JP5960795B2 - Method for producing oxygen gas diffusion electrode - Google Patents

Method for producing oxygen gas diffusion electrode Download PDF

Info

Publication number
JP5960795B2
JP5960795B2 JP2014502282A JP2014502282A JP5960795B2 JP 5960795 B2 JP5960795 B2 JP 5960795B2 JP 2014502282 A JP2014502282 A JP 2014502282A JP 2014502282 A JP2014502282 A JP 2014502282A JP 5960795 B2 JP5960795 B2 JP 5960795B2
Authority
JP
Japan
Prior art keywords
electrode
gas diffusion
oxygen
carbon
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014502282A
Other languages
Japanese (ja)
Other versions
JP2014522076A (en
Inventor
芳雄 高須
芳雄 高須
渉 杉本
渉 杉本
亮仁 大日方
亮仁 大日方
錦 善則
善則 錦
和宏 平尾
和宏 平尾
宇野 雅晴
雅晴 宇野
貴章 中井
貴章 中井
耕治 中野
耕治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
De Nora Permelec Ltd
Original Assignee
Shinshu University NUC
De Nora Permelec Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, De Nora Permelec Ltd filed Critical Shinshu University NUC
Priority to JP2014502282A priority Critical patent/JP5960795B2/en
Publication of JP2014522076A publication Critical patent/JP2014522076A/en
Application granted granted Critical
Publication of JP5960795B2 publication Critical patent/JP5960795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Metallurgy (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

本発明は、アルカリ型燃料電池、金属空気電池及び食塩電解用ガス拡散電極に関し、より詳細には高価な白金触媒を使用せずに従来とほぼ同等の電解性能を有する、耐食性の炭素系触媒を有するガス拡散電極に関する。   The present invention relates to an alkaline fuel cell, a metal-air battery, and a gas diffusion electrode for salt electrolysis. More specifically, the present invention relates to a corrosion-resistant carbon-based catalyst having almost the same electrolysis performance without using an expensive platinum catalyst. The present invention relates to a gas diffusion electrode.

[食塩電解用酸素ガス拡散電極]
工業用原料として重要である苛性ソーダ(水酸化ナトリウム)及び塩素は主として食塩電解法により製造されている。この電解プロセスは、水銀陰極を使用する水銀法、及びアスベスト隔膜と軟鉄陰極を使用する隔膜法を経て、イオン交換膜を隔膜とし、過電圧の小さい活性陰極を使用するイオン交換膜法に移行してきた。この間、苛性ソーダ1トンの製造に要する電力原単位は2000kWhまで減少した。しかしながら、苛性ソーダ製造は電力多消費産業であるため、更なる電力原単位の削減が求められている。
[Oxygen gas diffusion electrode for salt electrolysis]
Caustic soda (sodium hydroxide) and chlorine, which are important as industrial raw materials, are mainly produced by the salt electrolysis method. This electrolysis process has gone through the mercury method using a mercury cathode and the diaphragm method using an asbestos diaphragm and a soft iron cathode, and then has shifted to an ion exchange membrane method using an active cathode with a small overvoltage using an ion exchange membrane as a diaphragm. . During this time, the power consumption required to produce 1 ton of caustic soda has decreased to 2000 kWh. However, since caustic soda production is a power-intensive industry, there is a demand for further reduction in power consumption.

従来の電解方法における陽極、陰極反応はそれぞれ式(1)及び(2)の通りであり、理論分解電圧は2.19Vとなる。
2Cl- → Cl2 + 2e- (1.36V) (1)
2H2O + 2e- → 2OH- + H2 (−0.83V) (2)
陰極で水素発生反応を行わせる代わりに酸素ガス拡散電極を用いれば、反応は式(3)の通りになり、理論的には1.23V、実用的電流密度範囲でも0.88V程度の槽電圧を低減することができ、水酸化ナトリウム1トン当たり700kWhの電力原単位の低減が期待できる。
2 + 2H2O + 4e- → 4OH- (0.40V) (3)
The anode and cathode reactions in the conventional electrolysis method are as shown in formulas (1) and (2), respectively, and the theoretical decomposition voltage is 2.19V.
2Cl → Cl 2 + 2e (1.36V) (1)
2H 2 O + 2e → 2OH + H 2 (−0.83 V) (2)
If an oxygen gas diffusion electrode is used instead of performing a hydrogen generation reaction at the cathode, the reaction is as shown in Equation (3), theoretically 1.23V, and a cell voltage of about 0.88V even in a practical current density range. It is possible to reduce the power intensity of 700 kWh per ton of sodium hydroxide.
O 2 + 2H 2 O + 4e → 4OH (0.40V) (3)

このため、1980年代からガス拡散電極を利用する食塩電解プロセスの実用化が検討されているが、このプロセスを実現させるためには高性能かつ該電解系における充分な安定性を要する酸素ガス拡散電極の開発が不可欠である。
従来、この種の食塩電解用酸素ガス拡散電極として、特許文献1には、給電部の抵抗を小さくする技術が開示されており、特許文献2には、酸素ガス拡散電極における適切な空孔率について開示されており、特許文献3には、パラジウムと銀を用いたガス拡散電極が開示されている。また、非特許文献1、2では、最近のガス拡散電極の開発状況が報告されている。
For this reason, the practical application of a salt electrolysis process using a gas diffusion electrode has been studied since the 1980s. In order to realize this process, an oxygen gas diffusion electrode that requires high performance and sufficient stability in the electrolytic system is required. Development is essential.
Conventionally, as this type of oxygen gas diffusion electrode for salt electrolysis, Patent Document 1 discloses a technique for reducing the resistance of a power feeding unit, and Patent Document 2 discloses an appropriate porosity in an oxygen gas diffusion electrode. Patent Document 3 discloses a gas diffusion electrode using palladium and silver. In Non-Patent Documents 1 and 2, the recent development status of gas diffusion electrodes is reported.

[アルカリ型燃料電池用酸素ガス拡散電極]
燃料電池は化学エネルギーを電気エネルギーに変換可能なクリーンかつ高効率な発電システムである。水素や有機炭素原料の酸化反応と、空気中の酸素の還元反応を組み合わせることにより、その起電力から電気エネルギーを得るものであり、1960年代の宇宙用電池としての実用化で注目された後、最近では、燃料電池自動車および小型可搬電源、家庭用および発電所用の電力貯蔵レべリング用電源として再び注目されている。
水素を燃料とした場合、アルカリ水溶液でのアノード(燃料極)では式(4)の反応が進行する。
2 + 2OH- → 2H2O + 2e- (−0.83V) (4)
酸素を酸化剤とした場合、カソード(酸素極)では式(3)の反応が進行する。
[Oxygen gas diffusion electrode for alkaline fuel cells]
A fuel cell is a clean and highly efficient power generation system that can convert chemical energy into electrical energy. By combining the oxidation reaction of hydrogen and organic carbon raw materials with the reduction reaction of oxygen in the air, electric energy is obtained from the electromotive force. After attracting attention for practical use as a space battery in the 1960s, Recently, it has attracted attention again as a power storage leveling power source for fuel cell vehicles and small portable power sources, households and power plants.
When hydrogen is used as the fuel, the reaction of the formula (4) proceeds at the anode (fuel electrode) in the alkaline aqueous solution.
H 2 + 2OH → 2H 2 O + 2e (−0.83 V) (4)
When oxygen is used as the oxidizing agent, the reaction of the formula (3) proceeds at the cathode (oxygen electrode).

アルカリ型燃料電池は、多孔質電極構成材である金属又は炭素からなるアノード極およびカソード極と、両極とを隔てる電解液として水酸化カリウムなどの水溶液で構成される。上記のようなアルカリ型燃料電池においては、電解液中に二酸化炭素が入ると下記式(5)で示されるように電解質と反応して炭酸イオンを生成し、更に炭酸イオンが高濃度化すると、電解質中のアルカリ金属との炭酸塩を形成して電極上に析出して電極反応が阻害されるという問題が生じる。
CO2 + 2KOH → CO3 2- + 2K+ + H2O → K2CO3↓ (5)
従って、従来からアルカリ型燃料電池においては燃料ガスとして純粋な水素ガスが燃料極へ供給されることが必須であり、他方、酸化剤ガス極においても、純粋な酸素ガスや二酸化炭素を除去した空気を供給することが必要である。
The alkaline fuel cell is composed of an aqueous solution such as potassium hydroxide as an electrolytic solution that separates the anode and cathode electrodes made of metal or carbon, which are porous electrode constituent materials, and both electrodes. In the alkaline fuel cell as described above, when carbon dioxide enters the electrolytic solution, it reacts with the electrolyte as shown by the following formula (5) to generate carbonate ions, and when the carbonate ions further increase in concentration, There arises a problem that a carbonate with an alkali metal in the electrolyte is formed and deposited on the electrode to inhibit the electrode reaction.
CO 2 + 2KOH → CO 3 2− + 2K + + H 2 O → K 2 CO 3 ↓ (5)
Accordingly, it has been essential for an alkaline fuel cell to supply pure hydrogen gas as a fuel gas to the fuel electrode. On the other hand, air from which pure oxygen gas or carbon dioxide has been removed has also been supplied to the oxidant gas electrode. It is necessary to supply.

このようにアルカリ型燃料電池は、空気原料において、二酸化炭素の吸収によるセル部材の閉塞が問題視されていたが、アニオン交換膜を用いる電池系では、炭酸イオンはアノード室では(5)式のようにアルカリが消費され、pHが酸性側にシフトし炭酸イオンが再びガス化し、セル外に放出され、蓄積は一定以上にはならないことが判明し、再び脚光を浴びている。電解質としてKOHを使用する場合でも、アニオン膜を隔膜として利用すれば、炭酸塩の析出が抑制される。
従来、この種のアルカリ型燃料電池用酸素ガス拡散電極としては、特許文献4、5、6に記載のとおり、抵抗の小さい膜や、アニオン交換樹脂成分を溶解したバインダーが開発され、電池性能の向上が達成されている。
As described above, in the alkaline fuel cell, the clogging of the cell member due to the absorption of carbon dioxide is regarded as a problem in the air raw material. However, in the battery system using the anion exchange membrane, the carbonate ion is expressed by the formula (5) in the anode chamber. Thus, the alkali is consumed, the pH shifts to the acidic side, the carbonate ion is gasified again, is released to the outside of the cell, and it has been found that the accumulation does not exceed a certain level. Even when KOH is used as the electrolyte, if an anion membrane is used as a diaphragm, the precipitation of carbonate is suppressed.
Conventionally, as this type of oxygen gas diffusion electrode for an alkaline fuel cell, as described in Patent Documents 4, 5, and 6, a low resistance membrane and a binder in which an anion exchange resin component is dissolved have been developed. Improvements have been achieved.

[金属空気電池用酸素ガス拡散電極]
リチウム、亜鉛、アルミなどの金属をアノードとし、空気極をカソードとする新規な電池の開発が進められており、燃料電池用のみならず再生エネルギーの蓄電用としても注目されている。リチウムイオン電池に比較して、カソードの活物質が空気中の酸素であり、重量や体積を小さくすることができる。
リチウム−空気電池の放電反応におけるカソード反応は式(3)であり、アノード側は下記式(6)のとおりである。
Li → Li+ + e- (−3.04V) (6)
亜鉛−空気電池のアノード放電反応は、下記式(7)のとおりである。
Zn + 2OH- → ZnO + H2O + 2e- (−1.25V) (7)
充電反応はこれらの逆反応である。
[Oxygen gas diffusion electrode for metal-air batteries]
Development of a new battery using a metal such as lithium, zinc, and aluminum as an anode and an air electrode as a cathode has been under development, and has attracted attention not only for use in fuel cells but also for storage of renewable energy. Compared to a lithium ion battery, the active material of the cathode is oxygen in the air, and the weight and volume can be reduced.
The cathode reaction in the discharge reaction of the lithium-air battery is represented by formula (3), and the anode side is represented by the following formula (6).
Li → Li + + E (−3.04 V) (6)
The anode discharge reaction of the zinc-air battery is represented by the following formula (7).
Zn + 2OH → ZnO + H 2 O + 2e (−1.25 V) (7)
The charge reaction is the reverse of these reactions.

これらの電池におけるカソードは材料価格の観点から、アルカリ系で利用可能な酸素ガス拡散電極の開発が期待されている。
従来、この種の金属−空気電池用酸素ガス拡散電極としては、特許文献7に、リチウムイオン導電性材料について開示があり、特許文献8に、触媒材料について開示されている。また、特許文献9では、金属空気電池システムについて、特許文献10には、非水電解質について開示されている。本技術の現状に関しては、非特許文献3に詳細が報告され、各種金属空気電池の性能が比較されている。
The cathode in these batteries is expected to develop an oxygen gas diffusion electrode that can be used in an alkaline system from the viewpoint of material cost.
Conventionally, as this type of oxygen gas diffusion electrode for metal-air batteries, Patent Document 7 discloses a lithium ion conductive material, and Patent Document 8 discloses a catalyst material. Patent Document 9 discloses a metal-air battery system, and Patent Document 10 discloses a nonaqueous electrolyte. Regarding the present state of the present technology, details are reported in Non-Patent Document 3, and the performance of various metal-air batteries is compared.

[燃料電池用ガス拡散電極の触媒]
従来の白金系触媒は高性能であるものの資源量が極めて少なく実用できないことから、その代替触媒が不可欠であり、非白金族系触媒の開発が重要となっている。特に注目されている材料としては、金属酸化物系材料であり、また、炭素系材料である。前者については非特許文献4に記載されているように、第4族、第5族の金属酸化物が注目され、それらの炭窒化物の部分酸化触媒などが良好な性能を発現することが報告されている。後者については以下に開発状況を記載する。
[Catalyst of gas diffusion electrode for fuel cell]
Although conventional platinum-based catalysts have high performance but have a very small amount of resources and cannot be used practically, alternative catalysts are indispensable, and development of non-platinum-based catalysts is important. As materials that are particularly attracting attention are metal oxide materials and carbon materials. Regarding the former, as described in Non-Patent Document 4, group 4 and group 5 metal oxides have attracted attention, and it has been reported that their carbonitride partial oxidation catalysts exhibit good performance. Has been. The development status of the latter is described below.

[窒素含有炭素系触媒]
1964年にJasinskiによりCo−フタロシアニン錯体において酸素の還元特性が確認されてから、種々の錯体、重合物、それらの熱分解物触媒が検討されている(非特許文献5)。最近では金属粒子の周囲にグラファイト成分を有するナノシェル構造体が見出され(非特許文献6)、また、ヘテロ元素を含む炭素材料(カーボンアロイ)触媒や窒素含有ポリマーに金属成分を含む炭素系触媒が高性能を有することが報告されている(非特許文献7、8)。
窒素を含有することで高い酸素還元活性が発現されると推定されている。炭素系熱分解物に鉄などの金属を導入した触媒は特に活性が優れている。上記触媒の発現機構として、炭素の特異的な電子構造、炭素ネットワーク構造の格子乱れ・欠陥、残存あるいは導入された錯体構造が寄与するといわれる。触媒活性には電気伝導度とも関連する。
[Nitrogen-containing carbon-based catalyst]
Since the reduction characteristics of oxygen in a Co-phthalocyanine complex were confirmed by Jasinski in 1964, various complexes, polymers, and thermal decomposition products of these complexes have been studied (Non-Patent Document 5). Recently, a nanoshell structure having a graphite component around a metal particle has been found (Non-Patent Document 6), a carbon material catalyst containing a hetero element, or a carbon-based catalyst containing a metal component in a nitrogen-containing polymer. Have been reported to have high performance (Non-Patent Documents 7 and 8).
It is estimated that high oxygen reduction activity is expressed by containing nitrogen. A catalyst in which a metal such as iron is introduced into a carbon-based pyrolysis product is particularly excellent in activity. It is said that a specific electronic structure of carbon, a lattice disorder / defect of the carbon network structure, a remaining or introduced complex structure contributes as an expression mechanism of the catalyst. Catalytic activity is also related to electrical conductivity.

錯体や窒素含有ポリマーを不活性ガス流通下で熱分解すると新たな炭素ネットワーク構造が形成される。原料として含まれている金属は微粒子化しグラファイト層に被覆されて、微量でも触媒活性に大きな影響を与える。窒素含有率を高くする手法としては原料の選択あるいはアンモニアなどの既存の合成工程を利用することが知られている。前者のほうが安定に固定できる。現段階でも、窒素を含有する炭素系触媒として高活性かつ安定性に優れたものの製造法は確立していない。   When a complex or nitrogen-containing polymer is pyrolyzed under an inert gas flow, a new carbon network structure is formed. The metal contained as a raw material is finely divided and coated with a graphite layer, and even a trace amount has a great influence on the catalytic activity. As a technique for increasing the nitrogen content, it is known to use a raw material selection or an existing synthesis process such as ammonia. The former can be fixed more stably. At present, no method has been established for producing a nitrogen-containing carbon-based catalyst having high activity and excellent stability.

[シルク由来活性炭の合成]
古くから蚕の繭から糸(生糸)が生産されている。絹織物は生糸からセリシンを除去したシルクフィブロインのうち、長繊維のものを利用し、短繊維は価格の安い「屑シルク」と呼ばれる。シルクフィブロインは、セリシン以外のタンパク質としてグリシン、アラニン、チロシンなどのアミノ酸で構成されるタンパク質を含む。本発明のシルク由来活性炭は、繭から得られるすべてのタンパク質を原料として利用することができる。
本発明において、シルク由来活性炭とは、生糸からセリシンを除去したシルクフィブロインを不活性気流中での炭化処理、加熱処理および賦活処理を行い合成したものをいう。賦活処理は、水蒸気賦活に限らず、炭酸ガス、アルカリ、アンモニアを含むガス中でも行うことができる。
[Synthesis of silk-derived activated carbon]
Yarn (raw silk) has been produced since ancient times. Silk fabric is made of long fiber among silk fibroin from which sericin is removed from raw silk, and short fiber is called “waste silk”, which is cheap. Silk fibroin includes proteins composed of amino acids such as glycine, alanine, and tyrosine as proteins other than sericin. The silk-derived activated carbon of the present invention can use all proteins obtained from straw as raw materials.
In the present invention, the silk-derived activated carbon refers to a product obtained by synthesizing silk fibroin obtained by removing sericin from raw silk through carbonization treatment, heat treatment and activation treatment in an inert air stream. The activation treatment is not limited to steam activation, but can also be performed in a gas containing carbon dioxide, alkali, and ammonia.

シルク由来活性炭よりなる炭素系電極触媒について、酸性系の燃料電池に利用できることは、非特許文献9、10、11、12及び特許文献11に開示され、シルク由来活性炭よりなる炭素系電極触媒が硫酸酸性中において優れた性能を発現することが知られている。然るに、このシルク由来活性炭よりなる炭素系電極触媒をアルカリ溶液で使用した場合の適性については、前記特許文献11、非特許文献9、10、11、12のいずれにも開示されていない。
即ち、シルク由来活性炭よりなる炭素系電極触媒がアルカリ溶液中にてどのような性能を有するかについては、これまで報告がなく、その活性や安定性については不明であった。
The carbon-based electrode catalyst made of silk-derived activated carbon is disclosed in Non-Patent Documents 9, 10, 11, 12 and Patent Document 11 that the carbon-based electrode catalyst made of silk-derived activated carbon is sulfuric acid. It is known to exhibit excellent performance in acidity. However, the suitability when the carbon-based electrode catalyst made of silk-derived activated carbon is used in an alkaline solution is not disclosed in any of Patent Document 11 and Non-Patent Documents 9, 10, 11, and 12.
That is, there has been no report on the performance of a carbon-based electrode catalyst made of silk-derived activated carbon in an alkaline solution, and its activity and stability have not been known.

特開平11−050289号公報Japanese Patent Laid-Open No. 11-050289 特開2006−219694号公報JP 2006-219694 A 特開2008−127631号公報JP 2008-127631 A 特開2010−045024号公報JP 2010-045024 A 特開2010−113889号公報JP 2010-1113889 A 特開2009−129881号公報JP 2009-129881 A 特開2007−294429号公報JP 2007-294429 A 特開2008−198590号公報JP 2008-198590 A 特開2009−032399号公報JP 2009-032399 A 特開2009−093983号公報JP 2009-093983 A 特開2010−063952号公報JP 2010-063952 A

ソーダと塩素、第45巻、85(1994)Soda and chlorine, 45, 85 (1994) Journal of Applied Electrochemistry, 38、1177(2008)Journal of Applied Electrochemistry, 38, 1177 (2008) 電気化学、第78巻、529(2010)Electrochemistry, Volume 78, 529 (2010) 電気化学、第78巻、970(2010)Electrochemistry, Volume 78, 970 (2010) Nature, 201, 1212 (1964)Nature, 201, 1212 (1964) J. Appl. Electrochem., 36, 239 (2006)J. Appl. Electrochem., 36, 239 (2006) J. Power Source, 196, 1006 (2011)J. Power Source, 196, 1006 (2011) Nature, 443, 63 (2006)Nature, 443, 63 (2006) Journal of Applied Electrochemistry, 38、507(2008)Journal of Applied Electrochemistry, 38, 507 (2008) Journal of Applied Electrochemistry, 40、675(2010)Journal of Applied Electrochemistry, 40, 675 (2010) Electrochemistry Communications, 11、376(2009)Electrochemistry Communications, 11, 376 (2009) Journal of Power Sources, 195、5840(2010)Journal of Power Sources, 195, 5840 (2010)

本発明は、上記のような従来技術の問題点を解消し、シルク由来の窒素を含有し、粉状に成型されたシルク由来活性炭よりなる炭素系電極触媒がアルカリ溶液中にてどのような性能を有するかについて検討を重ね、アルカリ型燃料電池、金属空気電池及び食塩電解用ガス拡散電極として、より詳細には高価な白金触媒の使用量を削減し、従来とほぼ同等の電解性能を有し、アルカリ溶液における電解や緊急停止時の電極の耐久性や長期間安定性に優れたガス拡散電極を提供することを目的とする。   The present invention eliminates the problems of the prior art as described above, and what kind of performance the carbon-based electrode catalyst comprising silk-derived activated carbon containing silk-derived nitrogen and formed into a powder is in an alkaline solution. As an alkaline fuel cell, metal-air battery, and salt electrolysis gas diffusion electrode, the amount of expensive platinum catalyst used is reduced in more detail, and it has almost the same electrolytic performance as before. An object of the present invention is to provide a gas diffusion electrode excellent in durability and long-term stability of an electrode during electrolysis or emergency stop in an alkaline solution.

本発明は、上記課題を解決するため、第1の解決手段として、シルク由来の窒素を含有し、粉状に成型されたシルク由来活性炭よりなる炭素系電極触媒を多孔性導電性基体に担持させたことを特徴とするアルカリ水溶液において使用するアルカリ型燃料電池用、金属空気電池用または食塩電解用の酸素ガス拡散電極を提供することにある。   In order to solve the above-mentioned problems, the present invention provides, as a first solution, a porous electroconductive substrate having a carbon-based electrode catalyst comprising silk-derived activated carbon that contains silk-derived nitrogen and formed into a powder form. An object of the present invention is to provide an oxygen gas diffusion electrode for an alkaline fuel cell, a metal-air battery or a salt electrolysis used in an alkaline aqueous solution.

本発明は、上記課題を解決するため、第2の解決手段として、前記炭素系電極触媒中のN/C(アトミック比)が0.004〜0.07であることを特徴とする酸素ガス拡散電極を提供することにある。   In order to solve the above problems, the present invention provides, as a second solution, an oxygen gas diffusion characterized in that an N / C (atomic ratio) in the carbon-based electrode catalyst is 0.004 to 0.07. It is to provide an electrode.

本発明は、上記課題を解決するため、第3の解決手段として、前記炭素系電極触媒に金属触媒を含有させたことを特徴とする酸素ガス拡散電極を提供することにある。   In order to solve the above-mentioned problems, the present invention provides, as a third solution, an oxygen gas diffusion electrode characterized in that a metal catalyst is contained in the carbon-based electrode catalyst.

本発明は、上記課題を解決するため、第4の解決手段として、前記炭素系電極触媒に含有させた金属触媒がPt、Ir、Ru、Ag、Pdのいずれか1つ以上からなる貴金属であることを特徴とする酸素ガス拡散電極を提供することにある。   In order to solve the above problems, the present invention provides, as a fourth solution, the metal catalyst contained in the carbon-based electrode catalyst is a noble metal comprising any one or more of Pt, Ir, Ru, Ag, and Pd. Another object of the present invention is to provide an oxygen gas diffusion electrode.

本発明は、上記課題を解決するため、第5の解決手段として、前記炭素系電極触媒に金属酸化物触媒を含有させたことを特徴とする酸素ガス拡散電極を提供することにある。   In order to solve the above-mentioned problems, the present invention provides, as a fifth solution, an oxygen gas diffusion electrode characterized in that a metal oxide catalyst is contained in the carbon-based electrode catalyst.

本発明は、上記課題を解決するため、第6の解決手段として、前記炭素系電極触媒に含有させた金属酸化物触媒が酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化スズ、酸化タングステン、酸化タンタルのいずれか1つ以上からなる金属酸化物であることを特徴とする酸素ガス拡散電極を提供することにある。   In order to solve the above problems, the present invention provides, as a sixth solution, that the metal oxide catalyst contained in the carbon-based electrode catalyst is titanium oxide, zirconium oxide, niobium oxide, tin oxide, tungsten oxide, or tantalum oxide. An object of the present invention is to provide an oxygen gas diffusion electrode characterized by being a metal oxide comprising any one or more of them.

本発明は、上記課題を解決するため、第7の解決手段として、シルクフィブロインを500℃〜1500℃で焼成し、シルク由来の窒素を含有し、粉状に成型されたシルク由来活性炭よりなる炭素系電極触媒を製造することを特徴とする酸素ガス拡散電極の製造方法を提供することにある。   In order to solve the above-mentioned problems, the present invention provides, as a seventh solution, carbon made of silk-derived activated carbon that is calcined with silk fibroin at 500 ° C. to 1500 ° C., contains silk-derived nitrogen, and is molded into powder. An object of the present invention is to provide a method for producing an oxygen gas diffusion electrode, characterized in that a system electrode catalyst is produced.

本発明によれば、窒素を含むシルク由来炭素系電極触媒を用いた、アルカリ水溶液において高活性な、アルカリ型燃料電池用、金属空気電池用または食塩電解用の酸素ガス拡散電極であり、電解、電池の充放電および緊急停止時の電極の耐久性や長期間安定性に優れたガス拡散電極を提供できるとともに、更には、貴金属系触媒又は金属酸化物触媒を共存させることで、4電子還元反応のみを行うことで、過酸化水素の生成を抑制することができ、電極および電気化学セルの劣化を抑制できる。   According to the present invention, an oxygen gas diffusion electrode for an alkaline fuel cell, a metal-air battery, or a salt electrolysis that is highly active in an alkaline aqueous solution using a silk-derived carbon-based electrode catalyst containing nitrogen, It can provide a gas diffusion electrode with excellent durability and long-term stability of the electrode during charge / discharge and emergency stop of the battery, and furthermore, a four-electron reduction reaction by coexisting a noble metal catalyst or metal oxide catalyst. By performing only this, the production of hydrogen peroxide can be suppressed, and the deterioration of the electrode and the electrochemical cell can be suppressed.

本発明のシルク由来活性炭のXPSスペクトルと対応する炭素窒素グラファイト構造。The carbon nitrogen graphite structure corresponding to the XPS spectrum of the silk origin activated carbon of this invention. 本発明のガス拡散電極を例示する概略縦断面図。The schematic longitudinal cross-sectional view which illustrates the gas diffusion electrode of this invention. 本発明のガス拡散電極を装着したアルカリ型燃料電池の概略縦断面図。1 is a schematic longitudinal sectional view of an alkaline fuel cell equipped with a gas diffusion electrode of the present invention. 本発明のガス拡散電極を装着した三室法電解セルの概略縦断面図。The schematic longitudinal cross-sectional view of the three chamber method electrolysis cell equipped with the gas diffusion electrode of this invention. 本発明のガス拡散電極を装着した二室法電解セルの概略縦断面図。The schematic longitudinal cross-sectional view of the two-chamber method electrolysis cell equipped with the gas diffusion electrode of this invention. 本発明のガス拡散電極を装着したリチウム空気電池の概略縦断面図。The schematic longitudinal cross-sectional view of the lithium air battery equipped with the gas diffusion electrode of the present invention. 1200℃加熱処理して製造したシルク由来活性炭からなる、本発明のガス拡散電極の酸素還元の電流−電位を示すグラフ。The graph which shows the electric current-potential of the oxygen reduction | restoration of the gas diffusion electrode of this invention which consists of a silk origin activated carbon manufactured by heat-processing 1200 degreeC. 1200℃加熱処理して製造したシルク由来活性炭からなる、本発明のガス拡散電極の反応次数の関係を示すグラフ。The graph which shows the relationship of the reaction order of the gas diffusion electrode of this invention which consists of a silk origin activated carbon manufactured by heat-processing 1200 degreeC. 900℃加熱処理して製造したシルク由来活性炭からなる、本発明のガス拡散電極の酸素還元の電流−電位を示すグラフ。The graph which shows the electric current-potential of oxygen reduction of the gas diffusion electrode of this invention which consists of a silk origin activated carbon manufactured by heat-processing 900 degreeC. 900℃加熱処理して製造したシルク由来活性炭からなる、本発明のガス拡散電極の反応次数の関係を示すグラフ。The graph which shows the relationship of the reaction order of the gas diffusion electrode of this invention which consists of a silk origin activated carbon manufactured by heat-processing 900 degreeC.

以下図面とともに、本発明に係る酸素ガス拡散電極の構成部材をより詳細に説明する。
[シルク由来活性炭よりなる炭素系電極触媒]
特許文献11に、シルクフィブロイン由来炭素系電極触媒の作製方法が開示されている。本発明のシルク由来活性炭よりなる炭素系電極触媒の製法もこれにほぼ準ずる。
(1)炭化処理
原料シルク材料を窒素などの不活性ガス雰囲気中で、500℃程度で数時間保持して焼成する。常温にまで冷却した後、ボールミル等を用いて粉状にする。粒度は特に限定されないが、10μm程度が好適である。焼成温度が500℃より低いと炭化が不十分であり好ましくない。
(2)加熱処理
次に、不活性ガス雰囲気中で、700〜1500℃の焼成温度で数時間保持して焼成する。特には1200℃の温度で焼成を行うことが好適である。焼成温度が1500℃より高いと、粉状物に窒素成分が残存せず、触媒活性が不十分となる。
(3)賦活処理
次に、焼成した粉状物を賦活処理する。賦活処理は、不活性ガス雰囲気中で、例えば850℃まで昇温し、水蒸気を吹き込んで数時間保持して水蒸気賦活を行う。賦活処理は水蒸気賦活に限らず、炭酸ガス、アルカリ、アンモニアを含むガス中でも行うことができる。賦活処理温度は、700℃〜1000℃程度が好適である。賦活処理により粉状物の表面積、特に触媒反応に有効なメソ孔体積が格段に増大し、触媒活性が増大する。
Hereinafter, the constituent members of the oxygen gas diffusion electrode according to the present invention will be described in detail with reference to the drawings.
[Carbon-based electrode catalyst composed of silk-derived activated carbon]
Patent Document 11 discloses a method for producing silk fibroin-derived carbon-based electrode catalyst. The production method of the carbon-based electrode catalyst made of the silk-derived activated carbon of the present invention is almost the same.
(1) Carbonization The raw silk material is fired in an inert gas atmosphere such as nitrogen at 500 ° C. for several hours. After cooling to room temperature, it is powdered using a ball mill or the like. The particle size is not particularly limited, but about 10 μm is preferable. When the firing temperature is lower than 500 ° C., carbonization is insufficient, which is not preferable.
(2) Heat treatment Next, it is fired in an inert gas atmosphere at a firing temperature of 700 to 1500 ° C. for several hours. It is particularly preferable to perform firing at a temperature of 1200 ° C. When the calcination temperature is higher than 1500 ° C., no nitrogen component remains in the powder and the catalytic activity becomes insufficient.
(3) Activation treatment Next, the fired powder is activated. In the activation process, the temperature is raised to, for example, 850 ° C. in an inert gas atmosphere, and steam is activated by blowing steam and holding it for several hours. The activation treatment is not limited to steam activation, and can be performed even in a gas containing carbon dioxide, alkali, and ammonia. The activation treatment temperature is preferably about 700 ° C to 1000 ° C. By the activation treatment, the surface area of the powdery substance, particularly the mesopore volume effective for the catalytic reaction, is remarkably increased, and the catalytic activity is increased.

上記のように、焼成を複数段階に分けて行うこと、また緩やかな昇温速度で昇温して焼成することによって、非結晶性構造と結晶性構造とが入り組んだタンパク質高次構造の急激な分解が避けられ、柔軟な焼成体が得られる。
700℃、900℃、1200℃の各温度で加熱処理を行い、850℃にて水蒸気賦活処理を行ったシルク活性炭のX線回折測定では、いずれもアモルファスカーボンであることが確認され、カーボンブラックに類似している。それぞれの抵抗率は順に3.2×10-2Ωm、1.4×10-3Ωm、5.1×10-4Ωmであった。また、成分分析の結果として、該活性炭は炭素以外に窒素、酸素を含むことが確認され、加熱処理温度を上げるとN/C比(アトミック比)が減少する。水蒸気賦活処理によりBET比表面積は2桁程度増大し、また、加熱処理温度が高く水蒸気賦活処理が長いほどメソ孔体積が増加する。
図1は、シルク由来活性炭のXPS(X線光電子分光)スペクトルと対応する炭素窒素グラファイト構造例を示したものであり、(a)700℃加熱処理、(b)900℃加熱処理、(c)1200℃加熱処理、(d)活性炭(RP−20)および(e)ファーネスブラック(VulcanXC−72)を示したものである。図1は、本発明にかかわるXPSスペクトルを比較している。縦軸はスペクトル強度、横軸が結合エネルギー値を示しており、右図の炭素窒素構造において存在する窒素原子の結合エネルギーにより異なったスペクトルが得られる。図1よりN1sの存在を確認したところ、1200℃の加熱においてピリジン型窒素種(398.6eV)、ピロール型窒素種(400.5eV)、酸化型窒素種(402〜405eV)が、900℃加熱処理では残存しているが、1200℃加熱処理で消滅したのに対して、グラファイト型窒素種(401.3eV)の安定性が確認された。
残存する窒素成分量は特に限定されるものではないが、N/C比が0.004〜0.07の場合で十分な触媒活性を有することが確認されている。
As described above, by performing firing in multiple stages and by heating at a moderate temperature increase rate and firing, a rapid increase in protein higher order structure in which an amorphous structure and a crystalline structure are complicated Decomposition is avoided and a flexible fired body is obtained.
X-ray diffraction measurement of silk activated carbon that was heat-treated at 700 ° C., 900 ° C., and 1200 ° C. and steam activated at 850 ° C. confirmed that all were amorphous carbon. It is similar. Each resistivity was 3.2 × 10 −2 Ωm, 1.4 × 10 −3 Ωm, and 5.1 × 10 −4 Ωm in this order. Further, as a result of component analysis, it is confirmed that the activated carbon contains nitrogen and oxygen in addition to carbon, and the N / C ratio (atomic ratio) decreases when the heat treatment temperature is raised. The steam activation treatment increases the BET specific surface area by about two orders of magnitude, and the higher the heat treatment temperature and the longer the steam activation treatment, the larger the mesopore volume.
FIG. 1 shows an example of a carbon-nitrogen graphite structure corresponding to an XPS (X-ray photoelectron spectroscopy) spectrum of silk-derived activated carbon. (A) 700 ° C. heat treatment, (b) 900 ° C. heat treatment, (c) It shows 1200 ° C. heat treatment, (d) activated carbon (RP-20) and (e) furnace black (Vulcan XC-72). FIG. 1 compares XPS spectra according to the present invention. The vertical axis indicates the spectrum intensity, and the horizontal axis indicates the bond energy value, and different spectra are obtained depending on the bond energy of nitrogen atoms present in the carbon-nitrogen structure in the right figure. As a result of confirming the presence of N1s in FIG. 1, pyridine type nitrogen species (398.6 eV), pyrrole type nitrogen species (400.5 eV), and oxidized nitrogen species (402 to 405 eV) are heated at 900 ° C. when heated at 1200 ° C. Although it remained in the treatment, the stability of the graphite type nitrogen species (401.3 eV) was confirmed while it disappeared by the heat treatment at 1200 ° C.
The amount of remaining nitrogen component is not particularly limited, but it has been confirmed that the catalyst has sufficient catalytic activity when the N / C ratio is 0.004 to 0.07.

[貴金属・金属酸化物触媒]
上記粉状の活性炭触媒にPt、Ir、Ru、Ag、Pdのいずれか1つ以上からなる貴金属、あるいはその合金を担持させたものを触媒として用いることで、さらに優れた活性を有する触媒とすることができる。上記粉状炭化物自体が触媒活性を有することから貴金属の使用量を少なくすることができる。この触媒金属の担持方法は通常の工程で行える。例えば、Ptの場合には、該活性炭にPt含有溶液を塗布、あるいは該活性炭をPt含有溶液に浸漬し、熱処理、水素等で還元することによって白金を担持させることができる。
また、上記粉状の活性炭触媒に酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化スズ、酸化タングステン、酸化タンタルなどの金属酸化物成分を担持させたものを触媒として用いることで、優れた活性を有する触媒とすることができる。この触媒金属の担持方法は上記のように通常の工程で行うことができ、Tiの場合には、該活性炭にTi含有溶液を塗布、あるいは該活性炭をTi含有溶液に浸漬し、熱処理することによって酸化チタンを担持させることができる。あるいは粉状の金属酸化物を予め調製し、該活性炭と混合することでも高活性化することができる。高活性化の原因として、電極の細孔構造(活性炭と酸化物微粒子の間にできる空隙)が有効に作用すると推察される。
[Precious metal / metal oxide catalyst]
A catalyst having a further excellent activity is obtained by using a catalyst obtained by supporting a noble metal composed of one or more of Pt, Ir, Ru, Ag, and Pd or an alloy thereof on the powdered activated carbon catalyst. be able to. Since the powdered carbide itself has catalytic activity, the amount of noble metal used can be reduced. This catalyst metal loading method can be carried out in a normal process. For example, in the case of Pt, platinum can be supported by applying a Pt-containing solution to the activated carbon, or immersing the activated carbon in a Pt-containing solution, and reducing with heat treatment, hydrogen, or the like.
Moreover, the catalyst which has the outstanding activity by using what carried metal oxide components, such as titanium oxide, zirconium oxide, niobium oxide, tin oxide, tungsten oxide, and tantalum oxide, on the above-mentioned powdery activated carbon catalyst as a catalyst It can be. This catalyst metal loading method can be carried out in the usual steps as described above. In the case of Ti, by applying a Ti-containing solution to the activated carbon, or immersing the activated carbon in the Ti-containing solution and heat-treating it. Titanium oxide can be supported. Alternatively, high activation can be achieved by preparing a powdered metal oxide in advance and mixing it with the activated carbon. As a cause of high activation, it is assumed that the pore structure of the electrode (the void formed between the activated carbon and the oxide fine particles) acts effectively.

[多孔性導電性基体]
多孔性導電基材としてニッケル、ステンレス、カーボンから成るクロス、繊維・粉末焼成体等の材料を用いることができる。前記多孔性導電基材はガス及び溶液の供給や除去のため、適度の多孔性を有しかつ十分な導電性を保つことが好ましい。厚さ0.01〜5mm、空隙率が30〜95%、代表的孔径が0.001〜1mmであることが好ましい。
[Porous conductive substrate]
Materials such as a cloth made of nickel, stainless steel or carbon, a fiber / powder fired body, or the like can be used as the porous conductive substrate. It is preferable that the porous conductive substrate has an appropriate porosity and keeps sufficient conductivity for supply and removal of gas and solution. It is preferable that the thickness is 0.01 to 5 mm, the porosity is 30 to 95%, and the typical pore diameter is 0.001 to 1 mm.

カーボンクロスは数μmの径の細いカーボン繊維を数百本の束とし、これを織布としたものであるが、気液透過性に優れた材料であり前記基材として使用することが好ましい。カーボンペーパーはカーボン原料繊維を製紙法にて薄膜の前駆体とし、これを焼成したものであるが、これも使用に適する材料である。この炭素製導電性基体に直接給電すると、その不十分な導電性のため、電流の局部集中を起こし、ガス拡散層や反応層にも局部的に集中した電流が供給されて電解効率を低下させるが、下記の導電層の形成により導電性基体に均一電流が供給され、従って、ガス拡散層及び反応層にも均一電流が供給されるため、性能向上が達成される。   The carbon cloth is made of a bundle of several hundreds of fine carbon fibers having a diameter of several μm, which is used as a woven fabric. However, the carbon cloth is a material excellent in gas-liquid permeability and is preferably used as the substrate. Carbon paper is obtained by using carbon raw material fibers as a precursor of a thin film by a papermaking method and firing it. This is also a material suitable for use. Direct power supply to this carbon conductive substrate causes local concentration of current due to insufficient conductivity, and locally concentrated current is also supplied to the gas diffusion layer and reaction layer, thereby reducing electrolysis efficiency. However, a uniform current is supplied to the conductive substrate by the formation of the conductive layer described below. Accordingly, a uniform current is also supplied to the gas diffusion layer and the reaction layer, so that an improvement in performance is achieved.

[導電層]
裏面および電極内部の導電性を向上させる目的で、金属粉末を疎水性樹脂、水、ナフサ等の溶剤と混合しペーストとし、該ガス拡散層背面に塗布、固着することが好ましい。疎水性樹脂(フッ素樹脂成分)の粉末の粒径としては0.005〜10μmが好ましい。食塩電解での金属粉末としては、高温アルカリ溶液中で安定であり、安価であることが好ましく、銀或いは銀合金(銅、白金、パラジウムを少量を含有)を選択することが好ましい。蒸着、スパッターなどの乾式法により合成しても良い。
[Conductive layer]
For the purpose of improving the electrical conductivity inside the back surface and inside the electrode, it is preferable to mix the metal powder with a solvent such as hydrophobic resin, water, naphtha, etc. to form a paste, and apply and fix it to the back surface of the gas diffusion layer. The particle size of the hydrophobic resin (fluorine resin component) powder is preferably 0.005 to 10 μm. As the metal powder for salt electrolysis, it is preferable that it is stable in a high-temperature alkaline solution and inexpensive, and silver or a silver alloy (containing a small amount of copper, platinum, or palladium) is preferably selected. You may synthesize | combine by dry methods, such as vapor deposition and a sputter | spatter.

[触媒塗布方法]
上記活性炭と上記触媒金属・金属酸化物粒子は、疎水性樹脂、水、ナフサ等の溶剤と混合しペーストとし、該ガス拡散層に塗布、固着する。疎水性樹脂(フッ素樹脂成分)の粉末の粒径としては0.005〜10μmが好ましい。また、塗布を容易に行うために、カルボキシメチルセルロースなどの増粘剤を溶解し粘度を調製することが好ましい。塗布、乾燥、焼成は数回に分けて実施すると、均一な触媒層が得られるので特に好ましい。疎水性樹脂は充分なガス透過性を付与するとともに、アルカリ溶液による湿潤を防止する。
[Catalyst application method]
The activated carbon and the catalytic metal / metal oxide particles are mixed with a solvent such as a hydrophobic resin, water, and naphtha to form a paste, which is applied and fixed to the gas diffusion layer. The particle size of the hydrophobic resin (fluorine resin component) powder is preferably 0.005 to 10 μm. Moreover, in order to perform application | coating easily, it is preferable to melt | dissolve thickeners, such as carboxymethylcellulose, and to adjust a viscosity. It is particularly preferable that the coating, drying, and firing are performed in several steps because a uniform catalyst layer can be obtained. Hydrophobic resins provide sufficient gas permeability and prevent wetting by alkaline solutions.

上記のようにして得られた粉状シルク由来活性炭と上記触媒金属・金属酸化物粒子は、イオン交換樹脂液(ナフィオン(登録商標)溶液など)と混練してペースト状にし、上記記載の基材に塗布、乾燥するようにして用いることもできる。該樹脂液は触媒の固着剤であると同時にイオン伝導性が付加され、性能向上にも寄与できて好適といえる。イオン交換樹脂液をバインダーとして用いる場合、ガラス転移温度を考慮して60〜140℃の範囲にて熱処理を行い、高温処理の場合にはとくに不活性ガス雰囲気が良い。該活性炭量は、10〜1000g/m2にして用いるとよい。
図2は、本発明のガス拡散電極を例示する概略縦断面図であり、16は、電極基材、17は、触媒層、18は、導電層である。
The powdery silk-derived activated carbon and the catalyst metal / metal oxide particles obtained as described above are kneaded with an ion exchange resin solution (Nafion (registered trademark) solution, etc.) to form a paste, and the substrate described above It can also be applied and dried. The resin liquid is suitable because it is a sticking agent for the catalyst and at the same time is added with ionic conductivity and can contribute to performance improvement. When an ion exchange resin liquid is used as a binder, heat treatment is performed in the range of 60 to 140 ° C. in consideration of the glass transition temperature. In the case of high temperature treatment, an inert gas atmosphere is particularly good. The amount of the activated carbon is preferably 10 to 1000 g / m 2 .
FIG. 2 is a schematic longitudinal sectional view illustrating the gas diffusion electrode of the present invention, in which 16 is an electrode substrate, 17 is a catalyst layer, and 18 is a conductive layer.

[ガス拡散電極成型]
本ガス拡散電極は厚さ方向に圧力を加えて使用するため、これによって厚さ方向の導電性が変化することは好ましくない。性能向上及び20〜50%の充填率を有する陰極にする目的で、プレス加工を施すことが好ましい。プレス加工は、炭素材料を圧縮することによってその導電性を高めるとともに、圧力を加えて使用した際の充填率並びに導電性変化を安定化させるために行う。触媒と基体の接合度が向上することも導電性向上に寄与する。また、基体と反応層の圧縮、及び触媒と基体の接合度の向上によって、原料酸素ガスの供給能力も向上する。プレス加工装置としては、ホットプレス、ホットローラーなどの公知の装置を利用できる。プレス条件としては、室温〜360℃にて、圧力0.1〜5MPaが望ましい。
以上により、高い導電性と触媒性を有するガス拡散電極が製造される。
[Gas diffusion electrode molding]
Since this gas diffusion electrode is used by applying pressure in the thickness direction, it is not preferable that the conductivity in the thickness direction is changed by this. For the purpose of improving the performance and forming a cathode having a filling rate of 20 to 50%, it is preferable to perform press working. The press working is performed to increase the conductivity by compressing the carbon material and to stabilize the filling rate and the change in conductivity when used under pressure. An improvement in the degree of bonding between the catalyst and the substrate also contributes to an improvement in conductivity. Further, the supply capacity of the raw material oxygen gas is improved by compressing the base and the reaction layer and improving the degree of bonding between the catalyst and the base. As the press working apparatus, a known apparatus such as a hot press or a hot roller can be used. As pressing conditions, room temperature to 360 ° C. and a pressure of 0.1 to 5 MPa are desirable.
As described above, a gas diffusion electrode having high conductivity and catalytic properties is manufactured.

次いで、本発明に係るガス拡散電極の応用例を説明する。
[燃料電池セルにおけるガス拡散電極]
図3は、本発明のガス拡散電極を装着したアルカリ型燃料電池の概略縦断面図である。
1は、高分子固体電解質として機能するイオン交換膜(アニオン選択交換性)であり、イオン交換膜1の両面には、それぞれガス拡散電極である板状の酸素極(カソード)2及び水素極(アノード)3がそれぞれの反応層側を内側にしてイオン交換膜1に密着し、両極でイオン交換膜1を密着状態で挟む構造(膜−電極接合体、MEA)となっている。
Next, application examples of the gas diffusion electrode according to the present invention will be described.
[Gas diffusion electrode in fuel cell]
FIG. 3 is a schematic longitudinal sectional view of an alkaline fuel cell equipped with the gas diffusion electrode of the present invention.
Reference numeral 1 denotes an ion exchange membrane (anion selective exchange property) functioning as a polymer solid electrolyte. On both surfaces of the ion exchange membrane 1, a plate-like oxygen electrode (cathode) 2 and a hydrogen electrode (gas diffusion electrodes) are provided. Anode) 3 has a structure (membrane-electrode assembly, MEA) in which each reaction layer side is in close contact with ion exchange membrane 1 and ion exchange membrane 1 is sandwiched between both electrodes.

酸素極2、及び水素極3は、シルク由来活性炭と金属や金属酸化物などの触媒粒子を疎水性樹脂などのバインダーとともにカーボンペーパーなどの電極基体に被覆し焼成して構成されている。
前記酸素極2及び水素極3のそれぞれのイオン交換膜1とは反対面の周縁には、額縁状の酸素極用ガスケット4と水素極用ガスケット5が密着している。当該酸素極用ガスケット4と水素極用ガスケット5のそれぞれの内縁側には、多孔性の酸素極用集電体6と水素極用集電体7が、酸素極2及び水素極3に接触するように設置されている。
前記酸素極用ガスケット4には、イオン交換膜に向かう側に複数の凹面が形成された酸素極フレーム8の周縁が接触し、この酸素極フレーム8と酸素極2間に酸素極室9が形成されている。
The oxygen electrode 2 and the hydrogen electrode 3 are configured by coating silk-derived activated carbon and catalyst particles such as metal or metal oxide on an electrode substrate such as carbon paper together with a binder such as a hydrophobic resin and firing.
A frame-shaped oxygen electrode gasket 4 and a hydrogen electrode gasket 5 are in close contact with the peripheral edges of the oxygen electrode 2 and the hydrogen electrode 3 opposite to the ion exchange membrane 1. A porous oxygen electrode current collector 6 and a hydrogen electrode current collector 7 are in contact with the oxygen electrode 2 and the hydrogen electrode 3 on the inner edge sides of the oxygen electrode gasket 4 and the hydrogen electrode gasket 5, respectively. It is installed as follows.
The oxygen electrode gasket 4 is in contact with the periphery of an oxygen electrode frame 8 having a plurality of concave surfaces on the side facing the ion exchange membrane, and an oxygen electrode chamber 9 is formed between the oxygen electrode frame 8 and the oxygen electrode 2. Has been.

他方、前記水素極用ガスケット5には、イオン交換膜に向かう側に複数の凹面が形成された水素極フレーム10の周縁が接触し、この水素極フレーム10と水素極3間に水素極室11が形成される。
12は、酸素極フレーム8の上部に横向きに開口された酸素ガス供給口、13は、酸素極フレーム8の下部に横向きに開口された未反応酸素ガス及び生成水取出口、14は、水素極フレーム10の上部に横向きに開口された水素ガス供給口、15は、水素極フレーム10の下部に横向きに開口された未反応水素ガス取出口である。各極室には必要に応じて水酸化カリウムなどの水溶液を供給する。
On the other hand, the peripheral edge of the hydrogen electrode frame 10 having a plurality of concave surfaces formed on the side facing the ion exchange membrane is in contact with the hydrogen electrode gasket 5, and a hydrogen electrode chamber 11 is formed between the hydrogen electrode frame 10 and the hydrogen electrode 3. Is formed.
Reference numeral 12 denotes an oxygen gas supply port opened laterally at the upper part of the oxygen electrode frame 8, 13 denotes an unreacted oxygen gas and generated water outlet opened laterally to the lower part of the oxygen electrode frame 8, and 14 denotes a hydrogen electrode. A hydrogen gas supply port 15, which opens laterally at the upper part of the frame 10, is an unreacted hydrogen gas outlet that opens laterally at the lower part of the hydrogen electrode frame 10. An aqueous solution such as potassium hydroxide is supplied to each electrode chamber as necessary.

このような構成からなる燃料電池の酸素極2及び水素極3にそれぞれ酸素含有ガスと燃料の水素を供給する。水素の供給量は理論量の1〜2倍程度が良い。原料である水素ガスは天然ガス、石油改質で生成した水素ガスを利用してもよいが、CO混入率はできるだけ少なくし、10ppm程度まで許容される。供給ガスは必要に応じて湿潤処理を施す。酸素の供給量も理論量の1〜2倍程度が良い。一般に酸素濃度が大きいほど、大きい電流密度で電流を流すことができる。   The oxygen-containing gas and the hydrogen of the fuel are respectively supplied to the oxygen electrode 2 and the hydrogen electrode 3 of the fuel cell having such a configuration. The supply amount of hydrogen is preferably about 1 to 2 times the theoretical amount. As the raw material hydrogen gas, natural gas or hydrogen gas generated by petroleum reforming may be used, but the CO contamination rate is as small as possible and is allowed to be about 10 ppm. The supply gas is wetted as necessary. The supply amount of oxygen is also preferably about 1 to 2 times the theoretical amount. In general, the larger the oxygen concentration, the larger the current density that allows a current to flow.

前記ガス供給により、酸素極側で電子と酸素および水と反応し水酸化物イオンを生成する。水酸化物イオンは膜を通過して水素極に達し、水素と反応して水と電子に解離する。この電子が水素極端子から外部負荷に供給されてエネルギー付与を行った後、酸素極端子を通って酸素極に達し、酸素極での反応に利用される。   By the gas supply, electrons, oxygen and water react with each other on the oxygen electrode side to generate hydroxide ions. Hydroxide ions pass through the membrane to the hydrogen electrode, react with hydrogen and dissociate into water and electrons. After these electrons are supplied to the external load from the hydrogen electrode terminal to give energy, the electrons reach the oxygen electrode through the oxygen electrode terminal and are used for the reaction at the oxygen electrode.

[食塩電解セルにおけるガス拡散電極]
図4は、本発明のガス拡散電極を装着した三室法電解セルを例示する概略縦断面図である。
三室法電解セル21は、パーフルオロスルホン酸系の陽イオン交換膜22により、陽極室23と陰極室24と区画されている。陽イオン交換膜22の陽極室23側には、多孔性の塩素発生用陽極DSE(ペルメレック電極登録商標)25が密着し、陽イオン交換膜22の陰極室側には間隔を空けて、ガス拡散電極(陰極)26が設置され、このガス拡散電極26により前記陰極室24が陽イオン交換膜22側の陰極液室27と反対側の陰極ガス室28に区画されている。前記ガス拡散電極26は、シルク由来活性炭と金属や金属酸化物などの触媒粒子を、疎水性樹脂などのバインダーとともにカーボンペーパーなどの電極基体に被覆し焼成して構成されている。
[Gas diffusion electrode in salt electrolysis cell]
FIG. 4 is a schematic longitudinal sectional view illustrating a three-chamber electrolysis cell equipped with the gas diffusion electrode of the present invention.
The three-chamber electrolysis cell 21 is divided into an anode chamber 23 and a cathode chamber 24 by a perfluorosulfonic acid-based cation exchange membrane 22. A porous chlorine generating anode DSE (registered trademark of Permelec Electrode) 25 is in close contact with the anode chamber 23 side of the cation exchange membrane 22, and gas diffusion is performed on the cathode chamber side of the cation exchange membrane 22 with an interval. An electrode (cathode) 26 is installed, and the gas diffusion electrode 26 divides the cathode chamber 24 into a cathode gas chamber 28 opposite to the catholyte chamber 27 on the cation exchange membrane 22 side. The gas diffusion electrode 26 is formed by coating an electrode substrate such as carbon paper with a silk-derived activated carbon and catalyst particles such as metal or metal oxide together with a binder such as a hydrophobic resin and firing.

この三室法電解セル21の陽極室23に食塩水を、陰極液室27に希釈水酸化ナトリウム水溶液を、陰極ガス室28に酸素含有ガスをそれぞれ供給しながら両極間に通電すると、陽極室23で生成するナトリウムイオンが陽イオン交換膜22を透過して陰極液室27に到達する。一方陰極ガス室28に供給される酸素含有ガス中の酸素は、ガス拡散陰極26内を拡散し電極触媒層中の触媒粒子により水と反応して水酸化物イオンに還元されて陰極液室27に移行し、前記ナトリウムイオンと結合して水酸化ナトリウムを生成する。   When the saline solution is supplied to the anode chamber 23 of the three-chamber electrolysis cell 21, the diluted sodium hydroxide aqueous solution is supplied to the catholyte chamber 27, and the oxygen-containing gas is supplied to the cathode gas chamber 28, the anode chamber 23 The generated sodium ions pass through the cation exchange membrane 22 and reach the catholyte chamber 27. On the other hand, oxygen in the oxygen-containing gas supplied to the cathode gas chamber 28 diffuses in the gas diffusion cathode 26, reacts with water by the catalyst particles in the electrode catalyst layer, and is reduced to hydroxide ions to be catholyte chamber 27. To form sodium hydroxide by combining with the sodium ions.

図5は、本発明のガス拡散陰極を装着した二室型(ゼロギャップタイプ)電解セルを例示する概略縦断面図である。
二室法電解セル31は、パーフルオロスルホン酸系の陽イオン交換膜32により、陽極室33と陰極ガス室34と区画されている。陽イオン交換膜32の陽極室33側には、塩素発生用陽極DSE35が密着し、陽イオン交換膜32の陰極ガス室34側には図4と同じ構成のガス拡散陰極36が密着して設置されている。
FIG. 5 is a schematic longitudinal sectional view illustrating a two-chamber (zero gap type) electrolysis cell equipped with the gas diffusion cathode of the present invention.
The two-chamber electrolysis cell 31 is divided into an anode chamber 33 and a cathode gas chamber 34 by a perfluorosulfonic acid cation exchange membrane 32. A chlorine generating anode DSE 35 is in close contact with the anode chamber 33 side of the cation exchange membrane 32, and a gas diffusion cathode 36 having the same configuration as in FIG. 4 is in close contact with the cathode gas chamber 34 side of the cation exchange membrane 32. Has been.

この電解セル31の陽極室33に食塩水を、陰極ガス室34に湿潤酸素含有ガスを供給しながら両極間に通電すると、陽極室33で生成するナトリウムイオンが陽イオン交換膜32を透過して陰極ガス室34内のガス拡散陰極36に到達する。一方陰極ガス室34に供給される酸素含有ガス中の酸素は、ガス拡散陰極36の電極触媒層中の触媒により水酸化物イオンに還元されて前記ナトリウムイオンと結合して水酸化ナトリウムを生成し、酸素含有ガスとともに供給される水分に溶解して水酸化ナトリウム水溶液が生成する。
なお、図5の電解セル31で、陽イオン交換膜32とガス拡散電極36間に親水層を配置しても良い。
When a saline solution is supplied to the anode chamber 33 of the electrolysis cell 31 and a wet oxygen-containing gas is supplied to the cathode gas chamber 34 between the two electrodes, sodium ions generated in the anode chamber 33 permeate the cation exchange membrane 32. The gas diffusion cathode 36 in the cathode gas chamber 34 is reached. On the other hand, oxygen in the oxygen-containing gas supplied to the cathode gas chamber 34 is reduced to hydroxide ions by the catalyst in the electrode catalyst layer of the gas diffusion cathode 36 and combined with the sodium ions to generate sodium hydroxide. Then, it is dissolved in water supplied together with the oxygen-containing gas to form an aqueous sodium hydroxide solution.
In the electrolytic cell 31 of FIG. 5, a hydrophilic layer may be disposed between the cation exchange membrane 32 and the gas diffusion electrode 36.

[金属空気電池セルにおけるガス拡散電極]
例示としてリチウム空気電池におけるガス拡散電極を示す。
図6は、本発明のガス拡散電極を装着した金属空気電池の例示としてリチウム空気電池の概略縦断面図を示したものである。
リチウム空気電池セル41は、Liイオン選択透過性の固体電解質42により、アノード室(水素極室)43とカソード室(酸素極室)44に区画されている。固体電解質42のアノード室側には、リチウム負極45と非水系の有機電解質溶媒47が満たされ、固体電解質42のカソード室側にはアルカリ性電解液48とガス拡散電極(酸素極)46が設置されている。ガス拡散電極46は、シルク活性炭と金属や金属酸化物などの触媒粒子を、疎水性樹脂などのバインダーとともにカーボンペーパーなどの電極基体に被覆し焼成して構成されている。
[Gas diffusion electrode in metal-air battery cell]
As an example, a gas diffusion electrode in a lithium air battery is shown.
FIG. 6 is a schematic longitudinal sectional view of a lithium air battery as an example of a metal air battery equipped with the gas diffusion electrode of the present invention.
The lithium-air battery cell 41 is partitioned into an anode chamber (hydrogen electrode chamber) 43 and a cathode chamber (oxygen electrode chamber) 44 by a solid electrolyte 42 that is selectively permeable to Li ions. The anode chamber side of the solid electrolyte 42 is filled with a lithium negative electrode 45 and a non-aqueous organic electrolyte solvent 47, and an alkaline electrolyte 48 and a gas diffusion electrode (oxygen electrode) 46 are installed on the cathode chamber side of the solid electrolyte 42. ing. The gas diffusion electrode 46 is constructed by coating silk activated carbon and catalyst particles such as metal or metal oxide on an electrode substrate such as carbon paper together with a binder such as a hydrophobic resin and firing.

この電池セル41の酸素極室28に酸素含有ガスをそれぞれ供給しながら両極を電気的に接続すると、水素極室43で生成するLiイオンが固体電解質42を透過して酸素極室44に到達する。一方、酸素極室44に供給される酸素含有ガス中の酸素は、ガス拡散電極46内を拡散し電極触媒層中の触媒粒子により水と反応して水酸化物イオンに還元されて酸素極室44に移行し、前記Liイオンと結合して水酸化リチウムを生成する。   When both electrodes are electrically connected while supplying an oxygen-containing gas to the oxygen electrode chamber 28 of the battery cell 41, Li ions generated in the hydrogen electrode chamber 43 permeate the solid electrolyte 42 and reach the oxygen electrode chamber 44. . On the other hand, oxygen in the oxygen-containing gas supplied to the oxygen electrode chamber 44 diffuses in the gas diffusion electrode 46, reacts with water by the catalyst particles in the electrode catalyst layer, and is reduced to hydroxide ions to be oxygen electrode chamber. 44 and combines with the Li ions to produce lithium hydroxide.

以下に本発明のガス拡散電極の製造及び使用等に関する実施例を説明するが、本発明はこれらに限定されるものではない。   Examples relating to production and use of the gas diffusion electrode of the present invention will be described below, but the present invention is not limited thereto.

以下、本発明の実施例と比較例を示す。   Examples of the present invention and comparative examples are shown below.

[実施例1]
シルク原料綿を窒素雰囲気下で500℃にて6時間焼成し炭素化した後、粒径約10μmまでボールミルで粉砕した。粉砕したシルク粉を窒素雰囲気下で1200℃にて7時間焼成した。その後850℃にて3時間の水蒸気賦活を行いシルク由来活性炭触媒を作製した。これをグラッシーカーボン基材(6mmφ)上にナフィオン樹脂液にて固着させ電極とした。対極をグラッシーカーボン板とし、1MのNaOH、30℃にて、上記電極を回転電極装置に装着し2200rpmにて作動させながら電位走査範囲0.2〜1.2Vの範囲で、走査速度を10mV/sとして電圧と電流の関係を測定し、その結果を図7a及び図7bに示した。図7a及び図7bは、1200℃加熱処理して製造したシルク由来活性炭よりなる炭素系電極触媒の酸素還元の電流−電位及び反応次数の関係を示すグラフである。図7aにおいて0.8V付近から酸素還元電流が観察され、酸素の還元能を有することが確認された。
酸素の還元は式(3)の4電子還元のみならず、式(8)でも進行することが知られている。
2 + H2O + 2e- → OH- + HO2 - (8)
式(8)の過酸化水素の生成電流効率から反応次数nが計算され、n=2であればすべてが過酸化水素の生成を含む式(8)で進行することを示し、n=4であればすべてが水酸化物イオンの生成である式(3)で進行することを示す。
図7bでは生成物質の反応次数nはほぼ3.8程度であり、過酸化水素の生成効率は10%程度であった。
[Example 1]
Silk raw cotton was calcined for 6 hours at 500 ° C. in a nitrogen atmosphere, and then pulverized to a particle size of about 10 μm with a ball mill. The pulverized silk powder was fired at 1200 ° C. for 7 hours in a nitrogen atmosphere. Thereafter, steam activation was carried out at 850 ° C. for 3 hours to produce a silk-derived activated carbon catalyst. This was fixed on a glassy carbon substrate (6 mmφ) with a Nafion resin solution to obtain an electrode. The counter electrode is a glassy carbon plate, and the electrode is mounted on a rotating electrode device at 1 ° C NaOH, 30 ° C. and operated at 2200 rpm. The relationship between voltage and current was measured as s, and the results are shown in FIGS. 7a and 7b. 7a and 7b are graphs showing the relationship between the oxygen reduction current-potential and reaction order of a carbon-based electrode catalyst made of silk-derived activated carbon produced by heat treatment at 1200 ° C. In FIG. 7a, an oxygen reduction current was observed from around 0.8 V, and it was confirmed that it has oxygen reducing ability.
It is known that the reduction of oxygen proceeds not only by the 4-electron reduction of formula (3) but also by formula (8).
O 2 + H 2 O + 2e → OH + HO 2 (8)
The reaction order n is calculated from the generation current efficiency of hydrogen peroxide in equation (8), and if n = 2, it indicates that everything proceeds with equation (8) including the generation of hydrogen peroxide, and n = 4 If there is, it indicates that the process proceeds according to the formula (3), which is the generation of hydroxide ions.
In FIG. 7b, the reaction order n of the product was about 3.8, and the production efficiency of hydrogen peroxide was about 10%.

[実施例2]
900℃で加熱処理したこと以外は実施例1と同様に電極を作製した。そして、実施例1と同様の評価を行った結果を図8a及び図8bに示した。図8a及び図8bは、900℃加熱処理して製造したシルク由来活性炭よりなる炭素系電極触媒の酸素還元の電流−電位及び反応次数の関係を示すグラフである。図8aにおいて0.8V付近から酸素還元電流が観察され、酸素の還元能を有することが確認された。図8bでは生成物質の反応次数nはほぼ3.8程度であり、過酸化水素の生成効率は10%程度であった。
[Example 2]
An electrode was produced in the same manner as in Example 1 except that the heat treatment was performed at 900 ° C. And the result of having performed evaluation similar to Example 1 was shown to FIG. 8 a and FIG. 8 b. 8a and 8b are graphs showing the relationship between the oxygen reduction current-potential and the reaction order of a carbon-based electrode catalyst made of silk-derived activated carbon produced by heat treatment at 900 ° C. In FIG. 8a, an oxygen reduction current was observed from around 0.8 V, and it was confirmed that it has oxygen reducing ability. In FIG. 8b, the reaction order n of the product was about 3.8, and the production efficiency of hydrogen peroxide was about 10%.

[実施例3]
実施例2のシルク由来活性炭とZrO2の各粒子を見かけ体積比として1:1になるように混合したこと以外は実施例1と同様に電極を作製した。そして、実施例1と同様の評価を行ったところ、実施例1と同程度の酸素還元電流が観察され、酸素の還元能を有することが確認された。生成物質の反応次数nはほぼ4程度であり、過酸化水素の生成が抑制された。
[Example 3]
An electrode was produced in the same manner as in Example 1 except that the particles of silk-derived activated carbon and ZrO 2 in Example 2 were mixed so that the apparent volume ratio was 1: 1. And when the same evaluation as Example 1 was performed, the oxygen reduction current comparable as Example 1 was observed, and it was confirmed that it has the ability to reduce oxygen. The reaction order n of the product was about 4, and the production of hydrogen peroxide was suppressed.

実施例3の電極を用いて、1MのHClO4中、30℃にてRHE電位範囲で0〜1.2Vで100mV/sの走査速度にてサイクリックボルタモグラムを6000回繰り返し測定したところ、5%程度のわずかな電流の減少が確認された。これは耐食性に優れていることを示している。 Using the electrode of Example 3, cyclic voltammogram was repeatedly measured 6000 times in 1M HClO 4 at 30 ° C. in the RHE potential range at 0 to 1.2 V and a scanning speed of 100 mV / s. A slight decrease in current was confirmed. This shows that it is excellent in corrosion resistance.

[実施例4]
実施例1と同様に作製したシルク由来活性炭と界面活性剤を微量添加した水溶媒に、イオン交換樹脂液及びフッ素樹脂微粒子を添加したスラリーを調製し、炭素繊維製の多孔性織布基材の上に塗布し触媒を形成した酸素ガス拡散電極(カソード)を作製した。触媒量は100g/m2となるようにした。対極の水素アノードとしては市販のPt/C触媒付きガス拡散電極を用いた。
多孔性の2枚の電極の間にアニオン交換膜を挟み、130℃にて5分間のホットプレスを実施し一体化した。ニッケル発泡体をそれぞれの集電体として電極の裏側に設置し、溝加工を施した黒鉛製の給電体に挟み、セルを組立て、カソード室に2MのKOHを満たした。
水素及び酸素を各電極室に0.2MPaにて供給した。温度を80℃とし、電圧と電流の関係を測定したところ、開回路電圧は0.92V、0.2A/cm2、0.4A/cm2でのセル電圧は、0.6V、0.4Vであり、最大の出力密度は0.14W/cm2であった。
[Example 4]
A slurry in which an ion exchange resin liquid and fluororesin fine particles are added to a water solvent in which a trace amount of a silk-derived activated carbon and a surfactant prepared in the same manner as in Example 1 is added is prepared, and a porous woven fabric substrate made of carbon fiber is prepared. An oxygen gas diffusion electrode (cathode) coated on top to form a catalyst was produced. The amount of catalyst was set to 100 g / m 2 . A commercially available gas diffusion electrode with a Pt / C catalyst was used as the hydrogen anode for the counter electrode.
An anion exchange membrane was sandwiched between two porous electrodes, and integrated by performing a hot press at 130 ° C. for 5 minutes. Nickel foams were placed as the respective current collectors on the back side of the electrodes, sandwiched between the grooved graphite power feeding bodies, the cell was assembled, and the cathode chamber was filled with 2M KOH.
Hydrogen and oxygen were supplied to each electrode chamber at 0.2 MPa. The temperature was 80 ° C., was measured the relationship between the voltage and the current, the open circuit voltage is 0.92 V, 0.2 A / cm 2, the cell voltage at 0.4A / cm 2, 0.6V, 0.4V The maximum power density was 0.14 W / cm 2 .

[実施例5]
シルク原料を窒素雰囲気下で500℃にて6時間焼成し炭素化した後、粒径約10μmまでボールミルで粉砕した。粉砕したシルク粉を窒素雰囲気下で900℃にて7時間焼成した。その後850℃にて3時間の水蒸気賦活を行いシルク由来活性炭触媒を作製した。作製した炭素系触媒とPTFE水懸濁液(三井フロロケミカル株式会社製31JR)を混合し、20wt%に相当するトライトンと1.5重量%に相当するカルボキシメチルセルロースを溶解した水中で十分攪拌後、該混合懸濁液を、投影面積当りの活性炭重量が100g/m2となるように厚さ0.4mmのカーボンクロスに塗布した。60℃にて乾燥した。
[Example 5]
The silk raw material was calcined at 500 ° C. for 6 hours in a nitrogen atmosphere, and then pulverized with a ball mill to a particle size of about 10 μm. The pulverized silk powder was fired at 900 ° C. for 7 hours under a nitrogen atmosphere. Thereafter, steam activation was carried out at 850 ° C. for 3 hours to produce a silk-derived activated carbon catalyst. The prepared carbon-based catalyst and PTFE water suspension (Mitsui Fluorochemical Co., Ltd. 31JR) were mixed, and after sufficiently stirring in water in which Triton corresponding to 20 wt% and carboxymethylcellulose corresponding to 1.5 wt% were dissolved, The mixed suspension was applied to a carbon cloth having a thickness of 0.4 mm so that the weight of activated carbon per projected area was 100 g / m 2 . Dried at 60 ° C.

次に導電層を次のように作製した。
銀粒子(福田金属箔粉工業株式会社製AgC−H)とPTFE水懸濁液(デユポン・三井フロロケミカル株式会社製31JR)を混合し、20wt%に相当するトライトンと1.5重量%に相当するカルボキシメチルセルロースを溶解した水中で十分攪拌後、該混合懸濁液を、投影面積当りの銀粒子重量が100g/m2となるように上記ガス拡散層の背面へ塗布した。
60℃にて乾燥後、電気炉中305℃で15分焼成し、圧力0.6MPaでプレス加工を行い、ガス拡散陰極の充填率が40%となるようにした。
Next, a conductive layer was produced as follows.
Silver particles (AgC-H manufactured by Fukuda Metal Foil Powder Co., Ltd.) and PTFE water suspension (31JR manufactured by Deyupon / Mitsui Fluorochemical Co., Ltd.) are mixed. Triton equivalent to 20 wt% and 1.5 wt% equivalent After sufficiently stirring in water in which carboxymethyl cellulose was dissolved, the mixed suspension was applied to the back surface of the gas diffusion layer so that the weight of silver particles per projected area was 100 g / m 2 .
After drying at 60 ° C., it was baked at 305 ° C. for 15 minutes in an electric furnace and pressed at a pressure of 0.6 MPa so that the filling rate of the gas diffusion cathode was 40%.

電極特性の次のようにして測定した。   The electrode characteristics were measured as follows.

(1)定常試験
陽極として酸化ルテニウムを主成分とする塩素発生用陽極DSE(ペルメレック電極株式会社製)、イオン交換膜としてフレミオンF8020(旭硝子株式会社製)を用い、厚さ0.4mmの親水化処理を行ったカーボンクロスを親水層とし、この親水層を前記ガス拡散陰極と前記イオン交換膜間に挟み、前記陽極及びガス拡散陰極を内向きに押圧し、イオン交換膜が鉛直方向に位置するように、各部材を密着固定して電解槽を構成した。
(1) Steady test Anode DSE for chlorine generation mainly composed of ruthenium oxide as an anode (Permelec Electrode Co., Ltd.) and Flemion F8020 (Asahi Glass Co., Ltd.) as an ion exchange membrane are used to make the thickness 0.4 mm hydrophilic. The treated carbon cloth is used as a hydrophilic layer, the hydrophilic layer is sandwiched between the gas diffusion cathode and the ion exchange membrane, the anode and the gas diffusion cathode are pressed inward, and the ion exchange membrane is positioned in the vertical direction. As described above, the electrolytic cell was configured by closely fixing each member.

陰極室水酸化ナトリウム濃度が32wt%となるように陽極室食塩濃度を調整し、又陰極には酸素ガスを理論量の約1.2倍の割合で供給、陽極液の液温を90℃、電流密度60A/dm2で電解を行った。初期のセル電圧は2.13Vであった。150日間電解を継続したところ、セル電圧は2.15Vと、電圧の上昇は小さく、電流効率は約95%に維持された。 The sodium chloride concentration in the anode chamber was adjusted so that the sodium hydroxide concentration in the cathode chamber was 32 wt%, and oxygen gas was supplied to the cathode at a rate of about 1.2 times the theoretical amount. The liquid temperature of the anolyte was 90 ° C., Electrolysis was performed at a current density of 60 A / dm 2 . The initial cell voltage was 2.13V. When electrolysis was continued for 150 days, the cell voltage was 2.15 V, the voltage increase was small, and the current efficiency was maintained at about 95%.

(2)短絡試験
前記定常試験条件にて10日間連続稼動させた後、電流を切り、陰極室は窒素置換せず、また塩水の交換もせずに、短絡させ1昼夜放置した。その後、室温に下がった温度を上げた後、電流を流しセルを稼動、この短絡操作を3回繰り返した後、セル電圧を測定したところ、電圧上昇は10mVであった。
(2) Short-circuit test After operating continuously for 10 days under the above-mentioned steady-state test conditions, the current was turned off, the cathode chamber was not replaced with nitrogen, and the salt water was not replaced and left for one day and night. Thereafter, the temperature was lowered to room temperature, the current was passed, the cell was operated, this short-circuiting operation was repeated three times, and the cell voltage was measured. As a result, the voltage increase was 10 mV.

[実施例6]
実施例1のシルク由来活性炭とZrO2の各粒子を見かけ体積比として1:1になるように混合し活性炭量を80g/m2としたこと以外は実施例1と同様に電極を作製した。そして、実施例1と同様の電解槽を組み立て、定常試験を行ったところ、セル電圧は初期も150日間電解後も2.14Vであった。短絡試験後の電圧上昇は0mVであった。
[Example 6]
An electrode was produced in the same manner as in Example 1 except that the particles of silk-derived activated carbon and ZrO 2 in Example 1 were mixed so that the apparent volume ratio was 1: 1 and the amount of activated carbon was 80 g / m 2 . And when the electrolytic cell similar to Example 1 was assembled and the steady test was done, the cell voltage was 2.14V also in the initial stage and after 150 days of electrolysis. The voltage increase after the short circuit test was 0 mV.

[実施例7]
実施例1と同様にシルク由来活性炭触媒を作製した。実施例1と同様の電解槽を組み立て、定常試験を行ったところ、セル電圧は初期も150日間電解後も2.17Vであった。短絡試験後の電圧上昇は0mVであった。
[Example 7]
A silk-derived activated carbon catalyst was prepared in the same manner as in Example 1. When the same electrolytic cell as in Example 1 was assembled and a steady test was performed, the cell voltage was 2.17 V at the initial stage and after 150 days of electrolysis. The voltage increase after the short circuit test was 0 mV.

[実施例8]
実施例1のシルク由来活性炭触媒とAgの各粒子を見掛け体積比として1:1になるように混合し活性炭量を80g/m2としたこと以外は実施例1と同様に電極を作製した。そして、実施例1と同様の電解槽を組み立て、定常試験を行ったところ、セル電圧は初期も150日間電解後も2.14Vであった。短絡試験後の電圧上昇は0mVであった。
[Example 8]
An electrode was prepared in the same manner as in Example 1 except that the silk-derived activated carbon catalyst of Example 1 and each particle of Ag were mixed so that the apparent volume ratio was 1: 1 and the amount of activated carbon was 80 g / m 2 . And when the electrolytic cell similar to Example 1 was assembled and the steady test was done, the cell voltage was 2.14V also in the initial stage and after 150 days of electrolysis. The voltage increase after the short circuit test was 0 mV.

[比較例1]
触媒粒子として、ファーネスブラック粒子を使用し、該銀粒子とPTFE水懸濁液を、粒子と樹脂との見かけ体積比が1:1となるように混合後、厚さ0.4mmのカーボンクロスに塗布、60℃にて乾燥後、電気炉中305℃で15分焼成し、圧力0.2MPaでプレス加工を行い、酸素ガス拡散陰極とした。実施例1と同様の電解試験を実施したところ、セル電圧は初期から150日間で2.16Vから2.20Vに増加した。短絡試験後の電圧が70mV上昇し、電極として使用できなかった。
[Comparative Example 1]
Furnace black particles are used as catalyst particles, and the silver particles and the PTFE water suspension are mixed so that the apparent volume ratio of the particles to the resin is 1: 1, and then the carbon cloth is 0.4 mm thick. After coating and drying at 60 ° C., baking was performed at 305 ° C. for 15 minutes in an electric furnace, and press working was performed at a pressure of 0.2 MPa to obtain an oxygen gas diffusion cathode. When the same electrolysis test as in Example 1 was performed, the cell voltage increased from 2.16 V to 2.20 V in 150 days from the beginning. The voltage after the short-circuit test increased by 70 mV and could not be used as an electrode.

本発明は、窒素を含むシルク由来炭素系電極触媒を用いた、アルカリ水溶液において高活性な、アルカリ型燃料電池用、金属空気電池用または食塩電解用の酸素ガス拡散電極であり、電解、電池の充放電および緊急停止時の電極の耐久性や長期間安定性に優れたガス拡散電極の分野において利用することができる。   The present invention is an oxygen gas diffusion electrode for alkaline fuel cells, metal-air batteries, or salt electrolysis that is highly active in an alkaline aqueous solution using a silk-derived carbon-based electrode catalyst containing nitrogen. It can be used in the field of gas diffusion electrodes excellent in durability and long-term stability of electrodes during charge / discharge and emergency stop.

1 :イオン交換膜
2 :酸素極
3 :水素極
4 :酸素極用ガスケット
5 :水素極用ガスケット
6 :酸素極用集電対
7 :水素極用集電対
8 :酸素極フレーム
9 :酸素極室
10:水素極フレーム
11:水素極室
12:酸素ガス供給口
13:未反応酸素ガス及び生成水取出口
14:水素ガス供給口
15:未反応水素ガス取出口
16:電極基材
17:触媒層
18:導電層
21:三室法電解セル
22:陽イオン交換膜
23:陽極室
24:陰極室
25:塩素発生用陽極DSE
26:ガス拡散陰極
27:陰極液室
28:陰極ガス室
31:二室法電解セル
32:陽イオン交換膜
33:陽極室
34:陰極ガス室
35:塩素発生用陽極DSE
36:ガス拡散陰極
41:リチウム空気電池セル
42:固体電解質
43:水素極(アノード)室
44:酸素極(カソード)室
45:金属リチウム
46:ガス拡散電極
47:非水有機電解質溶媒
48:アルカリ性電解液
1: Ion exchange membrane 2: Oxygen electrode 3: Hydrogen electrode 4: Gasket for oxygen electrode 5: Gasket for hydrogen electrode 6: Current collector for oxygen electrode 7: Current collector for hydrogen electrode 8: Oxygen electrode frame 9: Oxygen electrode Chamber 10: Hydrogen electrode frame 11: Hydrogen electrode chamber 12: Oxygen gas supply port 13: Unreacted oxygen gas and generated water outlet 14: Hydrogen gas supply port 15: Unreacted hydrogen gas outlet 16: Electrode base material 17: Catalyst Layer 18: Conductive layer 21: Three-chamber electrolytic cell 22: Cation exchange membrane 23: Anode chamber 24: Cathode chamber 25: Anode DSE for chlorine generation
26: gas diffusion cathode 27: catholyte chamber 28: cathode gas chamber 31: two-chamber electrolytic cell 32: cation exchange membrane 33: anode chamber 34: cathode gas chamber 35: anode DSE for chlorine generation
36: Gas diffusion cathode 41: Lithium air battery cell 42: Solid electrolyte 43: Hydrogen electrode (anode) chamber 44: Oxygen electrode (cathode) chamber 45: Metallic lithium 46: Gas diffusion electrode 47: Nonaqueous organic electrolyte solvent 48: Alkaline Electrolyte

Claims (2)

シルクフィブロインを500℃〜1500℃で焼成し、シルク由来の窒素を含有し、粉状に成型されたシルク由来活性炭よりなる炭素系電極触媒を形成し、該炭素系電極触媒とともに、酸化チタン、酸化ジルコニウム、酸化ニオブ、酸化スズ、酸化タングステン、酸化タンタルのいずれか1つ以上からなる金属酸化物を多孔性導電性基体の表面に担持させたことを特徴とするアルカリ水溶液に使用する、アルカリ型燃料電池用、金属空気電池用または食塩電解用の酸素ガス拡散電極の製造方法。 Silk fibroin is baked at 500 ° C. to 1500 ° C. to form a carbon-based electrode catalyst composed of silk-derived activated carbon containing nitrogen derived from silk and molded into powder, and together with the carbon-based electrode catalyst, titanium oxide, oxidation Alkaline fuel for use in an alkaline aqueous solution characterized in that a metal oxide comprising at least one of zirconium, niobium oxide, tin oxide, tungsten oxide, and tantalum oxide is supported on the surface of a porous conductive substrate. Manufacturing method of oxygen gas diffusion electrode for battery, metal-air battery or salt electrolysis . 前記炭素系電極触媒中のN/C(アトミック比)が0.004〜0.07であることを特徴とする請求項1に記載の酸素ガス拡散電極の製造方法The method for producing an oxygen gas diffusion electrode according to claim 1, wherein N / C (atomic ratio) in the carbon-based electrode catalyst is 0.004 to 0.07.
JP2014502282A 2011-07-29 2012-07-24 Method for producing oxygen gas diffusion electrode Active JP5960795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014502282A JP5960795B2 (en) 2011-07-29 2012-07-24 Method for producing oxygen gas diffusion electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011166142 2011-07-29
JP2011166142 2011-07-29
JP2014502282A JP5960795B2 (en) 2011-07-29 2012-07-24 Method for producing oxygen gas diffusion electrode
PCT/JP2012/069634 WO2013018843A1 (en) 2011-07-29 2012-07-24 Oxygen gas diffusion electrode and method of making the same

Publications (2)

Publication Number Publication Date
JP2014522076A JP2014522076A (en) 2014-08-28
JP5960795B2 true JP5960795B2 (en) 2016-08-02

Family

ID=46755057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014502282A Active JP5960795B2 (en) 2011-07-29 2012-07-24 Method for producing oxygen gas diffusion electrode

Country Status (2)

Country Link
JP (1) JP5960795B2 (en)
WO (1) WO2013018843A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354393B2 (en) * 2013-07-05 2018-07-11 東洋インキScホールディングス株式会社 Aqueous catalyst paste composition for fuel cell and fuel cell
JP6186959B2 (en) * 2013-07-05 2017-08-30 東洋インキScホールディングス株式会社 Method for producing catalyst ink, catalyst ink, catalyst electrode, fuel cell, and air cell
CN105556704B (en) * 2013-08-07 2018-10-12 塞托克有限公司 Electrical energy storage device based on silk
CA2924019A1 (en) * 2013-09-13 2015-03-19 Meadwestvaco Corporation Catalytic activated carbon structures and methods of use and manufacture
US11090606B2 (en) 2013-12-05 2021-08-17 Dionex Corporation Gas-less electrolytic device and method
JP6344714B2 (en) * 2014-05-15 2018-06-20 国立大学法人 名古屋工業大学 Method for producing air electrode using nitrogen-containing natural organic substance
US11075382B2 (en) 2014-05-30 2021-07-27 Duracell U.S. Operations, Inc. Cathode for an electrochemical cell including at least one cathode additive
KR101675479B1 (en) * 2014-11-12 2016-11-11 울산과학기술원 Manufacturing method for complex catalyst for rechargeable metal-air battery
JP6436298B2 (en) * 2014-12-05 2018-12-12 国立大学法人群馬大学 Method for producing carbon catalyst
KR101772590B1 (en) * 2016-07-22 2017-08-29 울산과학기술원 Complex catalyst for rechargeable metal-air battery, air electrode for rechargeable metal-air battery including the same, and metal-air battery
KR20240005195A (en) * 2018-09-21 2024-01-11 아사히 가세이 가부시키가이샤 Jig for manufacturing laminate, method for manufacturing laminate, package, laminate, electrolytic cell, and method for manufacturing electrolytic cell

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373140B2 (en) 1997-07-31 2003-02-04 長一 古屋 Gas diffusion electrode
WO2006029185A2 (en) * 2004-09-08 2006-03-16 Polyfuel Inc. Membrane and membrane electrode assembly with adhesion promotion layer
JP2006219694A (en) 2005-02-08 2006-08-24 Permelec Electrode Ltd Gas diffusion electrode
JP2007294429A (en) 2006-03-30 2007-11-08 Ohara Inc Lithium ion conductive solid electrolyte and its manufacturing method
JP5031336B2 (en) 2006-11-21 2012-09-19 ペルメレック電極株式会社 Oxygen gas diffusion cathode for salt electrolysis
JP5125461B2 (en) 2007-01-18 2013-01-23 株式会社豊田中央研究所 Lithium air battery
JP4434246B2 (en) 2007-07-24 2010-03-17 トヨタ自動車株式会社 Air battery system
JP2009093983A (en) 2007-10-11 2009-04-30 Toyota Central R&D Labs Inc Secondary battery
JP2009129881A (en) 2007-11-28 2009-06-11 Tokuyama Corp Aqueous liquid fuel for anion-exchange membrane fuel cell, and anion-exchange membrane fuel cell
JP5310334B2 (en) 2008-07-15 2013-10-09 トヨタ自動車株式会社 Anion conductive electrolyte resin
JP2010063952A (en) 2008-09-08 2010-03-25 Shinano Kenshi Co Ltd Catalyst having oxygen reduction reaction ability
JP5275756B2 (en) 2008-11-05 2013-08-28 国立大学法人京都大学 Electrode for alkaline fuel cell
JP5638433B2 (en) * 2011-03-24 2014-12-10 株式会社東芝 Electrolyzer and refrigerator

Also Published As

Publication number Publication date
JP2014522076A (en) 2014-08-28
WO2013018843A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5960795B2 (en) Method for producing oxygen gas diffusion electrode
Zhang et al. Boosting overall water splitting via FeOOH nanoflake-decorated PrBa0. 5Sr0. 5Co2O5+ δ nanorods
Bu et al. Synergistic interaction of perovskite oxides and N-doped graphene in versatile electrocatalyst
Zhang et al. Porous perovskite La0. 6Sr0. 4Co0. 8Mn0. 2O3 nanofibers loaded with RuO2 nanosheets as an efficient and durable bifunctional catalyst for rechargeable Li–O2 batteries
Liu et al. Electrodeposited Co-doped NiSe 2 nanoparticles film: a good electrocatalyst for efficient water splitting
Wang et al. Nickel-doped La0. 8Sr0. 2Mn1–x Ni x O3 nanoparticles containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium–air batteries
Karimi et al. Metal carbide and oxide supports for iridium-based oxygen evolution reaction electrocatalysts for polymer-electrolyte-membrane water electrolysis
KR102408081B1 (en) Redox flow battery with carbon dioxide-based redox couple
Cai et al. Interfacial engineering of nickel/iron/ruthenium phosphides for efficient overall water splitting powered by solar energy
US8946116B2 (en) Nanometer powder catalyst and its preparation method
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
Hyun et al. Hierarchical nickel–cobalt dichalcogenide nanostructure as an efficient electrocatalyst for oxygen evolution reaction and a Zn–Air battery
Alegre et al. Bifunctional oxygen electrode based on a perovskite/carbon composite for electrochemical devices
CN111001428B (en) Metal-free carbon-based electrocatalyst, preparation method and application
CN113493917B (en) Electrode catalyst layer for carbon dioxide electrolytic cell, electrolytic cell provided with same, and electrolytic device for carbon dioxide electrolysis
JP5679639B2 (en) Gas diffusion electrode and manufacturing method thereof
Christy et al. Surface engineering of perovskites for rechargeable zinc–air battery application
Yuasa Molten salt synthesis of Nb-doped TiO2 rod-like particles for use in bifunctional oxygen reduction/evolution electrodes
Pérez-Viramontes et al. Electrochemical study of Ir–Sn–Sb–O materials as catalyst-supports for the oxygen evolution reaction
Lianos A brief review on solar charging of Zn–air batteries
Amici et al. Sustainable, economic, and simple preparation of an efficient catalyst for Li–O2 batteries
JP4868394B2 (en) Gas diffusion electrode and manufacturing method thereof, and fuel cell and salt electrolysis cell using the gas diffusion electrode
JP5123565B2 (en) Gas diffusion electrode and manufacturing method thereof, and fuel cell and salt electrolysis cell using the gas diffusion electrode
KR101263177B1 (en) electrolytic cell for a monolithic photovoltaic-electrolytic hydrogen generation system
JP2009158131A (en) Electrocatalyst and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160623

R150 Certificate of patent or registration of utility model

Ref document number: 5960795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250