WO2017084887A1 - Verfahren zum steuern einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug - Google Patents

Verfahren zum steuern einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug Download PDF

Info

Publication number
WO2017084887A1
WO2017084887A1 PCT/EP2016/076580 EP2016076580W WO2017084887A1 WO 2017084887 A1 WO2017084887 A1 WO 2017084887A1 EP 2016076580 W EP2016076580 W EP 2016076580W WO 2017084887 A1 WO2017084887 A1 WO 2017084887A1
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid
drive
mode
combustion engine
parallel
Prior art date
Application number
PCT/EP2016/076580
Other languages
English (en)
French (fr)
Inventor
Dr. Christian FELSCH
Dr. Jörg RIELING
Dr. Michael Zillmer
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Priority to KR1020187016971A priority Critical patent/KR102018474B1/ko
Priority to CN201680065496.8A priority patent/CN108349488B/zh
Priority to EP16798099.4A priority patent/EP3377379B1/de
Priority to US15/769,439 priority patent/US10525968B2/en
Publication of WO2017084887A1 publication Critical patent/WO2017084887A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/13Mileage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present application relates to a method for controlling a drive device of a hybrid vehicle and a hybrid vehicle having a drive device and a
  • Drive device controller configured to execute the method.
  • German Offenlegungsschrift DE 10 2013 001 095 A1 discloses a method for operating a hybrid drive device, wherein the hybrid drive device has an internal combustion engine which can be operatively connected to a first axle of the motor vehicle, a first electric motor which can also be operatively connected to the first axle, and a motor linkable to a second axle of the motor vehicle having second electric motor.
  • the electrical energy used to operate the second electric motor is generated by the first electric motor driven by the internal combustion engine to increase its power or is taken exclusively from an energy store for electrical energy.
  • European patent EP 1 074 087 B1 discloses a control method and an apparatus for the internal combustion engine of a hybrid electric vehicle, wherein an electric motor or motor / generator is connected between the engine and the continuous variable or
  • a control means holds the power output of the internal combustion engine substantially along an ideal operating line when the
  • a second electric motor may also be provided and the torque output of the second electric motor may be varied by means of a system controller.
  • German patent application DE 10 2012 103 292 A1 discloses a method for operating an electric drive train of a vehicle, wherein at least two electric motors, which are each in operative connection with a drive axle, and a control device are provided, wherein a driver's desired torque determined for a motor or generator operation is, and wherein at a present output speed, a required total output of the electric drive train is determined, and wherein the performance of the individual electric motors are determined, and wherein the resulting power losses the individual electric motors are minimized based on stored loss performance characteristics for the individual electric motors.
  • German patent application DE 10 2009 019 485 A1 discloses a drive train with a first electric motor and a planetary gear and vehicles that this
  • the drive train has a first electric machine which is operable in a motor or generator operating state, and a
  • Planetary gear with a speed change device wherein the planetary gear has a arrival and an output side and wherein the first electric machine in the motor or regenerative operating state controlling engages the speed change device, so that forms a gear ratio in the planetary gear.
  • the transmission ratio of the planetary gear is influenced, which in addition also the operating point of the internal combustion engine is determined.
  • the internal combustion engine is operated close to its optimum efficiency.
  • the second electric machine operates as a motor and the first electric machine is idle or used as an auxiliary drive. A portion of the mechanical energy generated by the internal combustion engine is converted into electrical energy by the first electrical machine and forwarded directly to the second electrical machine. Accelerations are supported by the second electric machine. In a delay can be charged by ekuperation of the braking energy of the energy storage.
  • European Patent DE 602 23 850 T2 discloses a method for operating a drive system of a hybrid vehicle, wherein the hybrid vehicle a
  • Planetary gear mechanism and a second electric motor / generator comprises.
  • Vehicle axles is generated, and a second moment, which is generated by the second electric motor in the vehicle axles at each gear position of the translation, from a first ratio, when both the internal combustion engine and the second electric motor operate normally, to a second ratio, if either the internal combustion engine or the second electric motor are disturbed, changed.
  • German laid-open specification DE 10 2007 054 368 A1 discloses a control architecture for selecting an optimum mode or an optimal gear ratio and input speed for a A hybrid powertrain system comprising an internal combustion engine, first and second electric motors, and an electro-mechanical transmission selectively operable to transfer torque therebetween and operable in a plurality of fixed-ratio modes and continuously variable modes. For each allowable operating range condition, preferred operating conditions and preferred costs are determined and based thereon a preferred operating range condition is selected.
  • a hybrid powertrain system comprising an internal combustion engine, first and second electric motors, and an electro-mechanical transmission selectively operable to transfer torque therebetween and operable in a plurality of fixed-ratio modes and continuously variable modes. For each allowable operating range condition, preferred operating conditions and preferred costs are determined and based thereon a preferred operating range condition is selected.
  • Cost structure information entered into a strategic management segment and used in an optimization segment preferably includes operating costs that are generally determined based on factors related to vehicle ride characteristics, fuel economy, emissions, and
  • Total powertrain system loss which includes a term based on engine power loss driven by fuel economy and exhaust emissions plus losses in the mechanical system, losses in the electrical system, and heat losses.
  • Hybrid vehicle with one or the other drive unit can, for. B. be advantageous in terms of energy consumption, but have negative consequences in terms of performance of the hybrid vehicle result.
  • a selection by means of which drive unit the hybrid vehicle should be driven in a given driving situation is thus subject to difficulties in the prior art.
  • An object of the present invention is to provide a method for controlling a
  • a method for controlling a drive device of a hybrid vehicle which comprises an internal combustion engine, a first electric machine, a second electric machine, and an accumulator, wherein a power-oriented mode or a consumption-oriented mode is selectable for the drive device,
  • the method having the selected consumption-oriented mode in the case of a first condition comprising:
  • Controlling the drive means in a parallel Boost hybrid operation in which the internal combustion engine and additionally the first electric machine and / or the second electric machine causes a traction drive torque until a criterion is met, that of the duration of the operation and / or the energy conversion in the parallel boost Hybrid operation depends, and
  • Internal combustion engine drives the first electric machine for generating electrical energy.
  • the first condition comprises:
  • a target drive value is increased to an intermediate value between
  • Boost hybrid operation represents, is.
  • the method may be implemented in software and / or hardware.
  • the method can be carried out by means of a drive device control and / or an engine control device, which is included in particular in the hybrid vehicle.
  • the method may be performed by a computer-implemented method.
  • a program code with instructions can be loaded into a memory of an arithmetic / logical processor and executed by the processor.
  • the internal combustion engine may include a diesel engine or a gasoline engine and further includes a fuel tank from which fuel combustion chambers of the
  • the first electric machine and / or the second electric machine may comprise synchronous machines, which with
  • Permanent magnets in the rotor can be equipped.
  • the first electric machine can be operated substantially in regenerative mode, in which the first electric machine is driven by the internal combustion engine and generates electrical energy, which is supplied to the accumulator and / or the second electric machine.
  • Electric machine can also be used in electric motor operation.
  • the second electric machine can be used essentially in electromotive operation, wherein the second electric machine receives electrical energy from the accumulator and / or the first electric machine and generates a mechanical drive torque.
  • the second electric machine can also be operated in regenerative mode.
  • the drive device can be operated to drive the hybrid vehicle substantially in a purely electrical operation, in the parallel hybrid operation or the serial hybrid operation.
  • Hybrid vehicle can be generated by the second electric machine (and / or by the first electric machine), while the internal combustion engine does not have to contribute to a mechanical drive torque.
  • the internal combustion engine may exclusively effect the traction drive torque without the first electric machine or the second electric machine contributing to the drive torque.
  • the internal combustion engine and the first electric machine can effect the traction drive torque without the second electric machine contributing thereto.
  • the internal combustion engine and the second electric machine can cause the traction drive torque without the first
  • Electric machine contributes to this. Further, in the parallel boost hybrid mode, too in particular, the internal combustion engine and the first electric machine and the second electric machine cause the traction drive torque.
  • the internal combustion engine may drive the first electric machine, which generates electric power in regenerative operation, and the thus generated electric power is supplied to the second electric machine to drive the first electric machine
  • a driver / driver of the hybrid vehicle may choose either the performance oriented mode or the usage mode eg. B. by means of a lever, a switch, on a Bermmpress or otherwise select.
  • the performance-oriented mode or the consumption-oriented mode may, for. B. manually or by foot by a driver and / or he can be set due to external constraints or other reasons in an engine control unit or in a drive device control.
  • the performance-oriented mode may also be referred to as a sports mode and the consumption-oriented mode may also be referred to as an eco mode.
  • the power plant may be operated longer (eg, during more driving situations, under a greater amount of conditions) in the parallel hybrid mode and / or the parallel boost hybrid mode than in the selected power mode. Since the parallel hybrid operation and / or the boost hybrid operation can have a lower energy requirement (under certain
  • Hybrid serial operation may typically consume more power than parallel hybrid operation and, under certain conditions, parallel boost hybrid operation due to the dual energy conversion.
  • the series hybrid operation may provide a higher drive torque and / or a higher drive power than the parallel hybrid operation and / or the boost hybrid operation, so that sporty driving is enabled.
  • the internal combustion engine threshold can, for. As an internal combustion engine torque threshold and / or an internal combustion engine performance threshold
  • the internal combustion engine threshold can, for. From one
  • Driving speed and / or depend on a speed of the internal combustion engine For example, the internal combustion engine threshold (in particular substantially and / or over a certain range) with the driving speed and / or the speed of the
  • the drive device can be parallel in the
  • Hybrid operation are operated when the vehicle speed and / or a
  • the parallel hybrid operation may be the most energy-efficient operating mode of the drive device.
  • the purely electric operation may be performed by (practically) exclusively the second electric machine generating the drive torque and / or the drive power and the drive wheel and / or a plurality of drive wheels transfers. Regardless of the driving speed, the purely electrical operation may be performed if the target drive value is below another electrical operation threshold, which may be less than the electrical operation threshold.
  • the drive device can be operated in the serial mode of operation, in which the
  • the drive device can be operated in the serial operating mode when the vehicle speed and / or a drive wheel speed below a vehicle speed threshold and / or a
  • the Sollantriebswert can z. B. by a drive lever, in particular by an accelerator pedal, are specified by the driver or the driver.
  • a target drive value requested by the driver can be reliably and quickly provided by the driving device.
  • the ride comfort can be increased and safe driving can be ensured, in particular, high accelerations can be achieved, which are necessary in some traffic situations.
  • energy consumption compared to the performance-oriented mode
  • the drive device can meet various requirements.
  • the criterion may include that the duration of the operation in the parallel boost hybrid operation exceeds a time threshold and / or that an amount of energy taken from the accumulator during the period of operation in the parallel boost hybrid operation exceeds an energy threshold.
  • a drive torque and / or a drive power is at least partially generated by the first and / or the second electric machine, which (at least partially) by the
  • Accumulator can be charged by operating the first electric machine in the generator mode, which is mechanically driven by the internal combustion engine. In this case, it may be necessary for a charging of the accumulator energy conversion, which may be associated with relatively high losses. In general, it is thus energetically unfavorable to drive the hybrid vehicle in the parallel boost hybrid operation under (at least in part) the use of electrical energy from the accumulator. Therefore, the duration of the operation in the parallel boost hybrid mode can be limited in the consumption-oriented mode.
  • the amount of energy removed from the accumulator can be measured and / or simulated.
  • the energy threshold may be manually adjustable or may be stored as a fixed value in an engine controller or drive controller.
  • controlling the drive in selecting the power-oriented mode may include switching from parallel hybrid to serial hybrid without waiting for the criterion to be met. If in the performance-oriented mode, it is below the value
  • Target drive value is thus increased, the probability can be relatively high that the target drive value is further increased (in the near future) further. Therefore, it can be useful in many cases, to switch early in the serial hybrid mode to a Power requirement or a target drive value, which is above the Parallelhybrid Sha- threshold to be able to provide fast and reliable.
  • the intermediate value is between the engine threshold, which represents a maximum drive value in the parallel hybrid operation, in which only the internal combustion engine causes a traction drive torque, and the engine threshold, which represents a maximum drive value in the parallel hybrid operation, in which only the internal combustion engine causes a traction drive torque, and the engine threshold, which represents a maximum drive value in the parallel hybrid operation, in which only the internal combustion engine causes a traction drive torque, and the engine threshold, which represents a maximum drive value in the parallel hybrid operation, in which only the internal combustion engine causes a traction drive torque
  • Parallel hybrid operation threshold representing a maximum drive value in parallel boost hybrid operation.
  • the method may include: controlling the drive means in the serial hybrid mode until another criterion (which may be the same or different from the criterion) is met, that of the time period and / or energy turnover a simulated operation in the parallel boost hybrid operation and, if the other criterion is met, switching to parallel boost hybrid operation. Furthermore, the method can be used when selecting the criterion (which may be the same or different from the criterion) is met, that of the time period and / or energy turnover a simulated operation in the parallel boost hybrid operation and, if the other criterion is met, switching to parallel boost hybrid operation. Furthermore, the method can be used when selecting the
  • the second condition has the effect that the desired drive value is reduced to the intermediate value.
  • the second condition may thus mean that from a drive value which is above the parallel hybrid operation threshold is lowered to a value which is below the parallel hybrid operation threshold but above the internal combustion engine threshold.
  • the drive device may be operated longer in the serial hybrid mode than in the consumption-oriented mode selection.
  • a sportier driving can be provided when selecting the power-oriented mode, since the serial hybrid operation usually allows to provide a higher drive torque and / or a higher drive power than the parallel boost hybrid operation. If, however, the consumption-oriented mode is selected, in the presence of the second condition, it is possible to switch to the parallel boost hybrid mode, in particular directly, that is to say without a delay. This can reduce energy consumption.
  • the other criterion may include that the period of time since the lowering of the
  • Sollantriebshongs to the intermediate value exceeds a different time threshold and / or that a simulated from the accumulator during the period of simulated operation in the parallel boost hybrid operation taken energy exceeds a different energy threshold.
  • the propulsion device may continue to be operated in the serial hybrid mode (for a certain time), thus the parallel boost hybrid operation is not (yet) used during this period of time.
  • the parallel boost hybrid operation is not (yet) used during this period of time.
  • an amount of energy that would be removed from the accumulator if the propulsion device were operated in the parallel boost hybrid mode can be simulated without actually operating the propulsion device in the parallel boost hybrid mode.
  • a suitable different criterion can be defined for how long the drive should continue to operate (in the power-oriented mode selection) in the serial hybrid mode.
  • controlling the drive device when selecting the consumption-oriented mode may include: switching from serial hybrid operation to parallel boost hybrid operation without waiting for the other criterion to be met , Since the parallel boost hybrid operation is usually a more fuel-efficient operation than the serial hybrid operation, thus energy can be saved.
  • the method may further include detecting a throttle position (eg, accelerator pedal position, mechanical detection, electronic detection, detecting actuation of one or more buttons, detecting a hand lever position, detecting a selection on a touch screen, etc.). Furthermore, the method can be used when selecting the throttle position (eg, accelerator pedal position, mechanical detection, electronic detection, detecting actuation of one or more buttons, detecting a hand lever position, detecting a selection on a touch screen, etc.). Furthermore, the method can be used when selecting the throttle position (eg, accelerator pedal position, mechanical detection, electronic detection, detecting actuation of one or more buttons, detecting a hand lever position, detecting a selection on a touch screen, etc.). Furthermore, the method can be used when selecting the throttle position (eg, accelerator pedal position, mechanical detection, electronic detection, detecting actuation of one or more buttons, detecting a hand lever position, detecting a selection on a touch screen, etc.). Furthermore, the method can be used when selecting the throttle position (eg, accelerator pedal position
  • consumption-oriented mode comprises determining the target drive value based on the throttle position in a first range of a throttle travel as a value greater than a target drive value determined upon selection of the power-oriented mode. Further, the method may include determining the desired drive value based on the
  • the Fahrhebelweg can be regarded as a setting range of the driving lever, within which the Fahrhebel ein may be located.
  • the Fahrhebelweg and / or the Fahrhebel ein can z. B. a linear path or a curved, in particular circular Be away.
  • the Fahrhebelweg and / or the Fahrhebel ein can z. B. are measured in a length measurement and / or in an angular dimension.
  • the accelerator position may be determined or defined by operating discrete switches and / or buttons (eg, depending on a number of actuated buttons and / or switches).
  • a desired drive value may be proportional to a throttle position (eg, fraction or percentage of the throttle travel). According to embodiments of the present invention, there may still be a proportionality between the target drive value and the accelerator position, but in different areas of one
  • the method may further include, upon selection of the performance oriented mode, determining the desired drive value based on the throttle position via the throttle travel as a product of a total slope and the throttle position along the throttle travel.
  • the determination of the target drive value may further comprise, when selecting the consumption-oriented mode:
  • the target drive value in an initial range of the throttle travel as a product of an initial pitch and throttle position, in an intermediate range of the throttle travel as a product of intermediate pitch and throttle position, and in an end portion of the throttle travel as a product of an end pitch and throttle position, the total pitch being different than the initial pitch which is final slope and intermediate slope.
  • the initial slope and / or the final slope may be greater than the intermediate slope.
  • a hybrid vehicle having a drive device including an internal combustion engine, a first electric machine, a second electric machine, and an accumulator, wherein the
  • the Drive device supports a selection of a performance-oriented mode and a consumption-oriented mode.
  • the hybrid vehicle also has a
  • FIG. 1 schematically illustrates a hybrid vehicle according to an embodiment of FIG
  • FIG. 2 schematically illustrates a hybrid vehicle according to another embodiment of the present invention, which is adapted to a method according to a
  • FIG. 3 illustrates curves of hybrid vehicles illustrated in FIG. 1 or 2 in FIG.
  • FIG. 5 illustrates various modes of operation of the hybrid vehicles illustrated in FIGS. 1 and 2 used in a method according to an embodiment of the present invention
  • the hybrid vehicle 1 schematically illustrated in FIG. 1 has a drive device 3 and a drive device controller 6, which is designed to execute a method for controlling the drive device 3 of the hybrid vehicle 1 according to an embodiment of the present invention.
  • the drive device 3 comprises a
  • Electric machine 1 1 is connected.
  • the drive device 3 is operable to drive the hybrid vehicle 1 in three operating modes. First, in a purely electric operation in which a traction drive torque (which is applied, for example, to the drive wheels 15) is effected by means of the second electric machine 11 while the internal combustion engine 5 is turned off (ie, it does not supply fuel from an unillustrated tank) becomes). Secondly, the drive device 3 is operable in a series hybrid operation in which the traction drive torque is effected by the second electric machine 1 1 and the internal combustion engine 5 drives the first electric machine 9 to generate electrical energy, which in turn is supplied to the second electric machine 11 (either directly or via the accumulator 13). Third, the drive device 3 is operable in a parallel hybrid operation, in which a traction drive torque is effected by means of the internal combustion engine 5 and
  • the drive device 3 further comprises a main clutch K0 (FIG. 17) and a transmission 19, both of which are interposed between the
  • Internal combustion engine 5 and a wheel drive train 21 are arranged. Of the
  • Wheel drive train 21 is mechanically connected via a differential 25 with associated differential gear 23 with the drive wheels 15.
  • the first electric machine 9 is connected via a first clutch K1 (27) and via a first transmission element 29 to an output shaft 31 of the internal combustion engine 5, wherein the output shaft 31 is mechanically connected to an input shaft 32 of the transmission 19.
  • An output shaft 33 of the transmission 19 is connected to the main clutch K0 (17).
  • the second electric machine 1 1 is connected to the wheel drive train 21 via a second transmission element 35 and a second clutch K2 (37).
  • a serial-parallel hybrid concept is implemented. Over a
  • the hybrid vehicle 1 as HEV (Hybrid Electric Vehicle) as well as a plug-in HEV (PHEV) be executed.
  • the first electric machine 9 (also referred to as EM1) is z. B. in terms of power and torque dimensioned such that, taking into account the
  • Operating point can be set in serial mode.
  • Electric machine 1 1 (also referred to as electric traction motor EM2) is, for example, with respect to the power dimensioning of the power dimensioning of the internal combustion engine 5 ajar, that is, it can provide a similar maximum power.
  • the ratios of the traction motor EM2 and the generator EM1 can be found in the
  • Embodiment for example, be implemented both as a spur gear as well as a (braked) planetary gear.
  • the main clutch K0 can be the parallel
  • Power path (shaft 33) are disconnected from the drive wheel 15.
  • the drive motor EM2 and the generator EM1 are (optionally) in each case via the second clutch 37 (also referred to as K2) and the first clutch 27 (also referred to as K1) decoupled to reduce drag losses. All couplings K0, K1 and K2, for example, as a frictional
  • the generator EM1 can work essentially or exclusively as a generator, it can be used to start the internal combustion engine, or it can be in parallel
  • Hybrid operation can be used to boost support the internal combustion engine 5.
  • the purely electric operation (EV operation) and the recuperation can be performed via the traction motor EM2 (that is, the second electric machine) while the main clutch K0 is opened and the second clutch K2 is closed.
  • EM2 that is, the second electric machine
  • Table 1 the various operating modes are listed in which the drive device 3 is operable, together with the respective coupling states of the main clutch K0, the first clutch K1 and the second clutch K2.
  • the drive device 3 is operable in a purely electrical operation (EV operation), a serial hybrid operation and a parallel hybrid operation. Both the hybrid serial operation and the parallel hybrid operation can each without or with
  • Load point can be carried out, as can be seen from the above Table 1.
  • the maximum internal combustion engine power to drive the vehicle can be used, since in this case the main clutch KO is open and therefore the speed of the internal combustion engine 5 can be set optimally regardless of the driving speed. From the purely electrical operation out (EV operation) can be opened with the main clutch KO on the first electric machine. 9 (Generator EM1) a very comfortable and traction-neutral internal combustion engine
  • the generator operation required for generating electrical power for charging the accumulator can optionally be carried out via the second electric machine 11 (traction motor EM2) or the first electric machine 9 (generator EM1).
  • the generator operation required for generating electrical power for charging the accumulator can optionally be carried out via the second electric machine 11 (traction motor EM2) or the first electric machine 9 (generator EM1).
  • parallel hybrid operation without the need for additional load point boosting in the one illustrated in FIG.
  • FIG. 2 illustrates a hybrid vehicle 201 according to another embodiment of the invention
  • Fig. 1 and 2 Components in Fig. 1 and 2 are denoted by reference numerals which are the same in the last two places. For simplicity, in the following description, the reference numerals of both Figs. 1 and 2 are partially indicated, each separated by a comma.
  • the hybrid vehicle 201 illustrated in FIG. 2 may be understood as a "simplified" system topology without decoupling capability of traction motor EM2 and generator EM1 and without a transmission (stepped or stepless), such that only overdrive transmission of the
  • Internal combustion engine 205 may be present to the drive wheel 215.
  • the hybrid driving mode can be displayed serially and in parallel. In serial hybrid mode, the main clutch K0 is open. The speed of the internal combustion engine is freely adjustable. The mechanical power of the internal combustion engine is converted into electrical power via the generator EM1 changed. This electrical power is used in accordance with demand for recharging the HV battery and used by the traction motor EM2 to represent the driving request.
  • the main clutch KO In parallel hybrid mode, the main clutch KO is closed.
  • the speed of the internal combustion engine is coupled to the wheel speed via the override control.
  • the mechanical power of the internal combustion engine is used in accordance with demand via a regenerative operation of the electric generator EM1 for recharging the HV battery and transmitted mechanically to represent the driving request directly to the wheel.
  • generator EM1 can be decoupled to minimize drag losses (with dynamic losses acceptable to drivers, for example, GRA and / or ACC operation).
  • the first clutch 227 may be missing.
  • the drive device controls 6 and 206 illustrated in FIGS. 1 and 2 are configured, a method of controlling a drive device of a hybrid vehicle according to a
  • Embodiments of the present invention may be based on a C0 2 -optimal
  • the hybrid vehicle may include a transmission such as the hybrid vehicle 1 illustrated in FIG. 1, but need not have a transmission such as that illustrated in FIG. 2
  • Hybrid vehicle 201 The drive device 3 or 203 illustrated in FIGS. 1 and 2
  • Hybrid vehicles 1 or 201 can be used to drive essentially in three operating modes or
  • the driving devices 3 or 203 are in the power-oriented mode or in the
  • Fig. 3 illustrates for the parallel hybrid operation in a coordinate system with an abscissa 43, which illustrates the speed of the internal combustion engine 5, 205 in the unit 1 / min, and with an ordinate 45, which shows the power in the unit kW and / or torque indicates in the unit Nm, which at the input shaft 32 of the transmission 19 and a
  • Output shaft 233 is applied, a power 47 of the internal combustion engine 5, 205, a system power 49, a torque 51 of the internal combustion engine 5, 205 and a system torque 53 of the respective entire drive means 3, 203.
  • the system performance 49 and the system torque 53 are defined in consideration of electric boost assist by the generator EM1 (and / or the traction motor EM2).
  • locund torque requirements that is, target performance or setpoint torques
  • above the internal combustion engine full load can thus in parallel hybrid operation up to the defined system power 49 and up to the defined system torque 53 via a combined combustion and electromotive operation with appropriate electrical
  • Parallel hybrid operation can (if possible) be more efficient than serial hybrid operation in almost all operating scenarios.
  • the parallel hybrid operation is with respect to
  • Torque and / or limited by the limit of system performance (internal combustion engine together with the first and / or the second electric machine). Consequently, for the performance-oriented mode (also referred to as a sport mode), in particular the serial hybrid operation can be considered.
  • Hybrid operation can be implemented in a consumption-oriented mode (also referred to as eco mode) and a performance-oriented mode (also referred to as a sport mode).
  • the maximum torque achievable by the internal combustion engine in parallel hybrid operation and the maximum system torque or the maximum internal combustion engine power that can be represented in parallel hybrid operation and the maximum system performance can define a hysteresis band required for this purpose (eg, an intermediate region 73 illustrated in FIG. , as explained in more detail below.
  • FIG. 4 schematically illustrates a method 38 for controlling a drive device of a hybrid vehicle (eg, the hybrid vehicles 1 or 201 illustrated in FIG. 1 or FIG. 2) according to an embodiment of the present invention. It includes the
  • Drive device eg, drive device 3 or 203
  • an internal combustion engine eg 5 or 205
  • a first electric machine eg 9 or 209
  • a second electric machine eg 1 1 or 21 1
  • an accumulator eg, 13 or 213
  • the method has a method step 40 in the case of a first condition: controlling the drive device in a parallel boosting mode. Hybrid operation until a criterion is met, which depends on the duration and / or the energy conversion of the operation in the parallel boost hybrid operation.
  • the method 38 further includes the step of: switching to a serial hybrid mode in which the traction drive torque is effected by the second electric machine and the internal combustion engine drives the first electric machine to generate electric power. If the performance oriented mode is selected in the case of the first condition, the method includes the step of: controlling the propulsion unit in the serial hybrid mode without waiting for the criterion to be met. Thus, steps 40 and 42 may be performed in the selected usage-oriented mode, where step 44 may be performed with the power-oriented mode selected.
  • the first condition indicates that a nominal drive value (that is to say, for example, a
  • driver-desired torque is increased to an intermediate value that is between an engine threshold, the one
  • Internal combustion engine causes a driving torque (especially exclusively), and a parallel hybrid operation threshold representing a maximum drive value in the parallel boost hybrid operation, in which the internal combustion engine and additionally the first electric machine and / or the second electric machine causes a traction drive torque is located.
  • the speed of the hybrid vehicle in the unit km / h is plotted and on the ordinate 57, the (available) drive power in the unit kW is plotted.
  • the pure electric operation EV operation
  • a region 61 the serial hybrid operation (serial operation) is performed
  • a region 63 the parallel hybrid operation (parallel operation) is performed.
  • the curve 64 represents the driving resistance during constant speed travel in the plane.
  • the diagram shown in FIG. 5 can be used analogously as available
  • Drive torque (instead of drive power) over the vehicle speed or the wheel speed are displayed.
  • the purely electrical operation is performed in area 59 if the vehicle speed is below a vehicle speed threshold 65 and the drive power
  • Driving speed is above the vehicle speed threshold 65 and the
  • Target drive power is below another electrical operating power threshold 68 which is smaller (eg 3 kW) than the electrical operating power threshold 67th
  • the parallel hybrid operation in the area 63 is performed if both the
  • Driving speed is above the driving speed threshold 65, a
  • Target drive power is below the driving speed dependent Parallelhybrid Clean- power threshold 69, as well as a target drive power above the other
  • Electric-operation threshold 68 is located.
  • the parallel hybrid power threshold 69 is defined here as the sum of the maximum output power 71 of the internal combustion engine 5, 205 and the boost support of the first electric machine 9, 209 and / or the boost support of the second electric machine 1 1, 21 1. In the region 73, a boost is thus produced in parallel hybrid operation by means of the first electric machine EM1 and / or the second
  • the serial hybrid operation is performed in region 61 if both the vehicle speed is below the vehicle speed threshold 65 and the target engine power is above the electrical operating power threshold 67. Further, the serial hybrid operation is performed in the area 61 if both the traveling speed above the
  • Vehicle speed threshold 65 is as well as the target drive power above a driving speed-dependent parallel hybrid power threshold 69 is located.
  • the electrical operating threshold 67 and by the further electrical operating threshold 68 are limited by the electrical operating threshold 67 and by the further electrical operating threshold 68 (here, for example: up to approx. 49 km / h, approx. 15 kW drive power from approx. 49 km / h approx. 3 kW drive power).
  • the parallel hybrid operation is performed as soon as taking into account the
  • the overdrive translation is of the
  • Internal combustion engine 5, 205 to the drive wheel 15, 215 i 2.8, resulting in a speed of the internal combustion engine 5, 205 of about 1200 rev / min at about 49 km / h vehicle speed. From this speed, the internal combustion engine is able to automatically generate the drive torque or the drive power.
  • the parallel hybrid operation is with respect to the maximum drive power representation by the maximum load of the internal combustion engine and taking into account the electrical boost support by the generator EM1 and / or the traction motor EM2 by the
  • the thresholds 67, 68, 69, 71, 65 can be determined in terms of consumption or C0 2 optimally.
  • Representing parallel hybrid operation threshold and the line 71 may represent the internal combustion engine threshold referenced in the driving method 38.
  • Mode change from the area 63 in Fig. 5 in the area 61 in Fig. 5, can via a Hysteresis band that is based on the system design (system performance and system torque, see area 73 in FIG. 5).
  • the transition to hybrid serial operation may become greater than the power requirements in an intermediate region (region 73 in FIG. 5)
  • Internal combustion engine threshold (eg, threshold 71 in Fig. 5) and less than
  • System full load (eg smaller than Parallelhybrid ist threshold 69 of the parallel Boost hybrid operation), however, be implemented delayed over an energy and / or a time integral, as explained below.
  • the change to the serial hybrid mode can take place as soon as the amount of energy taken from the accumulator 13 or 213 to represent the required systemic torque (over the time-integrated power consumption from the accumulator) exceeds a certain limit.
  • the changeover to hybrid serial operation may occur as soon as the systemic time duration
  • FIG. 6 is a graph illustrating the dependency of a target drive value (defined by the driver), for example, as shown in FIG. B. target drive power or target drive torque, as a function of a throttle position, specifically in Figure 6 an accelerator pedal position.
  • the abscissa 76 of the coordinate system illustrated in FIG. 6 indicates the ratio of an accelerator pedal position and an accelerator pedal travel, and the ordinate 77 indicates a target driving value, specifically, a target driving power or a target driving torque.
  • the curve 79 illustrates the target drive value as a function of the accelerator pedal position for the power-oriented mode.
  • the curve 81 illustrates the target drive value as a function of the accelerator pedal position for the consumption-oriented mode of the drive devices 3 or 203 of the hybrid vehicles 1 or 201 illustrated in FIG. 1 or 2.
  • the accelerator pedal position selected by the driver is linearly proportional to a corresponding power representation (desired drive value of the
  • Power representation of the accelerator pedal position can be maintained in principle. However, the change of the power map (target drive value) depending on a change of the accelerator pedal position for power requirements becomes larger than that
  • Accelerator pedal position for power requirements less than the internal combustion engine threshold and greater than the parallel hybrid operation threshold reduced.
  • the driver must "continue to step through” the accelerator pedal to increase the vehicle performance.
  • Reference numeral 71 denotes the internal combustion engine threshold analogously to the reference numeral 71 used in FIG. 5, reference numeral 69 denotes the parallel hybrid operation threshold (system full load limit), and reference numeral 75 denotes the drive limit in the serial operation.
  • the target drive value may be determined based on the throttle position when selecting the consumption-oriented mode in a first range 83 of a throttle travel as a value that is greater than a target drive value determined upon selection of the power-oriented mode.
  • the target drive value may be determined based on the throttle position when selecting the consumption-oriented mode in a second range 85 of a throttle travel as a value that is less than a target drive value determined upon selection of the power-on mode.
  • the immediate transition to serial hybrid operation may already be at power requirements greater than the engine threshold.
  • the mode change from the serial to the parallel hybrid mode (thus, if the target drive value of a value above the parallel hybrid operation threshold to a
  • the immediate transition to parallel hybrid operation may be at equivalent hybrid parallel power requirements that are less than the engine threshold (i.e., full load of the internal combustion engine)
  • the transition to parallel hybrid operation may be delayed for power requirements less than full system load and greater than full engine load (equivalent internal combustion engine threshold) in equivalent parallel hybrid operation over an energy or time integral.
  • the shift to the parallel can occur Hybrid operation, in particular parallel (boost) hybrid operation, take place.
  • the operating mode change from serial to parallel hybrid operation can also be delayed further in the power-oriented mode via a drive lever application (in particular accelerator pedal application) similar to the illustration in FIG.
  • a driver of the hybrid vehicles 1 or 201 has a choice between an efficient consumption-oriented mode (eco mode) and a performance-oriented mode (sport mode), for example, via a selector lever position.
  • eco mode efficient consumption-oriented mode
  • sports mode performance-oriented mode
  • the mode change parallel / serial (at least partially) can be implemented delayed, while the mode change serial / parallel (at least partially) can be implemented immediately.
  • the efficient parallel hybrid operation can be favored as much as possible to represent the most efficient consumption possible.
  • the performance-oriented mode may preferentially (at least partially) select the more powerful serial mode during mode change parallel / serial and can perform the relapse into the lower-performance parallel hybrid mode (at least partially) delayed in the operating rate change.
  • a performance-oriented mode selection can be displayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Beschrieben ist ein Verfahren zum Steuern einer Antriebseinrichtung (3, 203) eines Hybridfahrzeuges (1, 201), wobei für die Antriebsvorrichtung ein leistungsorientierter Modus oder ein verbrauchsorientierter Modus auswählbar ist, wobei das Verfahren bei gewähltem verbrauchsorientierten Modus im Falle einer ersten Bedingung aufweist: Steuern der Antriebseinrichtung in einem parallelen Boost-Hybridbetrieb, in dem die Verbrennungskraftmaschine (5, 205) und zusätzlich die erste Elektromaschine und/oder die zweite Elektromaschine ein Fahrantriebsdrehmoment bewirkt, bis ein Kriterium erfüllt ist, das von der Zeitdauer des Betreibens und/oder dem Energieumsatz in dem parallelen Boost-Hybridbetrieb abhängt, und falls das Kriterium erfüllt ist, Wechseln in einen seriellen Hybridbetrieb, in dem das Fahrantriebsdrehmoment mittels der zweiten Elektromaschine (11, 211) bewirkt wird und die Verbrennungskraftmaschine (5, 205) die erste Elektromaschine (9, 209) zur Erzeugung von elektrischer Energie antreibt.

Description

Beschreibung
Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
Die vorliegende Anmeldung betrifft ein Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und ein Hybridfahrzeug mit einer Antriebseinrichtung und einer
Antriebseinrichtungssteuerung, die ausgebildet ist, das Verfahren auszuführen.
Aus der deutschen Offenlegungsschrift DE 10 2013 001 095 A1 ist ein Verfahren zum Betreiben einer Hybridantriebseinrichtung bekannt, wobei die Hybridantriebseinrichtung eine mit einer ersten Achse des Kraftfahrzeugs wirkverbindbare Brennkraftmaschine, einen ebenfalls mit der ersten Achse wirkverbindbaren ersten Elektromotor sowie einen mit einer zweiten Achse des Kraftfahrzeugs wirkverbindbaren zweiten Elektromotor aufweist. Die zum Betreiben des zweiten Elektromotors verwendete elektrische Energie wird von dem von der Brennkraftmaschine unter Anhebung ihrer Leistung angetriebenen ersten Elektromotor erzeugt oder wird ausschließlich einem Energiespeicher für elektrische Energie entnommen.
Das europäische Patent EP 1 074 087 B1 offenbart ein Regelverfahren und eine Vorrichtung für die Brennkraftmaschine eines elektrischen Hybridfahrzeuges, wobei ein elektrischer Motor oder Motor/Generator zwischen der Maschine und dem kontinuierlichen variablen oder
automatischen Getriebe angeordnet ist und wobei das Hybridfahrzeug eine Batterie und zugeordnete Steuerelemente aufweist. Dabei hält ein Steuermittel die Leistungsausgabe der Brennkraftmaschine im Wesentlichen entlang einer idealen Betriebslinie, wenn sich die
Geschwindigkeit der Maschine ändert. Ein zweiter Elektromotor kann ferner vorgesehen sein und die Drehmomentausgabe des zweiten Elektromotors kann mittels einer Systemsteuerung variiert werden.
Die deutsche Offenlegungsschrift DE 10 2012 103 292 A1 offenbart ein Verfahren zum Betrieb eines elektrischen Antriebstranges eines Fahrzeuges, wobei mindestens zwei Elektromotoren, die jeweils mit einer Antriebsachse in Wirkverbindung stehen, und eine Steuereinrichtung vorgesehen sind, wobei ein Fahrerwunschmoment für einen motorischen oder generatorischen Betrieb ermittelt wird, und wobei bei einer vorliegenden Abtriebsdrehzahl eine erforderliche Gesamtleistung des elektrischen Abtriebstranges ermittelt wird, und wobei die Leistungen der einzelnen Elektromotoren ermittelt werden, und wobei die sich ergebenden Verlustleistungen der einzelnen Elektromotoren auf Basis von hinterlegten Verlustleistungskennfeldern für die einzelnen Elektromotoren minimiert werden.
Die deutsche Offenlegungsschrift DE 10 2009 019 485 A1 offenbart einen Antriebstrang mit einem ersten Elektromotor und einem Planetengetriebe und Fahrzeuge, die diesen
Antriebstrang aufweisen. Der Antriebstrang weist eine erste elektrische Maschine, welche in einem motorischen oder generatorischen Betriebszustand betreibbar ist, und ein
Planetengetriebe mit einer Drehzahländerungsvorrichtung auf, wobei das Planetengetriebe eine An- und eine Abtriebsseite aufweist und wobei die erste elektrische Maschine im motorischen oder generatorischen Betriebszustand steuernd in die Drehzahländerungsvorrichtung eingreift, so dass sich ein Übersetzungsverhältnis im Planetengetriebe ausbildet. Über die erste elektrische Maschine wird das Übersetzungsverhältnis des Planetengetriebes beeinflusst, wodurch zusätzlich auch der Arbeitspunkt der Verbrennungsmaschine bestimmt wird. Die Verbrennungskraftmaschine wird nahe ihres optimalen Wirkungsgrades betrieben. In einem rein elektrischen Betrieb arbeitet die zweite elektrische Maschine als Motor und die erste elektrische Maschine befindet sich im Leerlauf oder wird als Zusatzantrieb genutzt. Ein Teil der von der Verbrennungsmaschine erzeugten mechanischen Energie wird durch die erste elektrische Maschine in elektrische Energie umgewandelt und direkt an die zweite elektrische Maschine weitergeleitet. Beschleunigungen werden von der zweiten elektrischen Maschine unterstützt. Bei einer Verzögerung kann durch ekuperation der Bremsenergie der Energiespeicher geladen werden.
Die Übersetzung der europäischen Patentschrift DE 602 23 850 T2 offenbart ein Verfahren zum Betrieb eines Antriebsystems eines Hybridfahrzeuges, wobei das Hybridfahrzeug eine
Brennkraftmaschine, einen ersten Elektromotor/Generator, einen
Planetengetriebemechanismus und einen zweiten Elektromotor/Generator umfasst. Ein
Verhältnis zwischen einem ersten Moment, das durch die Brennkraftmaschine bei den
Fahrzeugachsen erzeugt wird, und einem zweiten Moment, das durch den zweiten Elektromotor bei den Fahrzeugachsen bei jeder Zahnradposition der Übersetzung erzeugt wird, wird von einem ersten Verhältnis, wenn sowohl die Brennkraftmaschine als auch der zweite Elektromotor normal arbeiten, auf ein zweites Verhältnis, wenn entweder die Brennkraftmaschine oder der zweite Elektromotor gestört sind, geändert.
Die deutsche Offenlegungsschrift DE 10 2007 054 368 A1 offenbart eine Steuerarchitektur zur Auswahl eines optimalen Modus oder einer optimalen Übersetzung und Antriebsdrehzahl für ein Hybridantriebstrangsystem, welches eine Brennkraftmaschine, einen ersten und einen zweiten Elektromotor und ein elektromechanisches Getriebe umfasst, das selektiv betreibbar ist, um Drehmoment dazwischen zu übertragen und in mehreren Modi mit fester Übersetzung und stufenlos verstellbaren Modi betreibbar ist. Für jeden zulässigen Betriebsbereichszustand werden bevorzugte Betriebsbedingungen und bevorzugte Kosten bestimmt und darauf basierend ein bevorzugter Betriebsbereichszustand ausgewählt. Eine
Kostenstrukturinformation, die in ein strategisches Managementeinrichtungssegment eingegeben und in einem Optimierungssegment verwendet wird, umfasst vorzugsweise Betriebskosten, die allgemein auf der Basis von Faktoren bestimmt werden, die mit den Fahrzeugfahreigenschaften, der Kraftstoffwirtschaftlichkeit, Emissionen und
Batterielebensdauer für den bestimmten Drehmomentbereich in Beziehung stehen. Darüber hinaus werden Kosten in einem Kraftstoff- und elektrischen Energieverbrauch, die zu dem spezifischen Betriebspunkt des Antriebstrangsystems für das Fahrzeug gehören, zugewiesen und zugeordnet. Die optimalen Betriebskosten können bestimmt werden, indem ein
Gesamtantriebstrangsystemverlust berechnet wird, welcher einen Ausdruck auf der Basis des Maschinenleistungsverlustes, der durch Kraftstoffwirtschaftlichkeit und Abgasemissionen angetrieben ist, plus Verlusten in dem mechanischen System, Verlusten in dem elektrischen System und Wärmeverluste umfasst.
Ein aus dem Stand der Technik bekanntes Hybridfahrzeug kann durch verschiedene
Antriebsaggregate der Antriebseinrichtung angetrieben werden. Ein Antreiben des
Hybridfahrzeuges mit dem einen oder dem anderen Antriebsaggregat kann z. B. hinsichtlich eines Energieverbrauchs vorteilhaft sein, jedoch negative Konsequenzen hinsichtlich einer Leistungsfähigkeit des Hybridfahrzeuges zur Folge haben. Eine Auswahl, mittels welches Antriebsaggregats das Hybridfahrzeug in einer gegebenen Fahrsituation angetrieben werden sollte, ist somit im Stand der Technik mit Schwierigkeiten behaftet.
Eine Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Steuern einer
Antriebseinrichtung eines Hybridfahrzeuges sowie ein Hybridfahrzeug bereitzustellen, wobei in dem Stand der Technik auftretende Probleme vermindert sind, wobei insbesondere ein Energieverbrauch vermindert wird, während gleichzeitig einem Fahrerwunsch Rechnung getragen wird. Die Aufgabe wird durch die Gegenstände gemäß den unabhängigen Ansprüchen gelöst, das heißt durch ein Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und durch ein Hybridfahrzeug gemäß den unabhängigen Ansprüchen.
Gemäß einer Ausführungsform der vorliegenden Erfindung ist ein Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges, die eine Verbrennungskraftmaschine, eine erste Elektromaschine, eine zweite Elektromaschine und einen Akkumulator umfasst, wobei für die Antriebsvorrichtung ein leistungsorientierter Modus oder ein verbrauchsorientierter Modus auswählbar ist,
wobei das Verfahren bei gewähltem verbrauchsorientierten Modus im Falle einer ersten Bedingung aufweist:
Steuern der Antriebseinrichtung in einem parallelen Boost-Hybridbetrieb, in dem die Verbrennungskraftmaschine und zusätzlich die erste Elektromaschine und/oder die zweite Elektromaschine ein Fahrantriebsdrehmoment bewirkt, bis ein Kriterium erfüllt ist, das von der Zeitdauer des Betreibens und/oder dem Energieumsatz in dem parallelen Boost-Hybridbetrieb abhängt, und
falls das Kriterium erfüllt ist, Wechseln in einen seriellen Hybridbetrieb, in dem das Fahrantriebsdrehmoment mittels der zweiten Elektromaschine bewirkt wird und die
Verbrennungskraftmaschine die erste Elektromaschine zur Erzeugung von elektrischer Energie antreibt.
wobei das Verfahren bei gewähltem leistungsorientierten Modus im Falle der ersten Bedingung aufweist:
Steuern der Antriebseinrichtung in dem seriellen Hybridbetrieb, ohne das Erfüllen des Kriteriums abzuwarten,
wobei die erste Bedingung aufweist:
ein Sollantriebswert wird auf einen Zwischenwert erhöht, der zwischen
einer Verbrennungskraftmaschine-Schwelle, die einen maximalen Antriebswert in einem parallelen Hybridbetrieb repräsentiert, in dem ausschließlich die Verbrennungskraftmaschine ein Fahrantriebsdrehmoment bewirkt, und
einer Parallelhybridbetrieb-Schwelle, die einen maximalen Antriebswert in dem parallelen
Boost-Hybridbetrieb repräsentiert, liegt.
Das Verfahren kann in Software- und/oder Hardware implementiert sein. Insbesondere kann das Verfahren mittels einer Antriebseinrichtungssteuerung und/oder eines Motorsteuergeräts, welches insbesondere in dem Hybridfahrzeug umfasst ist, durchgeführt werden. Insbesondere kann das Verfahren durch ein computerimplementiertes Verfahren durchgeführt werden. Dazu kann ein Programmcode mit Anweisungen in einen Speicher eines arithmetischen/logischen Prozessors geladen und von dem Prozessor ausgeführt werden.
Die Verbrennungskraftmaschine kann einen Dieselmotor oder einen Ottomotor umfassen und ferner einen Kraftstofftank, aus dem Kraftstoff Verbrennungsräumen der
Verbrennungskraftmaschine zugeführt werden kann. Die erste Elektromaschine und/oder die zweite Elektromaschine können Synchronmaschinen umfassen, welche mit
Permanentmagneten (im Rotor) ausgestattet sein können. Die erste Elektromaschine kann im Wesentlichen im generatorischen Modus betrieben werden, in dem die erste Elektromaschine von der Verbrennungskraftmaschine angetrieben wird und elektrische Energie erzeugt, welche dem Akkumulator und/oder der zweiten Elektromaschine zugeführt wird. Die erste
Elektromaschine kann auch im elektromotorischen Betrieb eingesetzt werden. Die zweite Elektromaschine kann im Wesentlichen im elektromotorischen Betrieb eingesetzt werden, wobei die zweite Elektromaschine elektrische Energie von dem Akkumulator und/oder der ersten Elektromaschine bezieht und ein mechanisches Antriebsmoment erzeugt. Die zweite Elektromaschine kann auch im generatorischen Modus betrieben werden.
Die Antriebseinrichtung kann zum Antrieb des Hybridfahrzeuges im Wesentlichen in einem rein elektrischen Betrieb, in dem parallelen Hybrid betrieb oder dem seriellen Hybridbetrieb betrieben werden.
In dem rein elektrischen Betrieb kann ein Antriebsmoment an Antriebsrädern des
Hybridfahrzeuges von der zweiten Elektromaschine (und/oder von der ersten Elektromaschine) erzeugt werden, während die Verbrennungskraftmaschine nicht zu einem mechanischen Antriebsmoment beitragen muss.
In dem parallelen Hybridbetrieb kann die Verbrennungskraftmaschine ausschließlich das Fahrantriebsdrehmoment bewirken, ohne dass die erste Elektromaschine oder die zweite Elektromaschine zum Antriebsdrehmoment beiträgt. In dem parallelen Boost-Hybridbetrieb kann insbesondere die Verbrennungskraftmaschine und die erste Elektromaschine das Fahrantriebsmoment bewirken, ohne dass die zweite Elektromaschine dazu beiträgt. In dem parallelen Boost-Hybridbetrieb kann auch insbesondere die Verbrennungskraftmaschine und die zweite Elektromaschine das Fahrantriebsmoment bewirken, ohne dass die erste
Elektromaschine dazu beiträgt. In dem parallelen Boost-Hybridbetrieb kann ferner auch insbesondere die Verbrennungskraftmaschine und die erste Elektromaschine und die zweite Elektromaschine das Fahrantriebsmoment bewirken.
In dem seriellen Hybridbetrieb kann die Verbrennungskraftmaschine die erste Elektromaschine antreiben, welche im generatorischen Betrieb elektrische Energie erzeugt, wobei die so erzeugte elektrische Energie der zweiten Elektromaschine zugeführt wird, um das
Antriebsmoment zu bewirken.
Ein/e Fahrer/Fahrerin des Hybridfahrzeuges kann entweder den leistungsorientierten Modus oder den verbrauchsorientierten Modus z. B. mittels eines Hebels, eines Schalters, auf einem Berührschirm oder auf andere Weise auswählen. Der leistungsorientierte Modus oder der verbrauchsorientierte Modus kann z. B. manuell oder mit dem Fuß von einem Fahrer oder einer Fahrerin ausgewählt werden und/oder er kann aufgrund äußerer Nebenbedingungen oder aus anderen Gründen in einem Motorsteuergerät oder in einer Antriebseinrichtungssteuerung gesetzt werden. Der leistungsorientierte Modus kann auch als ein Sport-Modus bezeichnet werden und der verbrauchsorientierte Modus kann auch als ein Öko-Modus bezeichnet werden.
Wenn der verbrauchsorientierte Modus ausgewählt ist, kann die Antriebseinrichtung länger (z. B. während mehr Fahrsituationen, unter einer größerer Menge von Bedingungen) in dem parallelen Hybridbetrieb und/oder dem parallelen Boost-Hybridbetrieb betrieben werden, als bei gewähltem leistungsorientiertem Modus. Da der parallele Hybridbetrieb und/oder der Boost- Hybridbetrieb einen geringeren Energiebedarf haben kann (unter bestimmten
Nebenbedingungen, insbesondere bis das Kriterium erfüllt ist), kann damit im
verbrauchsorientierten Modus (relativ zum leistungsorientierten Modus) Energie eingespart werden. Der serielle Hybridbetrieb kann aufgrund der zweifachen Energiewandlung in der Regel einen höheren Energieverbrauch haben als der parallele Hybridbetrieb und auch, unter bestimmten Bedingungen, als der parallele Boost-Hybridbetrieb. Der serielle Hybridbetrieb kann jedoch ein höheres Antriebsdrehmoment und/oder eine höhere Antriebsleistung als der parallele Hybridbetrieb und/oder der Boost-Hybridbetrieb bereitstellen, so dass ein sportliches Fahren ermöglicht ist.
Die Verbrennungskraftmaschine-Schwelle kann z. B. eine Verbrennungskraftmaschine- Drehmomentschwelle und/oder eine Verbrennungskraftmaschine-Leistungsschwelle
repräsentieren. Die Verbrennungskraftmaschine-Schwelle kann z. B. von einer
Fahrgeschwindigkeit und/oder von einer Drehzahl der Verbrennungskraftmaschine abhängen. Z. B. kann die Verbrennungskraftmaschine-Schwelle (insbesondere im Wesentlichen und/oder über einen gewissen Bereich) mit der Fahrgeschwindigkeit und/oder der Drehzahl der
Verbrennungskraftmaschine ansteigen. Die Antriebseinrichtung kann in dem parallelen
Hybridbetrieb betrieben werden, wenn die Fahrgeschwindigkeit und/oder eine
Antriebsraddrehzahl oberhalb einer Fahrgeschwindigkeitsschwelle und/oder einer
Antriebsraddrehzahlschwelle liegt und wenn gleichzeitig der Sollantriebswert unterhalb der Verbrennungskraftmaschine-Schwelle liegt. In dem parallelen Hybridbetrieb kann z. B.
ausschließlich die Verbrennungskraftmaschine das Fahrantriebsdrehmoment und/oder die Fahrantriebsleistung bewirken. Der parallele Hybridbetrieb kann der energieeffizienteste Betriebsmodus der Antriebseinrichtung sein.
Unterhalb der Fahrgeschwindigkeitsschwelle und wenn ferner der Sollantriebswert unterhalb einer Elektrischer-Betrieb-Schwelle liegt, kann der rein elektrische Betrieb durchgeführt werden, indem (praktisch) ausschließlich die zweite Elektromaschine das Antriebsdrehmoment und/oder die Antriebsleistung erzeugt und auf das Antriebsrad und/oder mehrere Antriebsräder überträgt. Unabhängig von der Fahrgeschwindigkeit kann der rein elektrische Betrieb durchgeführt werden, falls der Sollantriebswert unterhalb einer weiteren Elektrischer-Betrieb-Schwelle liegt, die kleiner sein kann als die Elektrischer-Betrieb-Schwelle.
Wenn die Fahrgeschwindigkeit und/oder eine Antriebsraddrehzahl oberhalb einer
Fahrgeschwindigkeitsschwelle und/oder einer Antriebsraddrehzahlschwelle liegt und wenn gleichzeitig der Sollantriebswert oberhalb der Parallelhybridbetrieb-Schwelle liegt, kann die Antriebseinrichtung im seriellen Betriebsmodus betrieben werden, in dem die
Verbrennungskraftmaschine nicht (unmittelbar über eine direkte mechanische Kopplung) zu dem Antriebsdrehmoment und/oder der Antriebsleistung beiträgt, jedoch zumindest die zweite Elektromaschine (optional auch die erste Elektromaschine). Ferner kann die Antriebseinrichtung im seriellen Betriebsmodus betrieben werden, wenn die Fahrgeschwindigkeit und/oder eine Antriebsraddrehzahl unterhalb einer Fahrgeschwindigkeitsschwelle und/oder einer
Antriebsraddrehzahlschwelle liegt und wenn gleichzeitig der Sollantriebswert oberhalb einer Elektrischer-Betrieb-Schwelle liegt.
Der Sollantriebswert kann z. B. durch einen Fahrhebel, insbesondere durch ein Fahrpedal, von dem Fahrer bzw. der Fahrerin vorgegeben werden. Wenn der leistungsorientierte Modus ausgewählt ist, kann ein von dem Fahrer oder der Fahrerin angeforderter Sollantriebswert durch die Antriebseinrichtung zuverlässig und schnell bereitgestellt werden. Dadurch kann der Fahrkomfort erhöht werden und auch ein sicheres Fahren gewährleistet sein, insbesondere können hohe Beschleunigungen erreicht werden, die in manchen Verkehrssituationen notwendig sind. Wenn der verbrauchsorientierte Modus ausgewählt ist, kann ein Energieverbrauch (gegenüber dem leistungsorientierten Modus) vermindert sein. Damit kann die Antriebseinrichtung verschiedene Anforderungen erfüllen.
Das Kriterium kann umfassen, dass die Zeitdauer des Betreibens in dem parallelen Boost- Hybridbetrieb eine Zeitschwelle überschreitet und/oder dass eine aus dem Akkumulator während der Zeitdauer des Betreibens in dem parallelen Boost-Hybridbetrieb entnommene Energiemenge eine Energieschwelle überschreitet. In dem parallelen Boost-Hybridbetrieb wird ein Antriebsdrehmoment und/oder eine Antriebsleistung zumindest teilweise durch die erste und/oder die zweite Elektromaschine erzeugt, welche (zumindest teilweise) durch den
Akkumulator mit elektrischer Energie gespeist werden. Die elektrische Energie in dem
Akkumulator kann durch Betreiben der ersten Elektromaschine im generatorischen Betrieb, die von der Verbrennungskraftmaschine mechanisch angetrieben wird, geladen werden. Dabei kann für ein Laden des Akkumulators eine Energiekonversion notwendig sein, die mit relativ hohen Verlusten behaftet sein kann. In der Regel ist es somit energetisch ungünstig, das Hybridfahrzeug in dem parallelen Boost-Hybridbetrieb unter (zumindest teilweise) Nutzung von elektrischer Energie aus dem Akkumulator anzutreiben. Daher kann die Dauer des Betreibens in dem parallelen Boost-Hybridbetrieb in dem verbrauchsorientierten Modus begrenzt werden. Die aus dem Akkumulator entnommene Energiemenge kann gemessen und/oder simuliert werden. Die Energieschwelle kann manuell einstellbar sein oder kann als ein fester Wert in einem Motorsteuergerät oder einer Antriebseinrichtungssteuerung gespeichert sein.
Wenn der Sollantriebswert von einem Wert unterhalb der Verbrennungskraftmaschine-Schwelle auf den Zwischenwert erhöht wird, kann das Steuern der Antriebseinrichtung bei der Auswahl des leistungsorientierten Modus aufweisen, dass von dem parallelen Hybridbetrieb in den seriellen Hybridbetrieb gewechselt wird, ohne das Erfüllen des Kriteriums abzuwarten. Wenn, in dem leistungsorientierten Modus befindlich, von einem Wert unterhalb der
Verbrennungskraftmaschine-Schwelle auf den Zwischenwert gewechselt wird, der
Sollantriebswert somit erhöht wird, kann die Wahrscheinlichkeit relativ hoch sein, dass der Sollantriebswert ferner (in naher Zukunft) weiter erhöht wird. Daher kann es in vielen Fällen sinnvoll sein, schon frühzeitig in den seriellen Hybridbetrieb zu wechseln, um eine Leistungsanforderung bzw. einen Sollantriebswert, der oberhalb der Parallelhybridbetrieb- Schwelle liegt, schnell und zuverlässig bereitstellen zu können.
Der Zwischenwert liegt zwischen der Verbrennungskraftmaschine-Schwelle, die einen maximalen Antriebswert in dem parallelen Hybridbetrieb repräsentiert, in dem ausschließlich die Verbrennungskraftmaschine ein Fahrantriebsdrehmoment bewirkt, und der
Parallelhybridbetrieb-Schwelle, die einen maximalen Antriebswert in dem parallelen Boost- Hybridbetrieb repräsentiert.
Bei Auswahl des leistungsorientierten Modus kann das Verfahren im Falle einer zweiten Bedingung aufweisen: Steuern der Antriebseinrichtung in dem seriellen Hybridbetrieb, bis ein anderes Kriterium (welches gleich oder verschieden von dem Kriterium sein kann) erfüllt ist, das von der Zeitdauer und/oder dem Energieumsatz eines simulierten Betreibens in dem parallelen Boost-Hybridbetrieb abhängt und, falls das andere Kriterium erfüllt ist, Wechseln in den parallelen Boost-Hybridbetrieb. Ferner kann das Verfahren bei Auswahl des
verbrauchsorientierten Modus im Falle der zweiten Bedingung aufweisen: Steuern der
Antriebseinrichtung in dem parallelen Boost-Hybridbetrieb, ohne das Erfüllen des anderen Kriteriums abzuwarten. Dabei weist die zweite Bedingung auf, dass der Sollantriebswert auf den Zwischenwert erniedrigt wird. Die zweite Bedingung kann somit bedeuten, dass von einem Antriebswert, welcher oberhalb der Parallelhybridbetrieb-Schwelle liegt, auf einen Wert erniedrigt wird, welcher unterhalb der Parallelhybridbetrieb-Schwelle aber oberhalb der Verbrennungskraftmaschine-Schwelle liegt. In einem solchen Fall kann, bei Auswahl des leistungsorientierten Modus, die Antriebseinrichtung länger in dem seriellen Hybridbetrieb betrieben werden, als bei Auswahl des verbrauchsorientierten Modus. Damit kann ein sportlicheres Fahren bei Auswahl des leistungsorientierten Modus bereitgestellt sein, da der serielle Hybridbetrieb in der Regel erlaubt, ein höheres Antriebsdrehmoment und/oder eine höhere Antriebsleistung breitzustellen als der parallele Boost-Hybridbetrieb. Wenn jedoch der verbrauchsorientierte Modus ausgewählt ist, kann bei Vorliegen der zweiten Bedingung in den parallelen Boost-Hybridbetrieb gewechselt werden, insbesondere unmittelbar, das heißt ohne eine Verzögerung. Damit kann ein Energieverbrauch vermindert werden.
Das andere Kriterium kann umfassen, dass die Zeitdauer seit dem Erniedrigen des
Sollantriebswertes auf den Zwischenwert eine andere Zeitschwelle überschreitet und/oder dass eine simulierte aus dem Akkumulator während der Zeitdauer des simulierten Betreiben in dem parallelen Boost-Hybridbetrieb entnommene Energiemenge eine andere Energieschwelle überschreitet.
Wenn der leistungsorientierte Modus ausgewählt ist, und die zweite Bedingung erfüllt ist, kann die Antriebseinrichtung (für eine gewisse Zeit) weiter in dem seriellen Hybridbetrieb betrieben werden, der parallele Boost-Hybridbetrieb somit während dieser Zeitdauer (noch) nicht eingesetzt werden. Eine Energiemenge, welche aus dem Akkumulator entnommen würde, falls die Antriebseinrichtung in dem parallelen Boost-Hybridbetrieb betrieben werden würde, kann jedoch simuliert werden, ohne die Antriebseinrichtung tatsächlich in dem parallelen Boost- Hybridbetrieb zu betreiben. Damit kann ein geeignetes anderes Kriterium definiert werden, wie lange die Antriebseinrichtung (bei Auswahl des leistungsorientierten Modus) weiter in dem seriellen Hybridbetrieb betrieben werden sollte.
Wenn der Sollantriebswert von einem Wert oberhalb der Parallelhybridbetrieb-Schwelle (auf den Zwischenwert) erniedrigt wird, kann das Steuern der Antriebseinrichtung bei Auswahl des verbrauchsorientierten Modus aufweisen: Wechseln von dem seriellen Hybridbetrieb in den parallelen Boost-Hybridbetrieb, ohne das Erfüllen des anderen Kriteriums abzuwarten. Da der parallele Boost-Hybridbetrieb in der Regel ein verbrauchsgünstigerer Betrieb ist als der serielle Hybridbetrieb, kann somit Energie eingespart werden.
Das Verfahren kann ferner ein Detektieren einer Fahrhebelstellung (z. B. Fahrpedalstellung, mechanisches Detektieren, elektronisches Detektieren, Detektieren von Betätigen von einem oder mehreren Knöpfen, Detektieren einer Handhebelstellung, Detektieren einer Auswahl auf einem Berührschirm, etc.) aufweisen. Ferner kann das Verfahren bei Auswahl des
verbrauchsorientierten Modus ein Bestimmen des Sollantriebswertes basierend auf der Fahrhebelstellung in einem ersten Bereich eines Fahrhebelweges als einen Wert aufweisen, der größer als ein bei Auswahl des leistungsorientierten Modus bestimmter Sollantriebswert ist. Ferner kann das Verfahren ein Bestimmen des Sollantriebswertes basierend auf der
Fahrhebelstellung bei Auswahl des verbrauchsorientierten Modus in einem zweiten Bereich eines Fahrhebelweges als einen Wert aufweisen, der kleiner als ein bei Auswahl des leistungsorientieren Modus bestimmter Sollantriebwert ist.
Der Fahrhebelweg kann als ein Einstellungsbereich des Fahrhebels angesehen werden, innerhalb dessen die Fahrhebelstellung befindlich sein kann. Der Fahrhebelweg und/oder die Fahrhebelstellung kann z. B. ein linearer Weg oder ein gekrümmter, insbesondere kreisförmiger Weg sein. Der Fahrhebelweg und/oder die Fahrhebelstellung kann z. B. in einem Längenmaß und/oder in einem Winkelmaß gemessen werden. In anderen Ausführungsformen kann die Fahrhebelstellung durch Betätigen diskreter Schalter und/oder Knöpfe (z. B. in Abhängigkeit einer Anzahl von betätigten Knöpfen und/oder Schaltern) bestimmt oder definiert sein. In herkömmlichen Verfahren kann ein Sollantriebswert proportional zu einer Fahrhebelstellung (z. B. Anteil oder Prozentwert des Fahrhebelweges) sein. Gemäß Ausführungsformen der vorliegenden Erfindung kann eine Proportionalität zwischen dem Sollantriebswert und der Fahrhebelstellung weiterhin vorliegen, jedoch in verschiedenen Bereichen einer
Fahrhebelstellung verschiedene Proportionalitätskonstanten aufweisen. Damit ist eine
Abbildung zwischen einer Fahrhebelstellung und dem Sollantriebswert derart einstellbar, dass ein Energieverbrauch vermindert werden kann.
Das Verfahren kann bei Auswahl des leistungsorientierten Modus ferner ein Bestimmen des Sollantriebswertes aufweisen, basierend auf der Fahrhebelstellung über den Fahrhebelweg als Produkt einer Gesamtsteigung und der Fahrhebelstellung entlang des Fahrhebelweges. Damit kann bei Auswahl des leistungsorientierten Modus ein Ansprechverhalten bei Änderung der Fahrhebelstellung gegenüber dem verbrauchsorientierten Modus (insbesondere in einem Zwischenbereich) beschleunigt werden, was einen Fahrkomfort und auch die Sicherheit verbessern kann.
Das Bestimmen des Sollantriebswertes kann bei Auswahl des verbrauchsorientierten Modus ferner aufweisen:
Bestimmen des Sollantriebswertes in einem Anfangsbereich des Fahrhebelweges als Produkt einer Anfangssteigung und der Fahrhebelstellung, in einem Zwischenbereich des Fahrhebelweges als Produkt einer Zwischensteigung und der Fahrhebelstellung, und in einem Endbereich des Fahrhebelweges als Produkt einer Endsteigung und der Fahrhebelstellung, wobei die Gesamtsteigung verschieden von der Anfangssteigung, der Endsteigung und der Zwischensteigung ist. Die Anfangssteigung und/oder die Endsteigung kann größer sein als die Zwischensteigung.
Andere Ausführungsformen können in gewissen Bereichen des Fahrhebelweges einen nichtlinearen Zusammenhang zwischen Sollantriebswert und Fahrhebelstellung definieren. Eine feinere Unterteilung des Fahrhebelweges in mehr Bereiche als den Anfangsbereich, den Zwischenbereich und den Endbereich ist möglich. Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist ein Hybridfahrzeug mit einer Antriebseinrichtung, die eine Verbrennungskraftmaschine, eine erste Eiektromaschine, eine zweite Eiektromaschine und einen Akkumulator umfasst, bereitgestellt, wobei die
Antriebseinrichtung eine Auswahl aus einem leistungsorientierten Modus und einem verbrauchsorientierten Modus unterstützt. Das Hybridfahrzeug weist ferner eine
Antriebseinrichtungssteuerung auf, die ausgebildet ist, ein Verfahren gemäß einer der vorangehenden Ausführungsformen auszuführen.
Ausführungsformen der vorliegenden Erfindung werden nun mit Bezug auf die beiliegenden Zeichnungen erläutert. Die Erfindung ist nicht auf die illustrierten oder beschriebenen
Ausführungsformen begrenzt.
Fig. 1 illustriert schematisch ein Hybridfahrzeug gemäß einer Ausführungsform der
vorliegenden Erfindung, welches ausgebildet ist, ein Verfahren gemäß einer
Ausführungsform der vorliegenden Erfindung auszuführen;
Fig. 2 illustriert schematisch ein Hybridfahrzeug gemäß einer anderen Ausführungsform der vorliegenden Erfindung, welches ausgebildet ist, ein Verfahren gemäß einer
Ausführungsform der vorliegenden Erfindung auszuführen;
Fig. 3 illustriert Kurven von von den in Fig. 1 oder 2 illustrierten Hybridfahrzeugen im
parallelen Hybridbetrieb bereitgestelltem Drehmoment und Leistung;
Fig. 4 illustriert schematisch ein Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges gemäß einer Ausführungsform der vorliegenden Erfindung;
Fig. 5 illustriert verschiedene Betriebsmodi der in Fig. 1 und 2 illustrierten Hybridfahrzeuge, welche in einem Verfahren gemäß einer Ausführungsform der vorliegenden Erfindung eingesetzt werden; und
Fig. 6 illustriert in einem Graphen ein Verfahren zum Bestimmen eines Sollantriebswertes in Abhängigkeit von einer Fahrpedalstellung gemäß einer Ausführungsform der vorliegenden Erfindung. Das in Fig. 1 schematisch illustrierte Hybridfahrzeug 1 weist eine Antriebseinrichtung 3 auf sowie eine Antriebseinrichtungssteuerung 6, welche ausgebildet ist, ein Verfahren zum Steuern der Antriebseinrichtung 3 des Hybridfahrzeuges 1 gemäß einer Ausführungsform der vorliegenden Erfindung auszuführen. Die Antriebseinrichtung 3 umfasst eine
Verbrennungskraftmaschine 5 mit mehreren Zylindern 7, eine erste Elektromaschine (auch als Generator bezeichnet) 9, eine zweite Elektromaschine (auch als Traktionsmaschine bezeichnet) 1 1 und einen Akkumulator 13, der über nicht illustrierte Energieversorgungskabel (und
Leistungselektroniken) sowohl mit der ersten Elektromaschine 9 als auch der zweiten
Elektromaschine 1 1 verbunden ist.
Die Antriebseinrichtung 3 ist zum Antrieb des Hybridfahrzeuges 1 in drei Betriebsmodi betreibbar. Erstens in einem rein elektrischen Betrieb, in dem ein Fahrantriebsdrehmoment (welches z. B. an den Antriebsrädern 15 anliegt) mittels der zweiten Elektromaschine 1 1 bewirkt wird, während die Verbrennungskraftmaschine 5 ausgeschaltet ist (ihr also insbesondere kein Kraftstoff aus einem nicht illustrierten Tank zugeführt wird). Zweitens ist die Antriebseinrichtung 3 in einem seriellen Hybridbetrieb betreibbar, in dem das Fahrantriebsdrehmoment mittels der zweiten Elektromaschine 1 1 bewirkt wird und die Verbrennungskraftmaschine 5 die erste Elektromaschine 9 zur Erzeugung von elektrischer Energie antreibt, welche wiederum der zweiten Elektromaschine 1 1 zugeführt wird (entweder direkt oder über den Akkumulator 13). Die Antriebseinrichtung 3 ist drittens in einem parallelen Hybridbetrieb betreibbar, in dem ein Fahrantriebsdrehmoment mittels der Verbrennungskraftmaschine 5 bewirkt wird und
insbesondere die zweite Elektromaschine 1 1 und/oder die erste Elektromaschine 9
abgeschaltet sind.
In dem in Fig. 1 illustrierten Hybridfahrzeug 1 umfasst die Antriebseinrichtung 3 ferner eine Hauptkupplung K0 (17) sowie ein Getriebe 19, die beide zwischen der
Verbrennungskraftmaschine 5 und einem Radantriebstrang 21 angeordnet sind. Der
Radantriebstrang 21 ist über ein Differenzial 25 mit dazugehöriger Differenzialübersetzung 23 mit den Antriebsrädern 15 mechanisch verbunden. Die erste Elektromaschine 9 ist über eine erste Kupplung K1 (27) und über ein erstes Übersetzungselement 29 mit einer Ausgangswelle 31 der Verbrennungskraftmaschine 5 verbunden, wobei die Ausgangswelle 31 mechanisch mit einer Eingangswelle 32 des Getriebes 19 verbunden ist. Eine Ausgangswelle 33 des Getriebes 19 ist mit der Hauptkupplung K0 (17) verbunden. Die zweite Elektromaschine 1 1 ist über ein zweites Übersetzungselement 35 und eine zweite Kupplung K2 (37) mit dem Radantriebstrang 21 verbunden. In dem Hybridfahrzeug 1 wird ein seriell-paralleles Hybridkonzept umgesetzt. Über eine
Skalierung des Akkumulators 13 (auch als HV-Batterie bezeichnet) bezüglich des
Energieinhalts und/oder der Leistung (Entlade- und Ladeleistung) kann das Hybridfahrzeug 1 als HEV (Hybrid Electric Vehicle) als auch als ein Plug-In-HEV (PHEV) ausgeführt sein. Die erste Elektromaschine 9 (auch als EM1 bezeichnet) ist z. B. bezüglich der Leistung und des Drehmoments derart dimensioniert, dass unter Berücksichtigung des
Übersetzungsverhältnisses 29 von der Verbrennungskraftmaschine 5 zur ersten
Elektromaschine 9 jeder mögliche verbrennungsmotorische Betriebspunkt (auch als
Arbeitspunkt bezeichnet) im seriellen Betrieb eingestellt werden kann. Die zweite
Elektromaschine 1 1 (auch als elektrischer Fahrmotor EM2 bezeichnet) ist bspw. bezüglich der Leistungsdimensionierung an die Leistungsdimensionierung der Verbrennungskraftmaschine 5 angelehnt, das heißt, sie kann eine ähnliche maximale Leistung bereitstellen.
Für einen parallelen Hybridbetrieb können Übersetzungen von der Verbrennungskraftmaschine zum Antriebsrad 15 in verschiedenartigen Weisen bzw. Ausprägungen vorgesehen sein (z. B. gestuft oder stufenlos), wobei hier mindestens eine Over-Drive-Übersetzung mit z. B. einer typischen Übersetzung von der Verbrennungskraftmaschine 5 zum Antriebsrad 15 von z. B. i = 2,8 vorgesehen ist, was bedeutet, dass, wenn sich die Ausgangswelle 31 der
Verbrennungskraftmaschine 5 2,8 mal dreht, sich das Antriebsrad 15 einmal dreht.
Die Untersetzungen von dem Fahrmotor EM2 und dem Generator EM1 können in der
Ausführungsform beispielsweise sowohl als Stirnradstufe als auch über ein (festgebremstes) Planetengetriebe umgesetzt werden. Über die Hauptkupplung K0 kann der parallele
Leistungspfad (Welle 33) vom Antriebsrad 15 abgekoppelt werden. Der Fahrmotor EM2 und der Generator EM1 sind (optional) jeweils über die zweite Kupplung 37 (auch als K2 bezeichnet) und die erste Kupplung 27 (auch als K1 bezeichnet) abkoppelbar, um Schleppverluste zu reduzieren. Alle Kupplungen K0, K1 und K2 können beispielsweise als reibschlüssige
Lammelenkupplungen und/oder formschlüssige Klauenkupplungen ausgeführt sein. Der Generator EM1 kann im Wesentlichen oder ausschließlich generatorisch arbeiten, er kann zum Start der Verbrennungskraftmaschine verwendet werden, oder er kann im parallelen
Hybridbetrieb zur Boost-Unterstützung der Verbrennungskraftmaschine 5 verwendet werden. Der rein elektrische Betrieb (EV-Betrieb) und die Rekuperation können über den Fahrmotor EM2 (das heißt die zweite Elektromaschine) durchgeführt werden, während die Hauptkupplung K0 geöffnet ist und die zweite Kupplung K2 geschlossen ist. In der folgenden Tabelle 1 sind die verschiedenen Betriebsmodi aufgeführt, in denen die Antriebseinrichtung 3 betreibbar ist, zusammen mit den jeweiligen Kopplungszuständen der Hauptkupplung K0, der ersten Kupplung K1 und der zweiten Kupplung K2.
Tabelle 1 :
Figure imgf000017_0001
Somit ist die Antriebseinrichtung 3 in einem rein elektrischen Betrieb (EV-Betrieb), einem seriellen Hybridbetrieb und einem parallelen Hybridbetrieb betreibbar. Sowohl der serielle Hybridbetrieb als auch der parallele Hybridbetrieb können dabei jeweils ohne oder mit
Lastpunktanhebung ausgeführt werden, wie aus der obigen Tabelle 1 ersichtlich ist.
Über die direkte Anbindung der zweiten Elektromaschine 1 1 (EM2) an das Antriebsrad 15 sind ein effizienter elektrischer Antrieb und eine effiziente Rekuperation durchführbar.
Während des seriellen Hybridbetriebes kann auch schon bei sehr geringen
Fahrzeuggeschwindigkeiten und/oder Raddrehzahlen die maximale verbrennungsmotorische Leistung zum Antrieb des Fahrzeug genutzt werden, da in diesem Fall die Hauptkupplung KO geöffnet ist und daher die Drehzahl der Verbrennungskraftmaschine 5 unabhängig von der Fahrgeschwindigkeit optimal eingestellt werden kann. Aus dem rein elektrischen Betrieb heraus (EV-Betrieb) kann bei geöffneter Hauptkupplung KO über die erste Elektromaschine 9 (Generator EM1 ) ein sehr komfortabler und zugkraftneutraler Verbrennungskraftmaschinen-
Zustart erreicht werden.
Bei Bedarf einer zusätzlichen Lastpunktanhebung im parallelen Betrieb kann der dafür erforderliche generatorische Betrieb zur Erzeugung von elektrischer Leistung zur Aufladung des Akkumulators wahlweise über die zweite Elektromaschine 1 1 (Fahrmotor EM2) oder die erste Elektromaschine 9 (Generator EM1 ) durchgeführt werden. Im parallelen Hybridbetrieb ohne Bedarf einer zusätzlichen Lastpunktanhebung können in dem in Fig. 1 illustrierten
Hybridfahrzeug 1 zur Minimierung der Schleppverluste die zweite Elektromaschine 1 1
(Fahrmotor EM2) und die erste Elektromaschine 9 (Generator EM1 ) durch Öffnung der zweiten Kupplung 37 (K2) und Öffnen der ersten Kupplung 27 (K1 ) abgekoppelt werden.
Die Auswahl des rein elektrischen Hybridbetriebs, des seriellen Hybridbetriebs und des parallelen Hybridbetriebs kann zum Zwecke der Verbrauchsminimierung die jeweiligen
Effizienzen/Wirkungsgrade der Antriebsstrang-Komponenten berücksichtigen.
Fig. 2 illustriert ein Hybridfahrzeug 201 gemäß einer weiteren Ausführungsform der
vorliegenden Erfindung, wobei in Struktur und/oder Funktion ähnliche oder gleiche
Komponenten in Fig. 1 und 2 mit Bezugszeichen bezeichnet sind, welche sich in den letzten beiden Stellen gleichen. Zur Vereinfachung sind in der folgenden Beschreibung teilweise die Bezugszeichen aus beiden Fig. 1 und 2 angegeben, wobei diese jeweils durch ein Komma getrennt sind.
Das in Fig. 2 illustrierte Hybridfahrzeug 201 kann als eine "vereinfachte" Systemtopologie ohne eine Abkoppelba rkeit von Fahrmotor EM2 und Generator EM1 sowie ohne ein Getriebe (gestuft oder stufenlos) aufgefasst werden, so dass nur eine Overdrive-Übersetzung von der
Verbrennungskraftmaschine 205 zu dem Antriebsrad 215 vorhanden sein kann.
Im elektrischen Betrieb ist die Hauptkupplung K0 geöffnet. Verbrennungskraftmaschine und elektrischer Generator EM1 stehen still (Drehzahl = Null). Die Fahranforderung wird über den elektrischen Fahrmotor EM2 mit entsprechender Entnahme einer elektrischen Leistung aus der HV-Batterie bereitgestellt. Der hybridische Fahrbetrieb ist seriell und parallel darstellbar. Im seriellen Hybridbetrieb ist die Hauptkupplung K0 geöffnet. Die Drehzahl der Verbrennungskraftmaschine ist frei einstellbar. Die mechanische Leistung der Verbrennungskraftmaschine wird über den Generator EM1 in eine elektrische Leistung gewandelt. Diese elektrische Leistung wird bei entsprechendem Bedarf zur Nachladung der HV- Batterie genutzt sowie vom Fahrmotor EM2 zur Darstellung der Fahranforderung genutzt.
Im parallelen Hybridbetrieb ist die Hauptkupplung KO geschlossen. Die Drehzahl der Verbrennungskraftmaschine ist über die Ove rd ri ve- Ü be rsetzu n g an die Raddrehzahl gekoppelt. Die mechanische Leistung der Verbrennungskraftmaschine wird bei entsprechendem Bedarf über einen generatorischen Betrieb des elektrischen Generators EM1 zur Nachladung der HV- Batterie genutzt sowie mechanisch zur Darstellung der Fahranforderung direkt an das Rad übertragen.
Im parallelen Hybridbetrieb ohne Bedarf einer zusätzlichen Lastpunktanhebung kann der Generator EM1 zur Minimierung der Schleppverluste abgekoppelt werden (mit für Fahrer akzeptabler Dynamikeinbuße, zum Bsp. GRA- und/oder ACC-Betrieb). Bei einer noch weiteren Ausführungsform kann auch die erste Kupplung 227 fehlen.
Die in Fig. 1 und 2 illustrierten Antriebseinrichtungssteuerungen 6 und 206 sind ausgebildet, ein Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges gemäß einer
Ausführungsform der vorliegenden Erfindung auszuführen.
Ausführungsformen der vorliegenden Erfindung können auf einer C02-optimalen
Betriebsstrategie basieren, wobei die Antriebseinrichtung 3 oder 203 (sofern möglich) vorzugsweise in dem verbrauchsorientierten Modus im parallelen Hybridmodus betrieben wird. Das Hybridfahrzeug kann ein Getriebe, wie etwa das in Fig. 1 illustrierte Hybridfahrzeug 1 aufweisen, braucht jedoch kein Getriebe aufweisen, wie etwa das in Fig. 2 illustrierte
Hybridfahrzeug 201 . Die Antriebseinrichtung 3 oder 203 der in Fig. 1 und 2 illustrierten
Hybridfahrzeuge 1 oder 201 kann zum Antrieb im Wesentlichen in drei Betriebsarten bzw.
Betriebsmodi betrieben werden. Darüber hinaus sind die Antriebseinrichtungen 3 oder 203 (gemäß einer Fahrerauswahl) in dem leistungsorientierten Modus oder in dem
verbrauchsorientierten Modus betreibbar.
Fig. 3 illustriert für den parallelen Hybridbetrieb in einem Koordinatensystem mit einer Abszisse 43, welche die Drehzahl der Verbrennungskraftmaschine 5, 205 in der Einheit 1/min illustriert, und mit einer Ordinate 45, welche die Leistung in der Einheit kW und/oder das Drehmoment in der Einheit Nm anzeigt, welches an der Eingangswelle 32 des Getriebes 19 bzw. einer
Ausgangswelle 233 anliegt, eine Leistung 47 der Verbrennungskraftmaschine 5, 205, eine Systemleistung 49, ein Drehmoment 51 der Verbrennungskraftmaschine 5, 205 sowie ein Systemdrehmoment 53 der jeweiligen gesamten Antriebseinrichtung 3, 203. Die Systemleistung 49 und das Systemdrehmoment 53 sind unter Berücksichtigung einer elektrischen Boost- Unterstützung durch den Generator EM1 (und/oder den Fahrmotor EM2) definiert. Leistungsund Drehmomentanforderungen (das heißt Sollleistungen bzw. Solldrehmomente) oberhalb der verbrennungsmotorischen Volllast können somit im parallelen Hybridbetrieb bis zur definierten Systemleistung 49 und bis zum definierten Systemdrehmoment 53 über einen kombinierten verbrennungs- und elektromotorischen Betrieb mit entsprechender elektrischen
Leistungsentnahme aus dem Akkumulator (HV-Batterie) 13, 213 dargestellt werden.
Der parallele Hybridbetrieb kann (sofern möglich) in nahezu allen Betriebsszenarien effizienter sein als der serielle Hybridbetrieb. Der parallele Hybridbetrieb ist jedoch bezüglich der
Leistungsdarstellung (insbesondere Leistungsbereitstellung an Antriebsrädern) durch eine Grenze von mittels der Verbrennungskraftmaschine erzeugbarer Leistung und/oder
Drehmoment und/oder durch die Grenze der Systemleistung (Verbrennungskraftmaschine zusammen mit der ersten und/oder der zweiten Elektromaschine) begrenzt. Folglich kann für den leistungsorientierten Modus (auch als Sport-Modus bezeichnet) insbesondere der serielle Hybridbetrieb berücksichtigt werden.
Über einen Betriebsartenwechsel aus dem parallelen Hybridbetrieb in den seriellen
Hybridbetrieb kann ein verbrauchsorientierter Modus (auch als Öko-Modus bezeichnet) und ein leistungsorientierter Modus (auch als Sport-Modus bezeichnet) umgesetzt werden. Das im parallelen Hybridbetrieb darstellbare maximale von der Verbrennungskraftmaschine erreichbare Drehmoment und das maximale Systemdrehmoment bzw. die im parallelen Hybridbetrieb darstellbare maximale Verbrennungskraftmaschinenleistung und die maximale Systemleistung können ein dafür erforderliches Hysterese-Band definieren (z. B. ein in Fig. 5 illustrierter Zwischenbereich 73), wie nachfolgend genauer erläutert wird.
Fig. 4 illustriert schematisch ein Verfahren 38 zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges (z. B. der Hybridfahrzeuge 1 oder 201 , welche in Fig. 1 oder Fig. 2 dargestellt sind) gemäß einer Ausführungsform der vorliegenden Erfindung. Dabei umfasst die
Antriebseinrichtung (z. B. Antriebseinrichtung 3 oder 203) eine Verbrennungskraftmaschine (z. B. 5 oder 205), eine erste Elektromaschine (z. B. 9 oder 209), eine zweite Elektromaschine (z. B. 1 1 oder 21 1 ) und einen Akkumulator (z. B. 13 oder 213) und für die Antriebsvorrichtung ist ein leistungsorientierter Modus oder ein verbrauchsorientierter Modus auswählbar. Bei gewähltem verbrauchsorientierten Modus weist das Verfahren im Falle einer ersten Bedingung einen Verfahrensschritt 40 auf: Steuern der Antriebseinrichtung in einem parallelen Boost- Hybridbetrieb, bis ein Kriterium erfüllt ist, das von der Zeitdauer und/oder dem Energieumsatz des Betreibens in dem parallelen Boost-Hybridbetrieb abhängt. Falls das Kriterium erfüllt ist, weist das Verfahren 38 ferner den Schritt 42 auf: Wechseln in einen seriellen Hybridbetrieb, in dem das Fahrantriebsdrehmoment mittels der zweiten Elektromaschine bewirkt wird und die Verbrennungskraftmaschine die erste Elektromaschine zur Erzeugung von elektrischer Energie antreibt. Bei gewähltem leistungsorientiertem Modus im Falle der ersten Bedingung weist das Verfahren den Schritt 44 auf: Steuern der Antriebseinrichtung in dem seriellen Hybridbetrieb, ohne das Erfüllen des Kriteriums abzuwarten. Somit können die Schritte 40 und 42 bei gewähltem verbrauchsorientiertem Modus ausgeführt werden, wobei der Schritt 44 bei gewähltem leistungsorientierten Modus ausgeführt werden kann.
Die erste Bedingung weist dabei auf, dass ein Sollantriebswert (das heißt z. B. ein
fahrergewünschtes Drehmoment bzw. eine fahrergewünschte Leistung) auf einen Zwischenwert erhöht wird, der zwischen einer Verbrennungskraftmaschine-Schwelle, die einen
Maximalantrieb in einem parallelen Hybridbetrieb repräsentiert, in dem die
Verbrennungskraftmaschine ein Fahrantriebsmoment (insbesondere ausschließlich) bewirkt, und einer Parallelhybridbetrieb-Schwelle, die einen maximalen Antriebswert in dem parallelen Boost-Hybridbetrieb repräsentiert, in dem die Verbrennungskraftmaschine und zusätzlich die erste Elektromaschine und/oder die zweite Elektromaschine ein Fahrantriebsdrehmoment bewirkt, liegt.
Mit Bezug auf Fig. 5 wird nachfolgend der serielle Hybridbetrieb, der parallele Hybridbetrieb, sowie der parallele Boost-Hybridbetrieb erläutert und auch die Parallelhybridbetrieb-Schwelle und die Verbrennungskraftmaschine-Schwelle werden beispielhaft erläutert.
Auf der Abszisse 55 in Fig. 5 ist die Geschwindigkeit des Hybridfahrzeuges in der Einheit km/h aufgetragen und auf der Ordinate 57 ist die (verfügbare) Antriebsleistung in der Einheit kW aufgetragen. In einem Bereich 59 und einem Bereich 60 wird der rein elektrische Betrieb (EV- Betrieb) durchgeführt, in einem Bereich 61 wird der serielle Hybridbetrieb (serieller Betrieb) durchgeführt und in einem Bereich 63 wird der parallele Hybridbetrieb (paralleler Betrieb) durchgeführt. Die Kurve 64 repräsentiert den Fahrwiderstand bei Konstantgeschwindigkeitsfahrt in der Ebene. Das in Fig. 5 dargestellte Diagramm kann analog als verfügbares
Antriebsdrehmoment (anstatt von Antriebsleistung) über der Fahrzeuggeschwindigkeit oder auch der Raddrehzahl dargestellt werden. Der rein elektrische Betrieb wird in Bereich 59 durchgeführt, falls die Fahrgeschwindigkeit unterhalb einer Fahrgeschwindigkeitsschwelle 65 liegt und die Antriebsleistung
(Sollantriebsleistung) unterhalb einer Elektrischer-Betrieb-Leistungsschwelle 67 liegt.
Ferner wird der rein elektrische Betrieb in Bereich 60 durchgeführt, falls die
Fahrgeschwindigkeit oberhalb der Fahrgeschwindigkeitsschwelle 65 liegt und die
Antriebsleistung (Sollantriebsleistung) unterhalb einer weiteren Elektrischer-Betrieb- Leistungsschwelle 68 liegt, die kleiner ist (z. B. 3 kW) als die Elektrischer-Betrieb- Leistungsschwelle 67.
Der parallele Hybrid betrieb in dem Bereich 63 wird durchgeführt, falls sowohl die
Fahrgeschwindigkeit oberhalb der Fahrgeschwindigkeitsschwelle 65 liegt, eine
Sollantriebsleistung unterhalb der fahrgeschwindigkeitsabhängigen Parallelhybridbetrieb- Leistungsschwelle 69 liegt, als auch eine Sollantriebsleistung oberhalb der weiteren
Elektrischer-Betrieb-Schwelle 68 liegt. Die Parallelhybridbetrieb-Leistungsschwelle 69 ist hier als die Summe der maximalen Ausgabeleistung 71 der Verbrennungskraftmaschine 5, 205 und der Boost-Unterstützung der ersten Elektromaschine 9, 209 und/oder der Boost-Unterstützung der zweiten Elektromaschine 1 1 , 21 1 definiert. In dem Bereich 73 erfolgt somit im parallelen Hybridbetrieb ein Boost mittels der ersten Elektromaschine EM1 und/oder der zweiten
Elektromaschine EM2.
Der serielle Hybridbetrieb wird im Bereich 61 durchgeführt, falls sowohl die Fahrgeschwindigkeit unterhalb der Fahrgeschwindigkeitsschwelle 65 liegt als auch die Sollantriebsleistung oberhalb der Elektrischer-Betrieb-Leistungsschwelle 67 liegt. Ferner wird der serielle Hybridbetrieb in dem Bereich 61 durchgeführt, falls sowohl die Fahrgeschwindigkeit oberhalb der
Fahrgeschwindigkeitsschwelle 65 liegt als auch die Sollantriebsleistung oberhalb einer fahrgeschwindigkeitsabhängigen Parallelhybridbetrieb-Leistungsschwelle 69 liegt.
Der elektrische Betrieb ist bezüglich der maximalen Antriebsleistungsdarstellung zur
Verbrauchsminimierung durch die Elektrischer-Betrieb-Schwelle 67 und durch die weitere Elektrischer-Betrieb-Schwelle 68 begrenzt (hier z. B.: bis ca. 49 km/h, ca. 15 kW- Antriebsleistung ab ca. 49 km/h ca. 3 kW-Antriebsleistung).
Der parallele Hybridbetrieb wird durchgeführt, sobald unter Berücksichtigung des
Übersetzungsverhältnisses von Verbrennungskraftmaschine 5, 205 zum Antriebsrad 15, 215 eine minimale Drehzahl der Verbrennungskraftmaschine 5, 205 überschritten wird. In einer beispielhaften Ausführungsform ist die Overdrive-Übersetzung von der
Verbrennungskraftmaschine 5, 205 zum Antriebsrad 15, 215 i = 2,8, woraus sich bei ca. 49 km/h Fahrzeuggeschwindigkeit eine Drehzahl der Verbrennungskraftmaschine 5, 205 von ca. 1200 U/min ergibt. Ab dieser Drehzahl ist die Verbrennungskraftmaschine in der Lage, selbsttätig das Antriebsdrehmoment bzw. die Antriebsleistung zu erzeugen. Der parallele Hybridbetrieb ist bezüglich der maximalen Antriebsleistungsdarstellung durch die maximale Belastung der Verbrennungskraftmaschine und unter Berücksichtigung der elektrischen Boost- Unterstützung durch den Generator EM1 und/oder den Fahrmotor EM2 durch die
Systemleistung begrenzt (hier durch die Parallelhybridbetrieb-Leistungsschwelle 71 (ohne Boost) oder 69 (mit Boost)). Oberhalb der Elektrischer-Betrieb-Leistungsschwelle 67 und oberhalb der Parallelhybridbetrieb-Leistungsschwelle 69 wird der serielle Hybridbetrieb durchgeführt. Der serielle Hybridbetrieb ist bezüglich der maximalen
Antriebsleistungsdarstellung durch die Dimensionierung der zweiten Elektromaschine 1 1 , 21 1 (Fahrmotor EM2) durch die Linie 75 begrenzt. Die Schwellen 67, 68, 69, 71 , 65 können verbrauchsoptimal bzw. C02-optimal bestimmt werden.
Die Herleitung einer C02-optimierten hybridischen Betriebsstrategie erfolgt auf Basis eines Vergleichs des konventionellen, rein verbrennungsmotorischen Antriebs mit einem
intermittierenden elektrisch-verbrennungsmotorischen Fahrbetrieb. Dabei sind im Hybridbetrieb (seriell und/oder parallel) neben der Rekuperation, der Kraftstoffmehrverbrauch durch
Lastpunktanhebung sowie der Energieeinsatz für das elektrische Fahren und die
Motorstartvorgänge zu berücksichtigen. Das elektrische Fahren wird dann nur für einen energetisch sinnvollen Bereich zugelassen, für den der Gesamtwirkungsgrad trotz der mehrfachen, verlustbehafteten Energieumwandlung größer ist als im rein
verbrennungsmotorischen Betrieb.
Welcher Betriebsmodus durchgeführt wird, hängt auch davon ab, ob der verbrauchsorientierte oder der leistungsorientiere Modus ausgewählt ist. Die Linie 69 in Fig. 5 kann gemäß
Ausführungsformen der vorliegenden Erfindung die in dem Verfahren 38 referenzierte
Parallelhybridbetrieb-Schwelle repräsentieren und die Linie 71 kann die in dem Fahrverfahren 38 referenzierte Verbrennungskraftmaschine-Schwelle repräsentieren.
Ein Betriebsartenwechsel aus dem parallelen in den seriellen Hybridbetrieb, d. h. ein
Betriebsartenwechsel aus dem Bereich 63 in Fig. 5 in den Bereich 61 in Fig. 5, kann über ein Hysterese-Band dargestellt werden, dass auf der Systemauslegung (Systemleistung und Systemdrehmoment, siehe den Bereich 73 in Fig. 5) basiert.
In dem verbrauchsorientierten Modus (Öko-Modus) kann im parallelen Hybridbetrieb der unmittelbare (nicht verzögerte) Übergang in den seriellen Hybridbetrieb bei
Leistungsanforderungen (und/oder Drehmomentanforderungen) größer als Systemvolllast erfolgen (das heißt größer als die Parallelhybridbetrieb-Schwelle 69).
In dem verbrauchsorientierten Modus kann der Übergang in den seriellen Hybridbetrieb bei Leistungsanforderungen in einem Zwischenbereich (Bereich 73 in Fig. 5) größer als die
Verbrennungskraftmaschine-Schwelle (z. B. Schwelle 71 in Fig. 5) und kleiner als
Systemvolllast (z. B. kleiner als Parallelhybridbetrieb-Schwelle 69 des parallelen Boost- Hybridbetriebes) hingegen über ein Energie- und/oder ein Zeitintegral verzögert umgesetzt werden, wie nachfolgend erläutert ist.
1. Energieintegral:
Gemäß Ausführungsformen der vorliegenden Erfindung kann der Wechsel in den seriellen Hybridbetrieb erfolgen, sobald die aus dem Akkumulator 13 oder 213 zur Darstellung des geforderten systemischen Drehmoments entnommene Energiemenge (über der zeitintegrierten Leistungsentnahme aus dem Akkumulator) einen bestimmten Grenzwert übersteigt.
2. Zeitintegral:
Gemäß einer anderen Ausführungsform der vorliegenden Erfindung kann der Wechsel in den seriellen Hybridbetrieb erfolgen, sobald die zeitliche Dauer der systemischen
Leistungsanforderung, die größer als die Verbrennungskraftmaschine-Schwelle (z. B. Schwelle 71 in Fig. 5) und kleiner als die Systemvolllast (z. B. Parallelhybridbetrieb-Schwelle 69 in Fig. 5) ist, einen bestimmten Grenzwert überschreitet.
Ergänzend zu den im Verfahren 38 und oben beschriebenen Verfahrensschritten und/oder Berechnungsmethodiken auf Basis eines Energie- und/oder eines Zeitintegrals kann in dem verbrauchsorientierten Modus der Betriebsartenwechsel aus dem parallelen Hybridbetrieb in den seriellen Hybridbetrieb über eine Fahrhebelapplikation (insbesondere Fahrpedalapplikation) weiter verzögert werden. Fig. 6 illustriert in einem Graphen die Abhängigkeit eines (vom Fahrer bzw. von der Fahrerin definierten) Sollantriebswertes, z. B. Sollantriebsleistung oder Sollantriebsdrehmoment, in Abhängigkeit von einer Fahrhebelstellung, konkret in Figur 6 einer Fahrpedalstellung. Die Abszisse 76 des in Fig. 6 illustrierten Koordinatensystems bezeichnet dabei das Verhältnis einer Fahrpedalstellung und eines Fahrpedalweges und die Ordinate 77 bezeichnet einen Sollantriebswert, insbesondere eine Sollantriebsleistung oder ein Sollantriebsdrehmoment.
Die Kurve 79 illustriert den Sollantriebswert in Abhängigkeit der Fahrpedalstellung für den leistungsorientierten Modus. Die Kurve 81 illustriert den Sollantriebswert in Abhängigkeit der Fahrpedalstellung für den verbrauchsorientierten Modus der Antriebseinrichtungen 3 oder 203 der in Fig. 1 oder 2 illustrierten Hybridfahrzeuge 1 oder 201.
Üblicherweise wird die vom Fahrer oder der Fahrerin gewählte Fahrpedalstellung linearproportional in eine entsprechende Leistungsdarstellung (Sollantriebswert des
Hybridfahrzeuges) umgesetzt, wie durch die Kurve 79 dargestellt ist. Für einen weiter verzögerten Übergang aus dem parallelen in den seriellen Hybridbetrieb bei Auswahl des verbrauchsorientierten Modus kann die Fahrpedalapplikation entsprechend angepasst werden, wie durch die Kurve 81 dargestellt ist. Die linear-proportionale Abhängigkeit der
Leistungsdarstellung von der Fahrpedalstellung kann dabei grundsätzlich beibehalten werden. Jedoch wird die Änderung der Leistungsdarstellung (Sollantriebswert) in Abhängigkeit einer Änderung der Fahrpedalstellung für Leistungsanforderungen größer als die
Verbrennungskraftmaschine-Schwelle und kleiner als die Parallelhybridbetrieb-Schwelle im Vergleich zur Änderung der Leistungsdarstellung in Abhängigkeit einer Änderung der
Fahrpedalstellung für Leistungsanforderungen kleiner als die Verbrennungskraftmaschine- Schwelle und größer als die Parallelhybridbetrieb-Schwelle reduziert. In Folge dessen muss im Hysterese-Band gemäß Leistungsanforderungen größer als Verbrennungskraftmaschine- Schwelle und kleiner als Parallelhybridbetrieb-Schwelle (Systemvolllast) der Fahrer bzw. die Fahrerin das Fahrpedal "weiter durchtreten", um die Leistungsdarstellung des Fahrzeuges zu erhöhen.
Bezugszeichen 71 bezeichnet analog zu dem in Fig. 5 benutzen Bezugszeichen 71 die Verbrennungskraftmaschine-Schwelle, Bezugszeichen 69 bezeichnet die Parallelhybridbetrieb- Schwelle (Systemvolllastgrenze) und Bezugszeichen 75 bezeichnet die Antriebsgrenze im seriellen Betrieb. Der Sollantriebswertes kann basierend auf der Fahrhebelstellung bei Auswahl des verbrauchsorientierten Modus in einem ersten Bereich 83 eines Fahrhebelweges als ein Wert bestimmt sein, der größer als ein bei Auswahl des leistungsorientierten Modus bestimmter Sollantriebswert ist. Der Sollantriebswert kann basierend auf der Fahrhebelstellung bei Auswahl des verbrauchsorientierten Modus in einem zweiten Bereich 85 eines Fahrhebelweges als ein Wert bestimmt sein, der kleiner als ein bei Auswahl des leistungsonentieren Modus bestimmter Sollantriebwert ist.
Im leistungsorientierten Modus kann der unmittelbare Übergang in den seriellen Hybridbetrieb dagegen schon bei Leistungsanforderungen größer als die Verbrennungskraftmaschine- Schwelle erfolgen.
Der Betriebsartenwechsel aus dem seriellen in den parallelen Hybridbetrieb (wenn somit der Sollantriebswert von einem Wert oberhalb der Parallelhybridbetrieb-Schwelle auf einen
Zwischenwert erniedrigt wird) kann analog zum Betriebsartenwechsel parallel/seriell umgesetzt werden. Hierzu kann es erforderlich sein, neben dem seriellen Betrieb zur Darstellung der Fahranforderung einen äquivalenten parallelen Hybridbetrieb zur Darstellung der
Fahranforderung virtuell (insbesondere simuliert) mit zu betrachten.
In dem verbrauchsorientierten Modus befindlich kann im seriellen Hybridbetrieb der
unmittelbare Übergang in den parallelen Hybridbetrieb bei Leistungsanforderungen im äquivalenten parallelen Hybridbetrieb, die kleiner als die Parallelhybridbetrieb-Schwelle
(Systemvolllast) sind, erfolgen.
In dem leistungsorientierten Modus (Sport-Modus) kann im seriellen Hybridbetrieb der unmittelbare Übergang in den parallelen Hybridbetrieb bei Leistungsanforderungen im äquivalenten parallelen Hybridbetrieb, die kleiner als die Verbrennungskraftmaschine-Schwelle (d. h. Volllast der Verbrennungskraftmaschine) sind, erfolgen
In diesem leistungsorientierten Modus kann der Übergang in den parallelen Hybridbetrieb bei Leistungsanforderungen kleiner als Systemvolllast und größer als Verbrennungskraftmaschine- Volllast (Verbrennungskraftmaschine-Schwelle) im äquivalenten parallelen Hybridbetrieb über ein Energie- oder ein Zeitintegral verzögert umgesetzt werden.
1. Energieintegral: Überschreitet die aus dem Akkumulator zur Darstellung der geforderten systemischen Leistung im äquivalenten (simulierten) parallelen Hybridbetrieb entnommene Energiemenge (über der zeitintegrierten Entnahme aus dem Akkumulator) einen bestimmten Grenzwert, so kann der Wechsel in den parallelen Hybridbetrieb, insbesondere parallelen Boost-Hybridbetrieb, erfolgen.
2. Zeitintegral:
Überschreitet die zeitliche Dauer der systemischen Leistungsanforderung, die größer als die Verbrennungskraftmaschine-Schwelle (d. h. Volllast der Verbrennungskraftmaschine) und kleiner als die Systemvolllast (Parallelhybridbetrieb-Schwelle) im äquivalenten (simulierten) parallelen Hybridbetrieb ist, einen bestimmten Grenzwert, kann der Wechsel in den parallelen Hybridbetrieb, insbesondere parallelen (Boost-)Hybridbetrieb, erfolgen.
Ergänzend zu der oben dargestellten Berechnungsmethodik auf Basis eines Energie- und/oder eines Zeitintegrals kann auch im leistungsorientierten Modus der Betriebsartenwechsel aus dem seriellen in den parallelen Hybridbetrieb über eine Fahrhebelapplikation (insbesondere Fahrpedalapplikation) ähnlich der Darstellung in Fig. 6 weiter verzögert werden.
Gemäß einer Ausführungsform der vorliegenden Erfindung hat ein Fahrer oder eine Fahrerin der Hybridfahrzeuge 1 oder 201 die Wahl zwischen einem effizienten verbrauchsorientierten Modus (Öko-Modus) und einem leistungsorientierten Modus (Sport-Modus), beispielsweise über eine Wählhebelstellung.
Im verbrauchsorientierten Modus (Öko-Modus) kann der Betriebsartenwechsel parallel/seriell (zumindest teilweise) verzögert umgesetzt werden, während der Betriebsartenwechsel seriell/parallel (zumindest teilweise) unmittelbar umgesetzt werden kann. In Folge dessen kann der effiziente parallele Hybridbetrieb soweit wie möglich bevorzugt werden, um einen möglichst effizienten Verbrauch darzustellen.
Der leistungsorientierte Modus (Sport-Modus) kann jedoch beim Betriebsartenwechsel parallel/seriell den leistungsstärkeren seriellen Betrieb (zumindest teilweise) bevorzugt auswählen und kann beim Betriebsratenwechsel seriell/parallel analog den Rückfall in den leistungsschwächeren parallelen Hybridbetrieb (zumindest teilweise) verzögert durchführen. In Folge dessen kann soweit wie möglich eine leistungsorientierte Betriebsartenauswahl dargestellt werden. Bezugszeichenliste
I Hybridfahrzeug
3 Antriebseinrichtung
5 Verbrennungskraftmaschine
6 Antriebseinrichtungssteuerung
7 Zylinder
8 Steuersignal
9 erste Elektromaschine
10 Steuersignal
I I zweite Elektromaschine
12 Steuersignal
13 Akkumulator
14 Steuersignal
15 Antriebsrad
17 Hauptkupplung K0
19 Getriebe
21 Radantriebstrang
23 Differenzialübersetzung
25 Differenzial
27 erste Kupplung K1
29 Übersetzungselement
31 Ausgangswelle Verbrennungskraftmaschine
32 Eingangswelle Getriebe
33 Ausgangswelle Getriebe
35 Übersetzungselement
37 zweite Kupplung K2
38 Verfahren
40 Verfahrensschritt
42 Verfahrensschritt
44 Verfahrensschritt
43 Abszisse
45 Ordinate
47 Verbrennungskraftmaschine-Leistung
49 Systemleistung Verbrennungskraftmaschine-Drehmoment
Systemdrehmoment
Abszisse
Ordinate
Bereiche rein elektrischen Betriebs
Bereich serieller Hybridbetrieb
Bereich paralleler Hybridbetrieb
Fahrwiderstand bei Konstantgeschwindigkeitsfahrt
Fahrgeschwindigkeitsschwelle
Elektrischer-Betrieb-Schwelle
weitere Elektrischer-Betrieb-Schwelle
Parallelhybridbetrieb-Schwelle
maximale Ausgangsleistung der Verbrennungskraftmaschine
Boost-Bereich
obere Grenze für den seriellen Hybridbetrieb
Abszisse
Ordinate
Kurve
Kurve
erster Bereich eines Fahrhebelweges
zweiter Bereich eines Fahrhebelweges

Claims

Patentansprüche
1. Verfahren zum Steuern einer Antriebseinrichtung (3, 203) eines Hybridfahrzeuges (1 , 201 ), die eine Verbrennungskraftmaschine (5, 205), eine erste Elektromaschine (9, 209), eine zweite Elektromaschine (1 1 , 21 1 ) und einen Akkumulator (13, 213) umfasst, wobei für die Antriebsvorrichtung ein leistungsorientierter Modus oder ein verbrauchsorientierter Modus auswählbar ist,
wobei das Verfahren bei gewähltem verbrauchsorientierten Modus im Falle einer ersten Bedingung aufweist:
Steuern der Antriebseinrichtung in einem parallelen Boost-Hybridbetrieb, in dem die Verbrennungskraftmaschine (5, 205) und zusätzlich die erste Elektromaschine und/oder die zweite Elektromaschine ein Fahrantnebsdrehmoment bewirkt, bis ein Kriterium erfüllt ist, das von der Zeitdauer des Betreibens und/oder dem Energieumsatz in dem parallelen Boost- Hybridbetrieb abhängt, und
falls das Kriterium erfüllt ist, Wechseln in einen seriellen Hybridbetrieb, in dem das Fahrantnebsdrehmoment mittels der zweiten Elektromaschine (1 1 , 21 1 ) bewirkt wird und die Verbrennungskraftmaschine (5, 205) die erste Elektromaschine (9, 209) zur Erzeugung von elektrischer Energie antreibt,
wobei das Verfahren bei gewähltem leistungsorientierten Modus im Falle der ersten Bedingung aufweist:
Steuern der Antriebseinrichtung in dem seriellen Hybridbetrieb, ohne das Erfüllen des Kriteriums abzuwarten,
wobei die erste Bedingung aufweist:
ein Sollantriebswert wird auf einen Zwischenwert erhöht, der zwischen
einer Verbrennungskraftmaschine-Schwelle (71 ), die einen maximalen Antriebswert in einem parallelen Hybridbetrieb repräsentiert, in dem ausschließlich die
Verbrennungskraftmaschine (5, 205) ein Fahrantnebsdrehmoment bewirkt, und
einer Parallelhybridbetrieb-Schwelle (69), die einen maximalen Antriebswert in dem parallelen Boost-Hybridbetrieb repräsentiert, liegt.
2. Verfahren gemäß Anspruch 1 , wobei das Kriterium umfasst:
die Zeitdauer des Betreibens in dem parallelen Boost-Hybridbetrieb überschreitet eine Zeitschweile und/oder
eine aus dem Akkumulator (13,213) während der Zeitdauer des Betreibens in dem parallelen Boost-Hybridbetrieb entnommene Energiemenge überschreitet eine Energieschwelle.
3. Verfahren gemäß Anspruch 1 oder 2, wobei, wenn der Sollantriebswert von einem Wert unterhalb der Verbrennungskraftmaschine-Schwelle (71 ) auf einen Wert oberhalb der
Verbrennungskraftmaschine-Schwelle (71 ) erhöht wird, das Steuern der Antriebseinrichtung bei Auswahl des leistungsorientierten Modus aufweist:
Wechseln von dem parallelen Hybridbetrieb in den seriellen Hybridbetrieb, ohne das Erfüllen des Kriteriums abzuwarten.
4. Verfahren gemäß einem der vorangehenden Ansprüche,
wobei das Verfahren bei Auswahl des leistungsorientierten Modus im Falle einer zweiten Bedingung aufweist:
Steuern der Antriebseinrichtung in dem seriellen Hybridbetrieb, bis ein anderes Kriterium erfüllt ist, das von der Zeitdauer und/oder dem Energieumsatz eines simulierten Betreibens in dem parallelen Boost-Hybridbetrieb abhängt, und
falls das andere Kriterium erfüllt ist, Wechseln in den parallelen Boost-Hybridbetrieb, wobei das Verfahren bei Auswahl des verbrauchsorientierten Modus im Falle der zweiten Bedingung aufweist:
Steuern der Antriebseinrichtung in dem parallelen Boost-Hybridbetrieb, ohne das Erfüllen des anderen Kriteriums abzuwarten,
wobei die zweite Bedingung aufweist, dass der Sollantriebswert auf den Zwischenwert erniedrigt wird.
5. Verfahren gemäß dem vorangehenden Anspruch, wobei das andere Kriterium umfasst: die Zeitdauer seit dem Erniedrigen des Sollantriebswertes auf den Zwischenwert überschreitet eine andere Zeitschwelle und/oder
eine simulierte aus dem Akkumulator (13, 213) während der Zeitdauer des simulierten Betreibens in dem parallelen Boost-Hybridbetrieb entnommene Energiemenge überschreitet eine andere Energieschwelle.
6. Verfahren gemäß Anspruch 4 oder 5, wobei, wenn der Sollantriebswert von einem Wert oberhalb der Parallelhybridbetrieb-Schwelle (69) auf einen Wert unterhalb der
Parallelhybridbetrieb-Schwelle (69) erniedrigt wird, das Steuern der Antriebseinrichtung bei Auswahl des verbrauchsorientierten Modus aufweist:
Wechseln von dem seriellen Hybridbetrieb in den parallelen Boost-Hybridbetrieb, ohne das Erfüllen des anderen Kriteriums abzuwarten.
7. Verfahren gemäß einem der vorangehenden Ansprüche, ferner aufweisend:
Detektieren einer Fahrhebelstellung;
Bestimmen des Sollantriebswertes basierend auf der Fahrhebelstellung bei Auswahl des verbrauchsorientierten Modus in einem ersten Bereich (83) eines Fahrhebelweges als einen Wert, der größer als ein bei Auswahl des leistungsorientierten Modus bestimmter
Sollantriebswert ist; und
Bestimmen des Sollantriebswertes basierend auf der Fahrhebelstellung bei Auswahl des verbrauchsorientierten Modus in einem zweiten Bereich (85) eines Fahrhebelweges als einen Wert, der kleiner als ein bei Auswahl des leistungsorientierten Modus bestimmter
Sollantriebswert ist.
8. Verfahren gemäß dem vorangehenden Anspruch, ferner aufweisend:
Bestimmen des Sollantriebswertes basierend auf der Fahrhebelstellung bei Auswahl des leistungsorientierten Modus über den Fahrhebelweg als Produkt einer Gesamtsteigung und der Fahrhebelstellung entlang des Fahrhebelweges.
9. Verfahren gemäß dem vorangehenden Anspruch,
wobei das Bestimmen des Sollantriebswertes bei Auswahl des verbrauchsorientierten Modus aufweist:
Bestimmen des Sollantriebswertes in einem Anfangsbereich des Fahrhebelweges als Produkt einer Anfangssteigung und der Fahrhebelstellung, in einem Zwischenbereich des Fahrhebelweges als Produkt einer Zwischensteigung und der Fahrhebelstellung, und in einem Endbereich des Fahrhebelweges als Produkt einer Endsteigung und der Fahrhebelstellung, wobei die Gesamtsteigung verschieden von der Anfangssteigung, der Endsteigung und der Zwischensteigung ist.
10. Hybridfahrzeug mit einer Antriebseinrichtung (3, 203), die eine
Verbrennungskraftmaschine (5, 205), eine erste Elektromaschine (9, 209), eine zweite Elektromaschine (1 1. 21 1 ) und einen Akkumulator (13, 213) umfasst, wobei die Antriebseinrichtung eine Auswahl aus einem leistungsorientierten Modus und einem verbrauchsorientierten Modus unterstützt, und mit einer Antriebseinrichtungssteuerung, die ausgebildet ist, ein Verfahren gemäß einem der vorangehenden Ansprüche auszuführen.
PCT/EP2016/076580 2015-11-17 2016-11-03 Verfahren zum steuern einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug WO2017084887A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187016971A KR102018474B1 (ko) 2015-11-17 2016-11-03 하이브리드 자동차의 구동 장치 제어 방법, 그리고 하이브리드 자동차
CN201680065496.8A CN108349488B (zh) 2015-11-17 2016-11-03 用于控制混合动力车辆的驱动装置的方法和混合动力车辆
EP16798099.4A EP3377379B1 (de) 2015-11-17 2016-11-03 Verfahren zum steuern einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug
US15/769,439 US10525968B2 (en) 2015-11-17 2016-11-03 Method for controlling a drive device of a hybrid vehicle and hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015222691.3 2015-11-17
DE102015222691.3A DE102015222691A1 (de) 2015-11-17 2015-11-17 Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug

Publications (1)

Publication Number Publication Date
WO2017084887A1 true WO2017084887A1 (de) 2017-05-26

Family

ID=57348635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/076580 WO2017084887A1 (de) 2015-11-17 2016-11-03 Verfahren zum steuern einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug

Country Status (6)

Country Link
US (1) US10525968B2 (de)
EP (1) EP3377379B1 (de)
KR (1) KR102018474B1 (de)
CN (1) CN108349488B (de)
DE (1) DE102015222691A1 (de)
WO (1) WO2017084887A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018103245A1 (de) 2017-11-29 2019-05-29 Schaeffler Technologies AG & Co. KG Antriebseinheit für Hybridkraftfahrzeug mit variabler Abtriebsübersetzung
DE102018114382A1 (de) 2018-06-15 2019-12-19 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen Antriebsstrang eines elektrisch antreibbaren Kraftfahrzeugs und Antriebsanordnung
DE102018114787A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Antriebseinheit, Antriebsanordnung und Hybrid-Kraftfahrzeug
DE102018114794A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen Antriebsstrang eines elektrisch antreibbaren Kraftfahrzeugs und Antriebsanordnung
DE102018114782A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Antriebseinheit und Antriebsanordnung
DE102018114784A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Elektrische Rotationsmaschine, Antriebseinheit und Antriebsanordnung
DE102018114790A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Elektrische Antriebseinrichtung, Antriebseinheit und Antriebsanordnung
DE102018114789A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen Antriebsstrang eines elektrisch antreibbaren Kraftfahrzeugs sowie damit ausgestattete Antriebsanordnung
WO2020043235A1 (de) 2018-08-28 2020-03-05 Schaeffler Technologies AG & Co. KG Hydrauliksystem und antriebseinheit
WO2021018343A1 (de) 2019-08-01 2021-02-04 Schaeffler Technologies AG & Co. KG Elektrische antriebseinheit, hybridmodul und antriebsanordnung für ein kraftfahrzeug
WO2021018344A1 (de) 2019-08-01 2021-02-04 Schaeffler Technologies AG & Co. KG Elektrische antriebseinheit, hybridmodul und antriebsanordnung für ein kraftfahrzeug
WO2021047728A1 (de) 2019-09-10 2021-03-18 Schaeffler Technologies AG & Co. KG Drehmoment-übertragungssystem mit konzentrisch angeordneten wälzlagern, antriebseinheit und antriebsanordnung
CN112810599A (zh) * 2020-04-17 2021-05-18 长城汽车股份有限公司 车辆驱动控制方法、系统
US11214242B2 (en) 2017-11-23 2022-01-04 Volkswagen Aktiengesellschaft Hybrid powertrain with two electric machines and an internal combustion engine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016222448A1 (de) * 2016-11-16 2018-05-17 Bayerische Motoren Werke Aktiengesellschaft Betriebsverfahren für ein Hybridfahrzeug
FR3063472B1 (fr) * 2017-03-01 2019-05-03 Renault S.A.S. Procede de calcul d'une consigne de pilotage d'un groupe motopropulseur hybride de vehicule automobile
DE102017208656A1 (de) * 2017-05-22 2018-11-22 Volkswagen Aktiengesellschaft Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102018103336A1 (de) 2018-02-14 2019-08-14 Schaeffler Technologies AG & Co. KG Hybridmodul und Antriebsanordnung für ein Kraftfahrzeug
US11511642B2 (en) 2019-04-05 2022-11-29 Oshkosh Corporation Electric concrete vehicle systems and methods
DE102019119696A1 (de) 2019-07-22 2020-07-09 Schaeffler Technologies AG & Co. KG Antriebsstrang
DE102019214703A1 (de) * 2019-09-25 2021-03-25 Volkswagen Aktiengesellschaft Hybridfahrzeug mit Verbrennungsmotor mit Vorkammerzündvorrichtung
US11230278B2 (en) 2019-10-11 2022-01-25 Oshkosh Corporation Vehicle with accessory drive
US20220304240A1 (en) * 2021-03-24 2022-09-29 Deere & Company Intelligent power allocation systems onboard hybrid combines and associated methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007054368A1 (de) 2006-11-17 2008-06-05 GM Global Technology Operations, Inc., Detroit Steuerarchitektur zur Auswahl eines optimalen Modus oder einer optimalen Übersetzung und Antriebsdrehzahl für ein Hybridantriebsstrangsystem
DE60223850T2 (de) 2001-10-22 2008-11-13 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Verfahren zum Betrieb eines Antriebssystems eines Hybridfahrzeuges
EP1074087B1 (de) 1998-04-21 2009-11-25 The Regents of the University of California Regelverfahren und vorrichtung für die brennkraftmaschine eines elektrischen hybridfahrzeuges
DE102009019485A1 (de) 2008-12-09 2010-06-10 Isatec Gmbh Antriebsstrang mit einem ersten Elektromotor und einem Planetengetriebe sowie Windenergieanlagen, Gasturbinen und Wasserturbinen und Fahrzeuge, die diesen Antriebsstrang aufweisen
US20130013137A1 (en) * 2009-12-15 2013-01-10 Continental Automotive France Method for controlling an hybrid vehicle motorization device, and associated device
EP2636567A1 (de) * 2010-11-04 2013-09-11 Toyota Jidosha Kabushiki Kaisha Steuerungsvorrichtung für ein hybridfahrzeug
DE102012103292A1 (de) 2012-04-17 2013-10-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betrieb eines elektrischen Antriebsstranges eines Fahrzeuges sowie elektrischer Antriebsstrang für ein Fahrzeug
EP2733034A1 (de) * 2011-09-01 2014-05-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Steuerungsvorrichtung für ein hybridfahrzeug
DE102013001095A1 (de) 2013-01-23 2014-07-24 Audi Ag Verfahren zum Betreiben einer Hybridantriebseinrichtung eines Kraftfahrzeugs, entsprechende Hybridantriebseinrichtung sowie Kraftfahrzeug
JP2015178360A (ja) * 2015-06-17 2015-10-08 トヨタ自動車株式会社 車両用ハイブリッド駆動装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
CA2883981A1 (en) * 1998-09-14 2000-03-23 Paice Llc Hybrid vehicles
DE10305180A1 (de) * 2003-02-08 2004-08-19 Zf Friedrichshafen Ag Verfahren zum Steuern und Regeln eines Sollverlaufs eines zeitlich veränderlichen Signals eines Systems
JP4554551B2 (ja) * 2006-04-28 2010-09-29 本田技研工業株式会社 車両用走行制御装置
AT9756U1 (de) * 2006-12-11 2008-03-15 Magna Steyr Fahrzeugtechnik Ag Verfahren zur steuerung des hybridantriebes eines kraftfahrzeuges und steuersystem
US8197384B2 (en) * 2007-07-09 2012-06-12 Toyota Jidosha Kabushiki Kaisha Engine start-up device for hybrid vehicle power transmitting device
US20130005530A1 (en) * 2010-03-10 2013-01-03 Toyota Jidosha Kabushiki Kaisha Vehicular hybrid drive system
GB201014680D0 (en) * 2010-09-04 2010-10-20 Jaguar Cars Controller and method of control of a hybrid electric vehicle
US9026291B2 (en) * 2010-11-04 2015-05-05 Toyota Jidosha Kabushiki Kaisha Vehicle hybrid drive device
CN110228460B (zh) * 2011-01-13 2023-09-26 卡明斯公司 用于控制混合动力传动系中的功率输出分布的系统、方法和装置
BR112013019549A2 (pt) * 2011-12-12 2016-10-04 Honda Motor Co Ltd dispositivo de controle e método de controle de veículo elétrico
JP6213494B2 (ja) * 2015-02-18 2017-10-18 トヨタ自動車株式会社 ハイブリッド車両
KR101849061B1 (ko) * 2015-06-03 2018-04-13 닛산 지도우샤 가부시키가이샤 하이브리드 차량의 모드 천이 제어 장치
RU2657546C1 (ru) * 2015-06-24 2018-06-14 Ниссан Мотор Ко., Лтд. Устройство управления выработкой мощности для гибридного транспортного средства

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074087B1 (de) 1998-04-21 2009-11-25 The Regents of the University of California Regelverfahren und vorrichtung für die brennkraftmaschine eines elektrischen hybridfahrzeuges
DE60223850T2 (de) 2001-10-22 2008-11-13 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Verfahren zum Betrieb eines Antriebssystems eines Hybridfahrzeuges
DE102007054368A1 (de) 2006-11-17 2008-06-05 GM Global Technology Operations, Inc., Detroit Steuerarchitektur zur Auswahl eines optimalen Modus oder einer optimalen Übersetzung und Antriebsdrehzahl für ein Hybridantriebsstrangsystem
DE102009019485A1 (de) 2008-12-09 2010-06-10 Isatec Gmbh Antriebsstrang mit einem ersten Elektromotor und einem Planetengetriebe sowie Windenergieanlagen, Gasturbinen und Wasserturbinen und Fahrzeuge, die diesen Antriebsstrang aufweisen
US20130013137A1 (en) * 2009-12-15 2013-01-10 Continental Automotive France Method for controlling an hybrid vehicle motorization device, and associated device
EP2636567A1 (de) * 2010-11-04 2013-09-11 Toyota Jidosha Kabushiki Kaisha Steuerungsvorrichtung für ein hybridfahrzeug
EP2733034A1 (de) * 2011-09-01 2014-05-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Steuerungsvorrichtung für ein hybridfahrzeug
DE102012103292A1 (de) 2012-04-17 2013-10-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betrieb eines elektrischen Antriebsstranges eines Fahrzeuges sowie elektrischer Antriebsstrang für ein Fahrzeug
DE102013001095A1 (de) 2013-01-23 2014-07-24 Audi Ag Verfahren zum Betreiben einer Hybridantriebseinrichtung eines Kraftfahrzeugs, entsprechende Hybridantriebseinrichtung sowie Kraftfahrzeug
JP2015178360A (ja) * 2015-06-17 2015-10-08 トヨタ自動車株式会社 車両用ハイブリッド駆動装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299026B2 (en) 2017-11-23 2022-04-12 Schaeffler Technologies AG & Co. KG Hybrid powertrain with two electric machines and an internal combustion engine
US11214242B2 (en) 2017-11-23 2022-01-04 Volkswagen Aktiengesellschaft Hybrid powertrain with two electric machines and an internal combustion engine
US11167747B2 (en) 2017-11-29 2021-11-09 Schaeffler Technologies AG & Co. KG Drive unit for a hybrid motor vehicle a with variable output transmission ratio
WO2019105504A1 (de) 2017-11-29 2019-06-06 Schaeffler Technologies AG & Co. KG Antriebseinheit für hybridkraftfahrzeug mit variabler abtriebsübersetzung
DE102018103245A1 (de) 2017-11-29 2019-05-29 Schaeffler Technologies AG & Co. KG Antriebseinheit für Hybridkraftfahrzeug mit variabler Abtriebsübersetzung
DE102018114382A1 (de) 2018-06-15 2019-12-19 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen Antriebsstrang eines elektrisch antreibbaren Kraftfahrzeugs und Antriebsanordnung
WO2019238160A1 (de) 2018-06-15 2019-12-19 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen antriebsstrang eines elektrisch antreibbaren kraftfahrzeugs und antriebsanordnung
US11173779B2 (en) 2018-06-15 2021-11-16 Schaeffler Technologies AG & Co. KG Drive unit for a powertrain of an electrically driveable motor vehicle, and drive assembly
DE102018114784A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Elektrische Rotationsmaschine, Antriebseinheit und Antriebsanordnung
DE102018114790A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Elektrische Antriebseinrichtung, Antriebseinheit und Antriebsanordnung
WO2019242798A1 (de) 2018-06-20 2019-12-26 Schaeffler Technologies AG & Co. KG Antriebseinheit und antriebsanordnung
WO2019242806A1 (de) 2018-06-20 2019-12-26 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen antriebsstrang eines elektrisch antreibbaren kraftfahrzeugs und antriebsanordnung
WO2019242805A1 (de) 2018-06-20 2019-12-26 Schaeffler Technologies AG & Co. KG Elektrische antriebseinrichtung, antriebseinheit und antriebsanordnung
WO2019242803A1 (de) 2018-06-20 2019-12-26 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen antriebsstrang eines elektrisch antreibbaren kraftfahrzeugs sowie damit ausgestattete antriebsanordnung
WO2019242801A1 (de) 2018-06-20 2019-12-26 Schaeffler Technologies AG & Co. KG Antriebseinheit mit ausgewuchteter elektrischer rotationsmaschine
WO2019242802A1 (de) 2018-06-20 2019-12-26 Schaeffler Technologies AG & Co. KG Antriebseinheit, antriebsanordnung und hybrid-kraftfahrzeug
US11780317B2 (en) 2018-06-20 2023-10-10 Schaeffler Technologies AG & Co. KG Drive unit drive assembly and hybrid motor vehicle
US11465610B2 (en) 2018-06-20 2022-10-11 Schaeffler Technologies AG & Co. KG Drive unit and drive arrangement
DE102018114787A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Antriebseinheit, Antriebsanordnung und Hybrid-Kraftfahrzeug
DE102018114794A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen Antriebsstrang eines elektrisch antreibbaren Kraftfahrzeugs und Antriebsanordnung
DE102018114782A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Antriebseinheit und Antriebsanordnung
DE102018114789A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen Antriebsstrang eines elektrisch antreibbaren Kraftfahrzeugs sowie damit ausgestattete Antriebsanordnung
WO2020043235A1 (de) 2018-08-28 2020-03-05 Schaeffler Technologies AG & Co. KG Hydrauliksystem und antriebseinheit
WO2021018344A1 (de) 2019-08-01 2021-02-04 Schaeffler Technologies AG & Co. KG Elektrische antriebseinheit, hybridmodul und antriebsanordnung für ein kraftfahrzeug
WO2021018343A1 (de) 2019-08-01 2021-02-04 Schaeffler Technologies AG & Co. KG Elektrische antriebseinheit, hybridmodul und antriebsanordnung für ein kraftfahrzeug
WO2021047728A1 (de) 2019-09-10 2021-03-18 Schaeffler Technologies AG & Co. KG Drehmoment-übertragungssystem mit konzentrisch angeordneten wälzlagern, antriebseinheit und antriebsanordnung
CN112810599A (zh) * 2020-04-17 2021-05-18 长城汽车股份有限公司 车辆驱动控制方法、系统
CN112810599B (zh) * 2020-04-17 2022-04-12 长城汽车股份有限公司 车辆驱动控制方法、系统

Also Published As

Publication number Publication date
CN108349488B (zh) 2021-03-09
EP3377379A1 (de) 2018-09-26
US20180319389A1 (en) 2018-11-08
KR102018474B1 (ko) 2019-09-04
KR20180083395A (ko) 2018-07-20
US10525968B2 (en) 2020-01-07
EP3377379B1 (de) 2019-08-14
CN108349488A (zh) 2018-07-31
DE102015222691A1 (de) 2017-05-18

Similar Documents

Publication Publication Date Title
EP3377379B1 (de) Verfahren zum steuern einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug
EP3377353A1 (de) Betreiben einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug
EP3377378A1 (de) Betreiben einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug
DE19718709B4 (de) Steuervorrichtung für ein Hybridfahrzeug
DE102008023732B4 (de) Steuerung des negativen Antriebsstrangdrehmoments sowie Auswahl des Getriebezustands bei einem Hybridfahrzeug
DE102014222650B4 (de) Lastabhängige fahrzeugbetriebssteuerung
DE102015222690A1 (de) Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102017109577A1 (de) Kriechsteuerung für hybridelektrokraftfahrzeug
DE102007055830A1 (de) Verfahren und Vorrichtung zum Betrieb eines Hybridantriebes eines Fahrzeuges
DE102013005252A1 (de) Hybrid-Antriebsstrang und Verfahren zum Steuern desselben
DE102011007577A1 (de) Leistungsverzweigter hybrider Antriebsstrang mit mehreren Modi
DE102008023731A1 (de) Steuerung des negativen Antriebsstrangdrehmoments sowie Auswahl des Getriebezustands bei einem Hybridfahrzeug
DE102008027658A1 (de) Verfahren zum Starten einer Brennkraftmaschine eines Hybridfahrzeugs
DE102008053505A1 (de) Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeuges
DE102006045824A1 (de) Verfahren und Vorrichtung zur Steuerung eines Hybrid-Fahrzeugantriebs
DE102017213385A1 (de) Getriebe für eine Hybridantriebsanordnung
WO2018229140A1 (de) Verfahren zum ansteuern eines fahrzeugantriebsstrangs
DE102017211978A1 (de) Verfahren zum Betreiben eines Antriebsstrangs für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Antriebsstrang für ein Kraftfahrzeug
DE102013104430A1 (de) Traktionssteuersystem für ein Hybridfahrzeug
DE102014222643A1 (de) Lastabhängige fahrzeugbetriebssteuerung
DE202011110847U1 (de) Fahrzeugbetriebssysteme
DE102010011016A1 (de) Fahrzeugkraftübertragungssteuerungsvorrichtung
EP3592588B1 (de) Verfahren zur steuerung eines kraftfahrzeuges und kraftfahrzeug
DE112019001944T5 (de) Steuerstrategien für einzel- und mehrmodale elektrische sekundäre oder nachlaufende elektrische achsen
DE102019206338B4 (de) Steuerungsvorrichtung für ein fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16798099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15769439

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187016971

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016971

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016798099

Country of ref document: EP