WO2018192077A1 - 电视机电源 - Google Patents

电视机电源 Download PDF

Info

Publication number
WO2018192077A1
WO2018192077A1 PCT/CN2017/088167 CN2017088167W WO2018192077A1 WO 2018192077 A1 WO2018192077 A1 WO 2018192077A1 CN 2017088167 W CN2017088167 W CN 2017088167W WO 2018192077 A1 WO2018192077 A1 WO 2018192077A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically connected
resistor
voltage
diode
module
Prior art date
Application number
PCT/CN2017/088167
Other languages
English (en)
French (fr)
Inventor
余学坤
李文东
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/547,803 priority Critical patent/US10341602B2/en
Publication of WO2018192077A1 publication Critical patent/WO2018192077A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/63Generation or supply of power specially adapted for television receivers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a television power supply.
  • LCDs liquid crystal displays
  • Various consumer electronic products such as digital assistants, digital cameras, notebook computers, and desktop computers have become mainstream in display devices.
  • liquid crystal display devices which include a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates. There are many vertical and horizontal small wires between the two glass substrates, and the liquid crystal molecules are controlled to change direction by energizing or not, and the light of the backlight module is changed. Refracted to produce a picture.
  • LCD TV is one of the most important application directions of liquid crystal display devices.
  • the power supply of LCD TVs is an indispensable component of various LCD TVs.
  • the power supply of LCD TVs usually uses flyback switching power supplies, which has a simple structure and low cost. Low, low device and so on.
  • a general flyback switching power supply usually consists of a Pulse Width Modulation IC (PWM IC), a transformer, a rectification and filtering module, a voltage feedback module, and a switching device.
  • PWM IC Pulse Width Modulation IC
  • the working process is: accessing external high voltage AC After the voltage, the PWM IC sends a pulse signal to control the opening and closing of the switching device.
  • the switching device When the switching device is turned on, the external AC voltage is rectified and enters the primary coil of the transformer and stores the energy; when the switching device is turned off, the primary coil of the transformer is turned on. The stored energy is released through the secondary coil.
  • the rectifier filter module acts, the DC voltage is stably outputted to the load.
  • the voltage feedback module is connected to the output voltage. When the output voltage increases or decreases, a feedback signal is generated, and the feedback signal is transmitted to the PWM IC.
  • the feedback pin, the PWM IC adjusts the pulse signal to control the switching time ratio of the switching device, so that the output voltage value is adjusted to stabilize the output voltage.
  • LCD TVs usually need to provide a backlight driving voltage (typically 24V) and a motherboard driving voltage (typically 12V).
  • a standby voltage typically 5V is required, in which the backlight driving voltage and the motherboard
  • the driving voltage is generated by one flyback power supply, and the standby voltage is separately generated by another flyback power source, which is costly and complicated for layout debugging.
  • the present invention provides a television power supply, comprising: a main power source, and a voltage conversion circuit electrically connected to the main power source;
  • the main power source includes: a first output terminal for outputting a backlight driving voltage; and a second output terminal for outputting a motherboard driving voltage;
  • the voltage conversion circuit is configured to convert a backlight driving voltage or a motherboard driving voltage into a standby voltage, and the voltage conversion circuit includes: an input terminal electrically connected to the first output terminal or the second output terminal, and an output terminal The third output of the standby voltage.
  • the voltage conversion circuit includes: a first resistor, a second resistor, a third resistor, a first transistor, a second transistor, and a Zener diode;
  • One end of the first resistor is electrically connected to the first node, and the other end is electrically connected to the emitter of the second triode;
  • One end of the second resistor is electrically connected to the first node, and the other end is electrically connected to one end of the third resistor;
  • the other end of the third resistor is electrically connected to the base of the first triode
  • the collector of the first transistor is electrically connected to one end of the third resistor, and the emitter is electrically connected to the second node;
  • the base of the second transistor is electrically connected to one end of the third resistor, and the collector is electrically connected to the second node;
  • the cathode of the Zener diode is electrically connected to the base of the first transistor, and the anode is grounded;
  • the first node is an input end of the voltage conversion circuit, and the second node is a third output end of the voltage conversion circuit.
  • the backlight driving voltage is 24V
  • the motherboard driving voltage is 12V
  • the standby voltage is 5V.
  • the steady voltage of the Zener diode is 5.7V, and the conduction voltage drop of the emitter junction of the first transistor is 0.7V.
  • the first triode is an NPN type triode
  • the second triode is a PNP type triode.
  • the main power source includes: a rectifying and filtering module, an energy storage transformer module electrically connected to the rectifying and filtering module, a switch module electrically connected to the energy storage transformer module, and the electrical connection with the switch module a pulse width modulation chip, an output filter module electrically connected to the energy storage transformer module, and a feedback module electrically connected to the output filter module and the pulse width modulation chip;
  • the rectifying and filtering module is configured to connect an alternating current voltage and convert the alternating current voltage into a direct current voltage, and filter the direct current voltage to provide the energy storage transformer module;
  • the energy storage transformer module is configured to perform energy storage under the control of the switch module or transform the received DC voltage to output the filter module;
  • the switch module is configured to control an energy storage transformer module for energy storage or transformation
  • the pulse width modulation chip is configured to provide a pulse signal to the switch module to control a switch of the switch module;
  • the output filter module is configured to filter a DC voltage after the transformer of the energy storage transformer module, and output a backlight driving voltage and a motherboard driving voltage;
  • the feedback module is configured to monitor the output backlight driving voltage and the motherboard driving voltage, and generate a feedback signal when the backlight driving voltage and the motherboard driving voltage change, and control the pulse width modulation chip to adjust the pulse signal to ensure the backlight driving voltage and the motherboard driving voltage. Stable output.
  • the rectifying and filtering module includes: a rectifier bridge, a first electrolytic capacitor, and a first capacitor;
  • the first end of the rectifier bridge is electrically connected to the positive pole of the first electrolytic capacitor, the second end is electrically connected to the neutral line of the alternating current voltage, the third end is electrically connected to the live line of the alternating voltage, and the fourth end is grounded;
  • the positive electrode of the first electrolytic capacitor is electrically connected to one end of the first capacitor, and the negative pole is grounded;
  • One end of the first capacitor is electrically connected to the energy storage transformer module, and the other end is grounded.
  • the energy storage transformer module includes: a fourth resistor, a second capacitor, a first diode, and a transformer;
  • the switch module includes: a MOS transistor, and a fifth resistor;
  • One end of the fourth resistor is electrically connected to one end of the first capacitor, and the other end is electrically connected to a cathode of the first diode;
  • One end of the second capacitor is electrically connected to one end of the fourth resistor, and the other end is electrically connected to a cathode of the first diode;
  • the transformer includes a primary coil, a first secondary coil, and a second secondary coil, one end of the primary coil is electrically connected to one end of the second capacitor, and the other end is electrically connected to the first diode
  • the positive electrode, the first and second secondary coils are electrically connected to the output filter module.
  • the anode of the first diode is electrically connected to the drain of the MOS transistor
  • the gate and the source of the MOS transistor are electrically connected to the pulse width modulation chip
  • One end of the fifth resistor is electrically connected to the source of the MOS tube, and the other end is grounded.
  • the output filtering module includes: a second diode, a third diode, a fourth diode, a fifth diode, a second electrolytic capacitor, and a third electrolytic capacitor;
  • the anode of the second diode is electrically connected to one end of the first secondary coil, and the anode outputs a backlight driving voltage
  • the anode of the third diode is electrically connected to the anode of the second diode, and the cathode is electrically connected to the cathode of the second diode;
  • the anode of the fourth diode is electrically connected to one end of the second secondary coil, and the anode is electrically connected to the other end of the first secondary coil while outputting a motherboard driving voltage;
  • the positive electrode of the fifth diode is electrically connected to the positive electrode of the fourth diode, and the negative electrode is electrically connected Connecting the negative electrode of the fourth diode;
  • the positive electrode of the second electrolytic capacitor is electrically connected to the negative electrode of the second diode, and the negative electrode is grounded;
  • the positive electrode of the third electrolytic capacitor is electrically connected to the other end of the first secondary coil, and the negative electrode is electrically connected to the other end of the second secondary coil while being grounded.
  • the feedback module includes: a photocoupler, a third capacitor, a sixth resistor, a seventh resistor, an eighth resistor, a ninth resistor, a tenth resistor, and a controllable precision voltage regulator source;
  • the anode of the light-emitting diode of the photocoupler is electrically connected to one end of the seventh resistor, and the cathode is electrically connected to the other end of the seventh resistor, and the emitter of the phototransistor of the photocoupler is electrically connected to one end of the third capacitor.
  • the collector is electrically connected to the other end of the third capacitor;
  • One end of the third capacitor is grounded, and the other end is electrically connected to the pulse width modulation chip;
  • One end of the sixth resistor is electrically connected to the other end of the second diode and electrically connected to one end of the seventh resistor;
  • the other end of the seventh resistor is electrically connected to the negative electrode of the controllable precision voltage regulator source
  • One end of the eighth resistor is electrically connected to the reference pole of the controllable precision voltage stabilizing source, and the other end is electrically connected to the positive pole of the controllable precision voltage stabilizing source while being grounded;
  • One end of the ninth resistor is electrically connected to the negative pole of the fourth diode, and the other end is electrically connected to one end of the eighth resistor;
  • One end of the tenth resistor is electrically connected to the negative pole of the second diode, and the other end is electrically connected to one end of the eighth resistor.
  • the present invention also provides a television power supply, comprising: a main power source, and a voltage conversion circuit electrically connected to the main power source;
  • the main power source includes: a first output terminal for outputting a backlight driving voltage; and a second output terminal for outputting a motherboard driving voltage;
  • the voltage conversion circuit is configured to convert a backlight driving voltage or a motherboard driving voltage into a standby voltage, and the voltage conversion circuit includes: an input terminal electrically connected to the first output terminal or the second output terminal, and an output terminal a third output of the standby voltage;
  • the voltage conversion circuit includes: a first resistor, a second resistor, a third resistor, a first transistor, a second transistor, and a Zener diode;
  • One end of the first resistor is electrically connected to the first node, and the other end is electrically connected to the emitter of the second triode;
  • One end of the second resistor is electrically connected to the first node, and the other end is electrically connected to one end of the third resistor;
  • the other end of the third resistor is electrically connected to the base of the first triode
  • the collector of the first transistor is electrically connected to one end of the third resistor, and the emitter is electrically connected Second node;
  • the base of the second transistor is electrically connected to one end of the third resistor, and the collector is electrically connected to the second node;
  • the cathode of the Zener diode is electrically connected to the base of the first transistor, and the anode is grounded;
  • the first node is an input end of the voltage conversion circuit, and the second node is a third output end of the voltage conversion circuit;
  • a difference between a stable voltage of the Zener diode and a turn-on voltage drop of an emitter junction of the first transistor is equal to a standby voltage
  • the main power source includes: a rectifying and filtering module, an energy storage transformer module electrically connected to the rectifying and filtering module, a switch module electrically connected to the energy storage transformer module, and electrical properties of the switch module a connected pulse width modulation chip, an output filter module electrically connected to the energy storage transformer module, and a feedback module electrically connected to the output filter module and the pulse width modulation chip;
  • the rectifying and filtering module is configured to connect an alternating current voltage and convert the alternating current voltage into a direct current voltage, and filter the direct current voltage to provide the energy storage transformer module;
  • the energy storage transformer module is configured to perform energy storage under the control of the switch module or transform the received DC voltage to output the filter module;
  • the switch module is configured to control an energy storage transformer module for energy storage or transformation
  • the pulse width modulation chip is configured to provide a pulse signal to the switch module to control a switch of the switch module;
  • the output filter module is configured to filter a DC voltage after the transformer of the energy storage transformer module, and output a backlight driving voltage and a motherboard driving voltage;
  • the feedback module is configured to monitor the output backlight driving voltage and the motherboard driving voltage, and generate a feedback signal when the backlight driving voltage and the motherboard driving voltage change, and control the pulse width modulation chip to adjust the pulse signal to ensure the backlight driving voltage and the motherboard driving voltage. Stable output.
  • the present invention provides a television power supply, the television power supply comprising: a main power source, and a voltage conversion circuit electrically connected to the main power source, the main power source comprising: for outputting a backlight drive a first output terminal of the voltage and a second output terminal for outputting a motherboard driving voltage, the voltage conversion circuit comprising: an input terminal electrically connected to the first output terminal or the second output terminal, and an output standby device
  • the TV power supply can convert the backlight driving voltage or the main board driving voltage into a standby voltage through the voltage conversion circuit, and simultaneously generate a main board driving voltage, a backlight driving voltage, and a standby voltage through one power source, which is effective Reduce the number of flyback power supplies, reduce the cost of TV power, and increase the cost competitiveness of TV.
  • FIG. 1 is a circuit diagram of a television power supply of the present invention
  • FIG. 2 is a circuit diagram of a main power supply in a television power supply of the present invention.
  • the present invention provides a television power supply, comprising: a main power source 1, and a voltage conversion circuit 2 electrically connected to the main power source 1;
  • the main power source 1 includes: a first output end 11 for outputting a backlight driving voltage and a second output end 12 for outputting a main board driving voltage;
  • the voltage conversion circuit 2 is configured to convert a backlight driving voltage or a motherboard driving voltage into a standby voltage, and the voltage conversion circuit 2 includes: an input end 21 electrically connected to the first output terminal 11 or the second output terminal 12 And a third output 22 for outputting a standby voltage.
  • the voltage conversion circuit 2 includes: a first resistor R1, a second resistor R2, a third resistor R3, a first transistor QM1, a second transistor QM2, and a Zener diode ZD1. ;
  • One end of the first resistor R1 is electrically connected to the first node Q, and the other end is electrically connected to the emitter of the second transistor QM2.
  • One end of the second resistor R2 is electrically connected to the first node Q, and the other end is electrically connected.
  • One end of the third resistor R3 is electrically connected to the base of the first transistor QM1; the collector of the first transistor QM1 is electrically connected to the third resistor R3.
  • the emitter is electrically connected to the second node P; the base of the second transistor QM2 is electrically connected to one end of the R3, and the collector is electrically connected to the second node P; the negative polarity of the Zener diode ZD1 Connecting the base of the first transistor QM1, the anode is grounded; the first node Q is the input end 21 of the voltage conversion circuit 2, and the second node P is the third output end of the voltage conversion circuit 2 22; a difference between a stable voltage of the Zener diode ZD1 and a turn-on voltage drop of the emitter junction of the first transistor QM1 is equal to a standby voltage.
  • the Zener diode ZD1 when the voltage conversion circuit 2 is operated, after the backlight driving voltage or the motherboard driving voltage is connected to the voltage conversion circuit 2, the Zener diode ZD1 will be the first transistor QM1.
  • the voltage of the base is fixed at a stable voltage of the Zener diode ZD1
  • the emitter of the first transistor QM1 outputs a standby voltage
  • the standby voltage is equal to the stable a difference between a voltage and a turn-on voltage drop of the emitter junction of the first transistor QM1
  • an increase in current flowing through the first transistor QM1 causes a second resistor R2 to be generated
  • the second transistor QM2 When the voltage drop is greater than the conduction voltage drop of the emitter junction of the second transistor QM2, the second transistor QM2 is turned on to shunt the first transistor QM1, and the first transistor is lowered.
  • the QM1 generates heat to prevent the first transistor QM1 from overheating.
  • the backlight driving voltage is 24V
  • the motherboard driving voltage is 12V
  • the standby voltage is 5V.
  • the Zener diode ZD1 has a stable voltage of 5.7V
  • the first transistor QM1 has an emission junction.
  • the turn-on voltage drop is 0.7V
  • the turn-on voltage drop of the emitter junction of the second transistor QM2 is also 0.7V
  • the stable voltage of the Zener diode ZD1 and the emission junction of the first transistor QM1 are guided.
  • the setting of the voltage drop can generate a standby voltage of the corresponding voltage value.
  • the first transistor QM1 is an NPN type transistor
  • the second transistor QM2 is a PNP type transistor.
  • the main power source 1 includes: a rectifying and filtering module 101, and an energy storage transformer module 102 electrically connected to the rectifying and filtering module 101.
  • a switch module 103 electrically connected to the energy storage transformer module 102
  • a pulse width modulation chip 104 electrically connected to the switch module 104
  • an output filter module 105 electrically connected to the energy storage transformer module 102
  • the output filter module 105 and the pulse width modulation chip 104 are electrically connected to the feedback module 106.
  • the working process of the main power source 1 is: the rectification and filtering module 101 is connected to an external AC voltage (for example, 220 V mains) to convert the AC voltage into a DC voltage, and the DC voltage is filtered to provide a storage energy change.
  • the voltage module 102, the energy storage transformer module 102 performs energy storage under the control of the switch module 103 or converts the received DC voltage to the output filter module 105.
  • the switch module 103 is turned on, The energy storage transformer module 102 stores energy for the received DC voltage.
  • the switch module 13 is turned off, the energy storage transformer module 102 converts the stored DC voltage to the output filter module 105, and the output is output.
  • the filtering module 105 filters the DC voltage after the voltage conversion, and outputs the filtered DC voltage to the load, wherein the opening and closing of the switch module 103 is controlled by the pulse signal provided by the pulse width modulation chip 104.
  • the voltage outputted by the output filter module 105 is monitored by the voltage feedback module 106 during voltage output, and a feedback signal is generated to the pulse when the output voltage changes.
  • Modulation chip 104, the pulse width modulator chip 104 according to the feedback signal a pulse signal to control the switching time ratio of the switching module 103, the output voltage worthy to adjusted to maintain the output voltage stability.
  • the rectifying and filtering module 101 includes: a rectifier bridge BD102, a first electrolytic capacitor CP4, and a first capacitor C3; the rectifier bridge BD102 The first end is electrically connected to the positive pole of the first electrolytic capacitor CP4, the second end is electrically connected to the neutral line of the alternating voltage, the third end is electrically connected to the live line of the alternating voltage, and the fourth end is grounded; the first electrolytic capacitor CP4 The positive pole is electrically connected to one end of the first capacitor C3, and the negative pole is grounded; one end of the first capacitor C3 is electrically connected to the energy storage transformer module 102, and the other end is grounded.
  • the energy storage transformer module 102 includes: a fourth resistor RM106, a second capacitor C15, a first diode DM104, and a transformer TM104;
  • the switch module 103 includes: a MOS transistor Q1, and a fifth resistor RM107;
  • One end of the fourth resistor RM106 is electrically connected to one end of the first capacitor C3, and the other end is electrically connected to the cathode of the first diode DM104.
  • One end of the second capacitor C15 is electrically connected to the fourth resistor.
  • the transformer TM104 includes a primary coil L1, a first secondary coil L2, and a second secondary coil L3, the primary coil L1 One end is electrically connected to one end of the second capacitor C15, the other end is electrically connected to the anode of the first diode DM104, and the first and second secondary coils L2, L3 are electrically connected to the output filter module 105;
  • the anode of the first diode DM104 is electrically connected to the drain of the MOS transistor Q1; the gate and the source of the MOS transistor Q1 are electrically connected to the pulse width modulation chip 104; one end of the fifth resistor RM107
  • the source of the MOS transistor Q1 is electrically connected, and the other end is grounded.
  • the output filter module 105 includes: a second diode DM105, a third diode DM106, a fourth diode DM107, a fifth diode DM108, a second electrolytic capacitor CP3, and a third electrolytic capacitor CP5;
  • the anode of the second diode DM105 is electrically connected to one end of the first secondary coil L2, and the anode outputs a backlight driving voltage;
  • the anode of the third diode DM105 is electrically connected to the second diode DM105
  • the anode of the second diode DM105 is electrically connected to the cathode of the second diode DM105;
  • the anode of the fourth diode DM107 is electrically connected to one end of the second secondary coil L3, and the anode is electrically connected to the first secondary
  • the other end of the coil L2 simultaneously outputs the main board driving voltage;
  • the anode of the fifth diode DM108 is electrically connected
  • the anode of the second electrolytic capacitor CP3 is electrically connected to the cathode of the second diode DM105, and the anode is grounded; the anode of the third electrolytic capacitor CP5 is electrically connected to the other end of the first secondary coil L2, and the cathode is grounded. Simultaneously electrically connecting the second secondary coil L3 End.
  • the feedback module 106 includes: a photocoupler UM106, a third capacitor C16, a sixth resistor RM213, a seventh resistor RM214, an eighth resistor RM216, a ninth resistor RM217, a tenth resistor RM218, and a controllable precision voltage regulator source PQ4. ;
  • the anode of the light-emitting diode of the photocoupler UM106 is electrically connected to one end of the seventh resistor RM214, and the anode is electrically connected to the other end of the seventh resistor RM214.
  • the emitter of the phototransistor of the photocoupler UM106 is electrically connected to the third One end of capacitor C16, collector electrical The other end of the second capacitor C16 is connected to the other end of the second capacitor DM105.
  • the other end of the third capacitor C16 is electrically connected to the pulse width modulation chip 104.
  • the one end of the sixth resistor RM213 is electrically connected to the cathode of the second diode DM105.
  • the other end is electrically connected to one end of the seventh resistor RM214; the other end of the seventh resistor RM214 is electrically connected to the negative pole of the controllable precision voltage regulator source PQ4; one end of the eighth resistor RM216 is electrically connected to the The reference pole of the precision voltage regulator source PQ4 is controlled, and the other end is electrically connected to the anode of the controllable precision voltage regulator source PQ4 while being grounded; one end of the ninth resistor RM217 is electrically connected to the cathode of the fourth diode DM107 The other end is electrically connected to one end of the eighth resistor RM216; one end of the tenth resistor RM218 is electrically connected to the negative pole of the second diode DM105, and the other end is electrically connected to one end of the eighth resistor RM216 .
  • main power source 1 of the present invention is not limited to the specific modules and circuits described above, and other power sources that can generate a stable backlight driving voltage and a motherboard driving voltage can also be used as the main power source 1 of the present invention, which does not affect the present invention. Implementation of the invention.
  • the present invention provides a television power supply
  • the television power supply includes: a main power source, and a voltage conversion circuit electrically connected to the main power source
  • the main power source includes: for outputting a backlight driving voltage a first output terminal and a second output terminal for outputting a motherboard driving voltage
  • the voltage conversion circuit comprising: an input terminal electrically connected to the first output terminal or the second output terminal, and an output standby voltage
  • the TV power supply can convert the backlight driving voltage or the motherboard driving voltage into a standby voltage through the voltage conversion circuit, thereby generating a main board driving voltage, a backlight driving voltage, and a standby voltage through one power source, thereby effectively reducing
  • the number of flyback power supplies reduces the cost of TV power and increases the cost competitiveness of TV.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电视机电源,包括:主电源(1)、以及与所述主电源(1)电性连接的电压转换电路(2),所述主电源(1)包括:用于输出背光驱动电压的第一输出端(11)和用于输出主板驱动电压的第二输出端(12),所述电压转换电路(2)包括:与所述第一输出端(11)或第二输出端(12)电性连接的输入端(21)、以及用于输出待机电压的第三输出端(22),该电视机电源可通过所述电压转换电路(2)将背光驱动电压或主板驱动电压转换为待机电压,进而通过一个电源同时产生主板驱动电压、背光驱动电压、以及待机电压,有效减少反激电源数量,降低电视电源成本,提高电视的成本竞争力。

Description

电视机电源 技术领域
本发明涉及显示技术领域,尤其涉及一种电视机电源。
背景技术
随着显示技术的发展,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
现有市场上的液晶显示装置大部分为背光型液晶显示器,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
液晶电视是液晶显示装置最主要的一个应用方向之一,液晶电视的电源是各种液晶电视必不可少的组成部分,液晶电视的电源通常采用反激式开关电源,具有结构较简单、成本较低、器件较少等优点。一般的反激式开关电源通常由脉冲宽度调制芯片(Pulse Width Modulation IC,PWM IC)、变压器、整流滤波模块、电压反馈模块、及开关器件所组成,其工作过程为:接入外部的高压交流电压后,PWM IC发出脉冲信号控制开关器件的开启和关闭,当开关器件开启时,外接的交流电压经整流后进入变压器的初级线圈并将能量进行储存;当开关器件关闭时,变压器初级线圈中存储的能量通过次极线圈释放,经整流滤波模块的作用后向负载稳定输出直流电压,电压反馈模块接入输出电压,在输出电压增加或者减少的时候,产生反馈信号,反馈信号传输至PWM IC的反馈引脚,PWM IC调整脉冲信号以控制开关器件的开关时间比例,使输出电压值得到调整,稳定输出电压。
目前,液晶电视在工作时通常需要提供一个背光驱动电压(一般为24V)和一个主板驱动电压(一般为12V),在待机时需要提供一个待机电压(一般为5V),其中背光驱动电压和主板驱动电压由一个反激电源产生,而待机电压单独由另一个反激电源产生,成本较高,且排版(layout)调试复杂。
发明内容
本发明的目的在于提供一种改进的电视机电源。
为实现上述目的,本发明提供了一种电视机电源,包括:主电源、以及与所述主电源电性连接的电压转换电路;
所述主电源包括:用于输出背光驱动电压的第一输出端和用于输出主板驱动电压的第二输出端;
所述电压转换电路用于将背光驱动电压或主板驱动电压转换为待机电压,所述电压转换电路包括:与所述第一输出端或第二输出端电性连接的输入端、以及用于输出待机电压的第三输出端。
所述电压转换电路包括:第一电阻、第二电阻、第三电阻、第一三极管、第二三极管以及稳压二极管;
所述第一电阻的一端电性连接第一节点,另一端电性连接第二三极管的发射极;
所述第二电阻的一端电性连接第一节点,另一端电性连接第三电阻的一端;
所述第三电阻的另一端电性连接第一三极管的基极;
所述第一三极管的集电极电性连接第三电阻的一端,发射极电性连接第二节点;
所述第二三极管的基极电性连接第三电阻的一端,集电极电性连接第二节点;
所述稳压二极管的负极电性连接第一三极管的基极,正极接地;
所述第一节点为所述电压转换电路的输入端,所述第二节点为所述电压转换电路的第三输出端。
所述背光驱动电压为24V,主板驱动电压为12V,待机电压为5V。
所述稳压二极管的稳定电压为5.7V,所述第一三极管的发射结的导通压降为0.7V。
所述第一三极管为NPN型三极管,所述第二三极管为PNP型三极管。
所述主电源包括:整流滤波模块、与所述整流滤波模块电性连接的储能变压模块、与所述储能变压模块电性连接的开关模块、与所述开关模块电性连接的脉冲宽度调制芯片、与所述储能变压模块电性连接的输出滤波模块、与输出滤波模块和脉冲宽度调制芯片均电性连接的反馈模块;
所述整流滤波模块用于接入交流电压并将交流电压转换为直流电压,并将直流电压进行滤波后提供给储能变压模块;
所述储能变压模块用于在所述开关模块的控制下进行储能或将接收到的直流电压进行变压后输出给输出滤波模块;
所述开关模块用于控制储能变压模块进行储能或变压;
所述脉冲宽度调制芯片用于向所述开关模块提供脉冲信号以控制所述开关模块的开关;
所述输出滤波模块用于对储能变压模块变压后的直流电压进行滤波,输出背光驱动电压和主板驱动电压;
所述反馈模块用于监控输出的背光驱动电压和主板驱动电压,并在背光驱动电压和主板驱动电压变化的时候,产生反馈信号控制脉冲宽度调制芯片调整脉冲信号,保证背光驱动电压和主板驱动电压稳定输出。
所述整流滤波模块包括:整流桥、第一电解电容、以及第一电容;
所述整流桥的第一端电性连接第一电解电容的正极,第二端电性连接交流电压的零线,第三端电性连接交流电压的火线,第四端接地;
所述第一电解电容的正极电性连接第一电容的一端,负极接地;
所述第一电容的一端电性连接储能变压模块,另一端接地。
所述储能变压模块包括:第四电阻、第二电容、第一二极管、以及变压器;所述开关模块包括:MOS管、以及第五电阻;
所述第四电阻的一端电性连接所述第一电容的一端,另一端电性连接所述第一二极管的负极;
所述第二电容的一端电性连接所述第四电阻的一端,另一端电性连接所述第一二极管的负极;
所述变压器包括初级线圈、第一次级线圈、以及第二次级线圈,所述初级线圈的一端电性连接所述第二电容的一端,另一端电性连接所述第一二极管的正极,第一和第二次级线圈均电性连接输出滤波模块。
所述第一二极管的正极电性连接所述MOS管的漏极;
所述MOS管的栅极和源极均电性连接脉冲宽度调制芯片;
所述第五电阻的一端电性连接所述MOS管的源极,另一端接地。
所述输出滤波模块包括:第二二极管、第三二极管、第四二极管、第五二极管、第二电解电容、以及第三电解电容;
所述第二二极管的正极电性连接所述第一次级线圈的一端,负极输出背光驱动电压;
所述第三二极管的正极电性连接所述第二二极管的正极,负极电性连接所述第二二极管的负极;
所述第四二极管的正极电性连接所述第二次级线圈的一端,负极电性连接第一次级线圈的另一端的同时输出主板驱动电压;
所述第五二极管的正极电性连接所述第四二极管的正极,负极电性连 接所述第四二极管的负极;
所述第二电解电容的正极电性连接第二二极管的负极,负极接地;
所述第三电解电容的正极电性连接第一次级线圈的另一端,负极在接地的同时电性连接所述第二次级线圈的另一端。
所述反馈模块包括:光电耦合器、第三电容、第六电阻、第七电阻、第八电阻、第九电阻、第十电阻、以及可控精密稳压源;
所述光电耦合器的发光二极管的正极电性连接第七电阻的一端,负极电性连接第七电阻的另一端,所述光电耦合器的光敏三极管的发射极电性连接第三电容的一端,集电极电性连接第三电容的另一端;
所述第三电容的一端接地,另一端电性连接脉冲宽度调制芯片;
所述第六电阻的一端电性连接第二二极管的负极另一端电性连接所述第七电阻的一端;
所述第七电阻的另一端电性连接可控精密稳压源的负极;
所述第八电阻的一端电性连接所述可控精密稳压源的参考极,另一端在接地的同时电性连接所述可控精密稳压源的正极;
所述第九电阻的一端电性连接第四二极管的负极,另一端电性连接所述第八电阻的一端;
所述第十电阻的一端电性连接所述第二二极管的负极,另一端电性连接所述第八电阻的一端。
本发明还提供一种电视机电源,包括:主电源、以及与所述主电源电性连接的电压转换电路;
所述主电源包括:用于输出背光驱动电压的第一输出端和用于输出主板驱动电压的第二输出端;
所述电压转换电路用于将背光驱动电压或主板驱动电压转换为待机电压,所述电压转换电路包括:与所述第一输出端或第二输出端电性连接的输入端、以及用于输出待机电压的第三输出端;
其中,所述电压转换电路包括:第一电阻、第二电阻、第三电阻、第一三极管、第二三极管以及稳压二极管;
所述第一电阻的一端电性连接第一节点,另一端电性连接第二三极管的发射极;
所述第二电阻的一端电性连接第一节点,另一端电性连接第三电阻的一端;
所述第三电阻的另一端电性连接第一三极管的基极;
所述第一三极管的集电极电性连接第三电阻的一端,发射极电性连接 第二节点;
所述第二三极管的基极电性连接第三电阻的一端,集电极电性连接第二节点;
所述稳压二极管的负极电性连接第一三极管的基极,正极接地;
所述第一节点为所述电压转换电路的输入端,所述第二节点为所述电压转换电路的第三输出端;
所述稳压二极管的稳定电压与所述第一三极管的发射结的导通压降的差值等于待机电压;
其中,所述主电源包括:整流滤波模块、与所述整流滤波模块电性连接的储能变压模块、与所述储能变压模块电性连接的开关模块、与所述开关模块电性连接的脉冲宽度调制芯片、与所述储能变压模块电性连接的输出滤波模块、与输出滤波模块和脉冲宽度调制芯片均电性连接的反馈模块;
所述整流滤波模块用于接入交流电压并将交流电压转换为直流电压,并将直流电压进行滤波后提供给储能变压模块;
所述储能变压模块用于在所述开关模块的控制下进行储能或将接收到的直流电压进行变压后输出给输出滤波模块;
所述开关模块用于控制储能变压模块进行储能或变压;
所述脉冲宽度调制芯片用于向所述开关模块提供脉冲信号以控制所述开关模块的开关;
所述输出滤波模块用于对储能变压模块变压后的直流电压进行滤波,输出背光驱动电压和主板驱动电压;
所述反馈模块用于监控输出的背光驱动电压和主板驱动电压,并在背光驱动电压和主板驱动电压变化的时候,产生反馈信号控制脉冲宽度调制芯片调整脉冲信号,保证背光驱动电压和主板驱动电压稳定输出。
本发明的有益效果:本发明提供一种电视机电源,所述电视机电源包括:主电源、以及与所述主电源电性连接的电压转换电路,所述主电源包括:用于输出背光驱动电压的第一输出端和用于输出主板驱动电压的第二输出端,所述电压转换电路包括:与所述第一输出端或第二输出端电性连接的输入端、以及用于输出待机电压的第三输出端,该电视机电源可通过所述电压转换电路将背光驱动电压或主板驱动电压转换为待机电压,进而通过一个电源同时产生主板驱动电压、背光驱动电压、以及待机电压,有效减少反激电源数量,降低电视电源成本,提高电视的成本竞争力。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的电视机电源的电路图;
图2为本发明的电视机电源中主电源的电路图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种电视机电源,包括:主电源1、以及与所述主电源1电性连接的电压转换电路2;
所述主电源1包括:用于输出背光驱动电压的第一输出端11和用于输出主板驱动电压的第二输出端12;
所述电压转换电路2用于将背光驱动电压或主板驱动电压转换为待机电压,所述电压转换电路2包括:与所述第一输出端11或第二输出端12电性连接的输入端21、以及用于输出待机电压的第三输出端22。
具体地,如图1所示,所述电压转换电路2包括:第一电阻R1、第二电阻R2、第三电阻R3、第一三极管QM1、第二三极管QM2以及稳压二极管ZD1;
所述第一电阻R1的一端电性连接第一节点Q,另一端电性连接第二三极管QM2的发射极;所述第二电阻R2的一端电性连接第一节点Q,另一端电性连接第三电阻R3的一端;所述第三电阻R3的另一端电性连接第一三极管QM1的基极;所述第一三极管QM1的集电极电性连接第三电阻R3的一端,发射极电性连接第二节点P;所述第二三极管QM2的基极电性连接R3的一端,集电极电性连接第二节点P;所述稳压二极管ZD1的负极电性连接第一三极管QM1的基极,正极接地;所述第一节点Q为所述电压转换电路2的输入端21,所述第二节点P为所述电压转换电路2的第三输出端22;所述稳压二极管ZD1的稳定电压与所述第一三极管QM1的发射结的导通压降的差值等于待机电压。
需要说明的是,所述电压转换电路2的工作过程为:所述背光驱动电压或主板驱动电压接入所述电压转换电路2后,所述稳压二极管ZD1将所述第一三极管QM1的基极的电压固定在所述稳压二极管ZD1的稳定电压,所述第一三极管QM1的发射极输出待机电压,所述待机电压等于所述稳定 电压与所述第一三极管QM1的发射结的导通压降的差值,与此同时,当所述第一三极管QM1的流过的电流增大,导致第二电阻R2上产生压降大于所述第二三极管QM2的发射结的导通压降时,所述第二三极管QM2导通为所述第一三极管QM1分流,降低所述第一三极管QM1发热量,防止第一三极管QM1过热。
优选地,所述背光驱动电压为24V,主板驱动电压为12V,待机电压为5V,此时,所述稳压二极管ZD1的稳定电压为5.7V,所述第一三极管QM1的发射结的导通压降为0.7V,所述第二三极管QM2的发射结的导通压降也为0.7V,通过对稳压二极管ZD1的稳定电压和第一三极管QM1的发射结的导通压降的设置即可产生相应电压值的待机电压。
具体地,所述第一三极管QM1为NPN型三极管,所述第二三极管QM2为PNP型三极管。
具体地,如图2所示,在本发明的一个实施例中,所述主电源1包括:整流滤波模块101、与所述整流滤波模块101电性连接的储能变压模块102、与所述储能变压模块102电性连接的开关模块103、与所述开关模块104电性连接的脉冲宽度调制芯片104、与所述储能变压模块102电性连接的输出滤波模块105、与输出滤波模块105和脉冲宽度调制芯片104均电性连接的反馈模块106。
进一步地,所述主电源1的工作过程为:所述整流滤波模块101接入外界交流电压(例如220V市电)将交流电压转换为直流电压,并将直流电压进行滤波后提供给储能变压模块102,所述储能变压模块102在所述开关模块103的控制下进行储能或将接收到的直流电压进行变压后输出给输出滤波模块105,当开关模块103开启时,所述储能变压模块102对接收到的直流电压储能,当开关模块13关闭时,所述储能变压模块102将存储的直流电压进行变压后释放到输出滤波模块105,所述输出滤波模块105对变压后的直流电压进行滤波,并将滤波后的直流电压输出到负载,其中,所述开关模块103的开启与关闭通过所述脉冲宽度调制芯片104提供的脉冲信号进行控制,在电压输出过程中通过电压反馈模块106监控输出滤波模块105输出的电压,并在输出电压变化的时候,产生反馈信号给脉冲宽度调制芯片104,所述脉冲宽度调制芯片104根据反馈信号调整脉冲信号以控制开关模块103的开关时间比例,使输出电压值得到调整,以保持输出电压稳定。
具体地,在本发明的优选实施例中,所述整流滤波模块101包括:整流桥BD102、第一电解电容CP4、以及第一电容C3;所述整流桥BD102 的第一端电性连接第一电解电容CP4的正极,第二端电性连接交流电压的零线,第三端电性连接交流电压的火线,第四端接地;所述第一电解电容CP4的正极电性连接第一电容C3的一端,负极接地;所述第一电容C3的一端电性连接储能变压模块102,另一端接地。
所述储能变压模块102包括:第四电阻RM106、第二电容C15、第一二极管DM104、以及变压器TM104;所述开关模块103包括:MOS管Q1、以及第五电阻RM107;所述第四电阻RM106的一端电性连接所述第一电容C3的一端,另一端电性连接所述第一二极管DM104的负极;所述第二电容C15的一端电性连接所述第四电阻RM106的一端,另一端电性连接所述第一二极管DM104的负极;所述变压器TM104包括初级线圈L1、第一次级线圈L2、以及第二次级线圈L3,所述初级线圈L1的一端电性连接所述第二电容C15的一端,另一端电性连接所述第一二极管DM104的正极,第一和第二次级线圈L2、L3均电性连接输出滤波模块105;所述第一二极管DM104的正极电性连接所述MOS管Q1的漏极;所述MOS管Q1的栅极和源极均电性连接脉冲宽度调制芯片104;所述第五电阻RM107的一端电性连接所述MOS管Q1的源极,另一端接地。
所述输出滤波模块105包括:第二二极管DM105、第三二极管DM106、第四二极管DM107、第五二极管DM108、第二电解电容CP3、以及第三电解电容CP5;所述第二二极管DM105的正极电性连接所述第一次级线圈L2的一端,负极输出背光驱动电压;所述第三二极管DM105的正极电性连接所述第二二极管DM105的正极,负极电性连接所述第二二极管DM105的负极;所述第四二极管DM107的正极电性连接所述第二次级线圈L3的一端,负极电性连接第一次级线圈L2的另一端的同时输出主板驱动电压;所述第五二极管DM108的正极电性连接所述第四二极管DM107的正极,负极电性连接所述第四二极管DM107的负极;所述第二电解电容CP3的正极电性连接第二二极管DM105的负极,负极接地;所述第三电解电容CP5的正极电性连接第一次级线圈L2的另一端,负极在接地的同时电性连接所述第二次级线圈L3的另一端。
所述反馈模块106包括:光电耦合器UM106、第三电容C16、第六电阻RM213、第七电阻RM214、第八电阻RM216、第九电阻RM217、第十电阻RM218、以及可控精密稳压源PQ4;
所述光电耦合器UM106的发光二极管的正极电性连接第七电阻RM214的一端,负极电性连接第七电阻RM214的另一端,所述光电耦合器UM106的光敏三极管的发射极电性连接第三电容C16的一端,集电极电性 连接第三电容C16的另一端;所述第三电容C16的一端接地,另一端电性连接脉冲宽度调制芯片104;所述第六电阻RM213的一端电性连接第二二极管DM105的负极,另一端电性连接所述第七电阻RM214的一端;所述第七电阻RM214的另一端电性连接可控精密稳压源PQ4的负极;所述第八电阻RM216的一端电性连接所述可控精密稳压源PQ4的参考极,另一端在接地的同时电性连接所述可控精密稳压源PQ4的正极;所述第九电阻RM217的一端电性连接第四二极管DM107的负极,另一端电性连接所述第八电阻RM216的一端;所述第十电阻RM218的一端电性连接所述第二二极管DM105的负极,另一端电性连接所述第八电阻RM216的一端。
可以理解的是,本发明的主电源1并不限于上述具体模块及电路,其他可以产生稳定的背光驱动电压和主板驱动电压的电源也可以作为本发明的主电源1,这并不会影响本发明的实现。
综上所述,本发明提供一种电视机电源,所述电视机电源包括:主电源、以及与所述主电源电性连接的电压转换电路,所述主电源包括:用于输出背光驱动电压的第一输出端和用于输出主板驱动电压的第二输出端,所述电压转换电路包括:与所述第一输出端或第二输出端电性连接的输入端、以及用于输出待机电压的第三输出端,该电视机电源可通过所述电压转换电路将背光驱动电压或主板驱动电压转换为待机电压,进而通过一个电源同时产生主板驱动电压、背光驱动电压、以及待机电压,有效减少反激电源数量,降低电视电源成本,提高电视的成本竞争力。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (18)

  1. 一种电视机电源,包括:主电源、以及与所述主电源电性连接的电压转换电路;
    所述主电源包括:用于输出背光驱动电压的第一输出端和用于输出主板驱动电压的第二输出端;
    所述电压转换电路用于将背光驱动电压或主板驱动电压转换为待机电压,所述电压转换电路包括:与所述第一输出端或第二输出端电性连接的输入端、以及用于输出待机电压的第三输出端。
  2. 如权利要求1所述的电视机电源,其中,所述电压转换电路包括:第一电阻、第二电阻、第三电阻、第一三极管、第二三极管以及稳压二极管;
    所述第一电阻的一端电性连接第一节点,另一端电性连接第二三极管的发射极;
    所述第二电阻的一端电性连接第一节点,另一端电性连接第三电阻的一端;
    所述第三电阻的另一端电性连接第一三极管的基极;
    所述第一三极管的集电极电性连接第三电阻的一端,发射极电性连接第二节点;
    所述第二三极管的基极电性连接第三电阻的一端,集电极电性连接第二节点;
    所述稳压二极管的负极电性连接第一三极管的基极,正极接地;
    所述第一节点为所述电压转换电路的输入端,所述第二节点为所述电压转换电路的第三输出端;
    所述稳压二极管的稳定电压与所述第一三极管的发射结的导通压降的差值等于待机电压。
  3. 如权利要求2所述的电视机电源,其中,所述背光驱动电压为24V,主板驱动电压为12V,待机电压为5V。
  4. 如权利要求3所述的电视机电源,其中,所述稳压二极管的稳定电压为5.7V,所述第一三极管的发射结的导通压降为0.7V。
  5. 如权利要求2所述的电视机电源,其中,所述第一三极管为NPN型三极管,所述第二三极管为PNP型三极管。
  6. 如权利要求1所述的电视机电源,其中,所述主电源包括:整流滤 波模块、与所述整流滤波模块电性连接的储能变压模块、与所述储能变压模块电性连接的开关模块、与所述开关模块电性连接的脉冲宽度调制芯片、与所述储能变压模块电性连接的输出滤波模块、与输出滤波模块和脉冲宽度调制芯片均电性连接的反馈模块;
    所述整流滤波模块用于接入交流电压并将交流电压转换为直流电压,并将直流电压进行滤波后提供给储能变压模块;
    所述储能变压模块用于在所述开关模块的控制下进行储能或将接收到的直流电压进行变压后输出给输出滤波模块;
    所述开关模块用于控制储能变压模块进行储能或变压;
    所述脉冲宽度调制芯片用于向所述开关模块提供脉冲信号以控制所述开关模块的开关;
    所述输出滤波模块用于对储能变压模块变压后的直流电压进行滤波,输出背光驱动电压和主板驱动电压;
    所述反馈模块用于监控输出的背光驱动电压和主板驱动电压,并在背光驱动电压和主板驱动电压变化的时候,产生反馈信号控制脉冲宽度调制芯片调整脉冲信号,保证背光驱动电压和主板驱动电压稳定输出。
  7. 如权利要求6所述的电视机电源,其中,所述整流滤波模块包括:整流桥、第一电解电容、以及第一电容;
    所述整流桥的第一端电性连接第一电解电容的正极,第二端电性连接交流电压的零线,第三端电性连接交流电压的火线,第四端接地;
    所述第一电解电容的正极电性连接第一电容的一端,负极接地;
    所述第一电容的一端电性连接储能变压模块,另一端接地。
  8. 如权利要求7所述的电视机电源,其中,所述储能变压模块包括:第四电阻、第二电容、第一二极管、以及变压器;所述开关模块包括:MOS管、以及第五电阻;
    所述第四电阻的一端电性连接所述第一电容的一端,另一端电性连接所述第一二极管的负极;
    所述第二电容的一端电性连接所述第四电阻的一端,另一端电性连接所述第一二极管的负极;
    所述变压器包括初级线圈、第一次级线圈、以及第二次级线圈,所述初级线圈的一端电性连接所述第二电容的一端,另一端电性连接所述第一二极管的正极,第一和第二次级线圈均电性连接输出滤波模块;
    所述第一二极管的正极电性连接所述MOS管的漏极;
    所述MOS管的栅极和源极均电性连接脉冲宽度调制芯片;
    所述第五电阻的一端电性连接所述MOS管的源极,另一端接地。
  9. 如权利要求8所述的电视机电源,其中,所述输出滤波模块包括:第二二极管、第三二极管、第四二极管、第五二极管、第二电解电容、以及第三电解电容;
    所述第二二极管的正极电性连接所述第一次级线圈的一端,负极输出背光驱动电压;
    所述第三二极管的正极电性连接所述第二二极管的正极,负极电性连接所述第二二极管的负极;
    所述第四二极管的正极电性连接所述第二次级线圈的一端,负极电性连接第一次级线圈的另一端的同时输出主板驱动电压;
    所述第五二极管的正极电性连接所述第四二极管的正极,负极电性连接所述第四二极管的负极;
    所述第二电解电容的正极电性连接第二二极管的负极,负极接地;
    所述第三电解电容的正极电性连接第一次级线圈的另一端,负极在接地的同时电性连接所述第二次级线圈的另一端。
  10. 如权利要求9所述的电视机电源,其中,所述反馈模块包括:光电耦合器、第三电容、第六电阻、第七电阻、第八电阻、第九电阻、第十电阻、以及可控精密稳压源;
    所述光电耦合器的发光二极管的正极电性连接第七电阻的一端,负极电性连接第七电阻的另一端,所述光电耦合器的光敏三极管的发射极电性连接第三电容的一端,集电极电性连接第三电容的另一端;
    所述第三电容的一端接地,另一端电性连接脉冲宽度调制芯片;
    所述第六电阻的一端电性连接第二二极管的负极,另一端电性连接所述第七电阻的一端;
    所述第七电阻的另一端电性连接可控精密稳压源的负极;
    所述第八电阻的一端电性连接所述可控精密稳压源的参考极,另一端在接地的同时电性连接所述可控精密稳压源的正极;
    所述第九电阻的一端电性连接第四二极管的负极,另一端电性连接所述第八电阻的一端;
    所述第十电阻的一端电性连接所述第二二极管的负极,另一端电性连接所述第八电阻的一端。
  11. 一种电视机电源,包括:主电源、以及与所述主电源电性连接的电压转换电路;
    所述主电源包括:用于输出背光驱动电压的第一输出端和用于输出主 板驱动电压的第二输出端;
    所述电压转换电路用于将背光驱动电压或主板驱动电压转换为待机电压,所述电压转换电路包括:与所述第一输出端或第二输出端电性连接的输入端、以及用于输出待机电压的第三输出端;
    其中,所述电压转换电路包括:第一电阻、第二电阻、第三电阻、第一三极管、第二三极管以及稳压二极管;
    所述第一电阻的一端电性连接第一节点,另一端电性连接第二三极管的发射极;
    所述第二电阻的一端电性连接第一节点,另一端电性连接第三电阻的一端;
    所述第三电阻的另一端电性连接第一三极管的基极;
    所述第一三极管的集电极电性连接第三电阻的一端,发射极电性连接第二节点;
    所述第二三极管的基极电性连接第三电阻的一端,集电极电性连接第二节点;
    所述稳压二极管的负极电性连接第一三极管的基极,正极接地;
    所述第一节点为所述电压转换电路的输入端,所述第二节点为所述电压转换电路的第三输出端;
    所述稳压二极管的稳定电压与所述第一三极管的发射结的导通压降的差值等于待机电压;
    其中,所述主电源包括:整流滤波模块、与所述整流滤波模块电性连接的储能变压模块、与所述储能变压模块电性连接的开关模块、与所述开关模块电性连接的脉冲宽度调制芯片、与所述储能变压模块电性连接的输出滤波模块、与输出滤波模块和脉冲宽度调制芯片均电性连接的反馈模块;
    所述整流滤波模块用于接入交流电压并将交流电压转换为直流电压,并将直流电压进行滤波后提供给储能变压模块;
    所述储能变压模块用于在所述开关模块的控制下进行储能或将接收到的直流电压进行变压后输出给输出滤波模块;
    所述开关模块用于控制储能变压模块进行储能或变压;
    所述脉冲宽度调制芯片用于向所述开关模块提供脉冲信号以控制所述开关模块的开关;
    所述输出滤波模块用于对储能变压模块变压后的直流电压进行滤波,输出背光驱动电压和主板驱动电压;
    所述反馈模块用于监控输出的背光驱动电压和主板驱动电压,并在背 光驱动电压和主板驱动电压变化的时候,产生反馈信号控制脉冲宽度调制芯片调整脉冲信号,保证背光驱动电压和主板驱动电压稳定输出。
  12. 如权利要求11所述的电视机电源,其中,所述背光驱动电压为24V,主板驱动电压为12V,待机电压为5V。
  13. 如权利要求12所述的电视机电源,其中,所述稳压二极管的稳定电压为5.7V,所述第一三极管的发射结的导通压降为0.7V。
  14. 如权利要求11所述的电视机电源,其中,所述第一三极管为NPN型三极管,所述第二三极管为PNP型三极管。
  15. 如权利要求11所述的电视机电源,其中,所述整流滤波模块包括:整流桥、第一电解电容、以及第一电容;
    所述整流桥的第一端电性连接第一电解电容的正极,第二端电性连接交流电压的零线,第三端电性连接交流电压的火线,第四端接地;
    所述第一电解电容的正极电性连接第一电容的一端,负极接地;
    所述第一电容的一端电性连接储能变压模块,另一端接地。
  16. 如权利要求15所述的电视机电源,其中,所述储能变压模块包括:第四电阻、第二电容、第一二极管、以及变压器;所述开关模块包括:MOS管、以及第五电阻;
    所述第四电阻的一端电性连接所述第一电容的一端,另一端电性连接所述第一二极管的负极;
    所述第二电容的一端电性连接所述第四电阻的一端,另一端电性连接所述第一二极管的负极;
    所述变压器包括初级线圈、第一次级线圈、以及第二次级线圈,所述初级线圈的一端电性连接所述第二电容的一端,另一端电性连接所述第一二极管的正极,第一和第二次级线圈均电性连接输出滤波模块;
    所述第一二极管的正极电性连接所述MOS管的漏极;
    所述MOS管的栅极和源极均电性连接脉冲宽度调制芯片;
    所述第五电阻的一端电性连接所述MOS管的源极,另一端接地。
  17. 如权利要求16所述的电视机电源,其中,所述输出滤波模块包括:第二二极管、第三二极管、第四二极管、第五二极管、第二电解电容、以及第三电解电容;
    所述第二二极管的正极电性连接所述第一次级线圈的一端,负极输出背光驱动电压;
    所述第三二极管的正极电性连接所述第二二极管的正极,负极电性连接所述第二二极管的负极;
    所述第四二极管的正极电性连接所述第二次级线圈的一端,负极电性连接第一次级线圈的另一端的同时输出主板驱动电压;
    所述第五二极管的正极电性连接所述第四二极管的正极,负极电性连接所述第四二极管的负极;
    所述第二电解电容的正极电性连接第二二极管的负极,负极接地;
    所述第三电解电容的正极电性连接第一次级线圈的另一端,负极在接地的同时电性连接所述第二次级线圈的另一端。
  18. 如权利要求17所述的电视机电源,其中,所述反馈模块包括:光电耦合器、第三电容、第六电阻、第七电阻、第八电阻、第九电阻、第十电阻、以及可控精密稳压源;
    所述光电耦合器的发光二极管的正极电性连接第七电阻的一端,负极电性连接第七电阻的另一端,所述光电耦合器的光敏三极管的发射极电性连接第三电容的一端,集电极电性连接第三电容的另一端;
    所述第三电容的一端接地,另一端电性连接脉冲宽度调制芯片;
    所述第六电阻的一端电性连接第二二极管的负极,另一端电性连接所述第七电阻的一端;
    所述第七电阻的另一端电性连接可控精密稳压源的负极;
    所述第八电阻的一端电性连接所述可控精密稳压源的参考极,另一端在接地的同时电性连接所述可控精密稳压源的正极;
    所述第九电阻的一端电性连接第四二极管的负极,另一端电性连接所述第八电阻的一端;
    所述第十电阻的一端电性连接所述第二二极管的负极,另一端电性连接所述第八电阻的一端。
PCT/CN2017/088167 2017-04-20 2017-06-14 电视机电源 WO2018192077A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/547,803 US10341602B2 (en) 2017-04-20 2017-06-14 TV power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710260878.2A CN107105178B (zh) 2017-04-20 2017-04-20 电视机电源
CN201710260878.2 2017-04-20

Publications (1)

Publication Number Publication Date
WO2018192077A1 true WO2018192077A1 (zh) 2018-10-25

Family

ID=59658169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088167 WO2018192077A1 (zh) 2017-04-20 2017-06-14 电视机电源

Country Status (2)

Country Link
CN (1) CN107105178B (zh)
WO (1) WO2018192077A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216245A (zh) * 2020-10-09 2021-01-12 深圳创维-Rgb电子有限公司 电视机的模组背光灯条的调整电路和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788618A (en) * 1986-07-09 1988-11-29 Mitsubishi Denki Kabushiki Kaisha High voltage protecting circuit
CN101771839A (zh) * 2009-12-18 2010-07-07 康佳集团股份有限公司 一种降低液晶电视待机功耗的电路
CN202475621U (zh) * 2011-12-31 2012-10-03 青岛海信电器股份有限公司 Led液晶电视
CN103701337A (zh) * 2014-01-16 2014-04-02 青岛歌尔声学科技有限公司 一种电源系统
CN103997237A (zh) * 2014-05-27 2014-08-20 深圳创维-Rgb电子有限公司 大功率电源供电系统
CN106572565A (zh) * 2015-10-08 2017-04-19 深圳市金锐显数码科技有限公司 二合一电源

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201577034U (zh) * 2009-04-21 2010-09-08 冠捷投资有限公司 分散式电源供应器
CN101742186B (zh) * 2009-11-27 2012-09-26 深圳创维-Rgb电子有限公司 一种液晶电视电源系统
CN202587188U (zh) * 2012-05-11 2012-12-05 深圳市瀚强科技有限公司 一种集成多电压输出的液晶电视电源装置
CN105099202B (zh) * 2012-06-25 2018-11-02 青岛海信电器股份有限公司 一种供电方法、供电电路及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788618A (en) * 1986-07-09 1988-11-29 Mitsubishi Denki Kabushiki Kaisha High voltage protecting circuit
CN101771839A (zh) * 2009-12-18 2010-07-07 康佳集团股份有限公司 一种降低液晶电视待机功耗的电路
CN202475621U (zh) * 2011-12-31 2012-10-03 青岛海信电器股份有限公司 Led液晶电视
CN103701337A (zh) * 2014-01-16 2014-04-02 青岛歌尔声学科技有限公司 一种电源系统
CN103997237A (zh) * 2014-05-27 2014-08-20 深圳创维-Rgb电子有限公司 大功率电源供电系统
CN106572565A (zh) * 2015-10-08 2017-04-19 深圳市金锐显数码科技有限公司 二合一电源

Also Published As

Publication number Publication date
CN107105178B (zh) 2019-07-02
CN107105178A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
CN108257570B (zh) 消除关机残影的控制电路、其控制方法及液晶显示装置
US10341602B2 (en) TV power supply
US10140931B2 (en) Shadow mask assemblies and reusing methods of shadow mask assemblies thereof
US9672779B2 (en) Liquid crystal display device, backlight module, and drive circuit for backlight source thereof
US9207458B2 (en) Backlight driving board and LCD device
US8144110B2 (en) Liquid crystal display and backlight system with detection circuit for detecting connection state of power input
US9183788B2 (en) Backlight driving circuit, LCD device, and method for driving the backlight driving circuit
EP3657491A1 (en) Dc voltage conversion circuit, dc voltage conversion method and liquid crystal display device
JP2017521825A (ja) Ledバックライト駆動回路及び液晶表示器
US20190027103A1 (en) Dc voltage conversion circuit and liquid crystal display device
CN103943086A (zh) 一种模拟电压源电路及显示装置
CN201947178U (zh) 可降低待机功耗的电源供应器
JP2016540481A (ja) フライバック方式の快速起動駆動回路及び駆動方法
KR100959858B1 (ko) Smps 회로
WO2021042915A1 (zh) 电源控制电路及显示装置
US20160315544A1 (en) Power supply circuit for reducing standby power and control method thereof
WO2020113677A1 (zh) 显示面板驱动装置
WO2018192077A1 (zh) 电视机电源
US20080111807A1 (en) Multi-output switching power supply having voltage limiting circuit
CN110047444A (zh) 光源驱动电路及液晶显示装置
KR101060858B1 (ko) 확장된 디밍 범위를 갖는 램프 구동 장치
US9881589B2 (en) Backlight source driving circuit and display apparatus
CN112349249B (zh) 一种oled驱动电源和oled电视
US20140001973A1 (en) Light emitting diode driving apparatus
JP4756026B2 (ja) 光源駆動装置、及びその信号変換回路とパルス制御回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15547803

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906403

Country of ref document: EP

Kind code of ref document: A1