WO2017080078A1 - 量子点彩膜基板的制备方法及量子点彩膜基板 - Google Patents

量子点彩膜基板的制备方法及量子点彩膜基板 Download PDF

Info

Publication number
WO2017080078A1
WO2017080078A1 PCT/CN2015/099263 CN2015099263W WO2017080078A1 WO 2017080078 A1 WO2017080078 A1 WO 2017080078A1 CN 2015099263 W CN2015099263 W CN 2015099263W WO 2017080078 A1 WO2017080078 A1 WO 2017080078A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
layer
pixel region
sub
color
Prior art date
Application number
PCT/CN2015/099263
Other languages
English (en)
French (fr)
Inventor
李冬泽
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/914,650 priority Critical patent/US9817264B2/en
Publication of WO2017080078A1 publication Critical patent/WO2017080078A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0063Optical properties, e.g. absorption, reflection or birefringence
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0155Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133519Overcoatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/04Materials and properties dye
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/58Multi-wavelength, e.g. operation of the device at a plurality of wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for preparing a quantum dot color film substrate and a quantum dot color film substrate.
  • quantum dots After the semiconductor material gradually decreases from the bulk phase to a certain critical dimension (1-20 nm), the volatility of the carrier becomes significant, the motion will be limited, resulting in an increase in kinetic energy, and the corresponding electron structure from the bulk phase.
  • the level structure becomes a discontinuity of quasi-splitting, a phenomenon known as the quantum size effect.
  • the more common semiconductor nanoparticles, quantum dots are mainly II-VI, II-V and IV-VI quantum dots. These kinds of quantum dots all obey the quantum size effect, and their properties change regularly with size, such as absorption and emission wavelengths vary with size. Therefore, semiconductor quantum dots have important applications in the fields of illumination, displays, lasers, and bioluminescent labels.
  • quantum dot materials has the advantages of concentrated luminescence spectrum, high color purity, and easy adjustment of the luminescent color by the size, structure or composition of the quantum dot material, which can be effectively applied to display devices to effectively increase the color gamut of the display device and Color reproduction capability, currently available in the field of quantum dot TV is the best embodiment of the material used in the display field.
  • the existing technology mainly focuses on mixing quantum dots of R (red) G (green) B (blue) in an engineering plastic film or glass tube to form a quantum dot film (QD film) or quantum dot.
  • QD film quantum dot film
  • the QD tube places the structure between the backlight and the display system, and is excited by a conventional white backlight to achieve a rich color gamut.
  • the above technology is relatively mature at present, but there are still some problems to be solved to some extent. For example, whether it is a QD film structure or a QD tube structure, the demand for the quantum dot material is relatively large, and the white light backlight is used to excite the mixture. Quantum dots also cause a decrease in light utilization.
  • the object of the present invention is to provide a method for preparing a quantum dot color film substrate, which uses a photoresist layer as a shielding layer to selectively quench the quantum dot layer by using a quenching agent, thereby simplifying the fabrication of the quantum dot color film substrate. Process, reduce production costs.
  • Another object of the present invention is to provide a quantum dot color film substrate, which can meet the requirements of a display device for a high color gamut, has a simple preparation process and low cost.
  • the present invention first provides a method for preparing a quantum dot color film substrate, comprising the following steps:
  • Step 1 Providing a substrate, where the substrate includes a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region;
  • Step 2 forming a patterned red color resist layer, a patterned green color resist layer, and a patterned organic corresponding to the red sub-pixel region, the green sub-pixel region, and the blue sub-pixel region on the substrate a transparent photoresist layer; a color filter layer comprising a red color resist layer, a green color resist layer, and an organic transparent photoresist layer; and a color resist layer formed on the color filter layer;
  • Step 3 coating a quantum dot solution on the color resistive protective layer, wherein the quantum dot solution is obtained by dissolving a red quantum dot material having oil solubility after treatment and a green quantum dot material in a solvent; The solvent in the quantum dot solution is volatilized; the process of coating the quantum dot solution and heating to volatilize the solvent in the quantum dot solution is repeated to obtain a quantum dot layer having a uniform film thickness;
  • Step 4 coating an organic transparent photoresist material on the quantum dot layer, patterning the organic transparent photoresist material by a yellow light process, and removing the blue transparent layer on the organic transparent photoresist material a portion on the pixel region to obtain a photoresist layer;
  • Step 5 using the photoresist layer as a shielding layer, and performing selective quantum dot quenching on the quantum dot layer by using a quencher capable of quenching quantum dot fluorescence, wherein the quantum dot layer is located in the red a portion of the sub-pixel region and the green sub-pixel region is covered by the photoresist layer to be protected, and the quantum dot material therein is not quenched, and a first quantum dot layer of the quantum dot layer is obtained, the quantum dot A portion of the layer on the blue sub-pixel region is not covered by the photoresist layer, and the quantum dot material therein is quenched by the quencher fluorescence to obtain a second quantum dot of the quantum dot layer.
  • Floor
  • Step 6 Apply a curing adhesive on the photoresist layer and the quantum dot layer, and the cured adhesive forms a protective layer together with the photoresist layer after being thermally cured.
  • the solvent in the quantum dot solution is petroleum ether, dichloromethane, or ethyl acetate.
  • the quantum dot material in the quantum dot solution is one or more of a group II-VI quantum dot material and a group III-V quantum dot material.
  • the quantum dot material in the quantum dot glue is one or more of ZnCdSe 2 , CdSe, CdTe, InP, InAs.
  • the formed quantum dot layer has a thickness of 0.5 to 5 ⁇ m.
  • the quenching agent is an organic reagent having electron-withdrawing ability.
  • the quencher is a non-polar solution of 12-alkylthiol, 14-alkylthiol, or pyridine; the quencher is present in a concentration of 0.2 to 4 mol/L.
  • the present invention also provides a quantum dot color film substrate, comprising: a substrate, a color filter layer on the substrate, a color resist layer on the color filter layer, and a color resist layer on the color resist layer a quantum dot layer, and a protective layer on the quantum dot layer;
  • the substrate includes a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region; the color filter layer includes the red sub-pixel region, the green sub-pixel region, and the blue sub-pixel region respectively.
  • the quantum dot layer includes a first quantum dot layer on the red sub-pixel region and the green sub-pixel region, and a second quantum dot layer on the blue sub-pixel region; the quantum dot layer is included
  • the quantum dot solution of the red quantum dot material and the green quantum dot material is obtained by volatilization of the solvent;
  • the red quantum dot material and the green quantum dot material in the first quantum dot layer respectively emit red light and green light under blue light excitation; and the quantum dot material in the second quantum dot layer is quenched by quencher fluorescence a quantum dot material, wherein the quantum dot material in the second quantum dot layer does not emit light under illumination;
  • the quantum dot color film substrate is used in a display device whose backlight is blue light.
  • the display device is a liquid crystal display device, an organic electroluminescence display device, or a quantum dot electroluminescence display device.
  • the quantum dot layer has a thickness of 0.5 to 5 ⁇ m.
  • the invention also provides a preparation method of a quantum dot color film substrate, comprising the following steps:
  • Step 1 Providing a substrate, where the substrate includes a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region;
  • Step 2 forming a patterned red color resist layer, a patterned green color resist layer, and a patterned organic corresponding to the red sub-pixel region, the green sub-pixel region, and the blue sub-pixel region on the substrate a transparent photoresist layer; a color filter layer comprising a red color resist layer, a green color resist layer, and an organic transparent photoresist layer; and a color resist layer formed on the color filter layer;
  • Step 3 coating a quantum dot solution on the color resistive protective layer, wherein the quantum dot solution is obtained by dissolving a red quantum dot material having oil solubility after treatment and a green quantum dot material in a solvent; The solvent in the quantum dot solution is volatilized; the process of coating the quantum dot solution and heating to volatilize the solvent in the quantum dot solution is repeated to obtain a quantum dot layer having a uniform film thickness;
  • Step 4 coating an organic transparent photoresist material on the quantum dot layer, patterning the organic transparent photoresist material by a yellow light process, and removing the organic transparent photoresist material in the blue sub-pixel region The upper part, the photoresist layer is obtained;
  • Step 5 using the photoresist layer as a shielding layer, using a quencher pair capable of quenching quantum dot fluorescence
  • the quantum dot layer performs selective quantum dot quenching, wherein a portion of the quantum dot layer located on the red sub-pixel region and the green sub-pixel region is covered by the photoresist layer and protected
  • the quantum dot material is not quenched, and a first quantum dot layer of the quantum dot layer is obtained, and a portion of the quantum dot layer located on the blue sub-pixel region is not covered by the photoresist layer, and the inside thereof is
  • the quantum dot material is quenched by the quencher fluorescence to obtain a second quantum dot layer of the quantum dot layer;
  • Step 6 Applying a curing adhesive on the photoresist layer and the quantum dot layer, and the cured adhesive is thermally cured to form a protective layer together with the photoresist layer;
  • the solvent in the quantum dot solution is petroleum ether, dichloromethane, or ethyl acetate;
  • the quantum dot material in the quantum dot solution is one or more of a II-VI quantum dot material and a III-V quantum dot material;
  • the formed quantum dot layer has a thickness of 0.5-5 ⁇ m
  • the quenching agent is an organic reagent having electron-withdrawing ability.
  • the present invention provides a method for preparing a quantum dot color film substrate and a quantum dot color film substrate.
  • the quenching agent is used to selectively quench the quantum dot layer by using the patterned photoresist layer as a shielding layer to obtain a selectively quenched quantum dot layer, which simplifies the quantum dot.
  • the manufacturing process of the color film substrate reduces the production cost; the quantum dot color film substrate of the invention does not contain the blue quantum dot material, and the blue backlight is used together with the organic transparent photoresist layer to improve the light utilization efficiency.
  • the material cost is reduced, and the quantum dot is a selective quenching quantum dot layer, and the portion of the quantum dot layer on the organic transparent color resist layer is a part of the quencher which is quenched by fluorescence quenching.
  • the light does not emit light, so that the quantum dot material is used to improve the color gamut and the brightness, and the phenomenon that the color is impure due to the light mixing at the blue sub-pixel is avoided, and the preparation method is simple.
  • FIG. 1 is a schematic flow chart of a method for preparing a quantum dot color film substrate of the present invention
  • FIG. 2 is a schematic view showing a step 3 of a method for preparing a quantum dot color film substrate of the present invention
  • step 4 is a schematic view showing an organic photoresist material coated on a quantum dot layer in step 4 of the method for preparing a quantum dot color film substrate of the present invention
  • step 4 is a schematic view showing exposure of an organic photoresist material in step 4 of the method for preparing a quantum dot color film substrate of the present invention
  • FIG. 5 is a schematic view showing the formation of a photoresist layer in the step 4 of the method for preparing a quantum dot color film substrate of the present invention
  • FIG. 6 is a schematic view showing the step 5 of the method for preparing a quantum dot color film substrate of the present invention.
  • FIG. 7 is a schematic view showing the step 6 of the method for preparing a quantum dot color film substrate of the present invention and a schematic cross-sectional structure of the quantum dot color filter substrate of the present invention.
  • the present invention first provides a method for preparing a quantum dot color film substrate, comprising the following steps:
  • Step 1 providing a substrate 10, the substrate 10 includes a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region;
  • Step 2 forming a patterned red color resist layer 21, a patterned green color resist layer 22, and a pattern on the substrate 10 corresponding to the red sub-pixel region, the green sub-pixel region, and the blue sub-pixel region, respectively.
  • a transparent organic photoresist layer 23 a color filter layer 20 including a red color resist layer 21, a green color resist layer 22, and an organic transparent photoresist layer 23; a color layer formed on the color filter layer 20 Resistive protective layer 20';
  • Step 3 as shown in FIG. 2, coating a color quantum dot solution on the color resistive protective layer 20', wherein the quantum dot solution is a red-soluble quantum dot material and a green quantum dot material dispersed after being treated.
  • the quantum dot solution is a red-soluble quantum dot material and a green quantum dot material dispersed after being treated.
  • the low boiling point solvent in the quantum dot solution is petroleum ether, dichloromethane, or ethyl acetate;
  • the quantum dot material in the quantum dot solution is one or more of a II-VI quantum dot material and a III-V quantum dot material; preferably, the quantum dot material in the quantum dot glue It is one or more of ZnCdSe 2 , CdSe, CdTe, InP, InAs.
  • the formed quantum dot layer 30 has a thickness of 0.5-5 ⁇ m.
  • Step 4 as shown in FIG. 3-5, a layer of organic transparent photoresist material 50' is coated on the quantum dot layer 30, and the yellow light process such as exposure, development, baking, etc. is patterned by ultraviolet light to form the organic layer.
  • a transparent photoresist material 50' remove the portion of the layer of organic transparent photoresist material 50' located on the blue sub-pixel region, to obtain a photoresist layer 50;
  • Step 5 the photoresist layer 50 is used as a shielding layer, and the quenching quantum can be used.
  • a quenching quencher performs selective quantum dot quenching on the quantum dot layer 30, wherein a portion of the quantum dot layer 30 on the red sub-pixel region and the green sub-pixel region is blocked by the photoresist
  • the layer 50 is covered and protected, and the quantum dot material therein is not quenched, and the first quantum dot layer 31 of the quantum dot layer 30 is obtained, and the quantum dot layer 30 is located on the blue sub-pixel region.
  • Part of the quantum dot material is not covered by the photoresist layer 50, the quantum dot material is quenched by the quencher fluorescence, to obtain the second quantum dot layer 32 of the quantum dot layer 30;
  • the quencher is an organic reagent having strong electron-withdrawing ability; preferably, the quencher is a non-polar solution of 12-alkylthiol, 14-alkylthiol, or pyridine; The concentration of the quencher is 0.2 to 4 mol/L.
  • the red quantum dot material in the first quantum dot layer 31 emits a wavelength under the excitation of the blue backlight when the backlight is illuminated.
  • the red light in the range of 630-690 nm
  • the green quantum dot material in the first quantum dot layer 31 emits green light having a wavelength range of 500-560 nm under the excitation of the blue backlight
  • the second quantum dot layer 32 The quantum dot material is a fluorescence quenching quantum dot material, and therefore does not emit light when illuminated by the backlight; then the red and green light emitted by the second quantum dot layer 32 and the blue backlight of the unexcited quantum dot are mixed to form white light.
  • the mixed light is filtered by the red color resist layer 21 and the green color resist layer 22 to respectively display red and green, and the blue backlight directly passes through the second quantum dot layer 32 and the organic transparent photoresist layer 23 to be blue.
  • the color display is realized, and the display color gamut index is effectively improved, the phenomenon that the blue sub-pixel is not colored due to the mixed light is avoided, and the quantum dot layer 30 does not contain the blue quantum dot material, and Blu-ray backlighting and organic Out with the use of a photoresist layer, in a case where the light utilization efficiency is improved while reducing the material cost.
  • Step 6 in order to planarize the surface and further protect the quantum dot layer 30 , a curing glue is directly coated on the photoresist layer 50 and the quantum dot layer 30 , and the curing is performed. After the glue is thermally cured, the protective layer 40 is formed together with the photoresist layer 50.
  • the mechanism of selective quenching of the present invention is that, due to the size characteristics of the quantum dot material itself, the smaller the size, the larger the specific surface area, the larger the proportion of surface atoms to the total atomic weight, and the surface atoms generally have higher activity.
  • the relative instability of performance is the surface effect of quantum dots. According to this characteristic, the change of surface properties has great influence on the material properties of quantum dot materials. The most important one is the influence of optical properties.
  • Different types of surface ligands The effects of quantum dots are also different. For example, fatty amines and fatty acids in long alkyl chains can effectively passivate surface electron traps on the surface of quantum dots. However, ligands such as pyridine or thiol have their own electronegativity.
  • the present invention utilizes this principle, supplemented by structure and work.
  • the unique design of the art selectively annihilates quantum dots in the quantum dot color film substrate structure.
  • the present invention further provides a quantum dot color film substrate, comprising: a substrate 10 , a color filter layer 20 on the substrate 10 , and a color resist layer on the color filter layer 20 . 20', a quantum dot layer 30 on the color resist layer 20', and a protective layer 40 on the quantum dot layer 30;
  • the substrate 10 includes a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region.
  • the color filter layer 20 includes the red sub-pixel region, the green sub-pixel region, and the blue sub-pixel region. a red color resist layer 21, a green color resist layer 22, and an organic transparent photoresist layer 23;
  • the quantum dot layer 30 includes a first quantum dot layer 31 on the red sub-pixel region and the green sub-pixel region, and a second quantum dot layer 32 on the blue sub-pixel region; the quantum dot The layer 30 is obtained by volatilizing a solution of a quantum dot solution containing a red quantum dot material and a green quantum dot material; the red quantum dot material and the green quantum dot material in the first quantum dot layer 31 respectively emit red light under blue light excitation. And the green light, the quantum dot material in the second quantum dot layer 32 is a quantum dot material quenched by a quencher fluorescent material, and the quantum dot material in the second quantum dot layer 32 does not emit light under illumination;
  • the quantum dot color film substrate is used in a display device whose backlight is blue light; specifically, the quantum dot color film substrate can be used for a liquid crystal display device (LCD) or an organic electroluminescence display device (Organic Light- Emitting Display, OLED), or other types of display devices such as Quantum Dot Light Emitting Display (QLED).
  • LCD liquid crystal display device
  • OLED organic electroluminescence display device
  • QLED Quantum Dot Light Emitting Display
  • the quantum dot layer 30 has a thickness of 0.5-5 ⁇ m; when the backlight is illuminated, the red quantum dot material in the first quantum dot layer 31 emits a wavelength range of 630- under the excitation of the blue backlight. 20,000 nm red light, the green quantum dot material in the first quantum dot layer 31 emits green light having a wavelength range of 500-560 nm under the excitation of the blue backlight, and the quantum dot material of the second quantum dot layer 32 a quantum dot material that is quenched by fluorescence, and therefore does not emit light when illuminated by a backlight; and the red dot emitted by the first quantum dot layer 31 when the quantum dot color filter substrate is used for display in a display device with a backlight of blue light
  • the light and the green light are mixed with the blue backlight of the unexcited quantum dots to form white light, and the mixed light is filtered by the red color resist layer 21 and the green color resist layer 22 to respectively display red and green, and the blue light back
  • the layer 32 and the organic transparent photoresist layer 23 are blue, thereby realizing color display, effectively improving the display color gamut index, and avoiding the phenomenon that the blue sub-pixels are mixed due to the occurrence of light mixing and the color is impure.
  • the combination of blue backlight and organic transparent photoresist layer reduces material cost while improving light utilization.
  • the quantum dot color film substrate further includes a black matrix 60 on the substrate 10.
  • the quantum dot material in the quantum dot layer 30 is one or more of a II-VI quantum dot material and a III-V quantum dot material; preferably, the quantum dot in the quantum dot glue
  • the material is one or more of ZnCdSe 2 , CdSe, CdTe, InP, InAs.
  • the quenching agent is used to selectively quench the quantum dot layer with the patterned photoresist layer as a shielding layer to obtain a selectively quenched quantum dot layer.
  • the invention simplifies the manufacturing process of the quantum dot color film substrate and reduces the production cost; the quantum dot color film substrate of the present invention, the quantum dot layer does not contain the blue quantum dot material, and the blue backlight and the organic transparent photoresist layer are used together.
  • the material cost is reduced while the light utilization rate is increased, and the quantum dot is a selectively quenched quantum dot layer, and the portion of the quantum dot layer on the organic transparent color resist layer is quenched by the quencher.
  • the part does not emit light under illumination, thereby improving the color gamut and brightness by using the quantum dot material, and avoiding the phenomenon that the color is impure due to the occurrence of light mixing at the blue sub-pixel, and the preparation method is simple.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)

Abstract

一种量子点彩膜基板的制备方法及量子点彩膜基板。量子点彩膜基板的制备方法,以图案化的光阻层(50)为遮蔽层采用猝灭剂对量子点层(30)进行选择性猝灭,得到选择性猝灭的量子点层(30),简化了量子点彩膜基板的制造工艺,降低了生产成本;量子点彩膜基板,量子点层(30)不包含蓝色量子点材料,将蓝光背光与有机透明光阻层(23)的搭配使用,在提高光利用率的情况下同时缩减了材料成本,且量子点为选择性猝灭的量子点层(30),量子点层(30)位于有机透明色阻层(23)上的部分为被猝灭剂荧光猝灭处理的部分,在光照下不发光,从而在利用量子点材料提高色域、亮度的同时,避免了蓝色子像素处因出现混光而色不纯的现象,且其制备方法简单。

Description

量子点彩膜基板的制备方法及量子点彩膜基板 技术领域
本发明涉及显示技术领域,尤其涉及一种量子点彩膜基板的制备方法及量子点彩膜基板。
背景技术
随着显示技术的不断发展,人们对显示装置的显示质量要求也越来越高。目前市面上的液晶电视能表现的色域在68%-72%NTSC(National Television Standards Committee)之间,因而不能提供高品质的色彩效果。为提高液晶电视的表现色域,高色域背光技术正成为行业内研究的重点。
半导体材料从体相逐渐减小至一定临界尺寸(1~20nm)后,其载流子的波动性变得显著,运动将受限,导致动能的增加,相应的电子结构从体相连续的能级结构变成准分裂的不连续,这一现象称作量子尺寸效应。比较常见的半导体纳米粒子即量子点主要有II-VI族、II-V族以及IV-VI族量子点。这些种类的量子点都十分遵守量子尺寸效应,其性质随尺寸呈现规律性变化,例如吸收及发射波长随尺寸变化而变化。因此,半导体量子点在照明、显示器、激光器以及生物荧光标记等领域都有着十分重要的应用。
利用量子点材料具有发光光谱集中,色纯度高、且发光颜色可通过量子点材料的尺寸、结构或成分进行简易调节的这些优点将其应用在显示装置中可有效地提升显示装置的色域及色彩还原能力,目前市售的量子点电视就是该材料应用于显示领域的最好体现。然而现有的技术主要集中于将发光波段在R(红)G(绿)B(蓝)的量子点混合封装于工程塑料薄膜或玻璃管中而制成量子点膜(QD film)或量子点管(QD tube),并将该结构置于背光与显示系统之间的位置,以传统白光背光激发,而达到丰富色域的目的。上述技术目前已较为成熟,但是在一定程度上还存在着问题有待完善,例如无论是QD film结构还是QD tube结构,对于量子点材料的用量需求都是比较大的,而且采用白光背光源激发混合量子点,也会造成光利用率的下降。
发明内容
本发明的目的在于提供一种量子点彩膜基板的制备方法,以光阻层为遮蔽层采用猝灭剂对量子点层进行选择性猝灭,简化量子点彩膜基板的制 造工艺,降低生产成本。
本发明的目的还在于提供一种量子点彩膜基板,能够满足显示装置对于高色域的需求,制备工艺简单,成本低。
为实现上述目的,本发明首先提供了一种量子点彩膜基板的制备方法,包括如下步骤:
步骤1、提供基板,所述基板包括红色子像素区域、绿色子像素区域、及蓝色子像素区域;
步骤2、在所述基板上分别对应所述红色子像素区域、绿色子像素区域、及蓝色子像素区域形成图形化的红色色阻层、图形化的绿色色阻层、及图形化的有机透明光阻层;得到包含红色色阻层、绿色色阻层、及有机透明光阻层的彩色滤光层;在所述彩色滤光层上形成一层色阻保护层;
步骤3、在所述色阻保护层上涂布一层量子点溶液,所述量子点溶液为经处理后具有油溶性的红色量子点材料及绿色量子点材料分散于溶剂中而得到;加热使量子点溶液内的溶剂挥发;多次重复进行涂布量子点溶液和加热使量子点溶液内的溶剂挥发的过程,得到均匀膜厚的量子点层;
步骤4、在所述量子点层上涂布一层有机透明光阻材料,通过黄光制程图形化该层有机透明光阻材料,去掉该层有机透明光阻材料上的位于所述蓝色子像素区域上的部分,得到光阻层;
步骤5、以所述光阻层为遮蔽层,采用能够猝灭量子点荧光的猝灭剂对所述量子点层进行选择性量子点猝灭,其中,所述量子点层的位于所述红色子像素区域和绿色子像素区域上的部分被所述光阻层覆盖而受到保护,其内的量子点材料不发生猝灭,得到所述量子点层的第一量子点层,所述量子点层的位于所述蓝色子像素区域上的部分没有被所述光阻层覆盖保护,其内的量子点材料被所述猝灭剂荧光猝灭,得到所述量子点层的第二量子点层;
步骤6、在所述光阻层及所述量子点层上涂布固化胶,所述固化胶经热固化后与所述光阻层共同形成保护层。
所述量子点溶液内的溶剂为石油醚、二氯甲烷、或乙酸乙酯。
所述量子点溶液内的量子点材料为Ⅱ-Ⅵ族量子点材料、Ⅲ-V族量子点材料中的一种或多种。
所述量子点胶内的量子点材料为ZnCdSe2,CdSe,CdTe,InP,InAs中的一种或多种。
所述步骤3中,形成的量子点层的厚度为0.5-5μm。
所述步骤5中,所述猝灭剂为具有吸电子能力的有机试剂。
所述猝灭剂为12-烷基硫醇、14-烷基硫醇、或吡啶的非极性溶液;所述猝灭剂的浓度为0.2~4mol/L。
本发明还提供一种量子点彩膜基板,包括,基板、位于所述基板上的彩色滤光层、位于所述彩色滤光层上的色阻保护层、位于所述色阻保护层上的量子点层、及位于所述量子点层上的保护层;
所述基板包括红色子像素区域、绿色子像素区域、及蓝色子像素区域;所述彩色滤光层包括分别位于所述红色子像素区域、绿色子像素区域、及蓝色子像素区域上的红色色阻层、绿色色阻层、及有机透明光阻层;
所述量子点层包括位于所述红色子像素区域和绿色子像素区域上的第一量子点层、及位于所述蓝色子像素区域上的第二量子点层;所述量子点层由包含红色量子点材料及绿色量子点材料的量子点溶液经溶剂挥发后得到;
所述第一量子点层内的红色量子点材料、绿色量子点材料在蓝光激发下分别发出红光与绿光;所述第二量子点层内量子点材料为被猝灭剂荧光猝灭的量子点材料,所述第二量子点层内量子点材料在光照下不发光;
所述量子点彩膜基板用于背光为蓝光的显示装置中。
所述显示装置为液晶显示装置、有机电致发光显示装置、或者量子点电致发光显示装置。
所述量子点层的厚度为0.5-5μm。
本发明还提供一种量子点彩膜基板的制备方法,包括如下步骤:
步骤1、提供基板,所述基板包括红色子像素区域、绿色子像素区域、及蓝色子像素区域;
步骤2、在所述基板上分别对应所述红色子像素区域、绿色子像素区域、及蓝色子像素区域形成图形化的红色色阻层、图形化的绿色色阻层、及图形化的有机透明光阻层;得到包含红色色阻层、绿色色阻层、及有机透明光阻层的彩色滤光层;在所述彩色滤光层上形成一层色阻保护层;
步骤3、在所述色阻保护层上涂布一层量子点溶液,所述量子点溶液为经处理后具有油溶性的红色量子点材料及绿色量子点材料分散于溶剂中而得到;加热使量子点溶液内的溶剂挥发;多次重复进行涂布量子点溶液和加热使量子点溶液内的溶剂挥发的过程,得到均匀膜厚的量子点层;
步骤4、在所述量子点层上涂布一层有机透明光阻材料,通过黄光制程图形化该层有机透明光阻材料,去掉该层有机透明光阻材料位于所述蓝色子像素区域上的部分,得到光阻层;
步骤5、以所述光阻层为遮蔽层,采用能够猝灭量子点荧光的猝灭剂对 所述量子点层进行选择性量子点猝灭,其中,所述量子点层的位于所述红色子像素区域和绿色子像素区域上的部分被所述光阻层覆盖而受到保护,其内的量子点材料不发生猝灭,得到所述量子点层的第一量子点层,所述量子点层的位于所述蓝色子像素区域上的部分没有被所述光阻层覆盖保护,其内的量子点材料被所述猝灭剂荧光猝灭,得到所述量子点层的第二量子点层;
步骤6、在所述光阻层及所述量子点层上涂布固化胶,所述固化胶经热固化后与所述光阻层共同形成保护层;
其中,所述量子点溶液内的溶剂为石油醚、二氯甲烷、或乙酸乙酯;
其中,所述量子点溶液内的量子点材料为Ⅱ-Ⅵ族量子点材料、Ⅲ-V族量子点材料中的一种或多种;
其中,所述步骤3中,形成的量子点层的厚度为0.5-5μm;
其中,所述步骤5中,所述猝灭剂为具有吸电子能力的有机试剂。
本发明的有益效果:本发明提供了一种量子点彩膜基板的制备方法及量子点彩膜基板。本发明的量子点彩膜基板的制备方法,以图案化的光阻层为遮蔽层采用猝灭剂对量子点层进行选择性猝灭,得到选择性猝灭的量子点层,简化了量子点彩膜基板的制造工艺,降低了生产成本;本发明的量子点彩膜基板,量子点层不包含蓝色量子点材料,将蓝光背光与有机透明光阻层的搭配使用,在提高光利用率的情况下同时缩减了材料成本,且量子点为选择性猝灭的量子点层,该量子点层的位于有机透明色阻层上的部分为被猝灭剂荧光猝灭处理的部分,在光照下不发光,从而在利用量子点材料提高色域、亮度的同时,避免了蓝色子像素处因出现混光而色不纯的现象,且其制备方法简单。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其他有益效果显而易见。
附图中,
图1为本发明的量子点彩膜基板的制备方法的流程示意图;
图2为本发明的量子点彩膜基板的制备方法的步骤3的示意图;
图3为本发明的量子点彩膜基板的制备方法的步骤4中在量子点层上涂布有机光阻材料的示意图;
图4为本发明的量子点彩膜基板的制备方法的步骤4中对有机光阻材料进行曝光的示意图;
图5为本发明的量子点彩膜基板的制备方法的步骤4中形成光阻层的示意图;
图6为本发明的量子点彩膜基板的制备方法的步骤5的示意图;
图7为本发明的量子点彩膜基板的制备方法的步骤6的示意图及本发明的量子点彩膜基板的剖面结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明首先提供一种量子点彩膜基板的制备方法,包括如下步骤:
步骤1、提供基板10,所述基板10包括红色子像素区域、绿色子像素区域、及蓝色子像素区域;
步骤2、在所述基板10上分别对应所述红色子像素区域、绿色子像素区域、及蓝色子像素区域形成图形化的红色色阻层21、图形化的绿色色阻层22、及图形化的有机透明光阻层23;得到包含红色色阻层21、绿色色阻层22、及有机透明光阻层23的彩色滤光层20;在所述彩色滤光层20上形成一层色阻保护层20’;
步骤3、如图2所示,在所述色阻保护层20’上涂布一层量子点溶液,所述量子点溶液为经处理后具有油溶性的红色量子点材料及绿色量子点材料分散于低沸点溶剂中而得到;加热使量子点溶液内的溶剂挥发;多次重复进行涂布量子点溶液和加热使量子点溶液内的溶剂挥发的过程,得到均匀膜厚的量子点层30;
优选的,所述量子点溶液内的低沸点溶剂为石油醚、二氯甲烷、或乙酸乙酯;
具体的,所述量子点溶液内的量子点材料为Ⅱ-Ⅵ族量子点材料、Ⅲ-V族量子点材料中的一种或多种;优选的,所述量子点胶内的量子点材料为ZnCdSe2,CdSe,CdTe,InP,InAs中的一种或多种。
具体的,所述步骤3中,形成的量子点层30的厚度为0.5-5μm。
步骤4、如图3-5所示,在所述量子点层30上涂布一层有机透明光阻材料50’,通过紫外光进行曝光、显影、烘烤等黄光制程图形化该层有机透明光阻材料50’,去掉该层有机透明光阻材料50’上的位于所述蓝色子像素区域上的部分,得到光阻层50;
步骤5、如图6所示,以所述光阻层50为遮蔽层,采用能够猝灭量子 点荧光的猝灭剂对所述量子点层30进行选择性量子点猝灭,其中,所述量子点层30的位于所述红色子像素区域和绿色子像素区域上的部分被所述光阻层50覆盖而受到保护,其内的量子点材料不发生猝灭,得到所述量子点层30的第一量子点层31,所述量子点层30的位于所述蓝色子像素区域上的部分没有被所述光阻层50覆盖保护,其内的量子点材料被所述猝灭剂荧光猝灭,得到所述量子点层30的第二量子点层32;
具体的,所述猝灭剂为具有强的吸电子能力的有机试剂;优选的,所述猝灭剂为12-烷基硫醇、14-烷基硫醇、或吡啶的非极性溶液;所述猝灭剂的浓度为0.2~4mol/L。
当所述量子点彩膜基板用于背光为蓝光的显示装置中而进行显示时,在背光照射时,所述第一量子点层31内的红色量子点材料在蓝光背光的光激发下发出波长范围为630-690nm的红光,所述第一量子点层31内的绿色量子点材料在蓝光背光的光激发下发出波长范围为500-560nm的绿光,而所述第二量子点层32的量子点材料为荧光猝灭的量子点材料,因此在背光照射时不发光;则所述第二量子点层32发出的红光及绿光、与未激发量子点的蓝光背光混合形成白光,该混合光经红色色阻层21和绿色色阻层22过滤后而分别显红色、与绿色,而蓝光背光直接穿过第二量子点层32、有机透明光阻层23而显蓝色,从而实现了彩色显示,在有效提高显示色域指数的同时,避免了蓝色子像素处因出现混光而色不纯的现象,且所述量子点层30内不包含蓝色量子点材料,将蓝光背光与有机透明光阻层的搭配使用,在提高光利用率的情况下同时缩减了材料成本。
步骤6、如图7所示,为使表面平坦化并对所述量子点层30进行进一步保护,直接在所述光阻层50及所述量子点层30上涂布固化胶,所述固化胶经热固化后与所述光阻层50共同形成保护层40。
本发明选择性猝灭的机理在于,由于量子点材料自身尺寸特性,尺寸越小其比表面积越大,表面原子数量占原子总量的比重也在增大,而表面原子通常具有较高活性而表现的相对不稳定,这就是量子点的表面效应,根据该特性,表面性质的变化对于量子点材料的材料特性影响巨大,这其中最主要的就是光学性质的影响,不同类型的表面配体对量子点的影响也不尽相同,如长烷基链的脂肪胺与脂肪酸等,作用于量子点表面能有效钝化表面电子陷阱,而如吡啶或硫醇等配体,由于自身电负性过大、吸电子能力强,一旦作用于量子点表面会诱发新的表面电子缺陷的产生,对于激发态的电子有较强的吸引能力,在一定程度上会造成光生电子与空穴的复合障碍,从而引发荧光猝灭,本发明就是利用这一原理,辅之以结构与工 艺的独特设计,对量子点彩膜基板结构中的量子点进行选择性猝灭。
如图7所示,本发明还提供一种量子点彩膜基板,包括,基板10、位于所述基板10上的彩色滤光层20、位于所述彩色滤光层20上的色阻保护层20’、位于所述色阻保护层20’上的量子点层30、及位于所述量子点层30上的保护层40;
所述基板10包括红色子像素区域、绿色子像素区域、及蓝色子像素区域;所述彩色滤光层20包括分别位于所述红色子像素区域、绿色子像素区域、及蓝色子像素区域上的红色色阻层21、绿色色阻层22、及有机透明光阻层23;
所述量子点层30包括位于所述红色子像素区域和绿色子像素区域上的第一量子点层31、及位于所述蓝色子像素区域上的第二量子点层32;所述量子点层30由包含红色量子点材料及绿色量子点材料的量子点溶液经溶剂挥发后得到;所述第一量子点层31内的红色量子点材料、绿色量子点材料在蓝光激发下分别发出红光与绿光,所述第二量子点层32内量子点材料为被猝灭剂荧光猝灭的量子点材料,所述第二量子点层32内量子点材料在光照下不发光;
所述量子点彩膜基板用于背光为蓝光的显示装置中;具体的,所述量子点彩膜基板可用于液晶显示装置(Liquid Crystal Display,LCD)、有机电致发光显示装置(Organic Light-Emitting Display,OLED)、或者量子点电致发光显示装置(Quantum Dot Light Emitting Display,QLED)等其他类型的显示装置中。
具体的,所述量子点层30的厚度为0.5-5μm;在背光照射时,其中,所述第一量子点层31内的红色量子点材料在蓝光背光的光激发下发出波长范围为630-690nm的红光,所述第一量子点层31内的绿色量子点材料在蓝光背光的光激发下发出波长范围为500-560nm的绿光,而所述第二量子点层32的量子点材料为荧光猝灭的量子点材料,因此在背光照射时不发光;则所述量子点彩膜基板用于背光为蓝光的显示装置中而进行显示时,所述第一量子点层31发出的红光及绿光、与未激发量子点的蓝光背光混合形成白光,该混合光经红色色阻层21和绿色色阻层22过滤而分别显红色、与绿色,蓝光背光直接穿过第二量子点层32、有机透明光阻层23而显蓝色,从而实现了彩色显示,在有效提高显示色域指数的同时,避免了蓝色子像素处因出现混光而色不纯的现象,且所述量子点层30内不包含蓝色量子点材料,将蓝光背光与有机透明光阻层的搭配使用,在提高光利用率的情况下同时缩减了材料成本。
具体的,所述量子点彩膜基板还包括位于所述基板10上的黑色矩阵60。
具体的,所述量子点层30内的量子点材料为Ⅱ-Ⅵ族量子点材料、Ⅲ-V族量子点材料中的一种或多种;优选的,所述量子点胶内的量子点材料为ZnCdSe2,CdSe,CdTe,InP,InAs中的一种或多种。
综上所述,本发明的量子点彩膜基板的制备方法,以图案化的光阻层为遮蔽层采用猝灭剂对量子点层进行选择性猝灭,得到选择性猝灭的量子点层,简化了量子点彩膜基板的制造工艺,降低了生产成本;本发明的量子点彩膜基板,量子点层不包含蓝色量子点材料,将蓝光背光与有机透明光阻层的搭配使用,在提高光利用率的情况下同时缩减了材料成本,且量子点为选择性猝灭的量子点层,该量子点层的位于有机透明色阻层上的部分为被猝灭剂荧光猝灭处理的部分,在光照下不发光,从而在利用量子点材料提高色域、亮度的同时,避免了蓝色子像素处因出现混光而色不纯的现象,且其制备方法简单。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种量子点彩膜基板的制备方法,包括如下步骤:
    步骤1、提供基板,所述基板包括红色子像素区域、绿色子像素区域、及蓝色子像素区域;
    步骤2、在所述基板上分别对应所述红色子像素区域、绿色子像素区域、及蓝色子像素区域形成图形化的红色色阻层、图形化的绿色色阻层、及图形化的有机透明光阻层;得到包含红色色阻层、绿色色阻层、及有机透明光阻层的彩色滤光层;在所述彩色滤光层上形成一层色阻保护层;
    步骤3、在所述色阻保护层上涂布一层量子点溶液,所述量子点溶液为经处理后具有油溶性的红色量子点材料及绿色量子点材料分散于溶剂中而得到;加热使量子点溶液内的溶剂挥发;多次重复进行涂布量子点溶液和加热使量子点溶液内的溶剂挥发的过程,得到均匀膜厚的量子点层;
    步骤4、在所述量子点层上涂布一层有机透明光阻材料,通过黄光制程图形化该层有机透明光阻材料,去掉该层有机透明光阻材料位于所述蓝色子像素区域上的部分,得到光阻层;
    步骤5、以所述光阻层为遮蔽层,采用能够猝灭量子点荧光的猝灭剂对所述量子点层进行选择性量子点猝灭,其中,所述量子点层的位于所述红色子像素区域和绿色子像素区域上的部分被所述光阻层覆盖而受到保护,其内的量子点材料不发生猝灭,得到所述量子点层的第一量子点层,所述量子点层的位于所述蓝色子像素区域上的部分没有被所述光阻层覆盖保护,其内的量子点材料被所述猝灭剂荧光猝灭,得到所述量子点层的第二量子点层;
    步骤6、在所述光阻层及所述量子点层上涂布固化胶,所述固化胶经热固化后与所述光阻层共同形成保护层。
  2. 如权利要求1所述的量子点彩膜基板的制备方法,其中,所述量子点溶液内的溶剂为石油醚、二氯甲烷、或乙酸乙酯。
  3. 如权利要求1所述的量子点彩膜基板的制备方法,其中,所述量子点溶液内的量子点材料为Ⅱ-Ⅵ族量子点材料、Ⅲ-V族量子点材料中的一种或多种。
  4. 如权利要求3所述的量子点彩膜基板的制备方法,其中,所述量子点胶内的量子点材料为ZnCdSe2,CdSe,CdTe,InP,InAs中的一种或多种。
  5. 如权利要求1所述的量子点彩膜基板的制备方法,其中,所述步骤 3中,形成的量子点层的厚度为0.5-5μm。
  6. 如权利要求1所述的量子点彩膜基板的制备方法,其中,所述步骤5中,所述猝灭剂为具有吸电子能力的有机试剂。
  7. 如权利要求6所述的量子点彩膜基板的制备方法,其中,所述猝灭剂为12-烷基硫醇、14-烷基硫醇、或吡啶的非极性溶液;所述猝灭剂的浓度为0.2~4mol/L。
  8. 一种量子点彩膜基板,包括,基板、位于所述基板上的彩色滤光层、位于所述彩色滤光层上的色阻保护层、位于所述色阻保护层上的量子点层、及位于所述量子点层上的保护层;
    所述基板包括红色子像素区域、绿色子像素区域、及蓝色子像素区域;所述彩色滤光层包括分别位于所述红色子像素区域、绿色子像素区域、及蓝色子像素区域上的红色色阻层、绿色色阻层、及有机透明光阻层;
    所述量子点层包括位于所述红色子像素区域和绿色子像素区域上的第一量子点层、及位于所述蓝色子像素区域上的第二量子点层;所述量子点层由包含红色量子点材料及绿色量子点材料的量子点溶液经溶剂挥发后得到;
    所述第一量子点层内的红色量子点材料、绿色量子点材料在蓝光激发下分别发出红光与绿光;所述第二量子点层内量子点材料为被猝灭剂荧光猝灭的量子点材料,所述第二量子点层内量子点材料在光照下不发光;
    所述量子点彩膜基板用于背光为蓝光的显示装置中。
  9. 如权利要求8所述的量子点彩膜基板,其中,所述显示装置为液晶显示装置、有机电致发光显示装置、或者量子点电致发光显示装置。
  10. 如权利要求8所述的量子点彩膜基板,其中,所述量子点层的厚度为0.5-5μm。
  11. 一种量子点彩膜基板的制备方法,包括如下步骤:
    步骤1、提供基板,所述基板包括红色子像素区域、绿色子像素区域、及蓝色子像素区域;
    步骤2、在所述基板上分别对应所述红色子像素区域、绿色子像素区域、及蓝色子像素区域形成图形化的红色色阻层、图形化的绿色色阻层、及图形化的有机透明光阻层;得到包含红色色阻层、绿色色阻层、及有机透明光阻层的彩色滤光层;在所述彩色滤光层上形成一层色阻保护层;
    步骤3、在所述色阻保护层上涂布一层量子点溶液,所述量子点溶液为经处理后具有油溶性的红色量子点材料及绿色量子点材料分散于溶剂中而得到;加热使量子点溶液内的溶剂挥发;多次重复进行涂布量子点溶液和 加热使量子点溶液内的溶剂挥发的过程,得到均匀膜厚的量子点层;
    步骤4、在所述量子点层上涂布一层有机透明光阻材料,通过黄光制程图形化该层有机透明光阻材料,去掉该层有机透明光阻材料位于所述蓝色子像素区域上的部分,得到光阻层;
    步骤5、以所述光阻层为遮蔽层,采用能够猝灭量子点荧光的猝灭剂对所述量子点层进行选择性量子点猝灭,其中,所述量子点层的位于所述红色子像素区域和绿色子像素区域上的部分被所述光阻层覆盖而受到保护,其内的量子点材料不发生猝灭,得到所述量子点层的第一量子点层,所述量子点层的位于所述蓝色子像素区域上的部分没有被所述光阻层覆盖保护,其内的量子点材料被所述猝灭剂荧光猝灭,得到所述量子点层的第二量子点层;
    步骤6、在所述光阻层及所述量子点层上涂布固化胶,所述固化胶经热固化后与所述光阻层共同形成保护层;
    其中,所述量子点溶液内的溶剂为石油醚、二氯甲烷、或乙酸乙酯;
    其中,所述量子点溶液内的量子点材料为Ⅱ-Ⅵ族量子点材料、Ⅲ-V族量子点材料中的一种或多种;
    其中,所述步骤3中,形成的量子点层的厚度为0.5-5μm;
    其中,所述步骤5中,所述猝灭剂为具有吸电子能力的有机试剂。
  12. 如权利要求11所述的量子点彩膜基板的制备方法,其中,所述量子点胶内的量子点材料为ZnCdSe2,CdSe,CdTe,InP,InAs中的一种或多种。
  13. 如权利要求11所述的量子点彩膜基板的制备方法,其中,所述猝灭剂为12-烷基硫醇、14-烷基硫醇、或吡啶的非极性溶液;所述猝灭剂的浓度为0.2~4mol/L。
PCT/CN2015/099263 2015-11-13 2015-12-28 量子点彩膜基板的制备方法及量子点彩膜基板 WO2017080078A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/914,650 US9817264B2 (en) 2015-11-13 2015-12-28 Quantum dot color filter substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510780914.9A CN105278153B (zh) 2015-11-13 2015-11-13 量子点彩膜基板的制备方法及量子点彩膜基板
CN201510780914.9 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017080078A1 true WO2017080078A1 (zh) 2017-05-18

Family

ID=55147444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099263 WO2017080078A1 (zh) 2015-11-13 2015-12-28 量子点彩膜基板的制备方法及量子点彩膜基板

Country Status (3)

Country Link
US (1) US9817264B2 (zh)
CN (1) CN105278153B (zh)
WO (1) WO2017080078A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740379B (zh) * 2020-02-15 2021-09-21 瑩耀科技股份有限公司 發光模組

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3043838B1 (fr) * 2015-11-17 2018-06-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d'une couche contenant des boites quantiques
CN105629576B (zh) * 2016-03-28 2018-10-23 深圳市华星光电技术有限公司 一种石墨烯背光模组及石墨烯液晶显示装置
CN105700235A (zh) * 2016-04-13 2016-06-22 京东方科技集团股份有限公司 一种背光模组及显示装置
CN105867025B (zh) * 2016-06-01 2019-02-01 武汉华星光电技术有限公司 背光模组
KR102661846B1 (ko) * 2016-06-29 2024-04-29 삼성디스플레이 주식회사 색변환 패널, 이의 제조 방법 및 이를 포함하는 표시 장치
CN106356463B (zh) * 2016-10-11 2017-12-29 深圳市华星光电技术有限公司 Qled显示装置的制作方法
CN106526966A (zh) * 2016-12-12 2017-03-22 深圳市华星光电技术有限公司 一种液晶显示器
KR20180076857A (ko) * 2016-12-28 2018-07-06 엘지디스플레이 주식회사 유기발광다이오드 표시장치
CN107058984A (zh) * 2017-03-29 2017-08-18 华南理工大学 一种基于静电诱导的图形化量子点薄膜制备方法
US20180356574A1 (en) * 2017-06-13 2018-12-13 Shenzhen China Star Optoelectronics Technology Co. Ltd. Blue light absorption cut-off film and blue light display device
CN107092048A (zh) * 2017-06-13 2017-08-25 深圳市华星光电技术有限公司 蓝光吸收截止膜及蓝光显示装置
US10809450B2 (en) * 2018-01-29 2020-10-20 Dell Products L.P. Display device blue light emission management system
CN108752825A (zh) * 2018-05-30 2018-11-06 深圳市华星光电技术有限公司 量子点水凝胶、量子点图案化及转印方法
KR102596066B1 (ko) 2018-07-16 2023-11-01 삼성디스플레이 주식회사 표시 장치 및 그것의 제조 방법
KR102634132B1 (ko) * 2018-08-27 2024-02-06 동우 화인켐 주식회사 컬러 필터 및 이를 포함하는 화상표시장치
US11428988B2 (en) * 2018-08-31 2022-08-30 Nanosys, Inc. Increasing color gamut performance and efficiency in quantum dot color conversion layers
KR20200039875A (ko) 2018-10-05 2020-04-17 삼성디스플레이 주식회사 표시장치
CN109616577B (zh) * 2018-10-26 2021-10-22 纳晶科技股份有限公司 一种量子点膜及其制备方法
KR20200083813A (ko) 2018-12-28 2020-07-09 삼성디스플레이 주식회사 표시 장치
CN109950425A (zh) * 2019-03-08 2019-06-28 深圳市华星光电半导体显示技术有限公司 显示面板的制作方法、显示面板及电子设备
CN109950416A (zh) * 2019-03-08 2019-06-28 深圳市华星光电半导体显示技术有限公司 显示面板的制作方法、显示面板及电子设备
CN110021652A (zh) * 2019-04-03 2019-07-16 深圳市华星光电半导体显示技术有限公司 量子点柔性oled显示装置及制备方法
KR20210052618A (ko) 2019-10-29 2021-05-11 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN111061084B (zh) 2019-12-05 2020-12-04 Tcl华星光电技术有限公司 彩膜基板的制备方法及彩膜基板
CN111403335A (zh) * 2020-03-26 2020-07-10 武汉华星光电半导体显示技术有限公司 显示器件及其制作方法
CN111290162B (zh) 2020-03-27 2021-05-28 Tcl华星光电技术有限公司 液晶显示装置、电子设备
CN113449411B (zh) * 2021-05-10 2022-10-04 福州大学 面向单色量子点色转换层的蓝光泄露率和光密度计算方法
JPWO2023013013A1 (zh) * 2021-08-06 2023-02-09
JPWO2023013011A1 (zh) * 2021-08-06 2023-02-09
JPWO2023013012A1 (zh) * 2021-08-06 2023-02-09
CN116171312A (zh) * 2021-09-24 2023-05-26 京东方科技集团股份有限公司 量子点膜层、量子点发光器件及其制作方法
US20240182783A1 (en) * 2021-10-28 2024-06-06 Beijing Boe Technology Development Co., Ltd. Quantum dots material solution, method of forming quantum dots layer, and array substrate, display panel, and method of fabricating display panel
CN114141933B (zh) * 2021-11-16 2023-08-01 武汉华星光电半导体显示技术有限公司 量子点薄膜、显示背板及其制作方法
CN114284417B (zh) * 2021-12-29 2024-04-30 深圳市思坦科技有限公司 颜色转换基板及其制备方法
CN114854418A (zh) * 2022-03-28 2022-08-05 北京京东方技术开发有限公司 量子点混合物、图案化的方法、量子点膜及发光器件
CN114839810A (zh) * 2022-05-13 2022-08-02 惠州视维新技术有限公司 背光模组及其制备方法、液晶显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201310137A (zh) * 2011-07-18 2013-03-01 Lg伊諾特股份有限公司 光學構件及具有其之顯示裝置
CN103278961A (zh) * 2013-04-28 2013-09-04 京东方科技集团股份有限公司 一种液晶显示装置
US20130242228A1 (en) * 2012-03-15 2013-09-19 Samsung Display Co., Ltd. Liquid crystal display and manufacturing method thereof
CN204188921U (zh) * 2014-11-28 2015-03-04 京东方科技集团股份有限公司 一种显示面板和显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI550581B (zh) * 2010-12-17 2016-09-21 杜比實驗室特許公司 用於影像顯示之方法及設備、電腦可讀儲存媒體、及計算裝置
CN103091895B (zh) * 2013-01-22 2015-12-09 北京京东方光电科技有限公司 一种显示装置及制备方法
CN103236435B (zh) * 2013-04-23 2016-03-02 京东方科技集团股份有限公司 一种有机电致发光二极管显示装置
CN103278876A (zh) * 2013-05-28 2013-09-04 京东方科技集团股份有限公司 量子点彩色滤光片及其制作方法、显示装置
CN103412436B (zh) * 2013-07-24 2015-09-30 北京京东方光电科技有限公司 一种彩膜基板、液晶显示屏及单色量子点的分散方法
CN103525406B (zh) * 2013-10-21 2015-08-26 京东方科技集团股份有限公司 一种复合薄膜及其制作方法、光电元件和光电设备
CN104460103B (zh) * 2014-12-29 2018-08-24 厦门天马微电子有限公司 彩色滤光基板和显示模组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201310137A (zh) * 2011-07-18 2013-03-01 Lg伊諾特股份有限公司 光學構件及具有其之顯示裝置
US20130242228A1 (en) * 2012-03-15 2013-09-19 Samsung Display Co., Ltd. Liquid crystal display and manufacturing method thereof
CN103278961A (zh) * 2013-04-28 2013-09-04 京东方科技集团股份有限公司 一种液晶显示装置
CN204188921U (zh) * 2014-11-28 2015-03-04 京东方科技集团股份有限公司 一种显示面板和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740379B (zh) * 2020-02-15 2021-09-21 瑩耀科技股份有限公司 發光模組

Also Published As

Publication number Publication date
CN105278153B (zh) 2018-03-06
US20170256591A1 (en) 2017-09-07
US9817264B2 (en) 2017-11-14
CN105278153A (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
WO2017080078A1 (zh) 量子点彩膜基板的制备方法及量子点彩膜基板
CN105242449B (zh) 量子点彩膜基板的制备方法及量子点彩膜基板
WO2017080064A1 (zh) 量子点彩膜基板的制备方法及量子点彩膜基板
EP2757409B1 (en) Liquid crystal display device comprising a blue light source and a quantum-dot colour generating structure and method of manufacturing said device
WO2017092131A1 (zh) 彩膜基板的制作方法及液晶显示装置
Chen et al. Resonant‐enhanced full‐color emission of quantum‐dot‐based display technology using a pulsed spray method
CN105304684B (zh) 彩色显示装置及其制作方法
CN105259694B (zh) 彩色滤光片的制作方法及彩色滤光片
Duan et al. Inkjet‐printed micrometer‐thick patterned perovskite quantum dot films for efficient blue‐to‐green photoconversion
US9823510B2 (en) Quantum dot color film substrate, manufacturing method thereof and LCD apparatus
Kim et al. Enhancement of optical efficiency in white OLED display using the patterned photoresist film dispersed with quantum dot nanocrystals
US9804489B2 (en) Method for manufacturing quantum dot color filter
US20170261849A1 (en) Method for manufacturing color filter substrate
US20180029072A1 (en) Methods of fabricating quantum dot color film substrates
WO2014190604A1 (zh) 量子点彩色滤光片及其制作方法、显示装置
CN105355726B (zh) 量子点层图形化的方法及量子点彩膜的制备方法
KR20130043294A (ko) Led 패키지 및 이의 제조 방법
WO2017143647A1 (zh) 量子点彩色滤光片的制造方法
TW202018997A (zh) 發光元件及其製造方法
US11391982B2 (en) Quantum dot color filter substrate including two sub-pixel areas having same material and method of manufacturing same
Yue P‐12.4: quantum dot photoresist for color filter application
Sakai et al. 26‐4: Perovskite Inks and Photoresists for In‐Pixel Color Conversion
US20180356574A1 (en) Blue light absorption cut-off film and blue light display device
Kuo et al. UV LED with QD for display and lighting application
Chen et al. High-quality quantum-dot-based full-color display technology by pulsed spray method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14914650

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908208

Country of ref document: EP

Kind code of ref document: A1