JP2015116535A - Catalyst for water-splitting reaction - Google Patents

Catalyst for water-splitting reaction Download PDF

Info

Publication number
JP2015116535A
JP2015116535A JP2013261473A JP2013261473A JP2015116535A JP 2015116535 A JP2015116535 A JP 2015116535A JP 2013261473 A JP2013261473 A JP 2013261473A JP 2013261473 A JP2013261473 A JP 2013261473A JP 2015116535 A JP2015116535 A JP 2015116535A
Authority
JP
Japan
Prior art keywords
catalyst
water
cowo
reaction
splitting reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013261473A
Other languages
Japanese (ja)
Inventor
坂野 充
Mitsuru Sakano
充 坂野
武士 関藤
Takeshi Sekito
武士 関藤
雄作 稲冨
Yusaku Inatomi
雄作 稲冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013261473A priority Critical patent/JP2015116535A/en
Publication of JP2015116535A publication Critical patent/JP2015116535A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a more highly effective catalyst for water-splitting reaction.SOLUTION: A catalyst for water-splitting reaction carries cobalt tungsten oxide (CoWO) on tungsten oxide (WO) as a carrier. The catalyst preferably contains 7-37 wt% of CoWO.

Description

本発明は、水の電気化学及び光化学電気分解用の触媒に関する。   The present invention relates to a catalyst for water electrochemistry and photochemical electrolysis.

水素は、クリーンな無公害化石燃料代替物であるため、理想的な燃料源であると長い間考えられてきた。1つの水素源は、下式(1)
(1) 2H2O→O2+2H2
で示されるように、水素(H2)と酸素(O2)への水の分解である。
Hydrogen has long been considered an ideal fuel source because it is a clean, non-polluting fossil fuel alternative. One hydrogen source is represented by the following formula (1)
(1) 2H 2 O → O 2 + 2H 2
As shown, the decomposition of water into hydrogen (H 2 ) and oxygen (O 2 ).

電気化学的半電池において、水分解反応は2つの半反応を含んでいる。
(2) 2H2O→O2+4H++4e-
(3) 2H++2e-→H2
そして日光を用いて水から製造された水素は、豊富な、再生可能な、クリーンエネルギー源を与える。そのため、水から水素を製造する有効な酸素発生反応反応(OER)触媒が研究されてきた。例えば光半導体に酸化反応助触媒と還元反応助触媒を担持した光水分解反応用触媒が提案され、具体的には、ロジウムを還元反応助触媒として用いられている(特許文献1参照)。しかしながら、ロジウムは希少な元素であり、高価であるため、その触媒を大スケールで用いることは実際的ではない。従って、代替燃料源としての水素の開発において、改良されたOER触媒がとても有用である。
In an electrochemical half cell, the water splitting reaction involves two half reactions.
(2) 2H 2 O → O 2 + 4H + + 4e
(3) 2H + + 2e → H 2
And the hydrogen produced from water using sunlight provides a rich, renewable, and clean energy source. Therefore, effective oxygen evolution reaction (OER) catalysts for producing hydrogen from water have been studied. For example, a photo-water splitting reaction catalyst in which an oxidation reaction promoter and a reduction reaction promoter are supported on an optical semiconductor has been proposed. Specifically, rhodium is used as a reduction reaction promoter (see Patent Document 1). However, since rhodium is a rare element and expensive, it is not practical to use the catalyst on a large scale. Thus, improved OER catalysts are very useful in the development of hydrogen as an alternative fuel source.

そこでこの水分解反応用の触媒として、タングステン酸コバルト(CoWO4)を用いることが提案されている(特許文献2参照)。 Therefore, it has been proposed to use cobalt tungstate (CoWO 4 ) as a catalyst for this water splitting reaction (see Patent Document 2).

特開2011−173102号公報JP 2011-173102 A 特開2013−155106号公報JP 2013-155106 A

水分解反応用の触媒としてタングステン酸コバルトは、単独で用いた場合、水分解性は十分に高くないことが見いだされた。そこで本願発明は、より効果の高い水分解反応用の触媒を提供することを目的とする。   It has been found that cobalt tungstate is not sufficiently high when used alone as a catalyst for water splitting reaction. Therefore, an object of the present invention is to provide a more effective catalyst for water splitting reaction.

上記課題を解決するために本発明によれば、担体としての酸化タングステン(WO3)上にタングステン酸コバルト(CoWO4)を担持してなる、水分解反応用の触媒が提供される。 In order to solve the above problems, according to the present invention, there is provided a catalyst for water splitting reaction, in which cobalt tungstate (CoWO 4 ) is supported on tungsten oxide (WO 3 ) as a support.

本発明によれば、担体としての酸化タングステン上にタングステン酸コバルトを担持してなる本発明の水分解反応用の触媒のように、タングステン酸コバルトを酸化タングステンと組み合わせて用いることにより、タングステン酸コバルトを単独で用いた場合と比較して、水分解性が向上する。   According to the present invention, cobalt tungstate is used in combination with tungsten oxide like the catalyst for water splitting reaction of the present invention in which cobalt tungstate is supported on tungsten oxide as a support. Compared with the case where is used alone, water decomposability is improved.

得られたCoWO4/WO3のTEM(透過型電子顕微鏡)像である。It is a TEM (transmission electron microscope) image of the obtained CoWO 4 / WO 3 . 水分解反応用触媒の酸素発生活性を定量化する反応系を示す図である。It is a figure which shows the reaction system which quantifies the oxygen generation activity of the catalyst for water splitting reactions. 発生する酸素を計測するためのクラーク型酸素電極計測システムの略図である。1 is a schematic diagram of a Clark-type oxygen electrode measurement system for measuring generated oxygen. 酸素発生速度を求めるためのグラフである。It is a graph for calculating | requiring an oxygen generation rate. 実施例及び比較例における酸素発生速度の触媒濃度依存性を示すグラフである。It is a graph which shows the catalyst concentration dependence of the oxygen generation rate in an Example and a comparative example. 実施例1の酸素発生速度の触媒担持量依存性を示すグラフである。2 is a graph showing the dependency of oxygen generation rate on catalyst loading in Example 1.

本発明の水分解反応用の触媒は、担体としての酸化タングステン上にタングステン酸コバルトを担持してなることを特徴とする。   The catalyst for water splitting reaction of the present invention is characterized in that cobalt tungstate is supported on tungsten oxide as a carrier.

本明細書において「触媒」とは、化学電気分解反応(又は他の電気化学反応)の速度を高め、電気分解の一部としてそれ自身反応を受けるが、その反応によりほとんど消費されず、多くの化学変化に関与する材料を意味する。本発明の触媒材料は数回の使用の間にわずかの量消費され、多くの態様においてその当初の化学状態に再生される。   As used herein, “catalyst” refers to increasing the rate of a chemical electrolysis reaction (or other electrochemical reaction) and undergoing the reaction itself as part of the electrolysis, but is hardly consumed by the reaction. It means a material involved in chemical changes. The catalyst material of the present invention is consumed in small quantities during several uses and is regenerated to its original chemical state in many embodiments.

本発明において、タングステン酸コバルト触媒は、複数の非晶質タングステン酸コバルトナノ粒子を含む。ある場合には、このナノ粒子はサイズが均一であり、100nm未満の平均粒度を有する。   In the present invention, the cobalt tungstate catalyst includes a plurality of amorphous cobalt tungstate nanoparticles. In some cases, the nanoparticles are uniform in size and have an average particle size of less than 100 nm.

担体としての酸化タングステンは、特に制限はなく、粒径200nm〜2μm程度の粒子を用いる。この酸化タングステン担体に、当該分野において公知の方法によりタングステン酸コバルト触媒を担持させることにより、本発明の水分解反応用触媒が得られる。   Tungsten oxide as a carrier is not particularly limited, and particles having a particle size of about 200 nm to 2 μm are used. By supporting the cobalt tungstate catalyst on the tungsten oxide support by a method known in the art, the water splitting reaction catalyst of the present invention can be obtained.

本発明の水分解反応用触媒におけるタングステン酸コバルト触媒の濃度は、好ましくは5〜40wt%、特に好ましくは7〜37wt%である。   The concentration of the cobalt tungstate catalyst in the catalyst for water splitting reaction of the present invention is preferably 5 to 40 wt%, particularly preferably 7 to 37 wt%.

本発明を以下の実施例によりさらに説明するが、この例は本発明の範囲を限定するものではない。   The invention is further illustrated by the following examples, which do not limit the scope of the invention.

実施例1
CoWO4/WO3の合成
担体としての酸化タングステン(WO3)を水に分散させ、この分散液に硝酸コバルト(Co(NO3)2)水溶液を加え、続けてタングステン酸ナトリウム(Na2WO4)水溶液を、Co:Wのモル比が1:1となるように加え、1〜2時間撹拌した。この溶液を真空濾過し、ろ紙上の粉末を水洗後、120℃にて一晩乾燥させた。乾燥させた粉末を粉砕後、250℃Ar雰囲気下で1時間焼成し、CoWO4/WO3を得た。CoWO4が全重量を基準として7wt%、26wt%及び46wt%になるように担持させ、また担持されているCo量はICPにより定量した。得られた7wt%担持量のCoWO4/WO3のTEM(透過型電子顕微鏡)像を図1に示す。
Example 1
Synthesis of CoWO 4 / WO 3 Tungsten oxide (WO 3 ) as a carrier is dispersed in water, an aqueous solution of cobalt nitrate (Co (NO 3 ) 2 ) is added to this dispersion, and then sodium tungstate (Na 2 WO 4). ) The aqueous solution was added so that the molar ratio of Co: W was 1: 1 and stirred for 1-2 hours. This solution was vacuum filtered, and the powder on the filter paper was washed with water and dried at 120 ° C. overnight. The dried powder was pulverized and then fired in an Ar atmosphere at 250 ° C. for 1 hour to obtain CoWO 4 / WO 3 . CoWO 4 was supported at 7 wt%, 26 wt% and 46 wt% based on the total weight, and the amount of Co supported was quantified by ICP. FIG. 1 shows a TEM (transmission electron microscope) image of the obtained 7 wt% CoWO 4 / WO 3 .

なお、このICPとは、誘導結合プラズマ発行分光分析装置(ICP−AES)を用いた方法であり、石英ガラス製の放電管(トーチ)に巻き付けた誘導コイルに高周波電流を流すことによって誘導磁場を発生させ、そこにアルゴンガスを導入してプラズマ状態とし、ネブライザなどで霧状にした溶液試料をアルゴンプラズマ中に導入すると、溶液中に存在していた金属元素、半金属元素は、6000〜7000℃の熱で原子化されるとともに励起され、その後、基底状態に戻るときに各元素固有の波長の光を放出するため、この発光線を検出することにより、波長から定性分析を、発光強度から定量分析を行うものである。   The ICP is a method using an inductively coupled plasma emission spectroscopic analyzer (ICP-AES). An induction magnetic field is generated by flowing a high-frequency current through an induction coil wound around a discharge tube (torch) made of quartz glass. When an argon gas is introduced into a plasma state and a solution sample atomized by a nebulizer or the like is introduced into the argon plasma, the metal elements and metalloid elements present in the solution are 6000 to 7000. Since it is atomized and excited by heat at ℃, and then emits light of each element's unique wavelength when returning to the ground state, by detecting this emission line, qualitative analysis from wavelength can be performed from emission intensity. Quantitative analysis is performed.

比較例1
CoWO4の合成
硝酸コバルト(Co(NO3)2)水溶液にタングステン酸ナトリウム(Na2WO4)水溶液を、Co:Wのモル比が1:1となるように加え、1〜2時間撹拌した。この溶液を真空濾過し、ろ紙上の粉末を水洗後、120℃にて一晩乾燥させた。乾燥させた粉末を粉砕後、250℃Ar雰囲気下で1時間焼成することによりCoWO4を得た。
Comparative Example 1
Synthesis of CoWO 4 An aqueous solution of sodium tungstate (Na 2 WO 4 ) was added to an aqueous solution of cobalt nitrate (Co (NO 3 ) 2 ) so that the molar ratio of Co: W was 1: 1 and stirred for 1 to 2 hours. . This solution was vacuum filtered, and the powder on the filter paper was washed with water and dried at 120 ° C. overnight. The dried powder was pulverized and then fired in an Ar atmosphere at 250 ° C. for 1 hour to obtain CoWO 4 .

比較例2及び3
CoWO4/Ga23(比較例2)及びCoWO4/TiO2(比較例3)の合成
担体としての酸化ガリウム(Ga23、比較例2)及びチタニア(TiO2、比較例3)を水に分散させ、この分散液に硝酸コバルト(Co(NO3)2)水溶液を加え、続けてタングステン酸ナトリウム(Na2WO4)水溶液を、Co:Wのモル比が1:1となるように加え、1〜2時間撹拌した。この溶液を真空濾過し、ろ紙上の粉末を水洗後、120℃にて一晩乾燥させた。乾燥させた粉末を粉砕後、250℃Ar雰囲気下で1時間焼成し、CoWO4/Ga23(比較例2)及びCoWO4/TiO2を得た。CoWO4が全重量を基準として7wt%になるように担持させ、また担持されているCo量はICPにより定量した。
Comparative Examples 2 and 3
Synthesis of CoWO 4 / Ga 2 O 3 (Comparative Example 2) and CoWO 4 / TiO 2 (Comparative Example 3) Gallium oxide (Ga 2 O 3 , Comparative Example 2) and titania (TiO 2 , Comparative Example 3) as carriers Is dispersed in water, an aqueous solution of cobalt nitrate (Co (NO 3 ) 2 ) is added to the dispersion, and then an aqueous solution of sodium tungstate (Na 2 WO 4 ) is added at a molar ratio of Co: W of 1: 1. And stirred for 1-2 hours. This solution was vacuum filtered, and the powder on the filter paper was washed with water and dried at 120 ° C. overnight. The dried powder was pulverized and then fired in an Ar atmosphere at 250 ° C. for 1 hour to obtain CoWO 4 / Ga 2 O 3 (Comparative Example 2) and CoWO 4 / TiO 2 . CoWO 4 was supported at 7 wt% based on the total weight, and the amount of Co supported was quantified by ICP.

触媒活性の評価
図2に水分解反応用触媒の酸素発生活性を定量化する反応系を示す。反応水溶液中の光増感錯体(ルテニウムトリス(2,2'-ビピリジル)過塩素酸塩)が光を吸収し、励起された電子を犠牲酸化剤(Na228)に渡して3価のルテニウム錯体になる。この3価のルテニウム錯体のホールへ、水分解によって生成した電子が再結合し、光増感錯体は2価のルテニウム錯体へ戻るとともに酸素が発生する。ここで、反応水溶液の条件を以下の表1に示す。なお、水溶液中で触媒が高分散の状態になるように、触媒に緩衝液を加えたものを2分間超音波洗浄機にかけ、さらにボルテックスミキサーによって撹拌、分散させて溶液を調製した。
Evaluation of Catalyst Activity FIG. 2 shows a reaction system for quantifying the oxygen generation activity of the water splitting reaction catalyst. The photosensitizing complex (ruthenium tris (2,2'-bipyridyl) perchlorate) in the reaction aqueous solution absorbs light and passes the excited electrons to the sacrificial oxidant (Na 2 S 2 O 8 ). It becomes a valent ruthenium complex. Electrons generated by water splitting recombine with the holes of the trivalent ruthenium complex, and the photosensitized complex returns to the divalent ruthenium complex and oxygen is generated. Here, the conditions of the reaction aqueous solution are shown in Table 1 below. A solution prepared by adding a buffer solution to the catalyst in an ultrasonic cleaner for 2 minutes and further stirring and dispersing with a vortex mixer so that the catalyst was highly dispersed in the aqueous solution.

発生する酸素(溶存酸素)は、図3に示すクラーク型酸素電極計測システム1にて計測した。25℃の温水を循環させたチャンバー2内に反応水溶液3を2ml入れ、撹拌子4にて撹拌しながら100Wキセノンランプにて光照射した。溶液がある位置での光照射強度は、あらかじめ太陽光スペクトロメーターで計測しておき、550W/m2であった。溶液中の溶存酸素が酸素透過膜5を透過し、飽和KCl溶液6中に拡散すると、0.6Vの電圧を印加したAg電極7及びPt電極8上において以下の反応が起き、起電力が生ずる。 Oxygen to be generated (dissolved oxygen) was measured by a Clark type oxygen electrode measurement system 1 shown in FIG. 2 ml of the aqueous reaction solution 3 was placed in the chamber 2 in which warm water of 25 ° C. was circulated, and irradiated with light with a 100 W xenon lamp while stirring with the stirrer 4. The light irradiation intensity at a position where the solution was present was measured in advance with a sunlight spectrometer and was 550 W / m 2 . When dissolved oxygen in the solution permeates the oxygen permeable membrane 5 and diffuses into the saturated KCl solution 6, the following reaction occurs on the Ag electrode 7 and the Pt electrode 8 to which a voltage of 0.6 V is applied, and an electromotive force is generated. .

Pt電極:O2+4H++4e- → 2H2
Ag電極:4Ag+4Cl- → 4AgCl+4e-
Pt electrode: O 2 + 4H + + 4e → 2H 2 O
Ag electrode: 4Ag + 4Cl → 4AgCl + 4e

この起電力を換算して、溶存酸素濃度を求める。この溶存酸素濃度への換算には、以下の表2に示す25℃での溶存酸素濃度での起電力量と、ジチオナイト(チオ硫酸ナトリム)で溶存酸素を還元し、溶存酸素量をゼロにしたときの起電力量の差を用いる。酸素発生速度は、得られた酸素発生量の時間変化の曲線の傾きが最大になるところより求めた(図4)。   The electromotive force is converted to obtain the dissolved oxygen concentration. In conversion to this dissolved oxygen concentration, the amount of electromotive force at the dissolved oxygen concentration at 25 ° C. shown in Table 2 below and the dissolved oxygen was reduced with dithionite (sodium thiosulfate) to reduce the dissolved oxygen amount to zero. The difference in the amount of electromotive force is used. The oxygen generation rate was obtained from the point at which the slope of the curve of the obtained oxygen generation amount with time was maximized (FIG. 4).

図5に実施例及び比較例における酸素発生速度の触媒濃度依存性を、図6に実施例1の酸素発生速度の触媒担持量依存性を示す。図5に示すように、いずれの触媒も、触媒濃度の増加とともに酸素発生速度が大きくなっていることから、図2に示す活性評価系において、水分解反応が酸素発生速度を決定していると考えられ、触媒の能力を比較することができると考えられる。図5の結果より、すべての濃度領域において、酸化タングステン担体にタングステン酸コバルトを担持させたCoWO4/WO3は、CoWO4単独よりも酸素発生速度が大きく、触媒活性が高くなっているといえる。一方、酸化タングステンと同様の光触媒である酸化ガリウム(Ga23)及びチタニア(TiO2)を担体として用いた触媒は、CoWO4単独よりも活性が低かった。また図6に示すように、同じCo濃度であっても、26wt%担持品が最も活性が高かった。 FIG. 5 shows the catalyst concentration dependency of the oxygen generation rate in Examples and Comparative Examples, and FIG. 6 shows the catalyst loading amount dependency of the oxygen generation rate in Example 1. As shown in FIG. 5, since the oxygen generation rate of each catalyst increases as the catalyst concentration increases, the water splitting reaction determines the oxygen generation rate in the activity evaluation system shown in FIG. It is thought that the ability of the catalyst can be compared. From the results shown in FIG. 5, it can be said that CoWO 4 / WO 3 in which cobalt tungstate is supported on a tungsten oxide carrier has a higher oxygen generation rate and higher catalytic activity than CoWO 4 alone in all concentration regions. . On the other hand, a catalyst using gallium oxide (Ga 2 O 3 ) and titania (TiO 2 ), which are photocatalysts similar to tungsten oxide, was less active than CoWO 4 alone. Moreover, as shown in FIG. 6, even if it was the same Co density | concentration, the 26 wt% support | carrier goods had the highest activity.

Claims (2)

担体としての酸化タングステン(WO3)上にタングステン酸コバルト(CoWO4)を担持してなる、水分解反応用の触媒。 A catalyst for water splitting reaction, comprising cobalt tungstate (CoWO 4 ) supported on tungsten oxide (WO 3 ) as a carrier. CoWO4を7〜37wt%含む、請求項1記載の水分解反応用の触媒。 The CoWO 4 containing 7~37wt%, the catalyst for the water decomposition reaction according to claim 1, wherein.
JP2013261473A 2013-12-18 2013-12-18 Catalyst for water-splitting reaction Pending JP2015116535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261473A JP2015116535A (en) 2013-12-18 2013-12-18 Catalyst for water-splitting reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261473A JP2015116535A (en) 2013-12-18 2013-12-18 Catalyst for water-splitting reaction

Publications (1)

Publication Number Publication Date
JP2015116535A true JP2015116535A (en) 2015-06-25

Family

ID=53529790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261473A Pending JP2015116535A (en) 2013-12-18 2013-12-18 Catalyst for water-splitting reaction

Country Status (1)

Country Link
JP (1) JP2015116535A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179392A (en) * 2016-07-19 2016-12-07 温州大学 A kind of preparation method of the cobaltous tungstate nanometer rods eelctro-catalyst of iron ion doping
CN109806902A (en) * 2019-02-28 2019-05-28 陕西科技大学 A kind of W18O49/NiWO4The preparation method of/NF self-supporting electrocatalysis material
CN113713826A (en) * 2021-09-15 2021-11-30 辽宁大学 Fe3+/CoWO4Composite acoustic catalyst and preparation method and application thereof
CN113713830A (en) * 2021-09-15 2021-11-30 辽宁大学 CoWO for degrading dye4/Ag2O composite acoustic catalyst and preparation method and application thereof
JP2021186750A (en) * 2020-05-29 2021-12-13 国立大学法人山口大学 Catalyst for oxygen evolution reaction and method for producing the same
CN114653383A (en) * 2022-04-01 2022-06-24 浙江大学 Indium zinc sulfide photocatalyst with surface modified by cobalt tungstate and cobaltosic oxide together and preparation method and application thereof
CN114808013A (en) * 2022-05-06 2022-07-29 台州学院 Tungsten trioxide/manganese tungstate/cobalt tungstate photoelectrode material and preparation method and application thereof
CN115700300A (en) * 2022-11-25 2023-02-07 安徽工业大学 Multi-element transition metal compound electrocatalyst material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068007A (en) * 2004-10-18 2005-03-17 National Institute Of Advanced Industrial & Technology Method for manufacturing hydrogen and oxygen by iodine compound and semiconductor photocatalyst
JP2005170780A (en) * 2003-11-18 2005-06-30 Japan Science & Technology Agency Apparatus and method of decomposing water and mechanocatalyst for water decomposition
JP2011173102A (en) * 2010-02-25 2011-09-08 Mitsubishi Chemicals Corp Photocatalyst for water photolysis reaction and method for producing the same
JP2013155106A (en) * 2012-01-31 2013-08-15 Toyota Motor Engineering & Manufacturing North America Inc Water oxidation catalyst
JP2013154333A (en) * 2012-01-31 2013-08-15 Toyota Motor Corp Method and apparatus for producing hydrogen and oxygen by decomposing water with photocatalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170780A (en) * 2003-11-18 2005-06-30 Japan Science & Technology Agency Apparatus and method of decomposing water and mechanocatalyst for water decomposition
JP2005068007A (en) * 2004-10-18 2005-03-17 National Institute Of Advanced Industrial & Technology Method for manufacturing hydrogen and oxygen by iodine compound and semiconductor photocatalyst
JP2011173102A (en) * 2010-02-25 2011-09-08 Mitsubishi Chemicals Corp Photocatalyst for water photolysis reaction and method for producing the same
JP2013155106A (en) * 2012-01-31 2013-08-15 Toyota Motor Engineering & Manufacturing North America Inc Water oxidation catalyst
JP2013154333A (en) * 2012-01-31 2013-08-15 Toyota Motor Corp Method and apparatus for producing hydrogen and oxygen by decomposing water with photocatalyst

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FENG, Y. ET AL: "Sol-Flame Synthesis: A General Strategy To Decorate Nanowires with Metal Oxide/Noble Metal Nanoparti", NANO LETT., vol. 13, no. 3, JPN6016042882, 11 April 2012 (2012-04-11), pages 855 - 860, ISSN: 0003435179 *
FENG, Y. ET AL: "Sol-Flame Synthesis: A General Strategy To Decorate Nanowires with Metal Oxide/Noble Metal Nanoparti", NANO LETT., vol. 13, no. 3, JPN6016042884, 11 April 2012 (2012-04-11), pages 855 - 860, ISSN: 0003435180 *
SHAO, G. ET AL: "The preparation of CoWO4/WO3 nanocomposite powder", JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATER. SCI. ED., vol. 19, no. 2, JPN6016042886, June 2004 (2004-06-01), pages 1 - 3, ISSN: 0003435181 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179392A (en) * 2016-07-19 2016-12-07 温州大学 A kind of preparation method of the cobaltous tungstate nanometer rods eelctro-catalyst of iron ion doping
CN109806902A (en) * 2019-02-28 2019-05-28 陕西科技大学 A kind of W18O49/NiWO4The preparation method of/NF self-supporting electrocatalysis material
CN109806902B (en) * 2019-02-28 2021-07-06 陕西科技大学 W18O49/NiWO4Preparation method of/NF self-supporting electrocatalytic material
JP2021186750A (en) * 2020-05-29 2021-12-13 国立大学法人山口大学 Catalyst for oxygen evolution reaction and method for producing the same
JP7444445B2 (en) 2020-05-29 2024-03-06 国立大学法人山口大学 Catalyst for oxygen evolution reaction and method for producing the same
CN113713826A (en) * 2021-09-15 2021-11-30 辽宁大学 Fe3+/CoWO4Composite acoustic catalyst and preparation method and application thereof
CN113713830A (en) * 2021-09-15 2021-11-30 辽宁大学 CoWO for degrading dye4/Ag2O composite acoustic catalyst and preparation method and application thereof
CN114653383A (en) * 2022-04-01 2022-06-24 浙江大学 Indium zinc sulfide photocatalyst with surface modified by cobalt tungstate and cobaltosic oxide together and preparation method and application thereof
CN114808013A (en) * 2022-05-06 2022-07-29 台州学院 Tungsten trioxide/manganese tungstate/cobalt tungstate photoelectrode material and preparation method and application thereof
CN115700300A (en) * 2022-11-25 2023-02-07 安徽工业大学 Multi-element transition metal compound electrocatalyst material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2015116535A (en) Catalyst for water-splitting reaction
Fan et al. High-efficiency photoelectrocatalytic hydrogen generation enabled by Ag deposited and Ce doped TiO2 nanotube arrays
Chen et al. The role of CuO in promoting photocatalytic hydrogen production over TiO2
Momeni et al. Cobalt modified tungsten–titania nanotube composite photoanodes for photoelectrochemical solar water splitting
Ge et al. In situ synthesis of cobalt–phosphate (Co–Pi) modified g-C3N4 photocatalysts with enhanced photocatalytic activities
Antony et al. Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization
Xie et al. Long‐lived, visible‐light‐excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting
Liu et al. A critical study of the generality of the two step two electron pathway for water splitting by application of a C 3 N 4/MnO 2 photocatalyst
Hou et al. Efficient visible-light-driven photocatalytic hydrogen production using CdS@ TaON core–shell composites coupled with graphene oxide nanosheets
CN110947376B (en) Monoatomic noble metal anchoring defect type WO3/TiO2Nanotubes, their preparation and use
Si et al. Sub-nanometer Co 3 O 4 clusters anchored on TiO 2 (B) nano-sheets: Pt replaceable Co-catalysts for H 2 evolution
Bi et al. Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity
Xu et al. Improving photo-oxidation activity of water by introducing Ti3+ in self-ordered TiO2 nanotube arrays treated with Ar/NH3
Ke et al. ZrO2/g-C3N4 with enhanced photocatalytic degradation of methylene blue under visible light irradiation
JP4997454B2 (en) Semiconductor electrode and energy conversion system using the same
Rawal et al. Novel ZnFe2O4/WO3, a highly efficient visible-light photocatalytic system operated by a Z-scheme mechanism
He et al. Highly efficient and stable Ag/AgIO 3 particles for photocatalytic reduction of CO 2 under visible light
US8968534B2 (en) Water oxidation catalyst
Vosoughi et al. Novel ternary g-C3N4 nanosheet/Ag2MoO4/AgI photocatalysts: impressive photocatalysts for removal of various contaminants
KR102449541B1 (en) Photocatalyst comprising bimetallic nanoparticle and graphene oxide for denitrification reaction, and water treatment method using same
Fiorenza et al. Solar photocatalytic H2 production over CeO2-based catalysts: Influence of chemical and structural modifications
Ibrahim et al. Enhanced hydrogen evolution reaction on highly stable titania‐supported PdO and Eu2O3 nanocomposites in a strong alkaline solution
Mandari et al. Solar light response with noble metal-free highly active copper (II) phosphate/titanium dioxide nanoparticle/copper (II) oxide nanocomposites for photocatalytic hydrogen production
Feng et al. Architecting epitaxial-lattice-mismatch-free (LMF) zinc oxide/bismuth oxyiodide nano-heterostructures for efficient photocatalysis
Pan et al. Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509