WO2018053721A1 - 电源的充电方法、充电控制系统、充电装置及无人机 - Google Patents

电源的充电方法、充电控制系统、充电装置及无人机 Download PDF

Info

Publication number
WO2018053721A1
WO2018053721A1 PCT/CN2016/099611 CN2016099611W WO2018053721A1 WO 2018053721 A1 WO2018053721 A1 WO 2018053721A1 CN 2016099611 W CN2016099611 W CN 2016099611W WO 2018053721 A1 WO2018053721 A1 WO 2018053721A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
constant current
batteries
power
Prior art date
Application number
PCT/CN2016/099611
Other languages
English (en)
French (fr)
Inventor
王文韬
张彩辉
郑大阳
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/099611 priority Critical patent/WO2018053721A1/zh
Priority to CN201680002539.8A priority patent/CN107078528B/zh
Priority to CN201811522883.7A priority patent/CN109728622A/zh
Publication of WO2018053721A1 publication Critical patent/WO2018053721A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to a charging method of a power source, a charging control system, a charging device and a drone, and belongs to the technical field of charging and discharging control.
  • Lithium-ion batteries are now widely used in various electronic products such as mobile phones, computers and drones due to their superior charge, discharge and energy storage characteristics. With the development of the economy, consumers have put forward higher requirements for the power supply and battery life of electronic products. In order to meet the above requirements, more and more electronic products are beginning to set up multiple batteries as power supply sources, thereby passing multiple batteries. String/parallel to provide greater power or longer battery life for electronic products.
  • the existing lithium-ion battery charging method generally charges another lithium-ion battery after a lithium-ion battery is fully charged, but such a charging method causes the power source to have a larger number of batteries, and then the entire power source is fully charged. The longer it will be, the more difficult it is to quickly charge a power source that includes multiple batteries.
  • the invention provides a charging method of a power source, a charging control system, a charging device and a drone to solve the problem that the charging time is too long when a plurality of batteries are included in the power source in the prior art.
  • a charging method of a power source comprising a plurality of batteries, each of the batteries corresponding to a separate charging switch, the charging method comprising the steps of: acquiring each of the batteries Status information; controlling an operating state of each of the battery charging switches according to the status information to enable one of the batteries to perform constant voltage charging while another of the batteries is subjected to constant current charging.
  • a charging control system including: a processor and a plurality of charging switches; the plurality of charging switches are electrically connected to the processor, and each charging switch is used for electrical connection a battery for controlling a state of charge of the battery; the processor for acquiring state information of each of the batteries, and controlling an operating state of a charging switch of each of the batteries according to the state information, such that one of the batteries While the battery is being subjected to constant voltage charging, the other of the batteries is subjected to constant current charging.
  • a charging apparatus includes: a housing and the above charging control system; the housing is provided with a plurality of battery compartments for respectively housing a plurality of batteries; and the charging control system is installed Inside the housing.
  • a drone includes: a power source, an ESC, and a rack; the power source and an ESC are mounted on the rack; the power source includes: a plurality of batteries and the charging The plurality of batteries are respectively housed in a plurality of battery compartments disposed on a casing of the charging device, and the plurality of batteries are electrically connected to the electric power for supplying power to the electric power.
  • the charging method, the charging control system, the charging device and the drone of the power supply provided by the invention can control the power of a power adapter and the constant voltage by controlling one battery to be charged at a constant voltage while the other battery is subjected to constant current charging. Time is reused to shorten the charging time of the power supply.
  • FIG. 1 is a schematic flow chart of a charging method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a charging method according to another embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a charging method according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a charging control system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a charging control system according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a charging control system according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • Unmanned aerial vehicle 10. Power supply;
  • duty ratio used in the following embodiments refers to the ratio of the effective charging time to the unit time of the battery which is subjected to constant current charging by pulse current.
  • the power source in the following embodiments refers to a power source including a plurality of batteries, which can be installed in an electronic product such as a drone, a computer, a mobile phone, etc., to supply power components in the electronic products.
  • the battery in the above power source may specifically be a lithium ion battery which is now widely used in electronic products.
  • the lithium ion battery of the drone will be described in detail below, but those skilled in the art should be able to understand that other existing battery types can be directly or simply changed.
  • the charging method, the charging control system, and the charging device mentioned in the following embodiments are used.
  • Trickle charging phase - Trickle charging is generally used to precharge (recovery charging) a fully discharged battery.
  • this stage is not the stage that every lithium-ion battery will go through.
  • Constant current charging phase When the battery voltage rises above the trickle charge threshold, the charging current is increased for constant current charging.
  • the charging time of the constant current is related to the power of the power adapter, that is, the larger the power output of the power adapter and the larger the output current, the shorter the charging time.
  • Constant voltage charging phase When the battery voltage rises to the constant current charging threshold, the constant current charging ends and the constant voltage charging phase begins.
  • the existing charging termination judging methods mainly include a minimum charging current judging method and a timer control method; wherein the minimum current method monitoring method monitors the charging current in the constant voltage charging phase, and terminates charging when the charging current is reduced to a preset range.
  • the timer control method is from constant The timing of the charging phase begins, and the charging process is terminated after two hours of continuous charging. Therefore, the charging time from the beginning to the end of the constant voltage charging phase is relatively fixed, and the power dependency with the power adapter is not high.
  • constant current charging the charging process for the constant current charging phase in this application is collectively referred to as constant current charging, and does not distinguish whether the power adapter uses a continuous steady current to charge the battery or a non-continuous steady current to conduct the battery. Charging.
  • the embodiment provides a charging method for a power source for quickly charging a power source including a plurality of batteries, wherein each battery has a separate charging switch, and the power source can be installed in the drone.
  • FIG. 1 is a schematic flow chart of a charging method provided by this embodiment.
  • the charging method of this embodiment includes the following steps:
  • the status information of each battery can be obtained by using a sensor, for example, the voltage of each battery can be obtained by a voltage sensor, or the charging current and the discharging current of each battery can be obtained by the current sensor, and each temperature sensor can be used to obtain each The temperature of each battery can also obtain the remaining power and total power of each battery.
  • a sensor for example, the voltage of each battery can be obtained by a voltage sensor, or the charging current and the discharging current of each battery can be obtained by the current sensor, and each temperature sensor can be used to obtain each The temperature of each battery can also obtain the remaining power and total power of each battery.
  • the working state of the charging switch of each battery is controlled according to the state information, for example, the charging switch is controlled to be in a state of being charged, a continuous constant current charging state, a constant voltage charging state, a pulse constant current charging state, and a charging termination state. Switch between.
  • the charging switch can be first switched from the state to be charged to the continuous constant current charging state or the pulsed constant current charging state to perform constant current charging on the battery.
  • the constant current is charged to a certain extent, the battery is continuously and continuously charged.
  • the flow charging state or the pulse constant current charging state is switched to the constant voltage charging state, thereby realizing switching of the battery between the constant current charging circuit and the constant voltage charging circuit by switching the working state of the charging switch.
  • only one battery in the power source is required to perform constant voltage charging, and the other battery is in constant current charging, and does not limit the specificity of each charging switch when the above conditions are met.
  • Work strategy For example, when there is a battery in the power source for constant voltage charging, there may be an overlap of at least two batteries for constant current charging, or a time during which all batteries in the power source perform constant current charging do not overlap.
  • the starting time of the first battery for constant voltage charging is exactly the starting time of the second battery for constant current charging; or the cutoff time of the first battery for constant current charging is later than the second battery.
  • the starting time of constant current charging; or, the starting time of the first battery for constant voltage charging is earlier than the starting time of the second battery for constant current charging.
  • the charging switch can be a mechanical switch or an electronic switch, such as a MOSFET switch, a triode, or the like.
  • the use of the electronic switch in the present embodiment can more effectively implement the charging control, further reduce the charging time, and make the charging method simpler, and make the charging control system based on the charging method of the present embodiment more compact.
  • the battery may include: a casing and a plurality of cells disposed in the casing, wherein the plurality of cells may be connected in series, or connected in parallel, or in a plurality of cells There are both cells connected in series and cells connected in parallel.
  • the working state of the charging switch corresponding to each battery is controlled by the obtained state information of each battery, so that one battery in the power source is performing constant voltage charging, and another battery is performing constant current. Charging, thereby achieving power supply charging power, charging time or both, effectively shortening the charging time of the power supply including multiple batteries.
  • the method can use a low power power adapter to charge more batteries when the power charging time is the same, thereby reducing the size and weight of the power adapter, and being more portable, and It also reduces the cost of charging.
  • the charging method of the embodiment can shorten the charging time of the entire power source by at least one. hour.
  • the above test may have a small influence on the degree of shortening of the charging time due to the influence of the actual environment, which should be recognized by those skilled in the art.
  • the total charging power of the power adapter and the constant voltage charging time of each battery can be fully utilized, especially when the timing of constant current charging of one battery is exactly When another battery is started at the time of constant current charging, time multiplexing can be more fully realized.
  • the embodiment provides a charging method for a power source for quickly charging a power source including a plurality of batteries, wherein each battery has a separate charging switch, and the power source can be installed in the drone.
  • FIG. 2 is a schematic flow chart of a charging method provided by this embodiment.
  • the charging method of this embodiment is a further improvement based on Embodiment 1, wherein each battery corresponds to a constant current charging circuit, including the following steps:
  • the status information of each battery can be obtained by using a sensor, for example, the voltage of each battery can be obtained by a voltage sensor, or the charging current and the discharging current of each battery can be obtained by the current sensor, and each temperature sensor can be used to obtain each The temperature of each battery can also obtain the remaining power and total power of each battery.
  • a sensor for example, the voltage of each battery can be obtained by a voltage sensor, or the charging current and the discharging current of each battery can be obtained by the current sensor, and each temperature sensor can be used to obtain each The temperature of each battery can also obtain the remaining power and total power of each battery.
  • each of the batteries corresponds to a constant current charging circuit that is controlled to be turned on/off by a charging switch, and the constant current charging circuit is configured to electrically connect the power adapter and the battery;
  • the charging switch of each of the batteries is controlled to sequentially turn on the constant current charging circuit of each of the batteries in the charging time of the entire power source according to the state information.
  • the charging switch for controlling each battery sequentially turns on the constant current charging circuit for the entire power supply charging time, which means that the constant current charging circuit of each battery is turned on in chronological order.
  • the first battery constant current charging circuit can be turned on at the beginning of charging to perform constant current charging on the first battery for 40 minutes.
  • the constant current charging circuit of the second battery is turned on to enter the second battery.
  • the constant current charging circuit of the third battery is turned on after 40 minutes to perform constant current charging on the third battery, and then the fourth battery constant current charging circuit is turned on after 40 minutes.
  • the fourth battery is subjected to constant current charging until the end of charging of the power source, for example, charging is completed after 150 minutes.
  • the constant current charging circuit of the first battery starts to conduct constant current charging at 10:00
  • the constant current charging circuit of the second battery starts to conduct constant current charging at 10:40
  • the third The constant current charging circuit of one battery starts to conduct constant current charging at 11:20
  • the constant current charging circuit of the fourth battery starts to conduct constant current charging at 12:00, and the charging process of the entire power supply is at 12:30. End.
  • the on-time interval of the constant current charging circuit of each battery in the above example is the same, but in practical applications, the on-time of the constant current charging circuit of the two batteries may also be different, depending on the battery.
  • the constant current charging circuit of each battery is sequentially turned on by controlling the charging switch, so that each battery is sequentially subjected to constant current charging, so that the charging power of the power adapter can be effectively utilized, that is, When a battery is subjected to constant voltage charging, the power adapter can also supply a large current to another battery for constant current charging, thereby shortening the charging time of the entire power supply.
  • the embodiment provides a charging method for a power source for quickly charging a power source including a plurality of batteries, wherein each battery has a separate charging switch, and the power source can be installed in the drone.
  • the charging method of this embodiment is a further improvement based on the embodiment 2:
  • Controlling according to a comparison result of the voltage of the battery currently being charged and the preset voltage threshold, switching the battery currently undergoing constant current charging from constant current charging to constant voltage charging, and controlling the charging switch of the battery to be subjected to constant current charging
  • the constant current charging circuit is turned on to perform constant current charging on the battery to be subjected to constant current charging.
  • the preset voltage threshold may be a voltage value of a constant current charging and a constant voltage charging turning point, and may be, for example, 4.2V.
  • the preset voltage threshold can also be other voltage values required in practical applications.
  • the battery that is currently undergoing constant current charging is switched from constant current charging to constant voltage charging, and any method in the prior art, such as a resistance change of the varistor element in the control circuit, may be used to cause charging.
  • the voltage is increased to switch from constant current charging to constant voltage charging.
  • switching from constant current charging to constant voltage charging can also be achieved by switching of the switches.
  • each of the batteries further corresponds to a constant voltage charging circuit that is controlled to be turned on/off by the charging switch, and the constant voltage charging circuit is connected in parallel with the constant current charging circuit.
  • the following methods can be implemented:
  • the charging switch that is currently performing constant current charging is turned off to cut off the constant current charging circuit to cut off the constant current charging, and the constant voltage charging circuit of the battery currently undergoing constant current charging is turned on for constant voltage charging.
  • the charge switch can include a constant current charge switch connected in series on a constant current charging circuit.
  • the constant current charging switch can be controlled to be turned on and the constant voltage charging switch is turned off, thereby turning on the constant current charging circuit to perform constant current charging of the battery using a large current.
  • the constant current charging switch can be controlled to be turned off and the constant voltage charging switch is turned on, thereby turning on the constant voltage charging circuit to perform constant voltage charging on the battery.
  • other control strategies in the prior art can also be used to implement the on and off of the constant current charging circuit and the constant voltage charging circuit, for example, by using a MOSFET switch or a triode to control the on and off of different circuits.
  • the constant voltage charging circuit may include a boosting element for supplying a charging voltage to the battery during constant voltage charging.
  • the boosting component can be a resistor or a DC/DC boosting module.
  • the battery that conducts the constant voltage charging circuit for constant voltage charging can quickly obtain a suitable charging voltage, such as a full charging voltage, by the boosting action of the boosting element.
  • the power supply is electrically connected to the power adapter.
  • the charging switch of the first battery is controlled to turn on the constant current charging circuit of the first battery, and the first battery is subjected to constant current charging.
  • the constant current charging switch (K1) on the constant current charging circuit of the first battery is closed.
  • the charging switch for controlling the first battery turns off the constant current charging circuit and turns on the constant voltage charging circuit, and the first battery is turned on. Start with constant voltage charging.
  • the constant current charging switch (K1) on the constant current charging circuit of the first battery may be turned off, and the constant voltage charging switch (K5) on the constant voltage charging circuit of the first battery may be closed.
  • the charging switch of the second battery is controlled to turn on the constant current charging circuit of the second battery, and the second battery starts to perform constant current charging.
  • the second battery closes the constant current charging switch (K2) on the constant current charging circuit.
  • the charging switch for controlling the second battery turns off the constant current charging circuit and turns on the constant voltage charging circuit, and the second battery starts to perform constant voltage.
  • Charging For example, the constant current charging switch (K2) on the constant current charging circuit of the second battery may be turned off, and the constant voltage charging switch (K6) on the constant voltage charging circuit of the second battery may be closed.
  • the charging switch of the third battery is controlled to turn on the constant current charging circuit of the third battery, and the third battery starts to perform constant current charging.
  • it may be the third battery that closes the constant current charging switch (K3) on the constant current charging circuit.
  • the charging switch for controlling the third battery turns off the constant current charging circuit and turns on the constant voltage charging circuit, and the third battery starts to perform constant voltage. Charging.
  • the constant current charging switch (K3) on the constant current charging circuit of the third battery may be turned off, and the constant voltage charging switch (K7) on the constant voltage charging circuit of the third battery may be closed.
  • the charge switch of the fourth battery is controlled to turn on the constant current charging circuit of the fourth battery, and the fourth battery starts constant current charging.
  • it may be the fourth battery that closes the constant current charging switch (K4) on the constant current charging circuit.
  • the charging switch for controlling the fourth battery turns off the constant current charging circuit and turns on the constant voltage charging circuit, and the fourth battery starts to perform constant voltage. Charging.
  • the constant current charging switch (K4) on the constant current charging circuit of the fourth battery may be turned off, and the constant voltage charging switch (K8) on the constant voltage charging circuit of the fourth battery may be closed.
  • the above constant current charging switch (K1, K2, K3, K4) and the constant voltage charging switch (K5, K6, K7, K8) may be a MOSFET switch or a triode which is communicatively connected with the single chip microcomputer, thereby realizing a constant current charging switch by the single chip microcomputer ( Real-time and precise control of K1, K2, K3, K4) and constant voltage charging switches (K5, K6, K7, K8) to improve control efficiency and control a battery to switch from constant current charging to constant voltage charging in a suitable time. And control another battery to enter the constant current charge Electricity, which shortens the charging time of the power supply.
  • the above charging method can shorten the charging time of the power supply by about one hour. Moreover, after actual testing of a power source having more batteries, the inventors have found that the more the number of batteries of the power source, the shorter the charging time of the power source compared to the power source having the same number of batteries in the prior art.
  • the charging method of the embodiment by comparing the voltage value of the battery undergoing constant current charging with a preset threshold, it is possible to switch the state of charge of the battery that is performing constant current charging, and to control the constant current to be performed.
  • the charged battery enters constant current charging to achieve multiplexing of power adapter power and constant voltage charging time, thereby shortening the charging time of the power supply.
  • the embodiment provides a charging method for a power source for quickly charging a power source including a plurality of batteries, wherein each battery has a separate charging switch, and the power source can be installed in the drone.
  • FIG. 3 is a schematic flow chart of a charging method provided by this embodiment.
  • the charging method provided in this embodiment is a further improvement based on the embodiment 1, and specifically includes the following steps:
  • the status information of each battery can be obtained by using a sensor, for example, the voltage of each battery can be obtained by a voltage sensor, or the charging current and the discharging current of each battery can be obtained by the current sensor, and each temperature sensor can be used to obtain each The temperature of each battery can also obtain the remaining power and total power of each battery.
  • a sensor for example, the voltage of each battery can be obtained by a voltage sensor, or the charging current and the discharging current of each battery can be obtained by the current sensor, and each temperature sensor can be used to obtain each The temperature of each battery can also obtain the remaining power and total power of each battery.
  • the pulse current is realized by controlling the on-time of the charging switch to the constant current charging circuit of each battery.
  • it may be any control method used in the prior art.
  • it may be a periodic fast on/off charging switch, so that a large current pulse is generated in a moment when the charging switch is turned on, thereby providing a larger constant current charging of the battery than when the power adapter is used for continuous stable charging.
  • Current to shorten the charging time As for the length of time interval between the opening and closing of the charging switch of each battery, it can be controlled according to actual needs, for example, according to the battery's power, temperature, or a combination of the two.
  • the charging switch of each battery is controlled to turn on the constant current charging circuit in a unit time, and the essence is to alternately switch the battery to be turned on with the power adapter in a unit time, that is, to rotate in a unit time. Switch the output object of the power adapter.
  • the power adapter generates a larger current than the continuous stable output, that is, the pulse current, which in turn increases the output power of the power adapter and shortens the constant current charging time of each battery.
  • each battery is alternately switched to be electrically connected to the power adapter in turn, a pulse current is generated to charge each battery with constant current, and therefore, each battery can be left stationary when the other batteries are subjected to constant current charging. period.
  • the chemical intensification effect of the lithium ion battery can be reduced, thereby shortening the time of the constant current charging phase of the battery.
  • the battery when a battery is subjected to constant current charging using a pulse current to reach a turning point of a constant current charging phase and a constant voltage charging phase, the battery can be switched from constant current charging to constant voltage charging by any means in the prior art.
  • the charging switch of the battery that directly controls the end of the constant current charging is always turned on for constant voltage charging, or the charging switch for pulse charging can be directly turned off, and the battery of the constant current charging end is electrically connected. Constant voltage charging is performed on the constant voltage charging circuit.
  • the power supply is electrically connected to the power adapter.
  • the turned-on battery provides a momentary high current pulse that distorts the power adapter's charging power to reduce the battery's constant current charging time.
  • the charging switches (K1, K2, K3, K4) corresponding to each battery may be turned on in turn to switch the first battery, the second battery, the third battery, and the fourth battery in turn.
  • the power adapter is electrically connected and generates a pulse current during switching to charge the battery at a constant current.
  • the charging switch (K1, K2, K3, K4) may be a MOSFET switch or a triode that is connected with the single chip microcomputer, so that real-time and precise control of the charging switch (K1, K2, K3, K4) is realized by the single-chip microcomputer to improve Control efficiency and produce as large a pulse current as possible and a more appropriate charging time per unit time.
  • the duty ratio of each battery using the pulse current for constant current charging is the same or different.
  • the control operation for each battery can be simplified, and the process of pulse charging can be realized only by setting the control strategy in advance.
  • the duty ratio of each battery using the pulse current for constant current charging is different, it is possible to perform more precise control of each battery charging according to different states of each battery, thereby improving charging efficiency.
  • different duty ratios can be assigned to each battery using a pulse current for constant current charging according to the power amount information of each battery. For example, a battery with a larger amount of power can use a smaller duty cycle, while a battery with a larger amount of power uses a larger duty cycle.
  • the duty cycle of the battery for constant current charging is reduced to obtain a better charging effect, so that the charging time of each battery can be more balanced and coordinated to reduce the charging of the power source. time.
  • the duty ratio may be 0-100.
  • the above duty ratio can achieve a better balance between the batteries, and can also achieve reasonable control of the chemical excitation of the battery.
  • the constant current charging circuit of each battery is turned on by controlling the charging switch corresponding to each battery, so that the power adapter can generate a large current pulse to perform constant current charging for each battery, and thus The charging power of the power adapter is increased, which in turn shortens the time during the constant current charging phase of the power supply.
  • the embodiment provides a charging method for a power source for quickly charging a power source including a plurality of batteries, wherein each battery has a separate charging switch, and the power source can be installed in the drone.
  • the charging power of the battery currently undergoing constant current charging in the power source is substantially equal to the difference between the total charging power and the charging power of other batteries performing constant voltage charging.
  • the constant current charging is sequentially performed by using a power source including four batteries:
  • the power of its constant current charging is equal to the total power of the power adapter.
  • the power of the second battery's constant current charging is approximately equal to the difference between the total power of the power adapter minus the first battery constant voltage charging power. value.
  • the constant current charging power of the third battery is approximately equal to the total power of the power adapter minus the first battery constant voltage charging. The difference between the power and the power of the second battery after constant voltage charging.
  • the constant current charging power of the fourth battery is substantially equal to the total power of the power adapter minus the first The difference between the power of the battery constant voltage charging, the power of the second battery constant voltage charging and the power of the third battery constant voltage charging.
  • the power of each battery for constant current charging is equal to the charging power of the power adapter, but this one charging power is greater than the rated charging power.
  • the constant current charging power of the other three batteries is equal to the difference between the charging power of the power adapter and the power of the first battery constant voltage charging.
  • the constant current charging power of the third battery and the fourth battery are respectively equal to the charging power of the power adapter minus the power of the first battery constant voltage charging and the second The difference between the power of the battery after constant voltage charging.
  • the fourth battery When the third battery also enters the constant voltage charging phase, the fourth battery performs a constant current charging power equal to the power adapter's charging power minus the first battery constant voltage charging power, the second battery constant voltage charging power, and The difference between the power of the third battery and the constant voltage charging.
  • the power of the power adapter can be multiplexed, and the constant voltage charging time of the power source can be multiplexed, thereby shortening the charging time of the power source.
  • the embodiment provides a charging method for a power source for quickly charging a power source including a plurality of batteries, wherein each battery has a separate charging switch, and the power source can be installed in the drone.
  • Each of the two batteries is divided into one group, one of which is subjected to constant voltage charging while the other battery is subjected to constant current charging.
  • the battery and the power adapter can be more matched, thereby improving the charging efficiency and shortening the charging time of the power source.
  • the batteries when different batteries of the power source have different states, the batteries can be grouped so that the respective charging processes of the batteries after the grouping can be matched with each other, thereby shortening the charging time of the battery and shortening Charging time of the entire power supply.
  • a battery that requires only constant voltage charging and a battery that requires constant current charging may be divided into one group, thereby reducing the charging process, that is, no need to try again.
  • the battery that performs constant voltage charging performs constant current charging switching, thereby shortening the charging time of the entire power supply.
  • the power source when the power source can externally connect a plurality of power adapters, that is, the power source can be charged through a plurality of charging circuits.
  • the power source By grouping the batteries, all power adapters can simultaneously charge the power supply, thereby reducing the charging time of the power supply and achieving fast charging.
  • the charging power of the power adapter when the charging power of the power adapter is significantly greater than the power of the constant current charging of each battery, by grouping the batteries, the plurality of batteries can be charged through the power adapter, thereby fully utilizing the power adapter. Charging power to shorten the charging of the power supply between.
  • the power of the grouped battery and the power adapter can be more matched to fully utilize the power of the power adapter for each group.
  • the battery is charged to shorten the charging time of the power supply.
  • the charging voltage when the battery is subjected to constant voltage charging is the full charging voltage of the battery.
  • the embodiment provides a charging control system for charging control of a power source including a plurality of batteries, so that the power source can be quickly charged, and the power source can be installed in the drone.
  • FIG. 4 is a schematic structural diagram of a charging control system provided by this embodiment.
  • the charging control system of this embodiment includes a processor and a plurality of charging switches.
  • the plurality of charging switches are electrically connected to the processor, and each of the charging switches is used for electrically connecting one battery to control the charging state of the battery.
  • the processor is configured to acquire status information of each battery, and control the working state of the charging switch of each battery according to the status information, so that one of the batteries performs constant voltage charging while the other battery performs constant current charging.
  • the status information of each battery can be obtained by using a sensor, for example, the voltage of each battery can be obtained by a voltage sensor, or the charging current and the discharging current of each battery can be obtained by the current sensor, and each temperature sensor can be used to obtain each The temperature of each battery can also obtain the remaining power and total power of each battery.
  • a sensor for example, the voltage of each battery can be obtained by a voltage sensor, or the charging current and the discharging current of each battery can be obtained by the current sensor, and each temperature sensor can be used to obtain each The temperature of each battery can also obtain the remaining power and total power of each battery.
  • the above may control the working state of the charging switch of each battery according to the state information, and may control the charging switch to switch between the state to be charged, the continuous constant current charging state, the constant voltage charging state, the pulse constant current charging state, and the charging termination state. .
  • the state is switched to the constant voltage charging state, thereby realizing the switching between the constant current charging circuit and the constant voltage charging circuit by switching the working state of the charging switch.
  • only one battery in the power source is required to perform constant voltage charging, and the other battery is in constant current charging, and does not limit the specificity of each charging switch when the above conditions are met.
  • Work strategy For example, when there is a battery in the power source for constant voltage charging, there may be an overlap of at least two batteries for constant current charging, or a time during which all batteries in the power source perform constant current charging do not overlap.
  • the starting time of the first battery for constant voltage charging is exactly the starting time of the second battery for constant current charging; or the cutoff time of the first battery for constant current charging is later than the second battery.
  • the starting time of constant current charging; or, the starting time of the first battery for constant voltage charging is earlier than the starting time of the second battery for constant current charging.
  • the charging switch can be a mechanical switch or an electronic switch, such as a MOSFET switch, a triode, or the like.
  • the use of the electronic switch in the present embodiment can more effectively implement the charging control, further reduce the charging time, and make the charging method simpler, and make the charging control system based on the charging method of the present embodiment more compact.
  • the battery may include: a casing and a plurality of cells disposed in the casing, wherein the plurality of cells may be connected in series or in parallel, or in a plurality of cells There are both cells connected in series and cells connected in parallel.
  • the processor controls the working state of the charging switch corresponding to each battery by acquiring the state information of each battery, so that one battery in the power source is in constant voltage charging, and another battery is in the battery.
  • the constant current charging is performed to realize the charging power of the power adapter, the charging time, or the multiplexing of the two, thereby effectively shortening the charging time of the power source including the plurality of batteries.
  • the charging method of the present embodiment can shorten the charging time of the entire power supply by at least one hour.
  • the above test may have a small influence on the degree of shortening of the charging time due to the influence of the actual environment, which should be recognized by those skilled in the art.
  • the total charging power of the power adapter and the constant voltage charging time of each battery can be fully utilized, especially when the timing of constant current charging of one battery is exactly When another battery is started at the time of constant current charging, time multiplexing can be more fully realized.
  • the embodiment provides a charging control system for charging control of a power source including a plurality of batteries, so that the power source can be quickly charged, and the power source can be installed in the drone.
  • FIG. 5 is a schematic structural diagram of a charging control system provided by this embodiment.
  • the charging control system of this embodiment is a further improvement based on Embodiment 7, wherein each battery corresponds to a constant current charging circuit that is controlled to be turned on/off by a charging switch, and the constant current charging is performed.
  • the circuit is used to electrically connect the power adapter and the battery;
  • the processor is configured to control, according to the status information, a charging switch of each of the batteries to sequentially turn on a constant current charging circuit of each of the batteries during a charging time of the entire power source.
  • the status information of each battery can be obtained by using a sensor.
  • the voltage of each battery can be obtained by a voltage sensor, or the charging current and the discharging current of each battery can be obtained by the current sensor, and each temperature sensor can be used to obtain each The temperature of each battery can also obtain the remaining power and total power of each battery.
  • the charging switch for controlling each battery sequentially turns on the constant current charging circuit for the entire power supply charging time, which means that the constant current charging circuit of each battery is turned on in chronological order.
  • the first battery constant current charging circuit can be turned on at the beginning of charging to perform constant current charging on the first battery for 40 minutes.
  • the constant current charging circuit of the second battery is turned on to perform constant current charging on the second battery, and after 40 minutes, the constant current charging circuit of the third battery is turned on to perform constant on the third battery.
  • the flow is charged, and after 40 minutes, the constant current charging circuit of the fourth battery is turned on to perform constant current charging on the fourth battery until the end of charging of the power source, for example, charging is completed after 150 minutes.
  • the constant current charging circuit of the first battery starts to conduct constant current charging at 10:00
  • the constant current charging circuit of the second battery starts to conduct constant current charging at 10:40
  • the third The constant current charging circuit of one battery starts to conduct constant current charging at 11:20
  • the constant current charging circuit of the fourth battery starts to conduct constant current charging at 12:00, and the charging process of the entire power supply is at 12:30. End.
  • the on-time interval of the constant current charging circuit of each battery in the above example is the same, but in practical applications, the on-time of the constant current charging circuit of the two batteries may also be different, depending on the battery.
  • Factors such as battery size, battery temperature, and the amount of charging current that the power adapter provides to the battery.
  • the above-mentioned influencing factors do not hinder the limitation that each battery is sequentially turned on once during the entire period of charging, and it is understood that the above charging method and the power supply in the given example are necessarily a battery while charging. When charging at constant voltage, another battery is being charged with constant current.
  • the processor can sequentially turn on the constant current charging circuit of each battery by controlling the charging switch, thereby causing each battery to be sequentially
  • the charging power of the power adapter can be effectively utilized, so that when a battery is subjected to constant voltage charging, the power adapter can also supply a large current to another battery for constant current charging, thereby shortening Charging time of the entire power supply.
  • the charging control system of the embodiment can select a low-power power adapter to charge more batteries, thereby reducing the size and weight of the power adapter, making it more portable, and reducing the cost of charging.
  • the embodiment provides a charging control system for charging control of a power source including a plurality of batteries, so that the power source can be quickly charged, and the power source can be installed in the drone.
  • the charging method of the present embodiment is a further improvement based on the embodiment 8:
  • the processor is configured to control, according to a comparison result between a voltage of a battery currently being charged and a preset voltage threshold, to switch the battery that is currently undergoing constant current charging from constant current charging to constant voltage charging, and control the constant current charging to be performed.
  • the charging switch of the battery turns on the constant current charging circuit to perform constant current charging on the battery to be subjected to constant current charging.
  • the preset voltage threshold may be a voltage value of a constant current charging and a constant voltage charging turning point, and may be, for example, 4.2V.
  • the preset voltage threshold can also be other voltage values required in practical applications.
  • the battery that is currently undergoing constant current charging is switched from constant current charging to constant voltage charging, and any method in the prior art, such as a resistance change of the varistor element in the control circuit, may be used to cause charging.
  • the voltage is increased to switch from constant current charging to constant voltage charging.
  • switching from constant current charging to constant voltage charging can also be achieved by switching of the switches.
  • each of the batteries further corresponds to a constant voltage charging circuit that is controlled to be turned on/off by the charging switch, and the constant voltage charging circuit is connected in parallel with the constant current charging circuit;
  • the processor is configured to control the charging switch currently performing constant current charging to turn off the constant current charging circuit to cut off the constant current charging, and turn on the constant voltage charging circuit of the battery currently undergoing constant current charging to perform constant voltage Charging.
  • the charge switch can include a constant current charge switch connected in series on a constant current charging circuit.
  • the constant current charging switch can be controlled to be turned on and the constant voltage charging switch is turned off, thereby turning on the constant current charging circuit to perform constant current charging of the battery using a large current.
  • the constant current charging switch can be controlled to be turned off and the constant voltage charging switch is turned on, thereby turning on the constant voltage charging circuit to perform constant voltage charging on the battery.
  • other control strategies in the prior art can also be used to implement the on and off of the constant current charging circuit and the constant voltage charging circuit, for example, by using a MOSFET switch or a triode to control the on and off of different circuits.
  • the constant voltage charging circuit may include a boosting element for supplying a charging voltage to the battery during constant voltage charging.
  • the boosting component can be a resistor or a DC/DC boosting module.
  • the battery that conducts the constant voltage charging circuit for constant voltage charging can quickly obtain a suitable charging voltage, such as a full charging voltage, by the boosting action of the boosting element.
  • the power supply is electrically connected to the power adapter.
  • the charging switch of the first battery is controlled to turn on the constant current charging circuit of the first battery, and the first battery is subjected to constant current charging.
  • the constant current charging switch (K1) on the constant current charging circuit of the first battery is closed.
  • the charging switch of the pool turns off the constant current charging circuit and turns on the constant voltage charging circuit, and the first battery starts to perform constant voltage charging.
  • the constant current charging switch (K1) on the constant current charging circuit of the first battery may be turned off, and the constant voltage charging switch (K5) on the constant voltage charging circuit of the first battery may be closed.
  • the charging switch of the second battery is controlled to turn on the constant current charging circuit of the second battery, and the second battery starts to perform constant current charging.
  • the second battery closes the constant current charging switch (K2) on the constant current charging circuit.
  • the charging switch for controlling the second battery turns off the constant current charging circuit and turns on the constant voltage charging circuit, and the second battery starts to perform constant voltage.
  • Charging For example, the constant current charging switch (K2) on the constant current charging circuit of the second battery may be turned off, and the constant voltage charging switch (K6) on the constant voltage charging circuit of the second battery may be closed.
  • the charging switch of the third battery is controlled to turn on the constant current charging circuit of the third battery, and the third battery starts to perform constant current charging.
  • it may be the third battery that closes the constant current charging switch (K3) on the constant current charging circuit.
  • the charging switch for controlling the third battery turns off the constant current charging circuit and turns on the constant voltage charging circuit, and the third battery starts to perform constant voltage. Charging.
  • the constant current charging switch (K3) on the constant current charging circuit of the third battery may be turned off, and the constant voltage charging switch (K7) on the constant voltage charging circuit of the third battery may be closed.
  • the charge switch of the fourth battery is controlled to turn on the constant current charging circuit of the fourth battery, and the fourth battery starts constant current charging.
  • it may be the fourth battery that closes the constant current charging switch (K4) on the constant current charging circuit.
  • the charging switch for controlling the fourth battery turns off the constant current charging circuit and turns on the constant voltage charging circuit, and the fourth battery starts to perform constant voltage. Charging.
  • the constant current charging switch (K4) on the constant current charging circuit of the fourth battery may be turned off, and the constant voltage charging switch (K8) on the constant voltage charging circuit of the fourth battery may be closed.
  • the above constant current charging switch (K1, K2, K3, K4) and the constant voltage charging switch (K5, K6, K7, K8) may be a MOSFET switch or a triode which is communicatively connected with the single chip microcomputer, thereby realizing a constant current charging switch by the single chip microcomputer ( Real-time, precise control of K1, K2, K3, K4) and constant voltage charging switches (K5, K6, K7, K8) to improve control efficiency and control in the right time
  • One battery is switched from constant current charging to constant voltage charging, and another battery is controlled to enter constant current charging, thereby shortening the charging time of the power supply.
  • the charging control system of the embodiment controls the charging process of the power supply according to the above control manner, so that the charging time of the power source can be shortened by about one hour. Moreover, after actual testing of a power source having more batteries, the inventors have found that the more the number of batteries of the power source, the shorter the charging time of the power source compared to the power source having the same number of batteries in the prior art.
  • the charging control system of the present embodiment by comparing the voltage value of the battery that is undergoing constant current charging with a preset threshold, it is possible to switch the state of charge of the battery that is undergoing constant current charging, and to control the constant to be performed.
  • the stream-charged battery enters a constant current charge to achieve multiplexing of the power adapter power and the constant voltage charging time, thereby shortening the charging time of the power source.
  • the embodiment provides a charging control system for charging control of a power source including a plurality of batteries, so that the power source can be quickly charged, and the power source can be installed in the drone.
  • FIG. 6 is a schematic structural diagram of a charging control system provided by this embodiment.
  • the processor is configured to control, according to the state information, a charging switch of each of the batteries to turn on a constant current charging circuit of each of the batteries in a unit time, to continuously use a pulse current for each of the batteries in turn. Stream charging.
  • the status information of each battery can be obtained by using a sensor.
  • the voltage of each battery can be obtained by a voltage sensor, or the charging current and the discharging current of each battery can be obtained by the current sensor, and each temperature sensor can be used to obtain each The temperature of each battery can also obtain the remaining power and total power of each battery.
  • the pulse current is realized by the processor controlling the on-time of the constant current charging circuit of each battery by controlling the charging switch.
  • the charging switch may be used in the prior art. Any control method.
  • it may be a periodic fast on/off charging switch, so that a large current pulse is generated in a moment when the charging switch is turned on, thereby providing a larger constant current charging of the battery than when the power adapter is used for continuous stable charging.
  • the length of time interval between the opening and closing of the charging switch of each battery it can be controlled according to actual needs, for example, according to the battery's power, temperature, or a combination of the two.
  • the charging switch of each battery is controlled to turn on the constant current charging circuit in a unit time, and the essence is to alternately switch the battery to be turned on with the power adapter in a unit time, that is, to rotate in a unit time. Switch the output object of the power adapter.
  • the power adapter generates a larger current than the continuous stable output, that is, the pulse current, which in turn increases the output power of the power adapter and shortens the constant current charging time of each battery.
  • each battery is alternately switched to be electrically connected to the power adapter in turn, a pulse current is generated to charge each battery with constant current, and therefore, each battery can be left stationary when the other batteries are subjected to constant current charging. period.
  • the chemical intensification effect of the lithium ion battery can be reduced, thereby shortening the time of the constant current charging phase of the battery.
  • the battery when a battery is subjected to constant current charging using a pulse current to reach a turning point of a constant current charging phase and a constant voltage charging phase, the battery can be switched from constant current charging to constant voltage charging by any means in the prior art.
  • the charging switch of the battery that directly controls the end of the constant current charging is always turned on for constant voltage charging, or the charging switch for pulse charging can be directly turned off, and the battery of the constant current charging end is electrically connected. Constant voltage charging is performed on the constant voltage charging circuit.
  • the power supply is electrically connected to the power adapter.
  • the turned-on battery provides a momentary high current pulse that distorts the power adapter's charging power to reduce the battery's constant current charging time.
  • the charging switches (K1, K2, K3, K4) corresponding to each battery may be turned on in turn to switch the first battery, the second battery, the third battery, and the fourth battery in turn.
  • the power adapter is electrically connected and generates a pulse current during switching to charge the battery at a constant current.
  • the charging switch (K1, K2, K3, K4) may be a MOSFET switch or a triode that is communicatively coupled to the processor, thereby real-time and precise control of the charging switches (K1, K2, K3, K4) by the processor. In order to improve the control efficiency, and generate the largest possible pulse current and more suitable charging time per unit time.
  • the duty ratio of each battery using the pulse current for constant current charging is the same or different.
  • the control operation for each battery can be simplified, and the process of pulse charging can be realized only by setting the control strategy in advance.
  • the duty ratio of each battery using the pulse current for constant current charging is different, it is possible to perform more precise control of each battery charging according to different states of each battery, thereby improving charging efficiency.
  • different duty ratios can be assigned to each battery using a pulse current for constant current charging according to the power amount information of each battery. For example, a battery with a larger amount of power can use a smaller duty cycle, while a battery with a larger amount of power uses a larger duty cycle.
  • the duty cycle of the battery for constant current charging is reduced to obtain a better charging effect, so that the charging time of each battery can be more balanced and coordinated to reduce the charging of the power source. time.
  • the duty ratio may be 0-100.
  • the above duty ratio can achieve a better balance between the batteries, and can also achieve reasonable control of the chemical excitation of the battery.
  • the charging control system of the embodiment controls the constant current charging circuit of each battery in turn by controlling the charging switch corresponding to each battery, so that the power adapter can generate a large current pulse to perform constant current charging for each battery. This increases the charging power of the power adapter, which in turn shortens the time during the constant current charging phase of the power supply.
  • the embodiment provides a charging control system for charging control of a power source including a plurality of batteries, so that the power source can be quickly charged, and the power source can be installed in the drone.
  • the charging control system provided in this embodiment is further improved on the basis of any of the above embodiments 7-11:
  • the charging power of the battery currently undergoing constant current charging in the power source is substantially equal to the difference between the total charging power and the charging power of other batteries performing constant voltage charging.
  • the constant current charging is sequentially performed by using a power source including four batteries as an example:
  • the power of its constant current charging is equal to the total power of the power adapter.
  • the power of the second battery's constant current charging is approximately equal to the difference between the total power of the power adapter minus the first battery constant voltage charging power. value.
  • the constant current charging power of the third battery is approximately equal to the total power of the power adapter minus the first battery constant voltage charging. The difference between the power and the power of the second battery after constant voltage charging.
  • the constant current charging power of the fourth battery is substantially equal to the total power of the power adapter minus the first The difference between the power of the battery constant voltage charging, the power of the second battery constant voltage charging and the power of the third battery constant voltage charging.
  • the power of each battery for constant current charging is equal to the charging power of the power adapter, but this one charging power is greater than the rated charging power.
  • the constant current charging power of the other three batteries is equal to the difference between the charging power of the power adapter and the power of the first battery constant voltage charging.
  • the constant current charging power of the third battery and the fourth battery are respectively equal to the charging power of the power adapter minus the power of the first battery constant voltage charging and the second The difference between the power of the battery after constant voltage charging.
  • the fourth battery When the third battery also enters the constant voltage charging phase, the fourth battery performs constant current charging power equal to the power adapter's charging power minus the first battery constant voltage charging power, and the second battery The difference between the power of the constant voltage charging and the power of the third battery constant voltage charging.
  • the power of the power adapter can be multiplexed, and the constant voltage charging time of the power source can also be multiplexed, thereby shortening the charging time of the power source.
  • the embodiment provides a charging control system for charging control of a power source including a plurality of batteries, so that the power source can be quickly charged, and the power source can be installed in the drone.
  • the charging system provided in this embodiment is a further improvement based on the embodiment of any of the above embodiments 7-12:
  • Each of the two batteries is divided into one group, one of which is subjected to constant voltage charging while the other battery is subjected to constant current charging.
  • the battery and the power adapter can be more matched, thereby improving the charging efficiency and shortening the charging time of the power source.
  • the batteries when different batteries of the power source have different states, the batteries can be grouped so that the respective charging processes of the batteries after the grouping can be matched with each other, thereby shortening the charging time of the battery and shortening Charging time of the entire power supply.
  • a battery that requires only constant voltage charging and a battery that requires constant current charging may be divided into one group, thereby reducing the charging process, that is, no need to try again.
  • the battery that performs constant voltage charging performs constant current charging switching, thereby shortening the charging time of the entire power supply.
  • the power source when the power source can externally connect a plurality of power adapters, that is, the power source can be charged through a plurality of charging circuits.
  • the power source By grouping the batteries, all power adapters can simultaneously charge the power supply, thereby reducing the charging time of the power supply and achieving fast charging.
  • the charging power of the power adapter when the charging power of the power adapter is significantly greater than the power of the constant current charging of each battery, by grouping the batteries, the plurality of batteries can be charged through the power adapter, thereby fully utilizing the power adapter.
  • the charging power is used to shorten the charging time of the power supply.
  • the power of the grouped battery and the power adapter can be more matched to Make full use of the power of the power adapter to charge each group of batteries in turn to shorten the charging time of the power supply.
  • the charging voltage when the battery is subjected to constant voltage charging is the full charging voltage of the battery.
  • the embodiment provides a charging device for quickly charging a power source including a plurality of batteries, which can be installed in a drone.
  • the charging device provided in this embodiment includes: a housing and the charging control system of any of the embodiments 7-13.
  • the housing is provided with a plurality of battery compartments for respectively accommodating a plurality of batteries; the charging control system is installed in the housing.
  • the housing may have any shape and any size, and may be made of any material such as a metal material and a non-metal material.
  • the charging device of this embodiment by controlling one battery to be charged at a constant voltage and another battery to perform constant current charging, the power of the power adapter and the time of constant voltage charging can be multiplexed, thereby shortening the charging time of the power source.
  • the embodiment provides a drone that can be quickly charged by the installed power source.
  • FIG. 7 is a schematic structural view of the drone provided by the embodiment.
  • the drone 1 provided in this embodiment includes a power source 10, an ESC 30, and a chassis 50, and the power source 10 and the ESC 30 are mounted on the chassis 50.
  • the power source 10 includes: a plurality of batteries and the charging device in the above embodiment; the plurality of batteries are respectively housed in a plurality of battery compartments provided on a casing of the charging device, and the plurality of batteries are electrically connected to the ESC 30, Used to power ESC 30.
  • the rack 50 may be any type of rack used in the existing drone, which is not limited herein.
  • the ESC 30 can also use any ESC in the existing UAV, and is not limited herein.
  • each battery can be a lithium ion battery or other rechargeable batteries of the prior art.
  • each battery may include a plurality of cells, which may be connected in series, in parallel, or both in series and in parallel.
  • the power of the power adapter and the time of constant voltage charging can be multiplexed, thereby shortening the charging time of the power source.
  • the related apparatus and method disclosed may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer processor 101 to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes.

Abstract

一种电源的充电方法,所述电源包括多个电池,每个所述电池对应有单独的充电开关,所述充电方法包括以下步骤:获取每个所述电池的状态信息;根据所述状态信息控制每个所述电池的充电开关的工作状态,以使其中一个所述电池进行恒压充电的同时,另一个所述电池进行恒流充电。本发明提供的充电方法,通过控制一个电池在恒压充电的同时,另一个电池进行恒流充电,可以对电源适配器的功率和恒压充电的时间进行复用,从而缩短电源的充电时间。本发明还提供了一种充电控制系统、充电装置及无人机。

Description

电源的充电方法、充电控制系统、充电装置及无人机 技术领域
本发明涉及一种电源的充电方法、充电控制系统、充电装置及无人机,属于充放电控制技术领域。
背景技术
锂离子电池由于其优越的充放电和储能特性,现在被广泛应用在手机、电脑和无人机等各种电子产品中。随着经济的发展,消费者对于电子产品的供电量、续航时间提出了更高的要求,为了呼应上述需求,越来越多的电子产品开始设置多个电池作为供电电源,从而通过多个电池的串/并联来为电子产品提供更大的电量或者更长的续航时间。
但是,这种设置多个电池作为电源的方式为锂离子电池的快速充电提出了新的挑战。现有的锂离子电池充电方式一般是在一个锂离子电池充满电后再对另一个锂离子电池进行充电,但这样的充电方式会导致电源的电池数越多则将整个电源充满电的时间就会越长,难以实现对包括多个电池的电源进行快速充电的目的。
发明内容
本发明提供一种电源的充电方法、充电控制系统、充电装置及无人机,以解决现有技术中电源中包括多个电池时充电时间过长的问题。
根据本发明的一实施例,提供一种电源的充电方法,所述电源包括多个电池,每个所述电池对应有单独的充电开关,所述充电方法包括以下步骤:获取每个所述电池的状态信息;根据所述状态信息控制每个所述电池的充电开关的工作状态,以使其中一个所述电池进行恒压充电的同时,另一个所述电池进行恒流充电。
根据本发明的另一实施例,提供一种充电控制系统,包括:处理器和多个充电开关;所述多个充电开关与所述处理器电连接,且每个充电开关均用于电连接一个电池,以控制所述电池的充电状态;所述处理器用于获取每个所述电池的状态信息,并根据所述状态信息控制每个所述电池的充电开关的工作状态,以使其中一个所述电池进行恒压充电的同时,另一个所述电池进行恒流充电。
根据本发明的又一实施例,提供一种充电装置,包括:壳体和上述充电控制系统;所述壳体设有多个电池仓,用于分别收纳多个电池;所述充电控制系统安装在所述壳体内。
根据本发明的再一实施例,提供一种无人机,包括:电源、电调和机架;所述电源和电调安装在所述机架上;所述电源包括:多个电池和上述充电装置;所述多个电池分别收纳在所述充电装置的壳体上设置的多个电池仓内,所述多个电池与所述电调电连接,用于为所述电调供电。
本发明提供的电源的充电方法、充电控制系统、充电装置及无人机,通过控制一个电池在恒压充电的同时,另一个电池进行恒流充电,可以对电源适配器的功率和恒压充电的时间进行复用,从而缩短电源的充电时间。
附图说明
图1为本发明一实施例提供的充电方法的流程示意图;
图2为本发明另一实施例提供的充电方法的流程示意图;
图3为本发明又一实施例提供的充电方法的流程示意图;
图4为本发明一实施例提供的充电控制系统的结构示意图;
图5为本发明另一实施例提供的充电控制系统的结构示意图;
图6为本发明又一实施例提供的充电控制系统的结构示意图;
图7为本发明一实施例提供的无人机的结构示意图。
图中:
1、无人机;                    10、电源;
30、电调                       50、机架。
具体实施方式
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
以下实施例中使用的技术术语“占空比”是指通过脉冲电流进行恒流充电的电池的有效充电时间与单位时间的比值。
在以下实施例中的电源,指包括多个电池在内的电源,这种电源可以安装在例如无人机、电脑、手机等在内的电子产品中,以为这些电子产品中的用电部件供电。进一步,上述电源中的电池具体可以是现在在电子产品中应用非常广泛的锂离子电池。为了使下述具体实施例更加简单、明了,以下将以无人机的锂离子电池为例进行详细介绍,但本领域技术人员应该能够理解,其他现有的电池类型也可以直接或者简单变换后使用以下实施例中提到的充电方法、充电控制系统、充电装置。
下面先简要介绍一下锂离子电池的充电过程:
涓流充电阶段——涓流充电一般是用来先对完全放电的电池进行预充(恢复性充电)。当然,这个阶段并不是每个锂离子电池都会经历的阶段。
恒流充电阶段——当电池电压上升到涓流充电阈值以上时,提高充电电流进行恒流充电。恒流充电的时间与电源适配器功率相关,即电源适配器输出功率越大、输出电流越大则充电时间越短。
恒压充电阶段——当电池电压上升到恒流充电阈值时,恒流充电结束,开始恒压充电阶段。
充电终止阶段——当电池充电电量达到恒压充电阈值时,恒压充电结束,进入充电终止阶段。现有的充电终止判断方式主要有最小充电电流判断法和定时器控制法;其中,最小电流法监视法是监视恒压充电阶段的充电电流,并在充电电流减小到预设范围时终止充电;定时器控制法是从恒 压充电阶段开始时计时,持续充电两个小时后终止充电过程。因此,从恒压充电阶段开始到结束的充电时间相对固定,与电源适配器的功率相关性不高。
最后,还需要说明一点,在本申请中对于恒流充电阶段的充电过程均统称为恒流充电,并不区分电源适配器是使用连续稳定电流对电池进行充电,还是使用非连续稳定电流对电池进行充电。
实施例1
本实施例提供一种电源的充电方法,用于对包括多个电池的电源进行快速充电,其中,每个电池对应有单独的充电开关,上述电源可以安装在无人机中。
图1是本实施例提供的充电方法的流程示意图。
如图1所示,本实施例的充电方法包括以下步骤:
S101、获取每个所述电池的状态信息。
具体的,可以通过传感器获取每个电池的状态信息,例如可以是通过电压传感器获取每个电池的电压,也可以通过电流传感器获取每个电池的充电电流、放电电流,还可以通过温度传感器获取每个电池的温度,也可以获取每个电池的剩余电量、总电量等。本领域技术人员应该能够理解,上述获取电池电压、电流、温度以及电量中的一种或者多种信息的方式是现有技术中普遍使用的方式,在此不再进行展开说明。
S102、根据所述状态信息控制每个所述电池的充电开关的工作状态,以使其中一个所述电池进行恒压充电的同时,另一个所述电池进行恒流充电。
具体的,根据状态信息来控制每个电池的充电开关的工作状态,例如可以是控制充电开关在待充电状态、连续恒流充电状态、恒压充电状态、脉冲恒流充电状态以及充电终止状态之间进行切换。举例来说,可以先控制充电开关由待充电状态切换至连续恒流充电状态或者脉冲恒流充电状态,以对电池进行恒流充电,当恒流充电到一定程度后再将该电池由连续恒流充电状态或者脉冲恒流充电状态切换至恒压充电状态,从而实现通过对充电开关工作状态的切换,实现电池在恒流充电电路和恒压充电电路之间的切换。
需要说明的是,在本实施例中只需要使得电源中有一个电池在进行恒压充电的同时,另一个电池在进行恒流充电即可,不限制每一个充电开关在满足上述条件时的具体工作策略。例如,当电源中有一个电池进行恒压充电时,可以是至少有两个电池进行恒流充电的时间有重叠,也可以是电源中的所有电池进行恒流充电的时间不重叠。
以电源中包括四个电池为例,当第一个电池进行恒压充电时,第二个电池进行恒流充电,而第三个电池和第四个电池未充电或者也只进行恒压充电。优选地,第一个电池进行恒压充电的起始时刻正好是第二个电池进行恒流充电的起始时刻;或者,第一个电池进行恒流充电的截止时刻晚于第二个电池进行恒流充电的起始时刻;又或者,第一个电池进行恒压充电的起始时刻早于第二个电池进行恒流充电的起始时刻。
在一个优选的示例中,充电开关可以是机械开关或者是电子开关,例如可以是MOSFET开关,三极管等。本实施例中使用电子开关可以更有效的实现充电控制,进一步减少充电时间,并且使得简化充电方法,并使得基于本实施例充电方法的充电控制系统更加小巧。
在一个优选的示例中,电池可以包括:外壳以及设于所述外壳内的多个电芯,其中,多个电芯之间可以串联在一起,或者并联在一起,又或者多个电芯中既有相互串联的电芯又有相互并联的电芯。通过将多个电芯以上述不同的方式连接在一起,可以得到不同电量或者不同电压的电池以适应不同的应用场景。同时,通过外壳对电芯进行保护,也可以避免在使用过程中损坏电芯,从而提高电池的使用寿命。
本实施例的充电方法,通过获取到的各电池的状态信息来控制每个电池所对应的充电开关的工作状态,使得电源中一个电池在进行恒压充电的时候,另外一个电池在进行恒流充电,从而实现对电源适配器充电功率、充电时间或者二者的复用,有效缩短了包括多电池的电源的充电时间。并且与现有技术的充电方式相比,在电源充电时间相同的情况下,本方法可以使用小功率的电源适配器为更多的电池充电,从而减少电源适配器的体积和重量,更便于携带,并且也降低了充电的成本。
例如,在以100W电源适配器对4个40Wh能量电池进行充电进行实际测试时,本实施例的充电方法可以将整个电源的充电时间缩短至少一个 小时。当然,上述测试可能由于实际环境的影响会对充电时间的缩短程度有小幅的影响,这属于本领域技术人员应该能够认识到的。而且,当电源中所有电池进行恒流充电的时间不重叠时,可以充分利用电源适配器的充电总功率以及每个电池的恒压充电时间,尤其是当一个电池进行恒流充电的截止时刻正好是另一个电池进行恒流充电的起始时刻时,可以更充分的实现时间的复用。
实施例2
本实施例提供一种电源的充电方法,用于对包括多个电池的电源进行快速充电,其中,每个电池对应有单独的充电开关,上述电源可以安装在无人机中。
图2是本实施例提供的充电方法的流程示意图。
如图2所示,本实施例的充电方法是在实施例1的基础上做的进一步改进,其中,每个电池对应有恒流充电电路,包括以下步骤:
S201、获取每个所述电池的状态信息。
具体的,可以通过传感器获取每个电池的状态信息,例如可以是通过电压传感器获取每个电池的电压,也可以通过电流传感器获取每个电池的充电电流、放电电流,还可以通过温度传感器获取每个电池的温度,也可以获取每个电池的剩余电量、总电量等。本领域技术人员应该能够理解,上述获取电池电压、电流、温度以及电量中的一种或者多种信息的方式是现有技术中普遍使用的方式,在此不再进行展开说明。
S202、每个所述电池对应有通过充电开关控制通/断的恒流充电电路,所述恒流充电电路用于电连接电源适配器和所述电池;
根据所述状态信息控制每个所述电池的充电开关在整个电源的充电时间内依次将每个所述电池的恒流充电电路导通一次。
具体的,控制每个电池的充电开关在整个电源充电时间内依次导通一次恒流充电电路,是指按照时间顺序依次将每个电池的恒流充电电路导通。以包括4个40Wh能量电池的电源用100W电源适配器进行充电为例,例如可以在充电开始时先将第一个电池的恒流充电电路导通以对第一个电池进行恒流充电,40分钟后再将第二个电池的恒流充电电路导通以对第二个电池进 行恒流充电,又40分钟后再将第三个电池的恒流充电电路导通以对第三个电池进行恒流充电,再40分钟后再将第四个电池的恒流充电电路导通以对第四个电池进行恒流充电,直到电源充电结束,例如150分钟后充电结束。换句话说,第一个电池的恒流充电电路在10:00时导通开始进行恒流充电,第二个电池的恒流充电电路则在10:40时导通开始恒流充电,第三个电池的恒流充电电路在11:20时导通开始恒流充电,第四个电池的恒流充电电路在12:00时导通开始恒流充电,整个电源的充电过程在12:30时结束。当然,上述示例中每一个电池的恒流充电电路的导通时间间隔相同,但是,在实际应用中,两个电池的恒流充电电路的导通时间也可以是不同的,这取决于电池的电量大小、电池温度以及电源适配器提供给该电池的充电电流大小等因素。但是,上述影响因素并不妨碍各个电池在充电的整个时间段内依次导通一次的限定,并且,可以理解的,上述充电方法以及给出的示例中的电源在充电时必然是一个电池在进行恒压充电时,另外有一个电池在进行恒流充电。
本实施例的充电方法,通过控制充电开关依次将每个电池的恒流充电电路导通,从而使得每个电池依次进行恒流充电,可以使得电源适配器的充电功率能够被有效利用,也即,当一个电池进行恒压充电时,电源适配器还可以为另一个电池提供大电流以进行恒流充电,从而缩短整个电源的充电时间。
实施例3
本实施例提供一种电源的充电方法,用于对包括多个电池的电源进行快速充电,其中,每个电池对应有单独的充电开关,上述电源可以安装在无人机中。
本实施例的充电方法是在实施例2的基础上做的进一步改进:
根据当前正在充电的电池的电压与预设电压阈值的比较结果,控制所述当前正在进行恒流充电的电池由恒流充电切换至恒压充电,并控制待进行恒流充电的电池的充电开关将恒流充电电路导通以对所述待进行恒流充电的电池进行恒流充电。
具体的,预设电压阈值可以是恒流充电和恒压充电转折点的电压值,例如可以是4.2V。当然,预设电压阈值也可以是实际应用中需要的其他电压值。
在本实施例中,将当前正在进行恒流充电的电池由恒流充电切换至恒压充电,可以使用现有技术中的任意方式,比如控制电路中的变阻元件的阻值变化从而使得充电电压升高以实现从恒流充电切换至恒压充电,当然也可以是通过开关的切换来实现从恒流充电切换至恒压充电。
优选地,每个所述电池还对应有通过所述充电开关控制通/断的恒压充电电路,所述恒压充电电路与所述恒流充电电路并联。这样,在实现从恒流充电向恒压充电切换时,可以通过如下方法实现:
控制所述当前正在进行恒流充电的充电开关将恒流充电电路截止以切断恒流充电,并将当前正在进行恒流充电的电池的恒压充电电路导通以进行恒压充电。
例如,充电开关可以包括串联在恒流充电电路上的恒流充电开关。当需要对电池进行恒流充电时,可以控制该恒流充电开关开启而恒压充电开关截止,从而将恒流充电电路导通以使用大电流对该电池进行恒流充电。当需要对电池进行恒压充电时,则可以控制恒流充电开关截止而恒压充电开关开启,从而将恒压充电电路导通以对该电池进行恒压充电。当然,也可以选用现有技术中其他控制策略来实现上述恒流充电电路和恒压充电电路的导通和截止,例如通过MOSFET开关或者三极管以实现对不同电路的导通和截止的控制。
进一步,恒压充电电路可以包括升压元件,用于在恒压充电时为所述电池提供充电电压。
具体的,升压元件可以是电阻或者DC/DC升压模块。这样,通过升压元件的升压作用可以使恒压充电电路导通以进行恒压充电的电池迅速获得合适的充电电压,例如满充电压。
以下以包括四个40Wh能量电池的电源使用100W电源适配器进行充电为例,简要介绍本实施例中一种优选的充电方法的工作过程:
开始充电时,电源与电源适配器电连接。控制第一个电池的充电开关以将第一个电池的恒流充电电路导通,第一个电池进行恒流充电。例如,可以是将第一个电池的恒流充电电路上的恒流充电开关(K1)闭合。
当第一个电池的电压逐步升高至恒流/恒压预设阈值时,控制第一个电池的充电开关将恒流充电电路截止并将恒压充电电路导通,第一个电池开 始进行恒压充电。例如,可以是将第一个电池的恒流充电电路上的恒流充电开关(K1)截止,并将第一个电池的恒压充电电路上的恒压充电开关(K5)闭合。与此同时,控制第二个电池的充电开关以将第二个电池的恒流充电电路导通,第二个电池开始进行恒流充电。例如,可以是第二个电池的将恒流充电电路上的恒流充电开关(K2)闭合。
当第二个电池的电压逐步升高至恒流/恒压预设阈值时,控制第二个电池的充电开关将恒流充电电路截止并将恒压充电电路导通,第二个电池开始进行恒压充电。例如,可以是将第二个电池的恒流充电电路上的恒流充电开关(K2)截止,并将第二个电池的恒压充电电路上的恒压充电开关(K6)闭合。与此同时,控制第三个电池的充电开关以将第三个电池的恒流充电电路导通,第三个电池开始进行恒流充电。例如,可以是第三个电池的将恒流充电电路上的恒流充电开关(K3)闭合。
当第三个电池的电压逐步升高至恒流/恒压预设阈值时,控制第三个电池的充电开关将恒流充电电路截止并将恒压充电电路导通,第三个电池开始进行恒压充电。例如,可以是将第三个电池的恒流充电电路上的恒流充电开关(K3)截止,并将第三个电池的恒压充电电路上的恒压充电开关(K7)闭合。与此同时,控制第四个电池的充电开关以将第四个电池的恒流充电电路导通,第四个电池开始进行恒流充电。例如,可以是第四个电池的将恒流充电电路上的恒流充电开关(K4)闭合。
当第四个电池的电压逐步升高至恒流/恒压预设阈值时,控制第四个电池的充电开关将恒流充电电路截止并将恒压充电电路导通,第四个电池开始进行恒压充电。例如,可以是将第四个电池的恒流充电电路上的恒流充电开关(K4)截止,并将第四个电池的恒压充电电路上的恒压充电开关(K8)闭合。
当所有电池恒压充电结束进入充电终止阶段后,整个电源充电结束。
上述恒流充电开关(K1、K2、K3、K4)和恒压充电开关(K5、K6、K7、K8)可以是与单片机通信连接的MOSFET开关或者三极管,从而通过单片机实现对恒流充电开关(K1、K2、K3、K4)和恒压充电开关(K5、K6、K7、K8)的实时、精准控制以提高控制效率,并在合适的时间内控制一个电池由恒流充电切换至恒压充电,并控制另一个电池进入恒流充 电,从而缩短电源的充电时间。
经过实际测试,上述充电方法可以使电源的充电时间缩短大约一个多小时。并且,经过对具有更多个电池的电源的实际测试,发明人发现,电源的电池数量越多,电源充电时间相比于现有技术中具有相同数量电池的电源,其充电时间更短。
本实施例的充电方法,通过将正在进行恒流充电的电池的电压值与预设阈值进行比较,从而可以通过对该正在进行恒流充电的电池的充电状态进行切换,以及控制待进行恒流充电的电池进入恒流充电以实现对电源适配器功率和恒压充电时间的复用,进而缩短电源的充电时间。尤其是还可以通过优化控制使得待进行恒流充电的电池进入恒流充电的时间与前一个进行恒流充电的电池进入恒压充电的时间配合的更好,从而可以缩短两个电池充电的切换时间,有利于芯片或者单片机对充电进行自动控制。
实施例4
本实施例提供一种电源的充电方法,用于对包括多个电池的电源进行快速充电,其中,每个电池对应有单独的充电开关,上述电源可以安装在无人机中。
图3是本实施例提供的充电方法的流程示意图。
如图3所示,本实施例提供的充电方法是在实施例1的基础上做的进一步改进,具体包括以下步骤:
S301、获取每个所述电池的状态信息。
具体的,可以通过传感器获取每个电池的状态信息,例如可以是通过电压传感器获取每个电池的电压,也可以通过电流传感器获取每个电池的充电电流、放电电流,还可以通过温度传感器获取每个电池的温度,也可以获取每个电池的剩余电量、总电量等。本领域技术人员应该能够理解,上述获取电池电压、电流、温度以及电量中的一种或者多种信息的方式是现有技术中普遍使用的方式,在此不再进行展开说明。
S302、根据所述状态信息控制每个所述电池的充电开关在单位时间内轮流导通每个所述电池的恒流充电电路,以对每个所述电池轮流使用脉冲电流进行恒流充电。
具体的,脉冲电流是通过控制充电开关对每个电池的恒流充电电路的导通时间来实现的,至于如何控制充电开关以产生脉冲电流,则可以是现有技术中使用的任意控制方式。例如可以是周期性的快速开/闭充电开关,从而使得充电开关导通的一瞬间内产生一大电流脉冲,进而可以为电池的恒流充电提供比使用电源适配器进行连续稳定充电时更大的电流,以缩短充电的时间。至于每个电池的充电开关开/闭的时间间隔长短,则可以根据实际需要进行控制,例如可以根据该电池的电量、温度或者这二者的综合因素来决定。
在本实施例中,在单位时间内控制每个电池的充电开关轮流导通恒流充电电路,其实质就是在单位时间内轮流切换电池以与电源适配器导通,也就是,在单位时间内轮流切换电源适配器的输出对象。这样,在电池切换的瞬间,电源适配器会产生一个比连续稳定输出时更大的电流,也就脉冲电流,进而变相提高电源适配器的输出功率,缩短每个电池的恒流充电时间。
另外,由于每个电池是轮流切换从而轮流与电源适配器电连接,以此产生脉冲电流对每个电池进行恒流充电,因此,每个电池在其他电池进行恒流充电时都可以有一段静置期。通过使每个电池在脉冲电流进行恒流充电以后都有一段静置期,可以降低锂离子电池的化学激化效应,从而缩短电池恒流充电阶段的时间。
进一步,当使用脉冲电流对一个电池进行恒流充电以使其达到恒流充电阶段和恒压充电阶段的转折点时,可以通过现有技术中任意方式将该电池由恒流充电切换至恒压充电。例如,可以直接控制该恒流充电结束的电池的充电开关一直导通已进行恒压充电,或者也可以将用于脉冲充电的充电开关直接截止,并将该恒流充电结束的电池电连接的恒压充电电路上以进行恒压充电。
以下以包括四个40Wh能量电池的电源使用100W电源适配器进行充电为例,简要介绍本实施例充电方法的工作过程:
开始充电时,电源与电源适配器电连接。控制充电开关以在单位时间内轮流将每个电池的恒流充电电路导通,也即,在单位时间内轮流切换电源适配器电连接的电池,从而在切换时,使得电源适配器能够为切换后刚 导通的电池提供一个瞬间的大电流脉冲,从而变相提高电源适配器的充电功率以缩短电池的恒流充电时间。例如,可以是轮流将每个电池对应的充电开关(K1、K2、K3、K4)导通,以将第一个电池、第二个电池、第三个电池和第四个电池轮流切换至与电源适配器电连接,并在切换时产生脉冲电流以对电池进行恒流充电。具体的,上述充电开关(K1、K2、K3、K4)可以是与单片机通信连接的MOSFET开关或者三极管,从而通过单片机实现对充电开关(K1、K2、K3、K4)的实时、精准控制以提高控制效率,并产生尽可能大的脉冲电流以及每个电池在单位时间内更合适的充电时间。
经过实际测试发现,使用上述充电方法对四个40Wh能量电池进行充电,可以使充电时间缩短一个小时左右。
进一步,每一个电池使用脉冲电流进行恒流充电的占空比相同或者不同。当每个电池使用脉冲电流进行恒流充电的占空比相同时,可以简化对每个电池的控制操作,只需要将控制策略提前设定好就可以实现脉冲充电的过程。而当每个电池使用脉冲电流进行恒流充电的占空比不同时,这样就可以根据每个电池不同的状态实现对每个电池充电进行更加精准的控制,从而提高充电效率。
进一步,可以根据每个电池的电量信息为每个电池使用脉冲电流进行恒流充电分配不同的占空比。例如,电量剩余较多的电池可以使用较小的占空比,而电量剩余较多的电池则使用较大的占空比。优选地,在充电过程中,随着电池电量增大,减少该电池进行恒流充电的占空比,以获得更佳的充电效果,使得各个电池充电时间能够更加均衡协调,以缩减电源的充电时间。
进一步,上述占空比的取值可以为0-100,。上述占空比取值能够在各电池之间获得更好的平衡效果,并且也能使电池的化学激化得到合理的控制。
本实施例的充电方法,通过控制每个电池所对应的充电开关轮流导通各个电池的恒流充电电路,从而使得电源适配器能够产生大电流脉冲以对每个电池进行恒流充电,这样也就提高了电源适配器的充电功率,进而也就缩短了电源恒流充电阶段的时间。
实施例5
本实施例提供一种电源的充电方法,用于对包括多个电池的电源进行快速充电,其中,每个电池对应有单独的充电开关,上述电源可以安装在无人机中。
本实施例提供的充电方法是在以上各项实施例的基础上做的进一步改进:
所述电源中当前正在进行恒流充电的电池的充电功率大致等于充电总功率与其他进行恒压充电的电池的充电功率的差值。
具体的,以包括4个电池的电源依次进行恒流充电为例:
当第一个电池进行恒流充电时,其恒流充电的功率等于电源适配器的充电总功率。
当第一个电池进行恒压充电、第二个电池进行恒流充电时,第二个电池的恒流充电的功率大致等于电源适配器的总功率减去第一个电池恒压充电功率后的差值。
当第三个电池进行恒流充电、第一个电池和第二个电池进行恒压充电时,第三个电池的恒流充电功率大致等于电源适配器的总功率减去第一个电池恒压充电的功率和第二个电池恒压充电的功率后的差值。
当第四个电池进行恒流充电,第一个电池、第二个电池和第三个电池进行恒压充电时,第四个电池的恒流充电功率大致等于电源适配器的总功率减去第一个电池恒压充电的功率、第二个电池恒压充电的功率和第三个电池恒压充电的功率后的差值。
再以包括4个电池的电源使用脉冲电流进行充电为例:
当四个电池均处于恒流充电阶段时,每一个电池进行恒流充电的功率都等于电源适配器的充电功率,但这一个充电功率大于额定充电功率。
当第一个电池进入恒压充电阶段时,其他三个电池进行恒流充电功率都分别等于电源适配器的充电功率减去第一个电池恒压充电的功率后的差值。
当第二个电池也进入恒压充电阶段时,第三个电池和第四个电池进行恒流充电功率都分别等于电源适配器的充电功率减去第一个电池恒压充电的功率和第二个电池恒压充电的功率后的差值。
当第三个电池也进入恒压充电阶段时,第四个电池进行恒流充电功率等于电源适配器的充电功率减去第一个电池恒压充电的功率、第二个电池恒压充电的功率和第三个电池恒压充电的功率后的差值。
本实施例充电方法,可以对电源适配器的功率进行复用,同时也能对电源的恒压充电时间进行复用,从而缩短电源的充电时间。
实施例6
本实施例提供一种电源的充电方法,用于对包括多个电池的电源进行快速充电,其中,每个电池对应有单独的充电开关,上述电源可以安装在无人机中。
本实施例提供的充电方法是在以上各项实施例的基础上做的进一步改进:
将每两个电池分为一组,其中一个电池进行恒压充电的同时,另外一个电池进行恒流充电。
通过将两个电池分为一组,可以使得电池与电源适配器获得更加的匹配度,从而提高充电的效率以缩短电源的充电时间。
在一种优选的方式中,当电源的不同电池具有不同状态时,可以通过对电池进行分组,使的分组以后的电池各自的充电过程能够相互契合,从而缩短该组电池的充电时间,进而缩短整个电源的充电时间。例如,当多个电池的剩余电量不等时,可以将只需要进行恒压充电的电池和需要进行恒流充电的电池划分为一组,从而减少充电的过程,也即无需再尝试对只需进行恒压充电的电池进行恒流充电切换,进而缩短整个电源的充电时间。
在另一种优选的方式中,当该电源可以外接多个电源适配器,也即可以通过多个充电电路对该电源进行充电时。可以通过对电池的分组,使得所有的电源适配器能够同时对电源进行充电,进而减少电源的充电时间,实现快速充电。
在第三种优选的方式中,当电源适配器的充电功率明显大于每个电池恒流充电的功率时,通过对电池进行分组,可以通过该电源适配器对多组电池进行充电,从而充分利用电源适配器的充电功率以缩短电源的充电时 间。
在第四种优选的方式中,当电源适配器的充电功率比较小时,通过对电池进行分组,可以使得分组后的电池与电源适配器的功率更加匹配,以充分利用电源适配器的功率来依次为每组电池进行充电以缩短电源的充电时间。
当然,本领域技术人员也可以根据上述描述在实际应用过程中进行简单变换以实现更多情况下多组电池的依次充电或者同时充电。
进一步,随着时间的推移,进行恒流充电的电池的电压值慢慢升高最终也由恒流充电切换至恒压充电。最终,两个电池的充电功率趋于稳定。优选的,电池进行恒压充电时的充电电压为该电池的满充电压。
实施例7
本实施例提供一种充电控制系统,用于对包括多个电池的电源进行充电控制,使得该电源可以快速充电,上述电源可以安装在无人机中。
图4是本实施例提供的充电控制系统的结构示意图。
如图4所示,本实施例的充电控制系统包括:处理器和多个充电开关。其中,多个充电开关与处理器电连接,且每个充电开关均用于电连接一个电池,以控制该电池的充电状态。
上述处理器用于获取每个电池的状态信息,并根据该状态信息控制每个电池的充电开关的工作状态,以使其中一个电池进行恒压充电的同时,另一个电池进行恒流充电。
具体的,可以通过传感器获取每个电池的状态信息,例如可以是通过电压传感器获取每个电池的电压,也可以通过电流传感器获取每个电池的充电电流、放电电流,还可以通过温度传感器获取每个电池的温度,也可以获取每个电池的剩余电量、总电量等。本领域技术人员应该能够理解,上述获取电池电压、电流、温度以及电量中的一种或者多种信息的方式是现有技术中普遍使用的方式,在此不再进行展开说明。
上述根据状态信息来控制每个电池的充电开关的工作状态,可以是控制充电开关在待充电状态、连续恒流充电状态、恒压充电状态、脉冲恒流充电状态以及充电终止状态之间进行切换。举例来说,可以先控制充电开 关由待充电状态切换至连续恒流充电状态或者脉冲恒流充电状态,以对电池进行恒流充电,当恒流充电到一定程度后再将该电池由连续恒流充电状态或者脉冲恒流充电状态切换至恒压充电状态,从而实现通过对充电开关工作状态的切换,实现电池在恒流充电电路和恒压充电电路之间的切换。
需要说明的是,在本实施例中只需要使得电源中有一个电池在进行恒压充电的同时,另一个电池在进行恒流充电即可,不限制每一个充电开关在满足上述条件时的具体工作策略。例如,当电源中有一个电池进行恒压充电时,可以是至少有两个电池进行恒流充电的时间有重叠,也可以是电源中的所有电池进行恒流充电的时间不重叠。
以电源中包括四个电池为例,当第一个电池进行恒压充电时,第二个电池进行恒流充电,而第三个电池和第四个电池未充电或者也只进行恒压充电。优选地,第一个电池进行恒压充电的起始时刻正好是第二个电池进行恒流充电的起始时刻;或者,第一个电池进行恒流充电的截止时刻晚于第二个电池进行恒流充电的起始时刻;又或者,第一个电池进行恒压充电的起始时刻早于第二个电池进行恒流充电的起始时刻。
在一个优选的示例中,充电开关可以是机械开关或者是电子开关,例如可以是MOSFET开关,三极管等。本实施例中使用电子开关可以更有效的实现充电控制,进一步减少充电时间,并且使得简化充电方法,并使得基于本实施例充电方法的充电控制系统更加小巧。
在一个优选的实例中,电池可以包括:外壳以及设于所述外壳内的多个电芯,其中,多个电芯之间可以串联在一起,或者并联在一起,又或者多个电芯中既有相互串联的电芯又有相互并联的电芯。通过将多个电芯以上述不同的方式连接在一起,可以得到不同电量或者不同电压的电池以适应不同的应用场景。同时,通过外壳对电芯进行保护,也可以避免在使用过程中损坏电芯,从而提高电池的使用寿命。
本实施例的充电控制系统,处理器通过获取到的各电池的状态信息来控制每个电池所对应的充电开关的工作状态,使得电源中一个电池在进行恒压充电的时候,另外一个电池在进行恒流充电,从而实现对电源适配器充电功率、充电时间或者二者的复用,有效缩短了包括多电池的电源的充电时间。
例如,在以100W电源适配器对4个40Wh能量电池进行充电进行实际测试时,本实施例的充电方法可以将整个电源的充电时间缩短至少一个小时。当然,上述测试可能由于实际环境的影响会对充电时间的缩短程度有小幅的影响,这属于本领域技术人员应该能够认识到的。而且,当电源中所有电池进行恒流充电的时间不重叠时,可以充分利用电源适配器的充电总功率以及每个电池的恒压充电时间,尤其是当一个电池进行恒流充电的截止时刻正好是另一个电池进行恒流充电的起始时刻时,可以更充分的实现时间的复用。
实施例8
本实施例提供一种充电控制系统,用于对包括多个电池的电源进行充电控制,使得该电源可以快速充电,上述电源可以安装在无人机中。
图5是本实施例提供的充电控制系统的结构示意图。
如图5所示,本实施例的充电控制系统是在实施例7的基础上做的进一步改进,其中,每个电池对应有通过充电开关控制通/断的恒流充电电路,该恒流充电电路用于电连接电源适配器和电池;
处理器用于根据所述状态信息控制每个所述电池的充电开关在整个电源的充电时间内依次将每个所述电池的恒流充电电路导通一次。
具体的,每个电池的状态信息可以通过传感器获取,例如可以是通过电压传感器获取每个电池的电压,也可以通过电流传感器获取每个电池的充电电流、放电电流,还可以通过温度传感器获取每个电池的温度,也可以获取每个电池的剩余电量、总电量等。本领域技术人员应该能够理解,上述获取电池电压、电流、温度以及电量中的一种或者多种信息的方式是现有技术中普遍使用的方式,在此不再进行展开说明。
控制每个电池的充电开关在整个电源充电时间内依次导通一次恒流充电电路,是指按照时间顺序依次将每个电池的恒流充电电路导通。以包括4个40Wh能量电池的电源用100W电源适配器进行充电为例,例如可以在充电开始时先将第一个电池的恒流充电电路导通以对第一个电池进行恒流充电,40分钟后再将第二个电池的恒流充电电路导通以对第二个电池进行恒流充电,又40分钟后再将第三个电池的恒流充电电路导通以对第三个电池进行恒 流充电,再40分钟后再将第四个电池的恒流充电电路导通以对第四个电池进行恒流充电,直到电源充电结束,例如150分钟后充电结束。换句话说,第一个电池的恒流充电电路在10:00时导通开始进行恒流充电,第二个电池的恒流充电电路则在10:40时导通开始恒流充电,第三个电池的恒流充电电路在11:20时导通开始恒流充电,第四个电池的恒流充电电路在12:00时导通开始恒流充电,整个电源的充电过程在12:30时结束。当然,上述示例中每一个电池的恒流充电电路的导通时间间隔相同,但是,在实际应用中,两个电池的恒流充电电路的导通时间也可以是不同的,这取决于电池的电量大小、电池温度以及电源适配器提供给该电池的充电电流大小等因素。但是,上述影响因素并不妨碍各个电池在充电的整个时间段内依次导通一次的限定,并且,可以理解的,上述充电方法以及给出的示例中的电源在充电时必然是一个电池在进行恒压充电时,另外有一个电池在进行恒流充电。
本实施例的充电控制系统,通过设置由充电开关控制通/断的恒流充电电路,使得处理器可以通过控制充电开关依次将每个电池的恒流充电电路导通,从而使得每个电池依次进行恒流充电,也就能够使电源适配器的充电功率被有效利用,从而在一个电池进行恒压充电的同时时,该电源适配器还能为另一个电池提供大电流以进行恒流充电,从而缩短整个电源的充电时间。并且,实施例的充电控制系统可以选用小功率的电源适配器来为更多的电池充电,从而减少电源适配器的体积和重量,更便于携带,并且也降低了充电的成本。
实施例9
本实施例提供一种充电控制系统,用于对包括多个电池的电源进行充电控制,使得该电源可以快速充电,上述电源可以安装在无人机中。
继续参考图5,本实施例的充电方法是在实施例8的基础上做的进一步改进:
所述处理器用于根据当前正在充电的电池的电压与预设电压阈值的比较结果,控制所述当前正在进行恒流充电的电池由恒流充电切换至恒压充电,并控制待进行恒流充电的电池的充电开关将恒流充电电路导通以对所述待进行恒流充电的电池进行恒流充电。
具体的,预设电压阈值可以是恒流充电和恒压充电转折点的电压值,例如可以是4.2V。当然,预设电压阈值也可以是实际应用中需要的其他电压值。
在本实施例中,将当前正在进行恒流充电的电池由恒流充电切换至恒压充电,可以使用现有技术中的任意方式,比如控制电路中的变阻元件的阻值变化从而使得充电电压升高以实现从恒流充电切换至恒压充电,当然也可以是通过开关的切换来实现从恒流充电切换至恒压充电。
优选地,每个所述电池还对应有通过所述充电开关控制通/断的恒压充电电路,所述恒压充电电路与所述恒流充电电路并联;
所述处理器用于控制所述当前正在进行恒流充电的充电开关将恒流充电电路截止以切断恒流充电,并将当前正在进行恒流充电的电池的恒压充电电路导通以进行恒压充电。
例如,充电开关可以包括串联在恒流充电电路上的恒流充电开关。当需要对电池进行恒流充电时,可以控制该恒流充电开关开启而恒压充电开关截止,从而将恒流充电电路导通以使用大电流对该电池进行恒流充电。当需要对电池进行恒压充电时,则可以控制恒流充电开关截止而恒压充电开关开启,从而将恒压充电电路导通以对该电池进行恒压充电。当然,也可以选用现有技术中其他控制策略来实现上述恒流充电电路和恒压充电电路的导通和截止,例如通过MOSFET开关或者三极管以实现对不同电路的导通和截止的控制。
进一步,如图5所示,恒压充电电路可以包括升压元件,用于在恒压充电时为所述电池提供充电电压。
具体的,升压元件可以是电阻或者DC/DC升压模块。这样,通过升压元件的升压作用可以使恒压充电电路导通以进行恒压充电的电池迅速获得合适的充电电压,例如满充电压。
以下以包括四个40Wh能量电池的电源使用100W电源适配器进行充电为例,简要介绍本实施例中一种优选的充电方法的工作过程:
开始充电时,电源与电源适配器电连接。控制第一个电池的充电开关以将第一个电池的恒流充电电路导通,第一个电池进行恒流充电。例如,可以是将第一个电池的恒流充电电路上的恒流充电开关(K1)闭合。
当第一个电池的电压逐步升高至恒流/恒压预设阈值时,控制第一个电 池的充电开关将恒流充电电路截止并将恒压充电电路导通,第一个电池开始进行恒压充电。例如,可以是将第一个电池的恒流充电电路上的恒流充电开关(K1)截止,并将第一个电池的恒压充电电路上的恒压充电开关(K5)闭合。与此同时,控制第二个电池的充电开关以将第二个电池的恒流充电电路导通,第二个电池开始进行恒流充电。例如,可以是第二个电池的将恒流充电电路上的恒流充电开关(K2)闭合。
当第二个电池的电压逐步升高至恒流/恒压预设阈值时,控制第二个电池的充电开关将恒流充电电路截止并将恒压充电电路导通,第二个电池开始进行恒压充电。例如,可以是将第二个电池的恒流充电电路上的恒流充电开关(K2)截止,并将第二个电池的恒压充电电路上的恒压充电开关(K6)闭合。与此同时,控制第三个电池的充电开关以将第三个电池的恒流充电电路导通,第三个电池开始进行恒流充电。例如,可以是第三个电池的将恒流充电电路上的恒流充电开关(K3)闭合。
当第三个电池的电压逐步升高至恒流/恒压预设阈值时,控制第三个电池的充电开关将恒流充电电路截止并将恒压充电电路导通,第三个电池开始进行恒压充电。例如,可以是将第三个电池的恒流充电电路上的恒流充电开关(K3)截止,并将第三个电池的恒压充电电路上的恒压充电开关(K7)闭合。与此同时,控制第四个电池的充电开关以将第四个电池的恒流充电电路导通,第四个电池开始进行恒流充电。例如,可以是第四个电池的将恒流充电电路上的恒流充电开关(K4)闭合。
当第四个电池的电压逐步升高至恒流/恒压预设阈值时,控制第四个电池的充电开关将恒流充电电路截止并将恒压充电电路导通,第四个电池开始进行恒压充电。例如,可以是将第四个电池的恒流充电电路上的恒流充电开关(K4)截止,并将第四个电池的恒压充电电路上的恒压充电开关(K8)闭合。
当所有电池恒压充电结束进入充电终止阶段后,整个电源充电结束。
上述恒流充电开关(K1、K2、K3、K4)和恒压充电开关(K5、K6、K7、K8)可以是与单片机通信连接的MOSFET开关或者三极管,从而通过单片机实现对恒流充电开关(K1、K2、K3、K4)和恒压充电开关(K5、K6、K7、K8)的实时、精准控制以提高控制效率,并在合适的时间内控 制一个电池由恒流充电切换至恒压充电,并控制另一个电池进入恒流充电,从而缩短电源的充电时间。
经过实际测试,通过本实施例的充电控制系统按照上述控制方式对电源的充电过程进行控制,可以使电源的充电时间缩短大约一个多小时。并且,经过对具有更多个电池的电源的实际测试,发明人发现,电源的电池数量越多,电源充电时间相比于现有技术中具有相同数量电池的电源,其充电时间更短。
本实施例的充电控制系统,通过将正在进行恒流充电的电池的电压值与预设阈值进行比较,从而可以通过对该正在进行恒流充电的电池的充电状态进行切换,以及控制待进行恒流充电的电池进入恒流充电以实现对电源适配器功率和恒压充电时间的复用,进而缩短电源的充电时间。尤其是还可以通过优化控制使得待进行恒流充电的电池进入恒流充电的时间与前一个进行恒流充电的电池进入恒压充电的时间配合的更好,从而可以缩短两个电池充电的切换时间,有利于处理器的自动控制。
实施例11
本实施例提供一种充电控制系统,用于对包括多个电池的电源进行充电控制,使得该电源可以快速充电,上述电源可以安装在无人机中。
图6是本实施例提供的充电控制系统的结构示意图。
如图6所示,本实施例提供的充电控制系统是在实施例7的基础上做的进一步改进:
所述处理器用于根据所述状态信息控制每个所述电池的充电开关在单位时间内轮流导通每个所述电池的恒流充电电路,以对每个所述电池轮流使用脉冲电流进行恒流充电。
具体的,每个电池的状态信息可以通过传感器获取,例如可以是通过电压传感器获取每个电池的电压,也可以通过电流传感器获取每个电池的充电电流、放电电流,还可以通过温度传感器获取每个电池的温度,也可以获取每个电池的剩余电量、总电量等。本领域技术人员应该能够理解,上述获取电池电压、电流、温度以及电量中的一种或者多种信息的方式是现有技术中普遍使用的方式,在此不再进行展开说明。
在本实施例中,脉冲电流是处理器通过控制充电开关对每个电池的恒流充电电路的导通时间来实现的,至于如何控制充电开关以产生脉冲电流,则可以是现有技术中使用的任意控制方式。例如可以是周期性的快速开/闭充电开关,从而使得充电开关导通的一瞬间内产生一大电流脉冲,进而可以为电池的恒流充电提供比使用电源适配器进行连续稳定充电时更大的电流,以缩短充电的时间。至于每个电池的充电开关开/闭的时间间隔长短,则可以根据实际需要进行控制,例如可以根据该电池的电量、温度或者这二者的综合因素来决定。
在本实施例中,在单位时间内控制每个电池的充电开关轮流导通恒流充电电路,其实质就是在单位时间内轮流切换电池以与电源适配器导通,也就是,在单位时间内轮流切换电源适配器的输出对象。这样,在电池切换的瞬间,电源适配器会产生一个比连续稳定输出时更大的电流,也就脉冲电流,进而变相提高电源适配器的输出功率,缩短每个电池的恒流充电时间。
另外,由于每个电池是轮流切换从而轮流与电源适配器电连接,以此产生脉冲电流对每个电池进行恒流充电,因此,每个电池在其他电池进行恒流充电时都可以有一段静置期。通过使每个电池在脉冲电流进行恒流充电以后都有一段静置期,可以降低锂离子电池的化学激化效应,从而缩短电池恒流充电阶段的时间。
进一步,当使用脉冲电流对一个电池进行恒流充电以使其达到恒流充电阶段和恒压充电阶段的转折点时,可以通过现有技术中任意方式将该电池由恒流充电切换至恒压充电。例如,可以直接控制该恒流充电结束的电池的充电开关一直导通已进行恒压充电,或者也可以将用于脉冲充电的充电开关直接截止,并将该恒流充电结束的电池电连接的恒压充电电路上以进行恒压充电。
以下以包括四个40Wh能量电池的电源使用100W电源适配器进行充电为例,简要介绍本实施例充电方法的工作过程:
开始充电时,电源与电源适配器电连接。控制充电开关以在单位时间内轮流将每个电池的恒流充电电路导通,也即,在单位时间内轮流切换电源适配器电连接的电池,从而在切换时,使得电源适配器能够为切换后刚 导通的电池提供一个瞬间的大电流脉冲,从而变相提高电源适配器的充电功率以缩短电池的恒流充电时间。例如,可以是轮流将每个电池对应的充电开关(K1、K2、K3、K4)导通,以将第一个电池、第二个电池、第三个电池和第四个电池轮流切换至与电源适配器电连接,并在切换时产生脉冲电流以对电池进行恒流充电。具体的,上述充电开关(K1、K2、K3、K4)可以是与处理器通信连接的MOSFET开关或者三极管,从而通过处理器实现对充电开关(K1、K2、K3、K4)的实时、精准控制以提高控制效率,并产生尽可能大的脉冲电流以及每个电池在单位时间内更合适的充电时间。
经过实际测试发现,使用上述充电方法对四个40Wh能量电池进行充电,可以使充电时间缩短一个小时左右。
进一步,每一个电池使用脉冲电流进行恒流充电的占空比相同或者不同。当每个电池使用脉冲电流进行恒流充电的占空比相同时,可以简化对每个电池的控制操作,只需要将控制策略提前设定好就可以实现脉冲充电的过程。而当每个电池使用脉冲电流进行恒流充电的占空比不同时,这样就可以根据每个电池不同的状态实现对每个电池充电进行更加精准的控制,从而提高充电效率。
进一步,可以根据每个电池的电量信息为每个电池使用脉冲电流进行恒流充电分配不同的占空比。例如,电量剩余较多的电池可以使用较小的占空比,而电量剩余较多的电池则使用较大的占空比。优选地,在充电过程中,随着电池电量增大,减少该电池进行恒流充电的占空比,以获得更佳的充电效果,使得各个电池充电时间能够更加均衡协调,以缩减电源的充电时间。
进一步,上述占空比的取值可以为0-100,。上述占空比取值能够在各电池之间获得更好的平衡效果,并且也能使电池的化学激化得到合理的控制。
本实施例的充电控制系统,通过控制每个电池所对应的充电开关轮流导通各个电池的恒流充电电路,从而使得电源适配器能够产生大电流脉冲以对每个电池进行恒流充电,这样也就提高了电源适配器的充电功率,进而也就缩短了电源恒流充电阶段的时间。
实施例12
本实施例提供一种充电控制系统,用于对包括多个电池的电源进行充电控制,使得该电源可以快速充电,上述电源可以安装在无人机中。
本实施例提供的充电控制系统是在上述实施例7-11中任一项实施例的基础上做的进一步改进:
所述电源中当前正在进行恒流充电的电池的充电功率大致等于充电总功率与其他进行恒压充电的电池的充电功率的差值。
具体的,先以包括4个电池的电源依次进行恒流充电为例:
当第一个电池进行恒流充电时,其恒流充电的功率等于电源适配器的充电总功率。
当第一个电池进行恒压充电、第二个电池进行恒流充电时,第二个电池的恒流充电的功率大致等于电源适配器的总功率减去第一个电池恒压充电功率后的差值。
当第三个电池进行恒流充电、第一个电池和第二个电池进行恒压充电时,第三个电池的恒流充电功率大致等于电源适配器的总功率减去第一个电池恒压充电的功率和第二个电池恒压充电的功率后的差值。
当第四个电池进行恒流充电,第一个电池、第二个电池和第三个电池进行恒压充电时,第四个电池的恒流充电功率大致等于电源适配器的总功率减去第一个电池恒压充电的功率、第二个电池恒压充电的功率和第三个电池恒压充电的功率后的差值。
再以包括4个电池的电源使用脉冲电流进行充电为例:
当四个电池均处于恒流充电阶段时,每一个电池进行恒流充电的功率都等于电源适配器的充电功率,但这一个充电功率大于额定充电功率。
当第一个电池进入恒压充电阶段时,其他三个电池进行恒流充电功率都分别等于电源适配器的充电功率减去第一个电池恒压充电的功率后的差值。
当第二个电池也进入恒压充电阶段时,第三个电池和第四个电池进行恒流充电功率都分别等于电源适配器的充电功率减去第一个电池恒压充电的功率和第二个电池恒压充电的功率后的差值。
当第三个电池也进入恒压充电阶段时,第四个电池进行恒流充电功率等于电源适配器的充电功率减去第一个电池恒压充电的功率、第二个电池 恒压充电的功率和第三个电池恒压充电的功率后的差值。
本实施例充电控制系统,可以对电源适配器的功率进行复用,同时也能对电源的恒压充电时间进行复用,从而缩短电源的充电时间。
实施例13
本实施例提供一种充电控制系统,用于对包括多个电池的电源进行充电控制,使得该电源可以快速充电,上述电源可以安装在无人机中。
本实施例提供的充电系统是在上述实施例7-12中任一项实施例的基础上做的进一步改进:
将每两个电池分为一组,其中一个电池进行恒压充电的同时,另外一个电池进行恒流充电。
通过将两个电池分为一组,可以使得电池与电源适配器获得更加的匹配度,从而提高充电的效率以缩短电源的充电时间。
在一种优选的方式中,当电源的不同电池具有不同状态时,可以通过对电池进行分组,使的分组以后的电池各自的充电过程能够相互契合,从而缩短该组电池的充电时间,进而缩短整个电源的充电时间。例如,当多个电池的剩余电量不等时,可以将只需要进行恒压充电的电池和需要进行恒流充电的电池划分为一组,从而减少充电的过程,也即无需再尝试对只需进行恒压充电的电池进行恒流充电切换,进而缩短整个电源的充电时间。
在另一种优选的方式中,当该电源可以外接多个电源适配器,也即可以通过多个充电电路对该电源进行充电时。可以通过对电池的分组,使得所有的电源适配器能够同时对电源进行充电,进而减少电源的充电时间,实现快速充电。
在第三种优选的方式中,当电源适配器的充电功率明显大于每个电池恒流充电的功率时,通过对电池进行分组,可以通过该电源适配器对多组电池进行充电,从而充分利用电源适配器的充电功率以缩短电源的充电时间。
在第四种优选的方式中,当电源适配器的充电功率比较小时,通过对电池进行分组,可以使得分组后的电池与电源适配器的功率更加匹配,以 充分利用电源适配器的功率来依次为每组电池进行充电以缩短电源的充电时间。
当然,本领域技术人员也可以根据上述描述在实际应用过程中进行简单变换以实现更多情况下多组电池的依次充电或者同时充电。
进一步,随着时间的推移,进行恒流充电的电池的电压值慢慢升高最终也由恒流充电切换至恒压充电。最终,两个电池的充电功率趋于稳定。优选的,电池进行恒压充电时的充电电压为该电池的满充电压。
实施例14
本实施例提供一种充电装置,用于对包括多个电池的电源进行快速充电,该电源可以安装在无人机中。
本实施例提供的充电装置,包括:壳体和上述实施例7-13中任一项实施例的充电控制系统。其中,壳体设有多个电池仓,用于分别收纳多个电池;充电控制系统安装在该壳体内。
具体的,壳体可以具有任意形状和任意大小,并且可以由任意材料制作而成,例如金属材料和非金属材料。
充电控制系统的结构、工作原理和其优点均与上述实施例相同,具体可以参见上述实施例,在此不再赘述。
本实施例的充电装置,通过控制一个电池在恒压充电的同时,另一个电池进行恒流充电,可以对电源适配器的功率和恒压充电的时间进行复用,从而缩短电源的充电时间。
实施例15
本实施例提供一种无人机,其安装的电源可以进行快速充电。
图7是本实施例提供的无人机的结构示意图。
如图7所示,本实施例提供的无人机1,包括:电源10、电调30和机架50,并且,电源10和电调30安装在机架50上。其中,电源10包括:多个电池和上述实施例中的充电装置;上述多个电池分别收纳在充电装置的壳体上设置的多个电池仓内,该多个电池与电调30电连接,用于为电调30供电。
具体的,机架50可以是现有无人机中使用的任意类型的机架,在此不作限定。同理,电调30也可以使用现有无人机中的任意电调,在此也不作限定。
充电装置的结构、工作原理和优点均与上述实施例相同,具体可参将以上各实施例,在此不再赘述。
此外,电池可以选用锂离子电池或者其他现有技术中其他可充电电池。当然,每个电池可以包括多个电芯,这多个电芯之间可以串联、并联或者既有串联又有并联。
本实施例的无人机,通过控制一个电池在恒压充电的同时,另一个电池进行恒流充电,可以对电源适配器的功率和恒压充电的时间进行复用,从而缩短电源的充电时间。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器101(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (42)

  1. 一种电源的充电方法,所述电源包括多个电池,其特征在于,每个所述电池对应有单独的充电开关,所述充电方法包括以下步骤:
    获取每个所述电池的状态信息;
    根据所述状态信息控制每个所述电池的充电开关的工作状态,以使其中一个所述电池进行恒压充电的同时,另一个所述电池进行恒流充电。
  2. 根据权利要求1所述的充电方法,其特征在于,所有电池进行恒流充电的时间不重叠,
    或,至少有两个电池进行恒流充电的时间有重叠。
  3. 根据权利要求1所述的充电方法,其特征在于,所述状态信息包括:电量、电压、电流以及电池温度中的一种或多种。
  4. 根据权利要求1所述的充电方法,其特征在于,所述充电开关为电子开关。
  5. 根据权利要求1所述的充电方法,其特征在于,所述充电开关的工作状态包括:待充电状态、连续恒流充电状态、恒压充电状态、脉冲恒流充电状态以及充电终止状态中的一种。
  6. 根据权利要求1所述的充电方法,其特征在于,
    每个所述电池对应有通过充电开关控制通/断的恒流充电电路,所述恒流充电电路用于电连接电源适配器和所述电池;
    根据所述状态信息控制每个所述电池的充电开关在整个电源的充电时间内依次将每个所述电池的恒流充电电路导通一次。
  7. 根据权利要求6所述的充电方法,其特征在于,还包括:
    根据当前正在充电的电池的电压与预设电压阈值的比较结果,控制所述当前正在进行恒流充电的电池由恒流充电切换至恒压充电,并控制待进行恒流充电的电池的充电开关将恒流充电电路导通以对所述待进行恒流充电的电池进行恒流充电。
  8. 根据权利要求7所述的充电方法,其特征在于,
    每个所述电池还对应有通过所述充电开关控制通/断的恒压充电电路,所述恒压充电电路与所述恒流充电电路并联;
    控制所述当前正在进行恒流充电的充电开关将恒流充电电路截止以切断 恒流充电,并将当前正在进行恒流充电的电池的恒压充电电路导通以进行恒压充电。
  9. 根据权利要求8所述的充电方法,其特征在于,所述恒压充电电路包括升压元件,用于在恒压充电时为所述电池提供充电电压。
  10. 根据权利要求1所述的充电方法,其特征在于,
    每个所述电池对应有通过充电开关控制通/断的恒流充电电路,所述恒流充电电路用于电连接电源适配器和所述电池;
    根据所述状态信息控制每个所述电池的充电开关在单位时间内轮流导通每个所述电池的恒流充电电路,以对每个所述电池轮流使用脉冲电流进行恒流充电。
  11. 根据权利要求10所述的充电方法,其特征在于,每个所述电池使用脉冲电流进行恒流充电的占空比相同或者不同。
  12. 根据权利要求10所述的充电方法,其特征在于,根据每个所述电池的电量信息为每个电池使用脉冲电流进行恒流充电分配不同的占空比。
  13. 根据权利要求12所述的充电方法,其特征在于,随着所述电池的电量增大,减少所述电池进行恒流充电的占空比。
  14. 根据权利要求11-13任一项所述的充电方法,其特征在于,所述占空比的取值为0-100。
  15. 根据权利要求1-13任一项所述的充电方法,其特征在于,所述电源中当前正在进行恒流充电的电池的充电功率大致等于充电总功率与其他进行恒压充电的电池的充电功率的差值。
  16. 根据权利要求1所述的充电方法,其特征在于,每两个所述电池为一组,其中一个所述电池进行恒压充电的同时,另外一个所述电池进行恒流充电。
  17. 根据权利要求16所述的充电方法,其特征在于,所述两个电池的充电功率逐渐趋于恒定。
  18. 根据权利要求17所述的充电方法,其特征在于,所述电池进行恒压充电时的充电电压为所述电池的满充电压。
  19. 根据权利要求16所述的充电方法,其特征在于,多组所述电池依次充电或同时充电。
  20. 根据权利要求1所述的充电方法,其特征在于,所述电池包括外壳以及设于所述外壳内的多个电芯,所述电芯串联或/及并联在一起。
  21. 一种充电控制系统,其特征在于,包括:处理器和多个充电开关;
    所述多个充电开关与所述处理器电连接,且每个充电开关均用于电连接一个电池,以控制所述电池的充电状态;
    所述处理器用于获取每个所述电池的状态信息,并根据所述状态信息控制每个所述电池的充电开关的工作状态,以使其中一个所述电池进行恒压充电的同时,另一个所述电池进行恒流充电。
  22. 根据权利要求21所述的充电控制系统,其特征在于,所有电池进行恒流充电的时间不重叠,
    或,至少有两个电池进行恒流充电的时间有重叠。
  23. 根据权利要求21所述的充电控制系统,其特征在于,所述状态信息包括:电量、电压、电流以及电池温度中的一种或多种。
  24. 根据权利要求21所述的充电控制系统,其特征在于,所述充电开关为电子开关。
  25. 根据权利要求21所述的充电控制系统,其特征在于,所述充电开关的工作状态包括:待充电状态、连续恒流充电状态、恒压充电状态、脉冲恒流充电状态以及充电终止状态中的一种。
  26. 根据权利要求21所述的充电控制系统,其特征在于,
    每个所述电池对应有通过所述充电开关控制通/断的恒流充电电路,所述恒流充电电路用于电连接电源适配器和所述电池;
    所述处理器用于根据所述状态信息控制每个所述电池的充电开关在整个电源的充电时间内依次将每个所述电池的恒流充电电路导通一次。
  27. 根据权利要求26所述的充电控制系统,其特征在于,还包括:
    所述处理器用于根据当前正在充电的电池的电压与预设电压阈值的比较结果,控制所述当前正在进行恒流充电的电池由恒流充电切换至恒压充电,并控制待进行恒流充电的电池的充电开关将恒流充电电路导通以对所述待进行恒流充电的电池进行恒流充电。
  28. 根据权利要求27所述的充电控制系统,其特征在于,
    每个所述电池还对应有通过所述充电开关控制通/断的恒压充电电路,所 述恒压充电电路与所述恒流充电电路并联;
    所述处理器用于控制所述当前正在进行恒流充电的充电开关将恒流充电电路截止以切断恒流充电,并将当前正在进行恒流充电的电池的恒压充电电路导通以进行恒压充电。
  29. 根据权利要求28所述的充电控制系统,其特征在于,所述恒压充电电路包括升压元件,所述升压元件用于提供恒压充电的充电电压。
  30. 根据权利要求21所述的充电控制系统,其特征在于,
    每个所述电池对应有通过充电开关控制通/断的恒流充电电路,所述恒流充电电路用于电连接电源适配器和所述电池;
    所述处理器还用于根据所述状态信息控制每个所述电池的充电开关在单位时间内轮流导通每个所述电池的恒流充电电路,以对每个所述电池轮流使用脉冲电流进行恒流充电。
  31. 根据权利要求30所述的充电控制系统,其特征在于,每个所述电池使用脉冲电流进行恒流充电的占空比相同或者不同。
  32. 根据权利要求30所述的充电控制系统,其特征在于,根据每个所述电池的电量信息为每个电池使用脉冲电流进行恒流充电分配不同的占空比。
  33. 根据权利要求32所述的充电控制系统,其特征在于,随着所述电池的电量增大,减少所述电池进行恒流充电的占空比。
  34. 根据权利要求31-33任一项所述的充电控制系统,其特征在于,所述占空比的取值为0-100。
  35. 根据权利要求21-33任一项所述的充电控制系统,其特征在于,所述电源中当前正在进行恒流充电的电池的充电功率大致等于充电总功率与其他进行恒压充电的电池的充电功率的差值。
  36. 根据权利要求21所述的充电控制系统,其特征在于,每两个所述电池为一组,其中一个所述电池进行恒压充电的同时,另外一个所述电池进行恒流充电。
  37. 根据权利要求36所述的充电控制系统,其特征在于,所述两个电池的充电功率逐渐趋于恒定。
  38. 根据权利要求37所述的充电控制系统,其特征在于,所述电池进行恒压充电时的充电电压为所述电池的满充电压。
  39. 根据权利要求36所述的充电控制系统,其特征在于,多组所述电池依次充电或同时充电。
  40. 根据权利要求21所述的充电控制系统,其特征在于,所述电池包括外壳以及设于所述外壳内的多个电芯,所述电芯串联或/及并联在一起。
  41. 一种充电装置,其特征在于,包括:壳体和权利要求21-40任一项所述的充电控制系统;
    所述壳体设有多个电池仓,用于分别收纳多个电池;
    所述充电控制系统安装在所述壳体内。
  42. 一种无人机,其特征在于,包括:电源、电调和机架;
    所述电源和电调安装在所述机架上;
    所述电源包括:多个电池和权利要求41所述的充电装置;
    所述多个电池分别收纳在所述充电装置的壳体上设置的多个电池仓内,所述多个电池与所述电调电连接,用于为所述电调供电。
PCT/CN2016/099611 2016-09-21 2016-09-21 电源的充电方法、充电控制系统、充电装置及无人机 WO2018053721A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/099611 WO2018053721A1 (zh) 2016-09-21 2016-09-21 电源的充电方法、充电控制系统、充电装置及无人机
CN201680002539.8A CN107078528B (zh) 2016-09-21 2016-09-21 电源的充电方法、充电控制系统、充电装置及无人机
CN201811522883.7A CN109728622A (zh) 2016-09-21 2016-09-21 电源的充电方法、充电控制系统、充电装置及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099611 WO2018053721A1 (zh) 2016-09-21 2016-09-21 电源的充电方法、充电控制系统、充电装置及无人机

Publications (1)

Publication Number Publication Date
WO2018053721A1 true WO2018053721A1 (zh) 2018-03-29

Family

ID=59624174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099611 WO2018053721A1 (zh) 2016-09-21 2016-09-21 电源的充电方法、充电控制系统、充电装置及无人机

Country Status (2)

Country Link
CN (2) CN109728622A (zh)
WO (1) WO2018053721A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865206A (zh) * 2019-11-26 2021-05-28 北京小米移动软件有限公司 充电电路和电子设备
CN113452103A (zh) * 2020-03-25 2021-09-28 飞宏科技股份有限公司 双埠电池充电系统及其充电方法
CN114365383A (zh) * 2019-11-15 2022-04-15 Oppo广东移动通信有限公司 无线接收装置、无线充电系统和无线充电方法
CN114633656A (zh) * 2022-03-23 2022-06-17 车主邦(北京)科技有限公司 私人充电桩分配方法、装置、系统、程序产品及电子设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673625B (zh) * 2018-07-02 2023-05-23 中光电智能机器人股份有限公司 无人机的监控系统、基地站及控制方法
CN112823459B (zh) * 2018-12-21 2023-11-24 Oppo广东移动通信有限公司 充电控制方法、待充电设备、无线充电设备及存储介质
CN110233508B (zh) * 2019-06-05 2021-06-25 深圳市道通智能航空技术股份有限公司 一种充电方法及充电设备
CN112234686B (zh) * 2020-11-12 2022-09-09 中国海洋大学 一种多段式充电方法、多段式充电装置及电池组充电方法
CN113589184A (zh) * 2021-08-13 2021-11-02 远景动力技术(江苏)有限公司 电芯检测系统和电芯检测方法
WO2023245564A1 (zh) * 2022-06-23 2023-12-28 深圳市大疆创新科技有限公司 充电方法、充电装置、电子设备系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564421A (zh) * 2004-03-17 2005-01-12 毛锦铭 锂电池充电器
CN202009257U (zh) * 2011-04-08 2011-10-12 郑佩尧 分充制蓄电池充电器
CN103579703A (zh) * 2012-07-26 2014-02-12 中国移动通信集团甘肃有限公司 一种电池组充电方法及系统
CN204905906U (zh) * 2015-06-30 2015-12-23 深圳市大疆创新科技有限公司 充电控制电路、充电装置及充电系统
US20160089994A1 (en) * 2014-09-29 2016-03-31 Daimler Ag Battery management system for a motor vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364446A (ja) * 2003-06-06 2004-12-24 Matsushita Electric Ind Co Ltd バックアップ電池の充放電制御装置
US9007024B2 (en) * 2008-05-28 2015-04-14 American Reliance, Inc. DC power control to maximize battery charging time
US9716403B2 (en) * 2008-11-25 2017-07-25 Semiconductor Components Industries, Llc Battery charger circuit for changing between modes during operation based on temperature and battery voltage and method therefor
CN102738872A (zh) * 2011-04-08 2012-10-17 郑佩尧 分充制蓄电池充电器
TW201249057A (en) * 2011-12-02 2012-12-01 Samya Technology Co Ltd An MCU integration battery charger/discharger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564421A (zh) * 2004-03-17 2005-01-12 毛锦铭 锂电池充电器
CN202009257U (zh) * 2011-04-08 2011-10-12 郑佩尧 分充制蓄电池充电器
CN103579703A (zh) * 2012-07-26 2014-02-12 中国移动通信集团甘肃有限公司 一种电池组充电方法及系统
US20160089994A1 (en) * 2014-09-29 2016-03-31 Daimler Ag Battery management system for a motor vehicle
CN204905906U (zh) * 2015-06-30 2015-12-23 深圳市大疆创新科技有限公司 充电控制电路、充电装置及充电系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114365383A (zh) * 2019-11-15 2022-04-15 Oppo广东移动通信有限公司 无线接收装置、无线充电系统和无线充电方法
CN112865206A (zh) * 2019-11-26 2021-05-28 北京小米移动软件有限公司 充电电路和电子设备
CN113452103A (zh) * 2020-03-25 2021-09-28 飞宏科技股份有限公司 双埠电池充电系统及其充电方法
CN114633656A (zh) * 2022-03-23 2022-06-17 车主邦(北京)科技有限公司 私人充电桩分配方法、装置、系统、程序产品及电子设备
CN114633656B (zh) * 2022-03-23 2024-01-26 浙江安吉智电控股有限公司 私人充电桩分配方法、装置、系统、程序产品及电子设备

Also Published As

Publication number Publication date
CN107078528B (zh) 2019-02-01
CN107078528A (zh) 2017-08-18
CN109728622A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2018053721A1 (zh) 电源的充电方法、充电控制系统、充电装置及无人机
US10742044B2 (en) Equalization control method, apparatus, and circuit for power battery
CN103326439B (zh) 电池组的均衡电路及方法
TWI433425B (zh) Battery charge and discharge balance of the circuit
US20170288417A1 (en) Fast Charging Apparatus and Method
CN105703447A (zh) 充电电池组的直接平衡充电装置及方法
US10193356B2 (en) Electrochemical energy accumulator and balancing method
CN203631703U (zh) 一种电动汽车电池加热系统的控制电路
JP6531221B2 (ja) バッテリーパックの管理装置及び方法
WO2012000292A1 (zh) 动力电池组充放电均衡控制方法
CN206023324U (zh) 充电控制系统、充电装置及无人机
CN102231446B (zh) 一种控制动力电池组一致性的方法
US9413037B2 (en) Cell capacity adjusting device
CN111404246B (zh) 电池能量处理装置、方法和车辆
CN102882260A (zh) 一种带温度检测的锂电池充电控制方法及其充电器
CN107134599B (zh) 一种串联电池组的电压均衡电路及其工作方法
WO2013114696A1 (ja) 均等化装置
JP5861063B2 (ja) 蓄電装置及び電力供給システム
CN113752911B (zh) 能量处理装置、方法及车辆
JP2008148486A (ja) 充電方法および充電回路
WO2016090763A1 (zh) 终端电池及其充放电的控制方法
WO2021249150A1 (zh) 混联电池充放电方法及混联电池系统
CN110661316A (zh) 一种电池储能电路的控制方法及其系统
CN101257220A (zh) 锂离子电池组充电方法
CN107154656B (zh) 电池组之间的电量均衡装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916460

Country of ref document: EP

Kind code of ref document: A1