JP4904715B2 - Photoelectrochemical cell and method for producing the same - Google Patents

Photoelectrochemical cell and method for producing the same Download PDF

Info

Publication number
JP4904715B2
JP4904715B2 JP2005123623A JP2005123623A JP4904715B2 JP 4904715 B2 JP4904715 B2 JP 4904715B2 JP 2005123623 A JP2005123623 A JP 2005123623A JP 2005123623 A JP2005123623 A JP 2005123623A JP 4904715 B2 JP4904715 B2 JP 4904715B2
Authority
JP
Japan
Prior art keywords
photocatalyst
electrode
conductive porous
porous body
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005123623A
Other languages
Japanese (ja)
Other versions
JP2006302695A (en
Inventor
亮 大井
靖和 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005123623A priority Critical patent/JP4904715B2/en
Publication of JP2006302695A publication Critical patent/JP2006302695A/en
Application granted granted Critical
Publication of JP4904715B2 publication Critical patent/JP4904715B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、光エネルギを化学エネルギに変換するエネルギ変換装置などに適用される光電気化学セル及びその製造方法に関する。   The present invention relates to a photoelectrochemical cell applied to an energy conversion device that converts light energy into chemical energy, and a method for manufacturing the same.

太陽エネルギを有効利用するために、太陽エネルギを利用し易い形態に変換・貯蔵する技術の開発が盛んに行われている。太陽電池はその代表例であるが、コストが高いことから普及が進まず、より安価なシステムの開発が望まれている。   In order to effectively use solar energy, technology for converting and storing solar energy into a form that can be easily used has been actively developed. A solar cell is a typical example, but since the cost is high, it is not popularized and development of a cheaper system is desired.

そこで、光触媒を利用して、光エネルギを化学エネルギに変換する技術の研究が進められている。光触媒に太陽光が照射されると、光触媒は、光エネルギを吸収して電子と正孔を生成し、各種の化学反応を引き起こす。光触媒の中でも、特に、二酸化チタン(TiO2)は価電子帯の位置が深く、生成する正孔による酸化力は、塩素またはオゾンよりも強いとされている。 Therefore, research on technology for converting light energy into chemical energy using a photocatalyst has been underway. When sunlight is irradiated onto the photocatalyst, the photocatalyst absorbs light energy to generate electrons and holes, and causes various chemical reactions. Among photocatalysts, in particular, titanium dioxide (TiO 2 ) has a deep valence band position, and the oxidizing power due to the generated holes is stronger than chlorine or ozone.

例えば、光触媒を利用して、水を分解する方法が開示されている(特許文献1参照)。水の分解方法で使用される水分解装置は、水中に光触媒粉末を分散させて、光触媒粉末に太陽光を照射する構成を有する。光触媒に太陽光を照射すると、光触媒の価電子帯の電子が伝導帯に励起されると同時に、価電子帯にホールが形成される。ホールは、水を酸化分解して酸素を発生させており、励起された電子は、水の酸化分解により発生したプロトン(H+)を還元して水素を発生させている。しかしながら、上記水分解装置では、水素と酸素との取り出し口が一つに統合されているため、水を分解して得られるガスは水素と酸素の混合ガスとなり、水素と酸素とを別途分離する必要があった。また、水素と酸素が同一場所で発生すると、水素と酸素とから水が生成する、いわゆる逆反応が進行し、エネルギの変換効率(得られた水素のエンタルピ/入射光エネルギ量)が低下していた。 For example, a method for decomposing water using a photocatalyst is disclosed (see Patent Document 1). The water splitting device used in the water splitting method has a configuration in which photocatalyst powder is dispersed in water and the photocatalyst powder is irradiated with sunlight. When the photocatalyst is irradiated with sunlight, electrons in the valence band of the photocatalyst are excited to the conduction band, and at the same time, holes are formed in the valence band. Holes oxidatively decompose water to generate oxygen, and excited electrons reduce protons (H + ) generated by oxidative decomposition of water to generate hydrogen. However, in the above water splitting apparatus, since the outlets for hydrogen and oxygen are integrated into one, the gas obtained by splitting water becomes a mixed gas of hydrogen and oxygen, and separates hydrogen and oxygen separately. There was a need. In addition, when hydrogen and oxygen are generated at the same location, so-called reverse reaction, in which water is generated from hydrogen and oxygen, proceeds, and energy conversion efficiency (the obtained hydrogen enthalpy / incident light energy amount) is reduced. It was.

また、光触媒を利用して炭酸ガスを還元する炭酸ガス還元装置の技術も開示されている(特許文献2参照)。本技術では、導電層上に第1の光触媒を平板上に成形して構成したアノードと、導電層上に第2の光触媒を担持して構成したカソードと、を利用して、両電極間に電子の流れを生じさせて、アノード側に供給される炭酸ガスを還元して燃料(メタノールなど)を発生させている。さらに、カソード側に供給される水を酸化して酸素を発生させている。この炭酸ガス還元装置は、アノードとカソードで発生した燃料(メタノールなど)と酸素とを分離して回収することができる。
特開平10−218601号公報 特開2001−97894号公報
Moreover, the technique of the carbon dioxide gas reduction apparatus which reduces a carbon dioxide gas using a photocatalyst is also disclosed (refer patent document 2). In the present technology, an anode configured by forming a first photocatalyst on a flat plate on a conductive layer and a cathode configured by supporting a second photocatalyst on a conductive layer are used to provide a gap between both electrodes. A flow of electrons is generated, and carbon dioxide gas supplied to the anode side is reduced to generate fuel (methanol or the like). Furthermore, the oxygen supplied to the cathode side is oxidized to generate oxygen. This carbon dioxide reduction device can separate and recover fuel (such as methanol) and oxygen generated at the anode and cathode.
JP-A-10-218601 JP 2001-97889 A

しかしながら、上記炭酸ガス還元装置のアノードとカソードとでは、光触媒を導電層に塗布して形成したため、光触媒と導電層とが融着されず、光触媒と導電層との界面にIRロスが発生する恐れがあり、これに伴いエネルギの変換効率が低下する恐れを有していた。   However, since the photocatalyst is applied to the conductive layer at the anode and cathode of the carbon dioxide gas reduction apparatus, the photocatalyst and the conductive layer are not fused, and IR loss may occur at the interface between the photocatalyst and the conductive layer. As a result, the energy conversion efficiency may be reduced.

また、アノード側では、光触媒が太陽光を吸収すると、光触媒の価電子帯の電子が伝導帯に励起され、励起された電子は導電層に移動する。しかし、この時、導電層と電解液(水)とが電気的に短絡していると、励起電子は、導電層と逆側の電解液(水)側に移動して逆電子移動反応が進行し、一度生成した酸素とプロトンとから水が生成し、エネルギの変換効率が低下する恐れを有していた。   On the anode side, when the photocatalyst absorbs sunlight, electrons in the valence band of the photocatalyst are excited to the conduction band, and the excited electrons move to the conductive layer. However, at this time, if the conductive layer and the electrolytic solution (water) are electrically short-circuited, the excited electrons move to the electrolytic solution (water) side opposite to the conductive layer, and the reverse electron transfer reaction proceeds. However, there is a risk that water is generated from once generated oxygen and protons and the energy conversion efficiency is lowered.

本発明は、上記課題を解決するためになされたものであり、すなわち、本発明の光電気化学セルは、導電性多孔質体の表面に被膜が形成されると共に、導電性多孔質体の一方の面に光触媒が融着されて形成された光触媒電極と、光触媒電極の対極となる電極と、各電極間に狭持されたプロトン伝導体と、前記光触媒電極と対極となる前記電極とを電気的に導通する短絡線と、を有する隔膜を備え、前記導電性多孔質体はチタン、アルミニウム、シリコン、ジルコニウム、ニオブ、亜鉛、すず、タングステン、鉄、ビスマスの中から選択される少なくとも一種類の金属からなり、前記被膜は、前記導電性多孔質体を構成する前記金属の酸化物、窒化物、硫化物及び炭化物の少なくとも1種類からなり、前記光触媒は対極となる前記電極と逆側の前記導電性多孔質膜上に形成され、前記融着による光触媒の形成は、前記被膜の形成がなされる前に、前記導電性多孔質体上に塗布された前記光触媒粒子を焼成することによってなされ、前記光触媒電極と対極となる前記電極との間において、前記光触媒から励起される電子のエネルギ状態が水素の酸化還元電位を超えるようにバイアス電圧が負荷されることを要旨とする。 The present invention has been made to solve the above-mentioned problems. That is, the photoelectrochemical cell of the present invention has a coating film formed on the surface of the conductive porous body and one of the conductive porous bodies. A photocatalyst electrode formed by fusing a photocatalyst to the surface, an electrode serving as a counter electrode of the photocatalyst electrode, a proton conductor sandwiched between the electrodes, and the electrode serving as the counter electrode to the photocatalyst electrode. And the electrically conductive porous body is at least one selected from titanium, aluminum, silicon, zirconium, niobium, zinc, tin, tungsten, iron, and bismuth. The film is made of metal, and the coating is made of at least one of oxide, nitride, sulfide and carbide of the metal constituting the conductive porous body, and the photocatalyst is on the opposite side of the electrode serving as a counter electrode. The photocatalyst is formed on the conductive porous film and formed by fusing by firing the photocatalyst particles applied on the conductive porous body before the coating is formed. in between the electrode serving as the photocatalyst electrode and the counter electrode, the electron energy state to be excited from the photocatalyst is summarized as Rukoto bias voltage is loaded to exceed the redox potential of hydrogen.

本発明における第1の光電気化学セルの製造方法は、導電性多孔質体の表面に被膜を形成すると共に、導電性多孔質体の一方の面に光触媒を形成して光触媒電極とする工程と、光触媒電極の光触媒を形成した面と逆側に、プロトン伝導体と、光触媒電極の対極となる電極と、を順次重ねて、プロトン伝導体の軟化する温度以上で圧着して隔膜とする工程と、を有することを要旨とする。 The first photoelectrochemical cell production method of the present invention comprises a step of forming a film on the surface of the conductive porous body and forming a photocatalyst on one surface of the conductive porous body to form a photocatalytic electrode ; A step of sequentially stacking a proton conductor and an electrode serving as a counter electrode of the photocatalyst electrode on the side opposite to the surface of the photocatalyst electrode on which the photocatalyst is formed, and pressing the mixture at a temperature higher than the softening temperature of the proton conductor to form a diaphragm ; The gist is to have.

本発明における第2の光電気化学セルの製造方法は、導電性多孔質体の表面に被膜を形成すると共に、導電性多孔質体の一方の面に光触媒を形成して光触媒電極とする工程と、光触媒電極の光触媒を形成した面と逆側に、プロトン伝導体と、光触媒電極の対極となる電極と、を順次重ねて、プロトン伝導体の軟化する温度以上で圧着し、導電性多孔質体をプロトン伝導体に貫通させる工程と、光触媒粒子を塗布した面と逆側の導電性多孔質体上に形成された酸化被膜を除去する工程と、酸化被膜の除去面に対極となる電極材料を塗布し、プロトン伝導体の軟化する温度以上で圧着して隔膜とする工程と、を有することを要旨とする。 The second method for producing a photoelectrochemical cell according to the present invention includes a step of forming a film on the surface of the conductive porous body and forming a photocatalyst on one surface of the conductive porous body to form a photocatalytic electrode ; The photoconductive electrode is opposite to the surface on which the photocatalyst is formed, and the proton conductor and the counter electrode of the photocatalyst electrode are sequentially stacked and pressure-bonded at a temperature higher than the temperature at which the proton conductor is softened. a step of Ru passed through the proton conductor and a step of removing the photocatalyst particles surface coated with the opposite side of the conductive porous oxide film formed on the body, the electrode material for the counter electrode removal surface of the oxide layer And a step of pressure-bonding at a temperature higher than the temperature at which the proton conductor softens to form a diaphragm.

本発明の光電気化学セルによれば、光触媒粒子と導電性多孔質膜との界面でのIRロスを無くして逆電子移動反応を防ぎ、エネルギの変換効率を高めることができる。   According to the photoelectrochemical cell of the present invention, the IR loss at the interface between the photocatalyst particles and the conductive porous membrane can be eliminated to prevent the reverse electron transfer reaction and to increase the energy conversion efficiency.

本発明における第1の光電気化学セルの製造方法によれば、光触媒粒子と導電性多孔質膜との界面でのIRロスが無くなり、逆電子移動反応を防止した隔膜を得ることができる。   According to the first method for producing a photoelectrochemical cell of the present invention, there is no IR loss at the interface between the photocatalyst particles and the conductive porous film, and a diaphragm in which reverse electron transfer reaction is prevented can be obtained.

本発明における第2の光電気化学セルの製造方法によれば、光触媒電極と対極の電極とを導電性多孔質体を介して導通させて短絡線の接合が不要となるため、装置の構成を簡略化した光電気化学セルとすることができる。   According to the second method for producing a photoelectrochemical cell of the present invention, the photocatalyst electrode and the counter electrode are made conductive through the conductive porous body, so that it is not necessary to join the short-circuit wire. A simplified photoelectrochemical cell can be obtained.

以下、添付図面を参照して、本発明の実施の形態に係る光電気化学セル及びその製造方法を説明する。   Hereinafter, a photoelectrochemical cell according to an embodiment of the present invention and a method for producing the same will be described with reference to the accompanying drawings.

第1実施形態
本発明の実施の形態に係る光電気化学セルとして、PEM(Polymer Electrolyte Membrane)型光水電解セルを挙げて説明する。
First Embodiment A PEM (Polymer Electrolyte Membrane) type photowater electrolysis cell will be described as a photoelectrochemical cell according to an embodiment of the present invention.

図1(a)は、PEM型光水電解セルを概略的に示した断面図であり、図1(b)は、隔膜の拡大断面図である。PEM型光水電解セル1は、容器2中央に隔膜3を配置し、容器2内部に隔膜3により仕切られた2つの水貯留部4a,4bを形成し、水貯留部4a,4b内に原料となる水を各々貯留している。   FIG. 1 (a) is a cross-sectional view schematically showing a PEM type photowater electrolysis cell, and FIG. 1 (b) is an enlarged cross-sectional view of a diaphragm. The PEM type photowater electrolysis cell 1 has a diaphragm 3 disposed in the center of a container 2, two water storage portions 4 a and 4 b partitioned by the diaphragm 3 are formed inside the container 2, and raw materials are stored in the water storage portions 4 a and 4 b. Each water is stored.

隔膜3は、光触媒電極5と、光触媒電極5の対極となる電極である白金担持カーボン6と、各電極間5,6に狭持されたプロトン伝導膜7と、から構成される。光触媒電極5は、導電性多孔質膜であるチタン(Ti)多孔質膜8の表面に被膜である二酸化チタン(TiO2)被膜9が形成されると共に、チタン(Ti)多孔質膜8の一方の面に光触媒粒子10が融着して形成されている。隔膜3両面側の上部及び下部には、水貯留部4a,4bからの水漏れを防止するシール部11a,11bが形成されており、シール部11a,11bにより隔膜3を支持している。光触媒電極5と白金担持カーボン電極6とには外部短絡線12が接続されており、外部短絡線12上にバイアス電源が設置され、バイアス電圧を負荷して、光触媒電極5で発生した励起電子(e-)のエネルギを高めている。 The diaphragm 3 includes a photocatalyst electrode 5, a platinum-supporting carbon 6 that is an electrode serving as a counter electrode of the photocatalyst electrode 5, and a proton conductive membrane 7 sandwiched between the electrodes 5 and 6. The photocatalytic electrode 5 has a titanium dioxide (TiO 2 ) film 9 as a film formed on the surface of a titanium (Ti) porous film 8 that is a conductive porous film, and one of the titanium (Ti) porous films 8. The photocatalyst particles 10 are fused to the surface. Seal portions 11a and 11b for preventing water leakage from the water storage portions 4a and 4b are formed on the upper and lower sides of the both sides of the diaphragm 3, and the diaphragm 3 is supported by the seal portions 11a and 11b. An external short-circuit line 12 is connected to the photocatalyst electrode 5 and the platinum-supporting carbon electrode 6, a bias power source is installed on the external short-circuit line 12, a bias voltage is applied, and excited electrons ( to enhance the energy of) - e.

さらに、上記隔膜3の構成を詳細に説明する。   Further, the configuration of the diaphragm 3 will be described in detail.

光触媒粒子10は、太陽光の特定波長以下の光を吸収して、価電子帯に存在する電子(e-)を伝導帯に励起する役割を果たすものであり、光触媒粒子10としては、価電子帯電位が酸素の酸化還元電位(1.23 V vs. NHE)よりもエネルギ的に低い半導体を用いることが好ましい。ここでは、光触媒粒子10として二酸化チタン(TiO2)を使用したが、二酸化チタン以外にも、酸化鉄(Fe2O3)、酸化ニオビウム(Nb2O5)、チタン酸ストロンチウム(SrTiO3)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、二酸化スズ(SnO2)、硫化カドミウム(CdS)、InTaO4、In1-xNixTaO4、Rb2La2TiO10、Ta2O5、TaON及びTa3N5など上記の条件を満たす半導体の中から選択することが可能である。 The photocatalyst particle 10 plays a role of absorbing light having a wavelength less than a specific wavelength of sunlight and exciting electrons (e ) existing in the valence band to the conduction band. It is preferable to use a semiconductor whose charged position is lower in energy than the oxidation-reduction potential of oxygen (1.23 V vs. NHE). Here, titanium dioxide (TiO 2 ) was used as the photocatalyst particles 10, but in addition to titanium dioxide, iron oxide (Fe 2 O 3 ), niobium oxide (Nb 2 O 5 ), strontium titanate (SrTiO 3 ), Barium titanate (BaTiO 3 ), zinc oxide (ZnO), tin dioxide (SnO 2 ), cadmium sulfide (CdS), InTaO 4 , In 1-x Ni x TaO 4, Rb 2 La 2 TiO 10 , Ta 2 O 5 , TaON and Ta 3 N 5 can be selected from semiconductors that satisfy the above conditions.

導電性多孔質膜であるチタン(Ti)多孔質膜8は、光触媒粒子10により励起された電子(e-)を白金担持カーボン6側に伝える伝導部の役割を果たす膜である。チタン多孔質膜8の拡大断面図を図2に示すが、チタン多孔質膜8は、チタン粒子を融着して形成されたチタン金属の表面に二酸化チタン(TiO2)被膜9が形成される。チタン多孔質膜8は導電部の役割を果たし、二酸化チタン被膜9は、チタン多孔質膜8から電解質側への電子(e-)の漏洩を防ぎ、水とチタン粒子5aとの短絡を防止している。なお、導電性多孔質膜は、チタン多孔質膜8に限定されるものではなく、金属酸化物が半導体又は絶縁体となる金属から形成することが好ましい。例えば、チタン、アルミ、シリコン、ジルコニウム、ニオブ、亜鉛、すず、タングステン、鉄、ビスマスなどの中から選択される材料から形成される多孔質膜を使用することができる。例示した材料から導電性多孔質膜を形成することにより、外周に絶縁体被膜又は半導体被膜を形成することができ、光水電解時の光触媒電極5での逆電子移動反応を防止することができる。 The titanium (Ti) porous film 8, which is a conductive porous film, is a film that serves as a conductive portion that transmits electrons (e ) excited by the photocatalyst particles 10 to the platinum-supporting carbon 6 side. An enlarged cross-sectional view of the titanium porous film 8 is shown in FIG. 2. In the titanium porous film 8, a titanium dioxide (TiO 2 ) film 9 is formed on the surface of titanium metal formed by fusing titanium particles. . The titanium porous film 8 serves as a conductive portion, and the titanium dioxide film 9 prevents leakage of electrons (e ) from the titanium porous film 8 to the electrolyte side, and prevents a short circuit between water and the titanium particles 5a. ing. The conductive porous film is not limited to the titanium porous film 8 and is preferably formed from a metal whose metal oxide is a semiconductor or an insulator. For example, a porous film formed of a material selected from titanium, aluminum, silicon, zirconium, niobium, zinc, tin, tungsten, iron, bismuth, and the like can be used. By forming a conductive porous film from the exemplified materials, an insulator coating or a semiconductor coating can be formed on the outer periphery, and a reverse electron transfer reaction at the photocatalytic electrode 5 during photowater electrolysis can be prevented. .

プロトン伝導膜7は、光触媒粒子6の反応により発生したプロトン(H)を、アノード(光触媒電極5)側からカソード(白金担持カーボン電極6)側にプロトン濃度勾配を駆動力として輸送する役割を果たす膜である。プロトン伝導膜7としては、プロトン(H)を伝導させる機能を有するものであれば特に限定されず、原料である水を貯留する水貯留部を二箇所に仕切れる構造とするために、プロトン伝導膜7として固体電解質膜を用いることが好ましい。固体電解質膜としては、ナフィオン(登録商標、デュポン(株)社製)に代表されるパーフルオロスルホン酸膜を使用することができる。 The proton conducting membrane 7 has a role of transporting protons (H + ) generated by the reaction of the photocatalyst particles 6 from the anode (photocatalyst electrode 5) side to the cathode (platinum-supported carbon electrode 6) side with a proton concentration gradient as a driving force. It is a film that fulfills. The proton conductive membrane 7 is not particularly limited as long as it has a function of conducting protons (H + ), and in order to have a structure in which a water storage part for storing water as a raw material is partitioned at two locations, protons are used. It is preferable to use a solid electrolyte membrane as the conductive membrane 7. As the solid electrolyte membrane, a perfluorosulfonic acid membrane represented by Nafion (registered trademark, manufactured by DuPont Co., Ltd.) can be used.

光触媒電極5の対極となる電極として、白金担持カーボン電極6を使用したが、白金メッシュなどの同様の機能を果たすものであれば使用することができる。なお、カーボン電極に担持する触媒は、白金以外にも、銅、ルテニウム、ロジウム、イリジウム等を使用することができる。   The platinum-supporting carbon electrode 6 is used as the counter electrode of the photocatalyst electrode 5, but any electrode having a similar function such as a platinum mesh can be used. In addition to platinum, copper, ruthenium, rhodium, iridium, etc. can be used as the catalyst supported on the carbon electrode.

なお、上記隔膜3の構成に限定されず、導電性多孔質膜であるチタン多孔質膜8の表面の二酸化チタン(TiO2)被膜9は、光触媒粒子10と兼ねる構成としても良い。このような構成にすると、チタン多孔質膜8に光触媒粒子10を塗布する必要が無くなり、隔膜3の製造方法を簡略化することができる。 The structure of the diaphragm 3 is not limited, and the titanium dioxide (TiO 2 ) coating 9 on the surface of the titanium porous film 8 that is a conductive porous film may also serve as the photocatalyst particles 10. With such a configuration, it is not necessary to apply the photocatalyst particles 10 to the titanium porous film 8, and the manufacturing method of the diaphragm 3 can be simplified.

また、前記被膜と光触媒の材質を異なる材料にすると、吸収する光の波長域が異なるため、エネルギの変換効率が上がる可能性がある。   In addition, if the material of the coating film and the photocatalyst are different, the wavelength range of light to be absorbed is different, which may increase the energy conversion efficiency.

次に、上記PEM型光水電解セル1の動作を図3に基づき説明する。   Next, the operation of the PEM type photowater electrolysis cell 1 will be described with reference to FIG.

太陽光が光触媒粒子10に照射されると、光触媒粒子10の価電子帯と伝導帯のバンドギャップに対応する波長の光が吸収される。ここで、価電子帯と伝導帯のエネルギバンドギャップEと光の吸収波長λとの関係は、次の化学式(1)、(2)によって表される。   When sunlight is irradiated onto the photocatalyst particles 10, light having a wavelength corresponding to the band gap between the valence band and the conduction band of the photocatalyst particles 10 is absorbed. Here, the relationship between the energy band gap E of the valence band and the conduction band and the light absorption wavelength λ is expressed by the following chemical formulas (1) and (2).

E=hν(h:プランク定数) …化学式(1)
λ=c/ν(c:光速度) …化学式(2)
つまり、λ以下の波長の光が光触媒粒子10により吸収されると、吸収された光は、価電子帯から伝導帯に電子を励起するエネルギとして使用される。励起された電子(e-)は、チタン多孔質膜8中を通り、外部短絡線12に至る。この時、チタン多孔質膜8と光触媒粒子10とは融着されているため、チタン多孔質膜8と光触媒粒子10との間の界面におけるIRロスを最小限に抑えることができる。
E = hν (h: Planck's constant) ... Chemical formula (1)
λ = c / ν (c: speed of light) (2)
That is, when light having a wavelength of λ or less is absorbed by the photocatalyst particle 10, the absorbed light is used as energy for exciting electrons from the valence band to the conduction band. The excited electrons (e ) pass through the titanium porous film 8 and reach the external short-circuit line 12. At this time, since the titanium porous film 8 and the photocatalyst particles 10 are fused, the IR loss at the interface between the titanium porous film 8 and the photocatalyst particles 10 can be minimized.

一方、光触媒粒子10の価電子帯にはホールが形成されて、化学式(3)の反応が進行し、水の酸化により酸素(O)が発生する。 On the other hand, holes are formed in the valence band of the photocatalyst particles 10, the reaction of the chemical formula (3) proceeds, and oxygen (O 2 ) is generated by the oxidation of water.

2H2O → 4H+ O+ 4 e- …化学式(3)
なお、チタン多孔質膜8の表面には、二酸化チタン(TiO2)被膜が形成され、チタン多孔質膜8から電解質(水)側に電子(e-)が漏洩することにより進行する化学式(4)の逆反応を抑制することができる。
2H 2 O → 4H + + O 2 + 4 e - ... chemical formula (3)
A titanium dioxide (TiO 2 ) film is formed on the surface of the titanium porous film 8, and the chemical formula (4) proceeds when electrons (e ) leak from the titanium porous film 8 to the electrolyte (water) side. ) Can be suppressed.

4H+ O2 + 4e→ 2H2O …化学式(4)
外部短絡線12上に設置されるバイアス電圧の負荷により、励起電子のエネルギ状態を水素の酸化還元電位よりも高い状態としている。バイアス電圧を負荷すると、電子は、水素の酸化還元電位よりもエネルギ的に高い電位となり、励起された電子(e-)は、光触媒電極5側からプロトン伝導膜中を輸送されてきたプロトン(H)と結合して、以下の化学式(5)に示す反応が進行して水素(H)が発生する。
4H + + O 2 + 4e → 2H 2 O ... Chemical formula (4)
The energy state of the excited electrons is set higher than the redox potential of hydrogen due to the bias voltage load installed on the external short-circuit line 12. When a bias voltage is applied, the electrons are energetically higher than the redox potential of hydrogen, and the excited electrons (e ) are transported from the photocatalyst electrode 5 to the protons (H + ) And a reaction shown in the following chemical formula (5) proceeds to generate hydrogen (H 2 ).

2H+ 2e- → H …化学式(5)
以上の原理から、太陽光エネルギを利用して、水を水素と酸素とに分解している。
2H + + 2e - → H 2 ... Chemical formula (5)
Based on the above principle, water is decomposed into hydrogen and oxygen using solar energy.

上記PEM型光水電解セル1では、伝導帯電位が水素の酸化還元電位よりもエネルギ的に低く、あるいは水電解に必要な過電圧を与える程には、伝導帯電位が水素の酸化還元電位よりもエネルギ的に高くない光触媒を用いたことを想定している。このため、外部短絡線12を各電極5,6に接続しただけでは、前述した化学式(5)の反応が進行しない。このため、外部短絡線10上にバイアス電圧を負荷して、化学式(5)の反応を進行させている。しかし、伝導帯電位が水素の酸化還元電位よりもエネルギ的に十分に高い光触媒粒子10を使用した場合は、外部短絡線12上にバイアス電圧を負荷する必要がないことはもちろんである。   In the PEM photowater electrolysis cell 1, the conduction charge position is lower than the oxidation-reduction potential of hydrogen so that the conduction charge position is lower in energy than the oxidation-reduction potential of hydrogen or an overvoltage necessary for water electrolysis is applied. It is assumed that a photocatalyst that is not high in energy is used. For this reason, the reaction of the chemical formula (5) does not proceed only by connecting the external short-circuit wire 12 to the electrodes 5 and 6. For this reason, a bias voltage is loaded on the external short-circuit line 10 to advance the reaction of the chemical formula (5). However, when the photocatalyst particles 10 whose conduction charge position is sufficiently higher in energy than the redox potential of hydrogen are used, it is needless to say that it is not necessary to apply a bias voltage on the external short-circuit line 12.

さらに、本発明の実施の形態に係る光電気化学セルの製造方法を説明する。   Furthermore, the manufacturing method of the photoelectrochemical cell which concerns on embodiment of this invention is demonstrated.

本発明の実施の形態に係る光電気化学セルの製造方法は、導電性多孔質膜の表面に被膜を形成すると共に、導電性多孔質膜の一方の面に光触媒粒子を形成して光触媒電極を構成し、得られた光触媒電極の光触媒粒子を配置した面と逆側に、プロトン伝導膜と、光触媒電極の対極となる電極と、を順次重ねて、プロトン伝導膜の軟化する温度以上で圧着して隔膜とするものである。このようにプロトン伝導膜を介して光触媒電極と対極の電極とを重ねた後に圧着することにより、隔膜の密着性が向上し、さらに、水素、酸素の発生の反応場である三相界面にプロトンを容易に移動させることができる。   A method for producing a photoelectrochemical cell according to an embodiment of the present invention includes forming a coating on the surface of a conductive porous membrane and forming photocatalytic particles on one surface of the conductive porous membrane to form a photocatalytic electrode. The proton conductive membrane and the counter electrode of the photocatalyst electrode are sequentially stacked on the side opposite to the surface where the photocatalyst particles of the obtained photocatalyst electrode are arranged, and pressure-bonded at a temperature higher than the softening temperature of the proton conductive membrane. A diaphragm is used. In this manner, the photocatalyst electrode and the counter electrode are overlapped with each other through the proton conducting membrane and then subjected to pressure bonding to improve the adhesion of the diaphragm, and further, protons are added to the three-phase interface, which is a reaction field for generating hydrogen and oxygen. Can be easily moved.

上記光電気化学セルの製造方法において、導電性多孔質膜の表面に被膜を形成する方法としては、熱酸化法、化学気相法(CVD)あるいは陽極酸化法を使用することができる。熱酸化法または陽極酸化法を使用する場合には、導電性多孔質の表面に予め光触媒粒子を塗布する必要がある。また、陽極酸化法を使用する場合には、プロトン伝導体と光触媒粒子とを圧着した後、導電性多孔質膜の表面を陽極酸化して隔膜を製造しても良い。化学気相法を用いて、チタン多孔質膜上に半導体被膜又は絶縁体被膜を形成すると、特に、チタン多孔質膜中のチタン粒子表面の全てにチタン(TiO2)被膜を形成することができる。このように、熱酸化法、化学気相法あるいは陽極酸化法を使用することにより、導電性多孔質膜上に半導体被膜または絶縁体被膜を形成することができ、光水電解時のアノードでの逆電子移動反応を防止することができる。なお、陽極酸化法を用いて導電性多孔質膜の表面に被膜を形成する場合には、プロトン伝導体に導電性多孔質膜を圧着した後、導電性多孔質膜の表面を陽極酸化して被膜を形成することもできる。これにより、隔膜の製造方法の最終工程において、導電性多孔質膜の表面に被膜を形成することができる。 In the method for producing a photoelectrochemical cell, a thermal oxidation method, a chemical vapor deposition method (CVD), or an anodic oxidation method can be used as a method for forming a film on the surface of the conductive porous film. When the thermal oxidation method or the anodic oxidation method is used, it is necessary to apply photocatalyst particles to the surface of the conductive porous material in advance. In the case of using the anodizing method, the proton conductor and the photocatalyst particles may be pressure-bonded, and then the surface of the conductive porous film may be anodized to produce a diaphragm. When a semiconductor film or an insulator film is formed on a titanium porous film using the chemical vapor deposition method, in particular, a titanium (TiO 2 ) film can be formed on the entire surface of the titanium particles in the titanium porous film. . Thus, by using a thermal oxidation method, a chemical vapor deposition method or an anodic oxidation method, a semiconductor film or an insulator film can be formed on the conductive porous film. Reverse electron transfer reaction can be prevented. In addition, when forming a film on the surface of the conductive porous film by using the anodizing method, after pressure bonding the conductive porous film to the proton conductor, the surface of the conductive porous film is anodized. A film can also be formed. Thereby, a coating film can be formed on the surface of the conductive porous membrane in the final step of the manufacturing method of the diaphragm.

なお、導電性多孔質膜の表面に被膜を形成する方法として、オゾン酸化法、プラズマ酸化法等を用いてもよい。   In addition, as a method for forming a film on the surface of the conductive porous film, an ozone oxidation method, a plasma oxidation method, or the like may be used.

また、導電性多孔質膜上に光触媒を形成する方法としては、熱酸化法、陽極酸化法あるいは化学気相法のいずれかを用いることができる。熱酸化法または陽極酸化法を用いる場合には、予め導電性多孔質膜上に光触媒粒子を含むコロイド溶液を塗布する。このように導電性多孔質膜上に予め光触媒粒子を塗布した後、被膜を形成すると、導電性多孔質膜と光触媒粒子とを融着することができる。導電性多孔質膜と光触媒粒子とが融着すると、両者の界面でのIRロスを低減することができ、光水電解時の逆電子反応を防止することができる。   As a method for forming a photocatalyst on the conductive porous film, any one of a thermal oxidation method, an anodic oxidation method and a chemical vapor phase method can be used. When the thermal oxidation method or the anodic oxidation method is used, a colloid solution containing photocatalyst particles is applied on the conductive porous film in advance. When the photocatalyst particles are previously applied on the conductive porous film in this way and then a film is formed, the conductive porous film and the photocatalyst particles can be fused. When the conductive porous membrane and the photocatalyst particles are fused, IR loss at the interface between the two can be reduced, and the reverse electron reaction during photowater electrolysis can be prevented.

さらに、図1(a)に示したPEM型光水電解セルの隔膜3の3通りの製造方法を説明する。   Further, three methods for manufacturing the diaphragm 3 of the PEM type photowater electrolysis cell shown in FIG.

(1)第1の方法
まず、チタン多孔質膜を作製する。有機溶媒中に、粒径45μm〜150μmの球状Ti粒子の粉末とバインダ(ポリビニルブチラール)とを投入し、混合攪拌してスラリーを作製する。作製したスラリーをドクターブレード法により薄膜化した後、得られた薄膜を真空焼結炉内に導入する。真空焼結炉を真空排気した後、薄膜を500℃で脱脂し、その後、1050℃〜1350℃で焼結してチタン多孔質膜とする。
(1) First Method First, a titanium porous film is produced. A spherical Ti particle powder having a particle diameter of 45 μm to 150 μm and a binder (polyvinyl butyral) are charged into an organic solvent, and mixed and stirred to prepare a slurry. The prepared slurry is made into a thin film by the doctor blade method, and the obtained thin film is introduced into a vacuum sintering furnace. After evacuating the vacuum sintering furnace, the thin film is degreased at 500 ° C. and then sintered at 1050 ° C. to 1350 ° C. to form a porous titanium membrane.

図4(a)に示すように、得られたチタン多孔質膜100上に、ドクターブレード法を用いて光触媒粒子101の粉末を含むスラリー102を塗布する。その後、光触媒粒子101を塗布したチタン多孔質膜100を400℃〜800℃で焼成すると、図4(b)に示すように、表面にTiO2被膜103が形成された光触媒電極104が得られる。 As shown in FIG. 4 (a), a slurry 102 containing powder of photocatalyst particles 101 is applied onto the obtained titanium porous membrane 100 using a doctor blade method. Thereafter, when the titanium porous membrane 100 coated with the photocatalyst particles 101 is fired at 400 ° C. to 800 ° C., a photocatalytic electrode 104 having a TiO 2 coating 103 formed on the surface is obtained as shown in FIG.

次に、白金触媒を被覆した炭素微粒子とプロトン伝導膜に使用されるものと同種のパーフルオロスルホン酸ポリマーを溶解した低級アルコールを主体とする溶液を均一に混合して、ペースト状の混合物を調整する。調整したペースト状の混合物をプロトン伝導膜上に塗布した後、混合物の塗布面と逆側に、作製した光触媒電極を配置する。その後、プレス温度120℃〜150℃、プレス圧力1MPa〜5MPaの条件下でホットプレスをする。すると、プロトン伝導膜に光触媒電極が圧着されて、図4(c)に示すように、プロトン伝導膜105の一方の面に光触媒電極104が形成され、光触媒電極104と逆側の面に白金担持カーボン電極106が形成されて、隔膜107を得ることができる。   Next, a paste-like mixture is prepared by uniformly mixing carbon fine particles coated with platinum catalyst and a solution mainly composed of lower alcohol in which the same kind of perfluorosulfonic acid polymer used in the proton conducting membrane is dissolved. To do. After applying the prepared paste-like mixture on the proton conducting membrane, the produced photocatalytic electrode is placed on the side opposite to the application surface of the mixture. Thereafter, hot pressing is performed under conditions of a press temperature of 120 ° C. to 150 ° C. and a press pressure of 1 MPa to 5 MPa. Then, the photocatalyst electrode is pressure-bonded to the proton conductive film, and as shown in FIG. 4C, the photocatalyst electrode 104 is formed on one surface of the proton conductive film 105, and platinum is supported on the surface opposite to the photocatalyst electrode 104. A carbon electrode 106 is formed, and the diaphragm 107 can be obtained.

なお、光触媒電極104によりプロトン伝導膜105が破断することを防止するため、プロトン伝導膜105は、一定以上の厚さとすることが望ましい。プロトン伝導膜105としてナフィオン膜を使用する場合は、ナフィオン膜の厚さを50μm以上とすることが望ましい。   In order to prevent the proton conductive membrane 105 from being broken by the photocatalytic electrode 104, it is desirable that the proton conductive membrane 105 has a certain thickness or more. When a Nafion membrane is used as the proton conductive membrane 105, it is desirable that the thickness of the Nafion membrane be 50 μm or more.

(2)第2の方法
第2の方法では、まず、光触媒粒子101の粉末を含むスラリー102をチタン多孔質膜100上にドクターブレード法を用いて塗布する(図4(a))。光触媒粒子101を塗布したチタン多孔質膜100を400℃で焼成し、チタン多孔質膜100表面に光触媒粒子101の光触媒層を形成する。光触媒層を形成したチタン多孔質膜100を陽極酸化して、表面にTiO2被膜103を形成する。より具体的には、光触媒層を形成したチタン多孔質膜100を作用電極とし、対極を炭素電極とし、H3PO40.3mol/l、H2SO4 1.5mol/lの水溶液中、200Vで低電圧電解を行う。この操作により、チタン多孔質膜100の表面にTiO2被膜103を形成することができる。その後の製造手順は、前述した第1の方法と同様である。
(2) Second Method In the second method, first, the slurry 102 containing the powder of the photocatalyst particles 101 is applied onto the titanium porous film 100 by using a doctor blade method (FIG. 4A). The titanium porous film 100 coated with the photocatalyst particles 101 is baked at 400 ° C. to form a photocatalyst layer of the photocatalyst particles 101 on the surface of the titanium porous film 100. The titanium porous film 100 on which the photocatalyst layer is formed is anodized to form a TiO 2 film 103 on the surface. More specifically, the titanium porous membrane 100 formed with the photocatalytic layer is used as a working electrode, the counter electrode is used as a carbon electrode, and an aqueous solution of H 3 PO 4 0.3 mol / l and H 2 SO 4 1.5 mol / l at 200 V. Perform low voltage electrolysis. By this operation, the TiO 2 coating 103 can be formed on the surface of the titanium porous membrane 100. The subsequent manufacturing procedure is the same as that of the first method described above.

(3)第3の方法
第3の方法では、まず、光触媒粒子101を含むスラリー102をチタン多孔質膜100上にドクターブレード法を用いて塗布する(図4(a))。光触媒を塗布したチタン多孔質膜8を400℃〜800℃にて焼成する。この時に、チタン多孔膜の表面にTiO2被膜103を形成することができる(図4(b))。これにより、光触媒粒子101とチタン多孔質膜100との間の導電性が保たれると同時に、電解液(水)とチタン多孔質膜100との間にTiO2被膜103が形成される(図4(c))。
(3) Third Method In the third method, first, the slurry 102 containing the photocatalyst particles 101 is applied onto the titanium porous film 100 by using a doctor blade method (FIG. 4A). The titanium porous film 8 coated with the photocatalyst is baked at 400 ° C. to 800 ° C. At this time, the TiO 2 film 103 can be formed on the surface of the titanium porous film (FIG. 4B). Thereby, conductivity between the photocatalyst particles 101 and the titanium porous film 100 is maintained, and at the same time, a TiO 2 film 103 is formed between the electrolytic solution (water) and the titanium porous film 100 (FIG. 4 (c)).

次に、白金触媒を被覆した炭素微粒子とプロトン伝導膜に使用されるものと同種のパーフルオロスルホン酸ポリマーを溶解した低級アルコールを主体とする溶液を均一に混合して、ペースト状の混合物を調整する。調整したペースト状の混合物をプロトン伝導膜上に塗布した後、混合物の塗布面とは逆側に、作製した光触媒電極104を配置する。その後、プレス温度120℃〜150℃、プレス圧力1MPa〜5MPaの条件下でホットプレスをして、プロトン伝導膜105に光触媒電極104を圧着して、図4(c)に示す隔膜107とする。   Next, a paste-like mixture is prepared by uniformly mixing carbon fine particles coated with platinum catalyst and a solution mainly composed of lower alcohol in which the same kind of perfluorosulfonic acid polymer used in the proton conducting membrane is dissolved. To do. After applying the prepared paste-like mixture on the proton conducting membrane, the produced photocatalytic electrode 104 is disposed on the side opposite to the application surface of the mixture. Thereafter, hot pressing is performed under conditions of a pressing temperature of 120 ° C. to 150 ° C. and a pressing pressure of 1 MPa to 5 MPa, and the photocatalytic electrode 104 is pressure-bonded to the proton conducting membrane 105 to form a diaphragm 107 shown in FIG.

その後、得られた隔膜107について、H3PO40.3mol/l、H2SO4 1.5mol/lの水溶液中、200Vにて定電圧電解を行い、隔膜の製造工程の途中に生じるTiO2被膜の欠陥を選択的に封止することができる。 Thereafter, the obtained diaphragm 107 was subjected to constant voltage electrolysis at 200 V in an aqueous solution of H 3 PO 4 0.3 mol / l and H 2 SO 4 1.5 mol / l, and a TiO 2 coating produced during the process of manufacturing the diaphragm These defects can be selectively sealed.

以上説明したように、本実施形態によれば、隔膜中の光触媒電極と対極となる電極との間に外部短絡線を接続してPEM型光水電解セルを構成したため、水素発生サイトと酸素発生サイトとを分離することができる。このため、水の分解により生成した水素と酸素とを分離して回収することができ、エネルギの変換効率を高めることができる。   As described above, according to the present embodiment, the PEM type photowater electrolysis cell is configured by connecting the external short-circuit wire between the photocatalyst electrode in the diaphragm and the counter electrode, so that the hydrogen generation site and the oxygen generation The site can be separated. For this reason, hydrogen and oxygen produced by the decomposition of water can be separated and recovered, and the energy conversion efficiency can be increased.

また、本実施形態によれば、外部短絡線上にバイアス電源を設置したため、半導体の導電帯のエネルギ準位が水素の酸化還元電位に達していない場合でも、バイアス電圧を負荷して水を分解することが可能となる。   In addition, according to the present embodiment, since the bias power supply is installed on the external short-circuit line, even when the energy level of the semiconductor conduction band does not reach the redox potential of hydrogen, the bias voltage is applied to decompose water. It becomes possible.

さらに、本実施形態によれば、光触媒粒子により励起された電子が導電性多孔質膜を介して対極の電極に流れるため、光触媒粒子を透明電極に担持した場合や、光触媒自体のみが電子を流すパスである場合に比べて、面方向のIRロスを低減することができる。この結果、エネルギの変換効率を高め、さらにPEM型光水電解セルを容易に大型化することができる。   Furthermore, according to the present embodiment, since electrons excited by the photocatalyst particles flow to the counter electrode through the conductive porous film, the photocatalyst particles are carried on the transparent electrode, or only the photocatalyst itself flows electrons. The IR loss in the surface direction can be reduced as compared with the case of the path. As a result, the energy conversion efficiency can be increased, and the PEM photowater electrolysis cell can be easily enlarged.

第2実施形態
本実施形態では、改良した隔膜を適用したPEM型光水電解セルを挙げて説明する。なお、第1実施形態に示したPEM型光水電解セル1と同一の構成については、同一符号を使用してその説明を省略する。
Second Embodiment In this embodiment, a PEM type photowater electrolysis cell to which an improved diaphragm is applied will be described. In addition, about the structure same as the PEM type photowater electrolysis cell 1 shown in 1st Embodiment, the description is abbreviate | omitted using the same code | symbol.

図5(a)は、本発明の実施の形態に係るPEM型光水電解セルの断面図であり、図5(b)は、隔膜の拡大断面図である。PEM型光水電解セル20の隔膜21には外部短絡線が接続されていない。図5(b)に示す隔膜21では、チタン多孔質膜8がプロトン伝導膜7の中に埋め込まれ、チタン多孔質膜8はプロトン伝導膜7を突き抜けた構造を有する。さらに、チタン多孔質膜8は、プロトン伝導膜7の両面側に各々形成された光触媒粒子10と白金担持カーボン電極6とに導通している。   FIG. 5 (a) is a cross-sectional view of the PEM type photowater electrolysis cell according to the embodiment of the present invention, and FIG. 5 (b) is an enlarged cross-sectional view of the diaphragm. An external short-circuit line is not connected to the diaphragm 21 of the PEM type photowater electrolysis cell 20. In the diaphragm 21 shown in FIG. 5 (b), the titanium porous membrane 8 is embedded in the proton conducting membrane 7, and the titanium porous membrane 8 has a structure that penetrates the proton conducting membrane 7. Further, the titanium porous membrane 8 is electrically connected to the photocatalyst particles 10 and the platinum-supporting carbon electrode 6 respectively formed on both sides of the proton conducting membrane 7.

PEM型光水電解セル20の隔膜21中の光触媒粒子6としては、価電子帯電位が酸素の酸化還元電位(1.23 V vs. NHE)よりもエネルギ的に低く、伝導帯電位が水素の酸化還元電位(0V vs. NHE)よりエネルギ的に高い材料を使用している。光触媒粒子10としては、酸化チタンストロンチウム(SrTiO3)、二酸化チタン(TiO2)、酸化ジルコニウム(ZrO3)、酸化タンタルカリウム(KTaO3)、セレン化カドミウム(CdSe)あるいは硫化カドミウム(CdS)、InRaO4、In1-xNixTaO4、Rb2La2TiO10、Ta2O5、TaON、Ta3N5などの半導体が挙げられる。 As the photocatalyst particles 6 in the diaphragm 21 of the PEM type photowater electrolysis cell 20, the valence charge position is energetically lower than the redox potential of oxygen (1.23 V vs. NHE), and the conduction charge position is redox of hydrogen. A material that is energetically higher than the potential (0V vs. NHE) is used. As photocatalyst particles 10, titanium strontium oxide (SrTiO 3 ), titanium dioxide (TiO 2 ), zirconium oxide (ZrO 3 ), potassium tantalum oxide (KTaO 3 ), cadmium selenide (CdSe), cadmium sulfide (CdS), InRaO 4 , In 1-x Ni x TaO 4, Rb 2 La 2 TiO 10 , Ta 2 O 5 , TaON, Ta 3 N 5 and other semiconductors.

上記PEM型光水電解セル20の動作を図6に基づき説明する。   The operation of the PEM photoelectrolysis cell 20 will be described with reference to FIG.

まず、太陽光が光触媒粒子10に照射されると、第1実施形態と同様に、光触媒粒子10の価電子帯と伝導帯のバンドギャップに対応する波長の光が吸収される。この時、第1実施形態と異なるのは、図6に示すように、光触媒粒子10の伝導帯電位が水素の酸化還元電位よりも低い位置にある点である。光触媒粒子10の伝導帯電位が水素の酸化還元電位よりも低い場合には、バイアス電圧を負荷する必要も無く、白金担持カーボン電極6側で水素を発生させることができる。   First, when sunlight is irradiated onto the photocatalyst particle 10, light having a wavelength corresponding to the band gap between the valence band and the conduction band of the photocatalyst particle 10 is absorbed, as in the first embodiment. At this time, the difference from the first embodiment is that, as shown in FIG. 6, the conduction charge position of the photocatalyst particle 10 is at a position lower than the oxidation-reduction potential of hydrogen. When the conduction charge position of the photocatalyst particles 10 is lower than the redox potential of hydrogen, it is not necessary to apply a bias voltage, and hydrogen can be generated on the platinum-supporting carbon electrode 6 side.

また、上記隔膜21中のチタン多孔質膜8は、白金担持カーボン電極6と接触しており、光触媒粒子10により励起された電子がチタン多孔質膜8中を通り、直接白金担持カーボン電極6に達するため、外部短絡線を接続する必要がない。   The titanium porous film 8 in the diaphragm 21 is in contact with the platinum-supporting carbon electrode 6, and electrons excited by the photocatalyst particles 10 pass through the titanium porous film 8 and directly to the platinum-supporting carbon electrode 6. Therefore, it is not necessary to connect an external short-circuit line.

次に、上記PEM型光水電解セル20の製造方法を説明する。   Next, a method for manufacturing the PEM type photowater electrolysis cell 20 will be described.

まず、光触媒を塗布した導電性多孔質膜とプロトン伝導膜とを重ねて、プロトン伝導膜が軟化する温度以上で圧着した後、導電性多孔膜をプロトン伝導膜に貫通させる。その後、光触媒塗布面と逆側の導電性多孔膜上の酸化被膜を除去し、電極触媒層を酸化被膜除去面に塗布した後、再び、プロトン伝導膜が軟化する温度以上で圧着して隔膜とする。さらに図7を用いて詳細に説明する。まず、チタン多孔質膜を作製するが、チタン多孔質膜の製造方法は、第1実施形態と同様である。   First, the conductive porous membrane coated with the photocatalyst and the proton conductive membrane are overlapped and pressure-bonded at a temperature higher than the temperature at which the proton conductive membrane softens, and then the conductive porous membrane is penetrated through the proton conductive membrane. After that, after removing the oxide film on the conductive porous membrane opposite to the photocatalyst application surface and applying the electrode catalyst layer to the oxide film removal surface, the membrane is again pressure-bonded at a temperature higher than the temperature at which the proton conductive membrane softens. To do. Furthermore, it demonstrates in detail using FIG. First, a titanium porous membrane is produced. The method for producing the titanium porous membrane is the same as that in the first embodiment.

図7(a)に示すように、チタン多孔質膜100上に、ドクターブレード法を用いて光触媒粒子101の粉末を含むスラリー102を塗布した後、400℃〜800℃で焼成して光触媒電極104とする。焼成後に得られた光触媒電極104は、図7(b)に示すように、光触媒粒子101とチタン多孔質膜100とが融着し、光触媒粒子101とチタン多孔質膜100との間の導電性が保たれる。また、チタン多孔質膜100の表面には、電子伝導性の低いTiO2被膜103が形成される。 As shown in FIG. 7 (a), the slurry 102 containing the powder of the photocatalyst particles 101 is applied on the titanium porous film 100 by using a doctor blade method, and then fired at 400 ° C. to 800 ° C. to photocatalyst electrode 104. And In the photocatalyst electrode 104 obtained after firing, the photocatalyst particles 101 and the titanium porous film 100 are fused as shown in FIG. 7B, and the conductivity between the photocatalyst particles 101 and the titanium porous film 100 is fused. Is preserved. In addition, a TiO 2 film 103 having low electron conductivity is formed on the surface of the titanium porous film 100.

作製した光触媒電極104をプロトン伝導膜105上に配置してホットプレスをする。ここで使用するプロトン伝導膜105としては、プロトンを伝導させる機能を有する材料であれば特に限定されないが、チタン多孔質膜100を白金担持カーボン電極と導通させる構造とするために、プロトン伝導膜105の厚さを薄くすることが望ましい。ホットプレスの条件は、温度120℃〜150℃、圧力5MPa〜10MPaとすることが望ましく、この条件下でホットプレスをすると、図7(c)に示すように、チタン多孔質膜100がプロトン伝導膜105内を貫通することになる。   The produced photocatalytic electrode 104 is placed on the proton conductive membrane 105 and hot pressed. The proton conducting membrane 105 used here is not particularly limited as long as it is a material having a function of conducting protons. However, in order to make the titanium porous membrane 100 conductive with the platinum-supporting carbon electrode, the proton conducting membrane 105 is used. It is desirable to reduce the thickness of the. The conditions for hot pressing are preferably a temperature of 120 ° C. to 150 ° C. and a pressure of 5 MPa to 10 MPa. When hot pressing is performed under these conditions, the titanium porous membrane 100 is proton-conductive as shown in FIG. It penetrates through the film 105.

その後、光触媒粒子101を塗布した面と逆側のチタン多孔質膜100の面であり、
図7(c)に示すプロトン伝導膜105からチタン多孔質膜100が露出した面を研磨して、図7(d)に示すように、チタン多孔質膜100の金属面108を露出させる。
Then, the surface of the titanium porous membrane 100 opposite to the surface coated with the photocatalyst particles 101,
The surface where the titanium porous membrane 100 is exposed from the proton conducting membrane 105 shown in FIG. 7C is polished to expose the metal surface 108 of the titanium porous membrane 100 as shown in FIG. 7D.

さらに、白金触媒を被覆した微粒子状の炭素粒子と電解質膜に使用されるものと同種のパーフルオロスルホン酸ポリマーを溶解した低級アルコールを主体とする溶液を均一に混合したペースト状の混合物をTi金属面に塗布し、再度、ホットプレスをする。ホットプレスの条件は、温度120℃〜150℃、圧力1MPa〜5MPaである。ホットプレスをした後、図7(e)に示す隔膜109を得ることができる。   Further, a paste-like mixture in which a finely divided carbon particle coated with a platinum catalyst and a solution mainly composed of a lower alcohol in which the same kind of perfluorosulfonic acid polymer used in an electrolyte membrane is mixed is uniformly mixed with Ti metal. Apply to the surface and hot press again. The hot press conditions are a temperature of 120 ° C. to 150 ° C. and a pressure of 1 MPa to 5 MPa. After hot pressing, the diaphragm 109 shown in FIG. 7 (e) can be obtained.

以上説明したように、本実施形態によれば、光触媒電極と対極となる電極とが導電性多孔質膜のみを介して導通しているため、外部短絡線の接続及びバイアス電源の設置が不要となり、この結果、PEM型光水電解セルを簡略化することができる。また、本実施形態においても、第1実施形態と同様の効果が得られることはもちろんである。   As described above, according to the present embodiment, since the photocatalyst electrode and the counter electrode are electrically connected only through the conductive porous film, it is not necessary to connect an external short-circuit line and install a bias power source. As a result, the PEM type photowater electrolysis cell can be simplified. Of course, in the present embodiment, the same effects as those of the first embodiment can be obtained.

なお、本発明の光電気化学セル及びその製造方法について、前述した第1実施形態と第2実施形態とを挙げて説明したが、本発明の構成はこれらに限定されるものではない。例えば、アノードの集電体として導電性多孔質膜を用いたが、パンチ穴の空いた導電体や、絶縁多孔体の上に金属から成る被膜を形成して導電性を持たせたものなど同様の働きを有するものを適用しても良い。また、光触媒として用いた半導体に助触媒として白金、酸化ルテニウム(RuO2)、酸化ニッケル(NiO)、酸化セリウム(CeO2)などを分散して添加しても良い。また、Ti多孔体上に塗布する光触媒として半導体を使用したが、有機色素など同様の働きをもつ物質を塗布しても良い。また、光触媒能を有する物質を積層する代わりに、チタン(Ti)を酸化して得られるTiO2被膜を光触媒として使用しても良い。また、図3のような光触媒と担体金属がネッキングしており、担体金属表面の光触媒がついていない部位に、半導体または絶縁体被膜を形成する方法として、光触媒と担体金属のネッキング処理を実施例1のように酸化雰囲気で行うのではなく、窒素やアルゴンなどの不活性ガス雰囲気下で行い、その後酸化処理をして半導体または絶縁体被膜を形成する方法としても良い。このような方法を用いることで、光触媒と担体金属の間に酸化被膜が形成されて、光触媒から担体金属への電子注入が妨げられるのを確実に防ぐことが可能となる。また、光触媒のTi多孔体への塗布方法として、光触媒を含んだコロイド溶液を例に挙げたが、例えば、MOD法(Metal Organic Deposition)など溶媒中に含まれた光触媒を用いる方法でも同様の結果が得られる。また、上記実施形態では、電解液と基板金属の短絡を防ぐ半導体または絶縁体として金属酸化物を例に挙げたが、同様の機能を果たすものであれば、金属硫化物や金属炭化物を用いても良い。また、第1実施形態ではバイアスの掛け方として外部電源を用いていたが、隔膜によって隔てられたガラスセル内の水溶液にpH差をつけて、バイアスを掛ける方法としても良い。さらに、本実施形態では光触媒で発生したプロトンを対極まで輸送するための媒体としてプロトン伝導膜を用いたが、これを除き、導電性多孔体内部に含まれる電解液自体が媒体となってもよい。 In addition, although the photoelectrochemical cell and its manufacturing method of this invention were demonstrated mentioning 1st Embodiment and 2nd Embodiment mentioned above, the structure of this invention is not limited to these. For example, a conductive porous film was used as the current collector of the anode, but a conductive material with punch holes or a metal film formed on an insulating porous material to make it conductive, etc. You may apply what has the function of. Further, platinum, ruthenium oxide (RuO 2 ), nickel oxide (NiO x ), cerium oxide (CeO 2 ), or the like may be dispersed and added as a co-catalyst to the semiconductor used as the photocatalyst. Moreover, although the semiconductor was used as a photocatalyst applied on the Ti porous body, a substance having a similar function such as an organic dye may be applied. Further, instead of laminating a substance having photocatalytic activity, a TiO 2 film obtained by oxidizing titanium (Ti) may be used as a photocatalyst. In addition, as a method of forming a semiconductor or insulator coating on a portion of the support metal surface where the photocatalyst and the support metal are necked as shown in FIG. Instead of performing in an oxidizing atmosphere as described above, it may be performed in an inert gas atmosphere such as nitrogen or argon, followed by an oxidation treatment to form a semiconductor or insulator film. By using such a method, it is possible to reliably prevent an oxide film from being formed between the photocatalyst and the support metal and hindering electron injection from the photocatalyst to the support metal. In addition, as a method for applying the photocatalyst to the porous Ti body, a colloidal solution containing a photocatalyst has been described as an example, but the same result can be obtained by using a photocatalyst contained in a solvent such as MOD method (Metal Organic Deposition). Is obtained. Moreover, in the said embodiment, although the metal oxide was mentioned as an example as a semiconductor or an insulator which prevents the short circuit of electrolyte solution and a board | substrate metal, if it performs the same function, metal sulfide and metal carbide will be used. Also good. In the first embodiment, an external power source is used as a method of applying a bias. However, a method of applying a bias by applying a pH difference to an aqueous solution in a glass cell separated by a diaphragm may be used. Furthermore, in the present embodiment, the proton conductive membrane is used as a medium for transporting protons generated by the photocatalyst to the counter electrode. However, except for this, the electrolytic solution itself contained in the conductive porous body may be the medium. .

(a)は、本発明の第1実施形態に係るPEM型光水電解セルの断面図であり、(b)は、隔膜の拡大断面図である。(A) is sectional drawing of the PEM type photowater electrolysis cell based on 1st Embodiment of this invention, (b) is an expanded sectional view of a diaphragm. 図1に示すチタン多孔質膜の拡大断面図である。It is an expanded sectional view of the titanium porous membrane shown in FIG. 図1に示すPEM型光水電解セル1の動作を説明する図である。It is a figure explaining operation | movement of the PEM type photowater electrolysis cell 1 shown in FIG. 図1に示すPEM型光水電解セルの隔膜の製造工程図である。It is a manufacturing-process figure of the diaphragm of the PEM type photowater electrolysis cell shown in FIG. (a)は、本発明の第2実施形態に係るPEM型光水電解セルの断面図であり、(b)は、隔膜の拡大断面図である。(A) is sectional drawing of the PEM type photowater electrolysis cell concerning 2nd Embodiment of this invention, (b) is an expanded sectional view of a diaphragm. 図5に示すPEM型光水電解セルの動作を説明する図である。It is a figure explaining operation | movement of the PEM type photowater electrolysis cell shown in FIG. 図5に示すPEM型光水電解セルの隔膜の製造工程図である。It is a manufacturing-process figure of the diaphragm of the PEM type photowater electrolysis cell shown in FIG.

符号の説明Explanation of symbols

1…PEM型光水電解セル,
2…容器,
3…隔膜,
4a,4b…水貯留部,
5…光触媒電極,
6…白金担持カーボン電極,
7…プロトン伝導膜,
8…チタン多孔質膜,
9…二酸化チタン被膜,
10…光触媒粒子,
11a,11b…シール部,
12…外部短絡線,
1 ... PEM photoelectrolysis cell,
2 ... container,
3 ... diaphragm,
4a, 4b ... water reservoir,
5 ... Photocatalytic electrode,
6 ... Platinum-supported carbon electrode,
7 ... Proton conducting membrane,
8 ... Titanium porous membrane,
9 ... Titanium dioxide coating,
10 ... photocatalyst particles,
11a, 11b ... seal part,
12 ... External short-circuit wire,

Claims (15)

導電性多孔質体の表面に被膜が形成されると共に、前記導電性多孔質体の一方の面に光触媒が融着されて形成された光触媒電極と、
前記光触媒電極の対極となる電極と、
前記各電極間に狭持されたプロトン伝導体と、
前記光触媒電極と対極となる前記電極とを電気的に導通する短絡線と、
を有する隔膜を備え
前記導電性多孔質体はチタン、アルミニウム、シリコン、ジルコニウム、ニオブ、亜鉛、すず、タングステン、鉄、ビスマスの中から選択される少なくとも一種類の金属からなり、
前記被膜は、前記導電性多孔質体を構成する前記金属の酸化物、窒化物、硫化物及び炭化物の少なくとも1種類からなり、
前記光触媒は対極となる前記電極と逆側の前記導電性多孔質膜上に形成され、
前記融着による光触媒の形成は、前記被膜の形成がなされる前に、前記導電性多孔質体上に塗布された前記光触媒粒子を焼成することによってなされ、
前記光触媒電極と対極となる前記電極との間において、前記光触媒から励起される電子のエネルギ状態が水素の酸化還元電位を超えるようにバイアス電圧が負荷されることを特徴とする光電気化学セル。
A film is formed on the surface of the conductive porous body, and a photocatalyst electrode formed by fusing a photocatalyst on one surface of the conductive porous body;
An electrode serving as a counter electrode of the photocatalytic electrode;
A proton conductor sandwiched between the electrodes;
A short-circuit wire that electrically connects the photocatalyst electrode and the counter electrode;
Equipped with a septum having a,
The conductive porous body is made of at least one metal selected from titanium, aluminum, silicon, zirconium, niobium, zinc, tin, tungsten, iron, and bismuth,
The coating consists of at least one of oxide, nitride, sulfide and carbide of the metal constituting the conductive porous body,
The photocatalyst is formed on the conductive porous membrane on the side opposite to the electrode serving as a counter electrode,
Formation of the photocatalyst by fusion is performed by firing the photocatalyst particles applied on the conductive porous body before the formation of the coating film,
In between the electrode serving as the photocatalyst electrode and the counter electrode, photoelectrochemical cells electronic energy states to be excited from the photocatalyst and said Rukoto bias voltage is loaded to exceed the redox potential of hydrogen.
前記被膜は、前記導電性多孔質体の一方の面に形成された光触媒であることを特徴とする請求項1記載の光電気化学セル。 The coating photoelectrochemical cell according to claim 1, wherein the a conductive porous body while the photocatalyst formed on the surface of the. 前記光触媒は、吸収する光の波長域が前記被膜と異なる材料であることを特徴とする請求項記載の光電気化学セル。 The photocatalyst may photoelectrochemical cell according to claim 1, wherein the wavelength range of absorption for light characterized in that it is a material different from the coating. 前記導電性多孔質体は、金属微粒子の焼結体であることを特徴とする請求項1記載の光電気化学セル。   The photoelectrochemical cell according to claim 1, wherein the conductive porous body is a sintered body of metal fine particles. 導電性多孔質体の表面に被膜が形成されると共に、前記導電性多孔質体の一方の面に光触媒が融着されて形成された光触媒電極と、
前記光触媒電極の対極となる電極と、
前記各電極間に狭持されたプロトン伝導体と、
を有する隔膜を備え、
前記導電性多孔質体はチタン、アルミニウム、シリコン、ジルコニウム、ニオブ、亜鉛、すず、タングステン、鉄、ビスマスの中から選択される少なくとも一種類の金属からなり、
前記被膜は、前記導電性多孔質体を構成する前記金属の酸化物、窒化物、硫化物及び炭化物の少なくとも1種類からなり、
前記光触媒は対極となる前記電極と逆側の前記導電性多孔質膜上に形成され、
前記融着による光触媒の形成は、前記被膜の形成がなされる前に、前記導電性多孔質体上に塗布された前記光触媒粒子を焼成することによってなされ、
前記光触媒は、価電子帯電位が酸素の酸化還元電位よりも低く、伝導体電位が水素の酸化還元電位よりも高い材料からなり、
前記光触媒電極と対極となる前記電極とは、導電性多孔質膜を介して導通されていることを特徴とする光電気化学セル。
A film is formed on the surface of the conductive porous body, and a photocatalyst electrode formed by fusing a photocatalyst on one surface of the conductive porous body;
An electrode serving as a counter electrode of the photocatalytic electrode;
A proton conductor sandwiched between the electrodes;
Comprising a diaphragm having
The conductive porous body is made of at least one metal selected from titanium, aluminum, silicon, zirconium, niobium, zinc, tin, tungsten, iron, and bismuth,
The coating consists of at least one of oxide, nitride, sulfide and carbide of the metal constituting the conductive porous body,
The photocatalyst is formed on the conductive porous membrane on the side opposite to the electrode serving as a counter electrode,
Formation of the photocatalyst by fusion is performed by firing the photocatalyst particles applied on the conductive porous body before the formation of the coating film,
The photocatalyst is made of a material having a valence charge position lower than the redox potential of oxygen and a conductor potential higher than the redox potential of hydrogen,
The photoelectrochemical cell, wherein the photocatalyst electrode and the counter electrode are electrically connected to each other through a conductive porous film.
さらに、前記短絡線上に設置されたバイアス電源を備えることを特徴とする請求項1乃至のいずれか1項に記載の光電気化学セル。 The photoelectrochemical cell according to any one of claims 1 to 4 , further comprising a bias power supply installed on the short-circuit line. 前記プロトン伝導膜によって隔てられた隔室間に水素イオン濃度差をつけることによりバイアス電圧を掛けることを特徴とする請求項1乃至4のいずれか1項に記載の光電気化学セル。 Photoelectrochemical cell according to any one of claims 1 to 4, characterized in that biasing voltage by attaching a hydrogen ion concentration difference between said separated by a proton conducting membrane compartment. 前記プロトン伝導体は、プロトン伝導膜であることを特徴とする請求項1記載の光電気化学セル。   The photoelectrochemical cell according to claim 1, wherein the proton conductor is a proton conductive membrane. 前記プロトン伝導体は、前記多孔質伝導体内部に保持される電解液であることを特徴とする請求項1乃至のいずれか1項に記載の光電気化学セル。 The proton conductor, said porous photoelectrochemical cell according to any one of claims 1 to 4, wherein the conductor is an electrolytic solution held therein. 前記導電性多孔質体の表面に被膜を形成すると共に、前記導電性多孔質体の一方の面に前記光触媒を形成して前記光触媒電極とする工程と
前記光触媒電極の光触媒を形成した面と逆側に、前記プロトン伝導体と、前記光触媒電極の対極となる前記電極と、を順次重ねて、前記プロトン伝導体の軟化する温度以上で圧着して隔膜とする工程と、
を有することを特徴とする請求項1に記載の光電気化学セルの製造方法。
To form a film on the surface of the conductive porous body, the steps of the photocatalyst formed to one surface of the conductive porous body and the photocatalyst electrode,
The surface opposite the side forming the photocatalyst of the photocatalyst electrode, and the proton conductor, said electrode comprising a counter electrode of the photocatalyst electrode, sequentially stacked, and pressed at a temperature above the softening of the proton conductor membrane And a process of
The method for producing a photoelectrochemical cell according to claim 1, comprising :
前記導電性多孔質体の表面に被膜を形成すると共に、前記導電性多孔質体の一方の面に前記光触媒を形成して前記光触媒電極とする工程と
前記光触媒電極の光触媒を形成した面と逆側に、前記プロトン伝導体と、前記光触媒電極の対極となる電極と、を順次重ねて、前記プロトン伝導体の軟化する温度以上で圧着し、さらに、前記導電性多孔質体をプロトン伝導体に貫通させる工程と
光触媒粒子を塗布した面と逆側の前記導電性多孔質体上に形成された酸化被膜を除去する工程と
前記酸化被膜の除去面に対極となる電極材料を塗布し、前記プロトン伝導体の軟化する温度以上で圧着して隔膜とする工程と、
を有することを特徴とする請求項5に記載の光電気化学セルの製造方法。
To form a film on the surface of the conductive porous body, the steps of the photocatalyst formed to one surface of the conductive porous body and the photocatalyst electrode,
The surface opposite the side forming the photocatalyst of the photocatalyst electrode, and the proton conductor, and an electrode serving as a counter electrode of the photocatalyst electrode, sequentially stacked, and pressed at a temperature above the softening of the proton conductor, further, a step of Ru passed through the proton conductor of the conductive porous body,
Removing the conductive porous oxide film formed on the body of the photocatalyst particles and the surface coated with the opposite side,
Applying an electrode material as a counter electrode to the removal surface of the oxide film, and pressure-bonding at a temperature higher than the softening temperature of the proton conductor to form a diaphragm ;
The method for producing a photoelectrochemical cell according to claim 5, wherein:
熱酸化法、化学気相法または陽極酸化法を用いて、前記導電性多孔質体の表面に被膜を形成することを特徴とする請求項10又は11記載の光電気化学セルの製造方法。 The method for producing a photoelectrochemical cell according to claim 10 or 11 , wherein a film is formed on the surface of the conductive porous body using a thermal oxidation method, a chemical vapor deposition method or an anodic oxidation method. 前記導電性多孔質体上に光触媒粒子を塗布した後、導電性多孔質体の表面に前記被膜を形成することを特徴とする請求項10又は11記載の光電気化学セルの製造方法。 The method for producing a photoelectrochemical cell according to claim 10 or 11 , wherein the coating film is formed on a surface of the conductive porous body after applying photocatalyst particles on the conductive porous body. 前記導電性多孔質体上に光触媒粒子を塗布した後、不活性雰囲気下で熱処理をした後、前記導電性多孔質体の表面に前記被膜を形成することを特徴とする請求項10又は11記載の光電気化学セルの製造方法。 After the photocatalyst particles is applied to the conductive porous on the body, after heat treatment in an inert atmosphere, according to claim 10 or 11, wherein the forming the film on the surface of the conductive porous body Manufacturing method of photoelectrochemical cell. 前記隔膜を形成した後、さらに被膜を形成することを特徴とする請求項10又は11記載の光電気化学セルの製造方法。 12. The method for producing a photoelectrochemical cell according to claim 10 , further comprising forming a film after forming the diaphragm.
JP2005123623A 2005-04-21 2005-04-21 Photoelectrochemical cell and method for producing the same Expired - Fee Related JP4904715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005123623A JP4904715B2 (en) 2005-04-21 2005-04-21 Photoelectrochemical cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005123623A JP4904715B2 (en) 2005-04-21 2005-04-21 Photoelectrochemical cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006302695A JP2006302695A (en) 2006-11-02
JP4904715B2 true JP4904715B2 (en) 2012-03-28

Family

ID=37470744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005123623A Expired - Fee Related JP4904715B2 (en) 2005-04-21 2005-04-21 Photoelectrochemical cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4904715B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008048737A1 (en) 2007-10-31 2009-07-16 Sigrid Dr. Obenland Monolithic catalyst system for the cleavage of water into hydrogen and oxygen with aid of light, has first and second photoactive materials associated together with auxiliary materials and auxiliary catalysts when irradiated with the light
JP2009219958A (en) * 2008-03-13 2009-10-01 Central Res Inst Of Electric Power Ind Oxidative decomposition method using photocatalyst and water purification apparatus
JP2010140812A (en) * 2008-12-12 2010-06-24 Sekisui Chem Co Ltd Function element, manufacturing method therefor, and dye-sensitized solar cell
JP2011014356A (en) * 2009-07-01 2011-01-20 Sony Corp Photoelectric conversion element, method of manufacturing therefor, and electronic device
JP5724170B2 (en) * 2009-10-30 2015-05-27 株式会社豊田中央研究所 Photochemical reaction device
WO2011058723A1 (en) * 2009-11-10 2011-05-19 パナソニック株式会社 Photoelectrochemical cell and energy system using same
JP5628840B2 (en) * 2010-01-22 2014-11-19 パナソニック株式会社 Hydrogen generation device
KR101129965B1 (en) 2010-06-28 2012-03-26 현대하이스코 주식회사 Method for manufacturing photo electrode comprising blocking layer, and method for manufacturing dye sensitized solar cell using the photo electrode
JP5628928B2 (en) * 2010-09-07 2014-11-19 パナソニック株式会社 Hydrogen generation device
JP5830527B2 (en) * 2011-04-04 2015-12-09 株式会社日立製作所 Semiconductor device, hydrogen production system, and methane or methanol production system
JP5775784B2 (en) * 2011-10-06 2015-09-09 日立造船株式会社 Hydrogen production facility
JP6213958B2 (en) * 2012-10-09 2017-10-18 国立大学法人 千葉大学 Fuel cell
CN103952717A (en) * 2014-05-07 2014-07-30 北京化工大学 Photoelectrochemical decomposition water and organic synthesis coupled cascade reaction design method
JP2014223629A (en) * 2014-08-27 2014-12-04 三菱化学株式会社 Electrode for photolytic water decomposition reaction using photocatalyst
WO2016114063A1 (en) * 2015-01-13 2016-07-21 富士フイルム株式会社 Hydrogen generating electrode
KR101889011B1 (en) * 2017-02-14 2018-08-20 서강대학교산학협력단 Hybrid structure for artificial photosynthesis and integrated reaction apparatus for artificial photosynthesis using the same, and hybrid structure for water-splitting and integrated reaction apparatus for water-splitting using the same
KR102484742B1 (en) * 2017-04-04 2023-01-05 바스프 코포레이션 On-vehicle hydrogen generation and use in exhaust streams
JP6998590B2 (en) * 2018-01-26 2022-02-04 公立大学法人北九州市立大学 Reactor and hydrocarbon production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3655349B2 (en) * 1995-04-28 2005-06-02 株式会社日立製作所 Carbon dioxide converter
JPH101301A (en) * 1996-06-18 1998-01-06 Mitsubishi Heavy Ind Ltd Production of hydrogen and oxygen and apparatus therefor
JP3821529B2 (en) * 1997-02-21 2006-09-13 松下冷機株式会社 Electrolyzed water generator
JP2001286749A (en) * 2000-02-03 2001-10-16 Sharp Corp Chemical transducer

Also Published As

Publication number Publication date
JP2006302695A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4904715B2 (en) Photoelectrochemical cell and method for producing the same
Zhang et al. Boosting overall water splitting via FeOOH nanoflake-decorated PrBa0. 5Sr0. 5Co2O5+ δ nanorods
JP7029420B2 (en) An electrode catalyst layer for a carbon dioxide electrolytic cell, and an electrolytic cell and an electrolytic device for carbon dioxide electrolysis provided with the electrode catalyst layer.
Vázquez-Galván et al. High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries
JP5275756B2 (en) Electrode for alkaline fuel cell
JP5587797B2 (en) Direct fuel cell without selectively permeable membrane and components thereof
JP5960795B2 (en) Method for producing oxygen gas diffusion electrode
JP4879490B2 (en) Fluorine separator and generator
JP7198238B2 (en) Electrode catalyst layer for carbon dioxide electrolysis cell, and electrolysis cell and electrolysis device for carbon dioxide electrolysis comprising the same
JP5306606B2 (en) Photoelectrolyzer and related apparatus and method
JP5759687B2 (en) Water electrolysis cell
JP2006210135A (en) Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
KR101931504B1 (en) Membrane Electrode Assembly for the Electrochemical Cell
JP6372695B2 (en) Conductive particles, carrier material using the same, fuel cell device and water electrolysis device
JP2006176835A (en) Method for manufacturing water electrolysis apparatus
WO2018037774A1 (en) Cathode, electrolysis cell for producing organic hydride, and organic hydride production method
Tarantseva et al. Catalytic activity of platinized titanium and titanium coated with ruthenium oxide in the processes of electrooxidation of ethyl alcohol in alkaline media
JP6998797B2 (en) Organic hydride manufacturing equipment, organic hydride manufacturing method and energy transportation method
KR101263177B1 (en) electrolytic cell for a monolithic photovoltaic-electrolytic hydrogen generation system
JP6954561B2 (en) Organic hydride manufacturing equipment
JP2013014820A (en) Electrolytic cell for reforming fuel gas, and method of generating reformed gas using electrolytic cell
JP5115681B2 (en) ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING ELECTROLYTE MEMBRANE FOR FUEL CELL
JP2017225966A (en) Method for producing electrode for decomposing water using light, and electrode for water decomposition obtainable by the method
JP5017981B2 (en) Varnish for forming catalyst electrode for fuel cell, method for producing the same, and method for producing catalyst electrode using the same
Chen et al. Lanthanide–Titanium Oxo Cluster and BiVO4 Z-Scheme Photocatalyst Sheets for Carbon Dioxide Reduction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees