WO2017084142A1 - 一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统 - Google Patents

一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统 Download PDF

Info

Publication number
WO2017084142A1
WO2017084142A1 PCT/CN2015/097979 CN2015097979W WO2017084142A1 WO 2017084142 A1 WO2017084142 A1 WO 2017084142A1 CN 2015097979 W CN2015097979 W CN 2015097979W WO 2017084142 A1 WO2017084142 A1 WO 2017084142A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular metal
metal piece
coil
coupling
transmitting coil
Prior art date
Application number
PCT/CN2015/097979
Other languages
English (en)
French (fr)
Inventor
章秀银
薛成戴
李斌
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US15/529,517 priority Critical patent/US10217561B2/en
Publication of WO2017084142A1 publication Critical patent/WO2017084142A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/22Capacitive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling

Definitions

  • the present invention relates to the field of high-efficiency wireless power transmission systems with variable distance, and more particularly to a wireless energy transmission coil system that uses magnetic coupling to cancel frequency split suppression.
  • the traditional power transmission mode is mainly transmitted through the form of wire connection, but the wire will occupy a large amount of space resources, consume a large amount of metal resources, and at the same time easily generate contact sparks, which brings great safety hazards to survival and life; In addition, in some applications, it is not possible to use wire transmission, and the use of the battery limits the life of the device to a large extent. In these contexts, people began to try a new power transmission technology - wireless transmission technology.
  • the system is a distance-variable system based on frequency tracking, which enables high-efficiency transmission of more than 75% over a distance of 70 cm.
  • the system needs to add frequency measurement circuit, phase-locked loop circuit and voltage sampling control circuit to the original WiTricity system, which increases the complexity of the system and brings certain difficulties to the debugging and application.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art and to propose a coil system for short-range or medium-range wireless energy transmission.
  • the distance between the coils is far and near, and there is capacitive coupling between the annular metal sheets, and there is an inductive coupling between the coils. Due to the cancellation of the magnetoelectric coupling, the tendency of the overall coupling coefficient to be large is suppressed, thereby suppressing
  • the frequency splitting phenomenon occurs, and the coupling coefficient is basically constant within a certain distance, maintaining high-efficiency power transmission; from near to long distance, the capacitive coupling of the annular metal piece drops sharply, and the coupling between the coils is mainly inductive coupling.
  • the coupling is weak, the frequency splitting phenomenon does not occur, and the high-efficiency transmission is still maintained; the coil system can realize high-efficiency energy transmission at a certain distance, and relies on the adaptive adjustment of the magnetoelectric coupling between the coils, compared with the similar design. It does not increase the complexity of the original circuit system, the system is simpler and easier to debug, and the capacitive coupling distance is relatively close, which also does not affect the long-distance energy transmission, and has a longer variable range.
  • a wireless energy transmission coil system for suppressing frequency splitting by magnetoelectric coupling comprising an energy transmitting coil, an energy receiving coil and four loading annular metal sheets; and respectively loading the first annular metal sheet between the transmitting coil and the receiving coil And a second annular metal piece and a third annular metal piece and a fourth annular metal piece to extend the variable distance range of power transmission; since the magnetic coupling and the electrical coupling polarity are opposite, the total coupling strength is equal to the magnetic coupling strength minus Electrical coupling strength, when the close spacing between the two coils becomes smaller, the inductive coupling between the transmitting coil and the receiving coil increases, the first annular metal piece and the third annular metal piece, the second annular metal piece and the fourth annular metal
  • the capacitive coupling between the slices also increases, because the inverse cancellation of the magneto-electric coupling can keep the total coupling coefficient substantially constant over a certain distance, thereby preventing the coupling coefficient from being excessively large, resulting in frequency splitting and maintaining high efficiency power transmission.
  • the capacitive coupling decreases rapidly and becomes small, and the total coupling strength is mainly It depends on the inductive coupling between the spiral tubes, and will gradually decrease with the increase of the distance, and there will be no frequency splitting phenomenon; therefore, the coil system can realize high-efficiency energy transmission within a certain distance;
  • the loading manner of the first annular metal piece, the second annular metal piece, the third annular metal piece and the fourth annular metal piece, and the feeding mode of the transmitting coil and the feeding mode of the receiving coil together constitute a magnetic cancellation Sufficient condition;
  • the transmitting coil is wound clockwise, the receiving coil is wound counterclockwise, and the two coils are wound in opposite directions.
  • the first annular metal piece and the transmitting coil loaded on the transmitting coil are wound in opposite directions, and the ends thereof are connected to the end of the transmitting coil through wires.
  • the winding of the second annular metal piece loaded on the transmitting coil is opposite to the transmitting coil, and the end thereof is connected by the wire and the transmitting coil; the third annular metal piece loaded on the receiving coil and the receiving coil are wound in opposite directions, and the end is passed through the wire and received The coils are connected, the winding of the fourth annular metal piece loaded on the receiving coil is opposite to the receiving coil, and the end is connected by the wire and the receiving coil, which together make the electric field vector and the magnetic field vector of the transmitting coil and the receiving coil opposite to each other, and constitutes The necessary conditions for magnetoelectric cancellation; and the number of turns of the transmitting coil is odd, from top to bottom respectively For the first and last ⁇ , clockwise winding, open at both ends, the middle one is disconnected from the middle as a feed port of high frequency power source, the number of turns of the transmitting coil is odd, from top to bottom respectively For the first ⁇ and the last ⁇ , counterclockwise, the two ends are open, and the middle one is disconnected from the middle as a
  • the resonant mode of the transmitting coil and the receiving coil constitutes a basic condition of magnetoelectric cancellation;
  • the lengths of the transmitting coil and the receiving coil are uniform, and each is a quarter wavelength of the operating frequency, so that the coil can utilize its own spurs
  • the capacitor resonates near the operating frequency and is equivalent to series resonance; therefore, the coil system does not have to additionally load the resonant capacitor, reducing the size of its own resonant capacitor as much as possible, and increasing the mutual capacitance coefficient between the coils to achieve mutual inductance.
  • the system is of the same order of magnitude, so that the mutual capacitance coefficient and the mutual inductance cancel each other to form a magnetoelectric cancellation characteristic;
  • the width of the first annular metal piece, the second annular metal piece, the third annular metal piece, and the fourth annular metal piece are determined by the width of the extended transmission distance; the coupling capacitance between the transmitting coil and the receiving coil is mainly loaded.
  • the first annular metal piece and the third annular metal piece, and the capacitance between the second annular metal piece and the fourth annular metal piece are connected in series; in order to maximize the coupling capacitance between the coils to cancel the coupled inductor energy, the annular metal piece
  • the width is kept consistent, and by adjusting the width, the mutual capacitance coefficient between the coils can be adjusted, thereby directly adjusting the degree of cancellation of the magnetic coupling by the electrical coupling. Since the overall coupling is equal to the magnetic coupling minus the electrical coupling, the overall coupling coefficient is finally obtained. Expanding the variable distance range as the distance changes smoothly;
  • the loaded first annular metal piece, the second annular metal piece and the transmitting coil are fitted to each other, and the third annular metal piece, the fourth annular metal piece and the receiving coil are fitted to each other, and the original coil is not greatly increased.
  • Volume; the two ends of the opening of the transmitting coil are respectively loaded with a first annular metal piece and a second annular metal piece, and the two annular metal pieces are all in the same plane as the last one of the coils, respectively being a semicircular ring of 180 degrees, and the inner diameter is slightly larger than the coil, so as not to The contact coil is prevailing, and the inner diameter is outwardly expanded to form a ring-shaped metal piece having a certain width; the first annular metal piece and the second annular metal piece are spaced apart from each other by a distance, and are not connected end to end; thus, the loading mode does not increase the thickness of the transmitting coil.
  • the inner diameter is slightly larger than the coil, and the coil is not in contact with the coil, and the inner diameter is outwardly expanded to form a ring-shaped metal piece of a certain width; the fourth annular metal piece of the fourth annular metal piece is spaced apart from each other, and the end is not Connected;
  • this loading method does not increase the thickness of the receiving coil, but only increases the width of the metal sheet in the radial direction of the receiving coil, but in fact the width is small compared to the coil radius; therefore, loading the metal sheet The way itself does not greatly increase the coil volume.
  • the present invention has the following advantages:
  • the wireless power transmission coil system of the present invention can adaptively adjust the coupling degree between the coils according to the transmission distance to maintain high efficiency without adding an additional control circuit, thereby not increasing the system cost, and at the same time, the system is simpler and easier to debug and application.
  • the invention only loads a small annular metal piece around the coil, which maintains high efficiency in distance variation and ensures that the volume does not increase greatly, making the coil easier to embed with the actual system.
  • Figure 1 is a block diagram of a wireless energy transfer coil system for suppressing frequency splitting using magnetoelectric coupling cancellation.
  • Figure 2 is a dimensional diagram of a wireless energy transfer coil system that uses magnetoelectric coupling to cancel frequency split suppression.
  • Figure 3 is a simulation result of the transmission efficiency of the coil system as a function of distance.
  • a wireless energy transmission coil system for suppressing frequency splitting by magnetoelectric coupling comprising two receiving and transmitting coils and a loading annular metal piece; the two coils are symmetrically opposite to each other, between the coils The distance is the transmission distance of the wireless transmission; the two ends of the opening of the transmitting coil 3 are respectively loaded with the first annular metal piece 1 and the second annular metal piece 2, and the two annular metal pieces are all in the same plane as the last one of the coils, and are respectively semicircular rings of 180 degrees.
  • the inner diameter is slightly larger than the coil, which is not in contact with the coil, and the inner diameter is outwardly expanded to form a ring-shaped metal piece of a certain width; the first annular metal piece 1 and the second annular metal piece 2 are spaced apart from each other, and are not connected end to end; In a way, the thickness of the transmitting coil is not increased, but the width of the metal piece is only increased in the radial direction of the transmitting coil, and in fact the width is small compared with the radius of the coil; therefore, the manner of loading the metal piece itself is not
  • the coil volume will be greatly increased; the first annular metal piece 6 and the second annular metal piece 7 are respectively loaded on the two ends of the receiving coil 10, and the two annular metal pieces are respectively connected with the coil
  • the last one is the same plane, which is a semicircular ring of 180 degrees, the inner diameter is slightly larger than the coil, which is not in contact with the coil, and the inner diameter is outwardly expanded to form a ring-shaped metal piece of
  • the coupling coefficient can be kept constant within a certain distance, maintaining high efficiency power transmission; at the long distance, mainly the inductance between the coils Coupling, weak coupling, no frequency splitting, and still maintain high efficiency transmission; therefore, the coil system can achieve high efficiency energy transmission within a certain distance.
  • FIG. 1 A structure of a wireless energy transmission coil system using magnetoelectric coupling to cancel frequency splitting is shown in Fig. 1.
  • the size is as shown in Fig. 2.
  • the thickness of the selected metal piece is 2 mm, and the distance between the coils is dis.
  • Figure 3 is a simulation result of the transmission efficiency of the coil system as a function of distance. It can be seen that the original coil has an efficiency of more than 80% from 8 to 14 cm, and the variable distance range is only 6 cm, and the efficiency drops sharply when approaching.
  • the improved coil has a transmission efficiency of more than 80% over a distance of 0 to 10 cm, and the variable distance range is 10 cm.
  • the present invention provides a transmission and reception coil design for a wireless energy transmission system that is variable in short-range or medium-distance distances, while maintaining high efficiency while also increasing transmission distance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本发明公开了一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统,包括一个能量发射线圈,一个能量接收线圈以及四个加载环形金属片;发射线圈和接收线圈之间通过分别加载第一环形金属片和第二环形金属片以及第三环形金属片和第四环形金属片来拓展功率传输的可变距离范围。本发明设计的接收和发射线圈系统,使线圈工作于磁耦合-电耦合状态;从远距离向近距离的移动过程中,线圈间耦合系数变化平缓,仍然能保持一个较低的耦合度从而不产生频率分裂现象,系统间均能保持高效率能量传输。本发明在传统无线能量传输线圈系统的磁耦合工作模式基础上引入电耦合,使得传统的对距离敏感的能量传输系统变为距离可变的高效率能量传输系统。

Description

一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统
技术领域
本发明涉及涉及距离可变的高效率无线输电系统技术领域,具体涉及用磁电耦合抵消抑制频率分裂的无线输能线圈系统。
背景技术
传统的电能传输方式主要是通过导线连接的形式进行传输,但是导线会占用大量的空间资源,消耗大批金属资源,同时易产生接触电火花,给生存和生活带来很大的安全隐患;除此以外,在某些运用场合,无法运用导线输电,而电池的使用又很大程度限制了器件使用期限。在这些背景之下,人们开始尝试一种新的电能传输技术—无线输电技术。
2007 年,麻省理工大学的科研人员首次利用磁谐振耦合原理,在距离为 2 m 的情况下完全点亮了 60 W 的灯泡。该技术被命名为WiTricity技术,并为中程距离无线电能传输技术的发展开辟了一个崭新的方向。但是,该系统的缺点是需要固定距离,当距离改变时,系统效率会大幅度下降。后续的很多研究都基于此进行了改善。2008 年 8 月,Intel 西雅图实验室的 Joshua R. Smith课题组,利用磁谐振耦合无线能量传输技术设计出可为小型电子设备充电的平面型无线电能传能装置,展示的系统实现了6 0c m的距离上点亮了40 W的灯泡,并在2011年Industrial Electronics Society杂志上发表了一篇高水平的SCI论文。该系统是基于频率跟踪的距离可变系统,可以实现在70cm距离内实现75%以上的高效率传输。但是该系统需要在原有的WiTricity系统上加入了频率测量电路,锁相环电路和电压采样控制电路等电路,增加了系统的复杂度,给实现调试和应用带来了一定的困难。2014年,在文献《Lee W, Oh K, Yu J,“Distance-Insensitive Wireless Power Transfer and Near-Field Communication Using a Current-Controlled Loop With a Loaded Capacitance,” IEEE Transactions on Antennas & Propagation, 2014, 62(2):936 - 940.》中,提出一种采用正反向绕制的线圈,在0到7cm的距离内实现60%以上的效率传输,这类线圈系统的反向线圈限制了系统的传输距离。
发明内容
本发明的目的在于克服现有技术存在的上述不足,提出了一种应用于近距离或中距离无线能量传输的线圈系统。本发明中,线圈间距离由远及近过程中,环形金属片之间分别存在电容耦合,线圈之间存在电感耦合,由于磁电耦合的抵消,抑制了总体耦合系数变大的趋势,从而抑制了频率分裂现象的产生,并在一定距离内耦合系数基本不变,保持高效率功率传输;由近到远距离的过程中,环形金属片的电容耦合急剧下降,线圈间的耦合主要是电感耦合,耦合较弱,不会出现频率分裂现象,仍然保持高效率传输;本线圈系统可以实现一定距离的高效率能量传输,依靠的是线圈间的磁电耦合自适应调整,和同类设计相比,不会增加原有电路系统的复杂度,系统更为简单和易调试,同时电容耦合的距离比较近,同样不会影响远距离的能量传输,具有更远的可变距离范围。
为实现本发明目的,本发明采用的技术方案如下。
一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统,包括一个能量发射线圈,一个能量接收线圈以及四个加载环形金属片;发射线圈和接收线圈之间通过分别加载第一环形金属片和第二环形金属片以及第三环形金属片和第四环形金属片来拓展功率传输的可变距离范围;由于磁耦合与电耦合极性相反可以抵消,总的耦合强度等于磁耦合强度减去电耦合强度,当两个线圈之间靠近间距变小时,发射线圈和接收线圈之间的电感耦合增大,第一环形金属片和第三环形金属片,第二环形金属片和第四环形金属片之间的电容耦合也增大,由于磁-电耦合的反相抵消作用可以使总的耦合系数在一定距离内保持基本不变,从而防止耦合系数过大产生频率分裂现象保持高效率功率传输;当发射线圈和接收线圈距离较远时,电容耦合下降较快变得很小,总耦合强度主要取决于螺旋管间的电感耦合,也会随着距离的增大而逐步减小,不会出现频率分裂现象;因此本线圈系统可以实现一定距离内的高效率能量传输;
进一步地,第一环形金属片,第二环形金属片,第三环形金属片和第四环形金属片的加载方式以及发射线圈的馈电方式和接收线圈的馈电方式共同构成了磁电抵消的充分条件;发射线圈顺时针绕向,接收线圈逆时针绕向,两线圈绕向相反,加载在发射线圈的第一环形金属片和发射线圈绕向相反,其末端通过导线与发射线圈末端相连,加载在发射线圈的第二环形金属片的绕向和发射线圈相反,其末端通过导线和发射线圈相连;加载在接收线圈的第三环形金属片和接收线圈绕向相反,其末端通过导线和接收线圈相连,加载在接收线圈的第四环形金属片的绕向和接收线圈相反,其末端通过导线和接收线圈相连,这共同使得发射线圈和接收线圈相互之间的电场矢量和磁场矢量相反,构成了磁电抵消的必要条件;并且,发射线圈的匝数为奇数,从上往下分别为为第一匝和最后一匝,顺时针绕向,两端开路,中间的一圈从中间断开作为高频率功率源的馈电口,发射线圈的匝数为奇数,从上往下分别为为第一匝和最后一匝,逆时针绕向,两端开路,中间的一圈从中间断开作为接收能量的馈电口,这种方式让线圈的末端开放,使得末端电场效应加强;
进一步地,发射线圈和接收线圈的谐振方式构成了磁电抵消的基本条件;发射线圈和接收线圈的长度是一致的,均为工作频率的四分之一波长,这样使线圈能够利用自身杂散电容谐振于工作频率附近,并且等效于串联谐振;因此,线圈系统不必额外加载谐振电容,尽可能地降低了自身谐振电容的大小,而提高了线圈间的互容系数,使其达到与互感系统相同数量级,从而使互容系数与互感系数相互抵消,形成磁电抵消特性;
进一步地,加载的第一环形金属片,第二环形金属片,第三环形金属片,第四环形金属片的宽度决定了拓展的传输距离范围;发射线圈和接收线圈间的耦合电容主要由加载的第一环形金属片和第三环形金属片,以及第二环形金属片和第四环形金属片之间的电容串联构成;为了使线圈间的耦合电容最大化足以抵消耦合电感能量,环形金属片宽度保持一致,并且通过调整该宽度,可以调整线圈间互容系数的大小,进而直接调整电耦合对磁耦合的抵消的程度,由于总体耦合等于磁耦合减去电耦合,最终得以使总体耦合系数随距离变化平缓而拓展了可变距离范围;
进一步地,加载的第一环形金属片,第二环形金属片和发射线圈相互嵌合以及第三环形金属片,第四环形金属片和接收线圈相互嵌合,不会大幅度增加原有线圈的体积;发射线圈开口两端分别加载第一环形金属片和第二环形金属片,两环形金属片均与线圈最后一匝同一平面,分别为180度的半圆环形,内径比线圈略大,以不接触线圈为准,而内径向外拓展形成一定宽度的环形金属片;第一环形金属片和第二环形金属片相互间隔一段距离,首尾不相连;如此加载方式,不会增加发射线圈的厚度,而在发射线圈的径向方向上也只是增加了金属片的宽度,而实际上该宽度和线圈半径相比很小;故,加载金属片的方式本身不会很大幅度增大线圈体积;接收线圈开口两端分别加载第一环形金属片和第二环形金属片,两环形金属片均与线圈最后一匝同一平面,分别为180度的半圆环形,内径比线圈略大,以不接触线圈为准,而内径向外拓展形成一定宽度的环形金属片;第三环形金属片第四环形金属片相互间隔一段距离,首尾不相连;如此加载方式,不会增加接收线圈的厚度,而在接收线圈的径向方向上也只是增加了金属片的宽度,而实际上该宽度和线圈半径相比很小;故,加载金属片的方式本身不会很大幅度增大线圈体积。
与现有技术相比,本发明具有如下优点:
(1) 本发明的无线输电线圈系统可以根据传输距离自适应调整线圈间的耦合度来保持高效率,不需要增加额外的控制电路,因此也不会增加系统成本,同时,系统也更为简单便于调试与应用。
(2) 本发明仅仅在线圈周围加载了一段宽度较小的环形金属片,在距离变化保持高效率的同时也保证了体积不会大幅度增加,使线圈更易于与实际系统互相嵌入。
附图说明
图1是本发明一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统结构图。
图2 是一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统的尺寸标注图。
图3是线圈系统传输效率随距离变化的仿真结果。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
如图1所示,一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统,包括两个接收和发射线圈和加载环形金属片;两个线圈是绕向相反相互对称的,线圈间的距离为无线输电传输距离;发射线圈3开口两端分别加载第一环形金属片1和第二环形金属片2,两环形金属片均与线圈最后一匝同一平面,分别为180度的半圆环形,内径比线圈略大,以不接触线圈为准,而内径向外拓展形成一定宽度的环形金属片;第一环形金属片1和第二环形金属片2相互间隔一段距离,首尾不相连;如此加载方式,不会增加发射线圈的厚度,而在发射线圈的径向方向上也只是增加了金属片的宽度,而实际上该宽度和线圈半径相比很小;故,加载金属片的方式本身不会很大幅度增大线圈体积;接收线圈10开口两端分别加载第一环形金属片6和第二环形金属片7,两环形金属片均与线圈最后一匝同一平面,分别为180度的半圆环形,内径比线圈略大,以不接触线圈为准,而内径向外拓展形成一定宽度的环形金属片;第三环形金属片6和第四环形金属片7相互间隔一段距离,首尾不相连;由远及近过程中,第一环形金属片1和第三环形金属片3,第二环形金属片2和第四环形金属片4之间分别存在电容耦合,发射线圈3和接收线圈10之间存在电感耦合,由于磁电耦合的抵消,可以在一定距离内保持耦合系数基本不变,保持高效率功率传输;在远距离主要是线圈间的电感耦合,耦合较弱,不会出现频率分裂,仍然保持高效率传输;因此本线圈系统可以实现一定距离内的高效率能量传输。
实施例
一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统的结构如图1所示,有关尺寸如图2所示,所选用的金属片的厚度为2mm,线圈间距离为dis,具体电路尺寸选择如下:线圈直径d=185mm,金属片宽度a=25mm,线圈厚度c=30mm,线圈铜线直径r=2mm,整体尺寸为235 mm
Figure f0b4
235 mm。
图3是线圈系统传输效率随距离变化的仿真结果,可以看出原来的线圈只有从8到14cm内有80%以上的效率,可变距离范围只有6cm,靠近时效率急剧下降。而改进后的线圈在0到10cm距离内均有高于80%的传输效率,可变距离范围有10cm。本发明提供了一种应用在近距离或者中距离距离可变的无线能量传输系统发射和接收线圈设计,在保持高效率的同时,也增加了传输距离。
以上所描述的实施例是本发明中的一个教好的实施例,并不用以限制本发明。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动的前提下,基于本发明所做的任何修改,等同替换,改进所获得的其他实施例,都属于本发明实施例的保护范围。

Claims (5)

  1. 一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统,包括一个能量发射线圈,一个能量接收线圈以及四个加载环形金属片;其特征在于:发射线圈(3)和接收线圈(10)之间通过分别加载第一环形金属片(1)和第二环形金属片(2)以及第三环形金属片(6)和第四环形金属片(7)来拓展功率传输的可变距离范围;由于磁耦合与电耦合极性相反可以抵消,总的耦合强度等于磁耦合强度减去电耦合强度,当两个线圈之间靠近间距变小时,发射线圈(3)和接收线圈(10)之间的电感耦合增大,第一环形金属片(1)和第三环形金属片(6),第二环形金属片(2)和第四环形金属片(7)之间的电容耦合也增大,从而防止耦合系数过大产生频率分裂现象保持高效率功率传输;当发射线圈(3)和接收线圈(10)距离较远时,电容耦合下降较快变得很小,总耦合强度主要取决于螺旋管间的电感耦合,也会随着距离的增大而逐步减小,不会出现频率分裂现象。
  2. 根据权利要求1所述的一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统,其特征在于:发射线圈(3)和接收线圈(10)的绕法,第一环形金属片(1),第二环形金属片(2),第三环形金属片(6)和第四环形金属片(7)的加载方式以及发射线圈(3)的馈电方式(I/P)和接收线圈(10)的馈电方式(O/P)共同构成了磁电抵消的充分条件;发射线圈(3)顺时针绕向,接收线圈(10)逆时针绕向,两线圈绕向相反,加载在发射线圈(3)的第一环形金属片(1)和发射线圈(3)绕向相反,其末端通过导线(5)与发射线圈末端相连,加载在发射线圈(3)的第二环形金属片(2)的绕向和发射线圈(3)相反,其末端通过导线(4)和发射线圈(3)相连;加载在接收线圈(10)的第三环形金属片(6)和接收线圈(10)绕向相反,其末端通过导线(9)和接收线圈(10)相连,加载在接收线圈(10)的第四环形金属片(7)的绕向和接收线圈(10)相反,其末端通过导线(8)和接收线圈(10)相连,这共同使得发射线圈(3)和接收线圈(10)相互之间的电场矢量和磁场矢量相反,构成了磁电抵消的必要条件;并且,发射线圈(3)的匝数为奇数,从上往下分别为为第一匝和最后一匝,顺时针绕向,两端开路,中间的一圈从中间断开作为高频率功率源的馈电口(I/P),发射线圈(10)的匝数为奇数,从上往下分别为为第一匝和最后一匝,逆时针绕向,两端开路,中间的一圈从中间断开作为接收能量的馈电口(O/P)。
  3. 根据权利要求1所述的一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统,其特征在于:发射线圈(3)和接收线圈(10)的谐振方式构成了磁电抵消的基本条件;发射线圈(3)和接收线圈(10)的长度是一致的,均为工作频率的四分之一波长。
  4. 根据权利要求1所述的一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统,其特征在于:加载的第一环形金属片(1),第二环形金属片(2),第三环形金属片(6),第四环形金属片(7)的宽度决定了拓展的传输距离范围;发射线圈(3)和接收线圈(10)间的耦合电容主要由加载的第一环形金属片(1)和第三环形金属片(6),以及第二环形金属片(2)和第四环形金属片(7)之间的电容串联构成;各环形金属片宽度保持一致,并且通过调整该宽度,调整线圈间互容系数的大小,进而直接调整电耦合对磁耦合的抵消的程度,由于总体耦合等于磁耦合减去电耦合,最终得以使总体耦合系数随距离变化平缓而拓展了可变距离范围。
  5. 根据权利要求1所述的一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统,其特征在于:加载的第一环形金属片(1),第二环形金属片(2)和发射线圈(3)相互嵌合以及第三环形金属片(6),第四环形金属片(7)和接收线圈(10)相互嵌合,不会大幅度增加原有线圈的体积;发射线圈(3)开口两端分别加载第一环形金属片(1)和第二环形金属片(2),两环形金属片均与线圈最后一匝同一平面,分别为180度的半圆环形,内径比线圈大,使环形金属片不接触线圈;第一环形金属片(1)和第二环形金属片(2)相互间隔开,首尾不相连;接收线圈(10)开口两端分别加载第一环形金属片(6)和第二环形金属片(7),两环形金属片均与线圈最后一匝同一平面,分别为180度的半圆环形,内径比线圈大,两环形金属片不接触线圈;第三环形金属片(6)第四环形金属片(7)相互间隔开,首尾不相连。
PCT/CN2015/097979 2015-11-16 2015-12-19 一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统 WO2017084142A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/529,517 US10217561B2 (en) 2015-11-16 2015-12-19 Wireless power transfer coil system using offset of electric and magnetic coupling for frequency splitting suppression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510786922 2015-11-16
CN201510786922.4 2015-11-16

Publications (1)

Publication Number Publication Date
WO2017084142A1 true WO2017084142A1 (zh) 2017-05-26

Family

ID=58717285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097979 WO2017084142A1 (zh) 2015-11-16 2015-12-19 一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统

Country Status (2)

Country Link
US (1) US10217561B2 (zh)
WO (1) WO2017084142A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107689692A (zh) * 2017-09-27 2018-02-13 华南理工大学 利用分数阶电感参与调谐的电场耦合式无线电能传输系统
CN114094715A (zh) * 2021-11-30 2022-02-25 杭州电子科技大学温州研究院有限公司 一种混合电磁耦合无线电能传输优化设计方法
CN118337018A (zh) * 2024-06-14 2024-07-12 中国人民解放军海军工程大学 适用于电励磁电机的电场耦合式无线励磁系统及耦合器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228204B2 (en) * 2016-03-23 2022-01-18 San Diego State University Research Foundation Wireless capacitive power transfer designs and systems
MX2019013036A (es) * 2018-02-28 2020-02-05 Massachusetts Inst Technology Transformador de energia sin nucleo.
US11831177B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmitter with internal repeater and enhanced uniformity
US11848566B2 (en) 2021-11-03 2023-12-19 Nucurrent, Inc. Dual communications demodulation of a wireless power transmission system having an internal repeater
US11862991B2 (en) 2021-11-03 2024-01-02 Nucurrent, Inc. Wireless power transmission antenna with internal repeater and in-coil tuning
US12027880B2 (en) 2021-11-03 2024-07-02 Nucurrent, Inc. Wireless power transfer from mouse pad to mouse
US11862984B2 (en) 2021-11-03 2024-01-02 Nucurrent, Inc. Wireless power receiver with repeater for enhanced power harvesting
US11831175B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmission antenna with antenna molecules
US11962337B2 (en) 2021-11-03 2024-04-16 Nucurrent, Inc. Communications demodulation in wireless power transmission system having an internal repeater
US11831176B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transfer systems with substantial uniformity over a large area
US11824372B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with puzzled antenna molecules
US11824371B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with internal repeater and repeater filter
US11824373B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with parallel coil molecule configuration
US20230145030A1 (en) * 2021-11-03 2023-05-11 Nucurrent, Inc. Wireless Power Transmitter with Metal Mesh for Resiliency
US11831173B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmission antenna with series coil molecule configuration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414855A (zh) * 2007-10-15 2009-04-22 索尼株式会社 高频电场耦合器、通信系统和通信装置
CN103414261A (zh) * 2013-09-06 2013-11-27 中国矿业大学(北京) 变耦合系数磁共振无线电能传输系统及方法
CN103986245A (zh) * 2014-06-04 2014-08-13 中国矿业大学(北京) 基于双层双向螺旋线圈的无线电能传输系统及方法
CN104135088A (zh) * 2014-08-08 2014-11-05 哈尔滨工业大学 应用于无线电能传输的可抑制频率分裂的非相同收发线圈对及其制造方法
CN204290505U (zh) * 2014-12-03 2015-04-22 华南理工大学 一种四线圈电磁谐振式的无线能量传输结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9473209B2 (en) * 2008-08-20 2016-10-18 Intel Corporation Wireless power transfer apparatus and method thereof
CN104011814B (zh) * 2011-12-21 2017-08-15 阿莫先恩电子电器有限公司 磁场屏蔽片及其制造方法和无线充电器用接收装置
US10502797B2 (en) * 2012-07-19 2019-12-10 Colorado Seminary, Which Owns And Operates The University Of Denver Crossed-loop resonators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414855A (zh) * 2007-10-15 2009-04-22 索尼株式会社 高频电场耦合器、通信系统和通信装置
CN103414261A (zh) * 2013-09-06 2013-11-27 中国矿业大学(北京) 变耦合系数磁共振无线电能传输系统及方法
CN103986245A (zh) * 2014-06-04 2014-08-13 中国矿业大学(北京) 基于双层双向螺旋线圈的无线电能传输系统及方法
CN104135088A (zh) * 2014-08-08 2014-11-05 哈尔滨工业大学 应用于无线电能传输的可抑制频率分裂的非相同收发线圈对及其制造方法
CN204290505U (zh) * 2014-12-03 2015-04-22 华南理工大学 一种四线圈电磁谐振式的无线能量传输结构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107689692A (zh) * 2017-09-27 2018-02-13 华南理工大学 利用分数阶电感参与调谐的电场耦合式无线电能传输系统
CN114094715A (zh) * 2021-11-30 2022-02-25 杭州电子科技大学温州研究院有限公司 一种混合电磁耦合无线电能传输优化设计方法
CN114094715B (zh) * 2021-11-30 2023-05-02 杭州电子科技大学温州研究院有限公司 一种混合电磁耦合无线电能传输优化设计方法
CN118337018A (zh) * 2024-06-14 2024-07-12 中国人民解放军海军工程大学 适用于电励磁电机的电场耦合式无线励磁系统及耦合器

Also Published As

Publication number Publication date
US10217561B2 (en) 2019-02-26
US20170358392A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
WO2017084142A1 (zh) 一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统
US8598744B2 (en) Apparatus for transmitting and receiving wireless energy using meta-material structures having negative refractive index
CN105871074B (zh) 一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统
US10432028B2 (en) Wireless power transmission system and wireless power relay apparatus
US8779629B2 (en) Apparatus for transmitting and receiving wireless energy using meta-material structures having zero refractive index
US9418785B2 (en) Wireless power transmission system with enhanced magnetic field strength
US20130113298A1 (en) Wireless power transmission system and method based on impedance matching condition
JP3203151U (ja) フレキシブルで格納可能な無線充電デバイス
US20130147427A1 (en) Wireless electric field power transmission system and method
KR20130099576A (ko) 무선 전력 전송 장치
KR20100055069A (ko) 높은 큐의 영차 근접 자기장 공진기를 이용한 무선 전력 전송 장치
JP2011142748A (ja) ワイヤレス給電システム
TWI555294B (zh) A wireless power supply system and a wireless power supply method
JP2011205757A (ja) 電磁界共鳴電力伝送装置
CN108766744B (zh) 一种基于磁谐振耦合无线电能传输系统的收发线圈结构
JP2014160702A (ja) 電磁誘導コイル
Cai et al. A strong misalignmentt tolerance magnetic coupler for autonomous underwater vehicle wireless power transfer system
Wang et al. Development of a novel spindle‐shaped coil‐based wireless power transfer system for frequency splitting elimination
CN107508388B (zh) 磁耦合共振高效电能传输线圈设计方法
CN205622331U (zh) 一种用磁电耦合抵消抑制频率分裂的无线输能线圈系统
CN107565708B (zh) 磁耦合输电系统并联线圈最优切换设计方法
Daerhan et al. Novel highly-efficient and misalignment insensitive wireless power transfer systems utilizing strongly coupled magnetic resonance principles
Baba et al. Efficiency improvement of SIMO WPT using capacity control in addition to load control
CN105958666B (zh) 一种具有多负载隔离特性的可拓展无线充电垫
CN109741920B (zh) 一种双交叉线圈阵列式磁谐振耦合无线电能传输线圈结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15529517

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15908638

Country of ref document: EP

Kind code of ref document: A1