WO2017084474A1 - 动力电池均衡控制方法、装置和电路 - Google Patents

动力电池均衡控制方法、装置和电路 Download PDF

Info

Publication number
WO2017084474A1
WO2017084474A1 PCT/CN2016/103312 CN2016103312W WO2017084474A1 WO 2017084474 A1 WO2017084474 A1 WO 2017084474A1 CN 2016103312 W CN2016103312 W CN 2016103312W WO 2017084474 A1 WO2017084474 A1 WO 2017084474A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
equalization
balanced
time
state
Prior art date
Application number
PCT/CN2016/103312
Other languages
English (en)
French (fr)
Inventor
向晋
俞会根
杨重科
盛军
Original Assignee
北京新能源汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京新能源汽车股份有限公司 filed Critical 北京新能源汽车股份有限公司
Priority to US15/770,037 priority Critical patent/US10742044B2/en
Publication of WO2017084474A1 publication Critical patent/WO2017084474A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of batteries, and in particular to a power battery equalization control method, apparatus and circuit.
  • the power battery system directly affects the performance of the vehicle.
  • the power battery system is composed of a plurality of power battery cells connected in series. Due to the limitation of the process conditions and the characteristics of the battery itself, there may be a difference in electric quantity or voltage between the battery cells. After multiple charge and discharge cycles, The difference in power and voltage between the individual cells is getting larger and larger, and as a result, the charge and discharge capacity of the power battery system is getting smaller and smaller, thereby directly affecting the performance and life of the power battery. Therefore, the power consumption of the power battery and its voltage are balanced, and the charge and discharge performance and service life of the power battery are improved.
  • the commonly used battery equalization methods include active equalization and passive equalization.
  • Active equalization also called lossless equalization
  • Passive equalization is also called lossy equalization. It is the discharge of excess power of high-power battery cells through parallel resistors. Its equalization efficiency is lower than active equalization.
  • the passive equalization circuit has simple structure, low cost and wide application.
  • the prior art power battery passive equalization system generally monitors the open circuit voltage of the power battery unit in real time during the end of the charging process of the power battery, and simultaneously determines the battery cells to be balanced and realizes the balance of the battery system in real time, and balances the target. It is the open circuit voltage difference between the battery cells that satisfies the required value, and the passive equalization function generally does not work during the charging and discharging process of the battery. Since the equalization is only performed during the power battery standing process, the equalization time is too short, so that the equalization efficiency is low.
  • the embodiment of the invention provides a power battery equalization control method, device and circuit, so as to at least solve the technical problem that the equalization efficiency of the power battery is relatively low.
  • a power battery equalization control method including: detecting satisfaction Presetting the power battery cells to be equalized in the equalization start condition, and starting to equalize the power battery cells to be balanced; determining the power battery to be balanced in the process of equalizing the power battery cells to be balanced Whether the cell satisfies the condition of the suspension equalization; when it is determined that the power cell to be balanced satisfies the condition of the suspension equalization, the equalization of the battery cell to be equalized is suspended, and the power battery to be equalized is When the cell satisfies the condition of continuing to equalize, the equalization of the power battery to be balanced is continued until the time when the equalization of the battery cell to be equalized satisfies the calculated value of the equalization time, wherein the equalization time is calculated.
  • the value is an equalization time value of the power battery unit to be balanced; and when it is determined that the power battery unit to be balanced does not satisfy the condition of the suspension equalization, the equalization of the power battery unit to be balanced is continued. The equalization is terminated until the time when the equalization of the power battery cells to be equalized satisfies the equilibrium time calculation value.
  • a power battery equalization control circuit including: a battery state monitoring circuit connected to the power battery for monitoring the charging of each power battery unit in the power battery a state value; an equalization loop, in series with the respective power battery cells, for equalizing a power battery to be balanced in the power battery; a timer for calculating a time for equalization of the power battery to be balanced; a unit, connected to the battery state monitoring circuit, the equalization circuit, the timer, and the power battery, for balancing data monitored by the battery state monitoring circuit and the power battery to be balanced Time-controlling the equalization loop to equalize the power battery to be balanced, wherein, when it is determined that the power battery unit to be balanced satisfies the condition of suspension equalization, controlling the equalization circuit to be disconnected to suspend the to-be-balanced The power battery unit is equalized, and the equalization is controlled when the power battery unit to be balanced satisfies the condition of continuing to balance Turning on to further balance the power
  • a power battery equalization control apparatus including: a detecting unit, configured to detect a power battery unit to be balanced that meets a preset equalization starting condition, and initiate the balancing to be performed.
  • the power battery unit performs equalization;
  • the determining unit is configured to determine, in the process of equalizing the power battery unit to be balanced, whether the power battery unit to be balanced satisfies a condition for aborting the balance;
  • the first control unit uses When it is determined that the power battery unit to be balanced satisfies the condition of the suspension equalization, the power battery unit is suspended, and when the power battery unit to be balanced satisfies the condition of continuing to balance, continue Performing equalization on the power battery to be balanced until the time when the equalization time of the power battery cells to be equalized satisfies the calculation value of the equalization time, wherein the calculation time of the equalization time is the power battery unit to be equalized a required equalization time value;
  • a second control unit configured to determine that the to-be-balanced power battery unit does not satisfy the suspension balance When the condition of continuing the electric power to be equalized The pool cells are equalized until the time when the equalization of the power battery cells to be equalized satisfies
  • the power battery unit to be balanced that meets the preset equalization start condition is detected, and the power battery unit to be equalized is started to be equalized; and the power battery unit to be equalized is equalized.
  • FIG. 1 is a flow chart of a power battery equalization control method according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing a startup process of a power battery according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a suspension process of a power battery according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a power battery equalization control circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a power battery equalization control apparatus according to an embodiment of the present invention.
  • a method embodiment of a power battery equalization control method is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings may be executed in a computer system such as a set of computer executable instructions. Also, although logical sequences are shown in the flowcharts, in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 1 is a flow chart of a power battery equalization control method according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
  • Step S102 detecting a power battery unit to be balanced that satisfies a preset equalization start condition, and starting equalization of the power battery unit to be equalized.
  • step S104 in the process of equalizing the power battery cells to be equalized, it is determined whether the power battery unit to be equalized satisfies the condition of the suspension equalization.
  • Step S106 when it is determined that the power battery unit to be balanced satisfies the condition of the suspension equalization, the power battery unit is suspended, and the equalization power battery is continuously balanced when the power battery unit to be balanced satisfies the condition of continuing to balance.
  • the equalization is terminated until the time when the equalization power battery cell is equalized to satisfy the equilibrium time calculation value, wherein the equilibrium time calculation value is the equilibrium time value required for the power battery unit to be balanced;
  • step S108 when it is determined that the power battery unit to be equalized does not satisfy the condition of the suspension equalization, the equalization of the power battery cells is further balanced until the time when the equalization power battery cells are equalized to satisfy the equilibrium time calculation value, and the equalization is terminated.
  • the ongoing equalization is suspended when the condition of the suspension equalization is satisfied, and the equalization time is continued when the equilibrium equalization condition is satisfied, and the equilibrium time calculation value is equalized.
  • the time required for the power battery to reach the equalization requirement is terminated when the accumulated equalization time satisfies the equilibrium time calculation value, that is, the accumulated equalization time is used as a condition for measuring whether the equilibrium is completed, so that the power battery is
  • the equalization time satisfies the equalization requirement of the power battery, so that the balanced power battery can reduce the power and voltage difference between the power battery cells, solves the technical problem that the power battery has lower equilibrium efficiency, and achieves the improvement of the power battery.
  • the effect of balanced efficiency is achieved.
  • the equilibrium time calculation value is calculated by the following formula:
  • T is the equilibrium time calculation value
  • U is the open circuit voltage
  • the unit is V
  • ⁇ SoC is the difference value of the power battery cell to be equalized power battery cell and the lowest state of charge value
  • the unit is %
  • R is the equalization resistance
  • the unit is ⁇ .
  • the equalization of the balanced power battery is continued: the power battery is in a charging, discharging, or rest state, and the power battery unit to be balanced is satisfied to continue to balance.
  • the power battery can be equalized in the state of charge and discharge or in the static state, and does not limit the battery to be in a charged, discharged state or a resting state.
  • the prior art can only perform equalization in a static state, and the power battery is charged and discharged to complete the balance. Due to the short equalization time, the equalization effect is poor, which leads to lower equilibrium efficiency.
  • the power battery is equalized for a longer period of time, which satisfies the requirement that the power battery unit achieves the balance of the power and the voltage difference, and improves the equalization efficiency.
  • detecting the power battery unit to be balanced that meets the preset equalization start condition, and starting equalization of the power battery unit to be balanced includes: detecting a rest time of the power battery, and determining whether the rest time of the power battery satisfies Setting the standing time; when detecting that the resting time of the power battery meets the preset resting time, obtaining the state of charge of each power battery unit in the power battery to obtain the power battery list corresponding to the lowest state of charge value And determining whether the lowest state of charge state is in a range of a preset state of charge value; if the value of the lowest state of charge is within a range of values of the preset state of charge, obtaining a value of each power battery cell and a minimum state of charge state The difference value of the power battery unit is started to equalize the power battery unit to be balanced for the difference value to meet the preset difference value, wherein the power battery unit to be equalized with the lowest power state value has a high power Battery cell; if the lowest state of charge value is not within the range
  • the startup equalization is performed during the process of the power battery standing.
  • the suspension and the continuous equalization can be performed during the charging, discharging or resting process.
  • the condition for continuing the equalization may be any one or several of the conditions for starting the equalization, and the following combination diagram 2 Explain the process of starting balance of the power battery.
  • step S201 the vehicle is allowed to stand after being powered off, and the timer starts to count the rest time.
  • Step S202 comparing the rest time of the power battery with the preset rest time of the equalization start to determine whether the rest time of the power battery reaches the preset rest time, and if yes, executing step S203, otherwise performing step S202 .
  • step S203 the open circuit voltage of the power battery unit is monitored, and the SoC value of each power battery unit is obtained.
  • Step S204 comparing the lowest power battery unit SoC value with the balanced start SoC preset value, that is, comparing the minimum state of charge state value with the preset state of charge state value, and determining whether the low power battery cell SoC value is Within the SoC range required for the equalization start, if yes, step S206 is performed, otherwise step S205 is performed.
  • step S205 in order to avoid that the equalization process cannot be started due to the user charging habit (for example, the user only uses fast charging and charging for a long time), the interval between the previous equalization completion interval and the equalization start interval is compared to determine the interval time. Whether the preset value is reached, if yes, step S206 is performed, otherwise step S203 is performed.
  • Step S206 comparing the SoC value of each power battery unit with the SoC value of the lowest power battery unit to determine whether the difference value reaches the equalization start SoC preset difference value, and if yes, executing step S207; otherwise, jumping Go to step S203.
  • Step S207 starting equalization for the high-power battery cell whose SoC difference value reaches the preset difference value.
  • the high-power battery cell is a battery that is higher than the lowest power battery cell among the two power battery cells that satisfy the preset difference value.
  • the preset value of the static start time of the equalization start is in the range of 10 min to 3 h, preferably 30 min to 2 h; and the preset start state of the balanced start value ranges from 30%. ⁇ 100%, preferably 80% ⁇ 100%; the preset time interval of the balanced start is in the range of 500h to 5000h, preferably 1000 ⁇ 3000h; the difference of the preset value of the balanced start SoC is 0.5% to 5%. It is preferably 1% to 2%.
  • the suspension of balancing the power battery unit includes: obtaining a current state of charge value of the power battery unit to be balanced; determining the power battery list to be balanced Whether the current state of charge of the body reaches the equilibrium state of the state of charge; if the current state of charge of the battery cell to be balanced reaches the equilibrium state of the state of charge, the balance is aborted; if the current state of the battery cell is to be balanced If the state of charge state does not reach the value of the equilibrium suspension state of charge, it is determined whether the standstill time of the power battery cell to be balanced reaches the equilibrium stop time, and the static standstill of the battery cell to be balanced reaches the equilibrium stop.
  • the equalization is suspended, wherein the rest time of the power battery unit to be balanced is the accumulated time of the battery unit to be balanced from the start of standing to the current time.
  • the equalization stop rest time is preset, and the maximum time for the power battery to stand for too long to cause a loss of power is caused.
  • the balance stop current state is preset and the maximum value of the battery over-discharge is avoided.
  • step S301 after the power battery unit is equalized, the equalization loop is closed, and the timer starts to count the equalization time.
  • Step S302 monitoring the power battery SoC and the equalization time, and the equalization time includes an equalization loop closing time and a power battery resting time.
  • Step S303 in order to prevent the battery from being over-discharged due to the low power battery SoC in the equalization process, the power battery SoC and the power battery
  • the equalization aborts the SoC preset value for comparison to determine whether it reaches the equalization abort preset value, and the equalization aborts the SoC preset value, that is, the equalization abort state of charge state value, and if so, the process goes to step S305, otherwise step S304 is performed.
  • Step S304 in order to prevent the 12V power supply of the whole vehicle from being depleted due to the long standby time of the power battery during the equalization process, compare the power battery rest time with the equalization suspension time to determine whether the equilibrium stop time is reached. If yes, go to step S305, otherwise go to step S306.
  • step S305 when the equilibrium suspension rest time is reached, the equalization loop is disconnected, and the power battery cell equalization process is suspended.
  • the preset value of the equalization suspension SoC is in the range of 0% to 30%, preferably 5% to 10%; the range of the equilibrium suspension rest time is 2h to 10h, preferably 2h to 5h.
  • Suspension of the balance in the case of satisfying the suspension condition can prevent the battery from being over-discharged due to the low battery SoC in the equalization process, and can prevent the power battery from standing still for too long during the equalization process, causing the vehicle 12V power supply to lose power.
  • the time required for the power battery is reached, the problem of over-discharging and power loss can be avoided, and the technical effect of ensuring the safety and service life of the power battery is achieved.
  • the equalization power battery is continuously equalized until the time when the equalization power battery cell is equalized satisfies the equilibrium time calculation value
  • the termination of the equalization includes: obtaining the balance to be equalized The cumulative equalization time of the power battery unit; determining whether the accumulated equalization time reaches the equilibrium time calculation value; if the cumulative equalization time reaches the equilibrium time calculation value, the equalization is terminated; if the accumulated equalization time does not reach the equilibrium time calculation value, then returning the acquired The step of balancing the current state of charge value of the power battery unit.
  • the equilibrium dead time is not reached when the power battery is stationary, or the accumulated equalization time of the power battery to be balanced is obtained when the power battery is in the suspended state.
  • the cumulative equalization time is the equalization time that has been currently performed from the start of the equalization to the end of the equalization.
  • the equilibrium time calculation value it is confirmed that the equalization of the power battery to be balanced is completed, and the equalization of the balanced power battery is terminated. If the equilibrium time calculation value is not reached, the equalization is continued, and the current state of charge state of the power battery unit to be balanced is regained.
  • Step S306 calculating the power battery equalization cumulative time, that is, the equalization loop closure cumulative time is compared with the equalization time calculation value to determine whether it reaches the equilibrium time calculation value, and if yes, executing step S307, otherwise, jumping to step S302.
  • step S307 the power battery unit that satisfies the equalization termination condition stops balancing, and the equalization process ends.
  • continuing to equalize the balanced power battery includes: detecting whether the state of the power battery changes if the accumulated equalization time does not reach the calculated value of the equalization time; and when the state of the power battery changes and satisfying the condition of continuing to balance, Continue to balance the balanced power battery, wherein the conditions for continuing to balance include: the lowest state of charge of each power battery cell of the power battery is in a range of preset state of charge values, or the power battery cell and the lowest state of charge value The difference value of the power battery unit satisfies the preset difference value.
  • the power battery When the power battery is in a stationary state when the balance is stopped, if the power battery becomes a discharged state or a charged state, it is re-detected whether the condition for continuing the equalization is satisfied, and if it is satisfied, the equalization is continued; or, when the power battery is in a charged state when the equalization is suspended, When the power battery is in a discharged state, it is re-detected whether the condition for continuing the equalization is satisfied, and if it is satisfied, the equalization is continued.
  • the power battery unit is a lithium ion power battery with a capacity of 100Ah, a charge and discharge voltage range of 2.7V to 4.2V, an equalization loop equalization resistance value of 40 ⁇ , and a balanced start static time preset value of 2h, a balanced start preset.
  • the SoC range is 85 to 100%, the equalization start interval is 3000h, the equalization start SoC preset difference is 1%, the equalization abort SoC is 5%, and the equalization abort rest time is 3h.
  • the controller collects through the battery status monitoring loop.
  • the open circuit voltage data of the power battery thereby obtaining the SoC information of each power battery unit (the lowest power battery unit SoC value is 93%), and calculating the SoC difference between the SoC of the power battery unit and the lowest power battery unit, wherein The difference between the SoC value of a single battery cell and the SoC value of the lowest battery cell reaches 1.2%, the open circuit voltage of the battery cell is 4.1V, and the equilibrium time is calculated as 11.7h.
  • the control unit closes the power battery list.
  • the equalization loop switch of the body equalizes the start, and starts counting the equalization time. After the equalization for 1h, the equilibrium abort rest time is reached. At this time, the equalization loop switch is disconnected, the equalization is aborted, the equalization time is simultaneously suspended, and then the controller is powered off. After a period of time, the whole vehicle is powered on again and starts normal driving. At this time, the SoC value of the balanced power battery unit is 94.1%, and the control unit closes the equalization loop switch again, and the equalization restarts, and the equalization time continues to be counted. During the driving process, the SoC value of the balanced power battery unit is reduced to 5%.
  • the control unit disconnects the equalization loop switch, the equalization is aborted, and the equalization time is simultaneously suspended.
  • the SoC value of the balanced power battery unit reaches 5% again, the control unit closes the equalization loop switch again, the equalization restarts, and the equalization time continues to count.
  • the control unit disconnects the equalization loop switch. At the end of this equalization process, the equalization time is terminated.
  • the SoC fast charging after the end of the vehicle, after the charging is completed, the SoC is 80%, the timer of the equalizer starts to count, and when the rest time reaches 2h, the controller collects through the battery state monitoring loop.
  • the open circuit voltage data of the power battery thereby obtaining the SoC information of each power battery unit (the lowest power battery unit SoC value is 79%), and the time interval from the last equalization completion has reached 3200h, at which time the calculation of each power battery unit is performed.
  • the SoC difference between the SoC and the lowest power battery cell wherein the difference between the SoC value of one battery cell and the SoC value of the lowest battery cell reaches 1.5%, the open circuit voltage of the battery cell is 4.0V, and the equilibrium time is calculated.
  • the control unit closes the equalization loop switch of the power battery unit, starts the balance, and starts counting the equalization time.
  • the preset value of the equilibrium stop rest time is reached.
  • the control unit disconnects the equalization loop switch, the equalization is aborted, and the equalization time is simultaneously suspended, after which the controller is powered off.
  • the vehicle is re-powered and starts normal driving.
  • the power battery is balanced.
  • the body SoC value is 80.4%
  • the control unit closes the equalization loop switch again, the equalization restarts, and the equalization time continues to be timed.
  • the whole vehicle is charged.
  • the whole vehicle is allowed to stand.
  • the control unit disconnects the equalization loop switch. The equalization process ends and the equalization time is terminated.
  • the accumulated equalization time is used as a condition for measuring whether or not the equalization is completed, so that the time for equalizing the power battery satisfies the equalization requirement of the power battery, so that the balanced power battery can reduce the power between the power battery cells.
  • the voltage difference solves the technical problem that the equalization efficiency of the power battery is relatively low, and achieves the effect of improving the equalization efficiency of the power battery.
  • Suspension of the balance in the case of satisfying the suspension condition can prevent the battery from being over-discharged due to the low battery SoC in the equalization process, and can prevent the power battery from standing still for too long during the equalization process, causing the vehicle 12V power supply to lose power.
  • the time required for the power battery is reached, the problem of over-discharging and power loss can be avoided, and the technical effect of ensuring the safety and service life of the power battery is achieved.
  • an embodiment of a power battery equalization control circuit is provided.
  • the power battery equalization control method of Embodiment 1 can be realized by the power battery equalization control circuit of the second embodiment.
  • the power battery equalization control circuit includes a battery state monitoring circuit 40, an equalization circuit 42, a timer 44, and a control unit 46.
  • the battery state monitoring circuit 40 is connected to the power battery 100 for monitoring the state of charge of each power battery cell in the power battery 100.
  • the equalization loop 42 is connected in series with the respective power battery cells for equalizing the power cells to be balanced in the power battery.
  • a timer 44 is used for timing.
  • the control unit 46 is connected to the battery state monitoring loop, the equalization loop, the timer and the power battery, and is configured to balance the balanced power battery according to the data monitored by the battery state monitoring loop and the data of the timer, wherein When the condition that the balanced power battery unit satisfies the suspension equalization, the control equalization circuit is disconnected to stop the equalization of the balanced power battery cells, and the equalization circuit is controlled when the power battery cells to be balanced satisfy the condition of continuing to balance.
  • the equalization loop is controlled to continue to equalize the equalized power battery cells until the equalization time of the equalized power battery cells satisfies the equalization time calculation. The balance is terminated when the value is reached.
  • the ongoing equalization is suspended when the condition of the suspension equalization is satisfied, and the equalization time is continued when the equilibrium equalization condition is satisfied, and the equilibrium time calculation value is calculated. It is the time required for the balanced power battery to reach the equalization requirement.
  • the equilibrium is terminated, that is, the accumulated equalization time is used as a condition for measuring whether the equilibrium is completed, so that the power battery is equalized.
  • the time satisfies the equalization requirement of the power battery, so that the balanced power battery can reduce the power and voltage difference between the power battery cells, solve the technical problem that the balance efficiency of the power battery is relatively low, and achieve the balance efficiency of the power battery. Effect.
  • the structure of the power battery equalization control circuit is simple, it is convenient to be applied in the equalization control of the power battery, which reduces the application cost and improves the practicability of the control circuit.
  • the battery state detection loop includes: a voltage monitoring loop for monitoring the power battery voltage, a current monitoring loop for monitoring the power battery current, and an internal resistance monitoring loop for monitoring the internal resistance of the power battery, the voltage monitoring loop, and the current Both the monitoring loop and the internal resistance monitoring loop are connected to the control unit.
  • the voltage detection circuit can monitor the open circuit voltage of the power battery
  • the current monitoring circuit can monitor the current of the power battery
  • the internal resistance monitoring circuit can monitor the resistance of the power battery, so that the control unit calculates the power battery to be balanced according to the monitoring data of the above three circuits. The calculated equilibrium time of the monomer.
  • the equalization loop includes an equalization resistor and a switch, wherein the equalization resistor, the switch, and the power battery cell are connected in series.
  • the opening and closing of the equalization loop is controlled by the opening and closing of the switch.
  • the equalization loop is turned on to equalize the power battery unit to be balanced; when the switch is closed, the equalization loop is closed to stop. Balance the balanced power battery unit.
  • the power battery unit of the power battery is a secondary battery
  • the secondary battery includes any one of the following: a lead acid battery, a nickel hydrogen battery, and a lithium ion battery.
  • the equalization loop can be controlled to be turned on or off to control the equalization of the power battery cells to be balanced, so that the equalization time of the power battery cells to be balanced can satisfy the calculation time of the equalization time, and the equilibrium time calculation value is According to the parameters of the power battery cells to be balanced, it can reflect the equalization time required for the power battery cells to be balanced, thereby avoiding the technical problem of low equalization efficiency caused by too short equalization time, and achieving the technology of improving the equalization efficiency. effect.
  • an embodiment of a power battery equalization control apparatus that can perform the power battery equalization control method of Embodiment 1, and the above method can also be performed by the apparatus.
  • the power battery equalization control device includes a detecting unit 52, a determining unit 54, a first control unit 56, and a second control unit 58.
  • the detecting unit 52 is configured to detect the power battery cells to be balanced that meet the preset equalization starting condition, and start equalizing the power battery cells to be equalized.
  • the determining unit 54 is configured to determine, in the process of equalizing the power battery cells to be balanced, whether the power battery unit to be equalized satisfies the condition for aborting the equalization.
  • the first control unit 56 is configured to suspend the balancing of the power battery cells when it is determined that the power battery cells to be balanced satisfy the condition of the suspension equalization, and continue to treat the equalization when the power battery cells to be balanced satisfy the condition of continuing to balance.
  • the power battery is equalized until the equalization time of the equalized power battery cell satisfies the equilibrium time calculation value, and the equalization time is calculated as the equalization time value of the power battery unit to be balanced.
  • the second control unit 58 is configured to continue to equalize the balanced power battery cells when it is determined that the power battery cells to be balanced do not satisfy the condition of the suspension equalization, until the equalization time of the equalized power battery cells satisfies the equilibrium time calculation value. Time balance is terminated.
  • the ongoing equalization is suspended when the condition of the suspension equalization is satisfied, and the equalization time is continued when the equilibrium equalization condition is satisfied, and the equilibrium time calculation value is equalized.
  • the time required for the power battery to reach the equalization requirement is terminated when the accumulated equalization time satisfies the equilibrium time calculation value, that is, the accumulated equalization time is used as a condition for measuring whether the equilibrium is completed, so that the time for balancing the power battery satisfies the
  • the balance requirement of the power battery so that the balanced power battery can reduce the power and voltage difference between the power battery cells, solves the technical problem that the balance efficiency of the power battery is relatively low, and achieves the effect of improving the balance efficiency of the power battery.
  • the equilibrium time calculation value is calculated by the following formula:
  • T is the equilibrium time calculation value
  • U is the open circuit voltage
  • the unit is V
  • ⁇ SoC is the difference value of the power battery cell to be equalized power battery cell and the lowest state of charge value
  • the unit is %
  • R is the equalization resistance
  • the unit is ⁇ .
  • the power battery can be equalized in the state of charge and discharge or in the static state, and does not limit the battery to be in a charged, discharged state or a resting state.
  • the prior art can only perform equalization in a static state, and the power battery is charged and discharged to complete the balance. Due to the short equalization time, the equalization effect is poor, which leads to lower equilibrium efficiency.
  • the power battery is equalized for a longer period of time, which satisfies the requirement that the power battery unit achieves the balance of the power and the voltage difference, and improves the equalization efficiency.
  • Suspension of the balance in the case of satisfying the suspension condition can prevent the battery from being over-discharged due to the low battery SoC in the equalization process, and can prevent the power battery from standing still for too long during the equalization process, causing the vehicle 12V power supply to lose power.
  • the time required for the power battery is reached, the problem of over-discharging and power loss can be avoided, and the technical effect of ensuring the safety and service life of the power battery is achieved.
  • the equilibrium dead time is not reached when the power battery is stationary, or the accumulated equalization time of the power battery to be balanced is obtained when the power battery is in the suspended state.
  • the cumulative equalization time is the equalization time that has been currently performed from the start of the equalization to the end of the equalization.
  • the accumulated equalization time reaches the equilibrium time calculation value, the confirmation is completed.
  • the balance of the balanced power battery is terminated. If the equilibrium time calculation value is not reached, the equalization is continued, and the current state of charge state of the power battery unit to be balanced is regained.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种动力电池均衡控制方法、装置和电路。其中,该方法包括:检测满足预设均衡启动条件的待均衡动力电池单体,并启动对待均衡动力电池单体进行均衡;在对待均衡动力电池单体进行均衡的过程中,判断待均衡动力电池单体是否满足中止均衡的条件;在判断出待均衡动力电池单体满足中止均衡的条件时,中止对待均衡动力电池单体进行均衡,并在待均衡动力电池单体满足继续均衡的条件时,继续对待均衡动力电池进行均衡;在判断出待均衡动力电池单体不满足中止均衡的条件时,继续对待均衡动力电池单体进行均衡,直至对待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡。本发明解决了动力电池的均衡效率比较低的技术问题。

Description

动力电池均衡控制方法、装置和电路
相关申请的交叉引用
本申请要求北京新能源汽车股份有限公司于2015年11月17日提交的、发明名称为“动力电池均衡控制方法、装置和电路”的、中国专利申请号“201510791921.9”的优先权。
技术领域
本发明涉及电池领域,具体而言,涉及一种动力电池均衡控制方法、装置和电路。
背景技术
近些年来,新能源汽车大规模普及的步伐越来越快,动力电池系统作为新能源汽车的核心组成部分,其性能优劣直接影响到整车的使用性能。动力电池系统是由多个动力电池单体通过串联连接而构成,由于工艺条件的限制及电池本身特性的差异,各电池单体之间可能存在电量或电压差异,经过多次充放电循环后,单体电池之间的电量和电压差异越来越大,结果是动力电池系统的充放电容量越来越小,从而直接影响动力电池的使用性能及寿命。因此,使动力电池的电量及其电压保持均衡,提高动力电池的充放电性能和使用寿命。目前,人们常用的电池均衡方法有主动均衡和被动均衡,主动均衡也称无损均衡,是将电量由高电量的电池单体转移到低电量的电池单体,或用外部能量补充低电量的电池单体,其具有均衡效率高的优点,但是主动均衡系统较复杂,成本较高,当前实际应用不多。被动均衡也称有损均衡,是通过并联电阻实现高电量电池单体多余电量的放电,其均衡效率比主动均衡低,不过被动均衡的电路结构简单,成本较低,实际应用也较广。
现有技术的动力电池被动均衡系统,一般是在动力电池充电结束静置过程中实时监测动力电池单体的开路电压,同时实时判断确定需均衡的电池单体并实现电池系统的均衡,均衡目标是电池单体间的开路电压差满足要求值,而在电池充放电过程中被动均衡功能一般不工作。由于均衡仅在动力电池静置过程中进行,均衡时间过短,使得均衡效率较低。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种动力电池均衡控制方法、装置和电路,以至少解决动力电池的均衡效率比较低的技术问题。
根据本发明实施例的一个方面,提供了一种动力电池均衡控制方法,包括:检测满足 预设均衡启动条件的待均衡动力电池单体,并启动对所述待均衡动力电池单体进行均衡;在对所述待均衡动力电池单体进行均衡的过程中,判断所述待均衡动力电池单体是否满足中止均衡的条件;在判断出所述待均衡动力电池单体满足所述中止均衡的条件时,中止对所述待均衡动力电池单体进行均衡,并在所述待均衡动力电池单体满足继续均衡的条件时,继续对所述待均衡动力电池进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡,其中,所述均衡时间计算值为所述待均衡动力电池单体所需均衡时间值;在判断出所述待均衡动力电池单体不满足所述中止均衡的条件时,继续对所述待均衡动力电池单体进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足所述均衡时间计算值时终止均衡。
根据本发明实施例的另一方面,还提供了一种动力电池均衡控制电路,包括:电池状态监测回路,与动力电池相连接,用于监测所述动力电池中各个动力电池单体的荷电状态值;均衡回路,与所述各个动力电池单体串联,用于对所述动力电池中的待均衡动力电池进行均衡;计时器,用于计算所述待均衡动力电池进行均衡的时间;控制单元,与所述电池状态监测回路、所述均衡回路、所述计时器和所述动力电池相连接,用于根据所述电池状态监测回路监测到的数据和所述待均衡动力电池进行均衡的时间控制所述均衡回路对所述待均衡动力电池进行均衡,其中,在判断出所述待均衡动力电池单体满足中止均衡的条件时,控制所述均衡回路断开以中止对所述待均衡动力电池单体进行均衡,并在待均衡动力电池单体满足继续均衡的条件时,控制所述均衡回路导通以继续对所述待均衡动力电池进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡,其中,所述均衡时间计算值为待均衡动力电池单体所需均衡时间值;在判断出所述待均衡动力电池单体不满足所述中止均衡的条件时,控制所述均衡回路导通以继续对所述待均衡动力电池单体进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足所述均衡时间计算值时终止均衡。
根据本发明实施例的又一方面,还提供了一种动力电池均衡控制装置,包括:检测单元,用于检测满足预设均衡启动条件的待均衡动力电池单体,并启动对所述待均衡动力电池单体进行均衡;判断单元,用于在对所述待均衡动力电池单体进行均衡的过程中,判断所述待均衡动力电池单体是否满足中止均衡的条件;第一控制单元,用于在判断出所述待均衡动力电池单体满足所述中止均衡的条件时,中止对所述动力电池单体进行均衡,并在所述待均衡动力电池单体满足继续均衡的条件时,继续对所述待均衡动力电池进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡,其中,所述均衡时间计算值为所述待均衡动力电池单体所需均衡时间值;第二控制单元,用于在判断出所述待均衡动力电池单体不满足所述中止均衡的条件时,继续对所述待均衡动力电 池单体进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足所述均衡时间计算值时终止均衡。
在本发明实施例中,采用检测满足预设均衡启动条件的待均衡动力电池单体,并启动对所述待均衡动力电池单体进行均衡;在对所述待均衡动力电池单体进行均衡的过程中,判断所述待均衡动力电池单体是否满足中止均衡的条件;在判断出所述待均衡动力电池单体满足所述中止均衡的条件时,中止对所述待均衡动力电池单体进行均衡,并在所述待均衡动力电池单体满足继续均衡的条件时,继续对所述待均衡动力电池进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡,其中,所述均衡时间计算值为所述待均衡动力电池单体所需均衡时间值;在判断出所述待均衡动力电池单体不满足所述中止均衡的条件时,继续对所述待均衡动力电池单体进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足所述均衡时间计算值时终止均衡的方式,启动对动力电池的均衡之后,满足中止均衡的条件时中止正在进行的均衡,满足继续均衡的条件时继续已经中止的均衡累计进行均衡的时间,均衡时间计算值是进行均衡的动力电池达到均衡要求所需要的时间,当累计的均衡时间满足均衡时间计算值时终止均衡,也就是将累计的均衡时间作为衡量是否完成均衡的条件,使得对动力电池进行均衡的时间满足该动力电池的均衡要求,从而进行均衡的动力电池能够缩小动力电池单体之间的电量和电压差,解决了动力电池的均衡效率比较低的技术问题,达到了提高动力电池的均衡效率的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的动力电池均衡控制方法的流程图;
图2是根据本发明实施例的动力电池的启动过程的流程图;
图3是根据本发明实施例的动力电池的中止过程的流程图;
图4是根据本发明实施例的动力电池均衡控制电路的示意图;以及
图5是根据本发明实施例的动力电池均衡控制装置的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
SoC即荷电状态,也叫剩余电量,代表的是电池使用一段时间或者长期搁置一段时间之后电池的剩余容量与其完全充电状态的容量的比值,常用百分数表示,其取值范围为0~1,当SoC=0时表示电池完全放电,当SoC=1时表示电池完全充满。
实施例1
根据本发明实施例,提供了一种动力电池均衡控制方法的方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本发明实施例的动力电池均衡控制方法的流程图,如图1所示,该方法包括如下步骤:
步骤S102,检测满足预设均衡启动条件的待均衡动力电池单体,并启动对待均衡动力电池单体进行均衡。
步骤S104,在对待均衡动力电池单体进行均衡的过程中,判断待均衡动力电池单体是否满足中止均衡的条件。
步骤S106,在判断出待均衡动力电池单体满足中止均衡的条件时,中止对动力电池单体进行均衡,并在待均衡动力电池单体满足继续均衡的条件时,继续对待均衡动力电池进行均衡,直至对待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡,其中,均衡时间计算值为待均衡动力电池单体所需均衡时间值;
步骤S108,在判断出待均衡动力电池单体不满足中止均衡的条件时,继续对待均衡动力电池单体进行均衡,直至对待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡。
在该实施例中,启动对动力电池的均衡之后,满足中止均衡的条件时中止正在进行的均衡,满足继续均衡的条件时继续已经中止的均衡累计进行均衡的时间,均衡时间计算值是进行均衡的动力电池达到均衡要求所需要的时间,当累计的均衡时间满足均衡时间计算值时终止均衡,也就是将累计的均衡时间作为衡量是否完成均衡的条件,使得对动力电池 进行均衡的时间满足该动力电池的均衡要求,从而进行均衡的动力电池能够缩小动力电池单体之间的电量和电压差,解决了动力电池的均衡效率比较低的技术问题,达到了提高动力电池的均衡效率的效果。
可选地,采用以下公式计算得到均衡时间计算值:
T=(C*△SoC*R)/U
其中,T为均衡时间计算值,U为开路电压,单位为V,△SoC为待均衡动力电池单体与最低荷电状态值的动力电池单体的差异值,单位为%,R为均衡电阻,单位为Ω。
可选地,在待均衡动力电池单体满足继续均衡的条件时,继续对待均衡动力电池进行均衡包括:在动力电池处于充、放电状态或者静置状态,并且待均衡动力电池单体满足继续均衡的条件时,继续对待均衡动力电池进行均衡。动力电池在充放电状态或者静置状态都能进行均衡,并没有限制电池处于充、放电状态或者静置状态。而现有技术只能在静置状态下进行均衡,动力电池进行充放电也就完成了均衡。由于均衡时间短,使得均衡效果较差,进而导致均衡效率比较低。相比之下,该实施例的方案中动力电池进行均衡的时间更长,满足动力电池单体达到电量和电压差均衡的要求,提高了均衡效率。
可选地,检测满足预设均衡启动条件的待均衡动力电池单体,并启动对待均衡动力电池单体进行均衡包括:检测动力电池的静置时间,并判断动力电池的静置时间是否满足预设静置时间;在检测出动力电池的静置时间满足预设静置时间时,获取动力电池中各个动力电池单体的荷电状态值,以得到最低荷电状态值所对应的动力电池单体;判断最低荷电状态值是否处于预设荷电状态值的范围;如果最低荷电状态值处于预设荷电状态值的范围内,则获取各个动力电池单体与最低荷电状态值的动力电池单体的差异值,以对差异值满足预设差异值的待均衡动力电池单体启动均衡,其中,待均衡动力电池单体为相对最低荷电状态值的动力电池单体具有高电量的电池单体;如果最低荷电状态值没有处于预设荷电状态值的范围内,则比较均衡时间间隔是否达到预设时间间隔,并在均衡时间间隔达到预设时间间隔时,获取各个动力电池单体与最低荷电状态值的动力电池单体的差异值,以对差异值满足预设差异值的高电量电池单体启动均衡,其中,均衡时间间隔为当前时间与上一次均衡完成时间的时间间隔。
启动均衡在动力电池静置的过程中进行,中止和继续均衡都可以在充、放电或者静置过程中进行,继续均衡的条件可以是启动均衡的条件中的任意一条或者几条,以下结合图2对动力电池的启动均衡的过程进行说明。
步骤S201,整车下电后静置,计时器开始对静置时间进行计时。
步骤S202,将动力电池的静置时间与均衡启动的预设静置时间进行比较,以判断动力电池的静置时间是否达到预设静置时间,如果是,则执行步骤S203,否则执行步骤S202。
步骤S203,对动力电池单体的开路电压进行监测,同时获得各个动力电池单体的SoC值。
步骤S204,将最低动力电池单体SoC值与均衡启动的SoC预设值进行比较,即对最低荷电状态值与预设荷电状态值的范围进行比较,判断低动力电池单体SoC值是否在均衡启动所要求的SoC范围内,如果是,则执行步骤S206,否则执行步骤S205。
步骤S205,为避免由于用户充电习惯导致均衡过程无法启动(如用户长期仅使用快充充电等),将距上一次均衡完成相隔时间与均衡启动的间隔时间预设值进行比较,以判断间隔时间是否达到预设值,如果是,则执行步骤S206,否则执行步骤S203。
步骤S206,将各动力电池单体的SoC值与最低动力电池单体的SoC值进行比较,以判断其差异值是否达到均衡启动SoC预设差异值,如果是,则执行步骤S207,否则跳转到步骤S203。
步骤S207,对SoC差异值达到预设差异值的高电量电池单体启动均衡。该高电量电池单体是满足预设差异值的两个动力电池单体中,比最低动力电池单体的电量高的电池。
在上述实施例中,均衡启动过程中,均衡启动的静置时间预设值的取值范围为10min~3h,优选30min~2h;均衡启动的预设荷电状态值的取值范围为30%~100%,优选80%~100%;均衡启动的预设时间间隔的取值范围为500h~5000h,优选1000~3000h;均衡启动SoC预设值差异的取值范围为0.5%~5%,优选1%~2%。
可选地,在判断出待均衡动力电池单体满足中止均衡的条件时,中止对动力电池单体进行均衡包括:获取待均衡动力电池单体的当前荷电状态值;判断待均衡动力电池单体的当前荷电状态值是否达到均衡中止荷电状态值;若待均衡动力电池单体的当前荷电状态值达到均衡中止荷电状态值,则中止均衡;若待均衡动力电池单体的当前荷电状态值未达到均衡中止荷电状态值,则判断待均衡动力电池单体的静置时间是否达到均衡中止静置时间,并在待均衡动力电池单体的静置时间达到均衡中止静置时间时,中止均衡,其中,待均衡动力电池单体的静置时间为待均衡动力电池单体从开始静置到当前时间处于静置状态的累计时间。均衡中止静置时间为预设的、避免动力电池单体静置时间过长导致亏电的最大时间,均衡中止荷电状态值为预设的、避免电池过放的最大值。
以下结合图3对动力电池的中止均衡的过程进行说明。
步骤S301,动力电池单体均衡启动后,均衡回路闭合,同时计时器开始对均衡时间进行计时。
步骤S302,对动力电池SoC及均衡时间进行监控,均衡时间包括均衡回路闭合时间和动力电池静置时间。
步骤S303,为防止均衡过程中动力电池SoC过低导致电池过放,将动力电池SoC与 均衡中止SoC预设值进行比较,以判断其是否达到均衡中止预设值,均衡中止SoC预设值即均衡中止荷电状态值,如果是,则跳转至步骤S305,否则执行步骤S304。
步骤S304,为防止均衡过程中由于动力电池静置时间过长导致整车12V电源亏电,将动力电池静置时间与均衡中止静置时间进行比较,以判断其是否达到均衡中止静置时间,如果是,则执行步骤S305,否则跳转至步骤S306。
步骤S305,当达到均衡中止静置时间时,均衡回路断开,动力电池单体均衡过程中止。
均衡中止过程中,均衡中止SoC预设值的取值范围为0%~30%,优选5%~10%;均衡中止静置时间的取值范围为2h~10h,优选2h~5h。
在满足中止条件的情况下中止均衡,可以防止均衡过程动力电池SoC过低导致电池过放,也可以防止均衡过程中动力电池静置时间过长导致整车12V电源亏电,在使得均衡的时长达到动力电池所需的时间的情况下,还能避免过放和亏电的问题,达到了保证动力电池的使用安全和使用寿命的技术效果。
可选地,在待均衡动力电池单体满足继续均衡的条件时,继续对待均衡动力电池进行均衡,直至对待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡包括:获取待均衡动力电池单体的累计均衡时间;判断累计均衡时间是否达到均衡时间计算值;若累计均衡时间达到均衡时间计算值,则终止均衡;若累计均衡时间未达到均衡时间计算值,则返回获取所述待均衡动力电池单体的当前荷电状态值的步骤。
在动力电池静置的时间没有达到均衡中止静置时间,或者在动力电池处于中止状态时,获取待均衡动力电池的累计均衡时间。累计均衡时间是从一次启动均衡开始到均衡结束之前的时间段内当前已经进行的均衡时间。当累计均衡时间达到均衡时间计算值时,确认完成对待均衡动力电池的均衡,终止对待均衡动力电池的均衡。如果没有达到均衡时间计算值,则继续均衡,并重新获取待均衡动力电池单体的当前荷电状态值。
如图3所示,还包括以下步骤:
步骤S306,计算动力电池均衡累计时间,即均衡回路闭合累计时间与均衡时间计算值进行比较,以判断其是否达到均衡时间计算值,如果是,则执行步骤S307,否则跳转至步骤S302。
步骤S307,对满足均衡终止条件的动力电池单体停止均衡,本次均衡过程结束。
可选地,继续对待均衡动力电池进行均衡包括:在累计均衡时间未达到均衡时间计算值的情况下,检测动力电池的状态是否改变;在动力电池的状态改变,且满足继续均衡的条件时,继续对待均衡动力电池进行均衡,其中,继续均衡的条件包括:动力电池各个动力电池单体的最低荷电状态值处于预设荷电状态值的范围,或者动力电池单体与最低荷电状态值的动力电池单体的差异值满足预设差异值。
中止均衡时动力电池处于静置状态,则在动力电池变为放电状态或者充电状态时,重新检测是否满足继续均衡的条件,如果满足则继续均衡;或者,中止均衡时动力电池处于充电状态,则在动力电池变为放电状态时,重新检测是否满足继续均衡的条件,如果满足则继续均衡。
举例说明如下:
动力电池单体为锂离子动力电池,容量为100Ah,充放电电压范围为2.7V~4.2V,均衡回路的均衡电阻值为40Ω,均衡启动的静止时间预设值为2h,均衡启动的预设SoC范围为85~100%,均衡启动间隔时间为3000h,均衡启动SoC预设差异为1%,均衡中止SoC的取值为5%,均衡中止静置时间的取值范围为3h。
例如:整车行驶结束后慢充充电,充电完成后开始静置,充电结束时SoC为95%,均衡装置的计时器开始计时,当静置时间达到2h时,控制器通过电池状态监测回路采集动力电池开路电压数据,由此得到各动力电池单体SoC信息(最低动力电池单体SoC值为93%),同时计算各动力电池单体的SoC与最低动力电池单体的SoC差异值,其中某一只电池单体SoC值与最低电池单体的SoC值的差异值达到1.2%,该电池单体开路电压为4.1V,均衡时间计算值为11.7h,此时控制单元闭合该动力电池单体的均衡回路开关,均衡启动,同时对均衡时间开始计时。均衡1h后,达到均衡中止静置时间,此时断开均衡回路开关,均衡中止,均衡时间计时同时中止,之后控制器下电。一段时间后,整车重新上电,开始正常行驶,此时均衡动力电池单体SoC值为94.1%,控制单元再次闭合均衡回路开关,均衡重新启动,同时对均衡时间继续计时。行车过程中均衡动力电池单体SoC值降低至5%,此时控制单元断开均衡回路开关,均衡中止,均衡时间计时同时中止。之后整车充电,均衡动力电池单体SoC值再次达到5%,控制单元再次闭合均衡回路开关,均衡重新启动,同时均衡时间继续计时,当累计均衡时间达到12h时,控制单元断开均衡回路开关,本次均衡过程结束,均衡时间计时终止。
例如:整车行驶结束后快充充电,充电完成后开始静置,充电结束时SoC为80%,均衡装置的计时器开始计时,当静置时间达到2h时,控制器通过电池状态监测回路采集动力电池开路电压数据,由此得到各动力电池单体SoC信息(最低动力电池单体SoC值为79%),同时距上一次均衡完成相隔时间已达到3200h,此时计算各动力电池单体的SoC与最低动力电池单体的SoC差异值,其中某一只电池单体SoC值与最低电池单体的SoC值的差异值达到1.5%,该电池单体开路电压为4.0V,均衡时间计算值为15h,此时控制单元闭合该动力电池单体的均衡回路开关,均衡启动,同时对均衡时间开始计时。均衡1h后,达到均衡中止静置时间预设值,此时控制单元断开均衡回路开关,均衡中止,均衡时间计时同时中止,之后控制器下电。一段时间后,整车重新上电,开始正常行驶,此时均衡动力电池单 体SoC值为80.4%,控制单元再次闭合均衡回路开关,均衡重新启动,同时对均衡时间继续计时。行车结束后整车充电,充电结束后整车静置,当累计均衡时间达到15h时,并且静置时间小于3h,控制单元断开均衡回路开关,本次均衡过程结束,均衡时间计时终止。
通过上述实施例,将累计的均衡时间作为衡量是否完成均衡的条件,使得对动力电池进行均衡的时间满足该动力电池的均衡要求,从而进行均衡的动力电池能够缩小动力电池单体之间的电量和电压差,解决了动力电池的均衡效率比较低的技术问题,达到了提高动力电池的均衡效率的效果。在满足中止条件的情况下中止均衡,可以防止均衡过程动力电池SoC过低导致电池过放,也可以防止均衡过程中动力电池静置时间过长导致整车12V电源亏电,在使得均衡的时长达到动力电池所需的时间的情况下,还能避免过放和亏电的问题,达到了保证动力电池的使用安全和使用寿命的技术效果。
实施例2
根据本发明实施例,提供了一种动力电池均衡控制电路的实施例。实施例1的动力电池均衡控制方法可以通过该实施例2的动力电池均衡控制电路实现。
如图4所示,该动力电池均衡控制电路包括:电池状态监测回路40、均衡回路42、计时器44和控制单元46。
电池状态监测回路40与动力电池100相连接,用于监测动力电池100中各个动力电池单体的荷电状态值。
均衡回路42与各个动力电池单体串联,用于对动力电池中的待均衡动力电池进行均衡。
计时器44用于计时。
控制单元46与电池状态监测回路、均衡回路、计时器和动力电池相连接,用于根据电池状态监测回路监测到的数据和计时器的数据控制均衡回路对待均衡动力电池进行均衡,其中,在判断出待均衡动力电池单体满足中止均衡的条件时,控制均衡回路断开以中止对待均衡动力电池单体进行均衡,并在待均衡动力电池单体满足继续均衡的条件时,控制所述均衡回路导通以继续对待均衡动力电池进行均衡,直至对待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡,其中,均衡时间计算值为待均衡动力电池单体所需均衡时间值;在判断出待均衡动力电池单体不满足中止均衡的条件时,控制所述均衡回路导通以继续对待均衡动力电池单体进行均衡,直至对待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡。
在该实施例中,启动对动力电池的均衡之后,满足中止均衡的条件时中止正在进行的均衡,满足继续均衡的条件时继续已经中止的均衡累计进行均衡的时间,均衡时间计算值 是进行均衡的动力电池达到均衡要求所需要的时间,当累计的均衡时间满足均衡时间计算值时终止均衡,也就是将累计的均衡时间作为衡量是否完成均衡的条件,使得对动力电池进行均衡的时间满足该动力电池的均衡要求,从而进行均衡的动力电池能够缩小动力电池单体之间的电量和电压差,解决了动力电池的均衡效率比较低的技术问题,达到了提高动力电池的均衡效率的效果。
由于该动力电池均衡控制电路的结构简单,便于应用在动力电池的均衡控制中,降低了应用成本,提高了该控制电路的实用性。
可选地,电池状态检测回路包括:用于监测动力电池电压的电压监测回路、用于监测动力电池电流的电流监测回路和用于监测动力电池内阻的内阻监测回路,电压监测回路、电流监测回路和内阻监测回路均与控制单元相连接。电压检测回路可以监测动力电池的开路电压,电流监测回路可以监测动力电池的电流,内阻监测回路可以监测动力电池的电阻,以便于控制单元根据上述三个回路的监测数据来计算待均衡动力电池单体的均衡时间计算值。
可选地,均衡回路包括均衡电阻和开关,其中,均衡电阻、开关和动力电池单体串联。通过开关的打开和关闭来控制均衡回路的导通和关断,在开关打开的状态下,均衡回路导通以对待均衡动力电池单体进行均衡;在开关关闭的状态下,均衡回路关闭以停止对待均衡动力电池单体的均衡。
可选地,动力电池的动力电池单体为二次电池,二次电池包括以下任意一种:铅酸电池、镍氢电池和锂离子电池。
通过上述电路,可以控制均衡回路的导通或者关断来控制对待均衡动力电池单体进行的均衡,使得待均衡动力电池单体的均衡时间能够满足其均衡时间计算值,而均衡时间计算值是根据待均衡动力电池单体的参数计算得到的,能够反映待均衡动力电池单体所需的均衡时间,从而避免了均衡时间过短导致的均衡效率低的技术问题,达到了提高均衡效率的技术效果。
实施例3
根据本发明实施例,提供了一种动力电池均衡控制装置的实施例,该动力电池均衡控制装置可以执行实施例1的动力电池均衡控制方法,上述方法也可以通过该装置执行。
如图5所示,该动力电池均衡控制装置包括:检测单元52、判断单元54、第一控制单元56和第二控制单元58。
检测单元52用于检测满足预设均衡启动条件的待均衡动力电池单体,并启动对待均衡动力电池单体进行均衡。
判断单元54用于在对待均衡动力电池单体进行均衡的过程中,判断待均衡动力电池单体是否满足中止均衡的条件。
第一控制单元56用于在判断出待均衡动力电池单体满足中止均衡的条件时,中止对动力电池单体进行均衡,并在待均衡动力电池单体满足继续均衡的条件时,继续对待均衡动力电池进行均衡,直至对待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡,其中,均衡时间计算值为待均衡动力电池单体所需均衡时间值。
第二控制单元58用于在判断出待均衡动力电池单体不满足中止均衡的条件时,继续对待均衡动力电池单体进行均衡,直至对待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡。
在该实施例中,启动对动力电池的均衡之后,满足中止均衡的条件时中止正在进行的均衡,满足继续均衡的条件时继续已经中止的均衡累计进行均衡的时间,均衡时间计算值是进行均衡的动力电池达到均衡要求所需要的时间,当累计的均衡时间满足均衡时间计算值时终止均衡,也就是将累计的均衡时间作为衡量是否完成均衡的条件,使得对动力电池进行均衡的时间满足该动力电池的均衡要求,从而进行均衡的动力电池能够缩小动力电池单体之间的电量和电压差,解决了动力电池的均衡效率比较低的技术问题,达到了提高动力电池的均衡效率的效果。
可选地,采用以下公式计算得到均衡时间计算值:
T=(C*△SoC*R)/U
其中,T为均衡时间计算值,U为开路电压,单位为V,△SoC为待均衡动力电池单体与最低荷电状态值的动力电池单体的差异值,单位为%,R为均衡电阻,单位为Ω。
动力电池在充放电状态或者静置状态都能进行均衡,并没有限制电池处于充、放电状态或者静置状态。而现有技术只能在静置状态下进行均衡,动力电池进行充放电也就完成了均衡。由于均衡时间短,使得均衡效果较差,进而导致均衡效率比较低。相比之下,该实施例的方案中动力电池进行均衡的时间更长,满足动力电池单体达到电量和电压差均衡的要求,提高了均衡效率。
在满足中止条件的情况下中止均衡,可以防止均衡过程动力电池SoC过低导致电池过放,也可以防止均衡过程中动力电池静置时间过长导致整车12V电源亏电,在使得均衡的时长达到动力电池所需的时间的情况下,还能避免过放和亏电的问题,达到了保证动力电池的使用安全和使用寿命的技术效果。
在动力电池静置的时间没有达到均衡中止静置时间,或者在动力电池处于中止状态时,获取待均衡动力电池的累计均衡时间。累计均衡时间是从一次启动均衡开始到均衡结束之前的时间段内当前已经进行的均衡时间。当累计均衡时间达到均衡时间计算值时,确认完 成对待均衡动力电池的均衡,终止对待均衡动力电池的均衡。如果没有达到均衡时间计算值,则继续均衡,并重新获取待均衡动力电池单体的当前荷电状态值。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (12)

  1. 一种动力电池均衡控制方法,其特征在于,包括:
    检测满足预设均衡启动条件的待均衡动力电池单体,并启动对所述待均衡动力电池单体进行均衡;
    在对所述待均衡动力电池单体进行均衡的过程中,判断所述待均衡动力电池单体是否满足中止均衡的条件;
    在判断出所述待均衡动力电池单体满足所述中止均衡的条件时,中止对所述待均衡动力电池单体进行均衡,并在所述待均衡动力电池单体满足继续均衡的条件时,继续对所述待均衡动力电池进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡,其中,所述均衡时间计算值为所述待均衡动力电池单体所需均衡时间值;
    在判断出所述待均衡动力电池单体不满足所述中止均衡的条件时,继续对所述待均衡动力电池单体进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足所述均衡时间计算值时终止均衡。
  2. 根据权利要求1所述的方法,其特征在于,检测满足预设均衡启动条件的待均衡动力电池单体,并启动对所述待均衡动力电池单体进行均衡包括:
    检测所述动力电池的静置时间,并判断所述动力电池的静置时间是否满足预设静置时间;
    在检测出所述动力电池的静置时间满足所述预设静置时间时,获取所述动力电池中各个动力电池单体的荷电状态值,以得到最低荷电状态值所对应的动力电池单体;
    判断所述最低荷电状态值是否处于预设荷电状态值的范围;
    如果所述最低荷电状态值处于所述预设荷电状态值的范围内,则获取各个动力电池单体与所述最低荷电状态值的动力电池单体的差异值,以对所述差异值满足预设差异值的待均衡动力电池单体启动均衡,其中,所述待均衡动力电池单体为相对所述最低荷电状态值的动力电池单体具有高电量的电池单体;
    如果所述最低荷电状态值没有处于所述预设荷电状态值的范围内,则比较均衡时间间隔是否达到预设时间间隔,并在所述均衡时间间隔达到所述预设时间间隔时,获取各个动力电池单体与所述最低荷电状态值的动力电池单体的差异值,以对所述差异值满足预设差异值的高电量电池单体启动均衡,其中,所述均衡时间间隔为当前时间与上一次均衡完成时间的时间间隔。
  3. 根据权利要求1或2所述的方法,其特征在于,在判断出所述待均衡动力电池单体 满足所述中止均衡的条件时,中止对所述动力电池单体进行均衡包括:
    获取所述待均衡动力电池单体的当前荷电状态值;
    判断所述待均衡动力电池单体的当前荷电状态值是否达到均衡中止荷电状态值;
    若所述待均衡动力电池单体的当前荷电状态值达到所述均衡中止荷电状态值,则中止均衡;
    若所述待均衡动力电池单体的当前荷电状态值未达到所述均衡中止荷电状态值,则判断所述待均衡动力电池单体的静置时间是否达到均衡中止静置时间,并在所述待均衡动力电池单体的静置时间达到所述均衡中止静置时间时,中止均衡,其中,所述待均衡动力电池单体的静置时间为所述待均衡动力电池单体从开始静置到当前时间处于静置状态的累计时间。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,在所述待均衡动力电池单体满足继续均衡的条件时,继续对所述待均衡动力电池进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡包括:
    获取所述待均衡动力电池单体的累计均衡时间;
    判断所述累计均衡时间是否达到所述均衡时间计算值;
    若所述累计均衡时间达到所述均衡时间计算值,则终止均衡;
    若所述累计均衡时间未达到所述均衡时间计算值,则返回获取所述待均衡动力电池单体的当前荷电状态值的步骤。
  5. 根据权利要求4所述的方法,其特征在于,继续对所述待均衡动力电池进行均衡包括:
    在所述累计均衡时间未达到所述均衡时间计算值的情况下,检测所述动力电池的状态是否改变;
    在所述动力电池的状态改变,且满足所述继续均衡的条件时,继续对所述待均衡动力电池进行均衡,其中,所述继续均衡的条件包括:
    所述动力电池各个动力电池单体的最低荷电状态值处于预设荷电状态值的范围,或者动力电池单体与所述最低荷电状态值的动力电池单体的差异值满足预设差异值。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,在所述待均衡动力电池单体满足继续均衡的条件时,继续对所述待均衡动力电池进行均衡包括:
    在所述动力电池处于充、放电状态或者静置状态,并且所述待均衡动力电池单体满足继续均衡的条件时,继续对所述待均衡动力电池进行均衡。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,采用以下公式计算得到所述均衡时间计算值:
    T=(C*△SoC*R)/U
    其中,T为所述均衡时间计算值,U为开路电压,△SoC为待均衡动力电池单体与最低荷电状态值的动力电池单体的差异值,R为均衡电阻。
  8. 一种动力电池均衡控制电路,其特征在于,包括:
    电池状态监测回路,与动力电池相连接,用于监测所述动力电池中各个动力电池单体的荷电状态值;
    均衡回路,与所述各个动力电池单体串联,用于对所述动力电池中的待均衡动力电池进行均衡;
    计时器,用于计算所述待均衡动力电池进行均衡的时间;
    控制单元,与所述电池状态监测回路、所述均衡回路、所述计时器和所述动力电池相连接,用于根据所述电池状态监测回路监测到的数据和所述待均衡动力电池进行均衡的时间控制所述均衡回路对所述待均衡动力电池进行均衡,其中,在判断出所述待均衡动力电池单体满足中止均衡的条件时,控制所述均衡回路断开以中止对所述待均衡动力电池单体进行均衡,并在待均衡动力电池单体满足继续均衡的条件时,控制所述均衡回路导通以继续对所述待均衡动力电池进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡,其中,所述均衡时间计算值为待均衡动力电池单体所需均衡时间值;在判断出所述待均衡动力电池单体不满足所述中止均衡的条件时,控制所述均衡回路导通以继续对所述待均衡动力电池单体进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足所述均衡时间计算值时终止均衡。
  9. 根据权利要求8所述的电路,其特征在于,所述电池状态检测回路包括:
    用于监测所述动力电池电压的电压监测回路、用于监测所述动力电池电流的电流监测回路和用于监测所述动力电池内阻的内阻监测回路,所述电压监测回路、所述电流监测回路和所述内阻监测回路均与所述控制单元相连接。
  10. 根据权利要求8或9所述的电路,其特征在于,所述均衡回路包括均衡电阻和开关,其中,所述均衡电阻、所述开关和所述动力电池单体串联。
  11. 根据权利要求8-10任一项所述的电路,其特征在于,所述动力电池的动力电池单体为二次电池,所述二次电池包括以下任意一种:
    铅酸电池、镍氢电池和锂离子电池。
  12. 一种动力电池均衡控制装置,其特征在于,包括:
    检测单元,用于检测满足预设均衡启动条件的待均衡动力电池单体,并启动对所述待均衡动力电池单体进行均衡;
    判断单元,用于在对所述待均衡动力电池单体进行均衡的过程中,判断所述待均衡动 力电池单体是否满足中止均衡的条件;
    第一控制单元,用于在判断出所述待均衡动力电池单体满足所述中止均衡的条件时,中止对所述动力电池单体进行均衡,并在所述待均衡动力电池单体满足继续均衡的条件时,继续对所述待均衡动力电池进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足均衡时间计算值时终止均衡,其中,所述均衡时间计算值为所述待均衡动力电池单体所需均衡时间值;
    第二控制单元,用于在判断出所述待均衡动力电池单体不满足所述中止均衡的条件时,继续对所述待均衡动力电池单体进行均衡,直至对所述待均衡动力电池单体进行均衡的时间满足所述均衡时间计算值时终止均衡。
PCT/CN2016/103312 2015-11-17 2016-10-25 动力电池均衡控制方法、装置和电路 WO2017084474A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/770,037 US10742044B2 (en) 2015-11-17 2016-10-25 Equalization control method, apparatus, and circuit for power battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510791921.9A CN105449295B (zh) 2015-11-17 2015-11-17 动力电池均衡控制方法、装置和电路
CN201510791921.9 2015-11-17

Publications (1)

Publication Number Publication Date
WO2017084474A1 true WO2017084474A1 (zh) 2017-05-26

Family

ID=55559246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103312 WO2017084474A1 (zh) 2015-11-17 2016-10-25 动力电池均衡控制方法、装置和电路

Country Status (3)

Country Link
US (1) US10742044B2 (zh)
CN (1) CN105449295B (zh)
WO (1) WO2017084474A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110015180A (zh) * 2017-08-31 2019-07-16 比亚迪股份有限公司 电池均衡方法、系统、车辆、存储介质及电子设备
EP3677465A4 (en) * 2017-08-31 2020-10-28 BYD Company Limited BATTERY REGALIZATION METHOD AND SYSTEM, VEHICLE, STORAGE MEDIUM AND ELECTRONIC DEVICE

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449295B (zh) * 2015-11-17 2018-02-02 北京新能源汽车股份有限公司 动力电池均衡控制方法、装置和电路
CN107819336A (zh) * 2016-09-13 2018-03-20 成都天府新区光启未来技术研究院 锂电池的均衡方法、装置和系统
CN109428130B (zh) * 2017-08-31 2020-09-15 比亚迪股份有限公司 电池均衡方法、系统、车辆、存储介质及电子设备
CN109435770B (zh) * 2017-08-31 2022-09-09 比亚迪股份有限公司 电池均衡方法、系统、车辆、存储介质及电子设备
CN109428362B (zh) * 2017-09-03 2022-09-09 浙江遨优动力系统有限公司 一种电池管理系统的主动均衡策略优化方法
CN109428363B (zh) * 2017-09-03 2022-09-06 浙江遨优动力系统有限公司 一种电池管理系统的被动均衡策略优化方法
CN107994278B (zh) 2017-11-13 2024-04-09 深圳市道通智能航空技术股份有限公司 一种电池均衡装置、方法及无人机
CN108091945B (zh) * 2017-12-04 2019-08-13 华中科技大学 一种液态金属电池的电压监测方法、状态估计方法及装置
CN108233464B (zh) * 2017-12-08 2020-02-21 简式国际汽车设计(北京)有限公司 一种电池组主动均衡方法和系统
CN108321906A (zh) * 2018-03-16 2018-07-24 奇瑞汽车股份有限公司 一种动力电池组静态均衡控制方法
CN109866654B (zh) * 2019-02-28 2022-04-01 中国第一汽车股份有限公司 一种动力电池单体电量均衡方法
CN109995102B (zh) * 2019-03-01 2022-04-01 中国第一汽车股份有限公司 一种电动汽车用动力电池均衡系统及控制方法
CN110729797A (zh) * 2019-11-13 2020-01-24 昆山宝创新能源科技有限公司 车辆及其电池组均衡的控制方法、装置和系统
CN113376532A (zh) * 2020-02-25 2021-09-10 北京新能源汽车股份有限公司 一种电池组均衡模块的检测方法、装置及系统
CN111679216B (zh) * 2020-06-24 2022-08-02 重庆长安新能源汽车科技有限公司 一种检测动力电池高压连接可靠性的装置和方法
CN112531822B (zh) * 2020-11-24 2023-05-23 潍柴动力股份有限公司 一种电池均衡方法和装置
CN112615405B (zh) * 2020-12-14 2022-09-09 湖北亿纬动力有限公司 一种电池组的被动均衡方法、设备及装置
WO2023240533A1 (zh) * 2022-06-16 2023-12-21 北京小米移动软件有限公司 一种电池控制方法、装置、终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740827A (zh) * 2009-12-25 2010-06-16 奇瑞汽车股份有限公司 一种锂离子动力电池的主动均衡系统及其均衡方法
CN102064586A (zh) * 2011-01-14 2011-05-18 奇瑞汽车股份有限公司 一种新型电池均衡器控制系统及其控制方法
CN102361100A (zh) * 2011-10-19 2012-02-22 奇瑞汽车股份有限公司 一种动力锂离子电池均衡的控制方法
CN105449295A (zh) * 2015-11-17 2016-03-30 北京新能源汽车股份有限公司 动力电池均衡控制方法、装置和电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8339100B2 (en) * 2009-09-29 2012-12-25 O2Micro Inc Systems and methods for cell balancing
JP5537913B2 (ja) * 2009-11-30 2014-07-02 三洋電機株式会社 均等化装置、それを備えたバッテリシステムおよび電動車両
JP5562617B2 (ja) * 2009-11-30 2014-07-30 三洋電機株式会社 均等化装置、バッテリシステムおよび電動車両
CN102457078A (zh) * 2011-03-30 2012-05-16 凹凸电子(武汉)有限公司 电池均衡电路、电池均衡系统及方法
JP2013116007A (ja) * 2011-11-30 2013-06-10 Toyota Industries Corp 電圧均等化制御装置及び電圧均等化制御方法
JP2013247690A (ja) * 2012-05-23 2013-12-09 Toyota Industries Corp 電圧均等化装置
CN104795857B (zh) * 2015-03-23 2017-09-29 上海交通大学 锂离子电池能量均衡的实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740827A (zh) * 2009-12-25 2010-06-16 奇瑞汽车股份有限公司 一种锂离子动力电池的主动均衡系统及其均衡方法
CN102064586A (zh) * 2011-01-14 2011-05-18 奇瑞汽车股份有限公司 一种新型电池均衡器控制系统及其控制方法
CN102361100A (zh) * 2011-10-19 2012-02-22 奇瑞汽车股份有限公司 一种动力锂离子电池均衡的控制方法
CN105449295A (zh) * 2015-11-17 2016-03-30 北京新能源汽车股份有限公司 动力电池均衡控制方法、装置和电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110015180A (zh) * 2017-08-31 2019-07-16 比亚迪股份有限公司 电池均衡方法、系统、车辆、存储介质及电子设备
EP3677465A4 (en) * 2017-08-31 2020-10-28 BYD Company Limited BATTERY REGALIZATION METHOD AND SYSTEM, VEHICLE, STORAGE MEDIUM AND ELECTRONIC DEVICE
US11292360B2 (en) 2017-08-31 2022-04-05 Byd Company Limited Battery equalization method and system, vehicle, storage medium, and electronic device

Also Published As

Publication number Publication date
CN105449295B (zh) 2018-02-02
CN105449295A (zh) 2016-03-30
US10742044B2 (en) 2020-08-11
US20180316196A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2017084474A1 (zh) 动力电池均衡控制方法、装置和电路
WO2020244588A1 (zh) 电池管理系统、电池管理方法、电源模块及无人机
JP7045570B2 (ja) バッテリー制御装置及びこれを含むエネルギー貯蔵システム
EP3641046B1 (en) Charging device and charging method
TWI463763B (zh) 充電控制裝置、方法及其電池管理系統
JP2008508685A (ja) マルチセルリチウム電池システムのセル平衡化の方法及び装置
CN104993534B (zh) 一种移动终端及其充电控制方法
CN107749500B (zh) 用于电池均衡的方法及装置
TW200810188A (en) Method for charging portable electronic apparatus
WO2018053721A1 (zh) 电源的充电方法、充电控制系统、充电装置及无人机
CN111137170A (zh) 一种动力电池组均衡系统、换电系统及电池包
CN112026587A (zh) 一种电池均衡系统控制方法、装置及存储介质
CN106356580B (zh) 一种对移动终端可充电电池进行放电处理的方法及系统
CN114801883A (zh) 电池均衡控制方法、系统、存储介质、电子设备和车辆
CN111106400A (zh) 一种电池控制方法置和电池管理设备
JP2012182915A (ja) 電力貯蔵装置、電源装置、バッテリユニット、および制御装置
CN107294163B (zh) 具有蓄电池单体均衡功能的蓄电池状态巡检方法及装置
WO2015029568A1 (ja) 蓄電システム、蓄電池の制御方法及びプログラム
TW201203780A (en) Battery-charging equalization circuit, battery cell, and battery-charging equalization method
CN115805846A (zh) 一种电池管理系统的控制方法及车辆
CN115441539A (zh) Bms的均衡方法、终端
WO2022160186A1 (zh) 充电的方法和功率转换设备
CN112768793A (zh) 一种电池组主动均衡补偿方法、装置、系统及电子设备
TWI569557B (zh) 充電電池的充電控制方法
CN113328499B (zh) 一种电池组容量均衡方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865651

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770037

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865651

Country of ref document: EP

Kind code of ref document: A1