WO2017084291A1 - 用于显示装置的大功率电源及显示装置 - Google Patents

用于显示装置的大功率电源及显示装置 Download PDF

Info

Publication number
WO2017084291A1
WO2017084291A1 PCT/CN2016/083709 CN2016083709W WO2017084291A1 WO 2017084291 A1 WO2017084291 A1 WO 2017084291A1 CN 2016083709 W CN2016083709 W CN 2016083709W WO 2017084291 A1 WO2017084291 A1 WO 2017084291A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
resistor
control circuit
diode
transistor
Prior art date
Application number
PCT/CN2016/083709
Other languages
English (en)
French (fr)
Inventor
蔡胜平
戴奇峰
韦宗旺
Original Assignee
深圳创维-Rgb电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳创维-Rgb电子有限公司 filed Critical 深圳创维-Rgb电子有限公司
Priority to AU2016310328A priority Critical patent/AU2016310328B2/en
Priority to US15/494,941 priority patent/US10354570B2/en
Publication of WO2017084291A1 publication Critical patent/WO2017084291A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4241Arrangements for improving power factor of AC input using a resonant converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/63Generation or supply of power specially adapted for television receivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/025Reduction of instantaneous peaks of current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/026Arrangements or methods related to booting a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to the field of power supply technologies, and in particular, to a high power power supply and display device for a display device.
  • LED display technology people are pursuing high-definition picture quality and high-color reproduction.
  • functions such as game entertainment, network video and human-computer interaction are gradually integrated into the LED display device.
  • the size of the LED display screen is getting bigger and bigger.
  • LED large-screen display has gradually replaced traditional blackboard teaching.
  • the general large-size display is usually equipped with a multimedia human-computer interaction intelligent module such as a microcomputer module, a backlight driver module, a power amplifier module, and a motherboard module.
  • a multimedia human-computer interaction intelligent module such as a microcomputer module, a backlight driver module, a power amplifier module, and a motherboard module.
  • the prior art usually has several separate power modules in the same device to respectively supply the input AC power. After the conversion process, to achieve power supply requirements.
  • a separate adapter is used for the microcomputer.
  • the motherboard and the power amplifier a constant voltage power supply is used
  • the backlight driver uses a constant current module
  • the constant current module takes a voltage from the constant voltage power source.
  • the adapter, the constant voltage power supply and the backlight drive constant current module each adopt an independent control circuit and a filter rectifier circuit, and the circuit structure is relatively complicated.
  • a primary object of the present invention is to provide a high power power supply for a display device, which is intended to provide a high power power supply for a display device having a simple circuit structure.
  • the present invention provides a high-power power supply for a display device, which includes an AC conversion module, a power factor correction circuit, a power-on control circuit, a resonance control circuit, and a plurality of a power supply for supplying power to the display device; a power input end of the AC conversion module is configured to input an AC power source, and a power output end of the AC conversion module is connected to an input end of the power factor correction circuit; The power output end is respectively connected to the plurality of transformers through a resonant control circuit; the input end of the power-on control circuit is connected to the power output end of the AC conversion module, and the signal input end of the power-on control circuit The power factor correction circuit is connected, the power-on control circuit has a plurality of signal output ends, and each signal output end of the power-on control circuit is respectively connected to a resonant control circuit; wherein the AC conversion module is used for Rectifying an external AC power source into a DC power source; said power factor correction circuit for The DC
  • the transformer comprises a first transformer for supplying a working voltage to a microprocessor of the display device, a second transformer for supplying an operating voltage to the power amplifier of the display device, and for providing a backlight constant current source for the display device a third transformer of the operating voltage and a fourth transformer for supplying a working voltage to the main board of the display device; the power output terminal of the power factor correction circuit respectively passes through the resonant control circuit and the first transformer, the second transformer, The third transformer and the fourth transformer are connected.
  • the second transformer and the fourth transformer are the same transformer; the second transformer includes a primary coil, a first secondary coil and a second secondary coil, and an input end of the second transformer primary coil The first output end of the AC conversion module is connected, and the output end of the second transformer primary coil is connected to the second output end of the AC conversion module via a second resonance control circuit.
  • the power-on control circuit includes a signal receiving module, a first power-on module, and a second power-on module; the input end of the signal receiving module receives an external power-on signal, and the output end of the signal receiving module and the first power-on
  • the module input is connected, the output end of the first boot module is connected to the power factor correction circuit; the output end of the second boot module is respectively connected to the first resonance control circuit and the second resonance control circuit,
  • the input of the second power-on module is connected to the power factor correction circuit.
  • the signal receiving module includes a first diode, a first capacitor, a first resistor, a first transistor, a first optocoupler, a first power source, a second resistor, and a third resistor; a turn-on signal of the anode of the diode, a cathode of the first diode being connected to a base of the first transistor via the first resistor; an emitter of the first transistor being grounded a collector of the first transistor is coupled to a control output of the first photocouple; the second resistor is coupled between a base and an emitter of the first transistor, the A capacitor is coupled in parallel with the second resistor; the signal receiving circuit further includes a first power source, and a control input of the first optocoupler is coupled to the first power source via the third resistor.
  • the first booting module includes a second power source, a fourth resistor, a fifth resistor, a sixth resistor, a seventh resistor, a second transistor, a third transistor, a first regulator, and a second Zener tube, second capacitor And a third capacitor; wherein an execution input end of the first optocoupler is connected to the second power source, and an execution output end of the first optocoupler passes through the fourth resistor and the first end of the fifth resistor Connected, the second end of the fifth resistor is grounded; the anode of the first Zener diode is grounded, and the cathode of the first Zener diode is simultaneously connected to the first end of the fifth resistor and the second third a base connection of the pole tube; an emitter of the second transistor is coupled to a collector of the second transistor, and a collector of the second transistor is coupled to the second power source; a first end of the second capacitor is coupled to the emitter of the second transistor, a second end of the second capacitor is grounded; and a
  • the second booting module includes an eighth resistor, a ninth resistor, a tenth resistor, an eleventh resistor, a fourth capacitor, a fourth triode, a third diode, a fourth diode, and a third a fifth diode, a sixth diode, a fourth transistor, a fourth capacitor, and a first voltage reference chip; the first end of the eighth resistor is configured to receive a feedback signal after the power factor correction circuit is turned on a second end of the eighth resistor is coupled to an anode of the third diode, a cathode of the third diode is grounded via the fourth capacitor; and an anode of the fourth diode is The ninth resistor is connected to the collector of the fourth transistor, and the cathode of the fourth diode is interconnected with the cathode of the third diode and the voltage reference end of the first voltage reference chip Connecting, the cathode of the first voltage reference chip is connected to the base of the fourth transistor via the tenth
  • the AC conversion module includes an EMI filter and a rectifier bridge.
  • the input end of the EMI filter is connected to an external alternating current
  • the output end of the EMI filter is connected to the input end of the rectifier bridge
  • the output end of the rectifier bridge is connected to the input end of the power factor correction circuit .
  • the present invention also provides a display device comprising the high-power power supply for the display device as described above, the high-power power supply for the display device comprising an AC conversion module, a power factor correction circuit, a power-on control circuit, a resonance control circuit and a plurality of transformers for supplying power to the display device; a power input end of the AC conversion module is used for inputting an AC power source, and a power output end of the AC conversion module is connected to an input end of the power factor correction circuit
  • the power output terminal of the power factor correction circuit is respectively connected to the plurality of transformers through a resonant control circuit; the input end of the power-on control circuit is connected to the power output end of the AC conversion module, and the power-on is turned on.
  • a signal input end of the control circuit is connected to the power factor correction circuit
  • the power-on control circuit has a plurality of signal output ends, and each signal output end of the power-on control circuit is respectively connected to a resonant control circuit;
  • the AC conversion module is configured to rectify an external AC power source into a DC power source; a rate factor correction circuit, configured to perform power factor correction on the DC power source, and output a correction completion signal after the calibration is successful;
  • the power-on control circuit is configured to control the power factor correction circuit to be powered on after receiving the power-on signal And performing power factor correction on the DC power source, and controlling the resonance control circuit to be turned on when receiving the correction completion signal; and the resonance control circuit is configured to control a plurality of the transformers to be normal when turned on jobs.
  • the transformer comprises a first transformer for supplying a working voltage to a microprocessor of the display device, a second transformer for supplying an operating voltage to the power amplifier of the display device, and for providing a backlight constant current source for the display device a third transformer of the operating voltage and a fourth transformer for supplying a working voltage to the main board of the display device; the power output terminal of the power factor correction circuit respectively passes through the resonant control circuit and the first transformer, the second transformer, The third transformer and the fourth transformer are connected.
  • the second transformer and the fourth transformer adopt the same transformer;
  • the second transformer includes a primary coil, a first secondary coil and a second secondary coil, and an input end of the second transformer primary coil
  • the first output end of the AC conversion module is connected, and the output end of the second transformer primary coil is connected to the second output end of the AC conversion module via a second resonance control circuit.
  • the power-on control circuit includes a signal receiving module, a first power-on module, and a second power-on module; the input end of the signal receiving module receives an external power-on signal, and the output end of the signal receiving module and the first power-on An input end of the module is connected, an output end of the first power-on module is connected to the power factor correction circuit, and an output end of the second power-on module is respectively connected to the first resonance control circuit and the second resonance control circuit, The input end of the second boot module is connected to the power factor correction circuit.
  • the signal receiving module includes a first diode, a first capacitor, a first resistor, a first transistor, a first optocoupler, a first power source, a second resistor, and a third resistor; a turn-on signal of the anode of the diode, a cathode of the first diode being connected to a base of the first transistor via the first resistor; an emitter of the first transistor being grounded a collector of the first transistor is coupled to a control output of the first photocouple; the second resistor is coupled between a base and an emitter of the first transistor, the A capacitor is coupled in parallel with the second resistor; the signal receiving circuit further includes a first power source, and a control input of the first optocoupler is coupled to the first power source via the third resistor.
  • the first booting module includes a second power source, a fourth resistor, a fifth resistor, a sixth resistor, a seventh resistor, a second transistor, a third transistor, a first regulator, and a second Zener tube, second capacitor And a third capacitor; wherein an execution input end of the first optocoupler is connected to the second power source, and an execution output end of the first optocoupler passes through the fourth resistor and the first end of the fifth resistor Connected, the second end of the fifth resistor is grounded; the anode of the first Zener diode is grounded, and the cathode of the first Zener diode is simultaneously connected to the first end of the fifth resistor and the second third a base connection of the pole tube; an emitter of the second transistor is coupled to a collector of the second transistor, and a collector of the second transistor is coupled to the second power source; a first end of the second capacitor is coupled to the emitter of the second transistor, a second end of the second capacitor is grounded; and a
  • the second booting module includes an eighth resistor, a ninth resistor, a tenth resistor, an eleventh resistor, a fourth capacitor, a fourth triode, a third diode, a fourth diode, and a third a fifth diode, a sixth diode, a fourth transistor, a fourth capacitor, and a first voltage reference chip; the first end of the eighth resistor is configured to receive a feedback signal after the power factor correction circuit is turned on a second end of the eighth resistor is coupled to an anode of the third diode, a cathode of the third diode is grounded via the fourth capacitor; and an anode of the fourth diode is The ninth resistor is connected to the collector of the fourth transistor, and the cathode of the fourth diode is interconnected with the cathode of the third diode and the voltage reference end of the first voltage reference chip Connecting, the cathode of the first voltage reference chip is connected to the base of the fourth transistor via the tenth
  • the AC conversion module includes an EMI filter and a rectifier bridge.
  • the input end of the EMI filter is connected to an external alternating current
  • the output end of the EMI filter is connected to the input end of the rectifier bridge
  • the output end of the rectifier bridge is connected to the input end of the power factor correction circuit .
  • the power factor correction circuit is implemented by Fairchild Semiconductor Chip FAN9611.
  • the resonance control circuit can be implemented by using the Fairchild semiconductor chip FSFR-XS.
  • the power factor correction circuit is controlled to be turned on; after the power factor correction circuit sends a completion signal to the power-on control circuit, the power-on control circuit controls the resonance The control circuit is turned on, and the control transformer outputs a preset voltage after the resonance control circuit is turned on.
  • the display device is a television set.
  • the technical solution of the present invention performs power factor correction on the DC power source by using a plurality of transformers for supplying power to the display device, an AC conversion module for rectifying the external AC power source into a DC power source, and outputting the correction after the calibration is successful.
  • a power factor correction circuit of the signal configured to control the power factor correction circuit to receive power on the power factor correction circuit to perform power factor correction on the DC power source, and control the resonance control circuit to be turned on when receiving the correction completion signal
  • the power-on control circuit realizes a high-power power supply for a display device with a simple circuit structure.
  • the power factor correction circuit After the power-on control circuit receives the power-on signal, the power factor correction circuit is controlled to be turned on; after the power factor correction circuit is turned on, the completion signal is sent to the power-on control circuit, and the power-on control circuit controls the
  • the resonance control circuit is turned on, and the resonance control circuit controls a plurality of the transformer output voltages to supply electric power to the display device, and the invention has the advantages of simple circuit structure.
  • FIG. 1 is a structural block diagram of a preferred embodiment of a high power power supply for a display device of the present invention
  • FIG. 2 is a schematic structural view of a preferred embodiment of a high power power supply for a display device according to the present invention
  • FIG. 3 is a structural block diagram of a preferred embodiment of a boot control circuit of the present invention.
  • FIG. 4 is a schematic diagram showing the circuit structure of a preferred embodiment of the boot control circuit of the present invention.
  • first, second, and the like in the present invention are used for the purpose of description only, and are not to be construed as indicating or implying their relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the technical solutions between the various embodiments may be combined with each other, but must be based on the realization of those skilled in the art, and when the combination of the technical solutions is contradictory or impossible to implement, it should be considered that the combination of the technical solutions does not exist. It is also within the scope of protection required by the present invention.
  • the present invention provides a high power supply for a display device.
  • the high-power power supply for the display device includes an AC conversion module 10, a power factor correction circuit 20, a power-on control circuit 30, a resonance control circuit 40, and a plurality of a power supply transformer 50; a power input end of the AC conversion module 10 is used to input an AC power source, and a power output end of the AC conversion module 10 is connected to an input end of the power factor correction circuit 20; The power output end of the circuit 20 is respectively connected to the plurality of transformers 50 through a resonance control circuit 40; the power terminal of the power-on control circuit 30 is connected to the power output terminal of the AC conversion module 10, and the power-on control The circuit 30 has a power-on signal receiving end, a feedback signal receiving end and a plurality of signal output ends, and the feedback signal receiving end of the power-on control circuit 30 is connected to the power factor correction circuit 20, and each signal of the power-on control circuit 30 The output ends are respectively connected to a resonant control circuit 40; wherein the AC conversion module 10
  • the invention can be applied to a large-sized display device, such as an audio-visual device, which includes a main board, a microprocessor, a power amplifier, and a constant current backlight.
  • the high-power power supply for the display device supplies power to the audio-visual equipment.
  • the AC conversion module 10 is configured to convert external AC power into DC power, and an input end of the power-on control circuit 30 is connected to a power output end of the AC conversion module 10 to provide power to the power-on control circuit 30.
  • the power-on control circuit 30 also supplies power to the CPU (central processing unit) of the audio-visual equipment; after the AC conversion module 10 is connected to the external power source, the power-on control circuit 30 is powered on and supplies power to the CPU, and the power-on device CPU is turned on to issue a power-on signal; When the power-on control circuit 30 receives the power-on signal from the CPU of the audio-visual equipment, the power-on control circuit 30 controls the power factor correction circuit 20 to be turned on; and after the power factor correction circuit 20 turns on the normal operation, the completion signal is sent.
  • the CPU central processing unit
  • the boot control circuit 30 controls the resonant control circuit 40 to be turned on, and the resonant control circuit After the 40 is turned on, the control transformer 50 outputs a preset voltage to supply power to the microprocessor of the display device, the power amplifier, the backlight constant current source, and the main board of the display device.
  • the power factor correction circuit 20 can be implemented by using the Fairchild semiconductor chip FAN9611.
  • the power factor correction circuit 20 is capable of keeping the currents of the input voltages in phase, thereby improving the operating efficiency of the high-power power supply for the display device, and the power factor correction circuit 20 is also capable of eliminating external electromagnetic interference and improving display for display. The stability of the high power supply of the device.
  • the resonant control circuit 40 can be implemented by using the Fairchild Semiconductor FSFR-XS series chip, which integrates a MOS transistor, a driving circuit, a control circuit and the like, and the resonant control circuit 40 can control the output voltage of the transformer and can realize Zero voltage switching reduces switching losses.
  • the technical solution of the present invention corrects the power factor of the DC power source by using a plurality of transformers 50 for supplying an operating voltage to the display device, and an AC conversion module 10 for rectifying the external AC power source into a DC power source.
  • the power factor correction circuit 20 that outputs the correction completion signal is configured to control the power factor correction circuit 20 to receive power on the power factor correction circuit 20 to perform power factor correction on the DC power source and control the signal when the correction completion signal is received.
  • the power factor correction circuit 20 is controlled to be turned on; after the power factor correction circuit 20 is turned on, the completion signal is sent to the power-on control circuit 30, and the power-on control is performed.
  • the circuit 30 controls the resonant control circuit 40 to be turned on, and the resonant control circuit 40 controls a plurality of the output voltages of the transformer 50 to provide power to the display device main board, the microprocessor, the power amplifier of the display device, and the backlight constant current source.
  • the invention has the advantages of simple circuit structure.
  • the transformer includes a first transformer 51 for supplying an operating voltage to a microprocessor of a display device, a second transformer 52 for supplying an operating voltage to a power amplifier of the display device, and a backlight constant current for the display device. a third transformer 53 for supplying a working voltage and a fourth transformer 54 for supplying a working voltage to the main board of the display device; the power output of the power factor correction circuit 20 is respectively passed through the resonance control circuit 40 and the first The transformer 51, the second transformer 52, the third transformer 53, and the fourth transformer 54 are connected.
  • the fourth transformer 54 is integrated in the second transformer 52, that is, the second transformer 52 includes two secondary output coils, which respectively output different outputs.
  • the voltage supplies power to the amplifier of the display unit and the motherboard. Since the microprocessor and the backlight constant current source have higher requirements on the power supply stability, a separate transformer is used to supply power to the microprocessor and the backlight constant current source.
  • the first transformer T1 (ie, the first transformer 51 in FIG. 1) includes a primary coil and a secondary coil
  • the second transformer T2 ie, the second transformer 52 and the fourth transformer 54 in FIG. 1
  • the primary transformer, the first secondary coil and the second secondary coil are included
  • the third transformer T3 ie, the third transformer 53 in FIG.
  • the first transformer T1 is of a primary coil The input end is connected to the first output end of the AC conversion module 10, and the output end of the primary winding of the first transformer T1 is connected to the second output end of the AC conversion module 10 via the first resonance control circuit 40;
  • An input end of the primary winding of the second transformer T2 is connected to a first output end of the AC conversion module 10, and an output end of the primary winding of the second transformer T2 is passed through a second resonance control circuit 40 and a portion of the AC conversion module 10
  • the two output terminals are connected; the input end and the output end of the primary coil of the third transformer T3 are connected in parallel with the input end and the output end of the primary coil of the second transformer T2.
  • the output voltage of the secondary winding of the first transformer T1 is 19v, which is used to supply power to the microprocessor in the audio-visual equipment; the output voltage of the first secondary coil of the second transformer T2 is 12v, which is used for the audio-visual equipment.
  • Power supply of the motherboard, the second secondary coil output voltage of the second transformer T2 is 24v, and is used for power supply of the audio-visual equipment; the secondary coil output voltage of the third transformer T3 is 120v, for the backlight Constant current source power supply.
  • the first resonance control circuit 41 or the second resonance control circuit 42 in this embodiment is implemented by Fairchild Semiconductor FSFR-XS series chips.
  • the first resonance control circuit 41 is for controlling the output voltage of the first transformer T1
  • the second resonance control circuit 42 is for controlling the output voltages of the second transformer T2 and the third transformer T3.
  • the resonant control circuit 40 is internally provided with a switching tube. The resonant control circuit 40 can realize zero voltage switching of the switching tube, reduce the power loss of the switching tube, and improve the efficiency of the high power supply for the display device.
  • the power-on control circuit 30 includes a signal receiving module 100 , a first booting module 200 , and a second booting module 300 .
  • the signal receiving module 100 includes a first diode D1, a first capacitor C1, a first resistor R1, a first transistor Q1, a first photocoupler U1, a first power source VCC1, a second resistor R2, and a third The resistor R3; the anode of the first diode D1 is connected to the power-on signal ON-OFF of the CPU (central processing unit) of the audio-visual equipment, and the cathode of the first diode D1 passes through the first resistor R1 and the first transistor Q1 a base connection; the emitter of the first transistor Q1 is grounded, the collector of the first transistor Q1 is connected to the control output of the first photocoupler U1; and the second resistor R2 is connected to the first transistor Q1 Between the base and the emitter, the first capacitor C1 is connected in parallel with the second resistor R2; the signal receiving circuit further includes a first power source VCC1, and the control input end of the first optocoupler U1 is connected to the first power source VCC1 via the
  • the second resistor R2 and the first capacitor C1 form an RC snubber circuit, which can speed up the turn-on and turn-off speed of the first transistor Q1, and also protect the first transistor Q1 from being spiked in the circuit. Voltage breakdown.
  • the first booting module 200 includes a second power source VCC2, a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a seventh resistor R7, a second transistor Q2, a third transistor Q3, and a first stable Pressure tube Z1, second voltage regulator tube Z2, second capacitor C2 and a third capacitor C3; wherein an execution input end of the first optocoupler U1 is connected to the second power source VCC2, and an execution output end of the first optocoupler U1 is connected to the first end of the fifth resistor R5 via the fourth resistor R4, The second end of the fifth resistor R5 is grounded; the anode of the first Zener diode Z1 is grounded, and the cathode of the first Zener diode Z1 is simultaneously connected with the first end of the fifth resistor R5 and the base of the second transistor Q2; The emitter of the second transistor Q2 is connected to the collector of the second transistor Q2, and the collector of the second transistor Q2 is connected to the second power source VCC2; the second
  • the electrode is also connected to the second power source VCC2; the second Zener diode Z2 is grounded to the anode, the cathode of the second Zener diode Z2 is connected to the base of the third transistor Q3 and is connected to the second end of the sixth resistor R6; The cathode of the diode outputs the turn-on signal of the power factor correction circuit 20, and the anode of the second diode is grounded via the third capacitor C3.
  • the first boot module 200 is configured to control the turn-on of the power factor correction circuit.
  • the fourth resistor R4 and the fifth resistor R5 are voltage dividing resistors. After the first photocoupler U1 works normally, the voltage across the fifth resistor R5 rises, and the first Zener diode Z1 clamps the voltage across the fifth resistor R5. In the steady state, the voltage across the fifth resistor R5 is output to the base of the second transistor Q2, and the base of the second transistor Q2 is driven to be turned on; it is easy to understand that the sixth resistor R6 and the seventh resistor R7 are also divided. The voltage resistor, the second Zener Z2 clamps the voltage across the seventh resistor R7 in a stable state, and the voltage across the seventh resistor R7 is output to the base of the third transistor Q3, driving the third transistor Q3. through.
  • the second booting module 300 includes an eighth resistor R8, a ninth resistor R9, a tenth resistor R10, an eleventh resistor R11, a fourth capacitor C4, a fourth transistor Q4, a third diode D3, and a fourth a diode D4, a fifth diode D5, a sixth diode D6, a fourth transistor Q4, a fourth capacitor C4, and a first voltage reference chip U2; the first end of the eighth resistor R8 is for receiving power
  • the cathode of the first voltage reference chip U2 is connected to the base of the fourth transistor Q4 via the tenth resistor R10, the anode of the first voltage reference chip U2 is grounded; the eleventh resistor R11 is connected in parallel with the base of the fourth transistor Q4.
  • the anode of the fifth diode D5 outputs the turn-on signal OP1 of the first resonance control circuit 40, thereby controlling
  • the first transformer T1T1 outputs a voltage of 19v
  • the cathode of the fifth diode D5 is connected to the collector of the fourth transistor Q4, and the emitter of the fourth transistor Q4 is also connected to the second power source VCC2;
  • the anode of D6 outputs the turn-on signal OP2 of the second resonance control circuit 40, thereby controlling the second transformer T2 to output the voltages of 12v and 24v, controlling the third transformer T3 to output the voltage of 120v, and the cathode of the sixth diode D6 and the fourth transistor
  • the second booting module 300 is configured to control the opening of the first resonant circuit 41 and the second resonant circuit 42.
  • the input end of the power-on control circuit 30 receives power from the AC conversion module 10 and converts it into the first power source VCC1 and the second power source VCC2, wherein the first power source VCC1 is used to provide the signal receiving module 100
  • the second power source VCC2 is used to supply power to the first power-on module 200 and the transformer power-on module 200; when the power-on signal from the CPU of the audio-visual equipment is ON-OFF, the first transistor Q1 is turned on; the first power source VCC1
  • the first optocoupler U1 is supplied with electric energy, the first optocoupler U1 outputs a control signal, the voltage across the fifth resistor R5 rises, the third transistor Q3 is turned on, and the cathode of the second diode D2 outputs a high level, that is,
  • the output power factor correction circuit turns on the signal OP-PFC; after the
  • the AC conversion module 10 includes an EMI filter (ie, EMI) 11 and a rectifier bridge 12 (ie, RB).
  • the input end of the EMI filter 11 is connected to an external alternating current, and an output end of the EMI filter 11 is connected to an input end of the rectifier bridge 12, an output end of the rectifier bridge 12 and the power factor correction circuit
  • the input of 20 ie PFC
  • the EMI filter 11 can effectively filter electromagnetic interference from the outside into the audio-visual equipment and improve the stability of the audio-visual equipment.
  • the rectifier bridge 12 is used to convert the input alternating current into direct current for supply to the power factor correction circuit.
  • the technical solution of the invention integrates a plurality of transformers into one high-power power source, and controls the output voltage of the transformer by setting a corresponding resonance control circuit 40, and controls the power factor correction circuit 20 and the resonance control circuit by setting the startup control circuit 30 and
  • the timing of operation of each transformer is improved by setting the power factor correction circuit 20 to increase the operating efficiency of the high-power power supply for the display device and eliminating external electromagnetic interference, thereby realizing a high-power power supply for the display device.
  • the power supply has the advantage of a simple circuit structure.
  • the present invention also provides a display device, which may be a television set, an audio-visual display device for teaching, etc., the display device including a high-power power supply for the display device, the specific structure of the high-power power supply for the display device

Abstract

本发明公开了一种用于显示装置的大功率电源及显示装置,该用于显示装置的大功率电源包括用于将外部交流电源整流成直流电源的交流转换模块、用于对直流电源进行功率因素校正并在校正成功后输出校正完成信号的功率因数校正电路、用于在接收到开机信号控制功率因数校正电路上电以对直流电源进行功率因素校正并在接收到校正完成信号时控制谐振控制电路开启的开机控制电路,用于在开启时控制各个变压器正常工作的谐振控制电路,分别给显示装置提供工作电压的多个变压器。本发明技术方案具有成本较低的优点。

Description

用于显示装置的大功率电源及显示装置
技术领域
本发明涉及电源技术领域,特别涉及一种用于显示装置的大功率电源及显示装置。
背景技术
随着LED显示技术的发展,人们在追求高清画质、高色彩还原的同时,游戏娱乐、网络影音及人机交互等功能也逐步集成到LED显示装置上,LED显示屏的尺寸越做越大,并且,在一些电教设备领域,LED大屏显示也逐渐取代传统的黑板教学。
一般的大尺寸显示屏,尤其在电教等一些人机交互需求更为突出的大尺寸显示屏上,通常配备有微电脑模块、背光驱动模块、功放模块、主板模块等多媒体人机交互智能模块。随着LED显示屏的越做越大,相应的驱动能力要求更高,为了保证这些模块正常工作,现有技术通常会在同一设备中配备几个单独的电源模块对输入的交流电源分别进行电源转换处理后,来实现供电需求。如针对微电脑会配备单独的适配器,对于主板及功放使用恒压电源,背光驱动使用恒流模块,恒流模块从恒压电源处取电压。但是这种方案中由于电源板块较多,适配器、恒压电源及背光驱动恒流模块各自采用独立的控制电路及滤波整流电路等,电路结构比较复杂。
发明内容
本发明的主要目的是提供一种用于显示装置的大功率电源,旨在提供一种电路结构简单的用于显示装置的大功率电源。
为实现上述目的,本发明提出一种用于显示装置的大功率电源,该用于显示装置的大功率电源包括交流转换模块、功率因数校正电路、开机控制电路、谐振控制电路及多个用于给显示装置供电的变压器;所述交流转换模块的电源输入端用于输入交流电源,所述交流转换模块的电源输出端与所述功率因数校正电路的输入端连接;所述功率因数校正电路的电源输出端分别通过一所述谐振控制电路与多个所述变压器连接;所述开机控制电路的输入端与所述交流转换模块的电源输出端连接,所述开机控制电路的信号输入端与所述功率因数校正电路连接,所述开机控制电路具有多个信号输出端,所述开机控制电路的每一信号输出端分别与一所述谐振控制电路连接;其中,所述交流转换模块,用于将外部交流电源整流成直流电源;所述功率因数校正电路,用于对所述直流电源进行功率因素校正,并在校正成功后输出校正完成信号;所述开机控制电路,用于在接收到开机信号,控制所述功率因数校正电路上电,以对所述直流电源进行功率因素校正,并在接收到所述校正完成信号时,控制所述谐振控制电路开启;所述谐振控制电路,用于在开启时,控制多个所述变压器正常工作。
优选地,所述变压器包括用于给显示装置的微处理器提供工作电压的第一变压器、用于给显示装置的功放提供工作电压的第二变压器、用于给显示装置的背光恒流源提供工作电压的第三变压器及用于给显示装置主板提供工作电压的第四变压器;所述功率因数校正电路的电源输出端分别通过一所述谐振控制电路与所述第一变压器、第二变压器、第三变压器及第四变压器连接。
优选地,所述第二变压器和所述第四变压器为同一变压器;所述第二变压器包括初级线圈、第一次级线圈及第二次级线圈,所述第二变压器初级线圈的输入端与所述交流转换模块的第一输出端连接,所述第二变压器初级线圈的输出端经第二谐振控制电路与所述交流转换模块的第二输出端连接。
优选地,所述开机控制电路包括信号接收模块、第一开机模块及第二开机模块;所述信号接收模块的输入端接收外部开机信号,所述信号接收模块的输出端与所述第一开机模块输入端连接,所述第一开机模块的输出端与所述功率因数校正电路连接;所述第二开机模块的输出端分别与所述第一谐振控制电路和第二谐振控制电路连接,所述第二开机模块的输入端与所述功率因数校正电路连接。
优选地,所述信号接收模块包括第一二极管、第一电容、第一电阻、第一三极管、第一光耦、第一电源、第二电阻及第三电阻;所述第一二极管的阳极接入的开机信号,所述第一二极管的阴极经所述第一电阻与所述第一三极管的基极连接;所述第一三极管的发射极接地,所述第一三极管的集电极与所述第一光耦的控制输出端连接;所述第二电阻连接与所述第一三极管的基极和发射极之间,所述第一电容与所述第二电阻并联;该信号接收电路还包括第一电源,所述第一光耦的控制输入端经所述第三电阻与所述第一电源连接。
优选地,所述第一开机模块包括第二电源、第四电阻、第五电阻、第六电阻、第七电阻、第二三极管、第三三极管、第一稳压管、第二稳压管、第二电容 及第三电容;其中所述第一光耦的执行输入端与所述第二电源连接,所述第一光耦的执行输出端经所述第四电阻与所述第五电阻的第一端连接,所述第五电阻的第二端接地;所述第一稳压管的阳极接地,所述第一稳压管的阴极同时与所述第五电阻的第一端和所述第二三极管的基极连接;所述第二三极管的发射极与所述第二三极管的集电极连接,所述第二三极管的集电极与所述第二电源连接;所述第二电容的第一端与所述第二三极管的发射极连接,所述第二电容的第二端接地;所述第六电阻的第一端与所述第三三极管的集电极连接,所述第六电阻的第二端经所述第七电阻接地,所述第三三极管的集电极还与所述第二电源连接;所述第二稳压管阳极接地,所述第二稳压管的阴极与所述第三三极管的基极连接并与所述第六电阻的第二端连接;所述第二二极管的阴极输出功率因数校正电路的开启信号,所述第二二极管的阳极经所述第三电容接地。
优选地,所述第二开机模块包括第八电阻、第九电阻、第十电阻、第十一电阻、第四电容、第四三极管、第三二极管、第四二极管、第五二极管、第六二极管、第四三极管、第四电容及第一电压基准芯片;所述第八电阻的第一端用于接收所述功率因素校正电路开启后的反馈信号,所述第八电阻的第二端与所述第三二极管的阳极连接,所述第三二极管的阴极经所述第四电容接地;所述第四二极管的阳极经所述第九电阻与所述第四三极管的集电极连接,所述第四二极管的阴极与所述第三二极管的阴极互联后与所述第一电压基准芯片的电压参考端连接,所述第一电压基准芯片的阴极经所述第十电阻与所述第四三极管的基极连接,所述第一电压基准芯片的阳极接地;所述第十一电阻并联于所述第四三极管的基极和发射极之间;所述第五二极管的阳极输出第一谐振控制电路的开启信号,所述第五二极管的阴极与所述第四三极管的集电极连接,所述第四三极管的发射极还与所述第二电源连接;所述第六二极管的阳极输出第二谐振控制电路的开启信号,所述第六二极管的阴极与所述第四三极管的集电极连接。
优选地,所述交流转换模块包括EMI滤波器及整流桥, 其中所述EMI滤波器的输入端接入外部交流电,所述EMI滤波器的输出端与所述整流桥的输入端连接,所述整流桥的输出端与所述功率因数校正电路的输入端连接。
本发明还提出一种显示装置,所述显示装置包括如上所述的用于显示装置的大功率电源,该用于显示装置的大功率电源包括交流转换模块、功率因数校正电路、开机控制电路、谐振控制电路及多个用于给显示装置供电的变压器;所述交流转换模块的电源输入端用于输入交流电源,所述交流转换模块的电源输出端与所述功率因数校正电路的输入端连接;所述功率因数校正电路的电源输出端分别通过一所述谐振控制电路与多个所述变压器连接;所述开机控制电路的输入端与所述交流转换模块的电源输出端连接,所述开机控制电路的信号输入端与所述功率因数校正电路连接,所述开机控制电路具有多个信号输出端,所述开机控制电路的每一信号输出端分别与一所述谐振控制电路连接;其中,所述交流转换模块,用于将外部交流电源整流成直流电源;所述功率因数校正电路,用于对所述直流电源进行功率因素校正,并在校正成功后输出校正完成信号;所述开机控制电路,用于在接收到开机信号,控制所述功率因数校正电路上电,以对所述直流电源进行功率因素校正,并在接收到所述校正完成信号时,控制所述谐振控制电路开启;所述谐振控制电路,用于在开启时,控制多个所述变压器正常工作。
优选地,所述变压器包括用于给显示装置的微处理器提供工作电压的第一变压器、用于给显示装置的功放提供工作电压的第二变压器、用于给显示装置的背光恒流源提供工作电压的第三变压器及用于给显示装置主板提供工作电压的第四变压器;所述功率因数校正电路的电源输出端分别通过一所述谐振控制电路与所述第一变压器、第二变压器、第三变压器及第四变压器连接。
优选地,所述第二变压器和所述第四变压器采用同一变压器;所述第二变压器包括初级线圈、第一次级线圈及第二次级线圈,所述第二变压器初级线圈的输入端与所述交流转换模块的第一输出端连接,所述第二变压器初级线圈的输出端经第二谐振控制电路与所述交流转换模块的第二输出端连接。
优选地,所述开机控制电路包括信号接收模块、第一开机模块及第二开机模块;所述信号接收模块的输入端接收外部开机信号,所述信号接收模块的输出端与所述第一开机模块的输入端连接,所述第一开机模块的输出端与所述功率因数校正电路连接;所述第二开机模块的输出端分别与所述第一谐振控制电路和第二谐振控制电路连接,所述第二开机模块的输入端与所述功率因数校正电路连接。
优选地,所述信号接收模块包括第一二极管、第一电容、第一电阻、第一三极管、第一光耦、第一电源、第二电阻及第三电阻;所述第一二极管的阳极接入的开机信号,所述第一二极管的阴极经所述第一电阻与所述第一三极管的基极连接;所述第一三极管的发射极接地,所述第一三极管的集电极与所述第一光耦的控制输出端连接;所述第二电阻连接与所述第一三极管的基极和发射极之间,所述第一电容与所述第二电阻并联;该信号接收电路还包括第一电源,所述第一光耦的控制输入端经所述第三电阻与所述第一电源连接。
优选地,所述第一开机模块包括第二电源、第四电阻、第五电阻、第六电阻、第七电阻、第二三极管、第三三极管、第一稳压管、第二稳压管、第二电容 及第三电容;其中所述第一光耦的执行输入端与所述第二电源连接,所述第一光耦的执行输出端经所述第四电阻与所述第五电阻的第一端连接,所述第五电阻的第二端接地;所述第一稳压管的阳极接地,所述第一稳压管的阴极同时与所述第五电阻的第一端和所述第二三极管的基极连接;所述第二三极管的发射极与所述第二三极管的集电极连接,所述第二三极管的集电极与所述第二电源连接;所述第二电容的第一端与所述第二三极管的发射极连接,所述第二电容的第二端接地;所述第六电阻的第一端与所述第三三极管的集电极连接,所述第六电阻的第二端经所述第七电阻接地,所述第三三极管的集电极还与所述第二电源连接;所述第二稳压管阳极接地,所述第二稳压管的阴极与所述第三三极管的基极连接并与所述第六电阻的第二端连接;所述第二二极管的阴极输出功率因数校正电路的开启信号,所述第二二极管的阳极经所述第三电容接地。
优选地,所述第二开机模块包括第八电阻、第九电阻、第十电阻、第十一电阻、第四电容、第四三极管、第三二极管、第四二极管、第五二极管、第六二极管、第四三极管、第四电容及第一电压基准芯片;所述第八电阻的第一端用于接收所述功率因素校正电路开启后的反馈信号,所述第八电阻的第二端与所述第三二极管的阳极连接,所述第三二极管的阴极经所述第四电容接地;所述第四二极管的阳极经所述第九电阻与所述第四三极管的集电极连接,所述第四二极管的阴极与所述第三二极管的阴极互联后与所述第一电压基准芯片的电压参考端连接,所述第一电压基准芯片的阴极经所述第十电阻与所述第四三极管的基极连接,所述第一电压基准芯片的阳极接地;所述第十一电阻并联于所述第四三极管的基极和发射极之间;所述第五二极管的阳极输出第一谐振控制电路的开启信号,所述第五二极管的阴极与所述第四三极管的集电极连接,所述第四三极管的发射极还与所述第二电源连接;所述第六二极管的阳极输出第二谐振控制电路的开启信号,所述第六二极管的阴极与所述第四三极管的集电极连接。
优选地,所述交流转换模块包括EMI滤波器及整流桥, 其中所述EMI滤波器的输入端接入外部交流电,所述EMI滤波器的输出端与所述整流桥的输入端连接,所述整流桥的输出端与所述功率因数校正电路的输入端连接。
优选地,所述功率因数校正电路采用仙童半导体芯片FAN9611实现。
优选地,所述谐振控制电路可采用仙童半导体芯片FSFR-XS实现。
优选地,所述开机控制电路接收到开机信号后,控制所述功率因数校正电路开启;在所述功率因数校正电路发出完成信号给所述开机控制电路后,所述开机控制电路控制所述谐振控制电路开启,谐振控制电路开启后控制变压器输出预设电压。
优选地,所述显示装置为电视机。
本发明技术方案通过采用包括用于给显示装置供电的多个变压器、用于将外部交流电源整流成直流电源的交流转换模块、对所述直流电源进行功率因素校正并在校正成功后输出校正完成信号的功率因数校正电路、用于在接收到开机信号控制所述功率因数校正电路上电以对所述直流电源进行功率因素校正并在接收到所述校正完成信号时控制所述谐振控制电路开启的开机控制电路,实现了一种电路结构简单的用于显示装置的大功率电源。在所述开机控制电路接收到开机信号后,控制所述功率因数校正电路开启;在所述功率因数校正电路开启正常工作后发出完成信号给所述开机控制电路,所述开机控制电路控制所述谐振控制电路开启,所述谐振控制电路控制多个所述变压器输出电压,以给所述显示装置提供电能,本发明具有电路结构简单的优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明用于显示装置的大功率电源较佳实施例的结构框图;
图2为本发明用于显示装置的大功率电源较佳实施例的结构示意图;
图3为本发明开机控制电路较佳实施例的结构框图;
图4为本发明开机控制电路较佳实施例的电路结构示意图。
附图标号说明:
标号 名称 标号 名称
10 交流转换模块 R7 第七电阻
11 EMI滤波器 R8 第八电阻
12 整流桥 R9 第九电阻
20 功率因数校正电路 R10 第十电阻
30 开机控制电路 R11 第十一电阻
40 谐振控制电路 D1 第一二极管
41 第一谐振控制电路 D2 第二二极管
42 第二谐振控制电路 D3 第三二极管
50 变压器 D4 第四二极管
51 第一变压器 D5 第五二极管
52 第二变压器 D6 第六二极管
53 第三变压器 U1 第一光耦
54 第四变压器 U2 第一电压基准芯片
100 信号接收模块 Z1 第一稳压管
200 第一开机模块 Z2 第二稳压管
300 第二开机模块 Q1 第一三极管
R1 第一电阻 Q2 第二三极管
R2 第二电阻 Q3 第三三极管
R3 第三电阻 Q4 第四三极管
R4 第四电阻 R6 第六电阻
R5 第五电阻
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种用于显示装置的大功率电源。
参照图1,在本发明实施例中,该用于显示装置的大功率电源包括交流转换模块10、功率因数校正电路20、开机控制电路30、谐振控制电路40及多个用于给所述显示装置供电的变压器50;所述交流转换模块10的电源输入端用于输入交流电源,所述交流转换模块10的电源输出端与所述功率因数校正电路20的输入端连接;所述功率因数校正电路20的电源输出端分别通过一所述谐振控制电路40与多个所述变压器50连接;所述开机控制电路30的电源端与所述交流转换模块10的电源输出端连接,所述开机控制电路30具有开机信号接收端、反馈信号接收端和多个信号输出端,所述开机控制电路30的反馈信号接收端与所述功率因数校正电路20连接,所述开机控制电路30的每一信号输出端分别与一所述谐振控制电路40连接;其中,所述交流转换模块10,用于将外部交流电源整流成直流电源;所述功率因数校正电路20,用于对所述直流电源进行功率因素校正,并在校正成功后输出校正完成信号;所述开机控制电路30,用于在接收到开机信号,控制所述功率因数校正电路20上电,以对所述直流电源进行功率因素校正,并在接收到所述校正完成信号时,控制所述谐振控制电路40开启;所述谐振控制电路40,用于在开启时,控制多个所述变压器50正常工作。
本发明可应用于大尺寸的显示装置上,例如一种电教设备,该电教设备上包括主板、微处理器、功放、恒流背光源,所述用于显示装置的大功率电源给电教设备供电,其中所述交流转换模块10用于将外部交流电转换成直流电,所述开机控制电路30的输入端与所述交流转换模块10的电源输出端连接,以给所述开机控制电路30提供电源,所述开机控制电路30还给电教设备的CPU(中央处理器)供电;在交流转换模块10接入外部电源后,开机控制电路30上电并给CPU供电,电教设备CPU开启后发出开机信号;在所述开机控制电路30接收到电教设备的CPU发出的开机信号时,所述开机控制电路30控制所述功率因数校正电路20开启;在所述功率因数校正电路20开启正常工作后发出完成信号给所述开机控制电路30,所述开机控制电路30控制所述谐振控制电路40开启,谐振控制电路40开启后控制变压器50输出预设电压,以分别给显示装置的微处理器、功放、背光恒流源及显示装置的主板供电。
需要说明的是,在本实施例中,所述功率因数校正电路20可采用仙童半导体芯片FAN9611来实现。功率因数校正电路20能够使输入的电压的电流保持同相位,从而提高所述用于显示装置的大功率电源的工作效率,且功率因数校正电路20还能够消除外部的电磁干扰,提高用于显示装置的大功率电源的稳定性。
所述谐振控制电路40可采用仙童半导体FSFR-XS系列芯片实现,该芯片内部集成有MOS管、驱动电路、控制电路等,所述谐振控制电路40能够控制变压器输出预设电压,同时能够实现零电压开关,减少了开关损耗。
本发明技术方案通过采用包括用于给显示装置提供工作电压的多个变压器50、用于将外部交流电源整流成直流电源的交流转换模块10、对所述直流电源进行功率因素校正并在校正成功后输出校正完成信号的功率因数校正电路20、用于在接收到开机信号控制所述功率因数校正电路20上电以对所述直流电源进行功率因素校正并在接收到所述校正完成信号时控制所述谐振控制电路40开启的开机控制电路30,实现了一种电路结构简单的用于显示装置的大功率电源。在所述开机控制电路30接收到开机信号后,控制所述功率因数校正电路20开启;在所述功率因数校正电路20开启正常工作后发出完成信号给所述开机控制电路30,所述开机控制电路30控制所述谐振控制电路40开启,所述谐振控制电路40控制多个所述变压器50输出电压,以给所述显示装置主板、微处理器、显示装置的功放及背光恒流源提供电能,本发明具有电路结构简单的优点。
具体地,所述变压器包括用于给显示装置的微处理器提供工作电压的第一变压器51、用于给显示装置的功放提供工作电压的第二变压器52、用于给显示装置的背光恒流源提供工作电压的第三变压器53及用于给显示装置主板提供工作电压的第四变压器54;所述功率因数校正电路20的电源输出端分别通过一所述谐振控制电路40与所述第一变压器51、第二变压器52、第三变压器53及第四变压器54连接。
基于降低成本、简化电路结构考虑,在本实施例中,所述第四变压器54集成于所述第二变压器52中,即所述第二变压器52包括两个次级输出线圈,分别输出不同的电压给显示装置的功放和主板供电。由于微处理器和背光恒流源对电源稳定要求比较高,因而分别采用单独的变压器来给微处理器和背光恒流源供电。
参照图2,所述第一变压器T1(即图1中的第一变压器51)包括初级线圈和次级线圈,所述第二变压器T2(即图1中第二变压器52和第四变压器54)包括初级线圈、第一次级线圈及第二次级线圈,所述第三变压器T3(即图1中的第三变压器53)包括初级线圈和次级线圈;所述第一变压器T1初级线圈的输入端与所述交流转换模块10的第一输出端连接,所述第一变压器T1初级线圈的输出端经第一谐振控制电路40与所述交流转换模块10的第二输出端连接;所述第二变压器T2初级线圈的输入端与所述交流转换模块10的第一输出端连接,所述第二变压器T2初级线圈的输出端经第二谐振控制电路40与所述交流转换模块10的第二输出端连接;所述第三变压器T3的初级线圈的输入端和输出端与所述第二变压器T2的初级线圈的输入端和输出端并联。
其中,所述第一变压器T1次级线圈输出电压为19v,用于给电教设备中的微处理器供电;所述第二变压器T2的第一次级线圈输出电压为12v,用于给电教设备的主板供电,所述第二变压器T2的第二次级线圈输出电压为24v,用于电教设备的功放供电;所述第三变压器T3的次级线圈输出电压为120v,用于给所述背光恒流源供电。
本实施例中的第一谐振控制电路41或所述第二谐振控制电路42均采用仙童半导体FSFR-XS系列芯片实现。第一谐振控制电路41用于控制第一变压器T1的输出电压,第二谐振控制电路42用于控制第二变压器T2和第三变压器T3的输出电压。谐振控制电路40内部设有开关管,谐振控制电路40能够实现开关管的零电压开关,减小了开关管的功率损耗,提高了用于显示装置的大功率电源的效率。
参照图3及图4,本实施例中,所述开机控制电路30包括信号接收模块100、第一开机模块200及第二开机模块300。
具体地,信号接收模块100包括第一二极管D1、第一电容C1、第一电阻R1、第一三极管Q1、第一光耦U1、第一电源VCC1、第二电阻R2及第三电阻R3;第一二极管D1的阳极接入电教设备的CPU(中央处理器)发出的开机信号ON-OFF,第一二极管D1的阴极经第一电阻R1与第一三极管Q1的基极连接;第一三极管Q1的发射极接地,第一三极管Q1的集电极与第一光耦U1的控制输出端连接;第二电阻R2连接与第一三极管Q1的基极和发射极之间,第一电容C1与第二电阻R2并联;该信号接收电路还包括第一电源VCC1,第一光耦U1的控制输入端经第三电阻R3与第一电源VCC1连接,第一电源VCC1用于给第一光耦U1提供电能;所述第一光耦U1的控制输入端还用于接收过压信号OVP,在外部输入电压过大时,电教设备的CPU发出过压信号,从而切断光耦输出。
需要说明的是,第二电阻R2与第一电容C1组成RC缓冲电路,能够加快第一三极管Q1的导通与关断速度,同时还可以保护第一三极管Q1被电路中的尖峰电压击穿。
其中,第一开机模块200包括第二电源VCC2、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第二三极管Q2、第三三极管Q3、第一稳压管Z1、第二稳压管Z2、第二电容 C2及第三电容C3;其中第一光耦U1的执行输入端与第二电源VCC2连接,第一光耦U1的执行输出端经第四电阻R4与第五电阻R5的第一端连接,第五电阻R5的第二端接地;第一稳压管Z1的阳极接地,第一稳压管Z1的阴极同时与第五电阻R5的第一端和第二三极管Q2的基极连接;第二三极管Q2的发射极与第二三极管Q2的集电极连接,第二三极管Q2的集电极与第二电源VCC2连接;第二电容 C2的第一端与第二三极管Q2的发射极连接,第二电容 C2的第二端接地;第六电阻R6的第一端与第三三极管Q3的集电极连接,第六电阻R6的第二段经第七电阻R7接地,第三三极管Q3的集电极还与第二电源VCC2连接;第二稳压管Z2阳极接地,第二稳压管Z2的阴极与第三三极管Q3的基极连接并与第六电阻R6的第二端连接;第二极管的阴极输出功率因数校正电路20的开启信号,第二二极管的阳极经第三电容C3接地。
需要说明的是,第一开机模块200用于控制功率因素校正电路的开启。第四电阻R4与第五电阻R5为分压电阻,第一光耦U1正常工作后,第五电阻R5两端电压升高,第一稳压管Z1将第五电阻R5两端电压钳位在稳定状态,第五电阻R5两端电压输出至第二三极管Q2基极,驱动第二三极管Q2基极导通;易于理解的是,第六电阻R6与第七电阻R7也为分压电阻,第二稳压管Z2将第七电阻R7两端电压钳位在一个稳定状态,第七电阻R7两端电压输出至第三三极管Q3基极,驱动第三三极管Q3导通。
其中,第二开机模块300包括第八电阻R8、第九电阻R9、第十电阻R10、第十一电阻R11、第四电容C4、第四三极管Q4、第三二极管D3、第四二极管D4、第五二极管D5、第六二极管D6、第四三极管Q4、第四电容C4及第一电压基准芯片U2;第八电阻R8的第一端用于接收功率因素校正电路开启后的反馈信号,第八电阻R8的第二端与第三二极管D3的阳极连接,第三二极管D3的阴极经第四电容C4接地;第四二极管D4的阳极经第九电阻R9与第四三极管Q4的集电极连接,第四二极管D4的阴极与第三二极管D3的阴极互联后与第一电压基准芯片U2的电压参考端连接,第一电压基准芯片U2的阴极经第十电阻R10与第四三极管Q4的基极连接,第一电压基准芯片U2的阳极接地;第十一电阻R11并联与第四三极管Q4的基极和发射极之间;第五二极管D5的阳极输出第一谐振控制电路40的开启信号OP1,从而控制第一变压器T1T1输出19v电压,第五二极管D5的阴极与第四三极管Q4的集电极连接,第四三极管Q4的发射极还与第二电源VCC2连接;第六二极管D6的阳极输出第二谐振控制电路40的开启信号OP2,从而控制第二变压器T2输出12v和24v电压,控制第三变压器T3输出120v电压,第六二极管D6的阴极与第四三极管Q4的集电极连接。
需要说明的是,第二开机模块300用于控制第一谐振电路41及第二谐振电路42的开启。所述开机控制电路30的输入端从交流转换模块10处接收电能,并转换成所述第一电源VCC1及所述第二电源VCC2,其中所述第一电源VCC1用于给信号接收模块100提供电能,所述第二电源VCC2用于给第一开机模块200及变压器开机模块200提供电能;当电教设备的CPU发出的开机信号ON-OFF驱动第一三极管Q1导通;第一电源VCC1给第一光耦U1提供电能,第一光耦U1输出控制信号,第五电阻R5两端电压升高,第三三极管Q3导通,第二二极管D2阴极输出高电平,即输出功率因数校正电路开启信号OP-PFC;功率因数电路正常工作后,输出反馈信号PFC-OK至第八电阻R8的第一端,该反馈信号PFC-OK为高电平,第一电压基准芯片U2的电压参考端输入高电平,第一电压基准芯片U2的阴极输出低电平,第四三极管Q4导通;第四三极管Q4集电极输出高电平信号,即第五二极管D5阴极输出第一谐振控制电路41开启信号OP1,第六二极管D6的阴极输出第二谐振控制电路42开启信号OP2,第一谐振控制电路41控制第一变压器T1输出19v电压,第二谐振控制电路42控制第二变压器T2输出12v和24v电压并控制第三变压器T3输出120v电压,由此电教设备开机完成。
进一步地,所述交流转换模块10包括EMI滤波器(即EMI)11及整流桥12(即RB), 其中所述EMI滤波器11的输入端接入外部交流电,所述EMI滤波器11的输出端与所述整流桥12的输入端连接,所述整流桥12的输出端与所述功率因数校正电路20(即PFC)的输入端连接。EMI滤波器11能够有效滤除从外部进入电教设备内部的电磁干扰,提高电教设备的稳定性。整流桥12用于将输入的交流电变为直流电,以提供给功率因素校正电路。
综上,发明技术方案将多个变压器集成于一个大功率电源内,并通过设置对应的谐振控制电路40来控制变压器输出电压,通过设置开机控制电路30控制功率因数校正电路20、谐振控制电路及各个变压器工作的时序,通过设置功率因数校正电路20提高所述用于显示装置的大功率电源的工作效率并消除外部的电磁干扰,从而实现了一种用于显示装置的大功率电源,该大功率电源具有电路结构简单的优点。
本发明还提出一种显示装置,该显示装置可以是电视机、教学用的电教显示设备等,该显示装置包括用于显示装置的大功率电源,该用于显示装置的大功率电源的具体结构参照上述实施例,由于本显示装置采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (20)

  1. 一种用于显示装置的大功率电源,其特征在于,包括交流转换模块、功率因数校正电路、开机控制电路、谐振控制电路及多个用于给显示装置供电的变压器;所述交流转换模块的电源输入端用于输入交流电源,所述交流转换模块的电源输出端与所述功率因数校正电路的输入端连接;所述功率因数校正电路的电源输出端分别通过一所述谐振控制电路与多个所述变压器连接;所述开机控制电路的电源端与所述交流转换模块的电源输出端连接,所述开机控制电路具有开机信号接收端、反馈信号接收端和多个信号输出端,所述开机控制电路的反馈信号接收端与所述功率因数校正电路连接,所述开机控制电路的每一信号输出端分别与一所述谐振控制电路连接;其中,
    所述交流转换模块,用于将外部交流电源整流成直流电源;
    所述功率因数校正电路,用于对所述直流电源进行功率因素校正,并在校正成功后输出校正完成信号;
    所述开机控制电路,用于在接收到开机信号时,控制所述功率因数校正电路上电,以对所述直流电源进行功率因素校正,并在接收到所述校正完成信号时,控制所述谐振控制电路开启;
    所述谐振控制电路,用于在开启时,控制多个所述变压器正常工作。
  2. 如权利要求1所述的用于显示装置的大功率电源,其特征在于,所述变压器包括用于给显示装置的微处理器提供工作电压的第一变压器、用于给显示装置的功放提供工作电压的第二变压器、用于给显示装置的背光恒流源提供工作电压的第三变压器及用于给显示装置主板提供工作电压的第四变压器;所述功率因数校正电路的电源输出端分别通过一所述谐振控制电路与所述第一变压器、第二变压器、第三变压器及第四变压器连接。
  3. 如权利要求2所述的用于显示装置的大功率电源,其特征在于,所述第二变压器和所述第四变压器采用同一变压器;所述第二变压器包括初级线圈、第一次级线圈及第二次级线圈,所述第二变压器初级线圈的输入端与所述交流转换模块的第一输出端连接,所述第二变压器初级线圈的输出端经第二谐振控制电路与所述交流转换模块的第二输出端连接。
  4. 如权利要求1所述的用于显示装置的大功率电源,其特征在于,所述开机控制电路包括信号接收模块、第一开机模块及第二开机模块;所述信号接收模块的输入端接收外部开机信号,所述信号接收模块的输出端与所述第一开机模块的输入端连接,所述第一开机模块的输出端与所述功率因数校正电路连接;所述第二开机模块的输出端分别与所述第一谐振控制电路和第二谐振控制电路连接,所述第二开机模块的输入端与所述功率因数校正电路连接。
  5. 如权利要求4所述的用于显示装置的大功率电源,其特征在于,所述信号接收模块包括第一二极管、第一电容、第一电阻、第一三极管、第一光耦、第一电源、第二电阻及第三电阻;所述第一二极管的阳极接入的开机信号,所述第一二极管的阴极经所述第一电阻与所述第一三极管的基极连接;所述第一三极管的发射极接地,所述第一三极管的集电极与所述第一光耦的控制输出端连接;所述第二电阻连接与所述第一三极管的基极和发射极之间,所述第一电容与所述第二电阻并联;该信号接收电路还包括第一电源,所述第一光耦的控制输入端经所述第三电阻与所述第一电源连接。
  6. 如权利要求5所述的用于显示装置的大功率电源,其特征在于,所述第一开机模块包括第二电源、第四电阻、第五电阻、第六电阻、第七电阻、第二三极管、第三三极管、第一稳压管、第二稳压管、第二电容 及第三电容;其中所述第一光耦的执行输入端与所述第二电源连接,所述第一光耦的执行输出端经所述第四电阻与所述第五电阻的第一端连接,所述第五电阻的第二端接地;所述第一稳压管的阳极接地,所述第一稳压管的阴极同时与所述第五电阻的第一端和所述第二三极管的基极连接;所述第二三极管的发射极与所述第二三极管的集电极连接,所述第二三极管的集电极与所述第二电源连接;所述第二电容的第一端与所述第二三极管的发射极连接,所述第二电容的第二端接地;所述第六电阻的第一端与所述第三三极管的集电极连接,所述第六电阻的第二端经所述第七电阻接地,所述第三三极管的集电极还与所述第二电源连接;所述第二稳压管阳极接地,所述第二稳压管的阴极与所述第三三极管的基极连接并与所述第六电阻的第二端连接;所述第二二极管的阴极输出功率因数校正电路的开启信号,所述第二二极管的阳极经所述第三电容接地。
  7. 如权利要求6所述的用于显示装置的大功率电源,其特征在于,所述第二开机模块包括第八电阻、第九电阻、第十电阻、第十一电阻、第四电容、第四三极管、第三二极管、第四二极管、第五二极管、第六二极管、第四三极管、第四电容及第一电压基准芯片;所述第八电阻的第一端用于接收所述功率因素校正电路开启后的反馈信号,所述第八电阻的第二端与所述第三二极管的阳极连接,所述第三二极管的阴极经所述第四电容接地;所述第四二极管的阳极经所述第九电阻与所述第四三极管的集电极连接,所述第四二极管的阴极与所述第三二极管的阴极互联后与所述第一电压基准芯片的电压参考端连接,所述第一电压基准芯片的阴极经所述第十电阻与所述第四三极管的基极连接,所述第一电压基准芯片的阳极接地;所述第十一电阻并联于所述第四三极管的基极和发射极之间;所述第五二极管的阳极输出第一谐振控制电路的开启信号,所述第五二极管的阴极与所述第四三极管的集电极连接,所述第四三极管的发射极还与所述第二电源连接;所述第六二极管的阳极输出第二谐振控制电路的开启信号,所述第六二极管的阴极与所述第四三极管的集电极连接。
  8. 如权利要求1所述的用于显示装置的大功率电源,其特征在于,所述交流转换模块包括EMI滤波器及整流桥, 其中所述EMI滤波器的输入端接入外部交流电,所述EMI滤波器的输出端与所述整流桥的输入端连接,所述整流桥的输出端与所述功率因数校正电路的输入端连接。
  9. 一种显示装置,其特征在于,所述显示装置包括如权利要求1所述的用于显示装置的大功率电源,所述用于显示装置的大功率电源包括交流转换模块、功率因数校正电路、开机控制电路、谐振控制电路及多个用于给显示装置供电的变压器;所述交流转换模块的电源输入端用于输入交流电源,所述交流转换模块的电源输出端与所述功率因数校正电路的输入端连接;所述功率因数校正电路的电源输出端分别通过一所述谐振控制电路与多个所述变压器连接;所述开机控制电路的电源端与所述交流转换模块的电源输出端连接,所述开机控制电路具有开机信号接收端、反馈信号接收端和多个信号输出端,所述开机控制电路的反馈信号接收端与所述功率因数校正电路连接,所述开机控制电路的每一信号输出端分别与一所述谐振控制电路连接;其中,
    所述交流转换模块,用于将外部交流电源整流成直流电源;
    所述功率因数校正电路,用于对所述直流电源进行功率因素校正,并在校正成功后输出校正完成信号;
    所述开机控制电路,用于在接收到开机信号时,控制所述功率因数校正电路上电,以对所述直流电源进行功率因素校正,并在接收到所述校正完成信号时,控制所述谐振控制电路开启;
    所述谐振控制电路,用于在开启时,控制多个所述变压器正常工作。
  10. 如权利要求9所述的显示装置,其特征在于,所述变压器包括用于给显示装置的微处理器提供工作电压的第一变压器、用于给显示装置的功放提供工作电压的第二变压器、用于给显示装置的背光恒流源提供工作电压的第三变压器及用于给显示装置主板提供工作电压的第四变压器;所述功率因数校正电路的电源输出端分别通过一所述谐振控制电路与所述第一变压器、第二变压器、第三变压器及第四变压器连接。
  11. 如权利要求10所述的显示装置,其特征在于,所述第二变压器和所述第四变压器采用同一变压器;所述第二变压器包括初级线圈、第一次级线圈及第二次级线圈,所述第二变压器初级线圈的输入端与所述交流转换模块的第一输出端连接,所述第二变压器初级线圈的输出端经第二谐振控制电路与所述交流转换模块的第二输出端连接。
  12. 如权利要求9所述的显示装置,其特征在于,所述开机控制电路包括信号接收模块、第一开机模块及第二开机模块;所述信号接收模块的输入端接收外部开机信号,所述信号接收模块的输出端与所述第一开机模块的输入端连接,所述第一开机模块的输出端与所述功率因数校正电路连接;所述第二开机模块的输出端分别与所述第一谐振控制电路和第二谐振控制电路连接,所述第二开机模块的输入端与所述功率因数校正电路连接。
  13. 如权利要求12所述的显示装置,其特征在于,所述信号接收模块包括第一二极管、第一电容、第一电阻、第一三极管、第一光耦、第一电源、第二电阻及第三电阻;所述第一二极管的阳极接入的开机信号,所述第一二极管的阴极经所述第一电阻与所述第一三极管的基极连接;所述第一三极管的发射极接地,所述第一三极管的集电极与所述第一光耦的控制输出端连接;所述第二电阻连接与所述第一三极管的基极和发射极之间,所述第一电容与所述第二电阻并联;该信号接收电路还包括第一电源,所述第一光耦的控制输入端经所述第三电阻与所述第一电源连接。
  14. 如权利要求13所述的显示装置,其特征在于,所述第一开机模块包括第二电源、第四电阻、第五电阻、第六电阻、第七电阻、第二三极管、第三三极管、第一稳压管、第二稳压管、第二电容 及第三电容;其中所述第一光耦的执行输入端与所述第二电源连接,所述第一光耦的执行输出端经所述第四电阻与所述第五电阻的第一端连接,所述第五电阻的第二端接地;所述第一稳压管的阳极接地,所述第一稳压管的阴极同时与所述第五电阻的第一端和所述第二三极管的基极连接;所述第二三极管的发射极与所述第二三极管的集电极连接,所述第二三极管的集电极与所述第二电源连接;所述第二电容的第一端与所述第二三极管的发射极连接,所述第二电容的第二端接地;所述第六电阻的第一端与所述第三三极管的集电极连接,所述第六电阻的第二端经所述第七电阻接地,所述第三三极管的集电极还与所述第二电源连接;所述第二稳压管阳极接地,所述第二稳压管的阴极与所述第三三极管的基极连接并与所述第六电阻的第二端连接;所述第二二极管的阴极输出功率因数校正电路的开启信号,所述第二二极管的阳极经所述第三电容接地。
  15. 如权利要求14所述的显示装置,其特征在于,所述第二开机模块包括第八电阻、第九电阻、第十电阻、第十一电阻、第四电容、第四三极管、第三二极管、第四二极管、第五二极管、第六二极管、第四三极管、第四电容及第一电压基准芯片;所述第八电阻的第一端用于接收所述功率因素校正电路开启后的反馈信号,所述第八电阻的第二端与所述第三二极管的阳极连接,所述第三二极管的阴极经所述第四电容接地;所述第四二极管的阳极经所述第九电阻与所述第四三极管的集电极连接,所述第四二极管的阴极与所述第三二极管的阴极互联后与所述第一电压基准芯片的电压参考端连接,所述第一电压基准芯片的阴极经所述第十电阻与所述第四三极管的基极连接,所述第一电压基准芯片的阳极接地;所述第十一电阻并联于所述第四三极管的基极和发射极之间;所述第五二极管的阳极输出第一谐振控制电路的开启信号,所述第五二极管的阴极与所述第四三极管的集电极连接,所述第四三极管的发射极还与所述第二电源连接;所述第六二极管的阳极输出第二谐振控制电路的开启信号,所述第六二极管的阴极与所述第四三极管的集电极连接。
  16. 如权利要求9所述的显示装置,其特征在于,所述交流转换模块包括EMI滤波器及整流桥, 其中所述EMI滤波器的输入端接入外部交流电,所述EMI滤波器的输出端与所述整流桥的输入端连接,所述整流桥的输出端与所述功率因数校正电路的输入端连接。
  17. 如权利要求9所述的显示装置,其特征在于,所述功率因数校正电路采用仙童半导体芯片FAN9611实现。
  18. 如权利要求9所述的显示装置,其特征在于,所述谐振控制电路采用仙童半导体芯片FSFR-XS实现。
  19. 如权利要求9所述的显示装置,其特征在于,所述开机控制电路接收到开机信号后,控制所述功率因数校正电路开启;在所述功率因数校正电路发出完成信号给所述开机控制电路后,所述开机控制电路控制所述谐振控制电路开启,谐振控制电路开启后控制变压器输出预设电压。
  20. 如权利要求9所述的显示装置,其特征在于,所述显示装置为电视机。
PCT/CN2016/083709 2015-11-18 2016-05-27 用于显示装置的大功率电源及显示装置 WO2017084291A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2016310328A AU2016310328B2 (en) 2015-11-18 2016-05-27 High-power power supply for use with display devices and associated display device
US15/494,941 US10354570B2 (en) 2015-11-18 2017-04-24 High-power power supply for use with display devices and associated display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510811776.6 2015-11-18
CN201510811776.6A CN105376508B (zh) 2015-11-18 2015-11-18 用于显示装置的大功率电源及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/494,941 Continuation US10354570B2 (en) 2015-11-18 2017-04-24 High-power power supply for use with display devices and associated display device

Publications (1)

Publication Number Publication Date
WO2017084291A1 true WO2017084291A1 (zh) 2017-05-26

Family

ID=55378262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083709 WO2017084291A1 (zh) 2015-11-18 2016-05-27 用于显示装置的大功率电源及显示装置

Country Status (4)

Country Link
US (1) US10354570B2 (zh)
CN (1) CN105376508B (zh)
AU (1) AU2016310328B2 (zh)
WO (1) WO2017084291A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105376508B (zh) * 2015-11-18 2019-03-12 深圳创维-Rgb电子有限公司 用于显示装置的大功率电源及显示装置
CN107134262A (zh) * 2017-05-12 2017-09-05 惠州三华工业有限公司 低功耗显示装置
CN108377595B (zh) * 2018-03-14 2023-10-20 合肥惠科金扬科技有限公司 一种多功能一体的低成本背光电路和显示设备
CN208257679U (zh) * 2018-05-07 2018-12-18 江苏欧帝电子科技有限公司 一种驱动电源、触控黑板及其组合黑板
CN109119020A (zh) * 2018-07-18 2019-01-01 深圳市格特隆光电股份有限公司 一种储电式led显示系统及其显示模组结构
CN109274910B (zh) * 2018-11-07 2020-11-17 深圳创维-Rgb电子有限公司 一种开关电源及电视
CN109830201A (zh) * 2018-12-29 2019-05-31 广州市源瑞信息科技有限公司 一种可远程控制供电的显示屏
CN110620888B (zh) * 2019-09-06 2021-07-20 深圳创维-Rgb电子有限公司 电源控制电路及显示装置
CN115065228B (zh) * 2022-06-29 2023-06-20 江苏埃施朗电气有限公司 一种输出共享型工业电源

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2747807Y (zh) * 2004-11-16 2005-12-21 海信集团有限公司 大屏幕液晶电视机的内置主电源
CN200976642Y (zh) * 2006-12-06 2007-11-14 深圳创维-Rgb电子有限公司 一种lcd tv电源
US20100141037A1 (en) * 2008-12-10 2010-06-10 Samsung Electronics Co., Ltd. Power supply device and method of controlling the same
CN203482312U (zh) * 2013-08-06 2014-03-12 刘涛 一种用于液晶电视内的一体化多路电源电路
CN103997237A (zh) * 2014-05-27 2014-08-20 深圳创维-Rgb电子有限公司 大功率电源供电系统
CN104935843A (zh) * 2015-06-16 2015-09-23 康佳集团股份有限公司 一种led电视二合一电源电路及led电视机
CN105376508A (zh) * 2015-11-18 2016-03-02 深圳创维-Rgb电子有限公司 用于显示装置的大功率电源及显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848117B2 (en) * 2007-01-22 2010-12-07 Power Integrations, Inc. Control arrangement for a resonant mode power converter
US8102678B2 (en) * 2008-05-21 2012-01-24 Flextronics Ap, Llc High power factor isolated buck-type power factor correction converter
KR20130082016A (ko) * 2012-01-10 2013-07-18 삼성전자주식회사 표시 장치 및 그 구동 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2747807Y (zh) * 2004-11-16 2005-12-21 海信集团有限公司 大屏幕液晶电视机的内置主电源
CN200976642Y (zh) * 2006-12-06 2007-11-14 深圳创维-Rgb电子有限公司 一种lcd tv电源
US20100141037A1 (en) * 2008-12-10 2010-06-10 Samsung Electronics Co., Ltd. Power supply device and method of controlling the same
CN203482312U (zh) * 2013-08-06 2014-03-12 刘涛 一种用于液晶电视内的一体化多路电源电路
CN103997237A (zh) * 2014-05-27 2014-08-20 深圳创维-Rgb电子有限公司 大功率电源供电系统
CN104935843A (zh) * 2015-06-16 2015-09-23 康佳集团股份有限公司 一种led电视二合一电源电路及led电视机
CN105376508A (zh) * 2015-11-18 2016-03-02 深圳创维-Rgb电子有限公司 用于显示装置的大功率电源及显示装置

Also Published As

Publication number Publication date
CN105376508A (zh) 2016-03-02
US20170229051A1 (en) 2017-08-10
AU2016310328B2 (en) 2020-08-27
AU2016310328A1 (en) 2017-06-01
CN105376508B (zh) 2019-03-12
US10354570B2 (en) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2017084291A1 (zh) 用于显示装置的大功率电源及显示装置
WO2017076006A1 (zh) 恒压恒流同步输出电源及电视机
WO2020133991A1 (zh) 一种电视电源驱动装置和电视机
WO2017219659A1 (zh) 适配器
WO2015010475A1 (zh) 一种开关电源驱动芯片及开关电源驱动电路
WO2019024349A1 (zh) 空调器电流环通信电路及空调器
WO2018010404A1 (zh) 电源及电气设备
WO2012100406A1 (zh) 一种低压控制电源电路及其产生方法
WO2018227965A1 (zh) 供电装置和照明系统
JP2017034812A (ja) 絶縁同期整流型dc/dcコンバータ、それを用いた電源装置、電源アダプタおよび電子機器
WO2021004451A1 (zh) Pfc电路及空调器
WO2020047986A1 (zh) 一种oled驱动电源及oled电视
WO2012003685A1 (zh) 一种提高器件耐压的电路
WO2023005146A1 (zh) 一种mini led驱动电源及mini led电视
WO2021042915A1 (zh) 电源控制电路及显示装置
WO2014107926A1 (zh) Led驱动电路
WO2022217693A1 (zh) 一种稳压供电的调光电源模块及led调光装置
WO2018157418A1 (zh) 一种保护电路及led驱动电路
WO2023207442A1 (zh) 一种电源电路及电源适配器
CN105307305B (zh) 一种led电源控制装置及电视机
WO2023138072A1 (zh) 电源电路以及电源装置
KR20040096782A (ko) 전력변환기
US20090168465A1 (en) Power supply circuit with protecting circuit
WO2016041277A1 (zh) Led背光源升压驱动电路及液晶显示装置
WO2018166030A1 (zh) 双输出反激式电压转换电路及显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016310328

Country of ref document: AU

Date of ref document: 20160527

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865472

Country of ref document: EP

Kind code of ref document: A1