WO2020047986A1 - 一种oled驱动电源及oled电视 - Google Patents

一种oled驱动电源及oled电视 Download PDF

Info

Publication number
WO2020047986A1
WO2020047986A1 PCT/CN2018/113657 CN2018113657W WO2020047986A1 WO 2020047986 A1 WO2020047986 A1 WO 2020047986A1 CN 2018113657 W CN2018113657 W CN 2018113657W WO 2020047986 A1 WO2020047986 A1 WO 2020047986A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
circuit
transistor
power supply
voltage
Prior art date
Application number
PCT/CN2018/113657
Other languages
English (en)
French (fr)
Inventor
蔡胜平
韦宗旺
周建华
郭振宇
戴奇峰
Original Assignee
深圳创维-Rgb电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳创维-Rgb电子有限公司 filed Critical 深圳创维-Rgb电子有限公司
Priority to US17/058,305 priority Critical patent/US11482166B2/en
Priority to EP18932868.5A priority patent/EP3848921A4/en
Publication of WO2020047986A1 publication Critical patent/WO2020047986A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/63Generation or supply of power specially adapted for television receivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/026Arrangements or methods related to booting a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the field of power supply technology, for example, to an OLED driving power supply and an OLED TV.
  • OLED organic light emitting diode
  • OLED organic light emitting diode
  • LCD liquid crystal
  • OLED organic light emitting diode
  • LEDs have been widely used in recent years. With the gradual maturity of OLED technology, TVs using OLED as the display solution will gradually replace traditional LCD and LED TVs. At the same time, OLED TVs not only have a qualitative leap in image quality but also have a thin thickness compared to traditional LCDs and LED TVs. , Flexibility and other characteristics. Because the current OLED TVs have higher timing requirements and higher power than traditional LCDs and LED TVs, the volume of the power board is very large.
  • the existing OLED drive power often adopts multiple independent and independent control outputs. All the main circuits are independent of each other and controlled by the motherboard signal. Among them, the standby circuit outputs 5V to supply power to the motherboard, and the auxiliary winding passes The output power of the power supply circuit supplies power to the PFC circuit, the auxiliary LLC controller, and the main LLC controller. When the TV is powered on, the existing output 5V supplies power to the motherboard. After the motherboard works, the main channel is enabled to output sequentially according to a certain timing. When in standby, the motherboard receives the standby signal and turns off the main output in sequence in a certain sequence to enter the standby state.
  • the output of the drive power supply structure is independent of each other, and the relationship between each is clear and logical, which is very convenient for timing control, but the overall structure is more complicated.
  • an object of the present disclosure is to provide an OLED driving power supply and an OLED TV.
  • the OLED TV can meet the power output of the OLED TV.
  • An OLED driving power supply includes a power supply board connected to a motherboard and an OLED screen, the power supply board includes a standby circuit, a power supply circuit, a first conversion module, a second conversion module, and a switch;
  • the standby circuit After the power is turned on, the standby circuit outputs the power supply voltage to power the motherboard and the power supply circuit; the power supply circuit starts the first conversion module according to the on-off signal output by the motherboard, and the first conversion module outputs the first voltage and the second voltage to the motherboard Power supply and output high voltage DC to the second conversion module; the switch switches the first voltage to the first enable voltage according to the first enable signal output from the motherboard to power the OLED screen; the power supply circuit according to the second enable output from the motherboard The energy conversion signal can start the second conversion module, and the second conversion module converts the high voltage DC to the second enable voltage to power the OLED screen and light up the OLED screen;
  • the first conversion module includes a bridgeless PFC circuit and an auxiliary LLC control circuit integrated in the same semiconductor chip package. After starting, the bridgeless PFC circuit outputs a high-voltage DC to an auxiliary LLC control circuit, and the auxiliary LLC control circuit The high voltage direct current is converted into a first voltage and a second voltage, and the power is supplied to the motherboard.
  • the power supply circuit includes a power on / off control circuit and an enable switching circuit.
  • the power on / off control circuit outputs a first power source to start a bridgeless PFC circuit and a second power source according to a power on / off signal output from a motherboard.
  • Power the auxiliary LLC control circuit and output the third power to the enable switching circuit according to the high-voltage DC output from the bridgeless PFC circuit; the enable switching circuit converts the third power to the first according to the second enable signal output from the motherboard.
  • the auxiliary LLC control circuit includes an auxiliary LLC controller and a first transformer, and the auxiliary LLC controller starts a first transformer according to a second power output from the switch control circuit, and the first transformer
  • the high voltage DC output from the bridgeless PFC circuit is converted into a first voltage and a second voltage and then output to the motherboard.
  • the second conversion module includes a main LLC controller and a second transformer, and the main LLC controller starts the second transformer according to the fourth power output of the enable switching circuit, and the second The transformer converts the high-voltage DC output from the bridgeless PFC circuit into a second enabling voltage to power the OLED screen.
  • the standby circuit includes a ground standby circuit controller and a third transformer, and the standby circuit controller supplies power to the motherboard and the power supply circuit through the third transformer.
  • the switch control circuit includes a first control sub-circuit and a second control sub-circuit, and the first control sub-circuit outputs a first power supply to start a bridgeless PFC circuit according to a switch signal output from a motherboard.
  • the second control sub-circuit outputs power to the auxiliary LLC control circuit, and the second control sub-circuit outputs the third power to the enable switching circuit according to the high-voltage DC output after the bridgeless PFC circuit is started.
  • the first control sub-circuit includes a first diode, a first Zener diode, a second Zener diode, a first triode, a second triode, and a third triode.
  • Tube first resistor, second resistor, third resistor, fourth resistor, fifth resistor, sixth resistor, seventh resistor, eighth resistor, first capacitor, second capacitor, third capacitor, and first photocoupler ;
  • the positive electrode of the first diode is connected to the main board, and the negative electrode of the first diode is connected to one end of the second resistor, one end of the first capacitor and the base of the first transistor through a first resistor.
  • the other end of the two resistors, the other end of the first capacitor, and the emitter of the first transistor are all grounded;
  • the collector of the first transistor is connected to the second pin of the first photocoupler, and is also connected through a third resistor
  • the third pin of the first photocoupler is connected to one end of the sixth resistor, the negative electrode of the first Zener diode, and the second transistor through a fifth resistor.
  • the base, the fourth pin of the first optocoupler is connected to the collector of the second transistor and the auxiliary LLC control circuit, and the emitter of the second transistor is connected to the collector of the third transistor and the eighth One end of the resistor, the other end of the eighth resistor being connected to one end of the seventh resistor, the base of the third transistor and the negative electrode of the second zener diode; the other end of the sixth resistor, the first zener diode Positive terminal of the second capacitor, the other terminal of the second capacitor, the other terminal of the seventh resistor, and the positive terminal of the second Zener diode And one end of the third capacitor are grounded, and the emitter of the third transistor is connected to the bridgeless PFC circuit, the second control sub-circuit, and the other end of the third capacitor.
  • the second control sub-circuit includes a ninth resistor, a tenth resistor, an eleventh resistor, a twelfth resistor, a thirteenth resistor, a fourteenth resistor, a fifteenth resistor, and a first resistor.
  • the emitter of the fourth transistor is connected to the first control sub-circuit, and one end of the tenth resistor is connected to the negative electrode of the first shunt reference source through a ninth resistor.
  • the base of the fourth transistor is connected through the tenth resistor.
  • the anode of the first shunt reference source, the collector of the fourth transistor is connected to the anode of the fourth diode, and the anode of the second diode is connected to the anode of the fourth diode through an eleventh resistor.
  • the negative electrode is connected to enable the switching circuit; the negative electrode of the second diode is connected to the negative electrode of the third diode, the feedback pin of the first shunt reference source, and is also grounded through a fourth capacitor; the positive electrode of the first shunt reference source Ground; the anode of the third diode is connected to one end of the thirteenth resistor, one end of the fifth capacitor, one end of the sixth capacitor, and one end of the fourteenth resistor through a twelfth resistor. The other end, the other end of the fifth capacitor, and the other end of the sixth capacitor are all grounded.
  • the other end of the fourteenth resistor is connected in series with the fifteenth resistor, the sixteenth resistor, and the seventeenth resistor in series and is connected to a bridgeless PFC. Circuit.
  • the enabling switching circuit includes a fifth diode, an eighteenth resistor, a nineteenth resistor, a twenty-first resistor, a twenty-first resistor, a twenty-second resistor, and a seventh resistor.
  • the positive electrode of the fifth diode is connected to the main board, and the negative electrode of the fifth diode is connected to one end of the nineteenth resistor, one end of the seventh capacitor, and the base of the fifth transistor through an eighteenth resistor.
  • the other end of the nineteenth resistor, the other end of the seventh resistor, and the emitter of the fifth transistor are grounded;
  • the collector of the fifth transistor is connected to the second leg of the second optocoupler, and the first
  • the first pin of the two optocouplers is connected to the switch control circuit through the twentieth resistor, and the third pin of the second optocoupler is connected to one end of the twenty-second resistor through the twenty-first resistor and the negative pole of the third zener diode
  • the base of the sixth transistor, the fourth pin of the second optocoupler is connected to the switch control circuit and the collector of the sixth transistor;
  • the emitter of the sixth transistor is connected to the second conversion module ;
  • the first transistor, the second transistor, and the third transistor are all NPN transistors.
  • the type of the first photocoupler is BPC-817C.
  • the fourth transistor is a PNP transistor.
  • the fifth transistor and the sixth transistor are both NPN transistors.
  • the type of the second photocoupler is BPC-817C.
  • An OLED TV includes the OLED driving power as described above.
  • the present disclosure provides an OLED driving power source and an OLED television.
  • the OLED driving power source includes a power board connected to a motherboard and an OLED screen.
  • the power board includes a standby circuit, a power supply circuit, a first conversion module, The second conversion module and the switch; after the power is turned on, the standby circuit supplies power to the motherboard and the power supply circuit; the power supply circuit activates the first conversion module to output the first voltage and the second voltage to supply power to the motherboard and output high voltage DC to the second conversion module.
  • the switching switch converts the first voltage to the first enable voltage to supply power to the OLED screen; the second conversion module is activated by the power supply circuit to convert the high voltage DC to the second enable voltage to power the OLED screen and light up the OLED screen, of which the first
  • the conversion module includes a bridgeless PFC circuit and an auxiliary LLC control circuit integrated in the same semiconductor chip package.
  • FIG. 1 is a schematic structural diagram of a conventional OLED driving power source
  • FIG. 2 is a schematic diagram of an existing OLED driving power supply line
  • FIG. 3 is a schematic structural diagram of an OLED driving power source provided by the present disclosure.
  • FIG. 4 is a schematic diagram of a power supply circuit of an OLED driving power supply provided by the present disclosure
  • FIG. 5 is a structural block diagram of an auxiliary LLC control circuit and a power supply circuit of an OLED driving power supply provided by the present disclosure
  • FIG. 6 is a structural block diagram of a second conversion module and a power supply circuit of an OLED driving power supply provided by the present disclosure
  • FIG. 7 is a circuit diagram of a control circuit for switching on and off in an OLED driving power supply provided by the present disclosure
  • FIG. 8 is a circuit diagram of an enable switching circuit in an OLED driving power supply provided by the present disclosure.
  • FIG. 9 is a timing diagram of switching on and off the OLED driving power provided by the present disclosure.
  • the present disclosure provides an OLED driving power supply and an OLED TV.
  • the requirements of the OLED TV for power output stability and timing control are met, and the circuit structure is optimized. , Reduce the area of the power board, reduce production costs.
  • the OLED driving power provided by the present disclosure is suitable for display-related power driving such as televisions, monitors, electronic education, rear projection plasma displays, etc., which uses organic light emitting diodes, that is, OLEDs, as a display solution.
  • the OLED driving power provided by the present disclosure includes a power board 10 connected to the motherboard 20 and the OLED screen 30.
  • the power board 10 includes a standby circuit 11, a power supply circuit 12, a first The conversion module 13, the second conversion module 14, and the switch 15.
  • the standby circuit 11 is connected to the power supply circuit 12 and the main board 20.
  • the power supply circuit 12 is connected to the first conversion module 13, the second conversion module 14 and the main board 20.
  • the conversion module 13 is also connected to a second conversion module 14 and a changeover switch 15.
  • the changeover switch 15 is also connected to the motherboard 20.
  • the second conversion module 14 is also connected to the OLED screen 30.
  • the standby circuit 11 After the power is turned on, the standby circuit 11 outputs a power supply voltage (5V in this embodiment) to supply power to the motherboard 20 and the power supply circuit 12; the power supply circuit 12 starts the first conversion module according to the on / off signal output from the motherboard 20 13.
  • the first conversion module 13 outputs a first voltage (+ 12V in this embodiment) and a second voltage (+ 20V in this embodiment) to power the motherboard 20, and outputs a high-voltage DC HV-DC to a second conversion Module 14;
  • the switch 15 converts the first voltage + 12V into the first enable voltage (VDD_12V in this embodiment) according to the first enable signal VDD_ON output from the motherboard 20;
  • the second enable signal EVDD_ON output by the motherboard 20 starts the second conversion module 14, and the second conversion module 14 converts the high-voltage DC HV-DC into a second enable voltage (EVDD_24V in this embodiment) to power the OLED screen 30. Thereby, the OLED screen 30 is lit.
  • the first conversion module 13 includes a bridgeless PFC circuit 131 and an auxiliary LLC control circuit 132 integrated in the same semiconductor chip package.
  • the bridgeless PFC circuit 131 outputs a high-voltage DC HV-DC to the auxiliary LLC control after startup.
  • a circuit 132 that converts the high-voltage DC HV-DC into a first voltage + 12V and a second voltage + 20V by the auxiliary circuit LLC control circuit 132, and outputs power to the main board 20.
  • the power supply circuit 12 includes an on / off control circuit (not shown in the figure) and an enable switching circuit (not shown in the figure).
  • the on / off control circuit is connected to the main board 20, the bridgeless PFC circuit 131, and the auxiliary circuit.
  • the LLC control circuit 132 and an enable switching circuit are further connected to the second conversion module 14.
  • the switch control circuit outputs the first power PFC_VCC to start the bridgeless PFC circuit 131 according to the switch signal ON / OFF output from the motherboard 20, and outputs the second power VCC_VDD to supply the auxiliary LLC control circuit 132, and outputs according to the bridgeless PFC circuit 131.
  • the high-voltage direct current HV-DC outputs the third power source PWM_VCC to the enable switch circuit; the enable switch circuit converts the third power source PWM_VCC to the fourth power source VCC_EVDD according to the second enable signal EVDD-ON output from the motherboard 20 and outputs it to
  • the second conversion module 14 provides working power through a switch-on control circuit and an enable switching circuit, a bridgeless PFC circuit 131, an auxiliary LLC control circuit 132, and a main LLC control circuit, and controls them to perform an orderly work, thereby satisfying the OLED TV's requirements for power supply stability and timing.
  • the switch control circuit includes a first control sub-circuit and a second control sub-circuit.
  • the first control sub-circuit is connected to the bridgeless PFC circuit 131, the auxiliary LLC control circuit 132, and the main board 20.
  • the second control sub-circuit is connected to the first control sub-circuit, the bridgeless PFC circuit 131, and the enable switching circuit.
  • the first control sub-circuit outputs the first power PFC_VCC to start the first power PFC_VCC according to the on / off signal output from the motherboard 20.
  • a conversion module 13 outputs a second power source VCC_VDD to supply power to the auxiliary LLC control circuit 132, and the second control sub-circuit outputs a third power source PWM_VCC to enable switching according to the high-voltage DC HV-DC output after the bridgeless PFC circuit 131 is started.
  • the circuit uses the first control sub-circuit and the second control sub-circuit to effectively control the power supply to each circuit, and ensures the stability of the work between the circuits.
  • the auxiliary LLC control circuit 132 includes an auxiliary LLC controller 1321 and a first transformer 1322.
  • the auxiliary LLC controller 1321 is connected to the power supply circuit 12, and the first transformer 1322 is connected to the auxiliary LLC controller 1321 and the main board 20, and the auxiliary LLC controller 1321 activates the first transformer 1322 according to the second power source VCC_VDD output from the switch control circuit, and the first transformer 1322 outputs the bridgeless PFC circuit 131
  • the high-voltage direct current (HV-DC) is converted into the first voltage + 12V and the second voltage + 20V and output to the motherboard 20, and the auxiliary LLC control circuit 132 simultaneously outputs the first voltage + 12V and the second voltage + 20V to the motherboard 20,
  • the motherboard 20 is guaranteed to work normally, and the first voltage + 12V is converted to the first enable voltage VDD_12V through the switch 15 and output to the OLED screen 30.
  • the second conversion module 14 described in the present disclosure includes a main LLC controller 141 And the second transformer 142, the main LLC controller 141 is connected to the power supply circuit 12, the second transformer 142 is connected to the main LLC controller 141 and the main board 20, and the main LLC controller 141 is enabled according to the enable
  • the fourth power source VCC_EVDD output from the switching circuit activates the second transformer 142, and the second transformer 142 converts the high-voltage DC HV-DC output from the bridgeless PFC circuit 131 into a second enable voltage EVDD_24V to power the OLED screen 30.
  • the power supply circuit 12 has Electricity, that is, the on / off signal is pulled high and the second enable signal EVDD-ON is pulled up.
  • the main LLC controller 141 starts the second transformer 142 according to the fourth power source VCC_EVDD output from the enable switching circuit, and further The second transformer 142 converts the high-voltage DC HV-DC output from the bridgeless PFC circuit 131 into a second enable voltage EVDD_24V to supply power to the OLED screen 30, so that the OLED screen 30 is lit, that is, by connecting the bridgeless PFC and the auxiliary circuit LLC control circuit 132 Integrated in a control chip, the OLED drive power supply meets the requirements of OLED TVs for power output stability and timing control, while simplifying the circuit structure and reducing the power supply volume.
  • the standby circuit 11 includes a ground standby circuit controller 111 and a third transformer 112.
  • the standby circuit controller 111 outputs a power supply voltage to the motherboard 20 and the power supply circuit 12 through the third transformer 112, and is turned on.
  • the main board 20 is powered by the standby circuit 11 and the power supply circuit 12 is also supplied with voltage through the auxiliary winding, thereby ensuring the output signals of the main board 20 and the power supply circuit 12 can provide power to other circuits, so that the OLED driving power source is effective.
  • the driving OLED screen 30 lights up.
  • the first control sub-circuit 1211 includes a first diode D1, a first Zener diode ZD1, a second Zener diode ZD2, a first triode Q1, and a second triode.
  • the positive electrode of the first diode D1 is connected to the main board 20, and the negative electrode of the first diode D1 is connected to one end of the second resistor R2, one end of the first capacitor C1, and the first transistor Q1 through the first resistor R1.
  • the other end of the second resistor R2, the other end of the first capacitor C1, and the emitter of the first transistor Q1 are grounded; the collector of the first transistor Q1 is connected to the first optocoupler
  • the second pin of U1 is also connected to one end of the first photocoupler U1 and one end of the fourth resistor R4 through a third resistor R3; the third pin of the first photocoupler U1 is connected to a sixth resistor through a fifth resistor R5
  • One end of R6, the negative pole of the first Zener diode ZD1 and the base of the second transistor Q2, the fourth pin of the first photocoupler U1 is connected to the collector of the second transistor Q2 and the auxiliary LLC control circuit 132 (For outputting the second power source VCC_
  • the first transistor Q1, the second transistor Q2, and the third transistor Q3 are all NPN transistors, and the first Zener diode ZD1 and the second Zener diode ZD2 can protect the first The second triode Q2 and the third triode Q3.
  • the model of the first photocoupler U1 is BPC-817C.
  • the first diode D1, the first resistor R1, the second resistor R2, and the first capacitor C1 form a filter voltage dividing circuit, and the divided voltage of the first resistor R1 and the second resistor R2 is a first transistor Q1.
  • the conduction voltage on the base determines the conduction state of the first transistor Q1, and the first capacitor C1 performs a filtering process on the conduction voltage.
  • the control sub-circuit 1211 outputs the first power PFC_VCC and the second power VCC_VDD, so that the bridgeless PFC circuit 131 and the auxiliary LLC control circuit 132 start to work, so that the bridgeless PFC circuit 131 outputs a high-voltage DC HV-DC to the second control sub-circuit. .
  • the second control sub-circuit 1212 includes a ninth resistor R9, a tenth resistor R10, an eleventh resistor R11, a twelfth resistor R12, a thirteenth resistor R13, and a fourteenth resistor R14, fifteenth resistor R15, sixteenth resistor R16, seventeenth resistor R17, fourth transistor Q4, second diode D2, third diode D3, fourth diode D4, fourth The capacitor C4, the fifth capacitor C5, the sixth capacitor C6, and the first shunt reference source U11.
  • the emitter of the fourth transistor Q4 is connected to the first control sub-circuit 1211, and one end of the tenth resistor R10 is connected to the negative electrode of the first shunt reference source U11 through a ninth resistor R9.
  • the electrode is connected to the negative electrode of the first shunt reference source U11 through the tenth resistor R10, the collector of the fourth transistor Q4 is connected to the positive electrode of the fourth diode D4, and the second diode is connected to the second diode through the eleventh resistor R11
  • the anode of D2, the anode of the fourth diode D4 is connected to the enable switching circuit (for outputting the third power source PWM_VCC); the anode of the second diode D2 is connected to the anode of the third diode D3, the first A feedback pin of the shunt reference source U11 is also grounded through a fourth capacitor C4; the anode of the first shunt reference source U11 is grounded; the anode of the third diode D
  • the fourth transistor Q4 is a PNP transistor.
  • the fourteenth resistor R14, the fifteenth resistor R15, the sixteenth resistor R16, and the seventeenth resistor R17 form a voltage dividing resistor group.
  • the resistor R9 and the tenth resistor R10 are mainly used to adjust the conduction state of the fourth transistor Q4.
  • the fourth diode D4 is mainly used to block the DC filter and stabilize the output of the third power supply PWM_VCC.
  • the fourth capacitor C4 is mainly Used to filter smooth waveforms.
  • the high-voltage DC HV-DC passes the voltage dividing resistor component to a voltage value higher than 2.5V to the first shunt reference source U11.
  • a shunt reference source U11 is turned on, so that the base of the fourth transistor Q4 is extremely low level, and the fourth transistor Q4 is turned on, so that the second control sub-circuit 1212 outputs the third power source PWM_VCC to the enable switching circuit.
  • the enable switching circuit 122 includes a fifth diode D5, an eighteenth resistor R18, a nineteenth resistor R19, a twentieth resistor R20, a twenty-first resistor R21, and a second The twelve resistor R22, the seventh capacitor C7, the fifth transistor Q5, the sixth transistor Q6, the third Zener diode ZD3, and the second photocoupler U2.
  • the anode of the fifth diode D5 is connected to the motherboard 20 (for inputting the second enable signal EVDD-ON), and the anode of the fifth diode D5 is connected to the nineteenth resistor R19 through the eighteenth resistor R18.
  • One end, one end of the seventh capacitor C7 and the base of the fifth transistor Q5, the other end of the nineteenth resistor R19, the other end of the seventh resistor R7, and the emitter of the fifth transistor Q5 are all grounded;
  • the collector of the fifth transistor Q5 is connected to the second pin of the second photocoupler U2, and the first pin of the second photocoupler U2 is connected to the switch control circuit through the twentieth resistor R20.
  • the third pin of U2 is connected to one end of the 22nd resistor R22, the negative pole of the third Zener diode ZD3 and the base of the sixth transistor Q6 through the 21st resistor R21.
  • the fourth pin is connected to the switch control circuit and the collector of the sixth transistor Q6; the emitter of the sixth transistor Q6 is connected to the second conversion module 14; the other end of the twenty-second resistor R22 and the first The anodes of the three Zener diodes ZD3 are all grounded.
  • the fifth transistor Q5 and the sixth transistor Q6 are NPN transistors, and the fifth diode D5, the eighteenth resistor R18, and the seventh capacitor C7 are mainly used to filter the input.
  • the interference signal in the second enable signal EVDD-ON is smoothed.
  • the twenty-first resistor R21 and the twenty-second resistor R22 are used to adjust the conduction state of the sixth transistor Q6.
  • the model of the second photocoupler U2 is BPC-817C. When the second enable signal EVDD-ON is high, the fifth transistor Q5 is saturated and turned on, so that the second photocoupler U2 starts to work, and the current flows through the third and fourth pins of the second photocoupler U2.
  • the base of the sixth transistor Q6 establishes current conduction, and then converts the third power source PWM_VCC to the fourth power source VCC_EVDD and outputs it to the main LLC controller 141.
  • the main LLC controller 141 according to the fourth power VCC_EVDD
  • the second transformer 142 is activated, and the second transformer 142 converts the high-voltage DC HV-DC output from the bridgeless PFC circuit 131 into a second enable voltage EVDD_24V to supply power to the OLED screen 30, and then the OLED screen 30 is electrically brightened.
  • FIG. 9 a timing diagram of switching on and off the OLED driving power supply provided by the present disclosure is shown in FIG. 9, and the booting process and standby process of the OLED driving power supply provided by the present disclosure are described in detail below with reference to FIGS. 3 to 9:
  • the standby circuit 11 When the AC power is turned on, the standby circuit 11 outputs a 5V power supply voltage to power the motherboard 20, and then the motherboard 20 outputs a high-level ON / OFF signal. At this time, the third transistor Q3 and the first photocoupler U1 are turned on.
  • the first control sub-circuit 1211 supplies power to the bridgeless PFC circuit 131 and the auxiliary LLC control circuit 132.
  • the bridgeless PFC circuit 131 starts to work and outputs a high-voltage DC HV-DC.
  • the auxiliary LLC control circuit 132 converts the high-voltage DC HV-DC to a first voltage.
  • the first voltage + 12V and the second voltage + 20V output are stable after TI time, so that the motherboard 20 works normally, and then output the first enable signal to the switch 15 after T2 time
  • the switch 15 converts the first voltage + 12V into a first enable voltage VDD_12V to the OLED screen 30.
  • the motherboard 20 outputs a second enable signal EVDD-ON which is pulled up.
  • the enable switch circuit 122 is combined with the third output from the second control sub-circuit 1212.
  • the power supply PWM_VCC outputs the fourth power supply VCC_EVDD to supply the main LLC control circuit.
  • the main LLC control circuit converts the high voltage DC HV-DC to the second enable voltage EVDD_24V and outputs it to the OLED screen 30. After T4 time, the second enable The voltage EVDD_24V output is stable, and the OLED screen 30 is turned on.
  • the motherboard 20 When the motherboard 20 receives the standby signal, the motherboard 20 first pulls the second enable signal (EVDD-ON) low after the T5 time. At this time, the power supply circuit 12 no longer supplies power to the second conversion module 14. At this time, the main circuit The second enable voltage EVDD_24V is no longer output. Immediately afterwards, the first enable signal of the motherboard 20 will also be pulled low, and then the switch 15 will stop working and no longer output the first enable voltage (VDD_12V). After the T6 time has elapsed, the motherboard 20 will turn on / off the signal. OFF is pulled low, so that the first voltage + 12V and the second voltage + 20V stop output, and then the bridgeless PFC circuit stops working, so that the OLED driving power enters the standby state, of which T6 time is not less than 30s.
  • the second enable signal EVDD-ON
  • the present disclosure also provides an OLED TV, which includes the OLED driving power as described above. Since the OLED driving power has been described in detail above, it will not be described in detail here.
  • the present disclosure provides an OLED driving power source and an OLED television.
  • the OLED driving power source includes a power board connected to a motherboard and an OLED screen.
  • the power board includes a standby circuit 11, a power supply circuit, a first conversion module, a first Two conversion modules and switch; the standby circuit 11 supplies power to the motherboard and the power supply circuit after the power is turned on; the power supply circuit starts the first conversion module to output the first voltage and the second voltage to supply power to the motherboard and output high voltage DC to the second conversion module
  • the switching switch converts the first voltage to the first enable voltage to supply power to the OLED screen; the second conversion module is activated by the power supply circuit to convert the high voltage DC to the second enable voltage to power the OLED screen and light up the OLED screen, of which the first
  • the conversion module includes a bridgeless PFC circuit and an auxiliary LLC control circuit integrated in the same semiconductor chip package.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Dc-Dc Converters (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开涉及一种OLED驱动电源及OLED电视,所述OLED驱动电源包括与主板和OLED屏连接的电源板,电源板包括待机电路、供电电路、第一转换模块、第二转换模块和切换开关;接通电源后由待机电路给主板和供电电路供电;由供电电路启动第一转换模块输出第一电压和第二电压给主板供电、输出高压直流至第二转换模块,切换开关将第一电压转换成第一使能电压给OLED屏供电;由供电电路启动第二转换模块将高压直流转换为第二使能电压给OLED屏供电,点亮OLED屏,其中第一转换模块包括集成在同一半导体芯片封装中的无桥PFC电路和辅路LLC控制电路,通过将无桥PFC和辅路LLC控制电路整合集成在一个控制芯片内,优化了电路结构,缩小电源板面积,降低生产成本。

Description

一种OLED驱动电源及OLED电视 技术领域
本公开涉及电源技术领域,例如涉及一种OLED驱动电源及OLED电视。
背景技术
OLED(organic light emitting diode)因其具有无需背光,无需彩色滤光片及液晶的优点,且OLED自身能发光,在画质、响应速度、厚度及可视角度等方面都优于传统的LCD和LED,故而近年来应用较为广泛。随着OLED技术的逐渐成熟,以OLED作为显示方案的电视将逐步取代传统的LCD、LED电视,同时OLED电视相对传统的LCD、LED电视不仅在画质上有了质的飞跃,还具有厚度薄、柔性等特性。因现有的OLED电视相对传统的LCD、LED电视对电源的时序要求更高、功率较大,导致电源板的体积很大。
另外,请参阅图1和图2,现有的OLED驱动电源往往采用多路独立单独控制输出,所有主路都是相互独立并受主板信号控制,其中待机电路输出5V给主板供电,辅助绕组通过供电电路输出电源分别给PFC电路、辅路LLC控制器和主LLC控制器供电。当电视机上电时,现有输出5V给主板供电,主板工作后按照一定的时序使能主路依次输出。待机时,主板接受到待机信号,按照一定时序依次关掉主路输出,进入待机状态。该驱动电源的架构各路输出相互独立,各个之间关系明确逻辑清晰,非常便于时序控制,但整体架构比较复杂。
因而现有技术还有待改进和提高。
发明内容
鉴于上述现有技术的不足之处,本公开的目的在于提供一种OLED驱动电源及OLED电视,通过将无桥PFC和辅路LLC控制电路整合集成在一个控制芯片内,在满足OLED电视对电源输出稳定性和时序控制的要求,同时优化了电路结构,缩小电源板面积,降低生产成本。
为了达到上述目的,本公开采取了以下技术方案:
一种OLED驱动电源,包括与主板和OLED屏连接的电源板,所述电源板 包括待机电路、供电电路、第一转换模块、第二转换模块和切换开关;
接通电源后由所述待机电路输出电源电压给主板和供电电路供电;由供电电路根据主板输出的开关机信号启动第一转换模块,由第一转换模块输出第一电压和第二电压给主板供电,并输出高压直流至第二转换模块;由切换开关根据主板输出的第一使能信号将第一电压转换成第一使能电压给OLED屏供电;由供电电路根据主板输出的第二使能信号启动第二转换模块,由第二转换模块将高压直流转换为第二使能电压给OLED屏供电,点亮OLED屏;
所述第一转换模块包括集成在同一半导体芯片封装中的无桥PFC电路和辅路LLC控制电路,所述无桥PFC电路在启动后输出高压直流至辅路LLC控制电路,由所述辅路LLC控制电路将所述高压直流转换成第一电压和第二电压,输出给主板供电。
所述的OLED驱动电源中,所述供电电路包括开关机控制电路和使能切换电路,所述开关机控制电路根据主板输出的开关机信号输出第一电源启动无桥PFC电路、输出第二电源给辅路LLC控制电路供电,并根据无桥PFC电路输出的高压直流输出第三电源至使能切换电路;由使能切换电路根据主板输出的第二使能信号将所述第三电源转换为第四电源输出至第二转换模块。
所述的OLED驱动电源中,所述辅路LLC控制电路包括辅路LLC控制器和第一变压器,由所述辅路LLC控制器根据开关机控制电路输出的第二电源启动第一变压器,由第一变压器将无桥PFC电路输出的高压直流转换为第一电压和第二电压后输出至主板。
所述的OLED驱动电源中,所述第二转换模块包括主路LLC控制器和第二变压器,由所述主路LLC控制器根据使能切换电路输出的第四电源启动第二变压器,第二变压器将无桥PFC电路输出的高压直流转换为第二使能电压给OLED屏供电。
所述的OLED驱动电源中,所述待机电路包括地待机电路控制器和第三变压器,由所述待机电路控制器通过第三变压器输出电源电压给主板和供电电路供电。
所述的OLED驱动电源中,开关机控制电路包括第一控制子电路和第二控制子电路,由所述第一控制子电路跟据主板输出的开关机信号输出第一电源启动 无桥PFC电路、输出第二电源给辅路LLC控制电路供电,由所述第二控制子电路根据无桥PFC电路启动后输出的高压直流输出第三电源至使能切换电路。
所述的OLED驱动电源中,所述第一控制子电路包括第一二极管、第一稳压二极管、第二稳压二极管、第一三极管、第二三极管、第三三极管、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻、第一电容、第二电容、第三电容和第一光耦;
所述第一二极管的正极连接主板,所述第一二极管的负极通过第一电阻连接第二电阻的一端、第一电容的一端和第一三极管的基极,所述第二电阻的另一端、第一电容的另一端和第一三极管的发射极均接地;所述第一三极管的集电极连接第一光耦的第2脚、还通过第三电阻连接第一光耦的第1脚和第四电阻的一端;所述第一光耦的第3脚通过第五电阻连接第六电阻的一端、第一稳压二极管的负极和第二三极管的基极,所述第一光耦的第4脚连接第二三极管的集电极和辅路LLC控制电路,所述第二三极管的发射极连接第三三极管的集电极和第八电阻的一端,所述第八电阻的另一端连接第七电阻的一端、第三三极管的基极和第二稳压二极管的负极;所述第六电阻的另一端、第一稳压二极管的正极、第二电容的另一端、第七电阻的另一端、第二稳压二极管的正极和第三电容的一端均接地,所述第三三极管的发射极连接无桥PFC电路、第二控制子电路、第三电容的另一端。
所述的OLED驱动电源中,所述第二控制子电路包括第九电阻、第十电阻、第十一电阻、第十二电阻、第十三电阻、第十四电阻、第十五电阻、第十六电阻、第十七电阻、第四三极管、第二二极管、第三二极管、第四二极管、第四电容、第五电容、第六电容和第一分流基准源;
第四三极管的发射极连接第一控制子电路、还通过第九电阻连接第十电阻的一端和第一分流基准源的负极,所述第四三极管的基极通过第十电阻连接第一分流基准源的负极,所述第四三极管的集电极连接第四二极管的正极、还通过第十一电阻连接第二二极管的正极,所述第四二极管的负极连接使能切换电路;所述第二二极管的负极连接第三二极管的负极、第一分流基准源的反馈脚、还通过第四电容接地;所述第一分流基准源的正极接地;所述第三二极管的正极通过第十二电阻连接第十三电阻的一端、第五电容的一端、第六电容的一端和第十四电阻 的一端,所述第十三电阻的另一端、第五电容的另一端、第六电容的另一端均接地,所述第十四电阻的另一端依次与第十五电阻、第十六电阻、第十七电阻串联后连接无桥PFC电路。
所述的OLED驱动电源中,所述使能切换电路包括第五二极管、第十八电阻、第十九电阻、第二十电阻、第二十一电阻、第二十二电阻、第七电容、第五三极管、第六三极管、第三稳压二极管和第二光耦;
所述第五二极管的正极连接主板,所述第五二极管的负极通过第十八电阻连接第十九电阻的一端、第七电容的一端和第五三极管的基极,所述第十九电阻的另一端、第七电阻的另一端和第五三极管的发射极均接地;所述第五三极管的集电极连接第二光耦的第2脚,所述第二光耦的第1脚通过第二十电阻与开关机控制电路,所述第二光耦的第3脚通过第二十一电阻连接第二十二电阻的一端、第三稳压二极管的负极和第六三极管的基极,所述第二光耦的第4脚连接开关机控制电路和第六三极管的集电极;所述第六三极管的发射极连接第二转换模块;所述第二十二电阻的另一端和第三稳压二极管的正极均接地。
所述的OLED驱动电源中,所述第一三极管、第二三极管和第三三极管均为NPN三极管。
所述的OLED驱动电源中,所述第一光耦的型号为BPC-817C。
所述的OLED驱动电源中,所述第四三极管为PNP三极管。
所述的OLED驱动电源中,所述第五三极管和第六三极管均为NPN三极管。
所述的OLED驱动电源中,所述第二光耦的型号为BPC-817C。
一种OLED电视,包括如上所述的OLED驱动电源。
相较于现有技术,本公开提供的一种OLED驱动电源及OLED电视,所述OLED驱动电源包括与主板和OLED屏连接的电源板,电源板包括待机电路、供电电路、第一转换模块、第二转换模块和切换开关;接通电源后由待机电路给主板和供电电路供电;由供电电路启动第一转换模块输出第一电压和第二电压给主板供电、输出高压直流至第二转换模块,切换开关将第一电压转换成第一使能电压给OLED屏供电;由供电电路启动第二转换模块将高压直流转换为第二使能电压给OLED屏供电,点亮OLED屏,其中第一转换模块包括集成在同一半导体芯片封装中的无桥PFC电路和辅路LLC控制电路,通过将无桥PFC和辅路 LLC控制电路整合集成在一个控制芯片内,优化了电路结构,缩小电源板面积,降低生产成本。
附图说明
图1为现有的OLED驱动电源的架构示意图;
图2为现有的OLED驱动电源供电线路示意图;
图3为本公开提供的OLED驱动电源的架构示意图;
图4为本公开提供的OLED驱动电源的供电线路示意图;
图5为本公开提供的OLED驱动电源的辅路LLC控制电路与供电电路的结构框图;
图6为本公开提供的OLED驱动电源的第二转换模块与供电电路的结构框图;
图7为本公开提供的OLED驱动电源中开关机控制电路的电路图;
图8为本公开提供的OLED驱动电源中使能切换电路的电路图;
图9为本公开提供的OLED驱动电源的开关机时序示意图。
具体实施方式
本公开提供一种OLED驱动电源及OLED电视,通过将无桥PFC和辅路LLC控制电路整合集成在一个控制芯片内,在满足OLED电视对电源输出稳定性和时序控制的要求,同时优化了电路结构,缩小电源板面积,降低生产成本。
为使本公开的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。
本公开提供的OLED驱动电源适用于采用有机发光二极管即OLED作为显示方案的电视、监视器、电教、背投等离子显示等显示相关的电源驱动。
请参阅图3和图4,本公开提供的OLED驱动电源,包括与主板20和OLED屏30连接的电源板10,其特征在于,所述电源板10包括待机电路11、供电电路12、第一转换模块13、第二转换模块14和切换开关15,待机电路11连接供电电路12和主板20,所述供电电路12与第一转换模块13、第二转换模块14 和主板20,所述第一转换模块13还与第二转换模块14和切换开关15连接,所述切换开关15还与主板20连接,所述第二转换模块14还与OLED屏30连接。接通电源后由所述待机电路11输出电源电压(本实施例中为5V)给主板20和供电电路12供电;由供电电路12根据主板20输出的开关机信号ON/OFF启动第一转换模块13,由第一转换模块13输出第一电压(本实施例中为+12V)和第二电压(本实施例中为+20V)给主板20供电,并输出高压直流HV-DC至第二转换模块14;由切换开关15根据主板20输出的第一使能信号VDD_ON将第一电压+12V转换成第一使能电压(本实施例中为VDD_12V)给OLED屏30供电;由供电电路12根据主板20输出的第二使能信号EVDD_ON启动第二转换模块14,由第二转换模块14将高压直流HV-DC转换为第二使能电压(本实施例中为EVDD_24V)给OLED屏30供电,从而点亮OLED屏30。
其中,所述第一转换模块13包括集成在同一半导体芯片封装中的无桥PFC电路131和辅路LLC控制电路132,所述无桥PFC电路131在启动后输出高压直流HV-DC至辅路LLC控制电路132,由所述辅路LLC控制电路132将所述高压直流HV-DC转换成第一电压+12V和第二电压+20V,输出给主板20供电,通过将无桥PFC和辅路LLC控制电路132整合集成在一个控制芯片内,在满足OLED电视对电源输出稳定性和时序控制的要求,同时优化了电路结构,缩小电源板10面积,降低生产成本。
进一步地,所述供电电路12包括开关机控制电路(图中未示出)和使能切换电路(图中未示出),所述开关机控制电路连接主板20、无桥PFC电路131、辅路LLC控制电路132和使能切换电路,所述使能切换电路还连接第二转换模块14。所述开关机控制电路根据主板20输出的开关机信号ON/OFF输出第一电源PFC_VCC启动无桥PFC电路131、输出第二电源VCC_VDD给辅路LLC控制电路132供电,并根据无桥PFC电路131输出的高压直流HV-DC输出第三电源PWM_VCC至使能切换电路;由使能切换电路根据主板20输出的第二使能信号EVDD-ON将所述第三电源PWM_VCC转换为第四电源VCC_EVDD输出至第二转换模块14,即通过开关机控制电路和使能切换电路无桥PFC电路131、辅路LLC控制电路132和主路LLC控制电路提供工作电能,并控制其进行有序的工作,进而满足OLED电视对电源稳定性以及时序性的要求。
具体实施时,所述开关机控制电路包括第一控制子电路和第二控制子电路,所述第一控制子电路与无桥PFC电路131、辅路LLC控制电路132连接和主板20连接,所述第二控制子电路与第一控制子电路、无桥PFC电路131和使能切换电路连接,由所述第一控制子电路根据主板20输出的开关机信号ON/OFF输出第一电源PFC_VCC启动第一转换模块13、输出第二电源VCC_VDD给辅路LLC控制电路132供电,由所述第二控制子电路根据无桥PFC电路131启动后输出的高压直流HV-DC输出第三电源PWM_VCC至使能切换电路,利用第一控制子电路和第二控制子电路实现对各个电路供电的有效控制,保证各个电路之间工作的稳定性。
进一步地,请一并参阅图5和图6,所述辅路LLC控制电路132包括辅路LLC控制器1321和第一变压器1322,所述辅路LLC控制器1321与供电电路12连接,所述第一变压器1322与辅路LLC控制器1321连接和主板20连接,由所述辅路LLC控制器1321根据开关机控制电路输出的第二电源VCC_VDD启动第一变压器1322,由第一变压器1322将无桥PFC电路131输出的高压直流(HV-DC)转换为第一电压+12V和第二电压+20V后输出至主板20,通过辅路LLC控制电路132同时输出第一电压+12V和第二电压+20V至主板20,保证主板20正常工作,同时通过切换开关15将第一电压+12V转换为第一使能电压VDD_12V输出至OLED屏30。
进一步地,由于OLED屏30需要第一使能电压VDD_12V和第二使能电压EVDD_24V两路电压的控制才能电点亮,因此,本公开中所述第二转换模块14包括主路LLC控制器141和第二变压器142,所述主路LLC控制器141与供电电路12连接,所述第二变压器142与主路LLC控制器141和主板20连接,由所述主路LLC控制器141根据使能切换电路输出的第四电源VCC_EVDD启动第二变压器142,第二变压器142将无桥PFC电路131输出的高压直流HV-DC转换为第二使能电压EVDD_24V给OLED屏30供电。
具体地,当切换开关15根据主板20输出的第一使能信号将第一电压+12V转换成第一使能电压VDD_12V输出至OLED屏30之后,经过预设时间后,此时供电电路12有电,即开关机信号ON/OFF拉高,拉高第二使能信号EVDD-ON,由所述主路LLC控制器141根据使能切换电路输出的第四电源VCC_EVDD启 动第二变压器142,进而第二变压器142将无桥PFC电路131输出的高压直流HV-DC转换为第二使能电压EVDD_24V给OLED屏30供电,使得OLED屏30点亮,即通过将无桥PFC和辅路LLC控制电路132整合集成在一个控制芯片内,使得OLED驱动电源满足OLED电视对电源输出稳定性和时序控制的要求的同时简化了电路结构、减小了电源体积。
具体实施时,所述待机电路11包括地待机电路控制器111和第三变压器112,由所述待机电路控制器111通过第三变压器112输出电源电压给主板20和供电电路12供电,在接通电源时,通过待机电路11为主板20供电,同时还通过辅助绕组为供电电路12提供电压,进而保证主板20的输出相关信号、保证供电电路12能够为其他各个电路提供电能,使得OLED驱动电源有效的驱动OLED屏30点亮。
更进一步地,请参阅图7,所述第一控制子电路1211包括第一二极管D1、第一稳压二极管ZD1、第二稳压二极管ZD2、第一三极管Q1、第二三极管Q2、第三三极管Q3、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8、第一电容C1、第二电容C2、第三电容C3和第一光耦U1。
所述第一二极管D1的正极连接主板20,所述第一二极管D1的负极通过第一电阻R1连接第二电阻R2的一端、第一电容C1的一端和第一三极管Q1的基极,所述第二电阻R2的另一端、第一电容C1的另一端和第一三极管Q1的发射极均接地;所述第一三极管Q1的集电极连接第一光耦U1的第2脚、还通过第三电阻R3连接第一光耦U1的第1脚和第四电阻R4的一端;所述第一光耦U1的第3脚通过第五电阻R5连接第六电阻R6的一端、第一稳压二极管ZD1的负极和第二三极管Q2的基极,所述第一光耦U1的第4脚连接第二三极管Q2的集电极和辅路LLC控制电路132(用于输出第二电源VCC_VDD),所述第二三极管Q2的发射极连接第三三极管Q3的集电极和第八电阻R8的一端,所述第八电阻R8的另一端连接第七电阻R7的一端、第三三极管Q3的基极和第二稳压二极管ZD2的负极;所述第六电阻R6的另一端、第一稳压二极管ZD1的正极、第二电容C2的另一端、第七电阻R7的另一端、第二稳压二极管ZD2的正极和第三电容C3的一端均接地,所述第三三极管Q3的发射极连接无桥PFC电路131 (用于输出第一电源PFC_VCC)、第二控制子电路、第三电容C3的另一端。
本实施例中,所述第一三极管Q1、第二三极管Q2和第三三极管Q3均为NPN三极管,所述第一稳压二极管ZD1和第二稳压二极管ZD2可保护第二三极管Q2和第三三极管Q3,所述第一光耦U1的型号为BPC-817C。所述第一二极管D1、第一电阻R1、第二电阻R2和第一电容C1组成滤波分压电路,所述第一电阻R1和第二电阻R2的分压为第一三极管Q1基极上的导通电压,决定了第一三极管Q1的导通状态,所述第一电容C1对导通电压进行滤波处理。当ON/OFF信号为高时,此时第一三极管Q1饱和导通,进而第一光耦U1导通,使得第二三极管Q2和第三二极管D3工作,所述第一控制子电路1211输出第一电源PFC_VCC和第二电源VCC_VDD,使得无桥PFC电路131和辅路LLC控制电路132开始工作,使得所述无桥PFC电路131输出高压直流HV-DC至第二控制子电路。
进一步地,请继续参阅图7,所述第二控制子电路1212包括第九电阻R9、第十电阻R10、第十一电阻R11、第十二电阻R12、第十三电阻R13、第十四电阻R14、第十五电阻R15、第十六电阻R16、第十七电阻R17、第四三极管Q4、第二二极管D2、第三二极管D3、第四二极管D4、第四电容C4、第五电容C5、第六电容C6和第一分流基准源U11。
第四三极管Q4的发射极连接第一控制子电路1211、还通过第九电阻R9连接第十电阻R10的一端和第一分流基准源U11的负极,所述第四三极管Q4的基极通过第十电阻R10连接第一分流基准源U11的负极,所述第四三极管Q4的集电极连接第四二极管D4的正极、还通过第十一电阻R11连接第二二极管D2的正极,所述第四二极管D4的负极连接使能切换电路(用于输出第三电源PWM_VCC);所述第二二极管D2的负极连接第三二极管D3的负极、第一分流基准源U11的反馈脚、还通过第四电容C4接地;所述第一分流基准源U11的正极接地;所述第三二极管D3的正极通过第十二电阻R12连接第十三电阻R13的一端、第五电容C5的一端、第六电容C6的一端和第十四电阻R14的一端,所述第十三电阻R13的另一端、第五电容C5的另一端、第六电容C6的另一端均接地,所述第十四电阻R14的另一端依次与第十五电阻R15、第十六电阻R16、第十七电阻R17串联后连接无桥PFC电路131(用于输入高压直流HV-DC)。
本实施例中,所述第四三极管Q4为PNP三极管,所述第十四电阻R14、第十五电阻R15、第十六电阻R16和第十七电阻R17组成分压电阻组,第九电阻R9和第十电阻R10主要用于调节第四三极管Q4的导通状态,第四二极管D4主要用于隔直滤波、稳定第三电源PWM_VCC的输出,所述第四电容C4主要用于滤波平滑波形。当无桥PFC输出高压直流HV-DC至第二控制子电路1212之后,高压直流HV-DC经过分压电阻组分压为高于2.5V的电压值至第一分流基准源U11,所述第一分流基准源U11导通使得第四三极管Q4的基极为低电平,使得第四三极管Q4导通,进而使得第二控制子电路1212输出第三电源PWM_VCC至使能切换电路。
进一步地,请参阅图8,所述使能切换电路122包括第五二极管D5、第十八电阻R18、第十九电阻R19、第二十电阻R20、第二十一电阻R21、第二十二电阻R22、第七电容C7、第五三极管Q5、第六三极管Q6、第三稳压二极管ZD3和第二光耦U2。
所述第五二极管D5的正极连接主板20(用于输入第二使能信号EVDD-ON),所述第五二极管D5的负极通过第十八电阻R18连接第十九电阻R19的一端、第七电容C7的一端和第五三极管Q5的基极,所述第十九电阻R19的另一端、第七电阻R7的另一端和第五三极管Q5的发射极均接地;所述第五三极管Q5的集电极连接第二光耦U2的第2脚,所述第二光耦U2的第1脚通过第二十电阻R20与开关机控制电路,所述第二光耦U2的第3脚通过第二十一电阻R21连接第二十二电阻R22的一端、第三稳压二极管ZD3的负极和第六三极管Q6的基极,所述第二光耦U2的第4脚连接开关机控制电路和第六三极管Q6的集电极;所述第六三极管Q6的发射极连接第二转换模块14;所述第二十二电阻R22的另一端和第三稳压二极管ZD3的正极均接地。
本实施例中,所述第五三极管Q5和第六三极管Q6均为NPN三极管,所述第五二极管D5、第十八电阻R18和第七电容C7主要用于滤除输入的第二使能信号EVDD-ON中的干扰信号,平滑其波形。所述第二十一电阻R21和第二十二电阻R22用于调整第六三极管Q6的导通状态。所述第二光耦U2的型号为BPC-817C。当第二使能信号EVDD-ON为高时,第五三极管Q5饱和导通,使得第二光耦U2开始工作,具体为第二光耦U2的第3脚和第4脚流过电流,此 时第六三极管Q6的基极建立电流导通,进而将第三电源PWM_VCC转换为第四电源VCC_EVDD输出至主路LLC控制器141,由主路LLC控制器141根据第四电源VCC_EVDD启动第二变压器142,第二变压器142将无桥PFC电路131输出的高压直流HV-DC转换为第二使能电压EVDD_24V给OLED屏30供电,进而电亮OLED屏30。
进一步地,本公开提供的OLED驱动电源的开关机时序示意图如图9所示,以下结合图3至图9对本公开提供的OLED驱动电源的开机过程和待机过程进行详细说明:
当接通交流电之后,由待机电路11输出5V电源电压为主板20供电,之后主板20输出高电平的ON/OFF信号,此时第三三极管Q3和第一光耦U1导通,由第一控制子电路1211为无桥PFC电路131和辅路LLC控制电路132供电,无桥PFC电路131开始工作输出高压直流HV-DC,辅路LLC控制电路132将高压直流HV-DC转换成第一电压+12V和第二电压+20V主板20,经TI时间之后第一电压+12V和第二电压+20V输出稳定,使得主板20工作正常之后,再经过T2时间输出第一使能信号至切换开关15,切换开关15将第一电压+12V转换为第一使能电压VDD_12V至OLED屏30。但是点亮OLED屏30需要两路电压,因此在T3时间后,主板20输出拉高的第二使能信号EVDD-ON,此时使能切换电路122结合第二控制子电路1212输出的第三电源PWM_VCC输出第四电源VCC_EVDD为主路LLC控制电路供电,由主路LLC控制电路将高压直流HV-DC转换为第二使能电压EVDD_24V输出至OLED屏30,经过T4时间后,第二使能电压EVDD_24V输出稳定,OLED屏30被点亮。
当主板20接收到待机信号时,经过T5时间后主板20首先会将第二使能信号(EVDD-ON)拉低,此时供电电路12不再给第二转换模块14供电,此时主路不再输出第二使能电压EVDD_24V。紧接着,主板20的第一使能信号也会被拉低,进而切换开关15停止工作,不再输出第一使能电压(VDD_12V);再经过T6时间后,主板20将开关机信号ON/OFF拉低,使得第一电压+12V和第二电压+20V停止输出,进而无桥PFC电路停止工作,使得OLED驱动电源进入待机状态,其中T6时间不少于30s。
本公开还相应提供一种OLED电视,其包括如上所述的OLED驱动电源, 由于上文已对所述OLED驱动电源进行了详细描述,此处不作详述。
综上所述,本公开提供的一种OLED驱动电源及OLED电视,所述OLED驱动电源包括与主板和OLED屏连接的电源板,电源板包括待机电路11、供电电路、第一转换模块、第二转换模块和切换开关;接通电源后由待机电路11给主板和供电电路供电;由供电电路启动第一转换模块输出第一电压和第二电压给主板供电、输出高压直流至第二转换模块,切换开关将第一电压转换成第一使能电压给OLED屏供电;由供电电路启动第二转换模块将高压直流转换为第二使能电压给OLED屏供电,点亮OLED屏,其中第一转换模块包括集成在同一半导体芯片封装中的无桥PFC电路和辅路LLC控制电路,通过将无桥PFC和辅路LLC控制电路整合集成在一个控制芯片内,优化了电路结构,缩小电源板面积,降低生产成本。
可以理解的是,对本领域普通技术人员来说,可以根据本公开的技术方案及其公开构思加以等同替换或改变,而所有这些改变或替换都应属于本公开所附的权利要求的保护范围。

Claims (15)

  1. 一种OLED驱动电源,包括与主板和OLED屏连接的电源板,其特征在于,所述电源板包括待机电路、供电电路、第一转换模块、第二转换模块和切换开关;
    接通电源后由所述待机电路输出电源电压给主板和供电电路供电;由供电电路根据主板输出的开关机信号启动第一转换模块,由第一转换模块输出第一电压和第二电压给主板供电,并输出高压直流至第二转换模块;由切换开关根据主板输出的第一使能信号将第一电压转换成第一使能电压给OLED屏供电;由供电电路根据主板输出的第二使能信号启动第二转换模块,由第二转换模块将高压直流转换为第二使能电压给OLED屏供电,点亮OLED屏;
    所述第一转换模块包括集成在同一半导体芯片封装中的无桥PFC电路和辅路LLC控制电路,所述无桥PFC电路在启动后输出高压直流至辅路LLC控制电路,由所述辅路LLC控制电路将所述高压直流转换成第一电压和第二电压,输出给主板供电。
  2. 根据权利要求1所述的OLED驱动电源,其特征在于,所述供电电路包括开关机控制电路和使能切换电路,所述开关机控制电路根据主板输出的开关机信号输出第一电源启动无桥PFC电路、输出第二电源给辅路LLC控制电路供电,并根据无桥PFC电路输出的高压直流输出第三电源至使能切换电路;由使能切换电路根据主板输出的第二使能信号将所述第三电源转换为第四电源输出至第二转换模块。
  3. 根据权利要求2所述的OLED驱动电源,其特征在于,所述辅路LLC控制电路包括辅路LLC控制器和第一变压器,由所述辅路LLC控制器根据开关机控制电路输出的第二电源启动第一变压器,由第一变压器将无桥PFC电路输出的高压直流转换为第一电压和第二电压后输出至主板。
  4. 根据权利要求2所述的OLED驱动电源,其特征在于,所述第二转换模块包括主路LLC控制器和第二变压器,由所述主路LLC控制器根据使能切换电路输出的第四电源启动第二变压器,第二变压器将无桥PFC电路输出的高压直流转换为第二使能电压给OLED屏供电。
  5. 根据权利要求1所述的OLED驱动电源,其特征在于,所述待机电路包括地待机电路控制器和第三变压器,由所述待机电路控制器通过第三变压器输出电源电压给主板和供电电路供电。
  6. 根据权利要求2所述的OLED驱动电源,其特征在于,开关机控制电路包括第一控制子电路和第二控制子电路,由所述第一控制子电路跟据主板输出的开关机信号输出第一电源启动无桥PFC电路、输出第二电源给辅路LLC控制电路供电,由所述第二控制子电路根据无桥PFC电路启动后输出的高压直流输出第三电源至使能切换电路。
  7. 根据权利要求6所述的OLED驱动电源,其特征在于,所述第一控制子电路包括第一二极管、第一稳压二极管、第二稳压二极管、第一三极管、第二三极管、第三三极管、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻、第一电容、第二电容、第三电容和第一光耦;
    所述第一二极管的正极连接主板,所述第一二极管的负极通过第一电阻连接第二电阻的一端、第一电容的一端和第一三极管的基极,所述第二电阻的另一端、第一电容的另一端和第一三极管的发射极均接地;所述第一三极管的集电极连接第一光耦的第2脚、还通过第三电阻连接第一光耦的第1脚和第四电阻的一端;所述第一光耦的第3脚通过第五电阻连接第六电阻的一端、第一稳压二极管的负极和第二三极管的基极,所述第一光耦的第4脚连接第二三极管的集电极和辅路LLC控制电路,所述第二三极管的发射极连接第三三极管的集电极和第八电阻的一端,所述第八电阻的另一端连接第七电阻的一端、第三三极管的基极和第二稳压二极管的负极;所述第六电阻的另一端、第一稳压二极管的正极、第二电容的另一端、第七电阻的另一端、第二稳压二极管的正极和第三电容的一端均接地,所述第三三极管的发射极连接无桥PFC电路、第二控制子电路、第三电容的另一端。
  8. 根据权利要求6所述的OLED驱动电源,其特征在于,所述第二控制子电路包括第九电阻、第十电阻、第十一电阻、第十二电阻、第十三电阻、第十四电阻、第十五电阻、第十六电阻、第十七电阻、第四三极管、第二二极管、第三二极管、第四二极管、第四电容、第五电容、第六电容和第一分流基准源;
    第四三极管的发射极连接第一控制子电路、还通过第九电阻连接第十电阻的一端和第一分流基准源的负极,所述第四三极管的基极通过第十电阻连接第一分流基准源的负极,所述第四三极管的集电极连接第四二极管的正极、还通过第十一电阻连接第二二极管的正极,所述第四二极管的负极连接使能切换电路;所述第二二极管的负极连接第三二极管的负极、第一分流基准源的反馈脚、还通过第 四电容接地;所述第一分流基准源的正极接地;所述第三二极管的正极通过第十二电阻连接第十三电阻的一端、第五电容的一端、第六电容的一端和第十四电阻的一端,所述第十三电阻的另一端、第五电容的另一端、第六电容的另一端均接地,所述第十四电阻的另一端依次与第十五电阻、第十六电阻、第十七电阻串联后连接无桥PFC电路。
  9. 根据权利要求2所述的OLED驱动电源,其特征在于,所述使能切换电路包括第五二极管、第十八电阻、第十九电阻、第二十电阻、第二十一电阻、第二十二电阻、第七电容、第五三极管、第六三极管、第三稳压二极管和第二光耦;
    所述第五二极管的正极连接主板,所述第五二极管的负极通过第十八电阻连接第十九电阻的一端、第七电容的一端和第五三极管的基极,所述第十九电阻的另一端、第七电阻的另一端和第五三极管的发射极均接地;所述第五三极管的集电极连接第二光耦的第2脚,所述第二光耦的第1脚通过第二十电阻与开关机控制电路,所述第二光耦的第3脚通过第二十一电阻连接第二十二电阻的一端、第三稳压二极管的负极和第六三极管的基极,所述第二光耦的第4脚连接开关机控制电路和第六三极管的集电极;所述第六三极管的发射极连接第二转换模块;所述第二十二电阻的另一端和第三稳压二极管的正极均接地。
  10. 根据权利要求7所述的OLED驱动电源,其特征在于,所述第一三极管、第二三极管和第三三极管均为NPN三极管。
  11. 根据权利要求7所述OLED驱动电源,其特征在于,所述第一光耦的型号为BPC-817C。
  12. 根据权利要求8所述的OLED驱动电源,其特征在于,所述第四三极管为PNP三极管。
  13. 根据权利要求9所述的OLED驱动电源,其特征在于,所述第五三极管和第六三极管均为NPN三极管。
  14. 根据权利要求9所述的OLED驱动电源,其特征在于,所述第二光耦的型号为BPC-817C。
  15. 一种OLED电视,其特征在于,包括如权利要求1-14任意一项所述的OLED驱动电源。
PCT/CN2018/113657 2018-09-07 2018-11-02 一种oled驱动电源及oled电视 WO2020047986A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/058,305 US11482166B2 (en) 2018-09-07 2018-11-02 OLED driving power source and OLED television
EP18932868.5A EP3848921A4 (en) 2018-09-07 2018-11-02 OLED DRIVE ENERGY SOURCE AND OLED TV

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811044599.3A CN109119021A (zh) 2018-09-07 2018-09-07 一种oled驱动电源及oled电视
CN201811044599.3 2018-09-07

Publications (1)

Publication Number Publication Date
WO2020047986A1 true WO2020047986A1 (zh) 2020-03-12

Family

ID=64858903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113657 WO2020047986A1 (zh) 2018-09-07 2018-11-02 一种oled驱动电源及oled电视

Country Status (4)

Country Link
US (1) US11482166B2 (zh)
EP (1) EP3848921A4 (zh)
CN (1) CN109119021A (zh)
WO (1) WO2020047986A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880294B (zh) * 2019-12-10 2021-11-09 深圳创维-Rgb电子有限公司 一种oled驱动电源和电子产品
CN113163140B (zh) * 2020-01-22 2023-05-09 海信视像科技股份有限公司 显示装置
CN112349249B (zh) * 2020-11-03 2021-12-28 深圳创维-Rgb电子有限公司 一种oled驱动电源和oled电视
CN113593486B (zh) * 2021-07-28 2022-11-04 深圳创维-Rgb电子有限公司 一种mini led驱动电源及mini led电视
CN115208166A (zh) * 2022-06-28 2022-10-18 深圳拓邦股份有限公司 多电源供电控制电路及电器设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110188273A1 (en) * 2009-12-31 2011-08-04 Nxp B.V. Power factor correction stage
CN202008730U (zh) * 2011-05-16 2011-10-12 北京浩天融智电气科技有限公司 一种带oled显示的智能开关装置
CN102821522A (zh) * 2012-08-16 2012-12-12 电子科技大学 用于led路灯的llc谐振式恒流驱动电源
CN203243211U (zh) * 2013-04-01 2013-10-16 青岛海信电器股份有限公司 开关变换电路、待机电路、待机电源及液晶电视
CN103889118A (zh) * 2014-03-18 2014-06-25 深圳创维-Rgb电子有限公司 一种oled驱动电源装置
CN106409220A (zh) * 2016-09-29 2017-02-15 深圳创维-Rgb电子有限公司 一种oled驱动电源装置及oled电视

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635513B (zh) * 2008-07-23 2012-08-29 深圳Tcl新技术有限公司 一种待机电路
US20100259240A1 (en) 2009-04-11 2010-10-14 Cuks, Llc Bridgeless PFC converter
CN201830154U (zh) * 2010-06-28 2011-05-11 康佳集团股份有限公司 开关电源的llc串联谐振电路
CN105322803B (zh) * 2015-11-02 2018-03-06 深圳创维-Rgb电子有限公司 恒压恒流同步输出电源及电视机
KR102579291B1 (ko) * 2018-02-07 2023-09-18 삼성전자주식회사 전력 변환 장치 및 교류 직류 변환 장치
CN108521223B (zh) * 2018-04-24 2019-09-13 上海推拓科技有限公司 开关电源电路
CN109166519A (zh) * 2018-09-07 2019-01-08 深圳创维-Rgb电子有限公司 一种oled驱动电源和oled电视

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110188273A1 (en) * 2009-12-31 2011-08-04 Nxp B.V. Power factor correction stage
CN202008730U (zh) * 2011-05-16 2011-10-12 北京浩天融智电气科技有限公司 一种带oled显示的智能开关装置
CN102821522A (zh) * 2012-08-16 2012-12-12 电子科技大学 用于led路灯的llc谐振式恒流驱动电源
CN203243211U (zh) * 2013-04-01 2013-10-16 青岛海信电器股份有限公司 开关变换电路、待机电路、待机电源及液晶电视
CN103889118A (zh) * 2014-03-18 2014-06-25 深圳创维-Rgb电子有限公司 一种oled驱动电源装置
CN106409220A (zh) * 2016-09-29 2017-02-15 深圳创维-Rgb电子有限公司 一种oled驱动电源装置及oled电视

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3848921A4 *

Also Published As

Publication number Publication date
US20210217357A1 (en) 2021-07-15
EP3848921A1 (en) 2021-07-14
CN109119021A (zh) 2019-01-01
US11482166B2 (en) 2022-10-25
EP3848921A4 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
WO2020048196A1 (zh) 一种oled驱动电源和oled电视
US10694138B2 (en) OLED drive power device and OLED television
WO2020047986A1 (zh) 一种oled驱动电源及oled电视
WO2015139437A1 (zh) 一种oled驱动电源装置
WO2020133991A1 (zh) 一种电视电源驱动装置和电视机
AU2016310328B2 (en) High-power power supply for use with display devices and associated display device
CN111669528B (zh) 一种oled驱动电源及oled电视
CN107464533B (zh) 一种恒流驱动电路及电视机
EP3537421A1 (en) Backlight constant current driver board and liquid crystal display television
WO2015196894A1 (zh) 一种多模式led灯串控制电路及led灯串
CN111327851B (zh) 一种oled电源电路、oled电视电源及oled电视
CN110880294B (zh) 一种oled驱动电源和电子产品
WO2023005146A1 (zh) 一种mini led驱动电源及mini led电视
US10341602B2 (en) TV power supply
WO2022217693A1 (zh) 一种稳压供电的调光电源模块及led调光装置
CN112349249B (zh) 一种oled驱动电源和oled电视
CN211606889U (zh) 过压保护电路、恒流驱动电路、驱动板卡及电子设备
WO2018192077A1 (zh) 电视机电源
CN116092426A (zh) 显示驱动电源及其控制方法、设备
AU2018206819A1 (en) This standard patent discloses a scheme of an energy-saving module of a mobile RGBY traffic LED display. There are two display models that customers can choose from: full-color graphic and single-colour yellow display.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018932868

Country of ref document: EP

Effective date: 20210407