WO2017078504A2 - 공정가스 분석장치 - Google Patents

공정가스 분석장치 Download PDF

Info

Publication number
WO2017078504A2
WO2017078504A2 PCT/KR2016/012756 KR2016012756W WO2017078504A2 WO 2017078504 A2 WO2017078504 A2 WO 2017078504A2 KR 2016012756 W KR2016012756 W KR 2016012756W WO 2017078504 A2 WO2017078504 A2 WO 2017078504A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
mirror
light
gas cell
outside
Prior art date
Application number
PCT/KR2016/012756
Other languages
English (en)
French (fr)
Other versions
WO2017078504A3 (ko
Inventor
강상우
이상준
이창석
Original Assignee
한국표준과학연구원
코리아스펙트랄프로덕츠㈜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원, 코리아스펙트랄프로덕츠㈜ filed Critical 한국표준과학연구원
Publication of WO2017078504A2 publication Critical patent/WO2017078504A2/ko
Publication of WO2017078504A3 publication Critical patent/WO2017078504A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Definitions

  • the present invention relates to an apparatus for analyzing a process gas, and in particular, by quantitatively or qualitatively analyzing a process gas flowing in a process chamber or an exhaust line thereof, whether a process is properly progressing under a desired condition in a process chamber, or an environmental pollutant gas is discharged.
  • the present invention relates to a process gas analysis device capable of monitoring whether or not.
  • the process gas referred to in the present invention refers to any gas flowing in the process chamber or the exhaust line during the process, and is not only a source gas or a carrier gas but also a by-product during the process. Other gases generated as such are included here.
  • Such monitoring may be performed by quantitative or qualitative analysis of the process gas flowing in the process chamber or the exhaust line.
  • Korean Patent No. 1169764 (published on July 30, 2012) includes an optical probe in the exhaust line of the process chamber.
  • the process chamber's real-time monitoring system which indicates whether or not leakage occurs in the process chamber by monitoring the exhaust gas by absorption spectroscopy and real-time presence of oxygen and nitrogen, is introduced.
  • the conventional technology has a disadvantage in that the optical path between the light emitting part and the light receiving part is very short because the optical probe is embedded in the exhaust line, and thus the measurement accuracy is reduced, and various optical analysis tools must be mobilized according to the situation.
  • the light emitting part and the light receiving part itself are embedded in the exhaust line, it is practically impossible to replace the light emitting part and the light receiving part according to the desired optical analysis method.
  • the problem to be solved by the present invention is to provide a multi-reflective optical unit in addition to the gas cell capable of sampling and extracting the process gas flowing in the process chamber or its exhaust line to secure a sufficient optical path and at the same time the light source and
  • the present invention provides a process gas analyzer that can solve the above-described problems by disassembling and assembling the light detector outside the gas cell.
  • a gas cell installed to collect the process gas
  • a light source unit disposed outside the gas cell to irradiate light into the gas cell
  • a multi-reflective optical unit installed to reflect light irradiated into the gas cell through the light source unit into the gas cell and to be led out of the gas cell;
  • a light detector installed outside the gas cell to receive light drawn out of the gas cell after being multi-reflected by the multi-reflective optical unit; Characterized in that comprises a.
  • the gas cell may be connected to a process chamber and installed to sample and collect the process gas in the process chamber, or may be connected to an exhaust line of the process chamber to sample and extract the process gas in the exhaust line.
  • a gas inlet and a gas outlet are provided in the gas cell, and the gas inlet and the gas are introduced into the gas cell through the gas inlet, and the process gas flowing through the gas inlet is discharged back to the exhaust line through the gas outlet. It is preferred that the outlets are respectively connected to the exhaust line.
  • the gas inlet is connected to the exhaust line so that the process gas flowing in the exhaust line flows into the gas cell through the gas inlet, and then is discharged to the outside through the gas outlet, and the gas outlet is connected to the discharge pump. It is preferable.
  • An inlet window and an outlet window are respectively provided as light passages in the gas cell, and the multi-reflective optical part includes reflection mirrors respectively provided at the outside of the inlet window and the outside of the outlet window, so that the light irradiated from the light source unit is directed to the entrance window. It is preferable to be irradiated into the gas cell through the multi-reflected by the reflection mirror and then drawn out to the outside through the exit window.
  • the inlet and outlet windows are preferably installed to face each other.
  • the reflection mirror may be a flat mirror or a concave mirror.
  • a light transmission hole is provided in the reflection mirror installed outside the entrance window and the reflection mirror installed outside the exit window so that light can pass therethrough.
  • the light transmission hole is preferably provided at an edge portion of the reflection mirror so that the light transmission hole of the reflection mirror installed outside the entrance window and the light transmission hole of the reflection mirror installed outside the exit window are viewed diagonally.
  • the reflection mirror installed outside the entrance window and the reflection mirror installed outside the exit window are relatively inclined.
  • the multi-reflective optical unit includes a light path adjusting device installed at at least one of an outer side of the inlet window and an outer side of the outlet window.
  • Mirror support means installed outside the reflection mirror so as to be spaced apart from the reflection mirror;
  • a center pin installed between a central portion of the reflection mirror and the mirror support means
  • a tuning knob installed outside the mirror support means such that a distance from the mirror support means can be adjusted
  • An inclination adjustment pin installed between the reflective mirror and the tuning knob through the mirror supporting means at an edge portion of the reflective mirror;
  • the inclination adjustment pin is slid in conjunction with the adjustment of the gap between the tuning knob and the mirror support means, and the inclination is changed by rotating the inclination mirror about the point where the reflection mirror meets the center pin due to the sliding of the inclination adjustment pin. It is preferable to install.
  • the tuning knob is screwed to the mirror support means to adjust the distance between the tuning knob and the mirror support means according to the dial rotational direction of the tuning knob.
  • the head of the tilt adjusting pin is installed to contact the tuning knob, and an elastic repulsion member is installed between the head of the tilt adjusting pin and the mirror support means.
  • the mirror support means and the tuning knob are preferably made of a transparent material through which the light facing hole passes through the light, or has a skeleton shape.
  • the light source unit and the light detection unit are fastened to the gas cell to be detachably assembled.
  • the light source unit and the light detecting unit, the light source unit and the gas cell, and the light detection unit and the gas cell are installed to be connected to each other by vibration absorbing means.
  • a pressure gauge and a pressure control valve are installed in the gas cell.
  • the optical path can be sufficiently secured by the multi-reflective optical unit, precise quantitative and qualitative analysis is possible even for a small amount of process gas.
  • the light source unit and the light detection unit are installed to be disassembled and assembled to the outside of the gas cell, the corresponding light source unit and the light detection unit can be replaced with an appropriate one according to a desired light analysis technique.
  • FIG. 1 is a view for explaining a process gas analysis device 100 according to an embodiment of the present invention
  • FIG. 2 is a view for explaining a process gas analysis device 100 according to another embodiment of the present invention.
  • 3 to 5 are views for explaining the multi-reflective optical unit 140
  • FIG. 6 is a view for explaining a case in which a concave mirror is used as the reflective mirror 144.
  • FIG. 1 is a view for explaining a process gas analysis device 100 according to an embodiment of the present invention.
  • the process gas in the process chamber 10 is discharged to the outside via the exhaust line 11 by the process pump 12.
  • the process gas may include a source gas, a carrier gas, a by-product gas, and the like, and there may be various types of members such as atoms, molecules, ions, and lycals.
  • the process gas analyzer 100 according to the present invention is installed to be connected to the process chamber 10 or its exhaust line 11 externally.
  • the case connected to the exhaust line 11 is illustrated as an example.
  • the process gas analyzer 100 includes a light source unit 110, a light detector 120, a gas cell 130, and a multi-reflective optical unit 140.
  • the gas cell 130 is installed to be connected to the sampling pipe 20 branched from the exhaust line 11. Of course, it may be installed to be connected directly to the exhaust line 11 without the sampling pipe 20.
  • the gas inlet 131 and the gas outlet 132 are provided in the gas cell 130, and the process gas flowing in the exhaust line 11 flows into the gas cell 130 through the gas inlet 131 and then the gas outlet ( The gas inlet 131 is connected to the sampling pipe 20, and the gas outlet 132 is connected to the exhaust line 11 so as to be discharged back to the exhaust line 11 through 132.
  • the light source unit 110 is installed outside the gas cell 130 to irradiate light into the gas cell 130, and the multi-reflective optical unit 140 emits light irradiated to the gas cell 130 through the light source unit 110. Multi-reflection in the cell 130 serves to increase the optical path.
  • the light detector 120 is installed outside the gas cell 130 to receive light that is multiplely reflected by the multi-reflective optical unit 140 and then drawn out of the gas cell 130.
  • light is emitted through the process gas collected in the gas cell 130 after irradiating light through the light source unit 110 to the gas cell 130 in which the process gas in the exhaust line 11 is sampled and extracted. Detecting at 120 to analyze the process gas in the gas cell 130.
  • Such an analysis may be performed in various ways such as light emission spectroscopy or absorption spectroscopy.
  • the process gas analyzing apparatus 100 according to the present invention is installed in the process chamber 10, the process in the plasma and non-plasma states is performed. Since both methods may be utilized because the process gas analysis apparatus 100 according to the present invention is installed in the exhaust line 11, the absorption spectrometry is mainly used because plasma is hardly present in the exhaust line 11. Will be utilized.
  • the light detector 120 Through the light detector 120, various things can be monitored. For example, it is possible to check the process efficiency by checking the amount of remaining unreacted source gas, and also to check the leakage of oxygen or nitrogen by-products. In addition, it is possible to check whether environmental pollutant gas is generated as a by-product and to quantify the amount of exhaust gas. It is more preferable to help the process monitoring by incorporating an alarm means for informing such a check result in the photodetector 120 or separately installed.
  • the light source unit 110 is provided with an optical system for guiding not only the light source but also the light emitted from the light source toward the gas cell 130.
  • a light source various things, such as a monochromatic emission source, a polychromatic emission source, or an IR emission source, can be used so that it may be suitable for the desired photodetector method.
  • the optical system may include an optical filter, a diffraction grating, a lens, a mirror, and the like.
  • a single photoreceptor such as a photodiode, a spectrometer using an arrayed photoreceptor such as a CCD, various photodetectors such as a monochromator, a spectrophotometer, or an FT-IR may be used.
  • An optical system for guiding light is provided.
  • various methods such as light emission spectroscopy or absorption spectroscopy, may be used as the optical analyzer, and the present invention may be replaced with the light source 110 and the photodetector 120 according to a desired detector. It is characterized in that the light source unit 110 and the light detection unit 120 is assembled to be assembled and disassembled to the gas cell 130 so as to be used.
  • the gas cell 130 is provided with an entrance window 141a and an exit window 141b as light passages, and the multi-reflective optical unit 140 is installed outside the entrance window 141a and outside the exit window 141b.
  • the inlet window 141a and the outlet window 141b are coupled to seal the gas cell 130 by the flange 142 as shown in FIG. 3. As a result, the gas cell 130 is blocked from the external environment. It is preferable that the size, such as width, width, etc. of the gas cell 130 can be adjusted according to the process conditions and measurement requirements.
  • 3 to 5 are diagrams for explaining the multi-reflective optical unit 140, which is an enlarged portion of the exit window 141b, that is, the portion A of FIG. Since the entrance window 141a has the same configuration, the description of the entrance window 141a is omitted.
  • the multi-reflective optical unit 140 includes a reflection mirror 144.
  • the light irradiated from the light source unit 110 is irradiated into the gas cell 130 through the inlet window 141a and then multiplely reflected by the reflection mirrors 144 on both sides of the gas cell 130 and then exits the outlet window 141b. After it is withdrawn to the outside.
  • the inlet window 141a and the outlet window 141b are preferably installed to face each other, and thus, the reflective mirrors 144 of both sides are preferably installed to face each other.
  • the light transmitting holes 144a are formed in the reflective mirrors 144 provided on both sides of the gas cell 130 so that light can pass therethrough.
  • the light transmission hole 144a of the reflection mirror 144 installed outside the entrance window 141a and the light transmission hole 144a of the reflection mirror 144 installed outside the exit window 141b face each other diagonally.
  • the light transmission hole 144a is more preferably formed at the edge portion of the reflective mirror 144 to increase the light path.
  • the present invention is characterized in that the multi-reflection to increase the optical path, the reflection mirror 144 is installed on the outside of the inlet window (141a) and the reflection mirror is installed on the outside of the outlet window (141b) for the multiple reflection ( 144 is preferably installed to be inclined relatively.
  • a flat mirror or a concave mirror may be used as the reflective mirror 144.
  • a concave mirror multiple reflections may occur even when the mirror is not inclined to each other as shown in FIG. Is particularly required.
  • an optical path adjusting device is included in the multi-reflective optical unit 140 to adjust the tilt.
  • the optical path adjusting device may be implemented in various ways.
  • the optical path adjusting device includes a mirror supporting means 145, a tuning knob 146, a center pin 147, and a tilt adjusting pin 148. Shown as an example.
  • the light path adjusting device may be sufficient if it is installed in at least one of the outside of the inlet window 141a and the outside of the outlet window 141b. When the reflective mirrors 144 are provided at both sides, it is desirable to increase the efficiency of the independent adjustment.
  • the mirror supporting means 145 is fixedly coupled to the gas cell 130 through a bolt 145a or the like in the form of a lid outside the reflective mirror 144 so as to be spaced apart from the reflective mirror 144. If possible, it is desirable to engage the flange 142.
  • the tuning knob 146 is installed on the outside of the mirror support means 145 so that the gap with the mirror support means 145 can be adjusted. As shown, when the tuning knob 146 is screwed to the mirror support means 145 in a screwed manner, the gap between the tuning knob 146 and the mirror support means 145 according to the dial rotational direction of the tuning knob 146. This can be adjusted.
  • the central pin 147 is installed between the central portion of the reflective mirror 144 and the mirror support means 145.
  • the inclination adjustment pin 148 penetrates the mirror support means 145 at the edge portion of the reflection mirror 144 and is installed between the reflection mirror 144 and the tuning knob 146.
  • the tuning knob 146 When the tuning knob 146 is rotated in a dial manner, the interval between the tuning knob 146 and the mirror support means 145 is changed, thereby sliding the tilt adjusting pin 148. Then, the reflection mirror 144 is rotated around the point where the center pin 147 meets, the slope is changed.
  • the reflection mirror 144 and the center pin 147 is It is preferable that the rotation means be installed at a portion where the meeting portion and the reflection mirror 144 and the tilt control pin 148 meet.
  • the rotating means includes a rotating pin serving as a rotating shaft on the coupling portion of the reflective mirror 144 and the center pin 147 and the coupling portion of the reflective mirror 144 and the tilt control pin 148 ( 152, 153 can be implemented. Since the reflective mirror 144 has a large brittleness, the center pin 147 and the tilt adjusting pin 148 are mounted on the rear surface of the reflective mirror 144 rather than directly coupled to the rear surface of the reflective mirror 144. It is preferable to install 151 and to be coupled to the mount member 151.
  • the inclination adjustment pin 148 is installed in a state where the head 148a is not completely coupled to the tuning knob 146 but merely touches, as shown in FIG. 5, between the head 148a and the tuning knob 146. It is preferable that an elastic rebound member such as a spring 154 be installed.
  • the tuning knob 146 is rotated in a dial manner to move inwardly with the mirror support means 145, the spring 154 is pressed and the tilt adjustment pin 148 slides inward, and the tuning knob (
  • the spring 154 is extended by the elastic repulsive force and the tilt adjustment pin 148 slides outward while being in contact with the tuning knob 146.
  • the mirror support means installed on the exit window 141b ( 145 and tuning knob 146 should be installed so as not to obstruct this optical path.
  • the mirror support means 145 and the tuning knob 146 installed at the exit window 141b are made of a transparent material through which the light facing the light transmission hole 144a is allowed to pass, or the light progresses. It is preferable that it is made into a skeleton form instead of a face so as not to block. Even if the gas cell 130 is in a vacuum state, it is not necessary to be sealed to the multi-reflective optical unit 140 positioned outside the gas cell 130 so as to be in a vacuum state.
  • the vibration absorbing means is installed, it is more preferable to be installed to be connected to each other via such a vibration absorbing means.
  • the pressure gauge 133 is preferably installed in the gas cell 130, and the pressure control valves 13 and 14 are preferably installed at the inlet and output ends of the gas cell 13.
  • Figure 2 is another embodiment of the present invention, unlike FIG. 1, the gas inlet 131 of the gas cell 130 is connected to the sampling pipe 20 on the exhaust line 11 side, the gas outlet 132 The difference is that the process gas introduced into the gas cell 130 through the gas inlet 131 is connected to the discharge pump 16 to be discharged to the outside through the discharge pump 16.
  • Reference numeral 15 denotes a pressure regulating valve 15.
  • the optical path can be sufficiently secured by the multi-reflection optical unit 140, precise quantitative and qualitative analysis is possible even for a small amount of process gas.
  • the light source unit 110 and the light detector 120 are installed to be disassembled and assembled outside the gas cell 130, the light source unit 110 and the light detector 120 may be replaced with an appropriate one according to a desired light analysis technique. It can be used for various analysis methods.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

본 발명에 따른 공정가스 분석장치(100)는, 공정가스가 수집되도록 설치되는 가스셀(130); 가스셀(130) 내에 광을 조사하도록 가스셀(130)의 외부에 설치되는 광원부(110); 광원부(110)를 통하여 가스셀(130) 내에 조사되는 광을 가스셀(130) 내에 다중 반사시킨 후 가스셀(130) 외부로 인출하도록 설치되는 다반사 광학부(140); 및 다반사 광학부(140)에 의해 다중 반사된 후 가스셀(130) 외부로 인출되는 광을 수광받도록 가스셀(130)의 외부에 설치되는 광검출부(120); 를 포함하여 이루어지는 것을 특징으로 한다. 본 발명에 의하면, 다반사 광학부(140)에 의해 광경로가 충분히 확보될 수 있기 때문에 소량의 공정가스에 대해서도 정밀한 정량 및 정성 분석이 가능하다. 또한, 광원부(110)와 광검출부(120)가 가스셀(130)의 외부에 분해조립 가능하게 설치되기 때문에 원하는 광분석 기법에 맞게 해당 광원부(110)와 광검출부(120)를 적절한 것으로 교체할 수 있어 다양한 분석기법을 활용할 수 있다.

Description

공정가스 분석장치
본 발명은 공정가스 분석장치에 관한 것으로서, 특히 공정챔버나 그 배기라인에 흐르는 공정가스를 정량 또는 정성 분석함으로써, 공정챔버에서 공정이 원하는 조건 하에서 제대로 진행되고 있는지 또는 환경오염가스가 배출되고 있는지 등의 여부를 모니터링 할 수 있는 공정가스 분석장치에 관한 것이다.
본 발명에서 말하는 공정가스라 함은 공정진행 중에 공정챔버나 그 배기라인에 흐르는 일체의 가스를 통칭하는 것으로, 소스가스(source gas)나 캐리어 가스(carrier gas) 뿐만 아니라 공정 중에 부산물(by product)로서 발생하는 기타 가스 등이 여기에 포함된다.
반도체 미세소자나 평판디스플레이 등의 제조를 위하여 증착, 식각, 세정 등 다양한 공정이 이루어진다. 이러한 공정은 플라즈마 또는 비플라즈마 상태에서 진행되는데, 이 때, 공정챔버에서 공정이 원하는 조건 하에서 제대로 진행되고 있는지, 또는 부산물로서 환경오염가스가 배출되고 있는지 등의 여부는 공정의 신뢰성 및 환경측면에서 매우 중요하기 때문에 이를 지속적으로 모니터링 할 필요가 있다.
이러한 모니터링은 공정챔버나 배기라인에 흐르는 공정가스를 정량 또는 정성 분석함으로써 이루어질 수 있는데, 이러한 일환으로, 대한민국 등록특허 제1169764호(2012.07.30.공고)에는 공정챔버의 배기라인 내에 광프로브를 내장시켜 배기가스를 흡수분광분석법으로 모니터링하여 산소와 질소의 존재여부를 실시간으로 파악함으로써 공정챔버에 리크(leak)가 발생하는지의 여부를 간판하는 '공정챔버의 실시간 모니터링 시스템'이 소개되어 있다.
그러나 상기 종래기술은 광프로브가 배기라인에 내장되어 있기 때문에 발광부와 수광부 사이의 광경로가 매우 짧아 측정의 정밀도가 떨어진다는 단점이 있으며, 또한 상황에 따라 다양한 광분석 도구가 동원되어야 할 것인데 위 시스템의 경우 발광부와 수광부 자체가 배기라인에 내장되기 때문에 발광부와 수광부를 원하는 광분석방식에 따라 적절한 것으로 상황에 따라 교체하기가 사실상 불가능하다는 단점이 있다.
따라서 본 발명이 해결하고자 하는 과제는, 공정챔버나 그 배기라인에 흐르는 공정가스를 샘플링 추출하여 수집할 수 있는 가스셀을 별도로 두고 여기에 다반사 광학부를 설치하여 광경로를 충분히 확보함과 동시에 광원부와 광검출부를 가스셀의 외부에 분해조립 가능하게 설치함으로써 상술한 종래의 문제점을 해결할 수 있는 공정가스 분석장치를 제공하는 데 있다.
상기 과제를 달성하기 위한 본 발명에 따른 공정가스 분석장치는,
공정가스가 수집되도록 설치되는 가스셀;
상기 가스셀 내에 광을 조사하도록 상기 가스셀의 외부에 설치되는 광원부;
상기 광원부를 통하여 상기 가스셀 내에 조사되는 광을 상기 가스셀 내에 다중 반사시킨 후 상기 가스셀 외부로 인출하도록 설치되는 다반사 광학부; 및
상기 다반사 광학부에 의해 다중 반사된 후 상기 가스셀 외부로 인출되는 광을 수광받도록 상기 가스셀의 외부에 설치되는 광검출부; 를 포함하여 이루어지는 것을 특징으로 한다.
상기 가스셀은 공정챔버에 연결되어 상기 공정챔버 내의 공정가스를 샘플링 추출하여 수집하도록 설치되거나, 공정챔버의 배기라인에 연결되어 상기 배기라인 내의 공정가스를 샘플링 추출하여 수집하도록 설치될 수 있다.
상기 가스셀에 가스유입구와 가스유출구가 마련되고, 상기 배기라인에 흐르던 공정가스가 상기 가스유입구를 통하여 상기 가스셀에 유입된 후 상기 가스유출구를 통하여 다시 상기 배기라인으로 배출되도록 상기 가스유입구와 가스유출구가 상기 배기라인에 각각 연결되게 설치되는 것이 바람직하다. 또는, 상기 배기라인에 흐르던 공정가스가 상기 가스유입구를 통하여 상기 가스셀에 유입된 후 상기 가스유출구를 통하여 외부로 배출되도록 상기 가스유입구는 상기 배기라인에 연결되고 상기 가스유출구는 배출펌프에 연결되는 것이 바람직하다.
상기 가스셀에 광의 통로로서 입구창과 출구창이 각각 마련되고, 상기 다반사 광학부는 상기 입구창의 바깥과 출구창의 바깥에 각각 설치되는 반사거울을 포함하여 이루어짐으로써, 상기 광원부에서 조사되는 광이 상기 입구창을 거쳐 상기 가스셀 내로 조사된 후 상기 반사거울에 의해 다중 반사된 다음에 상기 출구창을 거쳐 외부로 인출되도록 하는 것이 바람직하다.
상기 입구창과 출구창은 서로 대향하여 마주보도록 설치되는 것이 바람직하다.
상기 반사거울은 평면거울 또는 오목거울일 수 있다.
상기 입구창의 바깥에 설치되는 반사거울과 상기 출구창의 바깥에 설치되는 반사거울에는 광이 통과할 수 있도록 광투과홀이 마련되는 것이 바람직하다.
상기 입구창 바깥에 설치되는 반사거울의 광투과홀과 상기 출구창 바깥에 설치되는 반사거울의 광투과홀이 대각선으로 바라보도록 상기 광투과홀은 상기 반사거울의 가장자리 부위에 마련되는 것이 바람직하다.
상기 입구창의 바깥에 설치되는 반사거울과 상기 출구창의 바깥에 설치되는 반사거울은 상대적으로 기울어지게 설치되는 것이 바람직하다.
상기 다반사 광학부는 상기 입구창의 바깥과 상기 출구창의 바깥 중 적어도 어느 한 곳에 설치되는 광경로 조절장치를 포함하여 이루어지는 것이 바람직한데,
이 때, 상기 광경로 조절장치는,
상기 반사거울에 이격되도록 상기 반사거울의 바깥쪽에 설치되는 거울지지수단;
상기 반사거울의 가운데 부위와 상기 거울지지수단 사이에 설치되는 중심핀;
상기 거울지지수단과의 간격이 조절될 수 있도록 상기 거울지지수단의 바깥쪽에서 설치되는 튜닝노브; 및
상기 반사거울의 가장자리 부위에서 상기 거울지지수단을 관통하여 상기 반사거울과 상기 튜닝노브 사이에 설치되는 기울기조절핀; 을 포함하여 이루어짐으로써,
상기 튜닝노브와 상기 거울지지수단과의 간격 조절에 연동되어 상기 기울기조절핀이 슬라이딩되고, 상기 기울기조절핀의 슬라이딩으로 인해 상기 반사거울이 상기 중심핀과 만나는 점을 중심으로 회전하여 기울기가 변하도록 설치되는 것이 바람직하다.
상기 튜닝노브는 상기 거울지지수단에 스크류 방식으로 체결됨으로써 상기 튜닝노브의 다이얼식 회전방향에 따라 상기 튜닝노브와 상기 거울지지수단사이의 간격이 조절되는 것이 바람직하다.
상기 기울기조절핀의 머리부가 상기 튜닝노브에 닿도록 설치되고, 상기 기울기조절핀의 머리부와 상기 거울지지수단 사이에 탄성반발부재가 설치되는 것이 바람직하다.
상기 반사거울과 상기 중심핀 사이의 각도 및 상기 반사거울과 상기 기울기조절핀 사이의 각도가 변할 수 있도록, 상기 반사거울과 상기 중심핀이 만나는 부위 및 상기 반사거울과 상기 기울기조절핀이 만나는 부위에 회동수단이 설치되는 것이 바람직하다.
상기 거울지지수단과 상기 튜닝노브는 상기 광투과홀을 바라보는 면이 광이 통과할 수 있는 투명재질로 이루어지거나, 또는 골격 형태로 이루어지는 것이 바람직하다.
상기 광원부와 상기 광검출부는 상기 가스셀에 분리가능하게 조립식으로 체결 설치되는 것이 바람직하다.
상기 광원부와 광검출부 사이, 상기 광원부와 가스셀 사이, 및 상기 광검출부와 가스셀 사이가 진동흡수수단에 의해 서로 연결되도록 설치되는 것이 바람직하다.
상기 가스셀에 압력게이지와 압력조절밸브가 설치되는 것이 바람직하다.
본 발명에 의하면, 다반사 광학부에 의해 광경로가 충분히 확보될 수 있기 때문에 소량의 공정가스에 대해서도 정밀한 정량 및 정성 분석이 가능하다. 또한, 광원부와 광검출부가 가스셀의 외부에 분해조립 가능하게 설치되기 때문에 원하는 광분석 기법에 맞게 해당 광원부와 광검출부를 적절한 것으로 교체할 수 있어 다양한 분석기법을 활용할 수 있다.
도 1은 본 발명의 일 실시예에 따른 공정가스 분석장치(100)를 설명하기 위한 도면;
도 2는 본 발명의 다른 실시예에 따른 공정가스 분석장치(100)를 설명하기 위한 도면;
도 3 내지 도 5는 다반사 광학부(140)를 설명하기 위한 도면들;
도 6은 반사거울(144)로서 오목거울이 사용되는 경우를 설명하기 위한 도면이다.
이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다. 아래의 실시예는 본 발명의 내용을 이해하기 위해 제시된 것일 뿐이며 당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상 내에서 많은 변형이 가능할 것이다. 따라서 본 발명의 권리범위가 이러한 실시예에 한정되는 것으로 해석돼서는 안 된다.
도 1은 본 발명의 일 실시예에 따른 공정가스 분석장치(100)를 설명하기 위한 도면이다.
도 1에 도시된 바와 같이, 공정챔버(10) 내의 공정가스는 공정펌프(12)에 의해 배기라인(11)을 거쳐 외부로 배출된다. 공정가스에는 소스가스, 캐리어가스, 부산물 가스 등이 포함될 수 있으며, 원자, 분자, 이온, 라이칼 등 다양한 형태의 구성원이 존재할 것이다.
본 발명에 따른 공정가스 분석장치(100)는 공정챔버(10)나 그 배기라인(11)에 외부 연결되게 설치되는데, 본 실시예에서는 배기라인(11)에 연결되는 경우가 예로서 도시되었다.
본 발명에 따른 공정가스 분석장치(100)는 크게 광원부(110), 광검출부(120), 가스셀(130), 및 다반사 광학부(140)를 포함하여 이루어진다.
가스셀(130)은 배기라인(11)에서 분기되는 샘플링 배관(20)에 연결되게 설치된다. 물론, 샘플링 배관(20) 없이 바로 배기라인(11)에 연결되게 설치될 수도 있다. 가스셀(130)에는 가스유입구(131)와 가스유출구(132)가 마련되고, 배기라인(11)에 흐르던 공정가스가 가스유입구(131)를 통하여 가스셀(130)에 유입된 후 가스유출구(132)를 통하여 다시 배기라인(11)으로 배출되도록 가스유입구(131)는 샘플링 배관(20)에 연결되고, 가스 유출구(132)는 배기라인(11)에 연결된다.
광원부(110)는 가스셀(130) 내에 광을 조사하도록 가스셀(130)의 외부에 설치되며, 다반사 광학부(140)는 광원부(110)를 통하여 가스셀(130)에 조사되는 광을 가스셀(130) 내에 다중 반사(multi-reflection)시켜 광경로를 증가시키는 역할을 한다. 광검출부(120)는 다반사 광학부(140)에 의해 다중 반사된 후 가스셀(130) 외부로 인출되는 광을 수광받도록 가스셀(130)의 외부에 설치된다.
본 발명은 배기라인(11) 내의 공정가스가 샘플링 추출되어 수집되는 가스셀(130)에 광원부(110)를 통하여 광을 조사한 후 가스셀(130) 내에 수집된 공정가스를 거쳐 나오는 광을 광검출부(120)에서 검출하여 가스셀(130) 내의 공정가스를 분석하는 것을 특징으로 한다.
이러한 분석은 광방출분광분석법이나 흡수분광분석법 등 다양한 방식으로 이루어질 수 있는데, 공정챔버(10)에 본 발명에 따른 공정가스 분석장치(100)가 설치되는 경우에는 플라즈마 및 비플라즈마 상태에서의 공정이 진행될 수 있으므로 양 분석법이 모두 활용될 것이지만, 배기라인(11)에 본 발명에 따른 공정가스 분석장치(100)가 설치되는 경우에는 배기라인(11)에 플라즈마가 존재하기 어려우므로 흡수분광분석법이 주로 활용될 것이다.
광검출부(120)를 통해서는 다양한 것을 모니터링 할 수 있다. 예컨대, 미반응된 잔여 소스가스 량을 파악하여 공정효율을 체크할 수 있으며, 또한 산소나 질소 부산물을 리크여부도 체크할 수 있다. 그리고 환경오염기체가 부산물로서 발생하는지의 여부도 체크할 수 있으며 배출가스량을 정량화해서 확인할 수 있다. 이러한 체크결과를 알려주는 알람수단을 광검출부(120)에 내장시키거나 별도로 설치함으로써 공정 모니터링에 도움을 주는 것이 더욱 바람직하다.
광원부(110)에는 광원뿐 만 아니라 광원에서 방출되는 광을 가스셀(130) 쪽으로 안내하기 위한 광학계가 함께 마련된다. 광원으로는 원하는 광 검출기법에 적합하도록 예컨대 단색발광원, 다색발광원, 또는 IR 발광원 등 다양한 것이 사용될 수 있다. 광학계에는 광학필터, 회절격자, 렌즈, 거울 등이 포함될 수 있다. 광검출부(120)에도 포토다이오드와 같은 단일수광소자, CCD와 같은 배열형 수광소자를 이용한 분광분석기, 모노크로미터, 스펙트로포토미터, 또는 FT-IR 등 다양한 광검출기가 사용될 수 있으며, 광 검출기에 광을 안내하기 위한 광학계가 마련된다.
광 분석기법으로는 앞서 말한 바와 같이 광방출분광분석법이나 흡수분광분석법 등 다양한 방식이 활용될 수 있는데, 본 발명은 원하는 검출기법에 따라 이에 적합하게 광원부(110)와 광검출부(120)를 교체하여 사용할 수 있도록 광원부(110)와 광검출부(120)가 가스셀(130)에 분해 교체 가능하게 조립식으로 체결되도록 하는 것을 특징으로 한다.
가스셀(130)에는 광의 통로로서 입구창(141a)와 출구창(141b)이 마련되며, 입구창(141a)의 바깥과 출구창(141b)의 바깥에는 다반사 광학부(140)가 설치된다. 입구창(141a)과 출구창(141b)은 도 3에 도시된 바와 같이 플랜지(142)에 의해 가스셀(130)을 밀폐시키도록 결합된다. 이로 인해 가스셀(130)은 외부환경과 차단되는 상태가 된다. 공정상태 및 측정요구 스펙에 맞게 가스셀(130)의 폭, 넓이 등 크기도 조절 가능한 것이 바람직하다.
도 3 내지 도 5는 다반사 광학부(140)를 설명하기 위한 도면들로서, 출구창(141b) 부위 즉, 도 1의 참조부호 A 부분을 확대한 것이다. 입구창(141a) 쪽에도 마찬가지 구성을 가지므로 입구창(141a) 쪽에 대한 설명은 생략한다.
도 3 내지 도 5에 도시된 바와 같이, 다반사 광학부(140)에는 반사거울(144)이 포함된다. 광원부(110)에서 조사되는 광은 입구창(141a)을 거쳐 가스셀(130) 내로 조사된 후 가스셀(130) 양쪽의 반사거울(144)에 의해 다중 반사된 다음에 출구창(141b)을 거쳐 외부로 인출된다. 광경로를 늘리기 위해서 입구창(141a)과 출구창(141b)은 대향하여 마주보도록 설치되는 것이 바람직하고, 이로 인해 양쪽의 반사거울(144)도 서로 마주보도록 설치되는 것이 바람직하다.
가스셀(130)의 양쪽에 설치되는 반사거울(144)에는 광이 통과할 수 있도록 광투과홀(144a)이 각각 형성되는 것이 바람직하다. 입구창(141a) 바깥에 설치되는 반사거울(144)의 광투과홀(144a)과 출구창(141b) 바깥에 설치되는 반사거울(144)의 광투과홀(144a)이 서로 대각선으로 바라보도록, 광투과홀(144a)은 반사거울(144)의 가장자리 부위에 형성되는 것이 광경로를 증가시키는 데에 있어 더욱 바람직하다.
본 발명은 광경로 증가를 위해서 다중 반사시키는 것을 특징으로 하는데, 이러한 다중 반사를 위해 입구창(141a)의 바깥에 설치되는 반사거울(144)과 출구창(141b)의 바깥에 설치되는 반사거울(144)은 상대적으로 기울어지게 설치되는 것이 바람직하다.
반사거울(144)로서는 평면거울이나 오목거울이 사용될 수 있는데, 오목거울인 경우에는 도 6에서와 같이 서로가 기울어지지 않아도 다중 반사가 일어날 수 있는 반면에 평면거울일 경우에는 이와 같이 기울어지게 설치하는 것이 특히 요구된다.
반사거울(144)이 평면거울이든 오목거울이든 상관없이 그 기울기 조절을 위하여 다반사 광학부(140)에 광경로 조절장치가 포함되는 것이 바람직하다. 상기 광경로 조절장치는 다양한 방식으로 구현될 수 있는데, 본 실시예에서는 거울지지수단(145), 튜닝노브(146), 중심핀(147), 및 기울기조절핀(148)을 포함하여 이루어지는 경우가 예로서 도시되었다. 광경로 조절장치는 입구창(141a)의 바깥과 출구창(141b)의 바깥 중 적어도 어느 한 곳에 설치되면 족할 것이다. 양쪽에 반사거울(144)이 설치되는 경우 독립적인 조정이 가능하도록 하는 것이 그 효율성을 높이는데 있어 바람직하다.
거울지지수단(145)은 반사거울(144)에 이격되도록 반사거울(144)의 바깥에서 뚜껑 형태로 가스셀(130)에 볼트(145a) 등을 통하여 고정되게 결합된다. 가능하면 플랜지(142)에 결합되도록 하는 것이 바람직하다.
튜닝노브(146)는 거울지지수단(145)과의 간격이 조절될 수 있도록 거울지지수단(145)의 바깥쪽에 설치된다. 도시된 바와 같이, 튜닝노브(146)가 거울지지수단(145)에 스크류 방식으로 체결되면 튜닝노브(146)의 다이얼식 회전방향에 따라 튜닝노브(146)와 거울지지수단(145) 사이의 간격이 조절될 수 있다.
중심핀(147)은 반사거울(144)의 가운데 부위와 거울지지수단(145) 사이에 설치된다. 기울기조절핀(148)은 반사거울(144)의 가장자리 부위에서 거울지지수단(145)을 관통하여 반사거울(144)과 튜닝노브(146) 사이에 설치된다.
튜닝노브(146)를 다이얼식으로 회전시키면 이에 따라 튜닝노브(146)와 거울지지수단(145) 사이의 간격이 변하고 이로 인해 기울기조절핀(148)의 슬라이딩이 이루어진다. 그러면 반사거울(144)은 중심핀(147)과 만나는 점을 중심으로 하여 회전하여 기울기가 변하게 된다.
이 때, 반사거울(144)과 중심핀(147) 사이의 각도 및 반사거울(144)과 기울기조절핀(148) 사이의 각도가 변해야 할 것이므로, 반사거울(144)과 중심핀(147)이 만나는 부위 및 반사거울(144)과 기울기조절핀(148)이 만나는 부위에 회동수단이 설치되는 것이 바람직하다.
상기 회동수단은 도 4에 도시된 바와 같이 반사거울(144)과 중심핀(147)의 결합부위 및 반사거울(144)과 기울기조절핀(148)의 결합부위에 회전축의 역할을 하는 회동핀(152, 153)을 설치함으로써 구현될 수 있다. 반사거울(144)은 취성(brittleness)이 크므로 중심핀(147)과 기울기조절핀(148)은 반사거울(144)의 뒷면에 직접적으로 결합되기 보다는 반사거울(144)의 뒷면에 마운트부재(151)를 설치하고 이 마운트 부재(151)에 결합되도록 하는 것이 바람직하다.
기울기조절핀(148)은 도 5에 도시된 바와 같이 머리부(148a)가 튜닝노브(146)에 완전히 결합되는 것이 아니라 단지 닿는 상태로 설치되고, 머리부(148a)와 튜닝노브(146) 사이에 스프링(154)과 같은 탄성반발부재가 설치되는 것이 바람직하다.
그러면, 튜닝노브(146)를 다이얼식으로 회전시켜 거울지지수단(145)이 있는 안쪽으로 이동시킬 경우에는 스프링(154)이 눌리면서 기울기조절핀(148)이 안쪽으로 슬라이딩되면서 들어가게 되고, 튜닝노브(146)를 반대로 회전시켜 바깥쪽으로 이동시킬 경우에는 스프링(154)이 탄성반발력에 의해서 펴지면서 기울기조절핀(148)이 튜닝노브(146)에 닿은 상태로 바깥쪽으로 슬라이딩 되면서 빠져나오게 된다.
광투과홀(144a)을 통하여 외부로 인출되는 광은 거울지지수단(145)과 튜닝노브(146)를 거쳐 광검출부(120)로 유입될 것이므로, 출구창(141b) 쪽에 설치되는 거울지지수단(145) 및 튜닝노브(146)는 이러한 광경로를 방해하지 않도록 설치되어야 한다.
이를 위해 출구창(141b) 쪽에 설치되는 거울지지수단(145) 및 튜닝노브(146)는 광투과홀(144a)을 바라보는 면이 광이 통과할 수 있는 투명재질로 이루어지거나, 또는 광의 진행을 가로 막지 않도록 면이 아닌 골격 형태로 이루어지는 것이 바람직하다. 가스셀(130)이 진공상태라 하더라도 가스셀(130)의 바깥에 위치하는 다반사 광학부(140)까지 진공상태가 되도록 밀폐되어야 할 필요는 없기에 이와 같이 골격형태로 이루어져도 무방하다.
광원부(110)와 광검출부(120)가 진동에 영향을 받게 되면 광학적 정렬이 흐트러지게 되어 분석이 제대로 이루어지지 않을 수 있으므로, 광원부(110), 광검출불(120), 가스셀(130) 사이에는 진동흡수수단이 설치되는 것이 바람직하고, 이러한 진동흡수수단을 매개로 하여 서로 연결되도록 설치되는 것이 더욱 바람직하다.
또한, 가스셀(130)의 압력에 따라 광 검출 강도가 달라질 수 있으므로 신뢰성 있는 분석을 위하여 가스셀(130)의 압력을 분석 인자로 도입할 필요가 있다. 이를 위하여 가스셀(130)에 압력게이지(133)가 설치되는 것이 바람직하고, 가스셀(13)의 유입단과 출력단에 압력조절밸브(13, 14)가 설치되는 것이 바람직하다.
한편, 도 2는 본 발명의 다른 실시예로서, 도 1과 달리 가스셀(130)의 가스유입구(131)는 배기라인(11) 측의 샘플링 배관(20)에 연결되고, 가스유출구(132)는 배출펌프(16)에 연결되어 가스유입구(131)를 통하여 가스셀(130)에 유입된 공정가스가 배출펌프(16)를 통해 외부로 배출되도록 하는 것이 차이점이다. 참조번호 15는 압력조절밸브(15)를 나타내는 것이다.
상술한 바와 같이 본 발명에 의하면, 다반사 광학부(140)에 의해 광경로가 충분히 확보될 수 있기 때문에 소량의 공정가스에 대해서도 정밀한 정량 및 정성 분석이 가능하다. 또한, 광원부(110)와 광검출부(120)가 가스셀(130)의 외부에 분해조립 가능하게 설치되기 때문에 원하는 광분석 기법에 맞게 해당 광원부(110)와 광검출부(120)를 적절한 것으로 교체할 수 있어 다양한 분석기법을 활용할 수 있다.

Claims (20)

  1. 공정가스가 수집되도록 설치되는 가스셀;
    상기 가스셀 내에 광을 조사하도록 상기 가스셀의 외부에 설치되는 광원부;
    상기 광원부를 통하여 상기 가스셀 내에 조사되는 광을 상기 가스셀 내에 다중 반사시킨 후 상기 가스셀 외부로 인출하도록 설치되는 다반사 광학부; 및
    상기 다반사 광학부에 의해 다중 반사된 후 상기 가스셀 외부로 인출되는 광을 수광받도록 상기 가스셀의 외부에 설치되는 광검출부; 를 포함하여 이루어지는 것을 특징으로 하는 공정가스 분석장치.
  2. 제1항에 있어서, 상기 가스셀이 공정챔버에 연결되어 상기 공정챔버 내의 공정가스를 샘플링 추출하여 수집하도록 설치되는 것을 특징으로 하는 공정가스 분석장치.
  3. 제1항에 있어서, 상기 가스셀이 공정챔버의 배기라인에 연결되어 상기 배기라인 내의 공정가스를 샘플링 추출하여 수집하도록 설치되는 것을 특징으로 하는 공정가스 분석장치.
  4. 제3항에 있어서, 상기 가스셀에 가스유입구와 가스유출구가 마련되고, 상기 배기라인에 흐르던 공정가스가 상기 가스유입구를 통하여 상기 가스셀에 유입된 후 상기 가스유출구를 통하여 다시 상기 배기라인으로 배출되도록 상기 가스유입구와 가스유출구가 상기 배기라인에 각각 연결되게 설치되는 것을 특징으로 하는 공정가스 분석장치.
  5. 제3항에 있어서, 상기 가스셀에 가스유입구와 가스유출구가 마련되고, 상기 배기라인에 흐르던 공정가스가 상기 가스유입구를 통하여 상기 가스셀에 유입된 후 상기 가스유출구를 통하여 외부로 배출되도록 상기 가스유입구는 상기 배기라인에 연결되고 상기 가스유출구는 배출펌프에 연결되는 것을 특징으로 하는 공정가스 분석장치.
  6. 제1항에 있어서, 상기 가스셀에 광의 통로로서 입구창과 출구창이 각각 마련되고, 상기 다반사 광학부는 상기 입구창의 바깥과 출구창의 바깥에 각각 설치되는 반사거울을 포함하여 이루어짐으로써, 상기 광원부에서 조사되는 광이 상기 입구창을 거쳐 상기 가스셀 내로 조사된 후 상기 반사거울에 의해 다중 반사된 다음에 상기 출구창을 거쳐 외부로 인출되는 것을 특징으로 하는 공정가스 분석장치.
  7. 제6항에 있어서, 상기 입구창과 출구창이 서로 대향하여 마주보도록 설치되는 것을 특징으로 하는 공정가스 분석장치.
  8. 제6항에 있어서, 상기 반사거울이 평면거울 또는 오목거울인 것을 특징으로 하는 공정가스 분석장치.
  9. 제6항에 있어서, 상기 입구창의 바깥에 설치되는 반사거울과 상기 출구창의 바깥에 설치되는 반사거울에 광이 통과할 수 있도록 광투과홀이 마련되는 것을 특징으로 하는 공정가스 분석장치.
  10. 제9항에 있어서, 상기 입구창 바깥에 설치되는 반사거울의 광투과홀과 상기 출구창 바깥에 설치되는 반사거울의 광투과홀이 대각선으로 바라보도록 상기 광투과홀이 상기 반사거울의 가장자리 부위에 마련되는 것을 특징으로 하는 공정가스 분석장치.
  11. 제7항에 있어서, 상기 입구창의 바깥에 설치되는 반사거울과 상기 출구창의 바깥에 설치되는 반사거울이 상대적으로 기울어지게 설치되는 것을 특징으로 하는 공정가스 분석장치.
  12. 제6항에 있어서, 상기 다반사 광학부는 상기 입구창의 바깥과 상기 출구창의 바깥 중 적어도 어느 한 곳에 설치되는 광경로 조절장치를 포함하여 이루어지며,
    상기 광경로 조절장치는,
    상기 반사거울에 이격되도록 상기 반사거울의 바깥쪽에 설치되는 거울지지수단;
    상기 반사거울의 가운데 부위와 상기 거울지지수단 사이에 설치되는 중심핀;
    상기 거울지지수단과의 간격이 조절될 수 있도록 상기 거울지지수단의 바깥쪽에서 설치되는 튜닝노브; 및
    상기 반사거울의 가장자리 부위에서 상기 거울지지수단을 관통하여 상기 반사거울과 상기 튜닝노브 사이에 설치되는 기울기조절핀; 을 포함하여 이루어짐으로써,
    상기 튜닝노브와 상기 거울지지수단과의 간격 조절에 연동되어 상기 기울기조절핀이 슬라이딩되고, 상기 기울기조절핀의 슬라이딩으로 인해 상기 반사거울이 상기 중심핀과 만나는 점을 중심으로 회전하여 기울기가 변하도록 설치되는 것을 특징으로 하는 공정가스 분석장치.
  13. 제12항에 있어서, 상기 튜닝노브가 상기 거울지지수단에 스크류 방식으로 체결됨으로써 상기 튜닝노브의 다이얼식 회전방향에 따라 상기 튜닝노브와 상기 거울지지수단사이의 간격이 조절되는 것을 특징으로 공정가스 분석장치.
  14. 제12항에 있어서, 상기 기울기조절핀의 머리부가 상기 튜닝노브에 닿도록 설치되고, 상기 기울기조절핀의 머리부와 상기 거울지지수단 사이에 탄성반발부재가 설치되는 것을 특징으로 하는 공정가스 분석장치.
  15. 제12항에 있어서, 상기 반사거울과 상기 중심핀 사이의 각도 및 상기 반사거울과 상기 기울기조절핀 사이의 각도가 변할 수 있도록, 상기 반사거울과 상기 중심핀이 만나는 부위 및 상기 반사거울과 상기 기울기조절핀이 만나는 부위에 회동수단이 설치되는 것을 특징으로 하는 공정가스 분석장치.
  16. 제12항에 있어서, 상기 거울지지수단과 상기 튜닝노브는 상기 광투과홀을 바라보는 면이 광이 통과할 수 있는 투명재질로 이루어지는 것을 특징으로 하는 공정가스 분석장치.
  17. 제12항에 있어서, 상기 거울지지수단과 상기 튜닝노브는 상기 광투과홀을 바라보는 면이 골격 형태로 이루어지는 것을 특징으로 하는 공정가스 분석장치.
  18. 제1항에 있어서, 상기 광원부와 상기 광검출부가 상기 가스셀에 분리가능하게 조립식으로 체결 설치되는 것을 특징으로 하는 공정가스 분석장치.
  19. 제1항에 있어서, 상기 광원부와 광검출부 사이, 상기 광원부와 가스셀 사이, 및 상기 광검출부와 가스셀 사이가 진동흡수수단에 의해 서로 연결되도록 설치되는 것을 특징으로 하는 공정가스 분석장치.
  20. 제1항에 있어서, 상기 가스셀에 압력게이지와 압력조절밸브가 설치되는 것을 특징으로 하는 공정가스 분석장치.
PCT/KR2016/012756 2015-11-05 2016-11-07 공정가스 분석장치 WO2017078504A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150154988A KR101735300B1 (ko) 2015-11-05 2015-11-05 공정가스 분석장치
KR10-2015-0154988 2015-11-05

Publications (2)

Publication Number Publication Date
WO2017078504A2 true WO2017078504A2 (ko) 2017-05-11
WO2017078504A3 WO2017078504A3 (ko) 2017-06-22

Family

ID=58662542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012756 WO2017078504A2 (ko) 2015-11-05 2016-11-07 공정가스 분석장치

Country Status (2)

Country Link
KR (1) KR101735300B1 (ko)
WO (1) WO2017078504A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051858A (zh) * 2017-07-14 2020-04-21 锋翔科技公司 基于光学参考的吸光度检测方法及系统
CN111272655A (zh) * 2018-12-05 2020-06-12 株式会社堀场Stec 吸光分析装置
CN114216856A (zh) * 2021-12-16 2022-03-22 安徽庆宇光电科技有限公司 一种用于光信号接收的样品池及其装置
CN115389096A (zh) * 2022-08-26 2022-11-25 江苏微导纳米科技股份有限公司 气体压力探测装置及沉积设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311148A (ja) * 1994-05-17 1995-11-28 Tokyo Gas Co Ltd 多重反射光学装置とそれを用いた反射光の採取方法
JP2000214077A (ja) * 1999-01-20 2000-08-04 Japan Radio Co Ltd 光学吸収セル
SG99872A1 (en) * 1999-10-26 2003-11-27 Mitsubishi Heavy Ind Ltd Method and apparatus for laser analysis of dioxins
JP4715759B2 (ja) * 2006-04-25 2011-07-06 株式会社島津製作所 水分計
JP2009042192A (ja) * 2007-08-11 2009-02-26 Okayama Univ ガス濃度検出装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051858A (zh) * 2017-07-14 2020-04-21 锋翔科技公司 基于光学参考的吸光度检测方法及系统
US11513006B2 (en) 2017-07-14 2022-11-29 Phoseon Technology, Inc. Systems and methods for an absorbance detector with optical reference
CN111272655A (zh) * 2018-12-05 2020-06-12 株式会社堀场Stec 吸光分析装置
CN114216856A (zh) * 2021-12-16 2022-03-22 安徽庆宇光电科技有限公司 一种用于光信号接收的样品池及其装置
CN114216856B (zh) * 2021-12-16 2023-06-02 安徽庆宇光电科技有限公司 一种用于光信号接收的样品池及其装置
CN115389096A (zh) * 2022-08-26 2022-11-25 江苏微导纳米科技股份有限公司 气体压力探测装置及沉积设备

Also Published As

Publication number Publication date
KR101735300B1 (ko) 2017-05-16
WO2017078504A3 (ko) 2017-06-22

Similar Documents

Publication Publication Date Title
WO2017078504A2 (ko) 공정가스 분석장치
CA1321896C (en) Measuring apparatus for characterizing a surface having color directional reflectance properties
RU2498273C2 (ru) Устройство для определения содержания воды в исследуемом объекте
GB2383127B (en) Device and method for investigating analytes in liquid suspension or solution
KR101326237B1 (ko) 헤이지 상태에서 자외선 다축-차등흡수분광을 사용한 대기 에어로졸 원격 감지 장치 및 방법
WO2022250353A1 (ko) 유체 시료 분석을 위한 광학 검출 장치
WO2018038491A1 (ko) 포물 반사체를 이용한 광 도파관 및 이를 구비하는 적외선 가스 센서
WO2016088926A1 (ko) 엑스선 차폐장치 및 차폐방법
CN1920510A (zh) 平板显示器的亮室对比度测量装置
JPH1090187A (ja) 化学ルミネセンス光を収集し伝送する収集伝送装置及び収集伝送方法
JP5377487B2 (ja) 基板上の薄膜を識別するための方法及び装置
WO2015126111A1 (ko) 그래핀의 전도성 검사 장치 및 검사 방법
TR200003897T2 (tr) Elyaf rengini sınıflandırma sistemi
US3834821A (en) Multiple photometer assembly
KR20130081843A (ko) 대기 오염물질의 다지점 동시 감시장치
WO2023163296A1 (ko) 도파관을 이용한 흡입식 복합 가스 감지기
WO2012026769A2 (ko) 다채널 오존 측정 장치
WO2015105295A1 (ko) 고속 측각 분광복사계 및 그 측정방법
CN100380113C (zh) 用于光学分析的非插入式装置和管道装配的光透射装置
CN210664766U (zh) 一种单光源多检测模块光度计
WO2022265183A1 (ko) 대기 중의 유해 물질 검출 장치
WO2020242207A1 (ko) 플라즈마 oes 진단용 윈도우 및 이를 이용한 플라즈마 장치
WO2021085865A1 (ko) 흡광 분석 장치
CN208091899U (zh) 一种光纤分光测量系统
CN113125003A (zh) 光发生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862519

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862519

Country of ref document: EP

Kind code of ref document: A2