WO2017080119A1 - 一种光温敏核不育水稻的创制方法 - Google Patents

一种光温敏核不育水稻的创制方法 Download PDF

Info

Publication number
WO2017080119A1
WO2017080119A1 PCT/CN2016/073037 CN2016073037W WO2017080119A1 WO 2017080119 A1 WO2017080119 A1 WO 2017080119A1 CN 2016073037 W CN2016073037 W CN 2016073037W WO 2017080119 A1 WO2017080119 A1 WO 2017080119A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
photo
temperature
sensitive
creating
Prior art date
Application number
PCT/CN2016/073037
Other languages
English (en)
French (fr)
Inventor
杨仲南
朱骏
李月灵
韩煜
余庆波
张丞
Original Assignee
上海师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海师范大学 filed Critical 上海师范大学
Publication of WO2017080119A1 publication Critical patent/WO2017080119A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/46Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
    • A01H6/4636Oryza sp. [rice]

Definitions

  • the invention belongs to the field of agriculture and biotechnology, and relates to a method for creating light temperature sensitive nuclear sterile rice.
  • Male sterile lines occupy a huge advantage in hybrid seed production and agricultural yield improvement. Controlling male reproductive development of crops is essential for crop breeding and agricultural production.
  • Male sterility is generally classified into two types: cytoplasmic male sterility (CMS) and nuclear male sterility (GMS).
  • CMS cytoplasmic male sterility
  • GMS nuclear male sterility
  • the three-line hybrid system relies on CMS. In 1973, China achieved the first three hybrid rice hybrids. At present, it has obtained hundreds of three-line hybrid rice combinations with an annual planting area of over 15 million hectares.
  • the defects of the three-line hybrid itself limit its widespread use in practice. First, only about 5% of rice varieties have restorer genes that can be used in cross-breeding trials, and this heterosis is severely limited. Second, due to the cytoplasmic male sterility cytoplasmic cytoplasm, once cytoplasmic infertility is lost or some devastating pests and diseases occur, it will cause huge losses.
  • the photothermophilic male sterile line has both the sterile line and the maintainer line.
  • the two-line method is not limited by the recovery relationship, that is, the nuclear sterility can be crossed with a large number of conventional varieties, the group is free, and it is easier to obtain the hybrid advantage with excellent traits, and fundamentally solve the male traits in the three lines.
  • the problem of cytoplasmic simplification In recent years, the application of two-line hybrid rice in agricultural production in China has become more and more extensive.
  • the rice photoperiod-sensitive male sterile line is controlled by a single gene recessive locus; studies have shown that the infertility traits of Nongken 58S and Pei'ai 64S are controlled by the same genetic locus, a mutant small RNA (small RNA) osa-smR5864m , which leads to the sterility phenotype of pms2 and p/tms2-1 (Nongken 58S and Pei'ai 64S) mutants (Ding Kehua et al, Proc Natl Acad Sci USA, 2012, 109: 2654–2659; Zhou Hai et al. Cell research, 2012, 22: 649–660).
  • small RNA small RNA
  • Nong S-1 Rice temperature-sensitive genic male sterile line
  • An Nong S-1 is the first sputum-type thermo-sensitive sterile line discovered and cultivated by Deng Huafeng in japonica rice in 1987. It has been used in production to cultivate a group of excellent hybrid combinations (Jia Jianhang) Et al., Acta Botanica, 2003, 45, 614–620). The study found that the infertility trait of Annong S-1 was controlled by another site, tms5, which caused a loss of function of a RNase Z family protein. At different temperatures, the protein affects the intracellular ubiquitin balance by regulating the accumulation of UbL40 mRNA, and controls rice temperature-sensitive male sterility (Zhou Hai et al, Nature Communications, 2014, 5: 4884).
  • photo-thermophilic male sterile line means that male sterility or fertile traits are controlled by ambient temperature photoperiod conditions, that is, male sterile lines exhibit male sterility under high temperature or long-day conditions, and can be used for hybridization. Seed production; and fertility under low temperature or short daylight conditions, can be used for self-propagation, thus eliminating the maintenance system, which can be consistent with the environmental conditions in agricultural production.
  • the two-line method is not restricted by the restoration relationship, that is, the nuclear infertility can be crossed with various conventional varieties, and the group is free to overcome the defects of the restriction gene in the restored line in the three-line breeding. Therefore, it is easier to obtain the hybridization advantage with excellent traits, and fundamentally solve the problem of single male sterility in the three-line method.
  • the statistics of the promotion of major crop varieties in the Ministry of Agriculture from 1993 to 2009, a total of 121 two-line combination annual promotion area reached or exceeded 6,700 hectares, and the cumulative promotion area reached 20.974 million hectares.
  • the present invention provides a method for creating a photothermophilic nuclear sterile rice.
  • the invention provides a method for creating light temperature-sensitive nuclear sterile rice, and the creation method comprises the following steps Step:
  • Step 1 Mutagenesis of M 1 generation rice seeds
  • Step 2 Long day sunshine, high temperature conditions, planting M 1 generation rice seeds, and growing M 1 generation plants; harvesting, obtaining M 2 generation rice seeds;
  • Step 3 Planting M 2 generation rice seeds under long-day sunshine and high temperature conditions, and growing M 2 generation plants; screening sterile phenotype plants to obtain photo-temperature-sensitive genic male sterile rice plants.
  • the long sunshine is more than 12 h/day;
  • the high temperature condition is that the average temperature is higher than or equal to 26 ° C, such as 28, 30 ° C, preferably The average temperature is between 26-28 °C.
  • the method further includes:
  • Step 4 cutting off the main ear of the sterile plant obtained in step 3, under the condition of short daylight and low temperature, re-growing and heading, and timely promoting the cockroach, obtaining the photo-temperature-sensitive genic male sterile rice plant;
  • the short daylight is a sunshine time shorter than 12 h/day;
  • the low temperature is an average temperature lower than 25 ° C, preferably the average temperature is lower than 23 ° C, and more preferably the average temperature is lower than 21 ° C.
  • the mutagenesis in the step 1 may be any one or a combination of physical mutagen mutagenesis and chemical mutagen mutagenesis.
  • the physical mutagen may be any one or more of ultraviolet rays, X-rays, ⁇ -rays, fast neutrons, lasers, microwaves, and ion beams, and is preferably X.
  • the physical mutagen may be any one or more of ultraviolet rays, X-rays, ⁇ -rays, fast neutrons, lasers, microwaves, and ion beams, and is preferably X.
  • the chemical mutagen may be an alkylating agent, a natural base analog, lithium chloride, a nitroso compound, an azide, a base analog, an antibiotic, a hydroxylamine, and a hydrazine.
  • Any one or several combinations of pyridine and the like are preferably any one or a combination of an alkylating agent, lithium chloride, and a base analog, and more preferably an alkylating agent.
  • the alkylating agent is any one of ethyl methanesulfonate (EMS), dibromomannitol, Chlormethine Hydrochloride, Cyclophosphamide, and the like.
  • EMS ethyl methanesulfonate
  • dibromomannitol Chlormethine Hydrochloride
  • Cyclophosphamide Cyclophosphamide
  • One or more combined mutagenizing liquids preferably one or a combination of any one or two of ethyl methanesulfonate (EMS) and dibromomannitol, more preferably a Ethyl sulfonate (EMS) mutagen.
  • the concentration of ethyl methanesulfonate in the chemical mutagen is 0.1-5%, such as 0.2%, 3%, etc., preferably 0.5-1.8%, such as 0.6%, 0.7. %, etc. It is preferably 0.8 - 1.2%, such as 1.0%, 1.2%, and the like.
  • the rice seed is treated with the methyl methanesulfonate mutagen for 1-48h, preferably for 6-36h, such as 10h, 32h, more preferably 8-12h. , such as 12h.
  • the growth described in steps 2 and 3 is carried out in a natural environment.
  • the rice plant grows under cold irrigation and/or short day conditions.
  • the photothermophilic genic male sterile plants obtained by the method provided by the present invention can be used for rice two-line breeding.
  • the invention has the advantages that the large-scale photo-temperature-sensitive male sterile rice plant can be rapidly obtained by the creation method of the invention, which is used for cross-breeding and expands the genetic background of the photo-temperature-sensitive male sterile line.
  • the method can also be used to create a gene bank and develop a new type of second-line hybrid rice, which has important application value in agricultural production.
  • FIG. 1 is a flow chart of a method for creating a photothermophilic nuclear sterile rice provided by the present invention
  • Figure 3 shows the fertility restoration of sterile plants under low temperature conditions.
  • the experimental group and the control group were selected, and Zhonghua 11 rice was used as the experimental group, and wild type rice was used as the control group to investigate the effect of external force mutagenesis on rice seed fertility.
  • test group
  • M 1 generation rice seeds were immersed in clear water for 4h, then rice seeds were treated with 1.0% EMS for 12h. After the treatment, M 1 generation rice seeds were separated from EMS mutagen. and treated with a solution of EMS M 1 generation of rice seed added 1M NaOH and 20w / v% Na 2 S 2 O 3, to terminate the mutagenesis reaction. Immediately after the reaction, the rice seeds were washed with water for more than 20 times, then soaked for 48 hours at room temperature, and threshed and germinated in a 30 ° C incubator. The seeds were germinated and then transferred to the Daejeon plate for cultivation. Three weeks later, the live seedlings were transplanted into the field environment for cultivation. Under high temperature conditions in summer, the nursery matured, tillered, headed and flowered, and grouted. In mid-September, 6000 strains of M 2 seeds were harvested.
  • control rice seeds were placed in clear water, soaked for 48 hours at room temperature, and threshed and germinated in a 30 °C incubator. The seeds were germinated and transferred to the Daejeon plate for cultivation. Three weeks later, the live seedlings were transplanted into the field environment for cultivation. Under high temperature conditions in summer, the nursery matured, tillered, headed flowering, and grouted. In mid-September, the seedlings of the control group were harvested and fertile.
  • the results are shown in Fig. 2.
  • the photothermophilic sterile strains 1-5 of the experimental group were completely free of pollen, or only green abortive pollen, that is, five rice mutants showed male sterility phenotype;
  • a total of 536 male sterile plants were obtained in the experimental group, accounting for about 9% of the M 2 generation plants; the male sterile plants were not obtained in the control group.
  • the mature panicles of the obtained male sterile plants are removed and transplanted into the planned field to continue their growth, and fertilization is promoted in a timely manner.
  • Short-day sunshine in autumn can promote rice flowering and male sterility.
  • the strain entered the booting stage at the end of October. During this period, the lower average temperature (17-20 °C) and the shorter sunshine length in the autumn natural environment were used. After the heading, the pollen was observed with the Alexander dyeing solution, and the seed setting rate was counted. Next, the results are shown in Figure 3.
  • the ears extracted from the five sterile plants can restore fertility.
  • the fertility of the 536 sterile individual plants can be known. Among them, 72 strains are restored to fertility, accounting for the sterile plants. 13.4% or so, 30 of which have a seed setting rate higher than 50% Strain.
  • the high temperature sterility of the photothermophilic sterile plants provided by the present invention was examined by the following two methods:
  • test is carried out under conditions of a day and night temperature of 28-35 ° C;
  • the low temperature fertility of the photothermophilic sterile plants provided by the present invention by the following two methods:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本申请提供一种光温敏核不育水稻的选育方法,包括诱变水稻种子,在长日照、高温条件下种植M1代、M2代,筛选不育表型植株。所获得的光温敏不育系可用于水稻两系法育种。

Description

一种光温敏核不育水稻的创制方法 技术领域
本发明属于农业和生物技术领域,涉及一种光温敏核不育水稻的创制方法。
背景技术
雄性不育系在杂交制种、提高农业产量中占据巨大优势,控制作物的雄性生殖发育对作物育种和农业生产至关重要。一般将雄性不育分为细胞质雄性不育(CMS)和细胞核雄性不育(GMS)两种。三系杂交体系即依赖于CMS。我国在1973年首次实现杂交水稻三系配套,目前共获得上百个三系杂交水稻组合,常年种植面积1,500多万公顷。然而,三系杂交自身的缺陷限制了其在实践中的广泛应用。首先,只有约5%的水稻品种具有恢复基因,可用于杂交育种试验,此杂种优势受到严重限制。其次,由于细胞质雄性不育细胞质单一,一旦细胞质不育丧失或某种毁灭性病虫害发生,会造成巨大损失。
随着细胞核雄性不育中光温敏条件性雄性不育的发现,两系法杂交水稻应运而生。相对于三系杂交法,光温敏不育系兼有不育系和保持系两种状态。与三系法相比,两系法不受恢保关系的限制,即细胞核不育可以与大量常规品种杂交,配组自由,更容易获得性状优良的杂交优势,从根本上解决三系中雄性不育细胞质单一化的问题。近年来,两系杂交水稻在中国农业生产中的应用越来越广泛。
早在1973年石明松在中国湖北从晚粳品种(Oryza sativa ssp.Japonica)农垦58中选育出光敏感不育系。随后,以农垦58S(NK58S)为父本,与籼稻杂交获得的培矮64S(PA64S)也在两系杂交中得到广泛应用(杨仕华等,杂交水稻,2009,24:5-9),只是培矮64S的育性对温度更加敏感(罗孝和等,杂交水稻,1992,7:27–29)。水稻光温敏不育系受单基因隐性位点控制;研究表明,农垦58S与培矮64S的不育性状均受同一个遗传位点控制,一个突变的小RNA(small RNA)osa-smR5864m,即可导致pms2以及p/tms2-1(农垦58S和培矮64S)突变体的不育表型(丁寄花等,Proc Natl Acad Sci USA,2012,109:2654–2659;周海等,Cell research,2012,22:649–660)。 水稻温敏核不育系安农S-1是1987年由邓华风在籼稻中发现并育成的第一个籼型温敏不育系,生产上已经用它培育了一批优良的杂交组合(贾建航等,植物学报,2003,45,614–620)。研究发现安农S-1的不育性状由另一个位点tms5控制,该位点的突变导致一个RNase Z家族蛋白的功能缺失。在不同温度下,该蛋白通过对UbL40mRNA积累程度的调控,影响细胞内泛素平衡,控制水稻温敏雄性不育(周海等,Nature Communications,2014,5:4884)。
在农业生产上,光温敏不育系是指其雄性不育或可育的性状受控于外界温度光周期条件,即不育系在高温或者长日照条件下表现雄性不育,可用于杂交制种;而在低温或者短日照条件下表现可育,可用于自身繁殖,因而免去了保持系,这样可以与农业生产上的环境条件保持一致。
与三系法相比,两系法具有不受恢保关系的限制,即核不育可以与各种常规品种杂交,配组自由,克服了三系育种中受恢复系中恢复基因的限制的缺陷,因而更容易获得性状优良的杂交优势,也从根本上解决了三系法中雄性不育细胞质单一的问题。据农业部全国农作物主要品种推广情况的统计资料,1993年到2009年共有121个两系组合年推广面积达到或者超过6700公顷,累计推广面积达到2097.4万公顷。
虽然发现的光温敏不育系中,通过省级和国家级审定的两系杂交水稻的组合已有200多种,但是大部分光温敏不育系均由农垦58s、安农S-1等少数几个光温敏品种转育而来,即控制核不育的遗传位点较为单一。因此,目前生产上主推的光温敏不育系组合的遗传背景较窄,有待进一步加强新资源的开发。
由于全球气候变化异常,近年来盛夏的低温潮对两系制种的安全性造成了很大的威胁。如2009年7月江淮地区的持续低温使两系水稻的制种纯度大幅下降,直接影响了农民和制种单位的经济效益。因此,生产上急需起点温度更低的光温敏品种。
发明内容
为了解决目前存在的上述问题,本发明提供了一种光温敏核不育水稻的创制方法。
本发明提供的一种光温敏核不育水稻的创制方法,所述创制方法包括如下步 骤:
步骤1、诱变M1代水稻种子;
步骤2、长日照、高温条件下,种植M1代水稻种子,并生长得到M1代植株;收种,获得M2代水稻种子;
步骤3、长日照、高温条件下,种植M2代水稻种子,并生长得到M2代植株;筛选不育表型植株,获得光温敏核不育水稻植株。
作为本发明的一个优选实施例,步骤2、步骤3中所述长日照为日照时间多于12h/天;所述高温条件为平均温度高于或等于26℃,如28、30℃,优选为平均温度在26-28℃之间。
作为本发明的一个优选实施例,还包括:
步骤4、剪去步骤3中获得的不育植株的主穗,在短日照、低温条件下,使其重新生长抽穗,并适时促蘖,获得光温敏核不育水稻植株;
其中所述短日照为日照时间短于12h/天;所述低温为平均温度低于25℃,优选为平均温度低于23℃,更优选为平均温度低于21℃。
作为本发明的一个优选实施例,步骤1中所述诱变可以为物理诱变剂诱变、化学诱变剂诱变中的任意一种或几种组合。
作为本发明的一个优选实施例,所述物理诱变剂可以为紫外线、X-射线、γ-射线、快中子、激光、微波以及离子束等中的任意一种或几种,优选为X-射线、γ-射线、激光中的一种或几种组合。
作为本发明的一个优选实施例,所述化学诱变剂可以为烷化剂、天然碱基类似物、氯化锂、亚硝基化合物、叠氮化物、碱基类似物、抗生素、羟胺和吖啶等中的任意一种或几种组合,优选为烷化剂、氯化锂、碱基类似物中的任意一种或几种组合,更优选为烷化剂。
作为本发明的一个优选实施例,所述烷化剂为甲基磺酸乙酯(EMS)、二溴甘露醇(Dibromomannitol)、盐酸氮芥(ChlormethineHydrochloride)、环磷酰胺(Cyclophosphamide)等中的任意一种或几种组合成的诱变液,优选为甲基磺酸乙酯(EMS)、二溴甘露醇(Dibromomannitol)中的任意一种或两种组合成的诱变液,更优选为甲基磺酸乙酯(EMS)诱变液。
作为本发明的一个优选实施例,所述化学诱变剂中甲基磺酸乙酯的浓度为0.1-5%,如0.2%、3%等,优选为0.5–1.8%,如0.6%、0.7%等,更 优选为0.8–1.2%,如1.0%、1.2%等。
作为本发明的一个优选实施例,步骤1中,采用所述甲基磺酸乙酯诱变液处理水稻种子1-48h,优选为处理6-36h,如10h、32h,更优选为8–12h,如12h。
作为本发明的一个优选实施例,步骤2、步骤3中所述生长均在自然环境下进行。
作为本发明的一个优选实施例,步骤4中剪去主穗后,水稻植株在冷灌和/或短日照条件下生长发育。
作为本发明的一个优选实施例,采用本发明提供的方法获得的光温敏核不育植株可用于水稻两系法育种。
本发明的有益之处在于:采用本发明所述创制方法可以快速获得大量光温敏不育系水稻植株,用于杂交育种,扩大了光温敏不育系的遗传背景。此外,该方法还可以用于创制基因库、开发新型二系杂交水稻,在农业生产上具有十分重要的应用价值。
附图说明
图1为本发明提供的光温敏核不育水稻创制方法流程图;
图2为EMS诱变获得的光温敏核不育植株;
图3为低温条件下不育植株的育性恢复。
具体实施方式
选取实验组和对照组,以中花11号水稻作为实验组,以野生型水稻作为对照组,考察外力诱变对水稻种子育性的影响。
诱变水稻种子
实验组:
5月中旬将2kg实验组M1代水稻种子放入清水中浸泡4h,然后用体积浓度为1.0%的EMS处理水稻种子12h,处理结束后,将M1代水稻种子与EMS诱变液分离,并向经EMS溶液处理过的M1代水稻种子中加入1M的NaOH和20w/v%Na2S2O3,以终止诱变反应。反应结束后,立即用清水冲洗水稻种子20次以上, 随后室温下浸种48h,并于30℃培养箱中破胸催芽,种子发芽后移到大田秧板中培养。三周后,将活苗插秧入大田环境中进行培养。在夏季高温条件下,苗秧成熟、分蘖、抽穗开花、灌浆,9月中旬分株收获6000株M2代种子。
对照组:
5月中旬将1kg对照组水稻种子放入清水中,室温下浸种48h,并于30℃培养箱中破胸催芽,种子发芽后移到大田秧板中培养。三周后,将活苗插秧入大田环境中进行培养。在夏季高温条件下,苗秧成熟、分蘖、抽穗开花、灌浆,9月中旬分株收获对照组结实可育的种子。
筛选雄性不育植株
在5月下旬浸泡M2代水稻种子48h,待种子长芽后将其直接抛秧在大田中。在夏季高温条件下,苗秧成熟、分蘖、抽穗开花。在水稻孕穗后,取出部分小穗,于解剖镜下取出花药,用亚历山大染色液浸染2h后,在明场显微镜下观察不同组小穗的花粉量。并在8月底M2代植株灌浆后,观察筛选不能结穗的水稻植株,并统计不育株系的结实率。
结果如图2所示,实验组的光温敏不育株1-5完全没有花粉,或者仅有绿色的败育花粉,即5个水稻突变体皆表现为雄性不育表型;而对照组的花粉发育正常,即对照组表现为可育表型。
实验组共获得雄性不育株共536株,占M2代单株的9%左右;对照组未获得雄性不育植株。
获得光温敏雄性不育植株
在同一世代中,将获得的雄性不育株的成熟穗割蔸去除,统一移栽入规划好的大田中继续让其生长,适时施肥促蘖,秋季的短日照可以促进水稻开花,雄性不育株在10月底进入孕穗期。在此期间,利用秋季自然环境下较低的平均气温(17-20℃)以及较短的日照长度,抽穗后用亚历山大染液进行浸染观察花粉,统计结实率,将其后续成功灌浆的种子收下,结果如图3所示,5个不育植株抽出的穗子皆能够恢复育性,统计获得的536个不育单株的育性可知,其中共有72株恢复育性,占不育植株的13.4%左右,其中结实率高于50%的有30个单 株。
不育植株的育性
采用以下两种方法考察本发明提供的光温敏不育植株的高温不育性:
1)在利用自然光的玻璃温室中,日夜温度为28-35℃的条件下进行试验;
2)在自然条件下,5月下旬种植水稻,7月底至8月初孕穗,9月初观察育性表型。
采用以下两种方法本发明提供的光温敏不育植株的低温可育性:
1)在玻璃温室中培养水稻至孕穗期前,4月下旬(平均温度23.5℃)移至自然条件下;
2)利用秋季自然条件筛选,7月底至8月初萌发这些株系,9月下旬进入孕穗期。
经过上述实验,在72个株系中共获得13个高温完全不育、低温恢复50%以上育性的植株。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (10)

  1. 一种光温敏核不育水稻的创制方法,其特征在于,所述创制方法包括如下步骤:
    步骤1、诱变M1代水稻种子;
    步骤2、长日照、高温条件下,种植M1代水稻种子,并生长得到M1代植株;收种,获得M2代水稻种子;
    步骤3、长日照、高温条件下,种植M2代水稻种子,并生长得到M2代植株;筛选不育表型植株,获得光温敏核不育水稻植株。
  2. 根据权利要求1所述的光温敏核不育水稻的创制方法,其特征在于,还包括:步骤4、剪去步骤3中获得的不育植株的主穗,在短日照、低温条件下,使其重新生长抽穗,并适时促蘖,获得光温敏核不育水稻植株;
    其中,所述短日照为日照时间短于12h/天,所述低温为平均温度低于25℃。
  3. 根据权利要求1所述的光温敏核不育水稻的创制方法,其特征在于,步骤2、步骤3中所述长日照为日照时间长于12h/天,所述高温条件为平均温度高于26℃。
  4. 根据权利要求1所述的光温敏核不育水稻的创制方法,其特征在于,步骤1中所述诱变为物理诱变剂诱变和/或化学诱变剂诱变。
  5. 根据权利要求4所述的光温敏核不育水稻的创制方法,其特征在于,所述物理诱变剂为紫外线、X-射线、γ-射线、快中子、激光、微波、离子束等的任意一种或几种组合。
  6. 根据权利要求4所述的光温敏核不育水稻的创制方法,其特征在于,所述化学诱变剂为烷化剂、天然碱基类似物、氯化锂、亚硝基化合物、叠氮化物、碱基类似物、抗生素、羟胺和吖啶等中的任意一种或几种组合成的诱变液。
  7. 根据权利要求6所述的光温敏核不育水稻的创制方法,其特征在于,所述烷化剂为甲基磺酸乙酯、二溴甘露醇、盐酸氮芥、环磷酰胺等中的任意一种或几种组合成的诱变液。
  8. 根据权利要求7所述的光温敏核不育水稻的创制方法,其特征在于,所述诱变液中甲基磺酸乙酯的浓度为0.1–5%。
  9. 根据权利要求7所述的光温敏核不育水稻的创制方法,其特征在于,步骤1中,采用所述诱变液处理水稻种子1-48h。
  10. 一种根据权利要求1所述方法获得的光温敏核不育水稻植株在水稻两系法育种中的用途。
PCT/CN2016/073037 2015-11-13 2016-02-01 一种光温敏核不育水稻的创制方法 WO2017080119A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510782583.2A CN105340731A (zh) 2015-11-13 2015-11-13 一种光温敏核不育水稻的创制方法
CN201510782583.2 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017080119A1 true WO2017080119A1 (zh) 2017-05-18

Family

ID=55317021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073037 WO2017080119A1 (zh) 2015-11-13 2016-02-01 一种光温敏核不育水稻的创制方法

Country Status (2)

Country Link
CN (2) CN107047293A (zh)
WO (1) WO2017080119A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111602592B (zh) * 2020-05-25 2021-11-16 湖南师范大学 一种耐高低温的不育临界温度高的水稻低温敏核不育系的选育方法和应用
CN112501178B (zh) * 2020-10-16 2022-10-14 上海师范大学 一种水稻温敏不育突变体tms18及其应用
CN114480419B (zh) * 2022-01-24 2023-06-09 上海师范大学 一种植物温敏不育突变体tms15及其应用
CN114731945A (zh) * 2022-04-07 2022-07-12 四川农业大学 三系杂交稻不育系育性改良方法及三系杂交稻不育系

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243769A (zh) * 2007-02-14 2008-08-20 甘肃省农业科学院 一种利用亚麻雄性不育杂交亚麻的培育方法
CN101904297A (zh) * 2010-07-27 2010-12-08 上海交通大学 基于水稻的osms4突变体的制种、繁种及两系杂交育种方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100510077C (zh) * 2006-11-03 2009-07-08 上海师范大学 一种水稻高效表达启动子及其应用
CN102657075A (zh) * 2012-05-12 2012-09-12 福建农林大学 一种复合诱变法选育水稻两系光身不育系的方法
CN104894144B (zh) * 2015-07-06 2016-06-29 海南波莲水稻基因科技有限公司 一种水稻cyp704b2基因突变体及其分子鉴定方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243769A (zh) * 2007-02-14 2008-08-20 甘肃省农业科学院 一种利用亚麻雄性不育杂交亚麻的培育方法
CN101904297A (zh) * 2010-07-27 2010-12-08 上海交通大学 基于水稻的osms4突变体的制种、繁种及两系杂交育种方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, YUNFENG: "Progress Research of PTGMS Lines in Rice", JOURNAL OF YICHUN COLLEGE, vol. 32, no. 8, 31 August 2010 (2010-08-31), pages 90 *
CHENG, SHIHUA ET AL.: "Foreign Research progress of Photo-Thermo-Sensitive Genic Male Sterile Line Rice", SEED WORLD, 31 December 1993 (1993-12-31), pages 35 *

Also Published As

Publication number Publication date
CN105340731A (zh) 2016-02-24
CN107047293A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
US11246275B2 (en) Method for breeding small-grain sterile rice line and simple method for producing hybrid rice seed
Wang et al. High temperature sensitivity of kernel formation in different short periods around silking in maize
WO2017080119A1 (zh) 一种光温敏核不育水稻的创制方法
CN104737898B (zh) 一种水稻长粒粳型亲籼两系不育系种质的快速创制方法
Vasil et al. Regeneration of tobacco and petunia plants from protoplasts an culture of corn protoplasts
Abdollahi et al. Induction and development of anther-derived gametic embryos in cucumber (Cucumis sativus L.) by optimizing the macronutrient and agar concentrations in culture medium
Sauton Effect of season and genotype on gynogenetic haploid production in muskemlon, Cucumis melo L.
Berenschot et al. Mutagenesis in Petunia x hybrida Vilm. and isolation of a novel morphological mutant
Ochatt et al. Developing biotechnology tools for ‘beautiful’vavilovia (Vavilovia formosa), a legume crop wild relative with taxonomic and agronomic potential
CN109456979B (zh) 利用SlPIF3基因创建可调控的番茄核雄性不育系及其创建方法及应用
CN116491415B (zh) 优化温度提高cenh3介导的母本单倍体诱导效率的方法
Fuzinato et al. Evaluation of microsporogenesis in an interspecific Brachiaria hybrid (Poaceae) collected in distinct years.
Umbeck et al. Substitution of cotton cytoplasms from wild diploid species for cotton germplasm improvement 1
Kolesnikova et al. Haploid biotechnology as a tool for creating a selection material for sugar beets
Kumar Male sterility in vegetables
EA004253B1 (ru) Способ получения апомиктичных растений (варианты)
CN102911939A (zh) 影响水稻株高、种子大小及抗性的小分子RNA Osa-miR1848及其靶基因
CN112586338A (zh) 一种早花时粳稻不育系的选育方法
De Guzman et al. Genetics and breeding system for cytoplasmic and genetic male sterility in rice
Peng et al. Development of a microspore culture method to produce haploid and doubled-haploid asparagus (Asparagus officinalis L.) plants
CN114686476B (zh) 一种植物花药早期特异表达的启动子及其应用
WO2020213727A1 (ja) 低温生長性が改良された細胞質雄性不稔Lactuca属植物
CN113249295B (zh) 一种测定拟南芥离体花粉萌发率的方法
CN102172221A (zh) 利用小孢子培养选育油菜三隐性核不育临保系的方法
Galmarini et al. Bettina Linke, Maria Soledad Alessandro

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863309

Country of ref document: EP

Kind code of ref document: A1