WO2017079889A1 - 一种导热粘接剂、通信终端的散热装置及通信终端 - Google Patents

一种导热粘接剂、通信终端的散热装置及通信终端 Download PDF

Info

Publication number
WO2017079889A1
WO2017079889A1 PCT/CN2015/094169 CN2015094169W WO2017079889A1 WO 2017079889 A1 WO2017079889 A1 WO 2017079889A1 CN 2015094169 W CN2015094169 W CN 2015094169W WO 2017079889 A1 WO2017079889 A1 WO 2017079889A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
conductive adhesive
heat dissipation
communication terminal
plate
Prior art date
Application number
PCT/CN2015/094169
Other languages
English (en)
French (fr)
Inventor
张波
张臣雄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580083844.XA priority Critical patent/CN108353516A/zh
Priority to PCT/CN2015/094169 priority patent/WO2017079889A1/zh
Publication of WO2017079889A1 publication Critical patent/WO2017079889A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to the technical field of communication devices, and in particular, to a heat conductive adhesive, a heat sink of a communication terminal, and a communication terminal.
  • the heat dissipation efficiency of the heat dissipation device is improved by improving the material and structure of the heat conduction member and the heat dissipation member, and the heat transfer effect at the joint between the components (the heat conduction member and the heat dissipation member) is not Too much improvement affects the heat dissipation of the entire heat sink.
  • the invention provides a heat conductive adhesive, a heat dissipation device of a communication terminal and a communication terminal, which are used for improving the heat dissipation effect of the communication terminal.
  • a thermally conductive adhesive is provided, the thermally conductive adhesive being a thermally conductive adhesive doped with graphene nanosheets.
  • the graphene nanosheets occupy a mass fraction of 30% to 50%.
  • the graphene nanosheets occupy a mass fraction of 35% to 40%.
  • the thermal conductive adhesive is copper glue or silver glue.
  • a heat dissipating device of a communication terminal wherein the communication terminal comprises a heat dissipating chip, wherein the heat dissipating device comprises: a heat conducting plate and a heat dissipating plate, wherein the heat dissipating plate is thermally conductive with the heat conducting plate by a thermal conductive adhesive
  • the heat conducting plate is thermally connected to the heat dissipating chip by a heat conductive adhesive; wherein the heat conductive adhesive is the heat conductive adhesive according to any one of the above.
  • the surface of the heat dissipation plate is coated with a graphene layer.
  • the graphene layer is deposited on the surface layer of the heat dissipation plate by chemical vapor deposition or liquid phase deposition.
  • the heat dissipation plate is provided with a plurality of heat dissipation structures.
  • the heat dissipation structure is a fin or a sawtooth structure.
  • the heat dissipation plate is a copper plate.
  • the heat conducting plate is a copper film, a graphene film, or a graphite film.
  • a communication terminal comprising the heat dissipation device of any of the above.
  • the thermal conductive adhesive adopts a graphene material doped in the thermal conductive adhesive to improve the heat conduction efficiency of the thermal conductive adhesive, thereby improving the heat transfer effect between the various components of the heat dissipating device, thereby improving the heat dissipating effect of the heat dissipating device.
  • FIG. 1 is a schematic view of a thermally conductive adhesive provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a heat dissipation device of a communication terminal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a chip and a heat sink connected according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a heat dissipation plate and a heat conduction plate according to an embodiment of the present invention.
  • Fig. 1 shows a schematic view of a thermally conductive adhesive shown in the present invention.
  • the embodiment of the invention provides a thermal conductive adhesive which is a thermal conductive adhesive 1 doped with graphene nanosheets 2.
  • the thermal conductivity of graphene (5,300Wm-1K-1), the piezoresistive coefficient (1.8 * 104), Young's modulus (1 TPa), the carrier mobility (150,000cm 2 V -1s-1) is the highest; the thickness is the smallest (0.3 nm); in addition, its chemical properties are stable (400 ° C in air can be stable), and the density is small (2,200 kg / m 3 ).
  • the thermal conductive adhesive provided in this embodiment adopts the thermal conductive adhesive 1 doped with the graphene nanosheet 2, can effectively improve the thermal conductivity of the thermal conductive adhesive 1, and improve the heat transfer efficiency. .
  • the mass fraction of the graphene nanosheet 2 is 30% to 50%. That is, the mass fraction of the graphene nanosheet 2 may be 30%, 32%, 35%, 37%, 40%, 43%, 45%, 47%, 50%, etc., any between 30% and 50%. fraction.
  • the mass fraction of the graphene nanosheet 2 may be 30%, 32%, 35%, 37%, 40%, 43%, 45%, 47%, 50%, etc., any between 30% and 50%. fraction.
  • the mass fraction of the graphene nanosheet 2 is preferably 35% to 40%, that is, the mass of the graphene nanosheet 2 is 35. %, 35.5%, 36%, 36.5%, 37%, 37.5%, 38%, 38.5%, 39%, 39.5%, 40%, etc., any mass fraction between 35% and 40%.
  • the thermal conductive adhesive 1 in the thermal conductive adhesive can adopt the common thermal conductive adhesive 1 in the prior art.
  • the thermal conductive adhesive 1 is copper adhesive or silver adhesive, or other thermal conductive adhesive having good bonding ability and thermal conductivity. .
  • FIG. 2 is a schematic structural diagram of a heat dissipation device of a communication terminal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a connection between a chip 3 and a heat dissipation device according to an embodiment of the present invention
  • FIG. A schematic diagram of the heat dissipation plate 6 and the heat conduction plate 5 are provided for the embodiment of the present invention.
  • the embodiment of the present invention further provides a heat dissipation device for a communication terminal.
  • the communication terminal includes a heat dissipation chip 3.
  • the heat dissipation device includes a heat conduction plate 5 and a heat dissipation plate 6.
  • the heat dissipation plate 6 is thermally connected to the heat conduction plate 5 through the heat conductive adhesive 4.
  • the heat conducting plate 5 is thermally connected to the heat dissipating chip 3 via a thermally conductive adhesive 4; wherein the thermally conductive adhesive 4 is the thermally conductive adhesive 4 of any of the above.
  • the heat dissipation plate 6 and the heat conduction plate 5 in the heat dissipation device are thermally transferred by the heat conductive adhesive 4, and when the heat dissipation device is connected to the chip 3, the heat conduction adhesive provided in the above embodiment is also used.
  • the agent 4 enables heat to be transferred from the chip 3 to the heat sink more quickly and efficiently, and the heat transfer effect in the heat sink is improved, thereby improving the heat dissipation effect.
  • the heat dissipation device mainly includes a heat dissipation plate 6 and a heat conduction plate 5, wherein the heat conduction plate 5 serves as a heat conduction channel for transferring heat on the chip 3 to the heat dissipation plate 6; The heat transferred from the heat conducting plate 5 is dissipated to cool the chip 3.
  • the heat conducting plate 5 when the heat conducting portion is disposed, the heat conducting plate 5 is used, and in order to improve the heat conduction efficiency, the heat conducting plate 5 is prepared by using a material having a high thermal conductivity.
  • the heat conducting plate 5 is a copper film.
  • a film such as a graphene film or a graphite film, a copper mold, a graphene film, and a graphite film have a high conductivity The thermal efficiency, so that the heat of the chip 3 is quickly spread out, and the heat dissipation effect is improved.
  • the heat conducting board 5 When the heat conducting board 5 is specifically disposed, the heat conducting board 5 is disposed on the main board, and the main board is disposed in the mobile device and is used for carrying the chip 3. Specifically, the heat conducting board 5 is laid on the main board, and the chip 3 is fixed on the heat conducting board 5 In order to improve the heat transfer efficiency between the chip 3 and the heat conducting plate 5, in the present embodiment, the chip 3 is thermally connected to the heat conducting plate 5 by the heat conductive adhesive 4 provided in the above specific embodiment.
  • the heat dissipating portion of the heat dissipating device adopts the structure of the heat dissipating plate 6.
  • the heat dissipating structure is thermally connected to the heat conducting plate 5 by using the heat conductive adhesive 4 in the above embodiment, so that heat transferred on the heat conducting plate 5 can be quickly transmitted to the heat radiating plate 6, thereby improving the efficiency of heat transfer and thereby improving.
  • the heat dissipation efficiency of the heat sink is provided with a plurality of heat dissipation structures, thereby increasing the heat dissipation area of the heat dissipation plate 6, thereby improving the heat dissipation efficiency.
  • the heat dissipation structure is a fin or a sawtooth structure, which can effectively increase the surface area of the heat dissipation plate 6, thereby improving the overall heat dissipation effect.
  • the heat dissipation plate 6 can be made of a copper plate 61 having better heat dissipation, or can be made of other materials having better heat dissipation effects. Made. More preferably, the surface of the heat sink 6 is coated with a graphene layer 62. As can be seen from the description of the above embodiment, the graphene layer 62 has better thermal conductivity. Therefore, the heat transferred from the heat conducting plate 5 can rapidly diffuse heat through the graphene layer 62 to improve the heat dissipation effect.
  • the graphene layer 62 is deposited on the surface layer of the heat dissipation plate 6 by chemical vapor deposition or liquid phase, so that the formed graphene layer 62 wraps the entire heat dissipation plate 6 to increase the surface area of the entire graphene layer 62. To improve the heat dissipation effect.
  • the thermal conductivity of graphene (5,300 Wm-1K-1), piezoresistive coefficient (1.8*104), Young's modulus (1TPa), and carrier mobility (150,000 cm 2 ) are known.
  • V-1s-1) is the highest; the thickness is the smallest (0.3nm); in addition, its chemical properties are stable (400 ° C in air can be stable), the density is small (2,200kg / m 3 ), especially its pole High thermal conductivity. Therefore, in the present embodiment, the connecting material between the two components in the heat dissipating device uses the heat conductive adhesive 4 containing the graphene layer 62, and the surface in the heat dissipating structure also wraps the graphene layer 62, thereby fully utilizing the graphite.
  • the structure formed by the graphene material is not in direct contact with the chip 3, thereby avoiding the damage caused by the graphene material manufacturing process to the chip 3. (the growth of graphene is high temperature and high pressure, It will have a great impact on the chip 3), and at the same time it will reduce the difficulty of the manufacturing process of the entire communication terminal device.
  • the embodiment of the invention further provides a communication terminal, which comprises the heat dissipation device provided in any of the above embodiments.
  • the connecting material between the two components in the heat dissipating device adopts a heat conductive adhesive containing a graphene layer, and the surface in the heat dissipating structure also wraps the graphene layer, thereby fully utilizing the heat conducting property of the graphene material.
  • the efficiency of transferring heat between components (achieved by a thermally conductive adhesive) and the heat dissipation effect (achieved by a graphene layer) effectively improve the heat dissipation effect of the heat sink.
  • the structure formed by the graphene material is not in direct contact with the chip, thereby avoiding damage to the chip caused by the manufacturing process of the graphene material (the growth of graphene is high temperature and high pressure, the chip is It will have a great impact), while also reducing the difficulty of the production process of the entire communication terminal equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明涉及到通信设备的技术领域,公开了一种导热粘接剂、通信终端的散热装置及通信终端。该导热粘接剂为参杂有石墨烯纳米片的导热胶。在本发明中,导热粘接剂采用在导热胶中掺杂石墨烯材料,提高导热粘接剂的导热效率,从而提高了散热装置各个部件之间的热传递效果,进而提高了散热装置的散热效果。

Description

一种导热粘接剂、通信终端的散热装置及通信终端 技术领域
本发明涉及到通信设备的技术领域,尤其涉及到一种导热粘接剂、通信终端的散热装置及通信终端。
背景技术
作为当今高新技术的重要基本单元,半导体芯片与器件与人们的生活息息相关,无论是在航空航天领域的火箭、大飞机,还是日常生活中的智能手机、平板电脑中,人们都能够直接或间接地感受到它们所带来的便利。然而,芯片的散热问题往往限制了芯片的性能指标提升的重要因素。究其原因,是半导体器件工作时因温度升高而导致的可靠性下降。一般来说,温度每升高10摄氏度,器件的寿命会缩短为原来的一半。因此,确保芯片散热通畅是决定电子系统可靠性的关键。而现有技术中的散热装置为了提高散热效率往往通过改进导热部件及散热部件的材料以及结构来提高散热装置的散热效率,对于部件之间(导热部件及散热部件)连接处的热传递效果没有太大的改善,影响到整个散热装置的散热效果。
发明内容
本发明提供了一种导热粘接剂、通信终端的散热装置及通信终端,用以提高通信终端的散热效果。
第一方面,提供了一种导热粘接剂,该导热粘接剂为参杂有石墨烯纳米片的导热胶。
结合上述第一方面,在第一种可能的实现方式中,所述石墨烯纳米片所占的质量份数为:30%~50%。
结合上述第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述石墨烯纳米片所占的质量分数为35%~40%。
结合上述第一方面、第一方面的第一种可能的实现方式、第一方面的第 二种可能的实现方式,在第三种可能的实现方式中,所述导热胶为铜胶或银胶。
第二方面一种通信终端的散热装置,所述通信终端包括散热芯片,其特征在于,所述散热装置包括:导热板及散热板,所述散热板通过导热粘接剂与所述导热板导热连接,所述导热板通过导热粘接剂与所述散热芯片导热连接;其中,所述导热粘接剂为上述任一项所述的导热粘接剂。
结合上述第二方面,在第一种可能的实现方式中,所述散热板的表面包裹有石墨烯层。
结合上述第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述石墨烯层通过化学气相沉积或液相沉积在所述散热板的表层。
结合上述第二方面,在第三种可能的实现方式中,所述散热板上设置有多个散热结构。
结合上述第二方面的第三种可能的实现方式,在第四种可能的实现方式中,所述散热结构为翅片或者锯齿结构。
结合上述第二方面、第二方面的第一种可能的实现方式、第二方面的第二种可能的实现方式、第二方面的第三种可能的实现方式、第二方面的第四种可能的实现方式,在第五种可能的实现方式中,所述散热板为铜板。
结合上述第二方面的第五种可能的实现方式,在第六种可能的实现方式中,所述导热板为铜膜、石墨烯膜或石墨膜。
第三方面,提供了一种通信终端,该通信终端包括上述任一项所述的散热装置。
根据第一方面提供的导热粘接剂、第二方面提供的通信终端的散热装置及第三方面提供的通信终端。导热粘接剂采用在导热胶中掺杂石墨烯材料,提高导热粘接剂的导热效率,从而提高了散热装置各个部件之间的热传递效果,进而提高了散热装置的散热效果。
附图说明
图1为本发明实施例提供的导热粘接剂的示意图;
图2为本发明实施例提供的通信终端的散热装置的结构示意图;
图3为本发明实施例提供的芯片与散热装置连接的示意图;
图4为本发明实施例提供的散热板与导热板连接的示意图。
附图标记:
1-导热胶 2-石墨烯纳米片 3-芯片
4-导热粘接剂 5-导热板 6-散热板
61-铜板 62-石墨烯层
具体实施方式
以下结合附图对本实用新型的具体实施例进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本实用新型,并不用于限制本实用新型。
如图1所示,图1示出了本发明所示的导热粘接剂的示意图。
本发明实施例提供了一种导热粘接剂,该导热粘接剂为参杂有石墨烯纳米片2的导热胶1。
在本发明实施例中,石墨烯的热导(5,300Wm-1K-1)、压阻系数(1.8*104)、杨氏模量(1TPa)、载流子迁移率(150,000cm2V-1s-1)都是最高的;厚度最小(0.3nm);另外其化学性质稳定(空气中400℃可以稳定存在),密度较小(2,200kg/m3)。特别是其极高的热传导性,因此,本实施例中提供的导热粘接剂采用掺杂有石墨烯纳米片2的导热胶1可以有效的提高导热胶1的导热性能,提高了热传输效率。
在具体的实施例中,本发明实施例提供的导热粘接剂中,石墨烯纳米片2所占的质量份数为:30%~50%。即石墨烯纳米片2所占的质量分数可以为30%、32%、35%、37%、40%、43%、45%、47%、50%等任意介于30%~50%的质量分数。从而有效的提高了导热粘接剂的导热效率,同时,也避免了掺 杂过多的石墨烯纳米片2导致导热粘接剂的粘接力下降。
为了实现导热粘接剂能够具有良好的导热性及粘接能力,较佳的,石墨烯纳米片2所占的质量分数为35%~40%,即石墨烯纳米片2的质量分为为35%、35.5%、36%、36.5%、37%、37.5%、38%、38.5%、39%、39.5%、40%等任意介于35%~40%的质量分数。
其中,导热粘接剂中的导热胶1可以采用现有技术中的常用导热胶1,具体的,导热胶1为铜胶或银胶,或者其他具有良好粘接能力及导热性能的导热胶1。
一并参考图2、图3及图4,图2为本发明实施例提供的通信终端的散热装置的结构示意图,图3为本发明实施例提供的芯片3与散热装置连接的示意图,图4为本发明实施例提供的散热板6与导热板5连接的示意图。
本发明实施例还提供了一种通信终端的散热装置,通信终端包括散热芯片3,该散热装置包括:导热板5及散热板6,散热板6通过导热粘接剂4与导热板5导热连接,导热板5通过导热粘接剂4与散热芯片3导热连接;其中,导热粘接剂4为上述任一项的导热粘接剂4。
在上述实施例中,散热装置中的散热板6及导热板5之间通过导热粘接剂4进行热传输,且在散热装置与芯片3连接时,其也采用上述实施例中提供的导热粘接剂4,使得热量能够更佳快捷的从芯片3传输到散热装置中,并且提高了热量在散热装置中的传输效果,进而提高了散热效果。
为了方便理解本发明实施例提供的散热装置的结构以及工作原理,下面结合具体的附图以及实施例对其结构进行详细的说明。
如图2所示,本实施例提供的散热装置主要包括散热板6及导热板5,其中导热板5作为导热通道,用于将芯片3上的热量传递到散热板6上;散热板6用于将导热板5传输过来的热量散发出去,从而对芯片3进行降温。
具体的,如图2所示,在设置时,导热部分采用导热板5,且为了提高导热效率,导热板5采用热传导系数较高的材料制备而成,具体的,导热板5为铜膜、石墨烯膜或石墨膜等膜材,铜模、石墨烯膜及石墨膜具有较高的导 热效率,从而提高芯片3的热量快速传播出去,提高散热效果。
在导热板5具体设置时,导热板5设置在主板上,该主板设置在移动设备内并用于承载芯片3,具体的,导热板5平铺在该主板上,芯片3固定在该导热板5上,为了提高芯片3与导热板5之间的传热效率,在本实施例中,芯片3通过上述具体实施中提供的导热粘接剂4将芯片3与导热板5导热连接。
本实施例中散热装置的散热部分为采用散热板6结构。该散热结构采用上述实施例中的导热粘接剂4与导热板5导热连接,从而使得在导热板5上传播的热量能够快速的传递到散热板6上,提高了热传递的效率,进而提高了散热装置的散热效率。具体的,为了提高散热效果,散热板6上设置有多个散热结构,从而增加了散热板6的散热面积,进而提高了散热效率。具体的,该散热结构为翅片或者锯齿结构,可以有效地增加散热板6的表面积,进而提高整个散热效果。
如图3所示,作为一种提高散热效果的优选的实施例,在本实施例中,该散热板6可以采用散热较佳的铜板61,或者可以采用其他具有较好的散热效果的材料制作而成。更佳的,该散热板6的表面包裹有石墨烯层62。由上述实施例的描述可以看出,石墨烯层62具有较好的导热性能,因此,从导热板5传递过来的热量可以快速的通过石墨烯层62进行热量的扩散,提高散热效果。在具体设置时,石墨烯层62通过化学气相沉积或液相沉积在散热板6的表层,从而使得形成的石墨烯层62将整个散热板6包裹起来,以增大整个石墨烯层62的表面积,进而提高散热的效果。
通过上述实施例的描述可知,石墨烯的热导(5,300Wm-1K-1)、压阻系数(1.8*104)、杨氏模量(1TPa)、载流子迁移率(150,000cm2V-1s-1)都是最高的;厚度最小(0.3nm);另外其化学性质稳定(空气中400℃可以稳定存在),密度较小(2,200kg/m3),特别是其具有极高的热传导性。因此,在本实施例中,散热装置中两个部件之间的连接材料采用包含有石墨烯层62的导热粘接剂4,散热结构中的表面也包裹了石墨烯层62,从而充分利用石墨烯 材料的导热特性,改善部件之间传递热量的效率(通过导热粘接剂4实现),以及散热效果(通过石墨烯层62实现),有效的改善了散热装置的散热效果。并且在本实施例中,采用的石墨烯材料形成的结构不与芯片3直接接触,从而避免了石墨烯材料制作工艺要求对芯片3带来的损害(石墨烯的生长是高温高压的条件下,对芯片3会有很大的影响),同时还降低了整个通信终端设备的制作工艺难度。
本发明实施例还提供了一种通信终端,该通信终端包括上述实施例中提供的任一种的散热装置。
在本实施例中,散热装置中两个部件之间的连接材料采用包含有石墨烯层的导热粘接剂,散热结构中的表面也包裹了石墨烯层,从而充分利用石墨烯材料的导热特性,改善部件之间传递热量的效率(通过导热粘接剂实现),以及散热效果(通过石墨烯层实现),有效的改善了散热装置的散热效果。并且在本实施例中,采用的石墨烯材料形成的结构不与芯片直接接触,从而避免了石墨烯材料制作工艺要求对芯片带来的损害(石墨烯的生长是高温高压的条件下,对芯片会有很大的影响),同时还降低了整个通信终端设备的制作工艺难度。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (12)

  1. 一种导热粘接剂,其特征在于,所述导热粘接剂为参杂有石墨烯纳米片的导热胶。
  2. 如权利要求1所述的导热粘接剂,其特征在于,所述石墨烯纳米片所占的质量份数为:30%~50%。
  3. 如权利要求2所述的导热粘接剂,其特征在于,所述石墨烯纳米片所占的质量分数为35%~40%。
  4. 如权利要求1~3任一项所述的导热粘接剂,其特征在于,所述导热胶为铜胶或银胶。
  5. 一种通信终端的散热装置,所述通信终端包括散热芯片,其特征在于,所述散热装置包括:导热板及散热板,所述散热板通过导热粘接剂与所述导热板导热连接,所述导热板通过导热粘接剂与所述散热芯片导热连接;其中,所述导热粘接剂为权利要求1~4任一项所述的导热粘接剂。
  6. 如权利要求5所述的通信终端的散热装置,其特征在于,所述散热板的表面包裹有石墨烯层。
  7. 如权利要求6所述的通信终端的散热装置,其特征在于,所述石墨烯层通过化学气相沉积或液相沉积在所述散热板的表层。
  8. 如权利要求5所述的通信终端的散热装置,其特征在于,所述散热板上设置有多个散热结构。
  9. 如权利要求8所述的通信终端的散热装置,其特征在于,所述散热结构为翅片或者锯齿结构。
  10. 如权利要求5~9任一项所述的通信终端的散热装置,其特征在于,所述散热板为铜板。
  11. 如权利要求5所述的通信终端的散热装置,其特征在于,所述导热板为铜膜、石墨烯膜或石墨膜。
  12. 一种通信终端,其特征在于,包括如权利要求5~11任一项所述的散 热装置。
PCT/CN2015/094169 2015-11-10 2015-11-10 一种导热粘接剂、通信终端的散热装置及通信终端 WO2017079889A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580083844.XA CN108353516A (zh) 2015-11-10 2015-11-10 一种导热粘接剂、通信终端的散热装置及通信终端
PCT/CN2015/094169 WO2017079889A1 (zh) 2015-11-10 2015-11-10 一种导热粘接剂、通信终端的散热装置及通信终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094169 WO2017079889A1 (zh) 2015-11-10 2015-11-10 一种导热粘接剂、通信终端的散热装置及通信终端

Publications (1)

Publication Number Publication Date
WO2017079889A1 true WO2017079889A1 (zh) 2017-05-18

Family

ID=58694527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094169 WO2017079889A1 (zh) 2015-11-10 2015-11-10 一种导热粘接剂、通信终端的散热装置及通信终端

Country Status (2)

Country Link
CN (1) CN108353516A (zh)
WO (1) WO2017079889A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609040A (zh) * 2018-12-11 2019-04-12 苏州鸿凌达电子科技有限公司 一种以石墨烯纳米凝胶作为粘接层粘接双层石墨片的方法
CN113629350A (zh) * 2021-08-06 2021-11-09 东莞塔菲尔新能源科技有限公司 一种动力电池导热涂层隔膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103289325A (zh) * 2013-06-17 2013-09-11 中国科学院福建物质结构研究所 一种高导热热固性树脂及其制备方法
CN104774573A (zh) * 2015-03-30 2015-07-15 中国电子科技集团公司第三十八研究所 一种含石墨烯的高性能导电银胶及其制备方法
CN204578942U (zh) * 2015-01-15 2015-08-19 蔡承恩 散热组件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103289325A (zh) * 2013-06-17 2013-09-11 中国科学院福建物质结构研究所 一种高导热热固性树脂及其制备方法
CN204578942U (zh) * 2015-01-15 2015-08-19 蔡承恩 散热组件
CN104774573A (zh) * 2015-03-30 2015-07-15 中国电子科技集团公司第三十八研究所 一种含石墨烯的高性能导电银胶及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609040A (zh) * 2018-12-11 2019-04-12 苏州鸿凌达电子科技有限公司 一种以石墨烯纳米凝胶作为粘接层粘接双层石墨片的方法
CN113629350A (zh) * 2021-08-06 2021-11-09 东莞塔菲尔新能源科技有限公司 一种动力电池导热涂层隔膜及其制备方法

Also Published As

Publication number Publication date
CN108353516A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2018121162A1 (zh) 芯片封装结构及其制造方法
WO2015139213A1 (zh) 一种散热组件及电子设备
TWI661026B (zh) 熱傳導性接著薄片、其製造方法及使用其之電子裝置
US10945331B2 (en) Mobile display device
KR101796206B1 (ko) 그라파이트 점착제층 방열패드
TWI543315B (zh) A carrier and a package structure having the carrier
CN107408545A (zh) 用于热管理的能量储存材料以及相关联的技术和配置
TWI633636B (zh) 電子裝置及其製造方法
CN105315970A (zh) 一种用于芯片检测的热界面材料及其制备方法
WO2017079889A1 (zh) 一种导热粘接剂、通信终端的散热装置及通信终端
CN108227350B (zh) 数字微型反射投影机
JPH1056114A (ja) 半導体装置
WO2017185960A1 (zh) 一种终端设备以及相关方法
TWI314039B (en) Apparatus and system with heat spreader and method for using heat spreader
JP2007096279A5 (zh)
CN106783753A (zh) 半导体器件
TW201212802A (en) Heat dissipation apparatus
US10117355B2 (en) Heat dissipation foil and methods of heat dissipation
Bao et al. Thermal management technology of IGBT modules based on two-dimensional materials
JP2010287866A5 (zh)
TWM438651U (en) Stacked type heat dissipation module of electronic device
WO2016131296A1 (zh) 导热件和电子终端
WO2022041949A1 (zh) 半导体结构
US20220240418A1 (en) Thermal conductive structure and electronic device
CN208315541U (zh) 导热绝缘板及变流装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15908019

Country of ref document: EP

Kind code of ref document: A1