JP6213958B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP6213958B2
JP6213958B2 JP2013211926A JP2013211926A JP6213958B2 JP 6213958 B2 JP6213958 B2 JP 6213958B2 JP 2013211926 A JP2013211926 A JP 2013211926A JP 2013211926 A JP2013211926 A JP 2013211926A JP 6213958 B2 JP6213958 B2 JP 6213958B2
Authority
JP
Japan
Prior art keywords
tio
electrode
aqueous solution
photocatalyst
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013211926A
Other languages
Japanese (ja)
Other versions
JP2014123554A (en
Inventor
康雄 泉
康雄 泉
優太 小倉
優太 小倉
幸子 藤嶋
幸子 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2013211926A priority Critical patent/JP6213958B2/en
Publication of JP2014123554A publication Critical patent/JP2014123554A/en
Application granted granted Critical
Publication of JP6213958B2 publication Critical patent/JP6213958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、燃料電池に関する。 The present invention relates to a fuel cell.

燃料電池とは、燃料の酸化還元反応を用いることにより電気を取り出すことのできる電池であり、一般に、酸素と水素の反応を用いて電気を取り出すものであって、重金属等を使う他の化学電池に比べ地球環境に優しく、現在も活発に研究開発が行われている。 A fuel cell is a cell that can take out electricity by using a redox reaction of fuel, and generally takes out electricity using a reaction between oxygen and hydrogen, and is another chemical cell that uses heavy metals or the like. Compared to, it is friendly to the global environment, and research and development are still underway.

また、上記燃料電池において、光エネルギーを用いてより効率的に電気を取り出そうとする試みがなされており、例えば下記特許文献1に、光触媒を用いた燃料電池が開示されている。 In the fuel cell, attempts have been made to extract electricity more efficiently using light energy. For example, Patent Document 1 below discloses a fuel cell using a photocatalyst.

特開2009−218080号公報JP 2009-210808 A

しかしながら、上記特許文献1に記載の技術は、メタノール等の液相燃料を使用しており、その場で燃料を合成するような仕組みではない。さらに、液相燃料の酸化反応を含むため、温室効果ガスである二酸化炭素が発電時に発生してしまうといった課題がある。 However, the technique described in Patent Document 1 uses a liquid phase fuel such as methanol and is not a mechanism for synthesizing the fuel on the spot. Furthermore, since the oxidation reaction of liquid phase fuel is included, there is a problem that carbon dioxide, which is a greenhouse gas, is generated during power generation.

そこで、本発明は上記課題を鑑み、二酸化炭素を発生させることなく、より簡便な構成により電気を発生することのできる光触媒を用いた燃料電池を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a fuel cell using a photocatalyst that can generate electricity with a simpler configuration without generating carbon dioxide.

上記課題を解決する本発明の一の観点に係る燃料電池は、酸水溶液と、酸水溶液中に浸される一対の電極と、酸水溶液中の水を分解する光触媒と、酸水溶液、一対の電極及び光触媒を収容し、少なくとも一部が透過性を有する部材で構成される収容部材と、を有することを特徴とする。 A fuel cell according to one aspect of the present invention that solves the above problems includes an acid aqueous solution, a pair of electrodes immersed in the acid aqueous solution, a photocatalyst that decomposes water in the acid aqueous solution, an acid aqueous solution, and a pair of electrodes. And a photocatalyst, and at least a part of the housing member made of a permeable member.

以上、本発明により、二酸化炭素を発生させることなく、より簡便な構成により電気を発生することのできる光触媒を用いた燃料電池を提供することができる。 As described above, the present invention can provide a fuel cell using a photocatalyst capable of generating electricity with a simpler configuration without generating carbon dioxide.

実施形態に係る燃料電池の断面の概略を示す図である。It is a figure which shows the outline of the cross section of the fuel cell which concerns on embodiment. 酸化タングステンの紫外可視スペクトルを示す図である。It is a figure which shows the ultraviolet visible spectrum of tungsten oxide. WO光触媒による水の光酸化分解反応試験での経時変化を示す図である。WO 3 is a diagram showing changes with time in the light oxidative decomposition test of water by the photocatalyst. 実施例1,2,3,5,6に係るセルの断面の概略図である。3 is a schematic view of a cross section of a cell according to Examples 1, 2, 3, 5, and 6. FIG. 実施例で電極を結線することにより形成される回路を示す図である。It is a figure which shows the circuit formed by connecting an electrode in an Example. 実施例1に係る燃料電池の回路に流れる電流の変化を示す図である。It is a figure which shows the change of the electric current which flows into the circuit of the fuel cell which concerns on Example 1. FIG. 実施例2に係る燃料電池の回路に流れる電流の変化を示す図である。It is a figure which shows the change of the electric current which flows into the circuit of the fuel cell which concerns on Example 2. FIG. 実施例3に係る燃料電池の回路に流れる電流の変化を示す図である。It is a figure which shows the change of the electric current which flows into the circuit of the fuel cell which concerns on Example 3. FIG. 実施例3に係る燃料電池の起電力を測定した結果の図である。It is a figure of the result of having measured the electromotive force of the fuel cell which concerns on Example 3. FIG. 実施例4に係るセルの断面の概略図である。6 is a schematic cross-sectional view of a cell according to Example 4. FIG. 実施例4に係る燃料電池の回路に流れる電流の変化を示す図である。It is a figure which shows the change of the electric current which flows into the circuit of the fuel cell which concerns on Example 4. FIG. 実施例5に係る燃料電池の回路に流れる電流の変化を示す図である。It is a figure which shows the change of the electric current which flows into the circuit of the fuel cell which concerns on Example 5. FIG. BiOClの紫外可視スペクトルを示す図である。It is a figure which shows the ultraviolet visible spectrum of BiOCl. 実施例6に係る電解液がpH3の塩酸水溶液である燃料電池の回路に流れる電流の変化を示す図である。It is a figure which shows the change of the electric current which flows into the circuit of the fuel cell whose electrolyte solution which concerns on Example 6 is hydrochloric acid aqueous solution of pH3. 実施例6に係る電解液がpH2の塩酸水溶液である燃料電池の回路に流れる電流の変化を示す図である。It is a figure which shows the change of the electric current which flows into the circuit of the fuel cell whose electrolyte solution which concerns on Example 6 is hydrochloric acid aqueous solution of pH2.

以下、本発明の実施形態について、図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different forms, and is not limited to the following embodiments and examples.

図1は、本実施形態に係る燃料電池(以下「本電池」という。)1の概略を示す図である。本電池1は、酸水溶液2と、窒素ガスまたは酸素ガス3と、酸水溶液2中に浸される一対の電極4と、酸水溶液2中の水を分解する光触媒5と、酸水溶液2、窒素ガスまたは酸素ガス3、一対の電極4及び光触媒5を収容し、少なくとも一部が透過性を有する部材で構成される収容部材6と、を有する。本電池は、一対の電極を電子部品を介して導線により接続することで一対の電極間に電気を流すことができる。 FIG. 1 is a diagram showing an outline of a fuel cell (hereinafter referred to as “the present battery”) 1 according to the present embodiment. The battery 1 includes an acid aqueous solution 2, nitrogen gas or oxygen gas 3, a pair of electrodes 4 immersed in the acid aqueous solution 2, a photocatalyst 5 for decomposing water in the acid aqueous solution 2, an acid aqueous solution 2, nitrogen And a housing member 6 that houses a gas or oxygen gas 3, a pair of electrodes 4 and a photocatalyst 5 and at least a part of which has permeability. In the present battery, electricity can flow between the pair of electrodes by connecting the pair of electrodes with a conductive wire via an electronic component.

本実施形態において酸水溶液2は、酸を含み酸性を示す水溶液をいう。酸性とすることで、水溶液内でプロトンが関わる化学反応を速めるといった効果がある。pHとしては、上記効果を達成することができる限りにおいて限定されるわけではないが6以下であることが好ましく、より好ましくは2以上5以下の範囲である。 In this embodiment, the acid aqueous solution 2 refers to an aqueous solution containing an acid and showing acidity. By making it acidic, there is an effect of accelerating a chemical reaction involving protons in an aqueous solution. The pH is not limited as long as the above effect can be achieved, but is preferably 6 or less, more preferably 2 or more and 5 or less.

また本実施形態において、酸水溶液2に含まれる酸としては、本実施形態の効果を達成することができる限りにおいて限定されるわけではないが、例えば塩酸、硫酸、硝酸、リン酸、炭酸、等を挙げることができる。とりわけ、酸水溶液の濃度を変化させることが容易な、強酸性の塩酸、硫酸、硝酸がとりわけ好適である。酸水溶液2は、水溶液中の水が光触媒によって分解される際に生ずる電子を外部回路に供給するのに対応してプロトンをもう一方の電極触媒に伝達するのに必要な物質である。 In the present embodiment, the acid contained in the acid aqueous solution 2 is not limited as long as the effects of the present embodiment can be achieved. For example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, carbonic acid, etc. Can be mentioned. In particular, strongly acidic hydrochloric acid, sulfuric acid, and nitric acid, which can easily change the concentration of the aqueous acid solution, are particularly suitable. The acid aqueous solution 2 is a substance necessary for transmitting protons to the other electrode catalyst in response to supplying electrons generated when water in the aqueous solution is decomposed by the photocatalyst to an external circuit.

また本実施形態において、酸素ガス3は、プロトン及び電子と反応して水となり、一対の電極間に電気を流すのに必要な物質である。酸素ガス3は、収容部材外部から常時供給する構成としてもよく、また収容部材6中に密封された状態としても、または外部から供給せずに収容部材6内で循環する構成としてもよい。密封する場合、酸素ガスの圧力(分圧)としては、例えば0.2atm以上1.1atm以下の範囲内にあることが好ましい。 In the present embodiment, the oxygen gas 3 reacts with protons and electrons to become water, and is a substance necessary for flowing electricity between a pair of electrodes. The oxygen gas 3 may be constantly supplied from the outside of the housing member, may be sealed in the housing member 6, or may be circulated in the housing member 6 without being supplied from the outside. In the case of sealing, the pressure (partial pressure) of the oxygen gas is preferably in the range of 0.2 atm or more and 1.1 atm or less, for example.

また本実施形態において一対の電極4は、酸水溶液2中に浸されるとともに、水溶液中の水が光触媒によって分解される際に生ずる電子を外部回路に供給する一方、外部回路を経由して戻ってきた電子が電極4内において、酸水溶液2からイオン交換膜を通過したプロトン及び酸素ガスと反応して水を発生させる。本実施形態に係る電極4の材料としては、上記機能を有する限りにおいて限定されるわけではないが、C、ITO(Indium Tin Oxide)、FTO(fluorine−doped Tin Oxide)、TO(Tin Oxide)などを含んだものを採用することができる。なお、ITO等の薄膜を電極として用いる場合、ガラス等の基板上に付することが好ましい。 In the present embodiment, the pair of electrodes 4 are immersed in the acid aqueous solution 2 and supply electrons generated when the water in the aqueous solution is decomposed by the photocatalyst to the external circuit, while returning via the external circuit. The generated electrons react with protons and oxygen gas that have passed through the ion exchange membrane from the acid aqueous solution 2 in the electrode 4 to generate water. The material of the electrode 4 according to the present embodiment is not limited as long as it has the above function, but C, ITO (Indium Tin Oxide), FTO (fluorine-doped Tin Oxide), TO (Tin Oxide), etc. It is possible to adopt one that includes In addition, when using thin films, such as ITO, as an electrode, attaching to substrates, such as glass, is preferable.

また本実施形態において光触媒5(アノード側)は、光が照射されることによって水溶液中の水を分解することができるものであり、より具体的には水を酸素、プロトン、電子に分解させるものである。本実施形態に係る光触媒5の例としては、上記機能を有する限りにおいて限定されるわけではないが、WO、TiO、SnO、及びZnOの少なくともいずれかを含むものであることが好ましい。これらは200nm以上700nm以下の範囲の波長領域において上記分解活性を十分に発揮することができ、とりわけ紫外可視領域近傍の光で発電することが可能となる。 In the present embodiment, the photocatalyst 5 (anode side) is capable of decomposing water in the aqueous solution when irradiated with light, and more specifically, decomposes water into oxygen, protons, and electrons. It is. Examples of the photocatalyst 5 according to the present embodiment are not limited as long as the photocatalyst 5 has the above functions, but preferably include at least one of WO 3 , TiO 2 , SnO, and ZnO. These can sufficiently exhibit the above-described decomposition activity in a wavelength range of 200 nm or more and 700 nm or less, and in particular, can generate electric power with light in the vicinity of the ultraviolet-visible range.

なお、下記に、光触媒による反応について示す。本電池では、アノードで水を光分解して水素を得て、カソードでその水素を化学反応させる。この際の両極間での電子の移動を電力として得る。具体的には、水溶液に浸けたアノード電極光触媒に紫外可視光を照射すると、光触媒内に励起電子と正孔が発生する。この正孔が消費されることで、水が酸素とプロトンとに分解されて(下記反応式1)、電子が過剰の状態になる。この電子が外部回路を、反応1で生じたプロトンが酸水溶液および膜をそれぞれ伝わり、カソードに到達する。カソード電極光触媒の選択により、たとえばプロトンを酸素と反応させ、水に戻すことができる(下記反応式2)。またプロトンと電子との反応により水素ガスとして取り出すこともできる(下記反応式3)。
In addition, below, it shows about the reaction by a photocatalyst. In this battery, water is photolyzed at the anode to obtain hydrogen, and the hydrogen is chemically reacted at the cathode. At this time, the movement of electrons between the two electrodes is obtained as electric power. Specifically, when ultraviolet visible light is irradiated to the anode electrode photocatalyst immersed in an aqueous solution, excited electrons and holes are generated in the photocatalyst. By consuming these holes, water is decomposed into oxygen and protons (the following reaction formula 1), and the electrons become excessive. These electrons travel through the external circuit, and protons generated in reaction 1 travel through the acid aqueous solution and the membrane, respectively, and reach the cathode. By selecting the cathode electrode photocatalyst, for example, protons can be reacted with oxygen and returned to water (reaction formula 2 below). Moreover, it can also take out as hydrogen gas by reaction of a proton and an electron (following Reaction formula 3).

また本実施形態において、光触媒は、上記電極の両方の上に形成されていることが好ましい。電極上に光触媒を配置すると、電極に極めて近い位置で光触媒反応を起こし、水を酸素とプロトンに分解させる一方、電子を外部回路に供給させやすくなる。 また光触媒を、カソード側においても配置することが好ましい。カソード側の電極上に配置することで外部回路経由で伝達してきた電子が光触媒内に取り込まれやすくなり、その結果酸素ガスの光を利用した還元反応がより促進されるといった効果がある。 本実施形態に係る光触媒5(カソード側)の例としては、上記機能を有する限りにおいて限定されるわけではないが、WO、およびナノ粒子担持n型半導体、例えばPt−TiO、Ag−TiO、および各種p型半導体、例えばBiOCl,CaFe,ZnMn,InP,AgGaSの少なくともいずれかを含むものであることが好ましいが、これに限定されるものではない。ここでより仕事関数が大きい金属のナノ粒子に接した担持n型半導体は、金属ナノ粒子との界面においてバンドが高エネルギー側に曲がるため、n型半導体から金属ナノ粒子に流れた電子は逆に戻りにくくなり、整流作用を示すことでカソードにおいて円滑に光還元作用を示すと考えることができる。一方、各種p型半導体では水溶液との界面においてバンドが低エネルギー側に曲がるため、カソードに用いた場合には水溶液中に電子を移行させやすく、やはり円滑に光還元作用を示すといえる。 In the present embodiment, the photocatalyst is preferably formed on both of the electrodes. When a photocatalyst is disposed on the electrode, a photocatalytic reaction occurs at a position very close to the electrode, and water is decomposed into oxygen and protons, while electrons are easily supplied to an external circuit. Moreover, it is preferable to arrange the photocatalyst also on the cathode side. By disposing on the cathode side electrode, the electrons transmitted through the external circuit are easily taken into the photocatalyst, and as a result, the reduction reaction using the light of oxygen gas is further promoted. Examples of the photocatalyst 5 (cathode side) according to the present embodiment are not limited as long as the photocatalyst 5 (cathode side) has the above function, but WO 3 and nanoparticle-supported n-type semiconductors such as Pt—TiO 2 and Ag—TiO 2 and various p-type semiconductors such as BiOCl, CaFe 2 O 4 , ZnMn 2 O 4 , InP, and AgGaS 2 are preferable, but are not limited thereto. Here, a supported n-type semiconductor in contact with a metal nanoparticle having a higher work function has a band that bends to the high energy side at the interface with the metal nanoparticle, so the electrons flowing from the n-type semiconductor to the metal nanoparticle are reversed. It becomes difficult to return, and it can be considered that the photoreduction action is smoothly shown in the cathode by showing the rectifying action. On the other hand, in various p-type semiconductors, the band bends to the low energy side at the interface with the aqueous solution, so that when used for the cathode, it is easy to transfer electrons into the aqueous solution, and it can be said that the photoreduction action is smoothly exhibited.

また本実施形態において、収容部材6は、上記のとおり、酸水溶液2、窒素ガスまたは酸素ガス3、一対の電極4及び光触媒5を収容し、少なくとも一部が透過性を有する部材で構成されている。ここでいう透過性とは、光触媒による反応に必要な範囲の光のうち60%以上透過させるものをいい、より具体的には、上記200nm以上700nmの波長範囲にある光のうち60%を透過するものをいい、より好ましくは70%、更に好ましくは80%以上である。本実施形態に係る収容部材の材料としては、上記機能を有し、酸水溶液や酸素ガスと不要な反応をしない限りにおいて限定されるわけではないが、例えば金属やガラス等を用いることができ、一部に透過性を有する部材として、石英ガラス、耐熱ガラス等を用いることが好ましい。なおこの透過性を有する部材近傍に、電極を配置することが反応効率の観点から好ましい。 Moreover, in this embodiment, the accommodating member 6 accommodates the acid aqueous solution 2, the nitrogen gas or oxygen gas 3, the pair of electrodes 4 and the photocatalyst 5 as described above, and at least a part thereof is made of a permeable member. Yes. The term “transmittance” as used herein refers to light that transmits 60% or more of the light in the range necessary for the reaction by the photocatalyst, and more specifically, transmits 60% of the light in the wavelength range of 200 nm to 700 nm. More preferably, it is 70%, more preferably 80% or more. The material of the housing member according to the present embodiment is not limited as long as it has the above function and does not react unnecessarily with the aqueous acid solution or oxygen gas, but for example, metal or glass can be used, It is preferable to use quartz glass, heat-resistant glass, or the like as a partly permeable member. In addition, it is preferable from a viewpoint of reaction efficiency to arrange | position an electrode near the member which has this permeability | transmittance.

また本電池は、一対の電極の間に配置され、収容部材を分けるイオン交換膜7を有する。このイオン交換膜は異符号のイオンの通過を阻止し、同符号のイオンのみを通過させる性質を持ち、材料としては、上記機能を有する限りにおいて限定されるわけではないが、フッ素樹脂等の高分子樹脂中に、硫酸基やカルボキシル基などを含んだものを採用することができる。なおこのイオン交換膜7によって収納部材6の内部は2つに分割されることとなり、一方で水から酸素とプロトンが、他方からプロトンと酸素の反応によって水をえるものであるため、一方に酸素ガスを、他方に非酸化性のガス(例えば窒素ガス)等を充填させることが好ましい。またこのイオン交換膜7はイオンの効率的な移動のためには備えておくことが好ましいが、後述の実施例からも明らかなように、設けない場合も可能である。さらに、酸素ガスを外部から供給することなく、収容部材6内で循環させる構成も可能である。 Moreover, this battery has the ion exchange membrane 7 which is arrange | positioned between a pair of electrodes and divides an accommodating member. This ion-exchange membrane has the property of blocking the passage of ions with different signs and allowing only the ions with the same sign to pass through, and the material is not limited as long as it has the above functions, A molecular resin containing a sulfate group or a carboxyl group can be used. The ion exchange membrane 7 divides the inside of the housing member 6 into two parts. On the other hand, oxygen and protons are obtained from water and water is obtained from the other by the reaction of protons and oxygen. It is preferable to fill the other side with a non-oxidizing gas (for example, nitrogen gas) or the like. The ion exchange membrane 7 is preferably provided for the efficient movement of ions. However, as is apparent from the examples described later, the ion exchange membrane 7 may be omitted. Furthermore, a configuration in which oxygen gas is circulated in the housing member 6 without being supplied from the outside is also possible.

以上、本電池により、二酸化炭素を発生させることなく、より簡便な構成により電気を発生することのできる光触媒を用いた燃料電池を提供することができる。特に、本電池では、燃料としての水素を光触媒によって水から、なおかつ、その場で得ることができる。この動作原理により、従来の燃料としての水素あるいは有機燃料をセル自身に投入する必要がなく、原理的にきわめてクリーンで、安全である。水を分解してまた水に戻るというサイクルを中心にするため、二酸化炭素などの余計な環境負荷となる生成物も生じない。 As described above, this battery can provide a fuel cell using a photocatalyst that can generate electricity with a simpler configuration without generating carbon dioxide. In particular, in this battery, hydrogen as a fuel can be obtained from water and in situ by a photocatalyst. With this operating principle, it is not necessary to put hydrogen or organic fuel as a conventional fuel into the cell itself, and in principle it is extremely clean and safe. Since the center is a cycle in which water is decomposed and returned to water, no extra environmental load such as carbon dioxide is produced.

以下、上記実施形態にかかる電池の効果について実際に作成を行ない、その効果を確認した。以下具体的に示す。 Hereinafter, the effect of the battery according to the above embodiment was actually created, and the effect was confirmed. This is specifically shown below.

(実施例1:WO) まず、タングステン酸アンモニウム5水和物((NH
101241・5HO)3.01グラムを空気中、700℃で、4時間焼成し酸化タングステンWOを得た。このWOについて紫外可視スペクトルを測定すると、紫外光領域から400〜500nmの可視光領域にかかる吸収端を示した。この結果を図2に示す。これより、このWOは半導体性を有することが分かった。
(Example 1: WO 3 ) First, ammonium tungstate pentahydrate ((NH
4) 10 W 12 O 41 · 5H 2 O) in air 3.01 grams at 700 ° C., to obtain a tungsten oxide WO 3 and fired 4 hours. When the UV-visible spectrum was measured for this WO 3 , an absorption edge from the ultraviolet light region to the visible light region of 400 to 500 nm was shown. The result is shown in FIG. From this, it was found that this WO 3 has semiconducting properties.

次に、上記で得られたWO159ミリグラムを石英窓付き耐熱ガラス製ガラス容器に入れ、pH2の塩酸水溶液、および犠牲酸化剤として57ミリグラムの塩化鉄(III)6水和物を加えた。400rpm(回転/分)で磁気攪拌を行いながら2時間アルゴンガスを流通させることで、水溶液中の溶存酸素を除去した。その後、容器を密閉し480Wキセノンアーク灯から光照射し、同じく400rpmで磁気攪拌を続けた。アーク灯照射直前、2.5時間後、5時間後、7.5時間後、10時間後の容器中各気相部分を取り出し、熱伝導度検出器(TCD)式ガスクロマトグラフィで分析した。分析結果を図3および下記表1に示す。10時間の反応試験でOガスの継続的生成が認められ、生成O量は時間とともに直線的に増加した。以上から、WOにより水の光酸化分解が起き、Oガスが生成することが示された。 Next, 159 mg of WO 3 obtained above was put into a glass container made of heat-resistant glass with a quartz window, and an aqueous hydrochloric acid solution having pH 2 and 57 mg of iron (III) chloride hexahydrate as a sacrificial oxidizing agent were added. Dissolved oxygen in the aqueous solution was removed by circulating argon gas for 2 hours while performing magnetic stirring at 400 rpm (rotation / min). Thereafter, the container was sealed and irradiated with light from a 480 W xenon arc lamp, and magnetic stirring was continued at 400 rpm. Immediately before irradiation with the arc lamp, 2.5 hours, 5 hours, 7.5 hours, and 10 hours, each gas phase portion in the container was taken out and analyzed by a thermal conductivity detector (TCD) type gas chromatography. The analysis results are shown in FIG. In the 10-hour reaction test, continuous production of O 2 gas was observed, and the amount of produced O 2 increased linearly with time. From the above, it was shown that the photo-oxidative decomposition of water occurs by WO 3 and O 2 gas is generated.

一方、上記で得られたWO160ミリグラムを石英窓付き耐熱ガラス製ガラス容器に入れ、pH2の塩酸水溶液、および犠牲酸化剤として58ミリグラムの塩化鉄(III)6水和物を加えた。容器をアルミホイルで覆って完全に遮光し、400rpmで磁気攪拌を行いながら2時間アルゴンガスを流通させ水溶液中の溶存酸素を除去した。さらに容器を遮光したまま密閉し400rpmで磁気攪拌を続けた。5時間後の容器中の気相部分をTCD式ガスクロマトグラフィで分析した。分析結果を下記表1に示す。遮光時にはOガスの生成が認められず、WOによる水の酸化分解は光照射が原因となって起きたことの裏付けとなった。
On the other hand, 160 mg of WO 3 obtained above was put into a glass container made of heat-resistant glass with a quartz window, and an aqueous hydrochloric acid solution having a pH of 2 and 58 mg of iron (III) chloride hexahydrate as a sacrificial oxidizing agent were added. The container was covered with aluminum foil, completely shielded from light, and argon gas was circulated for 2 hours while performing magnetic stirring at 400 rpm to remove dissolved oxygen in the aqueous solution. Further, the container was sealed with light shielding, and magnetic stirring was continued at 400 rpm. The gas phase portion in the container after 5 hours was analyzed by TCD gas chromatography. The analysis results are shown in Table 1 below. Generation of O 2 gas was not observed during light shielding, confirming that the oxidative decomposition of water by WO 3 occurred due to light irradiation.

また、カーボン紙(ケミックス製;面積20×21 mm)に28ミリグラムのWOをマウントし、WO電極とした。同様にカーボン紙に酸化チタン(P25、日本アエロジル製)64ミリグラムをマウントしTiO電極とした。 Further, 28 mg of WO 3 was mounted on carbon paper (made by Chemix; area 20 × 21 mm 2 ) to obtain a WO 3 electrode. Similarly, 64 mg of titanium oxide (P25, manufactured by Nippon Aerosil Co., Ltd.) was mounted on carbon paper to form a TiO 2 electrode.

そして、両側に石英窓が付いた耐熱ガラスガラス容器の中央をプロトン伝導性高分子膜で仕切って反応セルとした(図4)。両側にpH3の塩酸水溶液を加え、WO電極およびTiO電極を、それぞれの水溶液に浸した。さらに両電極を結線した回路(図5)を構成した。 Then, the center of a heat-resistant glass glass container with quartz windows on both sides was partitioned with a proton conductive polymer membrane to form a reaction cell (FIG. 4). A hydrochloric acid aqueous solution of pH 3 was added to both sides, and a WO 3 electrode and a TiO 2 electrode were immersed in each aqueous solution. Furthermore, the circuit (FIG. 5) which connected both electrodes was comprised.

その後、WO電極およびTiO電極に、それぞれ窒素、酸素ガスを100mL/minの速度でバブリングしながら流通させ、WO電極に480Wアーク灯から光照射した。30分間光照射した後、光照射を30分間停止した。ガスは流通させたままとした。このon/offサイクルを5回繰り返し、回路に流れる電流の変化をモニターした。 Thereafter, nitrogen and oxygen gas were passed through the WO 3 electrode and the TiO 2 electrode while bubbling at a rate of 100 mL / min, respectively, and the WO 3 electrode was irradiated with light from a 480 W arc lamp. After 30 minutes of light irradiation, the light irradiation was stopped for 30 minutes. The gas remained in circulation. This on / off cycle was repeated 5 times, and the change in the current flowing through the circuit was monitored.

この測定結果を図6に示す。アーク灯照射中にTiO電極からWO電極への電子移動(あるいは逆方向への電流)が認められ、アーク灯の照射を止めるとすぐに電子移動も停止した。2HO→O+4H+4eの反応式に従いTiO電極が水を光酸化して、光反応セルその場でプロトンが得られたことが分かる。電流値は1.4〜5.8μAの間であった(下記表3参照)。 The measurement results are shown in FIG. Electron movement from the TiO 2 electrode to the WO 3 electrode (or current in the reverse direction) was observed during the arc lamp irradiation, and as soon as the arc lamp irradiation was stopped, the electron movement also stopped. It can be seen that the TiO 2 electrode photooxidized water according to the reaction formula of 2H 2 O → O 2 + 4H + + 4e , and protons were obtained in situ in the photoreaction cell. The current value was between 1.4 and 5.8 μA (see Table 3 below).

(実施例2:酸化チタン) まず、ヘキサクロロ白金酸6水和物(H [PtIVCl2−・6HO、30ミリグラム)を含む水溶液(3 mL)に、酸化チタン(P25、日本アエロジル製)を1.02グラム加えた。磁気攪拌および超音波処理し、湯浴で水を留去後100℃で24時間乾燥させた。乾燥後の粉末を空気中400℃で2時間焼成し、Pt/TiOを得た。カーボン紙(面積2.0 cm)にTiO(65ミリグラム)を物理的にマウントし、TiO電極とした。また、カーボン紙(面積2.0 cm)にPt/TiO(60ミリグラム)を物理的にマウントし、Pt/TiO電極とした。 (Example 2: Titanium oxide) First, the hexachloroplatinic acid hexahydrate (H + 2 [Pt IV Cl 6] 2- · 6H 2 O, 30 mg) aqueous solution containing (3 mL), titanium oxide (P25 , Nippon Aerosil Co., Ltd.) was added. Magnetic stirring and sonication were performed, and water was distilled off in a hot water bath, followed by drying at 100 ° C. for 24 hours. The dried powder was fired in air at 400 ° C. for 2 hours to obtain Pt / TiO 2 . TiO 2 (65 mg) was physically mounted on carbon paper (area 2.0 cm 2 ) to form a TiO 2 electrode. Further, Pt / TiO 2 (60 milligrams) was physically mounted on carbon paper (area 2.0 cm 2 ) to form a Pt / TiO 2 electrode.

そして、両側に石英窓が付いた耐熱ガラスガラス容器の中央をプロトン伝導性高分子膜で仕切って反応セルとした(図4)。両側にpH3の塩酸水溶液を加えた。上記で作成したTiO電極およびPt/TiO電極を、それぞれの水溶液に浸した。さらに両電極を結線した回路(図5)を構成した。TiO電極およびPt/TiO電極に、それぞれ窒素、酸素ガスを100 mL/minの速度でバブリングしながら流通させ、TiO電極およびPt/TiO電極双方に480 Wアーク灯から光照射した。30分間光照射した後、光照射を30分間停止した。ガスは流通させたままとした。このon/offサイクルを5回繰り返し、回路に流れる電流の変化をモニターした。 Then, the center of a heat-resistant glass glass container with quartz windows on both sides was partitioned with a proton conductive polymer membrane to form a reaction cell (FIG. 4). A pH 3 aqueous hydrochloric acid solution was added to both sides. The TiO 2 electrode and Pt / TiO 2 electrode prepared above were immersed in each aqueous solution. Furthermore, the circuit (FIG. 5) which connected both electrodes was comprised. The TiO 2 electrodes and Pt / TiO 2 electrode, respectively nitrogen, is circulated while bubbling oxygen gas at a rate of 100 mL / min, and the light irradiated from the TiO 2 electrode and Pt / TiO 2 electrode both the 480 W arc lamp. After 30 minutes of light irradiation, the light irradiation was stopped for 30 minutes. The gas remained in circulation. This on / off cycle was repeated 5 times, and the change in the current flowing through the circuit was monitored.

測定結果を図7に示す。アーク灯照射中にTiO電極からPt/TiO電極への電子移動(あるいは逆方向への電流)が認められ、アーク灯の照射を止めるとすぐに電子移動も停止した。2HO→O+4H+4eの反応式に従い、TiO電極が水を光酸化してその場でプロトンが得られ、同時に得られた電子が外部回路を経てカソード側の光触媒Pt/TiOによってプロトンとの光触媒反応により消費されたことが分かった。電流値は27〜59μAの間であった(下記表3参照)。 The measurement results are shown in FIG. Electron movement from the TiO 2 electrode to the Pt / TiO 2 electrode (or current in the reverse direction) was observed during the arc lamp irradiation, and the electron movement stopped as soon as the arc lamp irradiation was stopped. According to the reaction formula of 2H 2 O → O 2 + 4H + + 4e , the TiO 2 electrode photooxidizes water to obtain protons on the spot, and at the same time, the obtained electrons pass through an external circuit to the photocatalyst Pt / TiO on the cathode side 2 was found to be consumed by photocatalytic reaction with protons. The current value was between 27 and 59 μA (see Table 3 below).

(実施例3) まず、0.15 mLの水に、実施例2で得られたPt/TiOを10.7ミリグラム加え撹拌し、Pt/TiOペーストを作成した。 (Example 3) First, 10.7 milligrams of Pt / TiO 2 obtained in Example 2 was added to 0.15 mL of water and stirred to prepare a Pt / TiO 2 paste.

ITO被膜付ガラス(面積25×17mm)にTiOペースト(Peccell製)を塗布し100℃で乾燥後、空気中300℃で30分間加熱しTiO電極(TiO 10.5ミリグラム)とした。同様に、ITO被膜付ガラス(面積16×8mm)にPt/TiOペーストを塗布し100℃で乾燥後、空気中300℃で30分間加熱しPt/TiO電極(Pt/TiO 6.0ミリグラム)とした。 A glass with ITO coating (area 25 × 17 mm 2 ) was coated with a TiO 2 paste (Peccell), dried at 100 ° C., and then heated in air at 300 ° C. for 30 minutes to obtain a TiO 2 electrode (TiO 2 10.5 mg). . Similarly, a Pt / TiO 2 paste is applied to ITO-coated glass (area 16 × 8 mm 2 ), dried at 100 ° C., and then heated in air at 300 ° C. for 30 minutes to form a Pt / TiO 2 electrode (Pt / TiO 2 6. 0 milligrams).

上記実施例2と同様の反応セル(図4)中、両側にpH3の塩酸水溶液を加えた。上記で作成したTiO電極およびPt/TiO電極を、それぞれの水溶液に浸した。さらに両電極を結線した回路(図5)を構成した。TiO電極およびPt/TiO電極に、それぞれ窒素、酸素ガスを100mL/minの速度でバブリングしながら流通させ、TiO電極およびPt/TiO電極双方に480Wアーク灯から光照射した。30分間光照射した後、光照射を30分間停止した。ガスは流通させたままとした。このon/offサイクルを5回繰り返し、回路に流れる電流の変化をモニターした。合計5時間のモニター後、アーク灯照射下で15分間、アーク灯消灯下で15分間、この光燃料電池の起電力を測定した。 In the same reaction cell as in Example 2 (FIG. 4), an aqueous hydrochloric acid solution having pH 3 was added to both sides. The TiO 2 electrode and Pt / TiO 2 electrode prepared above were immersed in each aqueous solution. Furthermore, the circuit (FIG. 5) which connected both electrodes was comprised. The TiO 2 electrodes and Pt / TiO 2 electrode, respectively nitrogen, oxygen gas was passed through bubbling at a rate of 100 mL / min, was irradiated with light from 480W arc lamp on both TiO 2 electrodes and Pt / TiO 2 electrode. After 30 minutes of light irradiation, the light irradiation was stopped for 30 minutes. The gas remained in circulation. This on / off cycle was repeated 5 times, and the change in the current flowing through the circuit was monitored. After monitoring for a total of 5 hours, the electromotive force of this photovoltaic cell was measured for 15 minutes under irradiation with an arc lamp and for 15 minutes with the arc lamp turned off.

測定結果を図8、9に示す。アーク灯照射中にPt/TiO電極側への電子移動(あるいは逆方向への電流)が認められ、アーク灯の照射を止めるとすぐに電子移動も停止した。これに加えて、アーク灯の照射時は電位差も14倍程度に大幅に増加している。2HO→O+4H+4eの反応式に従い、TiO電極が水を光酸化してその場でプロトンが得られ、その電子がカソード側の光触媒Pt/TiOによってプロトンとの光触媒反応により消費され、電流および0.89Vの起電力が生じたことが分かった。電流値は18〜40μAの間であった(下記表3参照)。 The measurement results are shown in FIGS. Electron movement toward the Pt / TiO 2 electrode side (or current in the reverse direction) was observed during arc lamp irradiation, and as soon as the arc lamp irradiation was stopped, electron movement also stopped. In addition to this, the potential difference greatly increases by about 14 times when the arc lamp is irradiated. According to the reaction formula of 2H 2 O → O 2 + 4H + + 4e , the TiO 2 electrode photooxidizes water to obtain protons in situ, and the electrons undergo photocatalytic reaction with protons by the photocatalyst Pt / TiO 2 on the cathode side. It was found that a current and an electromotive force of 0.89V were generated. The current value was between 18 and 40 μA (see Table 3 below).

(実施例4) まず、酸化チタン(P25)1.00グラムを3mLの水に加え、磁気攪拌および超音波処理し、湯浴で水を留去後100℃で24時間乾燥させた。乾燥後の粉末を空気中400℃で2時間焼成した。0.15mLの水に焼成済TiOを11.1ミリグラム加え、撹拌してTiOペーストを作成した。 (Example 4) First, 1.00 g of titanium oxide (P25) was added to 3 mL of water, subjected to magnetic stirring and ultrasonic treatment, water was distilled off in a hot water bath, and then dried at 100 ° C for 24 hours. The dried powder was fired in air at 400 ° C. for 2 hours. 11.1 milligrams of baked TiO 2 was added to 0.15 mL of water and stirred to create a TiO 2 paste.

ITO被膜付ガラス(面積13×9mm)にTiOペーストを塗布し100℃で乾燥後、空気中300℃で30分間加熱しTiO電極(TiO 5.0ミリグラム)とした。同様に、上記実施例と同様にしてPt/TiO電極(面積14×10mm、Pt/TiO 5.7ミリグラム)を得た。 A glass with ITO coating (area 13 × 9 mm 2 ) was coated with a TiO 2 paste, dried at 100 ° C., and then heated in air at 300 ° C. for 30 minutes to form a TiO 2 electrode (TiO 2 5.0 mg). Similarly, a Pt / TiO 2 electrode (area 14 × 10 mm 2 , Pt / TiO 2 5.7 mg) was obtained in the same manner as in the above example.

次に、両側に石英窓が付いた耐熱ガラス製反応セル(図10)中に、pH3の塩酸水溶液を加えた。上記で作成したTiO電極およびPt/TiO電極を水溶液に浸した。さらに両電極を結線した回路(図5)を構成した。セル内に酸素ガスを100mL/minの速度で5時間バブリングして流通させた。その後容器を密閉し、TiO電極およびPt/TiO電極双方に480 Wアーク灯から光照射した。30分間光照射した後、光照射を30分間停止した。このon/offサイクルを5回繰り返し、回路に流れる電流の変化をモニターした。 Next, an aqueous hydrochloric acid solution having a pH of 3 was added into a heat-resistant glass reaction cell (FIG. 10) with quartz windows on both sides. The TiO 2 electrode and Pt / TiO 2 electrode prepared above were immersed in an aqueous solution. Furthermore, the circuit (FIG. 5) which connected both electrodes was comprised. Oxygen gas was bubbled through the cell for 5 hours at a rate of 100 mL / min. Thereafter, the container was sealed, and both the TiO 2 electrode and the Pt / TiO 2 electrode were irradiated with light from a 480 W arc lamp. After 30 minutes of light irradiation, the light irradiation was stopped for 30 minutes. This on / off cycle was repeated 5 times, and the change in the current flowing through the circuit was monitored.

測定結果を図11に示す。アーク灯照射中にTiO電極からPt/TiO電極への電子移動(あるいは逆方向への電流)が認められ、アーク灯の照射を止めるとすぐに電子移動も停止した。光燃料電池を完全に閉鎖した系とし、酸素や窒素を流通させるのではなく酸素を充填した条件で、さらにアノード側・カソード側の両電解槽をプロトン電導膜で仕切らずに同一電解槽とした条件でも発電が可能であることが示された。電流値は6.4〜14μAの間であった(下記表3参照)。
The measurement results are shown in FIG. Electron movement from the TiO 2 electrode to the Pt / TiO 2 electrode (or current in the reverse direction) was observed during the arc lamp irradiation, and the electron movement stopped as soon as the arc lamp irradiation was stopped. The photo-fuel cell is a completely closed system, in which oxygen and nitrogen are not circulated but filled with oxygen, and both the anode and cathode electrolyzers are made the same electrolyzer without partitioning with proton conductive membranes. It was shown that power generation is possible even under conditions. The current value was between 6.4 and 14 μA (see Table 3 below).

(実施例5) まず、酸化チタン(P25)1.00グラムを3mLの水に加え、磁気攪拌および超音波処理し、湯浴で水を留去後100℃で24時間乾燥させた。乾燥後の粉末を空気中400℃で2時間焼成した。0.15mLの水に焼成済TiOを10.2ミリグラム加え、撹拌してTiOペーストを作成した。 (Example 5) First, 1.00 g of titanium oxide (P25) was added to 3 mL of water, subjected to magnetic stirring and ultrasonic treatment, water was distilled off in a hot water bath, and dried at 100 ° C for 24 hours. The dried powder was fired in air at 400 ° C. for 2 hours. 10.2 milligrams of baked TiO 2 was added to 0.15 mL of water and stirred to create a TiO 2 paste.

ITO被膜付ガラス(面積17×10mm)にTiOペーストを塗布し100℃で乾燥後、空気中300℃で30分間加熱しTiO電極(TiO 5.5ミリグラム)とした。 A TiO 2 paste was applied to glass with an ITO film (area: 17 × 10 mm 2 ), dried at 100 ° C., and then heated in air at 300 ° C. for 30 minutes to form a TiO 2 electrode (TiO 2 5.5 mg).

ITO被膜付ガラス(面積16×9mm)にTiOペーストを塗布し100℃で乾燥後、空気中300℃で30分間加熱しTiO電極(TiO 4.3ミリグラム)とした。 A TiO 2 paste was applied to glass with an ITO coating (area 16 × 9 mm 2 ), dried at 100 ° C., and then heated in air at 300 ° C. for 30 minutes to form a TiO 2 electrode (TiO 2 4.3 mg).

ITO被膜付ガラス(面積16×10mm)にTiOペーストを塗布し100℃で乾燥後、空気中300℃で30分間加熱しTiO電極(TiO 4.9ミリグラム)とした。 A TiO 2 paste was applied to glass with an ITO film (area 16 × 10 mm 2 ), dried at 100 ° C., and then heated in air at 300 ° C. for 30 minutes to obtain a TiO 2 electrode (4.9 mg of TiO 2 ).

硝酸銀(AgNО、18ミリグラム)を含む水溶液(10.3mL)に、酸化チタン(P25、日本アエロ
ジル製)を3.43グラム加えた。磁気攪拌および超音波処理し、湯浴で水を留去後100℃で24時間乾燥させた。乾燥後の粉末を空気中400℃で2時間焼成し、Ag/TiO(0.33重量%−Ag)を得た。ITO被膜付ガラス(面積16×8mm)にAg/TiOペーストを塗布し100℃で乾燥後、空気中300℃で30分間加熱しAg/TiO(0.33重量%−Ag)電極5.6ミリグラムを得た。
To an aqueous solution (10.3 mL) containing silver nitrate (AgNO 3 , 18 mg), 3.43 g of titanium oxide (P25, manufactured by Nippon Aerosil Co., Ltd.) was added. Magnetic stirring and sonication were performed, and water was distilled off in a hot water bath, followed by drying at 100 ° C. for 24 hours. The dried powder was fired in air at 400 ° C. for 2 hours to obtain Ag / TiO 2 (0.33% by weight-Ag). An ITO / coated glass (area 16 × 8 mm 2 ) was coated with an Ag / TiO 2 paste, dried at 100 ° C., heated in air at 300 ° C. for 30 minutes, and Ag / TiO 2 (0.33% by weight-Ag) electrode 5 .6 milligrams were obtained.

硝酸銀(24ミリグラム)を含む水溶液(4.65mL)に、酸化チタン(P25)を1.54グラム加えた。磁気攪拌および超音波処理し、湯浴で水を留去後100℃で24時間乾燥させた。乾燥後の粉末を空気中400℃で2時間焼成し、Ag/TiO(1.0重量%−Ag)を得た。上記と同様にしてAg/TiO(1.0重量%−Ag)電極5.3ミリグラムを得た。 To an aqueous solution (4.65 mL) containing silver nitrate (24 milligrams), 1.54 grams of titanium oxide (P25) was added. Magnetic stirring and sonication were performed, and water was distilled off in a hot water bath, followed by drying at 100 ° C. for 24 hours. The dried powder was fired in air at 400 ° C. for 2 hours to obtain Ag / TiO 2 (1.0 wt% -Ag). In the same manner as described above, 5.3 mg of an Ag / TiO 2 (1.0 wt% -Ag) electrode was obtained.

硝酸銀(65ミリグラム)を含む水溶液(4.1mL)に、酸化チタン(P25)を1.38グラム加えた。磁気攪拌および超音波処理し、湯浴で水を留去後100℃で24時間乾燥させた。乾燥後の粉末を空気中400℃で2時間焼成し、Ag/TiO(3.0重量%−Ag)を得た。上記と同様にしてAg/TiO(3.0重量%−Ag)電極5.8ミリグラムを得た。 1.38 g of titanium oxide (P25) was added to an aqueous solution (4.1 mL) containing silver nitrate (65 mg). Magnetic stirring and sonication were performed, and water was distilled off in a hot water bath, followed by drying at 100 ° C. for 24 hours. The dried powder was fired in air at 400 ° C. for 2 hours to obtain Ag / TiO 2 (3.0 wt% -Ag). In the same manner as described above, 5.8 mg of an Ag / TiO 2 (3.0 wt% -Ag) electrode was obtained.

上記実施例2および3と同様の反応セル(図4)中、両側にpH3の塩酸水溶液を加えた。上記実施例で作成したTiO電極および上記のAg/TiO(0.33、1.0、あるいは3.0重量%−Ag)電極を、それぞれの水溶液に浸した。さらに両電極を結線した回路(図5)を構成した。TiO電極およびAg/TiO電極に、それぞれ窒素、酸素ガスを100mL/minの速度でバブリングしながら流通させ、TiO電極およびAg/TiO電極双方に480Wアーク灯から光照射した。30分間光照射した後、光照射を30分間停止した。ガスは流通させたままとした。このon/offサイクルを5回繰り返し、回路に流れる電流の変化をモニターした。 In the same reaction cell as in Examples 2 and 3 (FIG. 4), a hydrochloric acid aqueous solution having a pH of 3 was added to both sides. The TiO 2 electrode prepared in the above example and the above Ag / TiO 2 (0.33, 1.0, or 3.0 wt% -Ag) electrode were immersed in each aqueous solution. Furthermore, the circuit (FIG. 5) which connected both electrodes was comprised. The TiO 2 electrode and Ag / TiO 2 electrode, respectively nitrogen, oxygen gas was passed through bubbling at a rate of 100 mL / min, was irradiated with light from 480W arc lamp on both TiO 2 electrode and Ag / TiO 2 electrode. After 30 minutes of light irradiation, the light irradiation was stopped for 30 minutes. The gas remained in circulation. This on / off cycle was repeated 5 times, and the change in the current flowing through the circuit was monitored.

測定結果を図12に示す。アーク灯照射中にTiO電極からAg/TiO電極への電子移動(あるいは逆方向への電流)が認められ、アーク灯の照射を止めるとすぐに電子移動も停止した。カソード触媒がAg/TiOでも発電が可能であることが示され、電流値もAgの担持量に応じて上昇することが示された。電流値はAg/TiO(0.33重量%−Ag)電極、Ag/TiO(1.0重量%−Ag)電極、Ag/TiO(3.0重量%−Ag)電極、でそれぞれ9.4〜13μA、15〜21μA、22〜27μAの間であった(下記表5参照)。 The measurement results are shown in FIG. Electron movement from the TiO 2 electrode to the Ag / TiO 2 electrode (or current in the reverse direction) was observed during the arc lamp irradiation, and as soon as the arc lamp irradiation was stopped, the electron movement also stopped. It was shown that power can be generated even when the cathode catalyst is Ag / TiO 2 , and the current value was also shown to increase according to the amount of Ag supported. The current values are Ag / TiO 2 (0.33% by weight-Ag) electrode, Ag / TiO 2 (1.0% by weight-Ag) electrode, and Ag / TiO 2 (3.0% by weight-Ag) electrode, respectively. It was between 9.4-13 μA, 15-21 μA, 22-27 μA (see Table 5 below).

(実施例6)
エチレングリコール65mLに1.61グラムの硝酸ビスマス・5水和物(Bi(NO・5HO)とCTAC(セチルトリメチルアンモニウムクロリド)([(CHNC1633]Cl)1.06グラムを混合、17℃で1時間攪拌した。これに1.0M KOHのエチレングリコール溶液を加えpHを1.0に調整した。この溶液をオートクレーブに封入し、160℃で12時間置いた。得られた沈殿物を水とエタノールで洗浄し、50℃で18時間乾燥させ、オキシ塩化ビスマスBiOClを得た。
(Example 6)
1.61 grams of bismuth nitrate pentahydrate (Bi (NO 3 ) 3 .5H 2 O) and CTAC (cetyltrimethylammonium chloride) ([(CH 3 ) 3 NC 16 H 33 ] Cl) in 65 mL of ethylene glycol 1.06 grams were mixed and stirred at 17 ° C. for 1 hour. To this was added 1.0M KOH ethylene glycol solution to adjust the pH to 1.0. This solution was sealed in an autoclave and placed at 160 ° C. for 12 hours. The obtained precipitate was washed with water and ethanol and dried at 50 ° C. for 18 hours to obtain bismuth oxychloride BiOCl.

上記BiOClについて紫外可視スペクトルを測定すると300〜400 nmの紫外光領域に吸収端を示した。この結果を図13に示す。これより、このBiOClは半導体性を有することが分かった。 When an ultraviolet-visible spectrum was measured for the BiOCl, an absorption edge was shown in the ultraviolet light region of 300 to 400 nm. The result is shown in FIG. From this, it was found that this BiOCl has semiconducting properties.

0.15mLの水に、TiO(P25)を10.1ミリグラム加え撹拌し、TiOペーストを作成した。ITO被膜付ガラス(面積13×10mm)にTiOペーストを塗布し100℃で乾燥後、空気中300℃で30分間加熱しTiO電極(TiO 6.3ミリグラム)とした。同様に、BiOCl電極(面積14×10mm、BiOCl 3.3ミリグラム)を得た。 10.1 milligrams of TiO 2 (P25) was added to 0.15 mL of water and stirred to prepare a TiO 2 paste. A glass with ITO coating (area 13 × 10 mm 2 ) was coated with a TiO 2 paste, dried at 100 ° C., and then heated in air at 300 ° C. for 30 minutes to form a TiO 2 electrode (TiO 2 6.3 mg). Similarly, a BiOCl electrode (area 14 × 10 mm 2 , BiOCl 3.3 mg) was obtained.

上記実施例2、3および5と同様の反応セル(図4)中、両側にpH3の塩酸水溶液を加えた。上記で作成したTiO電極およびBiOCl電極を、それぞれの水溶液に浸した。さらに両電極を結線した回路(図5)を構成した。TiO電極およびBiOCl電極に、それぞれ窒素、酸素ガスを100 mL/minの速度でバブリングしながら流通させ、TiO電極およびBiOCl電極双方に480Wアーク灯から光照射した。30分間光照射した後、光照射を30分間停止した。ガスは流通させたままとした。このon/offサイクルを5回繰り返し、回路に流れる電流の変化をモニターした。 In the same reaction cell as in Examples 2, 3 and 5 (FIG. 4), an aqueous hydrochloric acid solution having pH 3 was added to both sides. The TiO 2 electrode and BiOCl electrode prepared above were immersed in each aqueous solution. Furthermore, the circuit (FIG. 5) which connected both electrodes was comprised. The TiO 2 electrode and BiOCl electrodes, respectively nitrogen, oxygen gas was passed through bubbling at a rate of 100 mL / min, it was irradiated with light from 480W arc lamp on both TiO 2 electrode and BiOCl electrode. After 30 minutes of light irradiation, the light irradiation was stopped for 30 minutes. The gas remained in circulation. This on / off cycle was repeated 5 times, and the change in the current flowing through the circuit was monitored.

測定結果を図14に示す。アーク灯照射中にTiO電極からBiOCl電極への電子移動(あるいは逆方向への電流)が認められ、アーク灯の照射を止めるとすぐに電子移動も停止した。2HO→O+4H+4eの反応式に従い、TiO電極が水を光酸化してその場でプロトンが得られ、同時に得られた電子が外部回路を経てカソード側の光触媒BiOClによってプロトンとの光触媒反応により消費されたことが分かった。電流値は26〜34μAの間であった(下記表7参照)。 The measurement results are shown in FIG. Electron movement from the TiO 2 electrode to the BiOCl electrode (or current in the reverse direction) was observed during the arc lamp irradiation, and the electron movement stopped as soon as the arc lamp irradiation was stopped. According to the reaction formula of 2H 2 O → O 2 + 4H + + 4e , the TiO 2 electrode photooxidizes water to obtain protons on the spot, and simultaneously the obtained electrons are protonated by the photocatalyst BiOCl on the cathode side through an external circuit. It was found that the photocatalytic reaction was consumed. The current value was between 26 and 34 μA (see Table 7 below).

(実施例7)
0.15mLの水に、TiO(P25)を10.3ミリグラム加え撹拌し、TiOペーストを作成した。ITO被膜付ガラス(面積14×9mm)にTiOペーストを塗布し100℃で乾燥後、空気中300℃で30分間加熱しTiO電極(TiO 6.4ミリグラム)とした。同様に、BiOCl電極(面積15×10mm、BiOCl 3.7ミリグラム)を得た。
(Example 7)
10.3 milligrams of TiO 2 (P25) was added to 0.15 mL of water and stirred to prepare a TiO 2 paste. A TiO 2 paste was applied to glass with an ITO film (area: 14 × 9 mm 2 ), dried at 100 ° C., and then heated in air at 300 ° C. for 30 minutes to form a TiO 2 electrode (TiO 2 6.4 mg). Similarly, a BiOCl electrode (area 15 × 10 mm 2 , BiOCl 3.7 mg) was obtained.

上記実施例2、3および5と同様の反応セル(図4)中、両側にpH2の塩酸水溶液を加えた。上記で作成したTiO電極およびBiOCl電極を、それぞれの水溶液に浸した。さらに両電極を結線した回路(図5)を構成した。TiO電極およびBiOCl電極に、それぞれ窒素、酸素ガスを100 mL/minの速度でバブリングしながら流通させ、TiO電極およびBiOCl電極双方に480Wアーク灯から光照射した。30分間光照射した後、光照射を30分間停止した。ガスは流通させたままとした。このon/offサイクルを5回繰り返した後、1時間光照射を続け、回路に流れる電流の変化をモニターした。 In the same reaction cell as in Examples 2, 3 and 5 (FIG. 4), an aqueous hydrochloric acid solution having pH 2 was added on both sides. The TiO 2 electrode and BiOCl electrode prepared above were immersed in each aqueous solution. Furthermore, the circuit (FIG. 5) which connected both electrodes was comprised. The TiO 2 electrode and BiOCl electrodes, respectively nitrogen, oxygen gas was passed through bubbling at a rate of 100 mL / min, it was irradiated with light from 480W arc lamp on both TiO 2 electrode and BiOCl electrode. After 30 minutes of light irradiation, the light irradiation was stopped for 30 minutes. The gas remained in circulation. After repeating this on / off cycle 5 times, light irradiation was continued for 1 hour, and the change in the current flowing through the circuit was monitored.

測定結果を図15に示す。アーク灯照射中にTiO電極からBiOCl電極への電子移動(あるいは逆方向への電流)が認められ、アーク灯の照射を止めるとすぐに電子移動も停止した。2HO→O+4H+4eの反応式に従い、TiO電極が水を光酸化してその場でプロトンが得られ、同時に得られた電子が外部回路を経てカソード側の光触媒BiOClによってプロトンとの光触媒反応により消費されたことが分かった。電流値は59〜211μAの間であった(下記表7参照)。 The measurement results are shown in FIG. Electron movement from the TiO 2 electrode to the BiOCl electrode (or current in the reverse direction) was observed during the arc lamp irradiation, and the electron movement stopped as soon as the arc lamp irradiation was stopped. According to the reaction formula of 2H 2 O → O 2 + 4H + + 4e , the TiO 2 electrode photooxidizes water to obtain protons on the spot, and simultaneously the obtained electrons are protonated by the photocatalyst BiOCl on the cathode side through an external circuit. It was found that the photocatalytic reaction was consumed. The current value was between 59 and 211 μA (see Table 7 below).

以上、本電池により、二酸化炭素を発生させることなく、より簡便な構成により電気を発生することのできる光触媒を用いた燃料電池を提供することができることを確認した。特に、本電池では、燃料としての水素を光触媒によって水から、なおかつ、その場で得ることができる。この動作原理により、従来の燃料としての水素あるいは有機燃料をセル自身に投入する必要がなく、原理的にきわめてクリーンで、安全である。水を分解してまた水に戻るというサイクルを中心にするため、二酸化炭素などの余計な環境負荷となる生成物も生じないといった効果もある。 As described above, it was confirmed that this battery can provide a fuel cell using a photocatalyst that can generate electricity with a simpler configuration without generating carbon dioxide. In particular, in this battery, hydrogen as a fuel can be obtained from water and in situ by a photocatalyst. With this operating principle, it is not necessary to put hydrogen or organic fuel as a conventional fuel into the cell itself, and in principle it is extremely clean and safe. Since it is centered on a cycle of decomposing water and returning to water, there is also an effect that no extra environmental load such as carbon dioxide is produced.

Claims (6)

酸水溶液と、
前記酸水溶液中に浸され、一方が前記酸水溶液中の水を酸素とプロトンに分解する光触媒が形成されてなり、他方が前記プロトンと酸素を反応させて水に戻す光触媒が形成されてなる一対の電極と、
前記酸水溶液、酸素ガス、及び、前記光触媒が形成された一対の電極を収容し、少なくとも一部が透過性を有する部材で構成される収容部材と、
前記一対の電極の間に配置され、前記収容部材を分け、かつ、前記プロトンを透過可能なイオン交換膜と、
を有する燃料電池。
An acid aqueous solution;
A pair formed by forming a photocatalyst that is immersed in the acid aqueous solution, one of which decomposes the water in the acid aqueous solution into oxygen and proton, and the other that reacts the proton with oxygen to return to water. Electrodes,
A housing member that houses the acid aqueous solution, oxygen gas, and a pair of electrodes on which the photocatalyst is formed, and at least a part of which is made of a light- transmissive member;
An ion exchange membrane disposed between the pair of electrodes, separating the housing member , and permeable to the protons ;
A fuel cell.
収容部材のカソード側に酸素ガスを含む、請求項1記載の燃料電池。   The fuel cell according to claim 1, further comprising oxygen gas on a cathode side of the housing member. 前記光触媒は、WO及びTiOの少なくともいずれかを含む請求項1記載の燃料電池。 The fuel cell according to claim 1, wherein the photocatalyst includes at least one of WO 3 and TiO 2 . 前記光触媒がWO、Ag/TiO、Pt/TiOおよびBiOClの少なくともいずれかを含む請求項1記載の燃料電池。 The fuel cell according to claim 1, wherein the photocatalyst includes at least one of WO 3 , Ag / TiO 2 , Pt / TiO 2, and BiOCl. 前記透過性を有する部材は、200nm以上700nm以下の範囲の波長領域において60%以上の透過性を有する請求項1記載の燃料電池。 2. The fuel cell according to claim 1, wherein the transparent member has a light transmittance of 60% or more in a wavelength range of 200 nm to 700 nm. 前記酸水溶液、前記酸素ガス、前記一対の電極及び前記光触媒を収容する空間が密封されている請求項1記載の燃料電池。

The fuel cell according to claim 1, wherein a space for accommodating the acid aqueous solution, the oxygen gas, the pair of electrodes, and the photocatalyst is sealed.

JP2013211926A 2012-10-09 2013-10-09 Fuel cell Active JP6213958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211926A JP6213958B2 (en) 2012-10-09 2013-10-09 Fuel cell

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012223765 2012-10-09
JP2012223765 2012-10-09
JP2012254796 2012-11-21
JP2012254796 2012-11-21
JP2013211926A JP6213958B2 (en) 2012-10-09 2013-10-09 Fuel cell

Publications (2)

Publication Number Publication Date
JP2014123554A JP2014123554A (en) 2014-07-03
JP6213958B2 true JP6213958B2 (en) 2017-10-18

Family

ID=51403861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211926A Active JP6213958B2 (en) 2012-10-09 2013-10-09 Fuel cell

Country Status (1)

Country Link
JP (1) JP6213958B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108855194A (en) * 2018-07-27 2018-11-23 章立兰 A kind of nitrogen-doped nanometer BiOX type photochemical catalyst of high catalytic activity and preparation method thereof
CN108889320A (en) * 2018-06-12 2018-11-27 广东工业大学 A kind of Lacking oxygen type ternary halide photochemical catalyst and its preparation method and application
CN109622012A (en) * 2018-12-07 2019-04-16 陕西科技大学 A kind of exposure (010) crystal face BiOCl/ class graphite phase carbon nitride composite photo-catalyst and its preparation method and application
CN111509243A (en) * 2020-04-30 2020-08-07 青岛尚东新能源科技有限责任公司 Application of CNTs modified BiOCl/ZnO heterojunction nano-array photo-anode in photocatalytic fuel cell
CN112391651A (en) * 2020-09-18 2021-02-23 厦门大学 BiOBr/TiO containing oxygen vacancies2Nanotube array composite electrode, preparation method thereof and application of nanotube array composite electrode in photoelectrocatalysis nitrogen fixation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6566509B2 (en) * 2014-11-30 2019-08-28 国立大学法人千葉大学 Fuel cell
CN105214693B (en) * 2015-10-13 2018-05-15 辽宁大学 Bismuth oxyiodide/poriferous titanium dioxide composite photo-catalyst and its preparation method and application
US10103416B2 (en) * 2016-03-09 2018-10-16 Saudi Arabian Oil Company System and method for power generation with a closed-loop photocatalytic solar device
CN105771988A (en) * 2016-04-19 2016-07-20 淮北师范大学 Method for preparing high-catalytic-activity hierarchical structure silver molybdate
CN106000437A (en) * 2016-05-18 2016-10-12 河海大学 Visible-light response type bismuth oxide chloride photocatalyst as well as preparation method and application thereof
CN106964376A (en) * 2017-03-08 2017-07-21 河南师范大学 A kind of visible light-responded BiFeO3The preparation method of/BiOCl heterojunction photocatalysts
CN107114406A (en) * 2017-06-16 2017-09-01 徐州乐泰机电科技有限公司 A kind of Ce Ag/BiOCi composite bactericidal materials for body-building apparatus
CN108404995B (en) * 2018-03-06 2019-08-02 济南大学 The preparation of the compound wool load rhodium doping BiOBr photochemical catalyst of porous magnetic
CN109095546B (en) * 2018-09-29 2021-11-12 吴洋洋 Method for preparing hydrogen by cooperation of photocatalytic treatment of wastewater
CN111254461B (en) * 2020-01-19 2021-08-27 安徽大学 Tungsten oxide/bismuth oxyiodide heterojunction material for photo-reduction of carbon dioxide and preparation method and application thereof
CN111939948A (en) * 2020-09-01 2020-11-17 陕西科技大学 BiOCl-WO3Preparation method of composite photocatalyst

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904715B2 (en) * 2005-04-21 2012-03-28 日産自動車株式会社 Photoelectrochemical cell and method for producing the same
JP5641501B2 (en) * 2010-03-31 2014-12-17 三菱化学株式会社 Hydrogen production equipment
JP5675224B2 (en) * 2010-08-31 2015-02-25 トヨタ自動車株式会社 Visible light water splitting catalyst and photoelectrode manufacturing method
JP5891358B2 (en) * 2011-03-08 2016-03-23 パナソニックIpマネジメント株式会社 Energy system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108889320A (en) * 2018-06-12 2018-11-27 广东工业大学 A kind of Lacking oxygen type ternary halide photochemical catalyst and its preparation method and application
CN108889320B (en) * 2018-06-12 2021-01-19 广东工业大学 Oxygen vacancy type ternary halide photocatalyst and preparation method and application thereof
CN108855194A (en) * 2018-07-27 2018-11-23 章立兰 A kind of nitrogen-doped nanometer BiOX type photochemical catalyst of high catalytic activity and preparation method thereof
CN108855194B (en) * 2018-07-27 2021-07-16 章立兰 Nitrogen-doped nano BiOX type photocatalyst with high catalytic activity and preparation method thereof
CN109622012A (en) * 2018-12-07 2019-04-16 陕西科技大学 A kind of exposure (010) crystal face BiOCl/ class graphite phase carbon nitride composite photo-catalyst and its preparation method and application
CN111509243A (en) * 2020-04-30 2020-08-07 青岛尚东新能源科技有限责任公司 Application of CNTs modified BiOCl/ZnO heterojunction nano-array photo-anode in photocatalytic fuel cell
CN112391651A (en) * 2020-09-18 2021-02-23 厦门大学 BiOBr/TiO containing oxygen vacancies2Nanotube array composite electrode, preparation method thereof and application of nanotube array composite electrode in photoelectrocatalysis nitrogen fixation
CN112391651B (en) * 2020-09-18 2021-10-26 厦门大学 BiOBr/TiO containing oxygen vacancies2Nanotube array composite electrode, preparation method thereof and application of nanotube array composite electrode in photoelectrocatalysis nitrogen fixation

Also Published As

Publication number Publication date
JP2014123554A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP6213958B2 (en) Fuel cell
Hou et al. Photocatalytic generation of H2O2 by graphene oxide in organic electron donor-free condition under sunlight
Pan et al. Efficient photocatalytic fuel cell via simultaneous visible-photoelectrocatalytic degradation and electricity generation on a porous coral-like WO3/W photoelectrode
Feng et al. Facile fabrication of sandwich structured WO3 nanoplate arrays for efficient photoelectrochemical water splitting
Kang et al. Preparation of Bi-based ternary oxide photoanodes BiVO4, Bi2WO6, and Bi2Mo3O12 using dendritic Bi metal electrodes
Hu et al. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films
Xue et al. Enhanced photocatalytic H2 evolution on ultrathin Cd0. 5Zn0. 5S nanosheets without a hole scavenger: combined analysis of surface reaction kinetics and energy-level alignment
Meekins et al. Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance
JP4997454B2 (en) Semiconductor electrode and energy conversion system using the same
WO2012091045A1 (en) Photochemical reaction device
Kalamaras et al. Electrodeposited Ti-doped hematite photoanodes and their employment for photoelectrocatalytic hydrogen production in the presence of ethanol
JP4406689B2 (en) Equipment for producing hydrogen and oxygen by water photolysis
JP6774165B2 (en) Photochemical reaction device, electrode for oxidation reaction and electrode for reduction reaction used for it
Xiong et al. Enhanced charge separation and transfer by Bi2MoO6@ Bi2Mo2O9 compound using SILAR for photoelectrochemical water oxidation
JP6525816B2 (en) Process for oxidizing water, cell for oxidizing water, water oxidation catalyst, and electrode for electrochemical water oxidation
Teng et al. Photoelectrocatalytic degradation of sulfadiazine by Ag3PO4/MoS2/TiO2 nanotube array electrode under visible light irradiation
Umukoro et al. Photoelectrocatalytic application of palladium decorated zinc oxide-expanded graphite electrode for the removal of 4-nitrophenol: experimental and computational studies
JP6418906B2 (en) Light energy utilization method and light energy utilization apparatus
Xu et al. Fabrication of ZnxCo1-xO4/BiVO4 photoelectrodes by electrostatic attraction from bimetallic Zn-Co-MOF for PEC activity
Kim et al. Temperature-boosted photocatalytic H 2 production and charge transfer kinetics on TiO 2 under UV and visible light
Bharath et al. Photoelectrochemical advanced oxidation processes for simultaneous removal of antibiotics and heavy metal ions in wastewater using 2D-on-2D WS2@ CoFe2O4 heteronanostructures
Tang et al. The construction and performance of photocatalytic-fuel-cell with Fe-MoS2/reduced graphene oxide@ carbon fiber cloth and ZnFe2O4/Ag/Ag3VO4@ carbon felt as photo electrodes
Zhao et al. Ag 3 PO 4/carbon nanotubes/Ni film electrodes: photoelectrocatalytic properties and mechanism of rhodamine B degradation under an applied negative bias
Papagiannis et al. Photoelectrocatalytic production of hydrogen peroxide using a photo (catalytic) fuel cell
Chamousis et al. A Light‐Assisted Biomass Fuel Cell for Renewable Electricity Generation from Wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170824

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20170913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170912

R150 Certificate of patent or registration of utility model

Ref document number: 6213958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250