm×40 mm substrate (Blue plate glass, manufactured by Nippon Sheet Glass Co., Ltd.) 100, dried at 120° C., and baked at 500° C. for 1 h to give a thickness on the substrate. A 6 μm negative electrode film 200 was formed.
 次に、キャリア輸送材料としてヨウ化銅(シグマアルドリッチ製)をプロピルスルフィド(シグマアルドリッチ製)に溶解させ、ヨウ化銅1mol/Lとなるヨウ化銅溶液を作成した。上記で作成したヨウ化銅溶液を負極膜200上に滴下し、スピンコート装置(ミカサ社製、2000rpm、30s)で負極膜200上に厚み6μmのキャリア輸送膜400を製膜した。 Next, copper iodide (manufactured by Sigma-Aldrich) was dissolved in propyl sulfide (manufactured by Sigma-Aldrich) as a carrier transport material to prepare a copper iodide solution having a copper iodide content of 1 mol/L. The copper iodide solution prepared above was dropped onto the negative electrode film 200, and a carrier transporting film 400 having a thickness of 6 μm was formed on the negative electrode film 200 by a spin coater (Mikasa, 2000 rpm, 30 s).
 次に、正極活物質3として酸化タングステン(粒径100nm、キシダ化学社製)を水1mlに分散させた水スラリーをキャリア輸送膜400上にドクターブレード法で塗布後、120℃で10分間乾燥させた。これにより、キャリア輸送膜400上に厚さ18μmの正極膜300を形成した。 Next, an aqueous slurry prepared by dispersing tungsten oxide (particle size 100 nm, manufactured by Kishida Chemical Co., Ltd.) in 1 ml of water as the positive electrode active material 3 is applied on the carrier transport film 400 by the doctor blade method, and then dried at 120° C. for 10 minutes. It was Thus, the positive electrode film 300 having a thickness of 18 μm was formed on the carrier transport film 400.
 次に、基材100、負極膜200、キャリア輸送膜300、正極膜400が積層された積層体を、純水の入った容器に浸透させ、レーザ照射装置(西進商事製)を用いて、純水に浸漬させた積層体に波長1024nm、周波数14000Hzのレーザ光を60秒照射し、積層体を粉砕した。粉砕後、剥がれた基材100と、負極20、キャリア輸送体4、正極30が順に積層された光触媒10Cとを500μm径のふるいで分離し、実施例1の光触媒を得た。 Next, the laminated body in which the base material 100, the negative electrode film 200, the carrier transporting film 300, and the positive electrode film 400 are laminated is permeated into a container containing pure water, and pure water is obtained by using a laser irradiation device (manufactured by Seishin Trading Co., Ltd.). The laminated body immersed in water was irradiated with laser light having a wavelength of 1024 nm and a frequency of 14000 Hz for 60 seconds to pulverize the laminated body. After the pulverization, the peeled base material 100 and the photocatalyst 10C in which the negative electrode 20, the carrier transporter 4, and the positive electrode 30 were laminated in this order were separated by a sieve having a diameter of 500 μm to obtain the photocatalyst of Example 1.
 そして、実施例1で作製された光触媒の粉末8mgを実施例1の試料とした。 Then, 8 mg of the powder of the photocatalyst prepared in Example 1 was used as the sample of Example 1.
 (実施例2)
 第一負極活物質2aと第二負極活物質2bとの合計に対する第二負極活物質2bの割合が50%となる酸化チタンペーストを調整すること以外は実施例1と同様の方法で実施例2の光触媒粒子および実施例2の試料を得た。
(Example 2)
Example 2 was performed in the same manner as in Example 1 except that the titanium oxide paste was adjusted such that the ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b was 50%. The photocatalyst particles of Example 1 and the sample of Example 2 were obtained.
 (実施例3)
 第一負極活物質2aと第二負極活物質2bの合計に対する第二負極活物質2bの割合が70%となる酸化チタンペーストを調整すること以外は実施例1と同様の方法で実施例3の光触媒および実施例3の試料を得た。
(Example 3)
In the same manner as in Example 1, except that the titanium oxide paste was adjusted such that the ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b was 70%. The photocatalyst and the sample of Example 3 were obtained.
 (実施例4)
 第一負極活物質2aのみを含む酸化チタンペーストを用いること以外は実施例1と同様の方法で実施例4の試料を得た。つまり、実施例4の光触媒の負極20では、第一負極活物質2aと第二負極活物質2bとの合計に対する第二負極活物質2bの割合が0%である。
(Example 4)
A sample of Example 4 was obtained in the same manner as in Example 1 except that the titanium oxide paste containing only the first negative electrode active material 2a was used. That is, in the photocatalyst negative electrode 20 of Example 4, the ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b was 0%.
 (実施例5)
 第二負極活物質2bのみを含む酸化チタンペーストを用いること以外は実施例1と同様の方法で実施例5の試料を得た。つまり、比較例2の光触媒の負極20では、第一負極活物質2aと第二負極活物質2bとの合計に対する第二負極活物質2bの割合が100%である。
(Example 5)
A sample of Example 5 was obtained in the same manner as in Example 1 except that the titanium oxide paste containing only the second negative electrode active material 2b was used. That is, in the photocatalyst negative electrode 20 of Comparative Example 2, the ratio of the second negative electrode active material 2b to the total of the first negative electrode active material 2a and the second negative electrode active material 2b was 100%.
 (評価方法)
 実施例1~5で得られた試料の反応効率を評価するために以下の評価を行った。
(Evaluation method)
The following evaluations were performed to evaluate the reaction efficiency of the samples obtained in Examples 1 to 5.
 実施例1~5のそれぞれの試料と分解対象の物質であるアセトアルデヒドガスとを、アセトアルデヒドガス100ppmとなるように袋に封入して、室温で静置し、蛍光灯500lxを照射し、アルデヒドが分解される時間を測定した。アルデヒドの分解は、ガス検知管(型番ホルムアルデヒド91、ガステック社製)により濃度を目視にて確認した。 Each sample of Examples 1 to 5 and acetaldehyde gas, which is a substance to be decomposed, were enclosed in a bag so that the acetaldehyde gas was 100 ppm, allowed to stand at room temperature, and irradiated with a fluorescent lamp 500 lx to decompose the aldehyde. The time taken was measured. The decomposition of aldehyde was visually confirmed by a gas detector tube (formaldehyde formaldehyde 91, manufactured by Gastec).
 図8は、実施例1~5に係る光触媒10Cを用いてアセトアルデヒド分解実験を行った結果を示すグラフである。図8のグラフでは、横軸に小粒子割合(負極20において第二負極活物質2bが含まれる割合)を示し、縦軸にアセトアルデヒド分解に要した時間(日)を示している。また、小粒子割合は、負極20のSEM画像における第一負極活物質2aと第二負極活物質2bとの面積比によって示されている。 FIG. 8 is a graph showing the results of an acetaldehyde decomposition experiment using the photocatalyst 10C according to Examples 1 to 5. In the graph of FIG. 8, the horizontal axis represents the small particle ratio (the ratio of the second negative electrode active material 2b included in the negative electrode 20), and the vertical axis represents the time (day) required for acetaldehyde decomposition. The small particle ratio is shown by the area ratio of the first negative electrode active material 2a and the second negative electrode active material 2b in the SEM image of the negative electrode 20.
 図8に示されているように、小粒子割合が0%(実施例4、負極2が第一負極活物質2aのみ)の場合のアセトアルデヒド分解時間は6日であり、小粒子割合が30%、50%と増えるにつれてアセトアルデヒド分解時間は減少し、小粒子割合が50%の場合に約3日となっている。さらに、小粒子割合が70%、100%と増えるにつれてアセトアルデヒド分解時間は増加し、小粒子割合が100%(比較例2、負極2が第二粒子2bのみ)の場合に約10日となっている。 As shown in FIG. 8, when the small particle ratio is 0% (Example 4, negative electrode 2 is the first negative electrode active material 2a only), the acetaldehyde decomposition time is 6 days, and the small particle ratio is 30%. , The acetaldehyde decomposition time decreases as it increases to 50%, and it becomes about 3 days when the small particle ratio is 50%. Furthermore, the acetaldehyde decomposition time increases as the small particle proportion increases to 70% and 100%, and when the small particle proportion is 100% (Comparative Example 2, negative electrode 2 is the second particle 2b only), it takes about 10 days. There is.
 これより、光触媒10Cにおける反応速度は、負極20における小粒子割合、すなわち第一負極活物質2aおよび第二負極活物質2bの配合割合によって変化するものであり、小粒子割合は小さすぎても大きすぎても反応速度を低下させることが明らかとなった。これは、第一負極活物質2aおよび第二負極活物質2bの配合割合を調整することで、負極2における細孔の大きさが調整され、キャリア輸送体4におけるキャリア輸送効率と負極20反応効率とのバランスが取られたためと考えられる。 From this, the reaction rate in the photocatalyst 10C varies depending on the small particle ratio in the negative electrode 20, that is, the mixing ratio of the first negative electrode active material 2a and the second negative electrode active material 2b, and the small particle ratio is too large. It has been revealed that the reaction rate is lowered if it is too much. This is because the size of the pores in the negative electrode 2 is adjusted by adjusting the mixing ratio of the first negative electrode active material 2a and the second negative electrode active material 2b, and the carrier transport efficiency in the carrier transporter 4 and the negative electrode 20 reaction efficiency. It is thought that this was due to the balance being maintained.
 また、第一負極活物質2aおよび第二負極活物質2bの配合割合を調整するといった手法は、第一負極活物質2aおよび第二負極活物質2bのそれぞれにおける平均粒径を厳密に調整することなく、負極2における細孔の大きさを容易に調整できる手法である。このため、第一負極活物質2aおよび第二負極活物質2bとして市販品の負極活物質2を用いることも可能となる。 In addition, a method of adjusting the mixing ratio of the first negative electrode active material 2a and the second negative electrode active material 2b is to strictly adjust the average particle diameter of each of the first negative electrode active material 2a and the second negative electrode active material 2b. It is a method of easily adjusting the size of the pores in the negative electrode 2. Therefore, it is possible to use the commercially available negative electrode active material 2 as the first negative electrode active material 2a and the second negative electrode active material 2b.
 尚、上記説明では、負極20を第一負極活物質2aおよび第二負極活物質2bの2種類で形成する場合を例示したが、負極20を平均粒径の異なる3種類以上の負極活物質にて形成し、3種類以上の負極活物質の配合割合を調整してもよい。 In the above description, the case where the negative electrode 20 is formed of two types of the first negative electrode active material 2a and the second negative electrode active material 2b is illustrated, but the negative electrode 20 is formed into three or more types of negative electrode active materials having different average particle sizes. It may be formed by adjusting the mixing ratio of three or more kinds of negative electrode active materials.
 〔実施の形態4〕
 図9は、本実施の形態4に係る光触媒10Dの構成を表す側面図である。光触媒1Dは、キャリア輸送体4と、キャリア輸送体4の表面の一部に設けられた負極20Aと、キャリア輸送体4の表面の他の一部に設けられた正極4とを備える。負極20Aと正極4とは、キャリア輸送体4を介して互いに離れている。本実施の形態4に係る光触媒粒子10Dは、実施の形態3における負極20に代えて負極20Aを有した構造であり、キャリア輸送体4および正極30については実施の形態1における光触媒1と同様の構成である。
[Embodiment 4]
FIG. 9 is a side view showing the configuration of the photocatalyst 10D according to the fourth embodiment. The photocatalyst 1D includes a carrier transporter 4, a negative electrode 20A provided on a part of the surface of the carrier transporter 4, and a positive electrode 4 provided on another part of the surface of the carrier transporter 4. The negative electrode 20A and the positive electrode 4 are separated from each other via the carrier transporter 4. Photocatalyst particles 10D according to the fourth embodiment have a structure having negative electrode 20A in place of negative electrode 20 in the third embodiment, and carrier transporter 4 and positive electrode 30 are similar to photocatalyst 1 in the first embodiment. The composition.
 負極20Aは、実施の形態3における負極20と同様に、平均粒径の大きい第一負極活物質2aと、平均粒径の小さい第二負極活物質2bとから形成されている。但し、負極20が第一負極活物質2aおよび第二負極活物質2bを混合して形成した単層構造であるのに対し、負極20Aは、第一負極活物質2aを主に含む第一層2Aと第二負極活物質2bを主に含む第二層2Bとの多層構造とされている。また、負極20Aは、キャリア輸送体4上に第一層2Aが形成され、第一層2A上に第二層2Bが形成されている。 The negative electrode 20A is formed of a first negative electrode active material 2a having a large average particle size and a second negative electrode active material 2b having a small average particle size, as in the negative electrode 20 in the third embodiment. However, while the negative electrode 20 has a single-layer structure formed by mixing the first negative electrode active material 2a and the second negative electrode active material 2b, the negative electrode 20A has a first layer mainly containing the first negative electrode active material 2a. 2A and the second layer 2B mainly containing the second negative electrode active material 2b have a multilayer structure. In the negative electrode 20A, the first layer 2A is formed on the carrier transporter 4, and the second layer 2B is formed on the first layer 2A.
 負極20Aの層厚は100nm~50μmであることが好ましい。負極20Aの層厚が100nm未満であれば、光吸収量が減少し反応効率が低下する。一方、層厚が50μmを超えると、反応物や生成物の拡散距離が増加するため、反応効率が低下する。また、負極20Aにおける第二層2Bの層厚の割合は、10%~90%であることが好ましく、20%~80%であることがさらに好ましい。 The layer thickness of the negative electrode 20A is preferably 100 nm to 50 μm. When the layer thickness of the negative electrode 20A is less than 100 nm, the amount of light absorption decreases and the reaction efficiency decreases. On the other hand, when the layer thickness exceeds 50 μm, the diffusion distance of the reaction product and the product increases, and the reaction efficiency decreases. The ratio of the layer thickness of the second layer 2B in the negative electrode 20A is preferably 10% to 90%, more preferably 20% to 80%.
 続いて、本実施の形態4に係る光触媒10Dの製造工程を、図10を参照して説明する。尚、図10を用いて説明する光触媒10Dの各部材の材料および各工程で用いる方法は一例である。 Next, the manufacturing process of the photocatalyst 10D according to the fourth embodiment will be described with reference to FIG. Note that the material used for each member of the photocatalyst 10D and the method used in each step described with reference to FIG. 10 are examples.
 (負極膜形成工程)
 図10(a)は、基材100上に、負極20Aの第一層2Aとなる第一負極膜200aと、負極2の第二層2Bとなる第二負極膜200bを形成する負極膜形成工程を示している。この負極膜形成工程では、最初に、負極活物質2である第二粒子2bを含むペーストを基材10上に塗布し、乾燥後、300℃~550℃で30分~2時間焼成し、第二負極膜200bを形成する。さらに、負極活物質2であり、第二負極活物質2bよりも平均粒径が大きい第一負極活物質2aを含むペーストを第二負極膜200b上にスクリーン印刷で塗布し、乾燥後、300~550℃で30分~2時間焼成し、第一負極膜200aを形成する。負極2に増感剤を付与する場合は、この後、予め調製しておいた増感剤を含む溶液に24h浸漬させ、増感剤を担持した第一負極膜200aおよび第二負極膜200bを形成する。
(Negative electrode film forming step)
FIG. 10A is a negative electrode film forming step of forming a first negative electrode film 200a to be the first layer 2A of the negative electrode 20A and a second negative electrode film 200b to be the second layer 2B of the negative electrode 2 on the base material 100. Is shown. In this negative electrode film forming step, first, a paste containing the second particles 2b that is the negative electrode active material 2 is applied onto the substrate 10, dried, and then baked at 300° C. to 550° C. for 30 minutes to 2 hours. The two negative electrode film 200b is formed. Further, a paste containing the first negative electrode active material 2a, which is the negative electrode active material 2 and has an average particle size larger than that of the second negative electrode active material 2b, is applied on the second negative electrode film 200b by screen printing, dried, and then dried. The first negative electrode film 200a is formed by baking at 550° C. for 30 minutes to 2 hours. When a sensitizer is applied to the negative electrode 2, after that, the first negative electrode film 200a and the second negative electrode film 200b carrying the sensitizer are immersed in a solution containing a sensitizer prepared in advance for 24 hours. Form.
 (キャリア輸送膜形成工程、正極膜形成工程、微粒子化工程)
 図10(b)は、第一負極膜200a上に、キャリア輸送体4となる、キャリア輸送材料を含むキャリア輸送膜400を形成するキャリア輸送膜形成工程を示している。図10(c)は、キャリア輸送膜400上に、正極30となる正極膜300を形成する正極膜形成工程を示している。これらの工程は、実施の形態1における光触媒10Cの製造工程と同じである。
(Carrier transport film forming process, positive electrode film forming process, fine particle forming process)
FIG. 10B shows a carrier transport film forming step of forming the carrier transport film 400, which becomes the carrier transport body 4, and which contains the carrier transport material, on the first negative electrode film 200a. FIG. 10C shows a positive electrode film forming step of forming the positive electrode film 300 to be the positive electrode 30 on the carrier transport film 400. These steps are the same as the steps for manufacturing the photocatalyst 10C in the first embodiment.
 こうして、第二負極膜200b、第一負極膜200a、キャリア輸送膜400および正極膜300からなる積層体が形成された基材100を、純水の入った容器(不図示)に浸漬し、例えば、波長300nm~11000nm、周波数10000Hz~1000000Hzのレーザ光Lを照射するレーザアブレーションにより粉砕する(図10(d)参照)。これにより、基材100から、上記積層体を剥離しつつ、上記積層体を粉砕して微粒子化する。この結果、図9に示す光触媒10Dが形成される。 In this way, the base material 100 on which the laminated body including the second negative electrode film 200b, the first negative electrode film 200a, the carrier transport film 400, and the positive electrode film 300 is formed is immersed in a container (not shown) containing pure water, for example, Then, it is pulverized by laser ablation by irradiating laser light L having a wavelength of 300 nm to 11000 nm and a frequency of 10000 Hz to 1000000 Hz (see FIG. 10D). As a result, the laminate is pulverized into fine particles while peeling the laminate from the base material 100. As a result, the photocatalyst 10D shown in FIG. 9 is formed.
 本実施の形態4に係る光触媒10Dは、負極20Aが、第一負極活物質2aを主に含む第一層2Aと第二負極活物質2bを主に含む第二層2Bとの多層構造とされている。この場合、第一層2Aでは負極20Bの細孔が大きくなり、キャリア輸送体4の浸透度は大きくなる(浸透しやすくなる)。逆に、第二層2Bでは、負極20Aの細孔が小さくなり、キャリア輸送体4の浸透度は小さくなる(浸透しにくくなる)。その結果、キャリア輸送体4に近い第一層2Aでは、細孔径が大きく、キャリア輸送材料が負極20Aに浸透しやすいため、キャリア輸送効率を高めることができ、キャリア輸送体4から離れた第二層2Bでは、細孔径が小さく、表面積が大きくなるので、光による分解の反応効率を高めることができる。さらに、第一層2Aと第二層2Bとの厚み割合を調整することで、キャリア輸送体4におけるキャリア輸送効率と負極20Aの反応効率とのバランスを取ることも容易となる。 In the photocatalyst 10D according to the fourth embodiment, the negative electrode 20A has a multilayer structure including a first layer 2A mainly containing the first negative electrode active material 2a and a second layer 2B mainly containing the second negative electrode active material 2b. ing. In this case, in the first layer 2A, the pores of the negative electrode 20B become large, and the penetration degree of the carrier transporter 4 becomes large (it becomes easy to penetrate). On the contrary, in the second layer 2B, the pores of the negative electrode 20A are small, and the permeability of the carrier transporter 4 is small (it becomes difficult for them to penetrate). As a result, in the first layer 2A near the carrier transporter 4, the pore diameter is large and the carrier transporting material easily permeates into the negative electrode 20A, so that the carrier transporting efficiency can be increased and the second layer separated from the carrier transporter 4 can be used. In the layer 2B, since the pore diameter is small and the surface area is large, the reaction efficiency of decomposition by light can be increased. Furthermore, by adjusting the thickness ratio of the first layer 2A and the second layer 2B, it becomes easy to balance the carrier transport efficiency in the carrier transporter 4 and the reaction efficiency of the negative electrode 20A.
 以下に本実施の形態4の具体的な実施例に基づいて効果を説明する。 The effects will be described below based on a concrete example of the fourth embodiment.
 (実施例6)
 第二負極活物質2bとして平均粒径20nmの酸化チタン粒子を含む酸化チタンペースト(Solaronix社製、商品名:D/SP)をスクリーン印刷で20mm×40mm基材(青板ガラス、日本板硝子社製)に塗布し、120℃で乾燥後、500℃1hで焼成し、基材上に厚み(第二膜厚)3μmの負極膜200の第二膜200Bを形成した。
(Example 6)
Titanium oxide paste (manufactured by Solaronix, product name: D/SP) containing titanium oxide particles having an average particle diameter of 20 nm as the second negative electrode active material 2b was screen-printed to a 20 mm×40 mm substrate (blue plate glass, manufactured by Nippon Sheet Glass Co., Ltd.). And dried at 120° C. and baked at 500° C. for 1 h to form a second film 200B of the negative electrode film 200 having a thickness (second film thickness) of 3 μm on the base material.
 次に、第一負極活物質2aとして平均粒径400nmの酸化チタン粒子を含む市販のチタンペースト(日揮触媒化成社製、商品名:PST-400C)をスクリーン印刷で第二層上に塗布し、120℃で乾燥後、500℃1hで焼成し、第二膜200B上に厚み(第一膜200Aの膜厚)7μmの負極膜の第一膜200Aを形成した。こうして、第一膜200Aと第二膜200Bとの膜厚比が7:3となる負極膜を形成した。 Next, a commercially available titanium paste containing titanium oxide particles having an average particle diameter of 400 nm (manufactured by JGC Catalysts & Chemicals Co., Ltd., trade name: PST-400C) was applied onto the second layer by screen printing as the first negative electrode active material 2a, After drying at 120° C., it was baked at 500° C. for 1 h to form a first film 200A of a negative electrode film having a thickness (thickness of the first film 200A) of 7 μm on the second film 200B. Thus, a negative electrode film having a film thickness ratio of the first film 200A and the second film 200B of 7:3 was formed.
 負極膜200の形成以降の工程は、実施例1と同様に、キャリア輸送膜形成工程、正極膜形成工程、微粒子化工程を経て、実施例6の光触媒10Dを得た。そして、実施例1と同様にして実施例6の試料とした。 After the formation of the negative electrode film 200, the photocatalyst 10D of Example 6 was obtained through the carrier transport film forming process, the positive electrode film forming process, and the microparticulation process as in Example 1. Then, in the same manner as in Example 1, a sample of Example 6 was obtained.
 (実施例7)
 第一膜200Aと第二膜200Bとの膜厚の合計は実施例6の負極膜と同じにし、第一膜200Aと第二膜200Bとの膜厚比を5:5にしたこと以外は実施例6と同様の方法で実施例7の光触媒10Dおよび実施例7の試料を得た。
(Example 7)
The total film thickness of the first film 200A and the second film 200B was the same as that of the negative electrode film of Example 6, and the film thickness ratio between the first film 200A and the second film 200B was 5:5. The photocatalyst 10D of Example 7 and the sample of Example 7 were obtained in the same manner as in Example 6.
 (実施例8)
 第一膜200Aと第二膜200Bの膜厚の合計は実施例6の負極膜200と同じにし、第一膜200Aと第二膜200Bとの膜厚比を3:7にしたこと以外は実施例6と同様の方法で実施例8の光触媒および実施例8の試料を得た。
(Example 8)
The total thickness of the first film 200A and the second film 200B was the same as that of the negative electrode film 200 of Example 6, and the film thickness ratio between the first film 200A and the second film 200B was 3:7. A photocatalyst of Example 8 and a sample of Example 8 were obtained in the same manner as in Example 6.
 (評価方法)
 実施例6~実施例8の分解反応の効率を評価するために、実施例6~8の試料について、実施例4および実施例5の試料と同様の評価を行った。
(Evaluation method)
In order to evaluate the efficiency of the decomposition reactions of Examples 6 to 8, the samples of Examples 6 to 8 were evaluated in the same manner as the samples of Examples 4 and 5.
 図11は、本実施の形態4にかかる光触媒10Dを用いてアセトアルデヒド分解実験を行った結果を示すグラフである。図11のグラフでは、横軸に第二層厚み割合(負極20Aの厚みにおける第二層2Bの厚み割合)を示し、縦軸にアセトアルデヒド分解に要した時間(日)を示している。 FIG. 11 is a graph showing the results of an acetaldehyde decomposition experiment using the photocatalyst 10D according to the fourth embodiment. In the graph of FIG. 11, the horizontal axis represents the second layer thickness ratio (thickness ratio of the second layer 2B in the thickness of the negative electrode 20A), and the vertical axis represents the time (day) required for acetaldehyde decomposition.
 図11に示されているように、第二層厚み割合が0%(実施例4、負極20が第一負極活物質2aのみ)の場合のアセトアルデヒド分解時間は6日であり、第二層厚み割合が30%、50%と増えるにつれてアセトアルデヒド分解時間は減少し、第二層厚み割合が50%の場合に約2日となっている。さらに、第二層厚み割合が70%、100%と増えるにつれてアセトアルデヒド分解時間は増加し、第二層厚み割合が100%(実施例5、負極20が第二負極活物質2bのみ)の場合に約10日となっている。 As shown in FIG. 11, when the second layer thickness ratio is 0% (Example 4, negative electrode 20 is the first negative electrode active material 2a only), the acetaldehyde decomposition time is 6 days, and the second layer thickness is The acetaldehyde decomposition time decreases as the ratio increases to 30% and 50%, and is about 2 days when the second layer thickness ratio is 50%. Furthermore, the acetaldehyde decomposition time increases as the second layer thickness ratio increases to 70% and 100%, and when the second layer thickness ratio is 100% (Example 5, negative electrode 20 is the second negative electrode active material 2b only). It has been about 10 days.
 これより、光触媒10Dにおける反応速度は、負極20における第二層厚み割合によって変化するものであり、第二層厚み割合は小さすぎても大きすぎても反応速度を低下させることが明らかとなった。これは、第二層厚み割合を調整することで、キャリア輸送体4におけるキャリア輸送効率と負極20の反応効率とのバランスが取られたためと考えられる。 From this, it is clear that the reaction rate in the photocatalyst 10D changes depending on the second layer thickness ratio in the negative electrode 20, and that the reaction rate decreases if the second layer thickness ratio is too small or too large. .. It is considered that this is because the carrier transport efficiency in the carrier transporter 4 and the reaction efficiency of the negative electrode 20 were balanced by adjusting the second layer thickness ratio.
 また、本実施の形態4に係る光触媒10Dでは、アセトアルデヒド分解時間の最短時間が約2日であり、実施の形態3に係る光触媒10Cのアセトアルデヒド分解時間の最短時間(約3日)よりもさらに短くなっている。これより、負極20Aを多層構造とし、光吸収と分解物質の反応場(すなわち第二層2B)と、キャリア輸送を担う場(すなわち第一層2A)とを分離することで、光触媒としての効果をより向上可能であることが示唆される。 In the photocatalyst 10D according to the fourth embodiment, the shortest acetaldehyde decomposition time is about 2 days, which is shorter than the shortest acetaldehyde decomposition time (about 3 days) of the photocatalyst 10C according to the third embodiment. Has become. As a result, the negative electrode 20A has a multi-layered structure, and the reaction field of light absorption and decomposition material (that is, the second layer 2B) and the field that carries carrier transport (that is, the first layer 2A) are separated, and the effect as a photocatalyst is obtained. It is suggested that can be improved.
 また、第一層2Aと第二層2Bとの厚み割合を調整するといった手法は、第一負極活物質2aおよび第二負極活物質2bのそれぞれにおける平均粒径を厳密に調整することなく、キャリア輸送体4におけるキャリア輸送効率と負極2の反応効率とのバランスを容易に調整できる手法である。このため、第一負極活物質2aおよび第二負極活物質2bとして市販品の負極活物質を用いることも可能となる。 In addition, the method of adjusting the thickness ratio of the first layer 2A and the second layer 2B does not require strict adjustment of the average particle diameter of each of the first negative electrode active material 2a and the second negative electrode active material 2b, and This is a method that can easily adjust the balance between the carrier transport efficiency of the transporter 4 and the reaction efficiency of the negative electrode 2. Therefore, it is possible to use commercially available negative electrode active materials as the first negative electrode active material 2a and the second negative electrode active material 2b.
 上記実施の形態4の光触媒10Dでは、負極20Aを第一層2Aと第二層2Bとの2層構造とした。また、第一層2Aは第一負極活物質2aのみから構成され、第二層2Bは第二負極活物質2bのみから構成されるものとした。しかしながら、本開示はこれに限定されるものではなく、第一層2Aおよび第二層2Bは、それぞれ第一負極活物質2aおよび第二負極活物質2bが混合して形成されるものとし、その混合割合が互いに異なるものであってもよい。すなわち、キャリア輸送体4から離れた第二層2Bの小粒子割合を、キャリア輸送体4に近い第一層2Aの小粒子割合よりも大きくした構造であればよい。例えば、第一層2Aにおける小粒子割合を30%、第二層2Bにおける小粒子割合を70%とした構造であってもよい。無論、第一層2Aを第一負極活物質2aのみから構成し、第二層2Bを第一負極活物質2aおよび第二負極活物質2bから構成してもよく、あるいは、第一層2Aを第一負極活物質2aおよび第二負極活物質2bから構成し、第二層2Bを第二負極活物質2bのみから構成してもよい。 In the photocatalyst 10D of the fourth embodiment, the negative electrode 20A has a two-layer structure including the first layer 2A and the second layer 2B. Further, the first layer 2A is composed of only the first negative electrode active material 2a, and the second layer 2B is composed of only the second negative electrode active material 2b. However, the present disclosure is not limited to this, and the first layer 2A and the second layer 2B are formed by mixing the first negative electrode active material 2a and the second negative electrode active material 2b, respectively. The mixing ratios may be different from each other. That is, the structure may be such that the small particle proportion of the second layer 2B separated from the carrier transport body 4 is made larger than the small particle proportion of the first layer 2A close to the carrier transport body 4. For example, the structure may be such that the small particle ratio in the first layer 2A is 30% and the small particle ratio in the second layer 2B is 70%. Of course, the first layer 2A may be composed of only the first negative electrode active material 2a and the second layer 2B may be composed of the first negative electrode active material 2a and the second negative electrode active material 2b. It may be composed of the first negative electrode active material 2a and the second negative electrode active material 2b, and the second layer 2B may be composed of only the second negative electrode active material 2b.
 また、負極20Aは3層以上の多層構造であってもよい。この場合、キャリア輸送体4に近い層ほど小粒子割合を小さくし、キャリア輸送体4から離れた層ほど小粒子割合を大きくした構造であればよい。 Further, the negative electrode 20A may have a multi-layer structure having three or more layers. In this case, the structure may be such that the layer closer to the carrier transporter 4 has a smaller proportion of small particles, and the layer further away from the carrier transporter 4 has a larger proportion of small particles.
 上記の実施の形態3および4は、負極20に平均粒径が異なる2種類以上の負極活物質2を含む構造とした。しかしながら、本開示はそれに限定されるものではなく、分解対象の物質によっては、正極30に平均粒径が異なる2種類以上の正極活物質を含む構造としてもよい。つまり、正極30における正極活物質3の粒度分布は、2つ以上のピークを有していてもよい。 The above third and fourth embodiments have a structure in which the negative electrode 20 includes two or more kinds of negative electrode active materials 2 having different average particle sizes. However, the present disclosure is not limited thereto, and the positive electrode 30 may have a structure including two or more kinds of positive electrode active materials having different average particle diameters depending on the substance to be decomposed. That is, the particle size distribution of the positive electrode active material 3 in the positive electrode 30 may have two or more peaks.
 〔実施の形態5〕
 図12は、本実施の形態5に係る光触媒10Eの構成を表す側面図である。光触媒10Eは、キャリア輸送体と、キャリア輸送体の表面の一部に設けられた負極20と、キャリア輸送体4の表面の他の一部に設けられた正極30と、負極20の表面を覆う第1絶縁層5Aと、正極4の表面を覆う第2絶縁層5Bを備える。第1絶縁層5Aおよび第2絶縁層5Bを備えていること以外は、実施の形態3または4で説明した構成なので、説明は省略する。
[Embodiment 5]
FIG. 12 is a side view showing the configuration of the photocatalyst 10E according to the fifth embodiment. The photocatalyst 10E covers the carrier transporter, the negative electrode 20 provided on a part of the surface of the carrier transporter, the positive electrode 30 provided on another part of the surface of the carrier transporter 4, and the surface of the negative electrode 20. The first insulating layer 5A and the second insulating layer 5B that covers the surface of the positive electrode 4 are provided. Since the configuration is the same as that of the third or fourth embodiment except that the first insulating layer 5A and the second insulating layer 5B are provided, the description thereof will be omitted.
 第1絶縁層5Aおよび第2絶縁層5Bは、絶縁性物質を含む多孔質体によって形成される。絶縁性物質は、例えば、ガラス、酸化ジルコニウム、酸化ケイ素、酸化アルミニウム、酸化ニオブなどの伝導帯準位の高い材料を用いることができる。また、第1絶縁層5Aおよび第2絶縁層5Bはともに光透過性を有する多孔質体である。絶縁層5Aおよび絶縁層5Bは、多数の絶縁性物質からなる絶縁性粒子5pが焼結されて形成されていることが好ましい。この絶縁性粒子5pの平均粒径は1nm以上600nm以下であることが好ましく、200nm以上600nm以下であることが好ましい。絶縁性粒子5pの平均粒径が1nm未満の場合、分解対象物が絶縁層5A、5Bそれぞれの孔内に詰まってしまう虞がある。絶縁性粒子5pの粒径は、できるだけ揃っている(粒度分布が小さい)ことが好ましい。 The first insulating layer 5A and the second insulating layer 5B are formed of a porous body containing an insulating material. As the insulating substance, for example, a material having a high conduction band level such as glass, zirconium oxide, silicon oxide, aluminum oxide, or niobium oxide can be used. Further, both the first insulating layer 5A and the second insulating layer 5B are light-transmitting porous bodies. The insulating layers 5A and 5B are preferably formed by sintering insulating particles 5p made of a large number of insulating substances. The average particle size of the insulating particles 5p is preferably 1 nm or more and 600 nm or less, and more preferably 200 nm or more and 600 nm or less. When the average particle diameter of the insulating particles 5p is less than 1 nm, the decomposition target may be clogged in the holes of the insulating layers 5A and 5B. The particle diameters of the insulating particles 5p are preferably as uniform as possible (small particle size distribution).
 本実施の形態の製造方法は、実施の形態3の〔負極膜形成工程〕の前に、基材100上に、絶縁層5Aとなる絶縁膜500Aを形成する〔第1絶縁膜形成工程〕を含む。また、本実施の形態の製造方法は、実施の形態3の〔負極膜形成工程〕において、基板100上に、負極20となる負極膜200を形成するのではなく、絶縁膜500A上に負極膜200を形成する。また、本実施の形態の製造方法は、実施の形態3の〔正極膜形成工程〕において、正極膜300上に、絶縁層5Bとなる絶縁膜500Bをさらに形成する〔第2絶縁膜形成工程〕を含む。 In the manufacturing method of the present embodiment, before the [negative electrode film forming step] of the third embodiment, the insulating film 500A to be the insulating layer 5A is formed on the base material 100 [first insulating film forming step]. Including. Further, in the manufacturing method of the present embodiment, in the [negative electrode film forming step] of the third embodiment, the negative electrode film 200 to be the negative electrode 20 is not formed on the substrate 100, but the negative electrode film is formed on the insulating film 500A. Form 200. Further, in the manufacturing method of the present embodiment, in the positive electrode film forming step of the third embodiment, the insulating film 500B to be the insulating layer 5B is further formed on the positive electrode film 300 [second insulating film forming step]. including.
 〔第1絶縁膜形成工程〕
 第1絶縁膜形成工程では、絶縁性粒子5pを含むペースト(例えば、ジルコニア粒子(シグマアルドリッチ社製)を含むペースト)を準備する。そして、絶縁性粒子5pを含むペーストを基材100上に塗布し、100℃~150℃で乾燥後、300℃~700℃で数時間焼成する。これにより、基材100上に絶縁膜500Aが形成される。絶縁性粒子5pを含むペーストに含まれる溶媒は水系または有機系溶媒から適宜選択できる。また、絶縁性粒子5pを含むペーストを基材100に塗布する方法は、公知の方法であってよく、例えば、スクリーン印刷などが挙げられる。
[First insulating film forming step]
In the first insulating film forming step, a paste containing insulating particles 5p (for example, a paste containing zirconia particles (manufactured by Sigma-Aldrich)) is prepared. Then, a paste containing the insulating particles 5p is applied on the substrate 100, dried at 100° C. to 150° C., and then baked at 300° C. to 700° C. for several hours. As a result, the insulating film 500A is formed on the base material 100. The solvent contained in the paste containing the insulating particles 5p can be appropriately selected from an aqueous solvent or an organic solvent. The method of applying the paste containing the insulating particles 5p to the base material 100 may be a known method, and examples thereof include screen printing.
 〔第2絶縁膜形成工程〕
 正極膜形成工程の後、第2絶縁膜形成工程では、第1絶縁膜形成工程と同様に、絶縁性粒子5pを含むペーストを準備する。そして、絶縁性粒子5pを含むペーストを正極膜300上に塗布し、100℃~150℃で乾燥後、300℃~700℃で数時間焼成する。これにより、正極膜300上に絶縁膜500Bが形成される。
[Second insulating film forming step]
After the positive electrode film forming step, in the second insulating film forming step, a paste containing the insulating particles 5p is prepared as in the first insulating film forming step. Then, a paste containing the insulating particles 5p is applied on the positive electrode film 300, dried at 100° C. to 150° C., and then baked at 300° C. to 700° C. for several hours. As a result, the insulating film 500B is formed on the positive electrode film 300.
 〔第2絶縁膜形成工程〕の後、実施の形態3と同様に微粒子化工程を経ることで、本実施の形態に係る光触媒10Eを得る。 After the [second insulating film forming step], the photocatalyst 10E according to the present embodiment is obtained by going through the atomizing step as in the third embodiment.
 本実施の形態10に係る光触媒は、負極の表面の一部を覆うように形成された絶縁層5Aと正極の表面の一部を覆うように形成された絶縁層5Bとを備えている。そのため、複数の光触媒が分散媒に分散された状態または分散媒中やクラスターを形成している状態において、2つの光触媒の一方の負極と、他方の正極とが直接接触するのを抑制することができる。つまり、2つの光触媒の一方の負極と、他方の正極との間でリーク電流が発生することを抑制し、光触媒としての反応効率を高く維持することができる。 The photocatalyst according to the tenth embodiment includes an insulating layer 5A formed so as to cover a part of the surface of the negative electrode and an insulating layer 5B formed so as to cover a part of the surface of the positive electrode. Therefore, it is possible to suppress direct contact between one negative electrode of the two photocatalysts and the other positive electrode in the state where the plurality of photocatalysts are dispersed in the dispersion medium or in the dispersion medium or in the state where clusters are formed. it can. That is, it is possible to suppress the generation of leak current between the one negative electrode of the two photocatalysts and the other positive electrode, and to keep the reaction efficiency of the photocatalyst high.
 尚、本実施の形態に開示された光触媒では、絶縁層5Aおよび絶縁層5Bの両方を備えていたが、負極および正極の少なくともどちらか一方を覆う多孔質な絶縁層を備えている構成であってもよい。 Although the photocatalyst disclosed in the present embodiment includes both the insulating layer 5A and the insulating layer 5B, the photocatalyst includes a porous insulating layer that covers at least one of the negative electrode and the positive electrode. May be.
 上述した光触媒10~10Eは、複数の光触媒が分散媒に分散された状態や、複数の光触媒が互いにランダムな方向に固着したクラスターを形成している状態で使用されることが好ましい。ここで、分散媒は、水などの水系分散媒であってもよく、エタノール、メタノール、テルピネオールなどの有機系分散媒であってもよい。分散媒中やクラスター中でランダムな方向となるそれぞれの光触媒10~10Eは、光の入射方向に関係なく光触媒機能を発揮することができる。 The above-mentioned photocatalysts 10 to 10E are preferably used in a state in which a plurality of photocatalysts are dispersed in a dispersion medium or in a state in which a plurality of photocatalysts are fixed to each other in random directions to form clusters. Here, the dispersion medium may be an aqueous dispersion medium such as water or an organic dispersion medium such as ethanol, methanol or terpineol. Each of the photocatalysts 10 to 10E, which have random directions in the dispersion medium or the clusters, can exhibit the photocatalytic function regardless of the incident direction of light.

Claims (22)

  1.  キャリア輸送体と、
     前記キャリア輸送体の粒径よりも小さく、前記キャリア輸送体の一部を覆う複数の負極活物質と、
     前記キャリア輸送体の粒径よりも小さく、前記キャリア輸送体の一部を覆う複数の正極活物質と、を備えた、光触媒。
    A carrier transporter,
    A plurality of negative electrode active materials smaller than the particle size of the carrier transporter and covering a part of the carrier transporter,
    A photocatalyst comprising a plurality of positive electrode active materials each having a particle size smaller than that of the carrier transporter and covering a part of the carrier transporter.
  2.  前記複数の負極活物質が集合した負極と、
     前記複数の正極活物質が集合した正極と、をさらに含む、請求項1に記載の光触媒。
    A negative electrode in which the plurality of negative electrode active materials are assembled,
    The photocatalyst according to claim 1, further comprising a positive electrode in which the plurality of positive electrode active materials are aggregated.
  3.  前記負極における前記負極活物質の粒度分布は、2つ以上のピークを有する、請求項2に記載の光触媒。 The photocatalyst according to claim 2, wherein the particle size distribution of the negative electrode active material in the negative electrode has two or more peaks.
  4.  前記負極は、
      第1負極活物質と、
      前記第1負極活物質よりも平均粒径が小さい第2負極活物質を含む、請求項3に記載の光触媒。
    The negative electrode is
    A first negative electrode active material,
    The photocatalyst according to claim 3, comprising a second negative electrode active material having an average particle size smaller than that of the first negative electrode active material.
  5.  前記負極は、
      前記キャリア輸送体の一部を覆い、前記第1負極活物質を主として含む第1負極層と、
      前記第1負極層の一部を覆い、前記第2負極活物質を主として含む第2負極層と、を備える、請求項4に記載の光触媒。
    The negative electrode is
    A first negative electrode layer that covers a part of the carrier transporter and mainly contains the first negative electrode active material;
    The 2nd negative electrode layer which covers a part of said 1st negative electrode layer, and mainly contains the said 2nd negative electrode active material, The photocatalyst of Claim 4 provided.
  6.  前記第1負極活物質の平均粒径は、100nm以上600nm以下であり、
     前記第2負極活物質の平均粒径は、5nm以上100nm以下である、請求項4または5に記載の光触媒。
    The average particle size of the first negative electrode active material is 100 nm or more and 600 nm or less,
    The photocatalyst according to claim 4 or 5, wherein an average particle diameter of the second negative electrode active material is 5 nm or more and 100 nm or less.
  7.  前記正極における前記正極活物質の粒度分布は、2つ以上のピークを有する、請求項2から6の何れかに記載の光触媒。 The photocatalyst according to any one of claims 2 to 6, wherein the particle size distribution of the positive electrode active material in the positive electrode has two or more peaks.
  8.  前記負極および前記正極の少なくともどちらか一方を覆う多孔質な絶縁層をさらに備える、請求項2から7の何れかに記載の光触媒。 The photocatalyst according to claim 2, further comprising a porous insulating layer that covers at least one of the negative electrode and the positive electrode.
  9.  前記キャリア輸送体に対する前記負極活物質の粒径比が0.05以上1以下である、請求項1から請求項8の何れかに記載の光触媒。 The photocatalyst according to any one of claims 1 to 8, wherein the particle size ratio of the negative electrode active material to the carrier transporter is 0.05 or more and 1 or less.
  10.  前記キャリア輸送体の平均粒径が50nm以上100μm以下である、請求項1から9の何れかに記載の光触媒。 The photocatalyst according to claim 1, wherein the carrier transporter has an average particle size of 50 nm or more and 100 μm or less.
  11.  前記負極活物質の総重量と、前記正極活物質の総重量の重量比が2:8~8:2の範囲にある、請求項1~10の何れかに記載の光触媒。 The photocatalyst according to any one of claims 1 to 10, wherein the weight ratio of the total weight of the negative electrode active material and the total weight of the positive electrode active material is in the range of 2:8 to 8:2.
  12.  前記キャリア輸送体のフェルミ準位は、前記負極活物質の価電子帯上端の電子エネルギー準位よりも負な位置であり、前記正極活物質の伝導帯下端の電子エネルギー準位よりも正な位置である、請求項1~11の何れかに記載の光触媒。 The Fermi level of the carrier transporter is a position more negative than the electron energy level at the upper end of the valence band of the negative electrode active material, and is more positive than the electron energy level at the lower end of the conduction band of the positive electrode active material. The photocatalyst according to any one of claims 1 to 11, which is
  13.  前記キャリア輸送体は、ヨウ化銅、酸化ニッケル、PEDOT、PEDOT-PSS、spiro-OMeTADの何れかを含むホール輸送材料を有する、請求項1~12の何れかに記載の光触媒。 The photocatalyst according to any one of claims 1 to 12, wherein the carrier transporter has a hole transport material containing any of copper iodide, nickel oxide, PEDOT, PEDOT-PSS, and spiro-OMeTAD.
  14.  前記キャリア輸送体は、フラーレン、フラーレン誘導体、シロール系化合物、トリアジン系化合物の何れかを含む電子輸送材料である、請求項1~13の何れかに記載の光触媒。 The photocatalyst according to any one of claims 1 to 13, wherein the carrier transporter is an electron transporting material containing any of fullerene, fullerene derivative, silole compound and triazine compound.
  15.  前記負極活物質は、酸化チタン、チタン酸ストロンチウム、タンタル酸塩の何れかを含む、請求項1から14の何れかに記載の光触媒。 The photocatalyst according to any one of claims 1 to 14, wherein the negative electrode active material contains any one of titanium oxide, strontium titanate, and tantalate.
  16.  前記正極活物質は、前記正極活物質は、酸化鉄(III)、酸化タングステン、バナジウム酸塩の何れかを含む、請求項1から15の何れかに記載の光触媒。 The photocatalyst according to any one of claims 1 to 15, wherein the positive electrode active material contains any one of iron oxide (III), tungsten oxide, and vanadate.
  17.  前記負極活物質および前記正極活物質の少なくともいずれか一方に担持された増感剤をさらに含む、請求項1~16の何れかに記載の光触媒。 The photocatalyst according to any one of claims 1 to 16, further comprising a sensitizer supported on at least one of the negative electrode active material and the positive electrode active material.
  18.  請求項1から18の何れかに記載の光触媒を複数含み、
     前記光触媒が互いにランダムな方向に固着してクラスターを形成している、光触媒クラスター。
    A plurality of photocatalysts according to any one of claims 1 to 18 are included,
    A photocatalytic cluster in which the photocatalysts adhere to each other in random directions to form clusters.
  19.  剪断力を与えながら、キャリア輸送体と、前記キャリア輸送体の粒径よりも小さく、前記キャリア輸送体の一部を覆う複数の負極活物質と、前記キャリア輸送体の粒径よりも小さく、前記キャリア輸送体の一部を覆う複数の正極活物質を混合する工程と、を含む光触媒の製造方法。 While imparting a shearing force, the carrier transporter, a particle size smaller than the particle size of the carrier transporter, a plurality of negative electrode active materials covering a part of the carrier transporter, and smaller than the particle size of the carrier transporter, And a step of mixing a plurality of positive electrode active materials that cover a part of the carrier transporter, the method for producing a photocatalyst.
  20.  複数の負極活物質および複数の正極活物質のどちらか一方を含む第1溶液を基板に塗布し、前記基板上に第1電極膜を形成する工程と、
     キャリア輸送体を含む第2溶液を前記第1電極膜に塗布し、前記第1電極膜上に前記キャリア輸送膜を形成する工程と、
     前記第1溶液が前記負極活物質を含む場合、前記正極活物質を含み、
     前記第1溶液が前記正極活物質を含む場合、前記負極活物質を含む第3溶液を前記キャリア輸送膜に塗布し、前記キャリア輸送膜上に第2電極膜を形成する工程と、
     前記第1電極膜と前記キャリア輸送膜と前記第2電極膜を含む積層体を、前記基板から剥離し、前記積層体を粉砕する工程と、を含む光触媒の製造方法。
    Applying a first solution containing one of a plurality of negative electrode active materials and a plurality of positive electrode active materials to a substrate to form a first electrode film on the substrate;
    Applying a second solution containing a carrier transporter to the first electrode film to form the carrier transport film on the first electrode film;
    When the first solution contains the negative electrode active material, the first solution contains the positive electrode active material,
    When the first solution contains the positive electrode active material, a step of applying a third solution containing the negative electrode active material to the carrier transport film to form a second electrode film on the carrier transport film,
    A method for producing a photocatalyst, comprising a step of peeling a laminate including the first electrode film, the carrier transport film, and the second electrode film from the substrate and crushing the laminate.
  21.  請求項20に記載の光触媒の製造方法であって、
     前記基板は、第1絶縁性粒子を含む、第1絶縁膜を含み、
     前記第1電極膜を形成する工程では、前記第1絶縁膜に前記第1溶液を塗布する、光触媒の製造方法。
    The method for producing a photocatalyst according to claim 20, wherein
    The substrate includes a first insulating film including first insulating particles,
    In the step of forming the first electrode film, the method of manufacturing a photocatalyst, wherein the first solution is applied to the first insulating film.
  22.  請求項20または請求項21に記載の光触媒の製造方法であって、
     前記基板は、第2絶縁性粒子を前記第2電極膜に塗布し、第2絶縁膜を形成する工程をさらに含み、
     前記積層体は、さらに前記第2絶縁膜を含む、光触媒の製造方法。
    The method for producing the photocatalyst according to claim 20 or 21,
    The substrate may further include applying second insulating particles to the second electrode film to form a second insulating film.
    The photocatalyst manufacturing method, wherein the stacked body further includes the second insulating film.
PCT/JP2020/002112 2019-01-25 2020-01-22 Photocatalyst, photocatalyst cluster, and photocatalyst production method WO2020153399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020568184A JP7133042B2 (en) 2019-01-25 2020-01-22 Photocatalyst, photocatalytic cluster, and method for producing photocatalyst

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-011352 2019-01-25
JP2019011354 2019-01-25
JP2019011352 2019-01-25
JP2019011344 2019-01-25
JP2019-011354 2019-01-25
JP2019-011344 2019-01-25

Publications (1)

Publication Number Publication Date
WO2020153399A1 true WO2020153399A1 (en) 2020-07-30

Family

ID=71735732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002112 WO2020153399A1 (en) 2019-01-25 2020-01-22 Photocatalyst, photocatalyst cluster, and photocatalyst production method

Country Status (2)

Country Link
JP (1) JP7133042B2 (en)
WO (1) WO2020153399A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014046236A (en) * 2012-08-30 2014-03-17 Toyota Central R&D Labs Inc Semiconductor hetero particle
JP2015217373A (en) * 2014-05-21 2015-12-07 国立大学法人山梨大学 Photocatalyst composition and method for producing the same
WO2017022671A1 (en) * 2015-07-31 2017-02-09 Toto株式会社 Photocatalyst material and method for producing same
WO2019244570A1 (en) * 2018-06-22 2019-12-26 シャープ株式会社 Photocatalyst, photocatalyst cluster, photocatalyst dispersion system, and method for producing photocatalyst

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293888A (en) * 2001-03-29 2002-10-09 Fuji Photo Film Co Ltd New polymer, and material for luminescent element and luminescent element, using thereof
JP2006199986A (en) * 2005-01-19 2006-08-03 Toppan Printing Co Ltd Metal oxide film, solar cell using the oxide film, photocatalyst thin film, and method for manufacturing metal oxide film
JP5765678B2 (en) * 2010-02-25 2015-08-19 三菱化学株式会社 Photocatalyst for photowater splitting reaction and method for producing photocatalyst for photowater splitting reaction
JP5787347B2 (en) * 2011-03-10 2015-09-30 株式会社三菱ケミカルホールディングス Immobilized photocatalyst for water splitting and method for producing hydrogen and / or oxygen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014046236A (en) * 2012-08-30 2014-03-17 Toyota Central R&D Labs Inc Semiconductor hetero particle
JP2015217373A (en) * 2014-05-21 2015-12-07 国立大学法人山梨大学 Photocatalyst composition and method for producing the same
WO2017022671A1 (en) * 2015-07-31 2017-02-09 Toto株式会社 Photocatalyst material and method for producing same
WO2019244570A1 (en) * 2018-06-22 2019-12-26 シャープ株式会社 Photocatalyst, photocatalyst cluster, photocatalyst dispersion system, and method for producing photocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAEDA, KAZUHIKO ET AL.: "Z-scheme water splitting using two different semiconductor photocatalysts", ACS CATALYSIS, vol. 3, 2013, pages 1486 - 1503, XP055662930, DOI: 10.1021/cs4002089 *

Also Published As

Publication number Publication date
JPWO2020153399A1 (en) 2020-07-30
JP7133042B2 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
JP6073520B1 (en) Photocatalyst material and method for producing the same
Srinivasan et al. Balanced excitation between two semiconductors in bulk heterojunction Z-scheme system for overall water splitting
Paramanik et al. Architecture of biperovskite-based LaCrO3/PbTiO3 p–n heterojunction with a strong interface for enhanced charge anti-recombination process and visible light-induced photocatalytic reactions
Mohanty et al. Surface-plasmon-resonance-induced photocatalysis by core–shell SiO2@ Ag NCs@ Ag3PO4 toward water-splitting and phenol oxidation reactions
Shen et al. Solar light-driven photocatalytic hydrogen evolution over ZnIn 2 S 4 loaded with transition-metal sulfides
Kumar et al. Dominant {100} facet selectivity for enhanced photocatalytic activity of NaNbO 3 in NaNbO 3/CdS core/shell heterostructures
Guo et al. Effect of Mo doping and NiFe-LDH cocatalyst on PEC water oxidation efficiency
Huang et al. Stimulating charge transfer over quantum dots via ligand-triggered layer-by-layer assembly toward multifarious photoredox organic transformation
Liu et al. Synergistic effects in nanoengineered HNb3O8/graphene hybrids with improved photocatalytic conversion ability of CO2 into renewable fuels
US9718695B2 (en) Visible light sensitive photocatalyst, method of producing the same, and electrochemical water decomposition cell, water decomposition system, and organic material decomposition system each including the same
JP3941071B2 (en) Semiconductor electrode, manufacturing method thereof, and photovoltaic cell using the semiconductor electrode
JP2007273463A (en) Semiconductor element of visible light response, photoelectrode, and light energy conversion system using it
Habibi et al. Novel sulfur-doped niobium pentoxide nanoparticles: fabrication, characterization, visible light sensitization and redox charge transfer study
Ehsan et al. Facile fabrication of CeO 2–TiO 2 thin films via solution based CVD and their photoelectrochemical studies
JP2015199065A (en) Photocatalyst and production method therefor
Joudi et al. A novel strategy to produce compact and adherent thin films of SnO 2/TiO 2 composites suitable for water splitting and pollutant degradation
Lin et al. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage, and sensor systems
Mendoza-Mendoza et al. Novel silver and bismuth tungstate-based nanostructures synthesized by a green route and their application to dye photodegradation
WO2020153399A1 (en) Photocatalyst, photocatalyst cluster, and photocatalyst production method
JP7110342B2 (en) Photocatalytic clusters and photocatalytic dispersion systems
Wang et al. Novel Au/La‐SrTiO3 microspheres: Superimposed Effect of Gold Nanoparticles and Lanthanum Doping in Photocatalysis
US9761885B2 (en) Plate-shaped catalyst product and method for manufacturing same
US9308526B2 (en) Visible light sensitive photocatalyst, method of producing visible light sensitive photocatalyst, and electrochemical water decomposition cell and organic material decomposition system each including visible light sensitive photocatalyst
Xue et al. In situ fabrication of CdSe/TiO2 nanotube arrays with enhanced photoelectrical and catalytic activity
Yi et al. High-efficiency visible-light-driven oxidation of primary C–H bonds in toluene over a CsPbBr 3 perovskite supported by hierarchical TiO 2 nanoflakes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744635

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568184

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20744635

Country of ref document: EP

Kind code of ref document: A1