WO2017143647A1 - 量子点彩色滤光片的制造方法 - Google Patents

量子点彩色滤光片的制造方法 Download PDF

Info

Publication number
WO2017143647A1
WO2017143647A1 PCT/CN2016/078875 CN2016078875W WO2017143647A1 WO 2017143647 A1 WO2017143647 A1 WO 2017143647A1 CN 2016078875 W CN2016078875 W CN 2016078875W WO 2017143647 A1 WO2017143647 A1 WO 2017143647A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
layer
photoresist layer
transparent photoresist
pattern
Prior art date
Application number
PCT/CN2016/078875
Other languages
English (en)
French (fr)
Inventor
韦宏权
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/031,280 priority Critical patent/US10338429B2/en
Publication of WO2017143647A1 publication Critical patent/WO2017143647A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/207Filters comprising semiconducting materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • Y10S977/824Group II-VI nonoxide compounds, e.g. CdxMnyTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/887Nanoimprint lithography, i.e. nanostamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/952Display

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular, to a method of manufacturing a quantum dot color filter.
  • Liquid crystal display is one of the most widely used flat panel displays.
  • the liquid crystal display panel is a core component of liquid crystal displays.
  • the liquid crystal display panel usually comprises a color filter substrate (CF Substrate), a thin film transistor array substrate (Thin Film Transistor Array Substrate, TFT Array Substrate), and a liquid crystal layer disposed between the two substrates (Liquid Crystal). Layer).
  • the three primary colors of red, green, and blue of the conventional color liquid crystal display are projected by a white backlight through a color filter substrate having red, green, and blue color resists, and the transmittance of the color resist is always low. At the level, the brightness and color of the LCD display are also constrained.
  • Quantum dots (QDs) luminescent materials are a new technology applied to the field of liquid crystal display technology. After the semiconductor material is gradually reduced from the bulk phase to a certain critical dimension (1-20 nm), the volatility of the carriers becomes significant, the movement of the carriers will be limited, and the kinetic energy of the semiconductor material increases, and the corresponding electronic structure From the continuous energy level structure of the bulk phase to the discontinuous state of quasi-splitting, this phenomenon is called the quantum size effect, and the semiconductor nanoparticles are quantum dots.
  • the common quantum dot materials are II-VI, III-V, and IV-VI elements. The quantum dots of these materials all follow the quantum size effect. The energy level changes according to the size change of the quantum dots, and the properties also follow the quantum dots.
  • the size changes such as the wavelength of absorption and emission changes with size, and the like.
  • the emission wavelength can be controlled by changing its size. Therefore, semiconductor quantum dots can be widely used in the fields of illumination, displays, lasers, and bioluminescent labels.
  • Quantum dot luminescent materials have the advantages of concentrated luminescence spectrum and high color purity.
  • the use of quantum dot luminescent materials in the field of liquid crystal display technology can greatly improve the color gamut of conventional liquid crystal displays and enhance the color reproduction capability of liquid crystal displays.
  • Quantum dot layers are typically fabricated using a solution process, and large quantum dot layers can be fabricated under the influence of air shear forces.
  • solution spin coating is difficult to transfer quantum dots to a multilayer structure of an optical device or a quantum dot stack, and it is difficult to form a patterned quantum dot layer structure, so there are many limitations in using a quantum dot layer having excellent characteristics in a photovoltaic device. .
  • FIG. 1 is a schematic diagram of a conventional quantum dot transfer method for preparing a quantum dot layer.
  • the preparation method is as follows:
  • a source substrate 100' is provided.
  • the SAM layer 200' is coupled by a covalent bond on the source substrate 100', then a sacrificial layer 300' is formed on the SAM layer 200', and finally the quantum dot layer 400' is formed on the sacrificial layer 300. 'on;
  • An impression 500' is provided on the quantum dot layer 400', and the stamp 500' picks up the sacrificial layer 300' and the quantum dot layer 400' by transfer, separating the sacrificial layer 300' from the SAM layer 200';
  • quantum dot layer 400' is transferred onto the substrate of the optical device.
  • a quantum dot layer can be prepared by adding a sacrificial layer and a dissolution process using a sacrificial layer, and the quantum dot layer is transferred to a multilayer structure of an optical device or a quantum dot stack.
  • this method requires an additional step of stacking the sacrificial layer and a step of dissolving the sacrificial layer, making the process cumbersome and reducing the efficiency, and in the process of dissolving the sacrificial layer, since the quantum dot layer also enters the solution, the quantum dot is Causes damage and damages the performance of the quantum dot layer.
  • the object of the present invention is to provide a method for manufacturing a quantum dot color filter, which can avoid damage of quantum dots in the process of preparing a quantum dot layer, and the prepared quantum dot layer can be uniformly distributed in the photoresist layer to improve quantum.
  • the use efficiency of the dots can simplify the manufacturing method of the quantum dot layer transfer, make the production process simple and efficient, and save production costs.
  • the present invention first provides a method of fabricating a quantum dot color filter, comprising the steps of:
  • Step 1 Providing a substrate, defining a plurality of first pixel regions, a plurality of second pixel regions, and a plurality of third pixel regions on the substrate, and coating a curable transparent photoresist material on the substrate Forming a transparent photoresist layer; providing ultraviolet light, irradiating the transparent photoresist layer to be semi-cured, exhibiting a soft state;
  • Step 2 providing a first source substrate, forming a single layer of a first quantum dot layer on the first source substrate by a self-assembly method, the first quantum dot layer being single on the first source substrate
  • the first quantum dots are uniformly arranged in layers
  • Step 3 providing a first transfer mold, wherein the first transfer mold is provided with a first transfer pattern that is consistent with the pattern of the first pixel region, and is picked up on the first source substrate by the first transfer pattern
  • the first quantum dot is transferred to the first pixel region of the transparent photoresist layer, and a certain pressure is applied during the printing process to enable the first quantum dot to be transferred into the semi-cured transparent photoresist layer.
  • a certain pressure is applied during the printing process to enable the first quantum dot to be transferred into the semi-cured transparent photoresist layer.
  • Arranging in the transparent photoresist layer to form a first quantum dot pattern Arranging in the transparent photoresist layer to form a first quantum dot pattern
  • Step 4 providing a second source substrate, forming a single layer of a second quantum dot layer on the second source substrate by a self-assembly method, the second quantum dot layer being single on the second source substrate a plurality of second quantum dots arranged in a uniform arrangement;
  • Step 5 providing a second transfer mold, wherein the second transfer mold is provided with a second transfer pattern that is consistent with the pattern of the second pixel region, and is picked up on the second source substrate by the second transfer pattern a second quantum dot is transferred to the second pixel region of the transparent photoresist layer, and a certain pressure is applied during the printing process to enable the second quantum dot to be transferred into the semi-cured transparent photoresist layer. And uniformly arranged in the transparent photoresist layer to form a second quantum dot pattern;
  • Step 6 providing a third source substrate, forming a single layer of a third quantum dot layer on the third source substrate by a self-assembly method, the third quantum dot layer being single on the third source substrate a plurality of third quantum dots arranged in a uniform arrangement;
  • Step 7 providing a third transfer mold, wherein the third transfer mold is provided with a third transfer pattern that is consistent with the pattern of the third pixel region, and is picked up on the third source substrate by the third transfer pattern a third quantum dot is transferred to the third pixel region of the transparent photoresist layer, and a certain pressure is applied during the printing process to enable the third quantum dot to be transferred into the semi-cured transparent photoresist layer. And uniformly arranged in the transparent photoresist layer to form a third quantum dot pattern;
  • step 2-7 forming a plurality of first quantum dot patterns, a plurality of second quantum dot patterns, and a plurality of third quantum dot patterns in the transparent photoresist layer;
  • Step 8 The transparent photoresist layer is irradiated with ultraviolet light to be completely cured, so that the plurality of first, second, and third quantum dot patterns are fixed in the transparent photoresist layer, and the fully cured
  • the transparent photoresist layer together with the plurality of first, second, and third quantum dot patterns fixed therein constitutes a quantum dot color filter.
  • the transparent photoresist layer has a thickness of 0.5 to 5 ⁇ m; and the first quantum dot layer, the second quantum dot layer, and the third quantum dot layer have a thickness of 1 to 50 ⁇ m.
  • the substrate is a color filter substrate or a thin film transistor array substrate.
  • the first, second, and third pixel regions are any combination of red, green, and blue pixel regions, and the first, second, and third quantum dot patterns are red, green, and blue quantum dot patterns. Arbitrarily arranged and combined, and the color of the first quantum dot pattern is the same as the color of the first pixel region, and the color of the second quantum dot pattern is the same as the color of the second pixel region.
  • the three quantum dot pattern is the same as the color setting of the third pixel region.
  • the material of the first, second, and third quantum dots is one or more of CdSe, CdS, CdTe, ZnS, ZnSe, CuInS, and ZnCuInS.
  • the invention also provides a method for manufacturing another quantum dot color filter, comprising the following steps:
  • Step 1 ′ providing a substrate, defining a plurality of first pixel regions, a plurality of second pixel regions, and a plurality of third pixel regions on the substrate, and coating a curable transparent photoresist on the substrate a material, forming a transparent photoresist layer; providing ultraviolet light, irradiating the transparent photoresist layer to be semi-cured, exhibiting a soft state;
  • Step 2 ′ providing a first source substrate, forming a single layer of a first quantum dot layer on the first source substrate by a self-assembly method, the first quantum dot layer being on the first source substrate a plurality of first quantum dots uniformly arranged in a single layer;
  • Step 3 ′ providing a first transfer mold, wherein the first transfer mold is provided with a first transfer pattern conforming to the pattern of the first pixel region, and the first transfer pattern is on the first source substrate Picking up the first quantum dot and transferring it to the first pixel region of the transparent photoresist layer, and applying a certain pressure during the printing process, so that the first quantum dot can be transferred into the semi-cured transparent photoresist layer And uniformly arranged in the transparent photoresist layer to form a first quantum dot pattern;
  • Step 4 ′ providing a second source substrate, forming a single layer of a second quantum dot layer on the second source substrate by a self-assembly method, wherein the second quantum dot layer is on the second source substrate a plurality of second quantum dots uniformly arranged in a single layer;
  • Step 5 ′ providing a second transfer mold, wherein the second transfer mold is provided with a second transfer pattern conforming to the pattern of the second pixel region, and the second transfer pattern is on the second source substrate Picking up a second quantum dot and transferring it to the second pixel region of the transparent photoresist layer, applying a certain pressure during the printing process, so that the second quantum dot can be transferred into the semi-cured transparent photoresist layer And uniformly arranged in the transparent photoresist layer to form a second quantum dot pattern;
  • a plurality of first quantum dot patterns and a plurality of second quantum dot patterns are formed in the transparent photoresist layer;
  • Step 6 ′ irradiating the transparent photoresist layer with ultraviolet light to completely cure, thereby fixing the plurality of first and second quantum dot patterns in the transparent photoresist layer, the fully cured transparent
  • the photoresist layer and the plurality of first and second quantum dot patterns fixed therein constitute a quantum dot color filter.
  • the transparent photoresist layer has a thickness of 0.5 to 5 ⁇ m; and the first quantum dot layer and the second quantum dot layer have a thickness of 1 to 50 ⁇ m.
  • the substrate is a color filter substrate or a thin film transistor array substrate.
  • the first and second pixel regions are any combination of red and green pixel regions, the third pixel region is a blue pixel region, and the first and second quantum dot patterns are red and green quantum dot patterns. Arbitrarily arranged and combined, and the color of the first quantum dot pattern is the same as the color of the first pixel region, and the color of the second quantum dot pattern is the same as the color of the second pixel region.
  • the material of the first and second quantum dots is one or more of CdSe, CdS, CdTe, ZnS, ZnSe, CuInS, and ZnCuInS.
  • the invention also provides a method for manufacturing a quantum dot color filter, comprising the following steps:
  • Step 1 ′ providing a substrate, defining a plurality of first pixel regions, a plurality of second pixel regions, and a plurality of third pixel regions on the substrate, and coating a curable transparent photoresist on the substrate a material, forming a transparent photoresist layer; providing ultraviolet light, irradiating the transparent photoresist layer to be semi-cured, exhibiting a soft state;
  • Step 2 ′ providing a first source substrate, forming a single layer of a first quantum dot layer on the first source substrate by a self-assembly method, the first quantum dot layer being on the first source substrate a plurality of first quantum dots uniformly arranged in a single layer;
  • Step 3 ′ providing a first transfer mold, wherein the first transfer mold is provided with a first transfer pattern conforming to the pattern of the first pixel region, and the first transfer pattern is on the first source substrate Picking up the first quantum dot and transferring it to the first pixel region of the transparent photoresist layer, and applying a certain pressure during the printing process, so that the first quantum dot can be transferred into the semi-cured transparent photoresist layer And uniformly arranged in the transparent photoresist layer to form a first quantum dot pattern;
  • Step 4 ′ providing a second source substrate, forming a single layer of a second quantum dot layer on the second source substrate by a self-assembly method, wherein the second quantum dot layer is on the second source substrate a plurality of second quantum dots uniformly arranged in a single layer;
  • Step 5 ′ providing a second transfer mold, wherein the second transfer mold is provided with a second transfer pattern conforming to the pattern of the second pixel region, and the second transfer pattern is on the second source substrate Picking up a second quantum dot and transferring it to the second pixel region of the transparent photoresist layer, applying a certain pressure during the printing process, so that the second quantum dot can be transferred into the semi-cured transparent photoresist layer And uniformly arranged in the transparent photoresist layer to form a second quantum dot pattern;
  • a plurality of first quantum dot patterns and a plurality of second quantum dot patterns are formed in the transparent photoresist layer;
  • Step 6 ′ irradiating the transparent photoresist layer with ultraviolet light to completely cure, thereby fixing the plurality of first and second quantum dot patterns in the transparent photoresist layer, the fully cured transparent
  • the photoresist layer and the plurality of first and second quantum dot patterns fixed therein form a quantum dot color filter
  • the transparent photoresist layer has a thickness of 0.5 to 5 ⁇ m; the first quantum dot layer and the second quantum dot layer have a thickness of 1 to 50 ⁇ m;
  • the substrate is a color filter substrate or a thin film transistor array substrate.
  • the invention has the beneficial effects of the invention, the method for manufacturing the quantum dot color filter provided by the invention, the quantum dots are picked up by the impression, the quantum dots are printed into the semi-cured photoresist layer, and then the quantum dots and the impressions are printed Stripping, UV irradiation, fully curing the photoresist layer, and uniformly dispersing the quantum dots into the photoresist layer, simplifying the quantum dot layer transfer manufacturing method and saving production cost; eliminating the need to design the sacrificial layer process and dissolving the sacrificial layer to avoid Damage to quantum dots; quantum dots are evenly distributed in the photoresist layer, which improves the efficiency of quantum dots; the resulting quantum dot color filters can be used with white backlights or blue backlights to achieve red, green, and Blue three primary colors are displayed.
  • 1 is a schematic view of a conventional quantum dot transfer method for preparing a quantum dot layer
  • Figure 2 is a schematic view showing the first step (1') of the first and second embodiments of the method for fabricating a quantum dot color filter of the present invention
  • Figure 3 is a schematic view showing the second step (2') of the first and second embodiments of the method for fabricating a quantum dot color filter of the present invention
  • FIG. 4-5 are schematic views showing a step 3 (3') of the first and second embodiments of the method for fabricating a quantum dot color filter of the present invention
  • Figure 6 is a schematic view showing the fourth step (4') of the first and second embodiments of the method for fabricating a quantum dot color filter of the present invention
  • 7-8 are schematic views showing a step 5 (5') of the first and second embodiments of the method for fabricating a quantum dot color filter of the present invention
  • FIG. 9 is a schematic view showing a step 6 of the first embodiment of the method for fabricating a quantum dot color filter of the present invention.
  • 10-11 are schematic views showing a step 7 of the first embodiment of the method for fabricating a quantum dot color filter of the present invention.
  • FIG. 12 is a schematic view showing a step 8 of the first embodiment of the method for fabricating a quantum dot color filter of the present invention.
  • Figure 13 is a schematic view showing the step 6' of the second embodiment of the method for producing a quantum dot color filter of the present invention.
  • the present invention provides a method for manufacturing a quantum dot color filter, comprising the following steps:
  • Step 1 as shown in FIG. 2, a substrate 400 is defined on which a plurality of first pixel regions, a plurality of second pixel regions, and a plurality of third pixel regions are defined on the substrate 400.
  • the curable transparent photoresist material is coated to form a transparent photoresist layer 600; ultraviolet light (UV) is supplied, and the transparent photoresist layer 600 is irradiated to be semi-cured to exhibit a soft state.
  • UV ultraviolet light
  • the first, second, and third pixel regions are any combination of red, green, and blue pixel regions.
  • the transparent photoresist layer 600 has a thickness of 0.5 to 5 ⁇ m.
  • the substrate 400 may be a color filter substrate or a thin film transistor array substrate.
  • the substrate 400 selected in this embodiment is a color filter substrate, and includes a base substrate 410, a black matrix 420 and a color photoresist layer 430 disposed on the base substrate 410, and the color photoresist
  • the layer 430 includes a plurality of first color blocking blocks 431, a plurality of second color blocking blocks 432, and a plurality of third color blocking blocks 433; the first, second, and third color blocking blocks 431, 432, and 433 respectively Corresponding to the first, second, and third pixel regions of the substrate 400, and the colors of the first, second, and third color resist blocks 431, 432, and 433 are respectively associated with the first, second, and The color setting of the third pixel area is the same.
  • Step 2 As shown in FIG. 3, a first source substrate 110 is provided, and a first quantum dot layer 210 is formed on the first source substrate 110 by a self-assembly method, and the first quantum dot layer 210 is formed.
  • the first quantum dots 215 are uniformly arranged in a single layer on the first source substrate 110.
  • the first quantum dot layer 210 has a thickness of 1-50 ⁇ m.
  • Step 3 as shown in FIG. 4-5, a first transfer die 310 is provided, and the first transfer die 310 is provided with a first transfer pattern 311 that is consistent with the pattern of the first pixel region.
  • a transfer pattern 311 picks up the first quantum dot 215 on the first source substrate 110 and transfers it to the first pixel region of the transparent photoresist layer 600, and gives a certain pressure during the printing process, so that the first The quantum dots 215 can be transferred into the semi-cured transparent photoresist layer 600 and uniformly arranged in the transparent photoresist layer 600 to form a first quantum dot pattern 710.
  • Step 4 as shown in FIG. 6, providing a second source substrate 120, forming a single layer of a second quantum dot layer 220 on the second source substrate 120 by a self-assembly method, the second quantum dot layer 220 It is composed of a plurality of second quantum dots 225 uniformly arranged in a single layer on the second source substrate 120.
  • the second quantum dot layer 220 has a thickness of 1-50 ⁇ m.
  • Step 5 as shown in FIG. 7-8, a second transfer die 320 is provided, and the second transfer die 320 is provided with a second transfer pattern 321 which is consistent with the pattern of the second pixel region.
  • Two transfer diagram The second pixel 225 is picked up on the second source substrate 120 and transferred to the second pixel region of the transparent photoresist layer 600, and a certain pressure is applied during the printing process to make the second quantum dot 225 It can be transferred into the semi-cured transparent photoresist layer 600 and uniformly arranged in the transparent photoresist layer 600 to form a second quantum dot pattern 720.
  • Step 6 as shown in FIG. 9 a third source substrate 130 is provided, and a third quantum dot layer 230 is formed on the third source substrate 130 by a self-assembly method, and the third quantum dot layer 230 is formed. It is composed of a plurality of third quantum dots 235 uniformly arranged in a single layer on the third source substrate 130.
  • the third quantum dot layer 230 has a thickness of 1-50 ⁇ m.
  • a third transfer die 330 is provided, and the third transfer die 330 is provided with a third transfer pattern 331 that is consistent with the pattern of the third pixel region.
  • the third transfer pattern 331 picks up the third quantum dot 235 on the third source substrate 130 and transfers it to the third pixel region of the transparent photoresist layer 600, and gives a certain pressure during the printing process to make the third
  • the quantum dots 235 can be transferred into the semi-cured transparent photoresist layer 600, and uniformly arranged in the transparent photoresist layer 600 to form a third quantum dot pattern 730;
  • a plurality of first quantum dot patterns 710, a plurality of second quantum dot patterns 720, and a plurality of third quantum dot patterns 730 are formed in the transparent photoresist layer 600.
  • Step 8 the transparent photoresist layer 600 is irradiated with ultraviolet light (UV) to be completely cured, so that the plurality of first, second, and third quantum dot patterns 710, 720, The 730 is fixed in the transparent photoresist layer 600, and the fully cured transparent photoresist layer 600 forms a quantum dot color together with the plurality of first, second, and third quantum dot patterns 710, 720, and 730 fixed therein. Filter 700.
  • UV ultraviolet light
  • the first, second, and third quantum dot patterns 710, 720, and 730 are any combination of red, green, and blue quantum dot patterns, that is, the order of formation of red, green, and blue quantum dot patterns is not Limiting, but ensuring that the color of the first quantum dot pattern 710 is the same as the color setting of the first pixel region, and the color of the second quantum dot pattern 720 is the same as the color setting of the second pixel region.
  • the third quantum dot pattern 730 has the same color setting as the third pixel region.
  • the materials of the first, second, and third quantum dots 215, 225, and 235 are selected from the group consisting of II-VI quantum dot materials and I-III-VI quantum dot materials, preferably, selected from CdSe, CdS.
  • One or more materials such as CdTe, ZnS, ZnSe, CuInS, ZnCuInS, etc.
  • These semiconductor quantum dots all follow the quantum size effect, the energy level changes according to the size change of the quantum dots, and the properties also change with the size of the quantum dots. For example, the wavelength of absorption and emission varies with size, so the emission wavelength can be controlled by changing its size.
  • quantum dots By controlling the size of the quantum dots, it is possible to excite monochromatic red light with a wavelength of 630-720 nm, monochromatic green light with a wavelength of 500-560 nm, or a wave. Monochrome blue light with a length of 420-480 nm.
  • the obtained quantum dot color filter can be used in combination with a white backlight, and the red, green, and blue pixel regions of the quantum dot color filter are respectively provided with red,
  • the green, blue quantum dot pattern, under the excitation of the white backlight, the red, green, and blue quantum dot patterns respectively excite red, green, and blue light, thereby realizing the display of three primary colors of red, green, and blue.
  • the present invention further provides a method for fabricating another quantum dot color filter, comprising the following steps:
  • Step 1 ′ as shown in FIG. 2 , a substrate 400 is defined on the substrate 400 defining a plurality of first pixel regions, a plurality of second pixel regions, and a plurality of third pixel regions on the substrate 400
  • the curable transparent photoresist material is coated thereon to form a transparent photoresist layer 600; ultraviolet light (UV) is supplied, and the transparent photoresist layer 600 is irradiated to be semi-cured to exhibit a soft state.
  • UV ultraviolet light
  • the first and second pixel regions are any combination of red and green pixel regions
  • the third pixel region is a blue pixel region.
  • the transparent photoresist layer 600 has a thickness of 0.5 to 5 ⁇ m.
  • the substrate 400 may be a color filter substrate or a thin film transistor array substrate.
  • the substrate 400 selected in this embodiment is a color filter substrate, and includes a base substrate 410, a black matrix 420 and a color photoresist layer 430 disposed on the base substrate 410, and the color photoresist
  • the layer 430 includes a plurality of first color blocking blocks 431, a plurality of second color blocking blocks 432, and a plurality of third color blocking blocks 433; the first, second, and third color blocking blocks 431, 432, and 433 respectively Corresponding to the first, second, and third pixel regions of the substrate 400, and the colors of the first, second, and third color resist blocks 431, 432, and 433 are respectively associated with the first, second, and The color setting of the third pixel area is the same.
  • Step 2 ′ as shown in FIG. 3 , a first source substrate 110 is provided, and a first quantum dot layer 210 is formed on the first source substrate 110 by a self-assembly method, and the first quantum dot layer is formed.
  • 210 is composed of a plurality of first quantum dots 215 uniformly arranged in a single layer on the first source substrate 110.
  • the first quantum dot layer 210 has a thickness of 1-50 ⁇ m.
  • Step 3 ′ as shown in FIG. 4-5 , a first transfer die 310 is provided, and the first transfer die 310 is provided with a first transfer pattern 311 that is consistent with the pattern of the first pixel region.
  • the first transfer pattern 311 picks up the first quantum dot 215 on the first source substrate 110 and transfers it to the first pixel region of the transparent photoresist layer 600, and gives a certain pressure during the printing process.
  • a quantum dot 215 can be transferred into the semi-cured transparent photoresist layer 600 and uniformly arranged in the transparent photoresist layer 600 to form a first quantum dot pattern 710.
  • Step 4 ′ as shown in FIG. 6 , a second source substrate 120 is provided, and a second quantum dot layer 220 is formed on the second source substrate 120 by a self-assembly method, and the second quantum dot layer is formed.
  • 220 is composed of a plurality of second quantum dots 225 uniformly arranged in a single layer on the second source substrate 120.
  • the second quantum dot layer 220 has a thickness of 1-50 ⁇ m.
  • Step 5 ′ as shown in FIGS. 7-8 , a second transfer die 320 is provided, and the second transfer die 320 is provided with a second transfer pattern 321 that is consistent with the pattern of the second pixel region.
  • the second transfer pattern 321 picks up the second quantum dot 225 on the second source substrate 120 and transfers it to the second pixel region of the transparent photoresist layer 600, and gives a certain pressure during the printing process.
  • the second quantum dot 225 can be transferred into the semi-cured transparent photoresist layer 600, and uniformly arranged in the transparent photoresist layer 600 to form a second quantum dot pattern 720;
  • a plurality of first quantum dot patterns 710 and a plurality of second quantum dot patterns 720 are formed in the transparent photoresist layer 600.
  • Step 6 ′ irradiating the transparent photoresist layer 600 with ultraviolet light (UV) to completely cure the plurality of first and second quantum dot patterns 710 and 720.
  • UV ultraviolet light
  • the fully cured transparent photoresist layer 600 and the plurality of first and second quantum dot patterns 710, 720 fixed therein constitute a quantum dot color filter 700'.
  • the first and second quantum dot patterns 710 and 720 are any combination of red and green quantum dot patterns, that is, the order of forming the red and green quantum dot patterns is not limited, but the first quantum needs to be guaranteed.
  • the illuminating color of the dot pattern 710 is the same as the color setting of the first pixel region, and the illuminating color of the second quantum dot pattern 720 is the same as the color setting of the second pixel region.
  • the materials of the first and second quantum dots 215, 225 are selected from the group consisting of Group II-VI quantum dot materials, Group I-III-VI quantum dot materials, preferably, selected from the group consisting of CdSe, CdS, CdTe, and ZnS.
  • One or more materials such as ZnSe, CuInS, ZnCuInS, etc., because these semiconductor quantum dots all follow the quantum size effect, the energy level changes according to the size change of the quantum dots, and the properties also change with the size of the quantum dots, such as absorption.
  • the wavelength of the emission varies with the size, so the emission wavelength can be controlled by changing its size. By controlling the size of the quantum dots, it is possible to excite a monochromatic red light having a wavelength of 630 to 720 nm or a monochromatic green light having a wavelength of 500 to 560 nm.
  • the obtained quantum dot color filter can be used in combination with a blue backlight, and the red pixel region and the green pixel region of the quantum dot color filter are respectively provided with red quantum
  • the dot pattern and the green quantum dot pattern can respectively excite red light and green light under the excitation of the blue backlight, and the quantum dot pattern of the quantum dot color filter is not provided with a quantum dot pattern, so that the blue backlight can be directly Through, the three primary colors of red, green and blue are displayed.
  • the method for manufacturing a quantum dot color filter picks up a quantum dot through a stamp, prints the quantum dot into the semi-cured photoresist layer, and then peels the quantum dot from the stamp, and then Irradiation of UV, complete curing of the photoresist layer, uniform dispersion of quantum dots into the photoresist layer, simplifying the fabrication method of quantum dot layer transfer, saving production cost; eliminating the need to design the sacrificial layer process and dissolving the sacrificial layer to avoid quantum dots The damage is caused; the quantum dots are evenly distributed in the photoresist layer, which improves the use efficiency of the quantum dots; the obtained quantum dot color filter can be used together with the white backlight or the blue backlight to realize the three primary colors of red, green and blue. .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Optical Filters (AREA)

Abstract

一种量子点彩色滤光片的制造方法,通过印模(310)拾取量子点,将量子点印入半固化的光阻层(600)中,然后量子点与印模(310)剥离,再照射UV,将光阻层(600)完全固化,量子点均匀分散到光阻层(600)中,简化了量子点层转印制作方法,节约生产成本;无需设计牺牲层制程及溶解牺牲层的步骤,避免对量子点造成损伤;量子点均匀分布于光阻层(600)中,提高了量子点的使用效率;制得的量子点彩色滤光片(700)可与白色背光或者蓝色背光配合使用,从而实现红、绿、蓝三原色显示。

Description

量子点彩色滤光片的制造方法 技术领域
本发明涉及液晶显示技术领域,尤其涉及一种量子点彩色滤光片的制造方法。
背景技术
液晶显示器(Liquid Crystal Display,LCD)是目前应用最广泛的平板显示器之一,液晶显示面板是液晶显示器的核心组成部分。液晶显示面板通常是由一彩色滤光片基板(Color Filter Substrate,CF Substrate)、一薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)以及一配置于两基板间的液晶层(Liquid Crystal Layer)所构成。传统彩色液晶显示器的红色、绿色、蓝色三种三原色是利用白色背光透过制有红色、绿色、蓝色色阻的彩色滤光基板投射出来的,由于色阻的透过率一直处于较低的水平,液晶显示器的亮度及色彩也因此受到制约。
量子点(Quantumdots,QDs)发光材料是一种应用于液晶显示技术领域的新技术。半导体材料从体相逐渐减小至一定临界尺寸(1~20nm)后,其载流子的波动性变得显著,载流子的运动将受限,导致半导体材料的动能增加,相应的电子结构从体相连续的能级结构变成准分裂的不连续状态,这一现象称作量子尺寸效应,这种半导体纳米粒子即为量子点。常见的量子点的材料为II-VI、III-V、及IV-VI族元素,这些材料的量子点都遵守量子尺寸效应,能级跟随量子点的尺寸变化而变化,性质也随量子点的尺寸变化而变化,例如吸收及发射的波长随尺寸变化而变化等等。利用量子点这一特点,可以通过改变其尺寸来控制发射波长。因此,半导体量子点能够在照明、显示器、激光器以及生物荧光标记等领域有很广泛的应用。
量子点发光材料具有发光光谱集中、色纯度高等优点。将量子点发光材料利用于液晶显示技术领域,可以大幅度提高传统液晶显示器的色域,使液晶显示器的色彩还原能力得到增强。一般使用溶液旋涂法(solution process)制造量子点层,大面积的量子点层可在空气剪切力的影响下制造出来。然而,溶液旋涂法难以将量子点转移至光器件或量子点堆叠的多层架构上,并且难以形成图案化量子点层结构,所以在光电器件中使用具有优异特性的量子点层存在许多限制。
目前,有一种量子点转印(transfer printing)的方法来进行量子点层的 制备,图1为现有的一种采用量子点转印方法来制备量子点层的示意图,该制备方法为:
首先提供一源基板100’,在源基板100’上通过共价键耦接SAM层200’,之后在SAM层200’上形成牺牲层300’,最后将量子点层400’形成在牺牲层300’上;
提供一印模500’设置在量子点层400’上,印模500’通过转印来拾取牺牲层300’和量子点层400’,使牺牲层300’与SAM层200’分离;
将牺牲层300’和量子点层400’浸入可极化溶液中,溶解与量子点层400’连接的牺牲层300’;
最后将量子点层400’转印到光器件的基板上。
这种量子点转印的方法,通过增加一层牺牲层及利用牺牲层的溶解工艺,能够制备量子点层,并将量子点层转移至光器件或是量子点堆叠的多层架构上。但是该方法需要增加一步堆叠牺牲层的制程,以及溶解牺牲层的步骤,使工艺变得繁琐降低了效率,并且在牺牲层溶解的过程中,由于量子点层也进入溶液中,会对量子点造成损伤,损坏量子点层的性能。
发明内容
本发明的目的在于提供一种量子点彩色滤光片的制造方法,在制备量子点层的过程中能够避免量子点的损伤,所制备的量子点层可均匀分布于光阻层中,提高量子点的使用效率,同时能够简化量子点层转印的制作方法,使生产工艺变得简单而高效,节约生产成本。
为实现上述目的,本发明首先提供一种量子点彩色滤光片的制造方法,包括以下步骤:
步骤1、提供一基板,在所述基板上定义出数个第一像素区域、数个第二像素区域、及数个第三像素区域,在所述基板上涂布可固化的透明光阻材料,形成透明光阻层;提供紫外光,对所述透明光阻层进行照射,使其半固化,呈现出松软的状态;
步骤2、提供第一源基板,通过自组装的方法,在所述第一源基板上形成单层的第一量子点层,所述第一量子点层由在所述第一源基板上单层均匀排列的数个第一量子点组成;
步骤3、提供第一转印模,所述第一转印模上设有与第一像素区域的图案一致的第一转印图案,通过所述第一转印图案在第一源基板上拾取第一量子点,并转印至所述透明光阻层的第一像素区域,在印入的过程中给予一定的压力,使第一量子点能够转印到半固化的透明光阻层中,并且均匀 的在所述透明光阻层中排列,形成第一量子点图案;
步骤4、提供第二源基板,通过自组装的方法,在所述第二源基板上形成单层的第二量子点层,所述第二量子点层由在所述第二源基板上单层均匀排列的数个第二量子点组成;
步骤5、提供第二转印模,所述第二转印模上设有与第二像素区域的图案一致的第二转印图案,通过所述第二转印图案在第二源基板上拾取第二量子点,并转印至所述透明光阻层的第二像素区域,在印入的过程中给予一定的压力,使第二量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第二量子点图案;
步骤6、提供第三源基板,通过自组装的方法,在所述第三源基板上形成单层的第三量子点层,所述第三量子点层由在所述第三源基板上单层均匀排列的数个第三量子点组成;
步骤7、提供第三转印模,所述第三转印模上设有与第三像素区域的图案一致的第三转印图案,通过所述第三转印图案在第三源基板上拾取第三量子点,并转印至所述透明光阻层的第三像素区域,在印入的过程中给予一定的压力,使第三量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第三量子点图案;
经过所述步骤2-7,在所述透明光阻层中形成数个第一量子点图案、数个第二量子点图案、及数个第三量子点图案;
步骤8、利用紫外光照射所述透明光阻层,使其完全固化,从而使所述数个第一、第二、第三量子点图案固定于所述透明光阻层中,所述完全固化的透明光阻层与固定于其中的数个第一、第二、第三量子点图案共同构成量子点彩色滤光片。
所述透明光阻层的厚度为0.5~5μm;所述第一量子点层、第二量子点层、第三量子点层的厚度均为1-50μm。
所述基板为彩色滤光基板或者薄膜晶体管阵列基板。
所述第一、第二、第三像素区域为红色、绿色、蓝色像素区域的任意排列组合,所述第一、第二、第三量子点图案为红色、绿色、蓝色量子点图案的任意排列组合,且所述第一量子点图案的发光颜色与第一像素区域的颜色设定相同,所述第二量子点图案的发光颜色与第二像素区域的颜色设定相同,所述第三量子点图案与第三像素区域的颜色设定相同。
所述第一、第二、第三量子点的材料为CdSe,CdS,CdTe,ZnS,ZnSe,CuInS,ZnCuInS中的一种或多种。
本发明还提供另一种量子点彩色滤光片的制造方法,包括以下步骤:
步骤1’、提供一基板,在所述基板上定义出数个第一像素区域、数个第二像素区域、及数个第三像素区域,在所述基板上涂布可固化的透明光阻材料,形成透明光阻层;提供紫外光,对所述透明光阻层进行照射,使其半固化,呈现出松软的状态;
步骤2’、提供第一源基板,通过自组装的方法,在所述第一源基板上形成单层的第一量子点层,所述第一量子点层由在所述第一源基板上单层均匀排列的数个第一量子点组成;
步骤3’、提供第一转印模,所述第一转印模上设有与第一像素区域的图案一致的第一转印图案,通过所述第一转印图案在第一源基板上拾取第一量子点,并转印至所述透明光阻层的第一像素区域,在印入的过程中给予一定的压力,使第一量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第一量子点图案;
步骤4’、提供第二源基板,通过自组装的方法,在所述第二源基板上形成单层的第二量子点层,所述第二量子点层由在所述第二源基板上单层均匀排列的数个第二量子点组成;
步骤5’、提供第二转印模,所述第二转印模上设有与第二像素区域的图案一致的第二转印图案,通过所述第二转印图案在第二源基板上拾取第二量子点,并转印至所述透明光阻层的第二像素区域,在印入的过程中给予一定的压力,使第二量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第二量子点图案;
经过所述步骤2’-5’,在所述透明光阻层中形成数个第一量子点图案、及数个第二量子点图案;
步骤6’、利用紫外光照射所述透明光阻层,使其完全固化,从而使所述数个第一、第二量子点图案固定于所述透明光阻层中,所述完全固化的透明光阻层与固定于其中的数个第一、第二量子点图案共同构成量子点彩色滤光片。
所述透明光阻层的厚度为0.5~5μm;所述第一量子点层、第二量子点层的厚度均为1-50μm。
所述基板为彩色滤光基板或者薄膜晶体管阵列基板。
所述第一、第二像素区域为红色、绿色像素区域的任意排列组合,所述第三像素区域为蓝色像素区域,所述第一、第二量子点图案为红色、绿色量子点图案的任意排列组合,且所述第一量子点图案的发光颜色与第一像素区域的颜色设定相同,所述第二量子点图案的发光颜色与第二像素区域的颜色设定相同。
所述第一、第二量子点的材料为CdSe,CdS,CdTe,ZnS,ZnSe,CuInS,ZnCuInS中的一种或多种。
本发明还提供一种量子点彩色滤光片的制造方法,包括以下步骤:
步骤1’、提供一基板,在所述基板上定义出数个第一像素区域、数个第二像素区域、及数个第三像素区域,在所述基板上涂布可固化的透明光阻材料,形成透明光阻层;提供紫外光,对所述透明光阻层进行照射,使其半固化,呈现出松软的状态;
步骤2’、提供第一源基板,通过自组装的方法,在所述第一源基板上形成单层的第一量子点层,所述第一量子点层由在所述第一源基板上单层均匀排列的数个第一量子点组成;
步骤3’、提供第一转印模,所述第一转印模上设有与第一像素区域的图案一致的第一转印图案,通过所述第一转印图案在第一源基板上拾取第一量子点,并转印至所述透明光阻层的第一像素区域,在印入的过程中给予一定的压力,使第一量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第一量子点图案;
步骤4’、提供第二源基板,通过自组装的方法,在所述第二源基板上形成单层的第二量子点层,所述第二量子点层由在所述第二源基板上单层均匀排列的数个第二量子点组成;
步骤5’、提供第二转印模,所述第二转印模上设有与第二像素区域的图案一致的第二转印图案,通过所述第二转印图案在第二源基板上拾取第二量子点,并转印至所述透明光阻层的第二像素区域,在印入的过程中给予一定的压力,使第二量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第二量子点图案;
经过所述步骤2’-5’,在所述透明光阻层中形成数个第一量子点图案、及数个第二量子点图案;
步骤6’、利用紫外光照射所述透明光阻层,使其完全固化,从而使所述数个第一、第二量子点图案固定于所述透明光阻层中,所述完全固化的透明光阻层与固定于其中的数个第一、第二量子点图案共同构成量子点彩色滤光片;
其中,所述透明光阻层的厚度为0.5~5μm;所述第一量子点层、第二量子点层的厚度均为1-50μm;
其中,所述基板为彩色滤光基板或者薄膜晶体管阵列基板。
本发明的有益效果:本发明提供的量子点彩色滤光片的制造方法,通过印模拾取量子点,将量子点印入半固化的光阻层中,然后量子点与印模 剥离,再照射UV,将光阻层完全固化,量子点均匀分散到光阻层中,简化了量子点层转印制作方法,节约生产成本;无需设计牺牲层制程及溶解牺牲层的步骤,避免对量子点造成损伤;量子点均匀分布于光阻层中,提高了量子点的使用效率;制得的量子点彩色滤光片可与白色背光或者蓝色背光配合使用,从而实现红、绿、蓝三原色显示。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的一种采用量子点转印方法来制备量子点层的示意图;
图2为本发明的量子点彩色滤光片的制造方法第一与第二实施例的步骤1(1’)的示意图;
图3为本发明的量子点彩色滤光片的制造方法第一与第二实施例的步骤2(2’)的示意图;
图4-5为本发明的量子点彩色滤光片的制造方法第一与第二实施例的步骤3(3’)的示意图;
图6为本发明的量子点彩色滤光片的制造方法第一与第二实施例的步骤4(4’)的示意图;
图7-8为本发明的量子点彩色滤光片的制造方法第一与第二实施例的步骤5(5’)的示意图;
图9为本发明的量子点彩色滤光片的制造方法第一实施例的步骤6的示意图;
图10-11为本发明的量子点彩色滤光片的制造方法第一实施例的步骤7的示意图;
图12为本发明的量子点彩色滤光片的制造方法第一实施例的步骤8的示意图;
图13为本发明的量子点彩色滤光片的制造方法第二实施例的步骤6’的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图2-12,本发明提供一种量子点彩色滤光片的制造方法,包括以下步骤:
步骤1、如图2所示,提供一基板400,在所述基板400上定义出数个第一像素区域、数个第二像素区域、及数个第三像素区域,在所述基板400上涂布可固化的透明光阻材料,形成透明光阻层600;提供紫外光(UV),对所述透明光阻层600进行照射,使其半固化,呈现出松软的状态。
具体的,所述第一、第二、第三像素区域为红色、绿色、蓝色像素区域的任意排列组合。
具体的,所述透明光阻层600的厚度为0.5~5μm。
具体的,所述基板400可以为彩色滤光基板,也可以为薄膜晶体管阵列基板。
如图2所示,本实施例选取的基板400为彩色滤光基板,包括衬底基板410、设于所述衬底基板410上的黑色矩阵420和彩色光阻层430,所述彩色光阻层430包括数个第一色阻块431、数个第二色阻块432、及数个第三色阻块433;所述第一、第二、第三色阻块431、432、433分别对应于所述基板400的第一、第二、第三像素区域设置,且所述第一、第二、第三色阻块431、432、433的颜色分别与所述第一、第二、第三像素区域的颜色设定相同。
步骤2、如图3所示,提供第一源基板110,通过自组装的方法,在所述第一源基板110上形成单层的第一量子点层210,所述第一量子点层210由在所述第一源基板110上单层均匀排列的数个第一量子点215组成。
具体的,所述第一量子点层210的厚度为1-50μm。
步骤3、如图4-5所示,提供第一转印模310,所述第一转印模310上设有与第一像素区域的图案一致的第一转印图案311,通过所述第一转印图案311在第一源基板110上拾取第一量子点215,并转印至所述透明光阻层600的第一像素区域,在印入的过程中给予一定的压力,使第一量子点215能够转印到半固化的透明光阻层600中,并且均匀的在所述透明光阻层600中排列,形成第一量子点图案710。
步骤4、如图6所示,提供第二源基板120,通过自组装的方法,在所述第二源基板120上形成单层的第二量子点层220,所述第二量子点层220由在所述第二源基板120上单层均匀排列的数个第二量子点225组成。
具体的,所述第二量子点层220的厚度为1-50μm。
步骤5、如图7-8所示,提供第二转印模320,所述第二转印模320上设有与第二像素区域的图案一致的第二转印图案321,通过所述第二转印图 案321在第二源基板120上拾取第二量子点225,并转印至所述透明光阻层600的第二像素区域,在印入的过程中给予一定的压力,使第二量子点225能够转印到半固化的透明光阻层600中,并且均匀的在所述透明光阻层600中排列,形成第二量子点图案720。
步骤6、如图9所示,提供第三源基板130,通过自组装的方法,在所述第三源基板130上形成单层的第三量子点层230,所述第三量子点层230由在所述第三源基板130上单层均匀排列的数个第三量子点235组成。
具体的,所述第三量子点层230的厚度为1-50μm。
步骤7、如图10-11所示,提供第三转印模330,所述第三转印模330上设有与第三像素区域的图案一致的第三转印图案331,通过所述第三转印图案331在第三源基板130上拾取第三量子点235,并转印至所述透明光阻层600的第三像素区域,在印入的过程中给予一定的压力,使第三量子点235能够转印到半固化的透明光阻层600中,并且均匀的在所述透明光阻层600中排列,形成第三量子点图案730;
经过所述步骤2-7,在所述透明光阻层600中形成数个第一量子点图案710、数个第二量子点图案720、及数个第三量子点图案730。
步骤8、如图12所示,利用紫外光(UV)照射所述透明光阻层600,使其完全固化,从而使所述数个第一、第二、第三量子点图案710、720、730固定于所述透明光阻层600中,所述完全固化的透明光阻层600与固定于其中的数个第一、第二、第三量子点图案710、720、730共同构成量子点彩色滤光片700。
具体的,所述第一、第二、第三量子点图案710、720、730为红色、绿色、蓝色量子点图案的任意排列组合,即红色、绿色、蓝色量子点图案的形成次序不进行限制,但需保证所述第一量子点图案710的发光颜色与第一像素区域的颜色设定相同,所述第二量子点图案720的发光颜色与第二像素区域的颜色设定相同,所述第三量子点图案730与第三像素区域的颜色设定相同。
具体的,所述第一、第二、第三量子点215、225、235的材料选自Ⅱ-Ⅵ族量子点材料、Ⅰ-Ⅲ-Ⅵ族量子点材料,优选的,选自CdSe,CdS,CdTe,ZnS,ZnSe,CuInS,ZnCuInS等材料的一种或多种,这些半导体量子点都遵守量子尺寸效应,能级跟随量子点的尺寸变化而变化,性质也随量子点的尺寸变化而变化,例如吸收及发射的波长随尺寸变化而变化,所以可以通过改变其尺寸来控制发射波长。通过控制量子点的尺寸,可以使其激发出波长为630-720nm的单色红光、波长为500-560nm的单色绿光、或者波 长为420-480nm的单色蓝光。
上述量子点彩色滤光片的制造方法,制得的量子点彩色滤光片可与白色背光配合使用,所述量子点彩色滤光片的红色、绿色、蓝色像素区域分别对应设有红色、绿色、蓝色量子点图案,在白色背光的激发下,所述红色、绿色、蓝色量子点图案分别激发出红、绿、蓝光,从而实现红、绿、蓝三原色显示。
请参阅图2-8及图13,本发明还提供另一种量子点彩色滤光片的制造方法,包括以下步骤:
步骤1’、如图2所示,提供一基板400,在所述基板400上定义出数个第一像素区域、数个第二像素区域、及数个第三像素区域,在所述基板400上涂布可固化的透明光阻材料,形成透明光阻层600;提供紫外光(UV),对所述透明光阻层600进行照射,使其半固化,呈现出松软的状态。
具体的,所述第一、第二像素区域为红色、绿色像素区域的任意排列组合,所述第三像素区域为蓝色像素区域。
具体的,所述透明光阻层600的厚度为0.5~5μm。
具体的,所述基板400可以为彩色滤光基板,也可以为薄膜晶体管阵列基板。
如图2所示,本实施例选取的基板400为彩色滤光基板,包括衬底基板410、设于所述衬底基板410上的黑色矩阵420和彩色光阻层430,所述彩色光阻层430包括数个第一色阻块431、数个第二色阻块432、及数个第三色阻块433;所述第一、第二、第三色阻块431、432、433分别对应于所述基板400的第一、第二、第三像素区域设置,且所述第一、第二、第三色阻块431、432、433的颜色分别与所述第一、第二、第三像素区域的颜色设定相同。
步骤2’、如图3所示,提供第一源基板110,通过自组装的方法,在所述第一源基板110上形成单层的第一量子点层210,所述第一量子点层210由在所述第一源基板110上单层均匀排列的数个第一量子点215组成。
具体的,所述第一量子点层210的厚度为1-50μm。
步骤3’、如图4-5所示,提供第一转印模310,所述第一转印模310上设有与第一像素区域的图案一致的第一转印图案311,通过所述第一转印图案311在第一源基板110上拾取第一量子点215,并转印至所述透明光阻层600的第一像素区域,在印入的过程中给予一定的压力,使第一量子点215能够转印到半固化的透明光阻层600中,并且均匀的在所述透明光阻层600中排列,形成第一量子点图案710。
步骤4’、如图6所示,提供第二源基板120,通过自组装的方法,在所述第二源基板120上形成单层的第二量子点层220,所述第二量子点层220由在所述第二源基板120上单层均匀排列的数个第二量子点225组成。
具体的,所述第二量子点层220的厚度为1-50μm。
步骤5’、如图7-8所示,提供第二转印模320,所述第二转印模320上设有与第二像素区域的图案一致的第二转印图案321,通过所述第二转印图案321在第二源基板120上拾取第二量子点225,并转印至所述透明光阻层600的第二像素区域,在印入的过程中给予一定的压力,使第二量子点225能够转印到半固化的透明光阻层600中,并且均匀的在所述透明光阻层600中排列,形成第二量子点图案720;
经过所述步骤2’-5’,在所述透明光阻层600中形成数个第一量子点图案710、及数个第二量子点图案720。
步骤6’、如图13所示,利用紫外光(UV)照射所述透明光阻层600,使其完全固化,从而使所述数个第一、第二量子点图案710、720固定于所述透明光阻层600中,所述完全固化的透明光阻层600与固定于其中的数个第一、第二量子点图案710、720共同构成量子点彩色滤光片700’。
具体的,所述第一、第二量子点图案710、720为红色、绿色量子点图案的任意排列组合,即红色、绿色量子点图案的形成次序不进行限制,但需保证所述第一量子点图案710的发光颜色与第一像素区域的颜色设定相同,所述第二量子点图案720的发光颜色与第二像素区域的颜色设定相同。
具体的,所述第一、第二量子点215、225的材料选自Ⅱ-Ⅵ族量子点材料、Ⅰ-Ⅲ-Ⅵ族量子点材料,优选的,选自CdSe,CdS,CdTe,ZnS,ZnSe,CuInS,ZnCuInS等材料的一种或多种,原因是这些半导体量子点都遵守量子尺寸效应,能级跟随量子点的尺寸变化而变化,性质也随量子点的尺寸变化而变化,例如吸收及发射的波长随尺寸变化而变化,所以可以通过改变其尺寸来控制发射波长。通过控制量子点的尺寸,可以使其激发出波长为630-720nm的单色红光、或者波长为500-560nm的单色绿光。
上述量子点彩色滤光片的制造方法,制得的量子点彩色滤光片可与蓝色背光配合使用,所述量子点彩色滤光片的红色像素区域和绿色像素区域分别对应设有红色量子点图案和绿色量子点图案,在蓝色背光的激发下可以分别激发出红光和绿光,所述量子点彩色滤光片的蓝色像素区域未设置量子点图案,可以使蓝色背光直接透过,从而实现红、绿、蓝三原色显示。
综上所述,本发明提供的量子点彩色滤光片的制造方法,通过印模拾取量子点,将量子点印入半固化的光阻层中,然后量子点与印模剥离,再 照射UV,将光阻层完全固化,量子点均匀分散到光阻层中,简化了量子点层转印制作方法,节约生产成本;无需设计牺牲层制程及溶解牺牲层的步骤,避免对量子点造成损伤;量子点均匀分布于光阻层中,提高了量子点的使用效率;制得的量子点彩色滤光片可与白色背光或者蓝色背光配合使用,从而实现红、绿、蓝三原色显示。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (13)

  1. 一种量子点彩色滤光片的制造方法,包括以下步骤:
    步骤1、提供一基板,在所述基板上定义出数个第一像素区域、数个第二像素区域、及数个第三像素区域,在所述基板上涂布可固化的透明光阻材料,形成透明光阻层;提供紫外光,对所述透明光阻层进行照射,使其半固化,呈现出松软的状态;
    步骤2、提供第一源基板,通过自组装的方法,在所述第一源基板上形成单层的第一量子点层,所述第一量子点层由在所述第一源基板上单层均匀排列的数个第一量子点组成;
    步骤3、提供第一转印模,所述第一转印模上设有与第一像素区域的图案一致的第一转印图案,通过所述第一转印图案在第一源基板上拾取第一量子点,并转印至所述透明光阻层的第一像素区域,在印入的过程中给予一定的压力,使第一量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第一量子点图案;
    步骤4、提供第二源基板,通过自组装的方法,在所述第二源基板上形成单层的第二量子点层,所述第二量子点层由在所述第二源基板上单层均匀排列的数个第二量子点组成;
    步骤5、提供第二转印模,所述第二转印模上设有与第二像素区域的图案一致的第二转印图案,通过所述第二转印图案在第二源基板上拾取第二量子点,并转印至所述透明光阻层的第二像素区域,在印入的过程中给予一定的压力,使第二量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第二量子点图案;
    步骤6、提供第三源基板,通过自组装的方法,在所述第三源基板上形成单层的第三量子点层,所述第三量子点层由在所述第三源基板上单层均匀排列的数个第三量子点组成;
    步骤7、提供第三转印模,所述第三转印模上设有与第三像素区域的图案一致的第三转印图案,通过所述第三转印图案在第三源基板上拾取第三量子点,并转印至所述透明光阻层的第三像素区域,在印入的过程中给予一定的压力,使第三量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第三量子点图案;
    经过所述步骤2-7,在所述透明光阻层中形成数个第一量子点图案、数个第二量子点图案、及数个第三量子点图案;
    步骤8、利用紫外光照射所述透明光阻层,使其完全固化,从而使所述数个第一、第二、第三量子点图案固定于所述透明光阻层中,所述完全固化的透明光阻层与固定于其中的数个第一、第二、第三量子点图案共同构成量子点彩色滤光片。
  2. 如权利要求1所述的量子点彩色滤光片的制造方法,其中,所述透明光阻层的厚度为0.5~5μm;所述第一量子点层、第二量子点层、第三量子点层的厚度均为1-50μm。
  3. 如权利要求1所述的量子点彩色滤光片的制造方法,其中,所述基板为彩色滤光基板或者薄膜晶体管阵列基板。
  4. 如权利要求1所述的量子点彩色滤光片的制造方法,其中,所述第一、第二、第三像素区域为红色、绿色、蓝色像素区域的任意排列组合,所述第一、第二、第三量子点图案为红色、绿色、蓝色量子点图案的任意排列组合,且所述第一量子点图案的发光颜色与第一像素区域的颜色设定相同,所述第二量子点图案的发光颜色与第二像素区域的颜色设定相同,所述第三量子点图案与第三像素区域的颜色设定相同。
  5. 如权利要求1所述的量子点彩色滤光片的制造方法,其中,所述第一、第二、第三量子点的材料为CdSe,CdS,CdTe,ZnS,ZnSe,CuInS,ZnCuInS中的一种或多种。
  6. 一种量子点彩色滤光片的制造方法,包括以下步骤:
    步骤1’、提供一基板,在所述基板上定义出数个第一像素区域、数个第二像素区域、及数个第三像素区域,在所述基板上涂布可固化的透明光阻材料,形成透明光阻层;提供紫外光,对所述透明光阻层进行照射,使其半固化,呈现出松软的状态;
    步骤2’、提供第一源基板,通过自组装的方法,在所述第一源基板上形成单层的第一量子点层,所述第一量子点层由在所述第一源基板上单层均匀排列的数个第一量子点组成;
    步骤3’、提供第一转印模,所述第一转印模上设有与第一像素区域的图案一致的第一转印图案,通过所述第一转印图案在第一源基板上拾取第一量子点,并转印至所述透明光阻层的第一像素区域,在印入的过程中给予一定的压力,使第一量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第一量子点图案;
    步骤4’、提供第二源基板,通过自组装的方法,在所述第二源基板上形成单层的第二量子点层,所述第二量子点层由在所述第二源基板上单层均匀排列的数个第二量子点组成;
    步骤5’、提供第二转印模,所述第二转印模上设有与第二像素区域的图案一致的第二转印图案,通过所述第二转印图案在第二源基板上拾取第二量子点,并转印至所述透明光阻层的第二像素区域,在印入的过程中给予一定的压力,使第二量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第二量子点图案;
    经过所述步骤2’-5’,在所述透明光阻层中形成数个第一量子点图案、及数个第二量子点图案;
    步骤6’、利用紫外光照射所述透明光阻层,使其完全固化,从而使所述数个第一、第二量子点图案固定于所述透明光阻层中,所述完全固化的透明光阻层与固定于其中的数个第一、第二量子点图案共同构成量子点彩色滤光片。
  7. 如权利要求6所述的量子点彩色滤光片的制造方法,其中,所述透明光阻层的厚度为0.5~5μm;所述第一量子点层、第二量子点层的厚度均为1-50μm。
  8. 如权利要求6所述的量子点彩色滤光片的制造方法,其中,所述基板为彩色滤光基板或者薄膜晶体管阵列基板。
  9. 如权利要求6所述的量子点彩色滤光片的制造方法,其中,所述第一、第二像素区域为红色、绿色像素区域的任意排列组合,所述第三像素区域为蓝色像素区域,所述第一、第二量子点图案为红色、绿色量子点图案的任意排列组合,且所述第一量子点图案的发光颜色与第一像素区域的颜色设定相同,所述第二量子点图案的发光颜色与第二像素区域的颜色设定相同。
  10. 如权利要求6所述的量子点彩色滤光片的制造方法,其中,所述第一、第二量子点的材料为CdSe,CdS,CdTe,ZnS,ZnSe,CuInS,ZnCuInS中的一种或多种。
  11. 一种量子点彩色滤光片的制造方法,包括以下步骤:
    步骤1’、提供一基板,在所述基板上定义出数个第一像素区域、数个第二像素区域、及数个第三像素区域,在所述基板上涂布可固化的透明光阻材料,形成透明光阻层;提供紫外光,对所述透明光阻层进行照射,使其半固化,呈现出松软的状态;
    步骤2’、提供第一源基板,通过自组装的方法,在所述第一源基板上形成单层的第一量子点层,所述第一量子点层由在所述第一源基板上单层均匀排列的数个第一量子点组成;
    步骤3’、提供第一转印模,所述第一转印模上设有与第一像素区域的 图案一致的第一转印图案,通过所述第一转印图案在第一源基板上拾取第一量子点,并转印至所述透明光阻层的第一像素区域,在印入的过程中给予一定的压力,使第一量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第一量子点图案;
    步骤4’、提供第二源基板,通过自组装的方法,在所述第二源基板上形成单层的第二量子点层,所述第二量子点层由在所述第二源基板上单层均匀排列的数个第二量子点组成;
    步骤5’、提供第二转印模,所述第二转印模上设有与第二像素区域的图案一致的第二转印图案,通过所述第二转印图案在第二源基板上拾取第二量子点,并转印至所述透明光阻层的第二像素区域,在印入的过程中给予一定的压力,使第二量子点能够转印到半固化的透明光阻层中,并且均匀的在所述透明光阻层中排列,形成第二量子点图案;
    经过所述步骤2’-5’,在所述透明光阻层中形成数个第一量子点图案、及数个第二量子点图案;
    步骤6’、利用紫外光照射所述透明光阻层,使其完全固化,从而使所述数个第一、第二量子点图案固定于所述透明光阻层中,所述完全固化的透明光阻层与固定于其中的数个第一、第二量子点图案共同构成量子点彩色滤光片;
    其中,所述透明光阻层的厚度为0.5~5μm;所述第一量子点层、第二量子点层的厚度均为1-50μm;
    其中,所述基板为彩色滤光基板或者薄膜晶体管阵列基板。
  12. 如权利要求11所述的量子点彩色滤光片的制造方法,其中,所述第一、第二像素区域为红色、绿色像素区域的任意排列组合,所述第三像素区域为蓝色像素区域,所述第一、第二量子点图案为红色、绿色量子点图案的任意排列组合,且所述第一量子点图案的发光颜色与第一像素区域的颜色设定相同,所述第二量子点图案的发光颜色与第二像素区域的颜色设定相同。
  13. 如权利要求11所述的量子点彩色滤光片的制造方法,其中,所述第一、第二量子点的材料为CdSe,CdS,CdTe,ZnS,ZnSe,CuInS,ZnCuInS中的一种或多种。
PCT/CN2016/078875 2016-02-22 2016-04-08 量子点彩色滤光片的制造方法 WO2017143647A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/031,280 US10338429B2 (en) 2016-02-22 2016-04-08 Method for manufacturing quantum dot color filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610096445.3 2016-02-22
CN201610096445.3A CN105511155B (zh) 2016-02-22 2016-02-22 量子点彩色滤光片的制造方法

Publications (1)

Publication Number Publication Date
WO2017143647A1 true WO2017143647A1 (zh) 2017-08-31

Family

ID=55719245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078875 WO2017143647A1 (zh) 2016-02-22 2016-04-08 量子点彩色滤光片的制造方法

Country Status (3)

Country Link
US (1) US10338429B2 (zh)
CN (1) CN105511155B (zh)
WO (1) WO2017143647A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773216A (zh) * 2017-01-13 2017-05-31 深圳市华星光电技术有限公司 一种液晶显示器及其制备方法
CN107331758B (zh) * 2017-06-27 2019-03-05 南方科技大学 一种Micro LED显示器件的制备方法
CN112863377B (zh) * 2021-01-11 2023-01-10 深圳市华星光电半导体显示技术有限公司 一种量子点彩色滤光片的制作方法及显示面板
CN114744084A (zh) * 2022-03-24 2022-07-12 惠科股份有限公司 量子点膜的制备方法、量子点膜及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983230A (zh) * 2011-09-06 2013-03-20 三星电子株式会社 量子点层的制造方法和转移方法以及量子点光电器件
CN203465442U (zh) * 2013-07-23 2014-03-05 京东方科技集团股份有限公司 彩色滤光片及液晶面板、显示装置
CN204439860U (zh) * 2014-07-22 2015-07-01 翰博高新材料(合肥)股份有限公司 一种量子点扩散膜
JP2016021056A (ja) * 2014-06-20 2016-02-04 富士フイルム株式会社 転写材料、液晶パネルの製造方法および液晶表示装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983230A (zh) * 2011-09-06 2013-03-20 三星电子株式会社 量子点层的制造方法和转移方法以及量子点光电器件
CN203465442U (zh) * 2013-07-23 2014-03-05 京东方科技集团股份有限公司 彩色滤光片及液晶面板、显示装置
JP2016021056A (ja) * 2014-06-20 2016-02-04 富士フイルム株式会社 転写材料、液晶パネルの製造方法および液晶表示装置の製造方法
CN204439860U (zh) * 2014-07-22 2015-07-01 翰博高新材料(合肥)股份有限公司 一种量子点扩散膜

Also Published As

Publication number Publication date
US20180088407A1 (en) 2018-03-29
CN105511155A (zh) 2016-04-20
US10338429B2 (en) 2019-07-02
CN105511155B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2017075879A1 (zh) 量子点彩膜基板及其制作方法与液晶显示装置
US10120232B2 (en) Methods of fabricating quantum dot color film substrates
US10061154B2 (en) Method for manufacturing quantum dots display panel
WO2017092090A1 (zh) 量子点彩膜基板的制作方法
US9897912B2 (en) Color filter film manufacturing method and color filter film
Bae et al. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit
US10338428B2 (en) Quantum dot display apparatus and manufacturing method thereof
US20170261849A1 (en) Method for manufacturing color filter substrate
US9804489B2 (en) Method for manufacturing quantum dot color filter
WO2017080064A1 (zh) 量子点彩膜基板的制备方法及量子点彩膜基板
CN105182594B (zh) 显示基板
WO2017092132A1 (zh) 量子点彩膜基板的制作方法
WO2017143647A1 (zh) 量子点彩色滤光片的制造方法
WO2014190604A1 (zh) 量子点彩色滤光片及其制作方法、显示装置
WO2018227678A1 (zh) 蓝光吸收截止膜及蓝光显示装置
CN105355726B (zh) 量子点层图形化的方法及量子点彩膜的制备方法
WO2019218849A1 (zh) 显示基板及其制造方法、显示面板
CN105700222B (zh) 量子点彩膜基板及其制作方法、显示装置
TW202014769A (zh) 顯示面板及其製造方法
Tian et al. RETRACTED: Full-color micro-LED displays with cadmium-free quantum dots patterned by photolithography technology
WO2018214191A1 (zh) 显示面板中有机功能层的制作方法
CN111650678A (zh) 一种高亮度量子点膜
US20180088408A1 (en) Color film substrate, manufacturing metho, and liquid crystal device
WO2017215032A1 (zh) 色阻层的制作方法
CN113985511B (zh) 一种彩色滤光片及其制备方法和显示设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15031280

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891101

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891101

Country of ref document: EP

Kind code of ref document: A1