WO2017078451A1 - 재조합 인간 갑상선 자극 호르몬을 포함하는 조성물 및 상기 재조합 인간 갑상선 자극 호르몬의 생산 방법 - Google Patents

재조합 인간 갑상선 자극 호르몬을 포함하는 조성물 및 상기 재조합 인간 갑상선 자극 호르몬의 생산 방법 Download PDF

Info

Publication number
WO2017078451A1
WO2017078451A1 PCT/KR2016/012633 KR2016012633W WO2017078451A1 WO 2017078451 A1 WO2017078451 A1 WO 2017078451A1 KR 2016012633 W KR2016012633 W KR 2016012633W WO 2017078451 A1 WO2017078451 A1 WO 2017078451A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
rhtsh
culture
composition
present
Prior art date
Application number
PCT/KR2016/012633
Other languages
English (en)
French (fr)
Inventor
성영철
양정윤
Original Assignee
주식회사 프로젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 프로젠 filed Critical 주식회사 프로젠
Priority to CN201680078071.0A priority Critical patent/CN108463730A/zh
Priority to US15/773,855 priority patent/US11001620B2/en
Priority to JP2018542093A priority patent/JP2018532791A/ja
Publication of WO2017078451A1 publication Critical patent/WO2017078451A1/ko
Priority to HK19100413.8A priority patent/HK1258040A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/59Follicle-stimulating hormone [FSH]; Chorionic gonadotropins, e.g.hCG [human chorionic gonadotropin]; Luteinising hormone [LH]; Thyroid-stimulating hormone [TSH]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/24Follicle-stimulating hormone [FSH]; Chorionic gonadotropins, e.g. HCG; Luteinising hormone [LH]; Thyroid-stimulating hormone [TSH]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/025Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus inorganic Tc complexes or compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • G01N33/76Human chorionic gonadotropin including luteinising hormone, follicle stimulating hormone, thyroid stimulating hormone or their receptors

Definitions

  • the present invention relates to a composition comprising recombinant human thyroid stimulating hormone (rhTSH) and a method for producing said recombinant human thyroid hormone.
  • rhTSH human thyroid stimulating hormone
  • Thyroid stimulating hormone is secreted from the hypothalamus through the anterior pituitary gland, the normal growth of tissues including the nervous system, stimulation of basal metabolic rate, production and secretion of growth hormone and prolactin, hormone activity, in the intestine It is involved in various mechanisms such as increased glucose reuptake, increased mitochondrial oxidation / phosphorylation, adrenal medulla activity, induction of enzyme synthesis, and the like.
  • TSH binds to TSH receptors in the follicular cells of thyroid follicles in the thyroid gland to activate specific signaling pathways, producing two hormones, triiodothyronine (T3) and T4 (thyroxine), which mediate the mechanisms described above. And secretion.
  • TSH is composed of two subunits, and the two subunits refer to ⁇ subunits containing 92 amino acids and ⁇ subunits containing 118 amino acids.
  • thyroid cancer continues to increase worldwide.
  • the number of thyroid cancer patients increased approximately 18-fold over the 20 years between 1990 and 2010, compared to a six-fold increase in the number of patients with thyroid cancer during the 30 years from 1980 to 2010.
  • the number of thyroid cancer patients will increase by about 3.5 times over the 20 years from 2010 to 2030, but the number of other major cancer patients will remain current or slightly decrease over the same period.
  • rhTSH can be used together to increase the absorption rate of radioisotopes (iodine) for therapeutic purposes when removing residual thyroid tissue in patients with thyroidectomy, effectively treating relapsed thyroid cancer without side effects.
  • rhTSH is a burden on consumers due to low productivity and tablet yield. Accordingly, the present inventors have completed the present invention by establishing the optimum culture and purification conditions for the production of rhTSH, while researching to increase the productivity and purification yield of rhTSH.
  • Another object of the present invention is to provide a method for producing recombinant human thyroid stimulating hormone in a fed-batch culture.
  • the present invention comprises the steps of culturing the cell line producing rhTSH at 35 °C to 40 °C; When the number of cultured cells became 3 ⁇ 10 6 to 2 ⁇ 10 7 cells / ml, culturing by lowering the culture temperature to 29 ° C. to 34 ° C .; And it provides a composition for diagnosing or treating recurrent thyroid cancer comprising a recombinant human thyroid stimulating hormone (rhTSH) obtained in a fed-batch culture comprising the step of obtaining rhTSH from the culture as an active ingredient.
  • rhTSH human thyroid stimulating hormone
  • the present invention comprises the steps of culturing the cell line producing rhTSH at 35 °C to 40 °C; When the number of cultured cells became 3 ⁇ 10 6 to 2 ⁇ 10 7 cells / ml, culturing by lowering the culture temperature to 29 ° C. to 34 ° C .; And it provides a method for producing recombinant human thyroid stimulating hormone in a fed-batch culture comprising the step of obtaining rhTSH from the culture.
  • the method for producing recombinant human thyroid stimulating hormone according to the present invention can effectively produce rhTSH despite cultivation in fed-batch culture, and has high purification yield and purity. Therefore, the recombinant thyroid stimulating hormone produced by the above method can be usefully used for the diagnosis or treatment of recurrent thyroid cancer.
  • FIG. 1A and 1B are graphs showing the rhTSH expression vector (FIG. 1A) prepared in the present invention, and long term stability test results of a cell line including the same (FIG. 1B).
  • FIG. 2A and 2B are graphs showing viable cell density and productivity (FIG. 2A) and viability (FIG. 2B) of selected cells for optimal temperature identification in rhTSH production.
  • Each bar in the productivity graph of Figure 2A means the culture temperature 37 °C-> 33 °C, 37 °C, 37 °C-> 35 °C and 37 °C-> 31 °C from the left.
  • 3 is a graph showing the viable cell density according to the number of cells when the temperature is lowered in the culture process.
  • 4 is a graph showing the viable cell density of cells when the culture temperature is lowered when the number of cells is 6 ⁇ 10 6 cells / ml.
  • FIG. 5A and 5B show a brief summary of the conventional rhTSH purification method (FIG. 5A) and the SDS-PAGE results of the protein purified by the conventional method (FIG. 5B).
  • FIG. 6A and 6B show a brief summary of the rhTSH purification method produced according to the method of the present invention (FIG. 6A) and the SDS-PAGE results of the protein purified by the method of the present invention (FIG. 6B).
  • FIG. 7A and 7B show the results of performing isoelectric focusing (IEF) analysis (FIG. 7A) and peptide mapping (FIG. 7B) for quality analysis of rhTSH produced according to the method of the present invention.
  • IEF isoelectric focusing
  • FIG. 7B peptide mapping
  • FIG. 8A and 8B are graphs showing the results of confirming in vitro activity (FIG. 8A) and in vivo activity (FIG. 8B) of rhTSH produced according to the method of the present invention.
  • the present invention comprises the steps of culturing the cell line producing rhTSH at 35 °C to 40 °C; When the number of cultured cells became 3 ⁇ 10 6 to 2 ⁇ 10 7 cells / ml, culturing by lowering the culture temperature to 29 ° C. to 34 ° C .; And it provides a composition for diagnosing or treating recurrent thyroid cancer comprising a recombinant human thyroid stimulating hormone (rhTSH) obtained in a fed-batch culture comprising the step of obtaining rhTSH from the culture as an active ingredient.
  • rhTSH human thyroid stimulating hormone
  • rhTSH recombinant human thyroid stimulating hormone
  • the recombinant human thyroid stimulating hormone according to the present invention may include an ⁇ subunit consisting of an amino acid sequence of SEQ ID NO: 1 and a ⁇ subunit consisting of an amino acid sequence of SEQ ID NO: 2.
  • a composition for diagnosing or treating relapsed thyroid cancer comprising rhTSH produced and purified by the method of the present invention may be used together with an iodine isotope in diagnosing the recurrence of cancer tissue after undergoing thyroid cancer resection, or in treating relapsed thyroid cancer.
  • the rhTSH used for the treatment of recurred thyroid cancer may be used as an anticancer treatment aid for iodine isotopes.
  • the rhTSH may further include a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier can be any carrier so long as it is a non-toxic substance suitable for delivery to a patient. Distilled water, alcohols, fats, waxes and inert solids may be included as carriers. Pharmaceutically acceptable adjuvants (buffers, dispersants) may also be included in the pharmaceutical composition.
  • the rhTSH of the present invention can be administered to a subject in a variety of ways.
  • the composition may be administered parenterally, such as subcutaneous, eye, intraperitoneal, intramuscular, oral, rectal, orbital, intracranial, intracranial, spinal, intraventricular, Intramedullary, intravitreal, intracapsular, intranasal, intravenous administration.
  • the composition may be administered intramuscularly.
  • the route of administration of the composition may be determined in consideration of body fluid volume, viscosity, etc., depending on the method of administration.
  • the composition When administered parenterally as described above, the composition preferably comprises an aqueous or physiologically acceptable portion of a bodily fluid suspension or solution. Accordingly, a physiologically acceptable carrier or carrier can be added to the composition and delivered to the patient, which does not adversely affect the electrolyte and / or volume balance of the patient. Thus, physiological saline is generally included as a body fluid formulation for the composition.
  • the administration may be administered one or more times, 1 to 3 times, and specifically, divided into two administrations.
  • repeated administration of the composition of the present invention can be repeated 12 to 48 hours, 24 to 36 hours intervals, specifically, can be administered at 24 hour intervals.
  • compositions can typically be sterilized according to well known sterilization techniques.
  • the compositions according to the invention may comprise pharmaceutically acceptable auxiliaries and auxiliaries, toxicity modulating agents and the like which are required for controlling physiological conditions such as pH adjustment, for example sodium acetate, sodium chloride, potassium chloride , Calcium chloride, sodium lactate, and the like.
  • concentration of rhTSH that can be included in the composition can vary widely.
  • the unit dose of the composition according to the invention may be 0.6 to 1.2 mg, specifically 0.8 to 1.0 mg, more specifically 0.9 mg based on the adult.
  • the unit dosage may vary depending on the disease to be treated and the presence of side effects, and the optimal dosage can be determined through routine experimentation.
  • compositions according to the invention can be used with iodine isotopes for the diagnosis or treatment of recurrent thyroid cancer.
  • the iodine isotope may be administered at 12 to 36 hours, 18 to 30 hours, 20 to 25 hours after administration of the composition according to the present invention. Specifically, it may be administered after 24 hours.
  • the diagnosis of recurring thyroid cancer may be carried out through diagnostic scanning or serum thyroid globulin (Tg) test after administration of the composition of the present invention and iodine isotope.
  • the diagnostic scanning may be performed at 24 to 60 hours, 36 to 54 hours, 46 to 50 hours after the administration of the iodine isotope. Specifically, it may be performed at 48 hours.
  • the collection of serum samples for serum thyroid globulin test can be performed at 48 to 96 hours, 60 to 84 hours, 70 to 74 hours after administration of the iodine isotope, and specifically after 72 hours.
  • the present invention comprises the step of culturing the cell line producing rhTSH at 35 to 40 °C.
  • the cell line producing rhTSH according to the present invention may be a cell line having an expression vector comprising the ⁇ subunit and ⁇ subunit described above, wherein the ⁇ subunit and ⁇ subunit are included in each vector or one
  • Each subunit in the vector may be expressed by a respective promoter (dual vector) or may be constructed to be linked and individually expressed through an internal ribosome binding site (IRES).
  • IRES internal ribosome binding site
  • vector refers to a nucleic acid means comprising a nucleotide sequence that can be introduced into a host cell, recombined and inserted into a host cell genome, or spontaneously replicated into an episome.
  • Suitable expression vectors include signal sequences or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoters, initiation codons, termination codons, polyadenylation signals and enhancers, and can be prepared in various ways depending on the purpose. .
  • the start codon and the stop codon must be functional in the individual when administered with the gene construct encoding the target protein and must be in frame with the coding sequence.
  • the term "dual vector” refers to a vector in which two genes in one vector can be regulated by each promoter to independently express a target protein.
  • the vector may include a marker capable of selecting a cell transformed with the protein of interest, and according to a specific embodiment of the present invention, the marker may be DHFR.
  • the ⁇ subunit and the ⁇ subunit should form a dimer, wherein the expression level of the ⁇ subunit should be about 3 to 4 times higher than the expression level of the ⁇ subunit. / ⁇ dimers can be formed. Therefore, in the production of the expression vector, the promoter can be selected so that the expression amount of the ⁇ subunit is large. According to a specific embodiment of the present invention, by connecting the ⁇ subunit to the CMV promoter and connecting the ⁇ subunit and the ⁇ subunit through an internal ribosome binding site (IRES), the expression level of the two subunits can be controlled. have.
  • IRS internal ribosome binding site
  • the present invention provides a host cell or a non-human host individual comprising the vector.
  • host cells or non-human host individuals may be useful in the medical / pharmaceutical environment, as well as in methods of obtaining the rhTSH of the present invention.
  • a host cell or non-human host entity transfected or transformed with a vector according to an embodiment of the present invention may be a host cell or a non-human host entity genetically modified by the vector.
  • the term “genetically modified” refers to a polynucleotide or vector according to one embodiment of the invention introduced into a host cell, a non-human host entity, predecessors or parents. Host cell, non-human host individual, preceding species or seedlings, in addition to their genome.
  • a polynucleotide or vector according to an embodiment of the present invention may exist in a genetically modified host cell or a non-human host individual as an independent molecule outside the genome, specifically, a replicable molecule, or a host cell. Or can be stably inserted into the genome of a non-human host individual.
  • the host cell according to an embodiment of the present invention is a eukaryotic cell.
  • the eukaryotic cells include fungus, plant cells or animal cells.
  • fungal cells may be yeast, specifically yeast of Saccharomyces sp., More specifically S. cerevisiae .
  • animal cells include insect cells or mammalian cells, and specific examples of animal cells include HEK293, 293T, NSO, CHO, MDCK, U2-OSHela, NIH3T3, MOLT-4, Jurkat, PC-12, and PC-. 3, IMR, NT2N, Sk-n-sh, CaSki, C33A and the like.
  • the host cell for example, CHO cells post-translational to the rhTSH protein according to an embodiment of the present invention, including removal of the leader peptide, glycosylation of the molecule in the correct position and secretion of the functional molecule modifications can be provided.
  • suitable cell lines well known in the art can be obtained from cell line depositors such as the American Type Culture Collection (ATCC).
  • CHO cells comprising a polynucleotide according to an embodiment of the present invention is particularly useful as a host cell.
  • CHO cells When CHO cells are used as host cells, there may be secondary modifications such as glycosylation and phosphorylation in rhTSH.
  • the non-human host entity may be a non-human mammal, specifically mice, mice, sheep, calves, dogs, monkeys and apes.
  • RhTSH can be expressed in various kinds of organisms such as bacteria, yeast, mammalian cells, plants, transgenic animals.
  • mammalian cells can be used in that the regulation on protein therapeutics and the protein produced should be similar to the natural form.
  • Examples of the mammalian cells include immortal hybridoma cells, NS / O myeloma cells, 293 cells, Chinese hamster ovary cells (CHO cells), HeLa cells, CapT cells (human amniotic fluid derived cells), COS Cells and the like, and according to specific embodiments of the present invention, CHO cells can be used.
  • CHO cells according to the present invention is knocked down the DHFR (dihydrofolate reductase) gene, which is an essential enzyme for the synthesis of purine and thymidylic acid, for selection of cell lines transformed with expression vectors.
  • the DHFR negative CHO cells cannot grow without providing purine and pyrimidine with HT (hippoxanthin and thymidine) in the form of a mixture of hypoxanthine sodium and thymidine, and are transformed with an expression vector containing a DHFR gene. Cell lines that are not viable cannot survive in medium that does not contain HT.
  • the present invention also cultures cell lines producing rhTSH through fed-batch conditions.
  • rhTSH has conventionally been produced in a "perfusion culture", which provides a continuous supply of fresh culture medium and at the same time a continuous removal of the used culture medium, such perfusion cultures are relatively low in productivity and process
  • perfusion culture which provides a continuous supply of fresh culture medium and at the same time a continuous removal of the used culture medium, such perfusion cultures are relatively low in productivity and process
  • the disadvantage is that it is complex and expensive.
  • fed-batch culture refers to a culture method in which a nutrient medium is slowly added to a culture vessel at the same time as the culture proceeds and the culture medium is not removed from the culture vessel until the end of the culture.
  • concentration of the component during the cultivation can be controlled to any set value.
  • culture medium refers to a nutrient solution for the maintenance, growth, proliferation, or expansion of cells in an artificial in vitro environment outside of a multicellular organism or tissue.
  • the culture medium may be optimized for specific cell culture, such as a basic culture medium prepared to support cell growth, or a production medium prepared to promote monoclonal antibody production, and a concentrated medium made by high concentration of nutrients. There is.
  • the “basal culture medium” means a medium capable of minimally supporting the growth of cells.
  • the basal culture medium supplies standard inorganic salts such as zinc, iron, magnesium, calcium and potassium, as well as trace elements, vitamins, energy sources, buffer systems and amino acids.
  • the basal culture medium according to the invention is used at the beginning of culture, which is the growth phase of the cells.
  • Examples of the basic culture medium include DMEM, MEM, RPMI 1640, F-10, F-12, Hycell CHO and the like.
  • the basal culture medium may be Hycell CHO medium.
  • the step of culturing the cell line at 35 ° C. to 40 ° C. is a growth phase of the cells. This is a period of rapid growth of cells after seeding the cells, and in general, the culture conditions for growing the cells may vary depending on the type of cells, the type of target protein to be produced, and the like.
  • CHO cells used in the present invention are known to increase the number of cells most actively at a temperature of 35 °C to 37 °C and a pH range of 6.8 to 7.3.
  • the growth phase of the cells in the fed-batch culture of the present invention may be 3 to 7 days, specifically 4 to 6 days from the beginning of the culture. According to a specific embodiment of the present invention, the growth phase of the cells may be 6 days from the beginning of the culture.
  • the growth temperature of the growth phase may be 35 ° C to 40 ° C, 36 ° C to 38 ° C, and according to a specific embodiment of the present invention, may be 37 ° C.
  • the growth of the cells does not occur well.
  • the present invention includes the step of culturing by lowering the culture temperature to 29 °C to 34 °C when the number of cultured cells is 3 ⁇ 10 6 to 2 ⁇ 10 7 cells / ml.
  • the cells When the culture temperature of the cells is lowered according to the fed-batch culture method according to the present invention, the cells enter the protein producer under culture conditions for maximizing the production of the target protein.
  • the culture conditions can be altered when the viable cell density cultured for entry into the protein producer in the cell growth phase is about 60 to 90%, specifically 70 to 80% of the maximum viable cell density. According to a specific embodiment of the present invention, the culture conditions are changed when the viable cell density is about 70%.
  • the culture temperature of the cells may be 29 °C to 34 °C, 31 °C to 33 °C, in accordance with an embodiment of the present invention the culture temperature may be 33 °C.
  • the culture temperature is 35 °C or more, the viability of the cells is sharply dropped, and when the temperature is 28 °C or less, the cells do not grow to a sufficient number, there is a problem that the production rate of rhTSH falls.
  • the change of the culture temperature is 3 ⁇ 10 6 to 2 ⁇ 10 7 cell / ml, 5 ⁇ 10 6 to 1 ⁇ 10 7 cell / ml, 6 ⁇ 10 6 to 8 ⁇ 10 6 cell / ml.
  • the culture temperature can be changed when the number of cells is 6 ⁇ 10 6 cells / ml. If the cell temperature is less than 3 ⁇ 10 6 cells / mL, the incubation temperature is too small, so the amount of protein is small. If the number of cells exceeds 2 ⁇ 10 7 cell / mL, the amount of protein is high. In addition, many HCPs, such as cell debris, are also produced, which makes it difficult to remove HCPs in concentrations that meet pharmaceutical standards in the purification process.
  • the culture temperature change according to the present invention can be carried out on the cultivation 5 to 9 days, specifically the cultivation 5 to 8 days, more specifically the cultivation 5 to 7 days, according to a specific embodiment of the present invention Can be.
  • viability density refers to the amount or number of living cells in a given space.
  • the cell survival density is measured to change the culture conditions when the appropriate number of cells are alive to produce the target protein with high efficiency.
  • Cell viability density can be determined by measuring the absorbance of the cells.
  • the fed-batch culture of the present invention can supply a supplement to the basic culture medium for protein production.
  • the term "supplement” refers to a substance that is additionally included in the basic culture medium for supplying abundant nutrients so that cells can enter the protein producer to maintain health and produce protein. Amino acids, vitamins, growth factors, and the like.
  • the types of supplements that can be used for the production of proteins are well known in the art, such as ActiCHO (GE Healthcare), Cell Boost (GE Healthcare), FM (functional MAX, Gibco), yeast extract, Phytone UF (BD Biosciences), DM19, PP3, TC Yeastolate UF (BD Biosciences) and the like, and the supplement may be ActiCHO, Cell Boost and FM.
  • the supplements may be added in appropriate amounts for the production of high levels of recombinant protein, and these may be used individually or in combination.
  • the supplement may be added immediately before the cell enters the protein producer after the growth phase, and according to the fed-batch culture of the present invention, it may be added from 1 to 3 days before the temperature is lowered for protein production. According to a specific embodiment of the present invention can be added from 1 day ago. Supplements must be continuously added in that they are consumed during cell survival and protein production. In general, supplements may be added periodically, from one to three days apart. The addition of supplements can vary depending on the amount, type, culture conditions, etc. of the cells, which can be readily selected by those skilled in the art.
  • the culture for producing rhTSH according to the present invention can last 10 to 20 days, specifically 11 to 15 days, more specifically 12 to 18 days, and according to a specific embodiment of the present invention, it lasts for 12 days. can do.
  • the present invention also includes the step of obtaining rhTSH from the culture.
  • rhTSH may be obtained by purification in a conventional well known method.
  • the step of purifying with a column filled with a resin to which anti-gonadotropin antibody is bound to obtain a primary purification liquid Passing the first purified liquid through a filter to obtain a second purified liquid; Dialysis of the second purification liquid to obtain a third purification liquid; And purifying the tertiary purification liquid by ion chromatography to obtain rhTSH, thereby obtaining rhTSH.
  • rhTSH has a wide range of PI values, and there are three N-glycosylation sites, thereby making it difficult to remove impurities during purification.
  • Conventional rhTSH purification methods perform a series of processes of filtration, anion exchange chromatography, affinity chromatography, and hydrophobic interaction chromatography, which not only make the procedure complicated and costly and time-consuming,
  • impurities eg, host cell proteins
  • impurities eg, host cell proteins
  • the present invention has established a purification method with high rhTSH yield and purity.
  • culture medium refers to a culture medium containing various factors including proteins produced and secreted by cells after culturing the cells, and can be obtained by removing the cells by centrifugation after the culture is completed.
  • affinity chromatography refers to chromatography that separates a target material by using one of two kinds of biologically high specific affinity as a stationary phase and using a difference in affinity for the stationary phase. One of the methods is shown. Therefore, the culture medium in the step can be purified by a column filled with the resin to which the anti-gonatorpin antibody is bound.
  • the resin used in the affinity chromatography consists of a matrix, a hydrophilic crosslinker and a ligand.
  • the matrix here can be crosslinked agarose, for example, highly cross-linked high-flow agarose.
  • the ligand may be an anti-gonadotropin antibody, which is a protein that specifically binds to rhTSH of the present invention.
  • the resin is capable of selectively binding to rhTSH since an antibody that specifically binds to rhTSH is covalently linked to an agarose fragment.
  • the ligand in the resin has a long crosslinking agent having hydrophilicity, the target protein to be separated can be easily bound.
  • An example of such a resin is CaptureSelect, commercially available as a custom-designed media from ThermoFisher Scientific (USA).
  • anti-gonadotropin antibody refers to an antibody that specifically recognizes the ⁇ subunit of rhTSH having the amino acid sequence of SEQ ID NO: 1 as an epitope and specifically binds it.
  • TSH is composed of two subunits, among which ⁇ subunit is commonly included in other gonadotropin hormones including TSH.
  • rhTSH may be eluted with sodium citrate solution in a column filled with the anti-gonadotropin antibody-bound resin.
  • the solution can be used at an appropriate concentration and pH that can interfere with binding to the anti-gonadotropin antibody within a range that does not change the quality and activity of the target protein.
  • Suitable concentration ranges of the solution may be 0.01 to 5 M, 0.03 to 1 M, 0.06 to 0.5 M, 0.07 to 0.3 M.
  • the concentration of the solution may be 0.1 M.
  • suitable pH range may be 1 to 5, 2 to 4, 2.5 to 3.5.
  • the pH of the solution may be three.
  • Impurities such as insoluble aggregate and host cell protein (HCP) included in the primary purification liquid obtained by the affinity chromatography may be removed, and filtration may be performed to further increase the purity of the target protein.
  • the filtration may be multilayer filtration.
  • the term "depth filtration” as used herein refers to filtration performed by installing two or more types of filters having different pore sizes by layer.
  • the pore size of the filter for the multilayer filtration may be 0.001 to 30 ⁇ m, 0.005 to 25 ⁇ m, 0.015 to 15 ⁇ m, 0.020 to 12 ⁇ m.
  • the filter may have a pore size of 0.025 to 10 ⁇ m.
  • the filtration can use a Tris solution, wherein the solution used can be a suitable concentration and pH as described above.
  • Appropriate concentrations of the Tris solution may be 1 to 300 mM, 10 to 200 mM, 20 to 100 mM, 30 to 70 mM. According to a specific embodiment of the present invention, the concentration of the Tris solution may be 50 mM.
  • an appropriate pH of the tris solution may be 6 to 12, 7 to 11, 8 to 10, and according to a specific embodiment of the present invention, the pH may be 9.
  • diafiltration refers to a step of diluting impurities in a sample to remove or separate according to molecular size using a filter having a small pore.
  • Dialysis in the present invention may be a semi-permeable membrane having a pore size of 0.01 to 0.5 ⁇ m, 0.1 to 0.3 ⁇ m, 0.2 to 0.25 ⁇ m.
  • dialysis is performed using a semi-permeable membrane (Millipak 20, Millipore) having a pore size of 0.22 ⁇ m under a pressure of 1.0 bar or less, and the conductivity of the filtrate is 30.0 ⁇ S / cm It ends when below.
  • Ion chromatography according to the present invention can be purified by a column filled with a resin to which a compound of the structure of Formula 1 is bound:
  • ion chromatography is a method of purifying due to the different affinity of ions for the stationary phase in the column.
  • the separation mechanism through the ion chromatography column is mainly ion exchange, in which a cation or anion exchange medium is bound, and a competitive exchange occurs depending on the degree of affinity of the cation or anion in the mobile phase opposite to the ion bound thereto.
  • the resin-filled column to which the compound of formula 1 is bound is a powerful anion exchanger having multimodal functionality.
  • the term "multiple functionalities" means capable of interacting with various materials. Therefore, the resin to which the compound of Formula 1 is bound may interact with various materials through ionic interaction, hydrogen bonding, hydrophobic interaction, and the like to remove impurities such as HCP and aggregates.
  • the target protein passed through the anion exchange chromatography can be eluted with sodium acetate solution, wherein the solution used can be a suitable concentration and pH as described above.
  • Appropriate concentrations of the sodium acetate solution can be 1 to 200 mM, 5 to 100 mM, 10 to 50 mM, 15 to 30 mM.
  • the concentration of sodium acetate solution may be 20 mM.
  • an appropriate pH of the sodium acetate solution may be 2 to 6, 2.5 to 5, 3 to 4, and according to one specific embodiment of the present invention, the pH may be 3.8.
  • the flow rate of the sodium acetate solution for elution may be in the range of 10 to 500 ml / min, 10 to 300 ml / min, 10 to 100 ml / min, 10 to 50 ml / min. According to a specific embodiment of the present invention, the flow rate of the sodium acetate solution may be 15 ml / min.
  • the final purified rhTSH through all the above steps may further comprise dialysis filtration with a suitable solution to hold the final protein product.
  • the protein product storage solution should not change the quality and activity of the protein even if the protein is stored for a long time. Therefore, the solution for storing rhTSH protein according to the present invention may include sodium phosphate, mannitol and sodium chloride.
  • the present invention comprises the steps of culturing the cell line producing rhTSH at 35 °C to 40 °C; When the number of cultured cells became 3 ⁇ 10 6 to 2 ⁇ 10 7 cells / ml, culturing by lowering the culture temperature to 29 ° C. to 34 ° C .; And it provides a method for producing recombinant human thyroid stimulating hormone in a fed-batch culture comprising the step of obtaining rhTSH from the culture.
  • the recombinant human thyroid stimulating hormone according to the present invention may include an ⁇ subunit consisting of an amino acid sequence of SEQ ID NO: 1 and a ⁇ subunit consisting of an amino acid sequence of SEQ ID NO: 2, and a general feature for producing the same. Is as described above.
  • Single valued clones selected according to the method of the present invention were used to establish fed-batch culture conditions for easier production of recombinant rhTSH.
  • Basic culture media for cell culture include DMEM, MEM, RPMI 1640, F-10, F-12, Hycell CHO.
  • the basal culture medium may be Hycell CHO medium.
  • the step of culturing the cell line at 35 ° C. to 40 ° C. is a growth phase of the cells.
  • the growth temperature of the growth phase may be 35 ° C to 40 ° C, 36 ° C to 38 ° C, and according to a specific embodiment of the present invention, may be 37 ° C.
  • the cells When the culture temperature of the cells is lowered according to the fed-batch culture method according to the present invention, the cells enter the protein producer under culture conditions for maximizing the production of the target protein.
  • the temperature may be 29 °C to 34 °C, 31 °C to 33 °C, according to an embodiment of the present invention the culture temperature may be 33 °C.
  • the culture temperature is 35 °C or more, the viability of the cells is sharply dropped, when the temperature is 28 °C or less there is a problem that the production rate of rhTSH falls because the cells do not grow to a sufficient number.
  • the change of the culture temperature is 3 ⁇ 10 6 to 2 ⁇ 10 7 cell / ml, 5 ⁇ 10 6 to 1 ⁇ 10 7 cell / ml, 6 ⁇ 10 6 to 8 ⁇ 10 6 cell / ml.
  • the culture temperature can be changed when the number of cells is 6 ⁇ 10 6 cells / ml. If the cell temperature is less than 3 ⁇ 10 6 cells / mL, the incubation temperature is too small, so the amount of protein is small. If the number of cells exceeds 2 ⁇ 10 7 cell / mL, the amount of protein is high. In addition, many HCPs, such as cell debris, are also produced, which makes it difficult to remove HCPs in concentrations that meet pharmaceutical standards in the purification process.
  • the fed-batch culture of the present invention can supply a supplement to the basic culture medium for protein production.
  • supplements include ActiCHO (GE Healthcare), Cell Boost (GE Healthcare), FM (functional MAX, Gibco), yeast extract (yeast extract), Phytone UF (BD Biosciences), DM19, PP3, TC Yeastolate UF (BD Biosciences) And the like may be ActiCHO, Cell Boost and FM.
  • the supplements may be added in appropriate amounts for the production of high levels of recombinant protein, and these may be used individually or in combination.
  • the culture for producing rhTSH according to the present invention can last 10 to 20 days, specifically 11 to 15 days, more specifically 12 to 18 days, and according to a specific embodiment of the present invention, it lasts for 12 days. can do.
  • the inventors of the present invention produced a vector capable of expressing the ⁇ subunit and ⁇ subunit of rhTSH by producing a rhTSH that maintains high purity and good quality by a fed-batch culture method, transformed the CHO cell line to rhTSH Monoclonal cells expressing high levels of were selected and the selected single cell clones were named # 1, # 2 and # 3, respectively (FIGS. 1A and 1B).
  • a method for purifying rhTSH in an rhTSH expressing cell line cultured by the established production method was established. Specifically, when affinity chromatography, multilayer filtration, diafiltration, and anion exchange chromatography in which cell supernatants are collected and a TSH specific antibody as a fixed phase are performed in a series of sequences, a high protein compared with conventional rhTSH purification methods. showed a yield and purity, a similar to rhTSH (Thyrogen ®) that within the purified protein impurities was reduced into standard value for pharmaceutical use (Figs. 5A to 6B), it is also commercially available in the activity was confirmed (FIG. 7A and FIG. 7B).
  • the fed-batch cultivation method according to the present invention is not only simple and economical in production process, but also excellent in activity and quality of the produced rhTSH. have.
  • the present invention also provides a method of treating a disease by administering a composition comprising the rhTSH of the present invention as a pharmaceutically effective ingredient.
  • Such methods include the administration of an effective amount of a composition according to the invention to a mammal having a medical condition that is or is not directly associated with a desired disease.
  • the rhTSH can be administered in a therapeutically effective amount to a subject, preferably a mammal, including a human.
  • the route of administration and dosage of the composition according to the invention can be administered to a subject in a variety of ways and amounts depending on the condition and the presence of side effects to be treated, and the optimal method and dosage can be determined through routine experimentation.
  • composition may be administered in combination with other drugs or physiologically active substances having a therapeutic effect on the disease to be treated, or may be formulated in combination with other drugs.
  • the present invention also provides a method of diagnosing relapsed thyroid cancer by administering a composition comprising the rhTSH of the present invention.
  • the method can diagnose recurred thyroid cancer by administering rhTSH of the present invention followed by radioactive iodine, diagnostic scanning or serum thyroid globulin (Tg) test.
  • compositions according to the invention for the diagnosis of recurred thyroid cancer can be administered to a subject in a variety of ways and amounts depending on the condition and the presence of side effects to be treated, and optimal methods and dosages are conventional. It can be determined through experimentation.
  • gene fragments containing ⁇ subunits of rhTSH, ⁇ subunit genes of IRES and rhTSH were synthesized using Top Gene Technologies (Canada).
  • the synthesized genes were cloned into pAD5 (Genexin) vector using EcoRI and XhoI restriction enzymes, and then named pAD-rhTSH.
  • the expression vector was prepared by transformation into a host cell using a method well known in the art. In order to separate the vector from the endo free plasmid purification kit (Qiagen, USA) was used, and the isolated vector was used to prepare cells expressing rhTSH in high yield.
  • Cells capable of expressing rhTSH with high yield from the pAD-rhTSH expression vector prepared in Example 1 were prepared as follows.
  • the CHO DG44 (-) DHFR (From Dr. Lawrence Chasin, Columbia University, USA) cell line was transformed with the pAD-rhTSH expression vector under several conditions, and then the cells transformed with the optimized conditions were 6-well. Plates were incubated for 48 hours in basal medium containing HT (hippoxanthin and thymidine). The cells were then incubated for 14 days in medium without HT, during which time the culture scale was increased to 125 ml flasks in 6-well plates. Cell clones expressing high levels of rhTSH were selected using the TSH specific ELISA kit (Genway Biotech, USA).
  • Selected clones were incubated for 14-28 days in a medium containing 10 nM of methodrexate (MTX) in 125 ml flasks, and the flasks expressing the highest levels of rhTSH were selected to allow cells to be stored in 20 wells of a 96-well plate. Was dispensed on. After culturing for 14 days, single colonies expressing relatively high levels of rhTSH were selected using an image cloner. Selected single colonies were incubated for 21-27 days with scaling up from 96-well plates to 6-well plates. The cultured cells were again measured for rhTSH productivity with a TSH specific ELISA kit.
  • MTX methodrexate
  • the above procedure was repeated with increasing concentrations of MTX to 20 nM, 50 nM, 100 nM and 200 nM, and finally the single clone cells with the highest rhTSH productivity were selected and amplified.
  • the selected cells were selected as a research cell bank (RCB) candidate, cultured up to 35 passages to confirm stability during long-term culture, and Td (double time), rhTSH productivity, and cell type were confirmed for each passage.
  • RBC research cell bank
  • Genzyme's Thyrogen ® the only company currently selling rhTSH, is known to be relatively unstable in solution and uses perfusion cultures for its production. Compared to other culture methods, perfusion cultures are relatively low in productivity, complex in process, and expensive.
  • the production yield of Genzyme's Thyrogen ® produced by perfusion culture is known to be 20-30 mg / l.
  • Example 2 0.5 ⁇ 10 5 cells / ml # 3 clones selected in Example 2 were incubated for 15 days at 37 ° C. in Hycell CHO medium (Hyclone, USA), wherein cultures 5, 7, 9, 11 and On day 13 supplements were added 0.5% ActiCHO (GE Healthcare, USA) and 4% Cell Boost 5 (CB5, GE Healthcare, USA). After 6 days, when the viable cell density reached 6 ⁇ 10 6 to 8 ⁇ 10 6 cells / ml of cells, the temperature was lowered to 37 ° C., 35 ° C., 33 ° C., and 31 ° C. and further incubated by 15 days.
  • the temperature for rhTSH production was set to the optimum culture conditions to lower the temperature from 37 °C to 33 °C culture. At this time, after culturing for 6 days at 37 °C, 7 days can be cultured by lowering the temperature to 33 °C.
  • Example 3.1 The temperature conditions for rhTSH production in Example 3.1 above were established. However, the following experiment was conducted to confirm the effect of viable cell density on the production of rhTSH at the time of lowering the temperature.
  • the culture temperature is 37 ° C. All experiments were performed in the same manner as in Example 3.1 except that the temperature was lowered to 33 ° C. After incubation, rhTSH production rate in the cell culture was measured in the same manner as in Example 2, and the purity of rhTSH was confirmed by SDS-PAGE electrophoresis and coomassie blue staining.
  • HCP was confirmed by measuring the absorbance.
  • Standard samples were prepared first at concentrations of 0, 1, 4, 20, 75 and 250 ng / ml for absorbance measurements.
  • rhTSH samples obtained under each condition were diluted to a standard range, and mixed samples were prepared by mixing 30 ⁇ l of the 250 ng / ml standard sample with 120 ⁇ l of the diluted rhTSH. 50 ⁇ l of the mixed sample was dispensed into two wells of an ELISA strip, and then 200 ⁇ l of Anti-CHO: Alkaline phosphatase was added. It was sealed and stirred at 24 ° C. and 180 rpm for 2 hours, washed 4 times with a washing solution, and 200 ⁇ l of PNPP was added thereto to react for 1 hour and 30 minutes at room temperature to absorb its absorbance at 405/492 nm. Measured.
  • the production rate and purity of rhTSH and the amount of HCP (host cell protein) as impurities were measured according to the density of viable cells at the time of changing the culture temperature, and are shown in Table 1 below.
  • the production rate is 1.12 times lower, but the amount of HCP is 1.5. It was confirmed that the fold decreased more than twice. Since it is very important to reduce the amount of HCP in the production of pharmaceuticals, lowering the culture temperature when the density of viable cells is 6.0 ⁇ 10 6 cells / ml, which is the condition where the amount of HCP is the smallest in terms of production rate, is the optimal culture condition. Set.
  • viability cell density, cell growth rate and rhTSH productivity confirmation were performed as described above during the 18 day incubation period.
  • the cell growth rate was more than 90% at 18 days of culture, rhTSH productivity was higher than 1 g / l, but the quality was lower than the control.
  • the optimum value of incubation time to maintain productivity and the quality of the produced rhTSH was set to 12 days, and in conclusion, through the series of experiments to establish a fed-rate culture condition for rhTSH production.
  • Sex gland stimulating hormone is a glycoprotein polypeptide hormone secreted from the anterior pituitary gland of vertebrates; And TSH. Therefore, in general, purification of rhTSH protein is carried out in the same manner as the purification method of gonadotropin.
  • rhTSH protein was purified according to the conventional purification method in order to compare the purification method according to the present invention and the purification yield and the purity of the purified protein.
  • the supernatants of the cells cultured under the conditions established in Example 3 were collected and filtered using the Millistak + DOHC and Millistak + XOHC filters sequentially.
  • the filtered supernatant was concentrated 20 times by ultrafiltration with a Pod Depth filter, XOHC, and dialyzed with A buffer (50 mM CHES, 40 mM NaCl, pH 10.0) using a Millipak 20 filter having a size of 0.22 ⁇ m. diafiltration).
  • the filtrate was subjected to anion exchange chromatography using Nuvia Q resin and eluted with 350 mM NaCl. Then filtered again with a Pod Depth filter to remove insoluble aggregates.
  • the filtrate was equilibrated with B buffer (10 mM sodium phosphate, pH 7.0) followed by a second purification with Blue 6 FF resin and 530 mM NaCl eluate.
  • the third purification was subjected to hydrophobic interaction chromatography using phenyl HP resin, and the purified eluate was passed through the Q membrane with C buffer (20 mM sodium phosphate, pH 7.0).
  • the final product was formulated in D buffer (20 mM sodium phosphate, 3% mannitol, 0.2% NaCl).
  • the purified protein was subjected to SDS-PAGE electrophoresis and confirmed by Coomassie Blue staining.
  • the rhTSH protein purified by the above method showed a yield of 30% or more and a purity of 98% or more, but the HCP (host cell protein), which is an impurity from the host cell, is 1,000 ppm or more. It was confirmed. Impurities in proteins for pharmaceutical use are below 100 ppm, requiring additional steps to remove them.
  • rhTSH proteins have a wide range of PI values and three N-glycosylation sites do not facilitate removal of impurities. Thus, purification conditions for efficiently purifying the rhTSH protein were established.
  • a column containing the anti-gonadotropin antibody (ThermoFisher scientific) as a stationary phase was prepared by using a CaptureSelect system (ThermoFisher scientific), so that the cell supernatant prepared in the same manner as in Comparative Example 1 was 3 g protein / L CaptureSelect amount.
  • the column was loaded at a flow rate of 40 L / h and eluted with E buffer (0.1 M sodium citrate, pH 3.0) injected into the column at a flow rate of 40 L / h.
  • the diafiltered purified intermediate was loaded on a Capto adhere column at 15 ml / min, then eluted with G buffer (20 mM sodium acetate, pH 3.8) at a flow rate of 15 ml / min. Finally, the eluate was formulated with D buffer. The purified protein was subjected to SDS-PAGE electrophoresis and confirmed by Coomassie Blue staining.
  • the purified rhTSH protein showed nearly 100% purity, and most of the HCP was removed, but was still acceptable for medicinal use. It was found to be over 100 ppm of phosphorus. However, after performing the capto adhere step, the purified rhTSH protein was confirmed. As a result, the final product having less than 20 ppm of HCP was obtained, and the purification yield was also excellent as 45%.
  • the main purpose for establishing the production process of rhTSH protein is to increase the productivity of the protein in fed-batch culture conditions.
  • the productivity of the protein was very good, but there was a problem that the quality of the protein was reduced. Therefore, the rhTSH protein when incubated for 12 days was compared with a commercially available control group to perform isoelectric focusing (IEF) profiles and peptide mapping.
  • IEEE isoelectric focusing
  • the pattern of peptide mapping of the purified rhTSH and the control group was analyzed by trypsin treatment. Specifically, 20 ⁇ l of 8 M urea (Sigma) and 2.5 ⁇ l of 200 mM DTT (Sigma) were added to 100 ⁇ g of sample, homogenized, and reacted at 70 ° C. for 10 minutes. 2.5 ⁇ l of 550 mM iodoacetamide (Sigma) was then placed in each reaction tube and left at room temperature for 40 minutes. The sample was treated with 50 ⁇ l of trypsin (Promega) and 105 ⁇ l of 100 mM ammonium bicarbonate (Sigma) and reacted at 37 ° C. for 15 hours, and the cut peptide was analyzed by UPLC (ultra performance liquid chromatography).
  • the rhTSH protein cultured and purified by the method of the present invention shows a similar IEF profile and peptide mapping analysis results similar to the commercial control, showing that the quality of the rhTSH protein of the present invention is excellent. Confirmed.
  • cAMP a second messenger induced by the TSH / TSHR signaling pathway
  • the cAMP Hunter TM CHO-K1 TSHR (L) Gs cell line (DiscoverRx) stably expressing the thyrotropin receptor (TSHR) and cAMP dependent luciferase genes is a medium used for its culture (DiscoverRx) in 96-well. Cultures were maintained to maintain a cell density of about 70-80% before dispensing. The cultured cells were dispensed into 96-well plates to be 2 ⁇ 10 4 cells, incubated at 37 ° C. for 18-20 hours, and then the medium of each well was removed and 45 ⁇ l of cAMP antibody reagent was added.
  • ED / CL solution contained ED reagent, HitHunter cAMP XS + kit substrate 2, HitHunter cAMP XS + kit substrate 1, and cell lysis reagent. It was prepared by mixing in a ratio of 15: 1: 5: 9. Then, 40 ⁇ l of EA reagent was added and reacted at 26 to 28 ° C. for 1 hour, and the relative light unit (RLU) was measured by a luminometer (BioTek, synergy 2). The resulting values were calculated and compared with EC 50 of rhTSH protein and control.
  • IBMX 3-isobutyl-1-methylxanthine
  • the EC 50 value of the rhTSH protein of the present invention was confirmed to be about 99% similar to the control.
  • the amount of T4 in the blood was measured when rhTSH was administered to an animal model.
  • mice were prepared and divided into four groups for each group, and the rhTSH and the control group of the present invention were intraperitoneally injected at concentrations of 0.1, 0.5, and 2 mg / kg, respectively.
  • Blood samples were obtained from each mouse before dosing, 6 hours and 12 hours after dosing. The obtained samples were stored in a cryogenic freezer until analysis, and the assay was confirmed by comparing T4 levels in blood using a TSH specific ELISA kit (Genway) as described in Example 2 above.
  • the rhTSH protein of the present invention induced T4 expression in a concentration-dependent level similar to the control.
  • the rhTSH protein produced and purified by the method of the present invention showed similar activity to commercially available products, and it was found that the quality was excellent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Endocrinology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Reproductive Health (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

본 발명은 재조합 인간 갑상선 자극 호르몬(rhTSH)을 포함하는 재발 갑상선암 진단 및 치료용 조성물 및 상기 재조합 인간 갑상선 호르몬을 생산하기 위한 방법에 관한 것으로, 본 발명에 따른 방법의 재조합 인간 갑상선 자극 호르몬의 생산 방법은 유가 배양으로 배양함에도 불구하고 rhTSH를 효과적으로 생산할 수 있고, 정제 수율 및 순도가 높다. 따라서, 상기 방법으로 생산된 재조합 갑상선 자극 호르몬은 재발된 갑상선암의 진단 또는 치료에 유용하게 사용될 수 있다.

Description

재조합 인간 갑상선 자극 호르몬을 포함하는 조성물 및 상기 재조합 인간 갑상선 자극 호르몬의 생산 방법
본 발명은 재조합 인간 갑상선 자극 호르몬(rhTSH)을 포함하는 조성물 및 상기 재조합 인간 갑상선 호르몬을 생산하기 위한 방법에 관한 것이다.
갑상선 자극 호르몬(thyroid stimulating hormone; TSH)은 시상하부로부터 뇌하수체전엽을 통해서 분비되고, 신경계를 포함하는 조직의 일반적인 성장, 기초대사율의 자극, 성장 호르몬과 프로락틴의 생산 및 분비, 호르몬의 활동, 장에서 포도당 재흡수의 증가, 미토콘드리아 산화/인산화의 증가, 부신수질의 활성, 효소 합성의 유도 등과 같은 다양한 기전에 관련되어 있다. TSH는 특정 신호 경로를 활성화하기 위하여, 갑상선에서 갑상선 여포의 여포 세포(follicular cell)에 있는 TSH 수용체와 결합하여, 상기 서술한 기전들을 매개하는 T3(triiodothyronine) 및 T4(thyroxine)라는 두 호르몬의 생성 및 분비를 유도한다. 또한, TSH는 두 개의 서브유닛으로 구성되어 있고, 상기 두 개의 서브유닛은 92개 아미노산을 포함하는 α서브유닛과 118개 아미노산을 포함하는 β서브유닛을 말한다.
전세계에서 갑상선암의 발병율은 지속적으로 증가하고 있다. 미국에서 1980년부터 2010년까지 30년 동안 갑상선암 환자의 수가 6배로 증가한 것에 비해, 한국에서는 1990년부터 2010년 사이의 20년 동안 갑상선암 환자의 수가 약 18배 증가하였다. 미국에서는 2010년부터 2030년까지 20년 동안 갑상선암 환자의 수가 약 3.5배 증가할 것이나, 동일 기간 동안 다른 주요 암환자의 수는 현 상태를 유지하거나 약간 감소할 것으로 예측하고 있다.
갑상선암으로 진단받으면, 이의 치료를 위해 대부분은 환자의 갑상선 조직을 완전히 제거한다. 갑상선 절제술을 받은 환자는 남은 여생동안 갑상선의 기능을 유지하기 위해 갑상선 호르몬인 T3 및 T4를 투여받아야 한다. 이러한 갑상선암의 치료에 있어서, 갑상선 절제술 이후의 잔재 조직으로 인한 암의 재발 및 전이를 막기 위한 추적검사가 매우 중요하다. 초기 갑상선암의 재발 확인을 위한 진단에서는 T3 및 T4의 투여를 오랫동안 중단한 후에 혈중 티로글로불린(thyroglobulin) 단백질을 정량하여 재발 여부를 확인하였으나, 이와 같은 방법은 한동안 T3 및 T4의 투여를 중단한다는 점에서 갑상선 기능 저하와 같은 다양한 부작용을 유발하게 된다. 이에 따라, 최근 20년 동안에는 T3 및 T4 호르몬 복용을 중단하지 않고, 재조합 인간 갑상선 자극 호르몬(rhTSH)을 투여하여 2~3일 내에 혈중 티로글로불린 단백질을 정량함으로써 갑상선암의 재발을 진단할 수 있는 방법이 널리 이용되고 있다.
뿐만 아니라, rhTSH는 갑상선 절제 환자에서 잔재 갑상선 조직을 제거할 때 치료 목적으로 방사성 동위원소(요오드)의 흡수율을 높이기 위해 함께 사용하여 부작용없이 효과적으로 재발된 갑상선암을 치료할 수 있다.
하지만, 현재 시판되고 있는 rhTSH는 낮은 생산성 및 정제 수율로 인한 소비자의 부담이 큰 실정이다. 이에, 본 발명자들은 rhTSH의 생산성 및 정제 수율을 높이기 위한 연구를 진행하던 중, rhTSH 생산을 위한 최적의 배양 및 정제조건을 확립하여 본 발명을 완성하였다.
본 발명의 목적은 본 발명의 방법으로 생산된 재조합 인간 갑상선 자극 호르몬을 포함하는 재발 갑상선암 치료 또는 진단용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 유가 배양으로 재조합 인간 갑상선 자극 호르몬을 생산하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 rhTSH를 생산하는 세포주를 35℃ 내지 40℃에서 배양하는 단계; 배양된 세포 수가 3×106 내지 2×107 cell/㎖가 되었을 때, 배양 온도를 29℃ 내지 34℃로 낮추어 배양하는 단계; 및 배양액으로부터 rhTSH를 수득하는 단계를 포함하는 유가 배양으로 수득한 재조합 인간 갑상선 자극 호르몬(recombinant human thyroid stimulating hormone; rhTSH)을 유효성분으로 포함하는 재발 갑상선암 진단 또는 치료용 조성물을 제공한다.
상기 다른 목적을 달성하기 위하여, 본 발명은 rhTSH를 생산하는 세포주를 35℃ 내지 40℃에서 배양하는 단계; 배양된 세포 수가 3×106 내지 2×107 cell/㎖가 되었을 때, 배양 온도를 29℃ 내지 34℃로 낮추어 배양하는 단계; 및 배양액으로부터 rhTSH를 수득하는 단계를 포함하는 유가 배양으로 재조합 인간 갑상선 자극 호르몬을 생산하는 방법을 제공한다.
본 발명에 따른 재조합 인간 갑상선 자극 호르몬의 생산 방법은 유가 배양으로 배양함에도 불구하고 rhTSH를 효과적으로 생산할 수 있고, 정제 수율 및 순도가 높다. 따라서, 상기 방법으로 생산된 재조합 갑상선 자극 호르몬은 재발된 갑상선암의 진단 또는 치료에 유용하게 사용될 수 있다.
도 1A 및 도 1B는 본 발명에서 제조된 rhTSH 발현 벡터(도 1A), 및 이를 포함하는 세포주의 장기 안정성 테스트 결과를 나타낸 그래프(도 1B)이다.
도 2A 및 도 2B는 rhTSH 생산에서 최적의 온도 확인을 위해 선별된 세포의 생존 세포 밀도 및 생산성(도 2A)과 생존율(도 2B)을 나타낸 그래프이다. 도 2A의 생산성 그래프에서 각 막대는 좌측부터 배양온도 37℃->33℃, 37℃, 37℃->35℃ 및 37℃->31℃를 의미한다.
도 3은 배양 과정에서 온도를 낮출 때 세포의 수에 따른 생존 세포 밀도를 나타낸 그래프이다.
도 4는 세포의 수가 6×106 cell/㎖일 때, 배양 온도를 낮춘 경우 세포의 생존 세포 밀도를 나타낸 그래프이다.
도 5A 및 도 5B는 종래의 rhTSH 정제 방법의 간략한 요약(도 5A) 및 종래의 방법으로 정제된 단백질의 SDS-PAGE 결과(도 5B)를 나타낸 도면이다.
도 6A 및 도 6B는 본 발명의 방법에 따라 생산된 rhTSH 정제 방법의 간략한 요약(도 6A) 및 본 발명의 방법으로 정제된 단백질의 SDS-PAGE 결과(도 6B)를 나타낸 도면이다.
도 7A 및 도 7B는 본 발명의 방법에 따라 생산된 rhTSH의 품질 분석을 위해 IEF(isoelectric focusing) 분석(도 7A) 및 펩타이드 맵핑(도 7B)을 수행한 결과를 나타내는 도면이다.
도 8A 및 도 8B는 본 발명의 방법에 따라 생산된 rhTSH의 시험관 내 활성(도 8A) 및 생체 내 활성(도 8B)을 확인한 결과를 나타내는 그래프이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 rhTSH를 생산하는 세포주를 35℃ 내지 40℃에서 배양하는 단계; 배양된 세포 수가 3×106 내지 2×107 cell/㎖가 되었을 때, 배양 온도를 29℃ 내지 34℃로 낮추어 배양하는 단계; 및 배양액으로부터 rhTSH를 수득하는 단계를 포함하는 유가 배양으로 수득한 재조합 인간 갑상선 자극 호르몬(recombinant human thyroid stimulating hormone; rhTSH)을 유효성분으로 포함하는 재발 갑상선암 진단 또는 치료용 조성물을 제공한다.
본 명세서에서 사용된 용어 "재조합 인간 갑상선 자극 호르몬(rhTSH)"은 시상하부로부터 뇌하수체전엽을 통해서 분비되는 단백질로, 92개 아미노산을 포함하는 α서브유닛과 118개 아미노산을 포함하는 β서브유닛으로 구성되어 있다. rhTSH는 갑상선암 환자의 재발 진단과 치료 보조제로 사용되고 있다. 본 발명에 따른 재조합 인간 갑상선 자극 호르몬은 서열번호 1로 기재되는 아미노산 서열로 구성되는 α서브유닛과 서열번호 2로 기재되는 아미노산 서열로 구성되는 β서브유닛을 포함할 수 있다.
본 발명의 방법으로 생산 및 정제된 rhTSH를 포함하는 재발된 갑상선암 진단 또는 치료용 조성물은, 갑상선암 절제술을 받은 이후 암 조직의 재발 여부를 진단하거나, 재발된 갑상선암의 치료 시, 요오드 동위원소와 함께 사용될 수 있다. 상기 재발된 갑상선암의 치료를 위해 사용되는 rhTSH는 요오드 동위원소에 대한 항암 치료 보조제로 사용될 수 있다.
상기 rhTSH는 약학적으로 허용가능한 담체를 더 포함할 수 있다. 상기 약학적으로 허용가능한 담체는 환자에게 전달하기에 적절한 비-독성 물질이면 어떠한 담체라도 가능하다. 증류수, 알코올, 지방, 왁스 및 비활성 고체가 담체로 포함될 수 있다. 약학적으로 허용가능한 아쥬반트(완충제, 분산제) 또한 약학 조성물에 포함될 수 있다.
또한, 본 발명의 rhTSH는 다양한 방법으로 대상에게 투여될 수 있다. 예를 들면, 상기 조성물은 비경구적으로 투여될 수 있는데, 그 예로는 피하, 눈, 복강 내, 근육 내, 구강, 직장, 안와 내, 뇌 내, 두개 내(intracranial), 척추 내, 뇌실 내, 수강막 내, 조내, 캡슐 내, 비내, 정맥 내 투여가 있다. 구체적으로 상기 조성물은 근육 내로 투여될 수 있다. 조성물의 투여 경로는 투여 방법에 따라 체액 부피, 점성도 등을 고려하여 결정될 수 있다.
상기와 같이 비경구적으로 투여되는 경우, 조성물은 바람직하게는 수성이거나 생리학적으로 허용가능한 체액 현탁액 또는 용액의 부분을 포함한다. 이에 따라, 생리학적으로 허용가능한 담체 또는 운반체가 조성물에 첨가되어 환자에게 전달될 수 있고, 이는 환자의 전해질 및/또는 부피 수가(balance)에 악영향을 끼치지 않는다. 따라서, 조성물을 위한 체액 배질로서 일반적으로 생리식염수를 포함한다.
상기 투여는 1회 이상, 1 내지 3회 투여될 수 있고, 구체적으로 2회로 나누어 투여될 수 있다. 본 발명의 조성물을 반복투여하는 경우 12 내지 48시간, 24 내지 36시간 간격으로 반복투여할 수 있고, 구체적으로는 24시간 간격으로 투여할 수 있다.
이러한 조성물은 통상적으로 잘 알려진 멸균 기술에 따라 멸균될 수 있다. 또한, 본 발명에 따른 조성물은 pH 조절과 같은 생리적 조건을 조절하기 위하여 요구되는 약학적으로 허용가능한 보조 물질 및 보조제, 독성조절 제제 및 이의 유사체를 포함할 수 있고, 예로는 아세트산나트륨, 염화나트륨, 염화칼륨, 염화칼슘, 젖산나트륨 등이 있다. 조성물에 포함될 수 있는 rhTSH의 농도는 매우 다양할 수 있다.
본 발명에 따른 조성물의 단위 투여량은 성인을 기준으로 0.6 내지 1.2 ㎎, 구체적으로는 0.8 내지 1.0 ㎎, 더욱 구체적으로는 0.9 ㎎일 수 있다. 단위 투여량은 치료 대상 질환 및 부작용의 유무에 따라 달라질 수 있고, 최적의 투여량은 통상적인 실험을 통해 결정될 수 있다.
본 발명에 따른 조성물은 재발 갑상선암의 진단 또는 치료를 위해 요오드 동위원소와 함께 사용할 수 있다. 이때, 요오드 동위원소는 본 발명에 따른 조성물 투여 후 12 내지 36시간, 18 내지 30시간, 20 내지 25시간에 투여될 수 있다. 구체적으로, 24시간 후에 투여될 수 있다.
한편, 재발 갑상선암의 진단은 본 발명의 조성물 및 요오드 동위원소를 투여한 뒤, 진단용 스캐닝 또는 혈청 갑상선글로불린(Tg) 검사를 통해 할 수 있다. 이때, 진단용 스캐닝은 요오드 동위원소 투여 후 24 내지 60시간, 36 내지 54시간, 46 내지 50시간에 수행될 수 있다. 구체적으로 48시간에 수행될 수 있다. 혈청 갑상선글로불린 검사를 위한 혈청 검체의 채취는 요오드 동위원소를 투여 후 48 내지 96시간, 60 내지 84시간, 70 내지 74시간에 할 수 있고, 구체적으로는 72시간 후에 할 수 있다.
본 발명의 조성물을 생산하기 위해, 본 발명은 rhTSH를 생산하는 세포주를 35 내지 40℃에서 배양하는 단계를 포함한다.
본 발명에 따른 rhTSH를 생산하는 세포주는 상기 서술된 α서브유닛 및 β 서브유닛을 포함하는 발현 벡터를 갖는 세포주일 수 있고, 상기 α서브유닛 및 β 서브유닛은 각각의 벡터에 포함되거나, 하나의 벡터에서 각 서브유닛이 각각의 프로모터에 의해 발현되거나(듀얼 벡터), IRES(internal ribosome binding site)를 통해 연결되어 개별적으로 발현되도록 제작될 수 있다. 본 발명의 구체적인 일 실시예에 의하면 IRES를 통해 개별적으로 발현되도록 제조할 수 있다.
본 발명에서 사용된 용어 "벡터"는 숙주 세포에 도입되어 숙주 세포 유전체 내로 재조합 및 삽입될 수 있거나, 또는 에피좀(episome)으로 자발적으로 복제될 수 있는 뉴클레오티드 서열을 포함하는 핵산 수단을 말한다. 적합한 발현 벡터는 프로모터, 개시코돈, 종결코돈, 폴리아데닐화 신호 및 인핸서 같은 발현 조절 요소(element) 외에도 막 표적화 또는 분비를 위한 신호서열 또는 리더서열을 포함하며, 목적에 따라 다양하게 제조될 수 있다. 개시코돈 및 종결코돈을 표적 단백질을 암호화하는 유전자 작제물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 암호화 서열과 인프레임(in frame)에 있어야 한다.
본 명세서에서 사용된 용어 "듀얼 벡터"는 하나의 벡터에 두 개의 유전자가 각각의 프로모터에 의해 조절되어 독립적으로 목적 단백질을 발현할 수 있는 벡터를 말한다. 또한, 상기 벡터에는 목적 단백질이 형질전환된 세포를 선별할 수 있는 마커를 포함할 수 있으며, 본 발명의 구체적인 일 실시예에 의하면 상기 마커는 DHFR일 수 있다.
활성을 나타내는 TSH의 제조를 위해서는 α서브유닛 및 β 서브유닛이 이량체를 형성하여야 하는데, 이때 β 서브유닛의 발현량이 α 서브유닛의 발현량보다 3~4배 정도 높아야 세포 내에서 높은 효율로 α/β 이량체를 형성할 수 있다. 따라서, 발현 벡터의 제조 시, β 서브유닛의 발현량이 많도록 프로모터를 선별할 수 있다. 본 발명의 구체적인 일 실시예에 의하면 상기 β 서브유닛을 CMV 프로모터에 연결하고, IRES(internal ribosome binding site)를 통해 β 서브유닛과 α 서브유닛을 연결함으로써, 두 개 서브유닛의 발현량을 조절할 수 있다.
본 발명의 다른 일 관점에 따르면, 본 발명은 상기 벡터를 포함하는 숙주세포 또는 비-인간 숙주개체를 제공한다. 상기 숙주세포 또는 비-인간 숙주개체들은 본 발명의 rhTSH를 수득하는 방법뿐만 아니라, 의료적/약학적 환경에서 유용할 수 있다.
본 발명의 일 실시예에 따른 벡터로 형질감염 또는 형질전환된 숙주세포 또는 비-인간 숙주개체는 상기 벡터에 의해 유전적으로 변형된 숙주세포 또는 비-인간 숙주개체일 수 있다. 본 명세서에서 사용된 용어 "유전적으로 변형된"이라는 용어는 숙주세포, 비-인간 숙주개체, 선행종(predecessors) 또는 모종(parents)으로 도입된 본 발명의 일 실시예에 따른 폴리뉴클레오티드 또는 벡터를 숙주세포, 비-인간 숙주개체, 선행종 또는 모종이 자신의 게놈 외에 포함하는 것을 의미한다. 아울러, 본 발명의 일 실시예에 따른 폴리뉴클레오티드 또는 벡터는 게놈 외부의 독립적 분자, 구체적으로는 복제할 수 있는 분자로서 유전적으로 변형된 숙주세포 또는 비-인간 숙주개체 내에 존재할 수 있거나, 또는 숙주세포 또는 비-인간 숙주개체의 게놈으로 안정적으로 삽입될 수 있다.
본 발명의 일 실시예에 따른 숙주세포는 진핵세포이다. 상기 진핵세포는 진균세포(fungus), 식물세포 또는 동물세포를 포함한다. 진균세포의 예로는 효모, 구체적으로는 사카로마이세스 속(Saccharomyces sp.)의 효모, 더욱 구체적으로는 사카로마이세스 세레비지애(S. cerevisiae)일 수 있다. 또한, 동물세포의 예로는 곤충세포 또는 포유동물 세포가 있고, 구체적인 동물세포의 예로는 HEK293, 293T, NSO, CHO, MDCK, U2-OSHela, NIH3T3, MOLT-4, Jurkat, PC-12, PC-3, IMR, NT2N, Sk-n-sh, CaSki, C33A 등이 있다. 상기 숙주세포는, 가령 CHO 세포는 리더 펩티드 제거, 정확한 위치에서 분자의 당화(glycosylation) 및 기능 분자의 분비를 포함하는, 본 발명의 일 실시예에 따른 rhTSH 단백질에 대한 번역후 수식(post-translational modification)을 제공할 수 있다. 또한, 통상의 기술분야에 잘 알려져 있는 적당한 세포주들은 ATCC(American Type Culture Collection)와 같은 세포주 기탁기관으로부터 수득할 수 있다.
또한, 본 발명의 일 실시예에 따른 폴리뉴클레오티드를 포함하는 CHO 세포는 숙주세포로서 특히 유용하다. CHO 세포를 숙주세포로 사용 시, rhTSH에 당화 및 인산화와 같은 2차 수식(secondary modification)이 될 수 있다.
상기 비-인간 숙주개체는 비-인간 포유류, 구체적으로는 마우스, 쥐, 양, 송아지, 개, 원숭이 및 유인원일 수 있다.
본 발명에 따른 rhTSH는 박테리아, 이스트, 포유동물 세포, 식물, 형질전환 동물과 같은 다양한 종류의 유기체에서 발현될 수 있다. 그러나 단백질 치료제에 대한 규제 및 제조된 단백질이 천연형과 유사하여야 한다는 점에서 포유동물의 세포를 사용할 수 있다. 상기 포유동물 세포의 예로는 불사의 하이브리도마 세포(immortal hybridoma cell), NS/O 골수종 세포, 293 세포, 중국 햄스터 난소 세포(CHO cell), HeLa 세포, CapT 세포(인간 양수 유래 세포), COS 세포 등이 있고, 본 발명의 구체적인 실시예에 의하면 CHO 세포를 사용할 수 있다.
상기 세포주에 본 발명에 따른 발현 벡터를 도입하기 위해서는 통상의 기술분야에 공지된 기술을 사용할 수 있고, 예로는 전기충격 유전자전달법(eletroporation), 원형질 융합법, 인산칼슘(CaPO4) 침전법 및 염화 칼슘(CaCl2) 침전법 등이 있다.
본 발명에 따른 CHO 세포는 발현 벡터가 형질전환된 세포주 선별을 위해 퓨린, 티미딜산(thymidylic acid)의 합성을 위한 필수 효소인 DHFR(dihydrofolate reductase) 유전자가 녹다운되어 있다. 상기 DHFR 음성인 CHO 세포는 히포크산틴 나트륨 및 티미딘의 혼합물 형태인 HT(히포크산틴 및 티미딘)로 퓨린 및 피리미딘을 제공하지 않으면 성장할 수 없어, DHFR 유전자를 포함하는 발현벡터로 형질전환되지 않은 세포주는 HT를 포함하지 않는 배지에서 생존할 수 없다.
또한, 본 발명은 유가 배양 조건을 통해 rhTSH를 생산하는 세포주를 배양한다.
rhTSH는 종래에 "관류 배양(perfusion culture)"으로 생산되었고, 이는 신선한 배양 배지를 연속적으로 공급하는 동시에 사용된 배양 배지를 연속적으로 제거하는 방식으로, 이러한 관류 배양은 상대적으로 생산성이 낮고, 과정이 복잡하며 비용이 많이 든다는 단점이 있다.
본 명세서에서 사용된 용어 "유가 배양(fed-batch culture)"은 배양의 진행과 동시에 영양 배지를 배양 용기에 서서히 첨가하면서 배양 종료까지 배양 용기에서 배양액을 뽑지 않는 배양 방법으로, 특정 물질의 첨가 속도를 미생물에 의한 소비속도와 비례하게 함으로써 배양 중 그 성분의 농도를 임의의 설정 값으로 제어할 수 있다는 장점이 있다.
본 명세서에서 사용된 용어 "배양 배지"는 다세포 유기체 또는 조직의 외측인 인공적인 시험관 내 환경에서 세포의 유지, 성장, 증식 또는 팽창을 위한 영양소 용액을 나타낸다. 배양 배지는 특정 세포 배양을 위해 최적화될 수 있으며, 그 예로는 세포 성장의 지지를 위해 조제된 기본 배양 배지, 또는 단클론항체 생산을 촉진하도록 조제된 생산 배지, 및 영양소들을 고농도로 농축시켜 만든 농축 배지가 있다.
상기 "기본 배양 배지"는 세포의 성장을 최소한으로 지지할 수 있는 배지를 의미한다. 기본 배양 배지는 표준 무기 염, 예컨대 아연, 철, 마그네슘, 칼슘 및 칼륨뿐만 아니라, 미량원소, 비타민, 에너지원, 완충 시스템 및 아미노산을 공급한다. 본 발명에 따른 기본 배양 배지는 세포의 성장기인 배양 초기에 사용된다. 상기 기본 배양 배지의 예로는 DMEM, MEM, RPMI 1640, F-10, F-12, Hycell CHO 등이 있다. 본 발명의 구체적인 일 실시예에 따르면 기본 배양 배지는 Hycell CHO 배지일 수 있다.
본 발명에 따른 유가 배양에서 세포주를 35℃ 내지 40℃에서 배양하는 단계는 세포의 성장기이다. 이는 세포를 접종한 후 세포의 성장이 급격하게 진행되는 시기로, 일반적으로 세포의 성장을 위한 배양 조건은 세포의 종류, 생산하고자 하는 목적 단백질의 종류 등에 따라 변화할 수 있다. 본 발명에서 사용한 CHO 세포의 경우 35℃ 내지 37℃의 온도 및 6.8 내지 7.3의 pH 범위에서 가장 활발하게 세포 수가 증가하는 것으로 알려져 있다. 한편, 본 발명의 유가 배양에서 세포의 성장기는 배양 초기부터 3 내지 7일, 구체적으로는 4 내지 6일일 수 있다. 본 발명의 구체적인 일 실시예에 의하면 세포의 성장기는 배양 초기부터 6일일 수 있다.
상기 성장기의 배양 온도는 35℃ 내지 40℃, 36℃ 내지 38℃일 수 있고, 본 발명의 구체적인 일 실시예에 따르면 37℃일 수 있다. 상기 온도범위를 벗어나는 온도에서 세포를 배양하는 경우 세포의 성장이 잘 일어나지 않는다.
또한, 본 발명은 배양된 세포 수가 3×106 내지 2×107 cell/㎖가 되었을 때, 배양 온도를 29℃ 내지 34℃로 낮추어 배양하는 단계를 포함한다.
본 발명에 따른 유가 배양 방법에 따라 세포의 배양 온도를 낮추게 되면 세포는 표적 단백질의 생산을 극대화하기 위한 배양 조건하에서 단백질 생산기로 진입하게 된다. 세포 성장기에서 단백질 생산기로 진입을 위해 배양된 생존 세포 밀도가 최대 생존 세포 밀도의 약 60 내지 90%, 구체적으로는 70 내지 80%일 때 배양 조건을 변경할 수 있다. 본 발명의 구체적인 일 실시예에 의하면 생존 세포 밀도가 약 70%일 때 배양 조건을 변경한다.
이때, 세포의 배양 온도는 29℃ 내지 34℃, 31℃ 내지 33℃일 수 있고, 본 발명의 일 실시예에 따르면 상기 배양 온도는 33℃일 수 있다. 상기 배양 온도가 35℃ 이상인 경우에는 세포의 생존력(viability)이 급격히 떨어지고, 28℃ 이하인 경우 세포가 충분한 수로 자라지 않아 rhTSH의 생산율이 떨어진다는 문제점이 있다.
본 발명에 따른 유가 배양에 있어서, 배양 온도 변경은 세포 수가 3×106 내지 2×107 cell/㎖, 5×106 내지 1×107 cell/㎖, 6×106 내지 8×106 cell/㎖일 때 할 수 있다. 본 발명의 일 실시예에 따르면, 세포 수가 6×106 cell/㎖일 때 배양 온도를 변경할 수 있다. 세포 수가 3×106 cell/㎖ 이하일 때 배양 온도를 변경하면 세포 수가 너무 적어 수득되는 단백질의 양이 적고, 세포 수가 2×107 cell/㎖를 초과하는 경우 세포 수가 많아 생산되는 단백질의 양은 많으나, 세포 파괴물(cell debris) 등의 HCP 또한 많이 생산되어 정제 공정에서 HCP를 의약품 기준에 부합되는 농도로 제거하기가 어렵다는 문제점이 있다.
본 발명에 따른 배양 온도 변경은 배양 5 내지 9일째, 구체적으로 배양 5 내지 8일째, 더욱 구체적으로 배양 5 내지 7일째에 수행할 수 있고, 본 발명의 구체적인 일 실시예에 의하면 배양 6일째에 할 수 있다.
상기 용어 "생존 세포 밀도(viable cell density)"는 일정한 공간 내 살아있는 세포의 양 또는 수를 나타낸다. 본 발명에서는 표적 단백질을 고효율로 생산하기 위해 적절한 수의 세포가 생존해 있을 때 배양 조건을 변경하기 위하여 세포 생존 밀도를 측정한다. 세포 생존 밀도는 세포의 흡광도를 측정함으로써 알 수 있다.
또한, 본 발명의 유가 배양은 단백질 생산을 위해 기본 배양 배지에 보충제를 공급할 수 있다. 본 명세서에서 사용된 용어 "보충제(supplement)"는 세포가 단백질 생산기로 진입하였을 때, 건강을 유지하며 단백질을 생산할 수 있도록 풍부한 영양분 공급을 위해 기본 배양 배지에 추가적으로 포함되는 물질로, 일반적으로 지질, 아미노산, 비타민, 성장인자 등을 포함한다. 단백질의 생산을 위해 사용될 수 있는 보충제의 종류는 통상의 기술분야에 잘 알려져 있으며, 예로서는 ActiCHO(GE Healthcare), Cell Boost(GE Healthcare), FM(functional MAX, Gibco), 효모 엑기스(yeast extract), Phytone UF(BD Biosciences), DM19, PP3, TC Yeastolate UF(BD Biosciences) 등이 있고, 상기 보충제는 ActiCHO, Cell Boost 및 FM일 수 있다.
상기 보충제는 높은 수준의 재조합 단백질 생산을 위하여 적정한 양으로 첨가될 수 있고, 이들을 각각 또는 혼합하여 사용가능하다. 상기 보충제는 세포가 성장기를 지나 단백질 생산기로 진입하기 직전부터 첨가될 수 있고, 본 발명의 유가 배양에 따르면 단백질 생산을 위해 온도를 낮추는 1 내지 3일 전부터 첨가할 수 있다. 본 발명의 구체적인 일 실시예에 의하면 1일 전부터 첨가할 수 있다. 보충제는 세포의 생존 및 단백질 생산 과정에서 소모된다는 점에서 지속적으로 추가 투입이 이루어져야 한다. 일반적으로 보충제 추가 1일부터 1 내지 3일의 간격을 두고 주기적으로 첨가될 수 있다. 보충제의 첨가는 세포의 양, 종류, 배양 조건 등에 따라 변할 수 있으며, 이는 통상의 기술자가 용이하게 선택할 수 있다.
본 발명에 따른 rhTSH를 생산하기 위한 배양은 10 내지 20일, 구체적으로는 11 내지 15일, 더욱 구체적으로는 12 내지 18일 동안 지속할 수 있고, 본 발명의 구체적인 실시예에 의하면 12일 동안 지속할 수 있다.
또한, 본 발명은 배양액으로부터 rhTSH를 수득하는 단계를 포함한다.
상기 배양액으로부터 rhTSH를 수득하기 위해, 통상의 잘 알려진 방법으로 rhTSH를 정제하여 수득할 수 있다. 그러나, 보다 높은 수율로 rhTSH를 정제하여 수득하기 위하여, 항-고나도트로핀(gonadotropin) 항체가 결합된 레진으로 충진된 컬럼으로 정제하여 1차 정제액을 수득하는 단계; 상기 1차 정제액을 필터를 통과시켜 2차 정제액을 수득하는 단계; 상기 2차 정제액을 투석하여 3차 정제액을 수득하는 단계; 및 상기 3차 정제액을 이온 크로마토그래피로 정제하여 rhTSH를 수득하는 단계를 포함하는 정제 방법으로 정제하여 rhTSH를 수득할 수 있다.
일반적으로 rhTSH는 넓은 범위의 PI 값을 갖고, 3개의 N-글리코실화 사이트가 있어 정제시 불순물 제거가 용이하지 않다. 종래의 rhTSH 정제 방법은 여과, 음이온 교환 크로마토그래피, 친화성 크로마토그래피 및 소수성 상호작용 크로마토그래피의 일련의 과정을 수행하여 절차가 복잡하고 비용 및 시간이 많이 소요될 뿐만 아니라, 상기 방법으로 정제된 단백질의 불순물(예를 들면, 숙주세포 단백질)이 1,000 ppm 이상으로 약학적 용도로 사용되기 위한 단백질에 포함될 수 있는 불순물의 허용치(100 ppm)보다 높다는 문제점이 있다. 따라서, 본 발명은 rhTSH 수율 및 순도가 높은 정제 방법을 확립하였다.
본 명세서에서 용어 "배양액"은 세포를 배양하고 난 뒤, 세포에서 생산되어 분비된 단백질을 포함하는 다양한 인자들이 포함된 배양 배지를 나타내며, 배양이 완료된 후 원심분리로 세포를 제거하여 얻을 수 있다.
상기 용어 "친화성 크로마토그래피(affinity chromatography)"는 생물학적으로 높은 특이적 친화성을 갖는 두 종류의 물질 중 한쪽을 고정상으로 사용하여 그 고정상에 대한 친화성의 차이를 이용해 표적 물질을 분리해 내는 크로마토그래피 방법 중 하나를 나타낸다. 따라서, 상기 단계에서 배양액은 항-고나토르핀 항체가 결합된 레진으로 충진된 컬럼으로 정제할 수 있다.
상기 친화성 크로마토그래피에 사용되는 레진은 매트릭스, 친수성 가교제 및 리간드로 구성된다. 여기서 매트릭스는 교차결합된 아가로스, 예를 들면, 고도 가교성 고유동 아가로스(highly cross-linked high-flow agarose)일 수 있다. 리간드는 본 발명의 rhTSH에 특이적으로 결합하는 단백질인 항-고나도트로핀 항체일 수 있다. 상기 레진은 rhTSH에 특이적으로 결합하는 항체가 아가로즈 단편에 공유결합으로 연결되어 있어, rhTSH에 선택적으로 결합할 수 있다. 또한, 상기 레진에서 리간드는 친수성을 가진 긴 가교제를 가지고 있으므로, 분리하고자 하는 표적 단백질이 쉽게 결합할 수 있다. 상기 레진의 예로는 ThermoFisher Scientific(USA)에서 주문자 설계 매질(custom-designed media)로 시판되는 CaptureSelect가 있다.
본 발명에서 사용된 용어 "항-고나도트로핀(gonadotropin) 항체"는 상기 서열번호 1의 아미노산 서열을 갖는 rhTSH의 α 서브유닛을 에피토프로 인식하여 특이적으로 결합하는 항체를 나타낸다. 상기 서술한 바와 같이 TSH는 두 개의 서브유닛으로 구성되어 있는데, 이 중 α 서브유닛은 TSH를 포함하는 다른 고나도트로핀 호르몬에서도 공통적으로 포함되어 있다.
본 발명의 구체적인 일 실시예에 의하면 상기 항-고나도트로핀 항체가 결합된 레진으로 충진된 컬럼에서 구연산나트륨 용액으로 rhTSH를 용출할 수 있다. 상기 용액은 표적 단백질의 품질 및 활성을 변화시키지 않는 범위 내에서 항-고나도트로핀 항체와의 결합을 방해할 수 있는 적절한 농도 및 pH로 사용할 수 있다. 상기 용액의 적절한 농도 범위는 0.01 내지 5 M, 0.03 내지 1 M, 0.06 내지 0.5 M, 0.07 내지 0.3 M일 수 있다. 본 발명의 구체적인 실시예에 의하면 상기 용액의 농도는 0.1 M일 수 있다. 한편, 적절한 pH 범위는 1 내지 5, 2 내지 4, 2.5 내지 3.5일 수 있다. 본 발명의 구체적인 실시예에 의하면 상기 용액의 pH는 3일 수 있다.
상기 친화성 크로마토그래피로 수득된 1차 정제액에 포함되는 불용성 응집체 및 숙주세포의 단백질(HCP)과 같은 불순물들을 제거하고, 표적 단백질의 순도를 보다 높이기 위해 여과를 수행할 수 있다. 본 발명의 구체적인 일 실시예에서 상기 여과는 다층여과일 수 있다.
본 명세서에서 사용된 용어 "다층여과(depth filtration)"는 공극의 크기가 다른 두 종류 이상의 필터를 층별로 설치하여 이를 이용하여 수행하는 여과를 나타낸다. 상기 다층여과를 위한 필터의 공극(pore) 크기는 0.001 내지 30 ㎛, 0.005 내지 25 ㎛, 0.015 내지 15 ㎛, 0.020 내지 12 ㎛일 수 있다. 본 발명의 구체적인 일 실시예에서 상기 필터는 0.025 내지 10 ㎛의 공극 크기를 가질 수 있다.
상기 여과는 트리스 용액을 사용할 수 있고, 이때 사용되는 용액은 상기 서술한 바와 같이 적절한 농도 및 pH일 수 있다. 트리스 용액의 적절한 농도는 1 내지 300 mM, 10 내지 200 mM, 20 내지 100 mM, 30 내지 70 mM일 수 있다. 본 발명의 구체적인 실시예에 의하면 트리스 용액의 농도는 50 mM일 수 있다. 한편, 상기 트리스 용액의 적절한 pH는 6 내지 12, 7 내지 11, 8 내지 10일 수 있고, 본 발명의 구체적인 실시예에 의하면 pH는 9일 수 있다.
상기 용어 "투석(diafiltration)"은 작은 구멍을 갖는 필터를 사용하여 샘플 내 불순물을 분자 크기에 따라 제거 또는 분리하기 위해 희석하는 단계를 의미한다.
본 발명에서 투석은 공극의 크기가 0.01 내지 0.5 ㎛, 0.1 내지 0.3 ㎛, 0.2 내지 0.25 ㎛인 반투과막을 사용할 수 있다. 본 발명의 구체적인 일 실시예에 의하면 투석은 공극의 크기가 0.22 ㎛인 반투과막(Millipak 20, Millipore)을 사용하여 1.0 bar 이하의 압력하에서 투석을 진행하고, 여과액의 전도도가 30.0 μS/㎝ 이하가 되면 종료한다.
본 발명에 따른 이온 크로마토그래피는 하기 화학식 1의 구조의 화합물이 결합된 레진이 충진된 컬럼으로 정제할 수 있다:
[화학식 1]
Figure PCTKR2016012633-appb-I000001
.
본 명세서에서 사용된 용어 "이온 크로마토그래피"는 컬럼 내 고정상에 대한 이온의 친화도가 다른 것에 기인하여 정제하는 방법이다. 이온 크로마토그래피 컬럼을 통한 분리 기전은 주로 이온교환으로, 양이온 또는 음이온 교환매체가 결합되어 있고, 여기에 결합된 이온에 반대되는 이동상 중 양이온이나 음이온의 친화력 정도에 따라 경쟁적 교환이 일어나게 된다.
상기 화학식 1의 구조의 화합물이 결합된 레진이 충진된 컬럼은 다중의 기능성(multimodal functionality)을 갖는 강력한 음이온 교환체이다. 상기 용어 "다중의 기능성"은 다양한 물질과 상호작용이 가능한 것을 의미한다. 따라서, 상기 화학식 1의 구조의 화합물이 결합된 레진은 이온상호작용(ionic interaction), 수소결합, 소수성 상호작용 등을 통해 다양한 물질과 상호작용하여 HCP, 응집체 등의 불순물을 제거할 수 있다.
상기 음이온 교환 크로마토그래피를 통과한 표적 단백질은 아세트산나트륨 용액으로 용출할 수 있고, 이때 사용되는 용액은 상기 서술한 바와 같이 적절한 농도 및 pH일 수 있다. 아세트산나트륨 용액의 적절한 농도는 1 내지 200 mM, 5 내지 100 mM, 10 내지 50 mM, 15 내지 30 mM일 수 있다. 본 발명의 구체적인 실시예에 의하면 아세트산나트륨 용액의 농도는 20 mM일 수 있다. 한편, 상기 아세트산나트륨 용액의 적절한 pH는 2 내지 6, 2.5 내지 5, 3 내지 4일 수 있고, 본 발명의 구체적인 일 실시예에 의하면 pH는 3.8일 수 있다.
이때, 용출을 위한 아세트산나트륨 용액의 유속은 10 내지 500 ㎖/분, 10 내지 300 ㎖/분, 10 내지 100 ㎖/분, 10 내지 50 ㎖/분 범위일 수 있다. 본 발명의 구체적인 일 실시예에 의하면 상기 아세트산나트륨 용액의 유속은 15 ㎖/분일 수 있다.
상기 모든 단계를 통해 최종 정제된 rhTSH는 최종 단백질 산물을 보관하기 위해 적절한 용액으로 투석 여과하는 단계를 더 포함할 수 있다. 상기 단백질 산물 보관용 용액은 단백질을 장기간 보관하여도 단백질의 품질 및 활성을 변화시키지 않아야 한다. 따라서, 본 발명에 따른 rhTSH 단백질 보관용 용액은 인산나트륨, 만니톨 및 염화나트륨을 포함할 수 있다.
본 발명은 rhTSH를 생산하는 세포주를 35℃ 내지 40℃에서 배양하는 단계; 배양된 세포 수가 3×106 내지 2×107 cell/㎖가 되었을 때, 배양 온도를 29℃ 내지 34℃로 낮추어 배양하는 단계; 및 배양액으로부터 rhTSH를 수득하는 단계를 포함하는 유가 배양으로 재조합 인간 갑상선 자극 호르몬을 생산하는 방법을 제공한다.
본 발명에 따른 재조합 인간 갑상선 자극 호르몬은 서열번호 1로 기재되는 아미노산 서열로 구성되는 α서브유닛과 서열번호 2로 기재되는 아미노산 서열로 구성되는 β서브유닛을 포함할 수 있으며, 이를 생산하는 일반적인 특징은 상기 서술한 바와 같다.
본 발명의 방법에 따라 선별된 단일세포 클론을 사용하여 재조합 rhTSH를 더욱 용이하게 생산하기 위한 유가 배양 조건을 확립하였다.
세포 배양을 위한 기본 배양 배지는 DMEM, MEM, RPMI 1640, F-10, F-12, Hycell CHO 등이 있다. 본 발명의 구체적인 일 실시예에 따르면 기본 배양 배지는 Hycell CHO 배지일 수 있다.
본 발명에 따른 유가 배양에서 세포주를 35℃ 내지 40℃에서 배양하는 단계는 세포의 성장기이다. 상기 성장기의 배양 온도는 35℃ 내지 40℃, 36℃ 내지 38℃일 수 있고, 본 발명의 구체적인 일 실시예에 따르면 37℃일 수 있다. 상기 온도범위를 벗어나는 온도에서 세포를 배양하는 경우 세포의 성장이 잘 일어나지 않는 문제점이 있다.
본 발명에 따른 유가 배양 방법에 따라 세포의 배양 온도를 낮추게 되면 세포는 표적 단백질의 생산을 극대화하기 위한 배양 조건하에서 단백질 생산기로 진입하게 된다. 이때, 상기 온도는 29℃ 내지 34℃, 31℃ 내지 33℃일 수 있고, 본 발명의 일 실시예에 따르면 상기 배양 온도는 33℃일 수 있다. 상기 배양 온도가 35℃ 이상인 경우에는 세포의 생존력이 급격히 떨어지고, 28℃ 이하인 경우 세포가 충분한 수로 자라지 않아 rhTSH의 생산율이 떨어진다는 문제점이 있다.
본 발명에 따른 유가 배양에 있어서, 배양 온도 변경은 세포 수가 3×106 내지 2×107 cell/㎖, 5×106 내지 1×107 cell/㎖, 6×106 내지 8×106 cell/㎖일 때 할 수 있다. 본 발명의 일 실시예에 따르면, 세포 수가 6×106 cell/㎖일 때 배양 온도를 변경할 수 있다. 세포 수가 3×106 cell/㎖ 이하일 때 배양 온도를 변경하면 세포 수가 너무 적어 수득되는 단백질의 양이 적고, 세포 수가 2×107 cell/㎖를 초과하는 경우 세포 수가 많아 생산되는 단백질의 양은 많으나, 세포 파괴물(cell debris) 등의 HCP 또한 많이 생산되어 정제 공정에서 HCP를 의약품 기준에 부합되는 농도로 제거하기가 어렵다는 문제점이 있다.
또한, 본 발명의 유가 배양은 단백질 생산을 위해 기본 배양 배지에 보충제를 공급할 수 있다. 보충제의 예는 ActiCHO(GE Healthcare), Cell Boost(GE Healthcare), FM(functional MAX, Gibco), 효모 엑기스(yeast extract), Phytone UF(BD Biosciences), DM19, PP3, TC Yeastolate UF(BD Biosciences) 등이 있고, 상기 보충제는 ActiCHO, Cell Boost 및 FM일 수 있다. 상기 보충제는 높은 수준의 재조합 단백질 생산을 위하여 적정한 양으로 첨가될 수 있고, 이들을 각각 또는 혼합하여 사용가능하다.
본 발명에 따른 rhTSH를 생산하기 위한 배양은 10 내지 20일, 구체적으로는 11 내지 15일, 더욱 구체적으로는 12 내지 18일 동안 지속할 수 있고, 본 발명의 구체적인 실시예에 의하면 12일 동안 지속할 수 있다.
본 발명의 발명자들은 유가 배양 방법으로 높은 순도 및 좋은 품질을 유지하는 rhTSH를 생산하기 위하여, rhTSH의 α 서브유닛 및 β 서브유닛을 발현할 수 있는 벡터를 제작하여, 이를 CHO 세포주에 형질전환하여 rhTSH를 높은 수준으로 발현하는 단일 클론 세포를 선별하였으며, 선별된 단일 세포 클론을 각각 #1, #2 및 #3이라고 명명하였다(도 1A 및 도 1B).
상기 선별된 세포를 사용하여 rhTSH의 생산성이 높은 유가 배양 방법을 확립하였는데, 배양 6일까지는 37℃에서 배양하다가 배양 7일부터 33℃로 배양온도를 낮춰주었을 때 생존 세포 밀도 및 rhTSH의 생산성이 높아짐을 확인하였다(도 2A 및 도 2B).
또한, 세포의 수에 따른 rhTSH의 생산성을 확인한 결과, 세포의 수가 증가하면 rhTSH의 생산도 증가하나, 온도 전환시에 세포 수가 1.1×107 cell/㎖을 초과하는 경우 rhTSH뿐만 아니라, 불순물의 생산도 증가하는 것을 확인하였다(표 1).
다음으로, 상기 확립된 생산 방법으로 배양한 rhTSH 발현 세포주에서 rhTSH를 정제하기 위한 방법을 확립하였다. 구체적으로, 세포 상층액을 모아 TSH 특이적 항체를 고정상으로 하는 친화성 크로마토그래피, 다층여과, 투석여과 및 음이온 교환 크로마토그래피를 일련의 순서대로 수행하였을 때, 종래의 rhTSH 정제 방법과 비교하여 높은 단백질 수율 및 순도를 나타내었고, 정제된 단백질 내 불순물이 약학적 용도 기준치 내로 감소하였으며(도 5A 내지 도 6B), 활성에 있어서도 시판되고 있는 rhTSH(Thyrogen®)와 유사함을 확인하였다(도 7A 및 도 7B).
따라서, 본 발명에 따른 유가 배양 방법은 생산 공정이 간소하고, 경제적일 뿐만 아니라, 생산된 rhTSH의 활성 및 품질도 우수하여, 상기 방법으로 생산된 rhTSH는 재발 갑상선암의 진단 및 치료에 유용하게 사용할 수 있다.
본 발명은 또한, 약학적 유효성분으로서 본 발명의 rhTSH를 포함하는 조성물을 투여하여 질환을 치료하는 방법을 제공한다.
이러한 방법은 목적 질환과 직접적으로 관련되거나 관련되지 않은 건강 상태를 가진 포유류에게 본 발명에 따른 조성물을 유효량으로 투여하는 것을 포함한다. 예를 들면, 상기 rhTSH는 개체, 바람직하게는 인간을 포함한 포유류에 치료학적 유효량으로 투여될 수 있다.
본 발명에 따른 조성물의 투여 경로 및 투여량은 치료 대상 질환 및 부작용의 유무에 따라 다양한 방법 및 양으로 대상에게 투여될 수 있고, 최적의 투여 방법 및 투여량은 통상적인 실험을 통해 결정될 수 있다.
상기 조성물은 치료하고자 하는 질환에 대하여 치료 효과를 갖는 다른 약물 또는 생리학적 활성물질과 병용하여 투여되거나, 다른 약물과의 조합 제제 형태로 제형화될 수 있다.
본 발명은 또한, 본 발명의 rhTSH를 포함하는 조성물을 투여하여 재발된 갑상선암을 진단하는 방법을 제공한다.
상기 방법은 본 발명의 rhTSH를 투여한 뒤, 방사선 요오드를 투여하고, 진단용 스캐닝 또는 혈청 갑상선글로불린(Tg) 검사를 통해 재발된 갑산선암을 진단할 수 있다.
재발된 갑상선암의 진단을 위한 본 발명에 따른 조성물의 투여 경로 및 투여량은 치료 대상 질환 및 부작용의 유무에 따라 다양한 방법 및 양으로 대상에게 투여될 수 있고, 최적의 투여 방법 및 투여량은 통상적인 실험을 통해 결정될 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐, 본 발명이 이에 의해 제한되는 것은 아니다.
실시예 1. 재조합 인간 TSH(rhTSH) 발현 벡터의 제조 및 형질전환
본 발명자들은 rhTSH을 고수율로 생산하기 위한 발현 벡터를 제조하였다.
구체적으로, rhTSH의 β 서브유닛을 포함하는 유전자 단편, IRES 및 rhTSH의 α 서브유닛 유전자를 Top Gene Technologies(Canada)를 이용하여 합성하였다. 상기 합성된 유전자들을 EcoRI 및 XhoI 제한효소를 사용하여 pAD5(제넥신) 벡터에 클로닝한 뒤, 이름을 pAD-rhTSH라고 명명하였다.
그 결과 도 1A에 나타난 바와 같은 구조를 갖는 발현 벡터를 제조하였다.
상기 발현 벡터는 통상의 기술분야에 잘 알려진 방법을 이용하여 숙주세포로 형질전환하여 준비하였다. 이로부터 벡터를 분리하기 위해서는 엔도프리 플라스미드 정제 키트(Qiagen, USA)를 이용하였고, 분리된 벡터를 사용하여 rhTSH을 고수율로 발현하는 세포를 제조하였다.
실시예 2. rhTSH를 고수율로 발현하는 단일 세포클론의 준비
상기 실시예 1에서 제조된 pAD-rhTSH 발현 벡터로부터 rhTSH를 고수율로 발현할 수 있는 세포를 다음과 같이 준비하였다.
구체적으로, CHO DG44 (-) DHFR(From Dr. Lawrence Chasin, Columbia University, USA) 세포주에 pAD-rhTSH 발현 벡터를 몇몇의 조건으로 형질전환한 뒤, 최적화된 조건으로 형질전환된 세포를 6-웰 플레이트에서 HT(히포크산틴 및 티미딘)가 포함된 기본 배지로 48시간 동안 배양하였다. 그 후, 상기 세포는 HT가 포함되지 않은 배지에서 14일 동안 배양하였고, 이 기간 동안 6-웰 플레이트에서 125 ㎖ 플라스크로 그 배양 규모가 증가하였다. rhTSH를 높은 수준으로 발현하는 세포 클론은 TSH 특이적 ELISA 키트(Genway Biotech, USA)를 사용하여 선별하였다.
선별된 클론은 125 ㎖ 플라스크에서 10 nM의 MTX(methotrexate)를 포함하는 배지에서 14 내지 28일 동안 배양하고, rhTSH를 가장 높은 수준으로 발현하는 플라스크를 선별하여 세포를 96-웰 플레이트의 20개의 웰에 분주하였다. 이를 14일 동안 배양한 뒤, 이미지 클로너(image cloner)를 사용하여 상대적으로 높은 수준의 rhTSH를 발현하는 단일 콜로니를 선별하였다. 선별된 단일 콜로니를 96-웰 플레이트에서 6-웰 플레이트로 규모를 늘리면서 21 내지 27일 동안 배양하였다. 상기 배양된 세포는 다시 TSH 특이적 ELISA 키트로 rhTSH 생산성을 측정하였다. 상기 서술한 과정을 MTX의 농도를 20 nM, 50 nM, 100 nM 및 200 nM로 증가시켜가며 반복하였고, 최종적으로 rhTSH 생산성이 가장 높은 단일 클론 세포를 선별하고, 이를 증폭시켰다. 상기 선별된 세포는 RCB(research cell bank) 후보로 선별하였으며, 장기간 배양시 안정성 확인을 위하여 35계대까지 배양하며 Td(double time), rhTSH 생산성 및 세포 형태를 각 계대별로 확인하였다.
그 결과 도 1B에 나타난 바와 같이 #1, #2 및 #3의 3개 RCB 클론을 선별하였다.
실시예 3. rhTSH 생산을 위한 세포 배양 방법 확립
상기 실시예 2에서 선별된 3개의 RCB 클론을 대상으로 rhTSH 생산을 위한 최적의 세포 배양 방법을 확립하였다. 현재 rhTSH를 판매하고 있는 유일한 기업인 Genzyme사의 Thyrogen®은 용액에서 상대적으로 불안정하다고 알려져 있어, 이의 생산을 위해 관류 배양을 사용하고 있다. 다른 배양 방법과 비교하여 관류 배양은 상대적으로 생산성이 낮고, 과정이 복잡하며 비용이 많이 든다. 관류 배양으로 생산되는 Genzyme사의 Thyrogen®의 생산 수율은 20 내지 30 ㎎/ℓ로 알려져 있다. 한편, 유가 배양의 경우 관류 배양과 비교하여 상대적으로 생산성이 높고, 과정이 덜 복잡할 뿐만 아니라, 배양 과정에서 rhTSH가 좋은 품질로 유지된다는 이점이 있어, rhTSH의 생산을 위해 유가 배양 조건을 확립하기 위한 시도가 계속되고 있다. 용액 형태 단백질의 안정성이 온도, pH, 세포 생존율, 배양기간과 같은 다양한 요소에 의해 영향을 받는 것이 알려져 있어 Genzyme사의 Thyrogen®(이하 "대조군"으로 지칭함)품질과 비교하며 유가 배양을 위한 최적의 조건을 확립하였다.
3.1. 최적 온도 확립
rhTSH 생산을 위한 최적의 온도를 확립하기 위하여 다양한 온도 조건에서 세포를 배양하였다.
먼저, 상기 실시예 2에서 선별된 0.5×105 cells/㎖의 #3 클론을 Hycell CHO 배지(Hyclone, USA)로 37℃에서 15일 동안 배양하였고, 이때, 배양 5, 7, 9, 11 및 13일에 보충제로 0.5% ActiCHO(GE Healthcare, USA) 및 4% Cell Boost 5(CB5, GE Healthcare, USA)를 첨가하였다. 6일 후, 생존 세포 밀도가 6×106 내지 8×106 cells/㎖의 세포에 도달하였을 때, 온도를 37℃, 35℃, 33℃ 및 31℃로 낮추어 15일까지 더 배양하였다.
생존 세포 밀도, 세포 생존율, pH, 글루코스, 젖산, 글루타민 및 글루타메이트는 매일 측정하였고, rhTSH 생산성은 배양 9, 11, 13 및 15일에 상기 실시예 2에 서술된 바와 같이 측정하였다.
그 결과 도 2B에 나타난 바와 같이, 15일까지 37℃에서 배양된 세포의 생존율은 50% 이하였고, 37℃에서 35℃로 온도를 바꿔 배양된 세포는 약 60%였다. 반면, 37℃에서 33℃, 또는 37℃에서 31℃로 온도를 바꿔 배양된 세포는 세포 생존율이 95% 이상이었다.
한편, 도 2A에 나타난 바와 같이, 배양 15일째 rhTSH 생산성은 37℃에서 33℃로 온도를 바꿔 배양된 세포가 0.7 g/ℓ로 가장 높은 생산성을 나타내었다.
따라서, rhTSH 생산을 위한 온도는 37℃에서 33℃로 온도를 낮춰 배양하는 조건을 최적 배양 조건으로 설정하였다. 이때, 37℃에서 6일 동안 배양한 뒤, 7일부터는 33℃로 온도를 낮춰 배양할 수 있다.
3.2. 최적 세포 수 확립
상기 실시예 3.1에서 rhTSH 생산을 위한 온도 조건을 확립하였다. 그러나, 온도를 낮추는 시점에서 생존 세포 밀도가 rhTSH의 생산에 미치는 영향을 확인하기 위해 다음과 같은 실험을 수행하였다.
구체적으로, 생존 세포의 밀도가 각각 6.0×106, 8.5×106, 9.8×106, 10.5×106, 11.5×106 및 12.0×106 cells/㎖일 때, 배양 온도를 37℃에서 33℃로 낮춘 것을 제외하고 모든 실험은 상기 실시예 3.1과 동일한 방법으로 하였다. 배양 후, 세포 배양액에서 rhTSH 생산율은 상기 실시예 2와 동일한 방법으로 측정하였고, rhTSH의 순도는 SDS-PAGE 전기영동 및 코마시블루 염색을 통해 확인하였다.
한편, HCP는 흡광도를 측정하여 확인하였다. 흡광도 측정을 위해 0, 1, 4, 20, 75 및 250 ng/㎖ 농도의 표준 샘플을 먼저 준비하였다. 또한, 각 조건에서 수득한 rhTSH 샘플을 표준 범위에 맞게 희석하고, 상기 희석된 rhTSH 120 ㎕에 250 ng/㎖ 농도의 표준 샘플 30 ㎕를 혼합하여 혼합 샘플을 준비하였다. 상기 혼합 샘플을 ELISA 스트립(strip)의 두 개의 웰에 50 ㎕씩 분주한 후, Anti-CHO:Alkaline phosphatase를 200 ㎕씩 가하였다. 이를 밀봉하여 24℃, 180 rpm으로 2시간 동안 교반하고, 세척용액으로 4회 세척한 뒤, 200 ㎕의 PNPP를 첨가하여 상온에서 1시간 30분간 반응시켜 405/492 nm의 이중파장에서 이의 흡광도를 측정하였다.
배양 온도를 바꾸는 시점에서 생존 세포의 밀도에 따라 rhTSH의 생산율 및 순도와 불순물인 HCP(host cell protein)의 양을 측정하여 하기 표 1에 나타내었다.
온도 변화시 생존 세포 밀도 (cells/㎖) 최대 생존 세포 밀도(cells/㎖) HCP(PPM) rhTSH의 생산율 (g/ℓ) rhTSH의 순도(%)
6.0×106 12.0×106 75,000 0.582 51.27
8.5×106 13.2×106 113,658 0.656 49.46
9.8×106 15.0×106 114,364 0.600 48.56
10.5×106 14.9×106 95,460 0.631 49.08
11.5×106 16.3×106 N/A N/A N/A
12.0×106 16.5×106 N/A N/A N/A
그 결과, 상기 표 1 및 도 3에 나타난 바와 같이, 배양 온도를 바꾸는 시점에서 생존 세포의 밀도가 6.0×106 내지 11.0×106 cells/㎖의 범위에서는 비슷한 수준의 rhTSH 생산율 및 순도를 나타내었다. 그러나, 온도 전환시에 생존 세포의 밀도가 11.0×106 cells/㎖를 초과하는 경우 HCP가 과량으로 포함되어 있어 순수한 rhTSH의 생산율 및 순도를 측정할 수 없었다.
따라서, 상기로부터 생존 세포의 밀도가 6.0×106 내지 11.0×106 cells/㎖일 때, 배양 온도를 낮추어 rhTSH를 고수율 및 고순도로 생산할 수 있음을 확인하였다.
생존 세포의 밀도가 6.0×106 cells/㎖일 때 배양 온도를 낮추는 경우와 8.0×106 cells/㎖일 때 배양 온도를 낮추는 경우를 비교하여 볼 때 생산율은 1.12배 감소하지만, HCP의 양은 1.5배 이상 감소하는 것을 확인하였다. 의약품 생산에 있어서 HCP의 양을 줄이는 것이 매우 중요하기 때문에, 생산율 대비 HCP의 양이 가장 적은 조건인, 생존 세포의 밀도가 6.0×106 cells/㎖일 때 배양 온도를 낮추는 것을 최적의 배양 조건으로 설정하였다.
한편, 생존 세포의 밀도가 6.0×106 cells/㎖일 때 배양 온도를 낮추는 것이 세포 생존력에 영향을 주는지 확인하기 위하여, 3개의 클론으로, 생존 세포의 밀도가 6.0×106 cells/㎖일 때 배양 온도를 낮춘 것을 제외하고 상기 실시예 3.1과 동일한 방법으로 실험을 수행하였다. 배양된 세포의 생존 세포 밀도 측정 결과는 도 4에 나타내었다.
그 결과, 도 4에 나타난 바와 같이, 6.0×106 cells/㎖일 때 배양온도를 낮추어도 세포 생존율에 영향을 미치지 않으며, 최종 세포 밀도가 14.0×106 cells/㎖까지 증가하였다.
3.3. 최적 배양기간 확립
rhTSH 생산을 위한 최적의 배양기간을 확립하기 위하여 18일의 배양기간 동안 생존 세포 밀도, 세포 생장율 및 rhTSH 생산성 확인을 상기 서술한 바와 같이 수행하였다.
그 결과, 배양 18일에 세포 생장율이 90% 이상이었고, rhTSH 생산성은 1 g/ℓ보다 높게 나타났으나 대조군과 비교하여 품질이 떨어짐을 확인하였다.
이에, 생산성 및 생산된 rhTSH의 품질을 유지할 수 있는 최적의 유가 배양 시간을 12일로 설정하게 되었으며, 결론적으로, 상기 일련의 실험을 통해 rhTSH 생산을 위한 유가 배양 조건을 확립하였다.
본 발명에서 확립된 조건으로 배양된 세포는 배양 12일에 0.6 g/ℓ 이상의 rhTSH를 생산하였고, 이와 같은 생산성은 대조군과 비교하여 동등한 품질을 유지하면서도 생산성이 20배 이상 증가한 것임을 알 수 있었다.
비교예 1. 종래의 rhTSH 단백질 정제 방법
성샘자극호르몬은 척추동물의 뇌하수체 전엽에서 분비되는 당단백질 폴리펩티드 호르몬으로, 동일한 α 서브유닛 및 특이적인 β 서브유닛을 갖는 FSH(follicle-stimulating hormone), LH(luteinizing hormone), hCG(human chorionic gonadotropin) 및 TSH를 포함한다. 따라서, 일반적으로 rhTSH 단백질의 정제는 성샘자극호르몬(gonadotropin)의 정제 방법과 동일한 방법으로 수행된다. 이에, 본 발명에 따른 정제 방법과 정제 수율 및 정제된 단백질의 순도를 비교하기 위하여 종래의 정제 방법에 따라 rhTSH 단백질을 정제하였다.
구체적으로, 상기 실시예 3에서 확립된 조건으로 배양된 세포의 상층액을 모아, Millistak+ DOHC 및 Millistak+ XOHC 필터를 순차적으로 사용하여 여과하였다. 상기 여과된 상층액을 Pod Depth 필터, XOHC로 초미세여과하여 20배로 농축한 뒤, 0.22 ㎛ 크기의 Millipak 20 필터를 사용하여 A 완충액(50 mM CHES, 40 mM NaCl, pH 10.0)으로 투석여과(diafiltration)하였다. 상기 여과물을 Nuvia Q 레진을 이용하여 음이온 교환 크로마토그래피를 하여, 350 mM NaCl로 용출하였다. 그 후, 불용성 응집체를 제거하기 위하여 Pod Depth 필터로 다시 여과하였다. 상기 여과물은 B 완충액(10 mM 인산나트륨, pH 7.0)으로 평형화시킨 뒤, Blue 6 FF 레진 및 530 mM NaCl 용출액으로 두 번째 정제를 하였다. 세 번째 정제는 페닐 HP 레진을 이용하여 소수성 상호작용 크로마토그래피를 하였고, 상기 정제과정을 거친 용출액은 C 완충액(20 mM 인산 나트륨, pH 7.0)으로 Q 멤브레인을 통과시켰다. 최종 산물을 D 완충액(20 mM 인산 나트륨, 3% 만니톨, 0.2% NaCl)으로 제형화하였다. 이렇게 정제된 단백질은 SDS-PAGE 전기영동을 하고, 코마시블루 염색을 통해 확인하였다.
그 결과 도 5A 및 도 5B에 나타난 바와 같이, 상기의 방법으로 정제된 rhTSH 단백질은 30% 이상의 수율 및 98% 이상의 순도를 나타내었으나, 숙주세포로부터의 불순물인 HCP(host cell protein)가 1,000 ppm 이상으로 확인되었다. 약학적 용도를 위한 단백질의 불순물은 100 ppm 이하로, 이를 제거하기 위한 추가적인 단계가 필요했다.
실시예 4. 고수율의 rhTSH 단백질 정제 방법 확립
일반적으로 rhTSH 단백질은 넓은 범위의 PI 값을 갖고, 3개의 N-글리코실화 사이트가 있어 불순물 제거가 용이하지 않다. 따라서, rhTSH 단백질을 효율적으로 정제하기 위한 정제 조건을 확립하였다.
먼저, CaptureSelect 시스템(ThermoFisher scientific)으로 항-고나도트로핀 항체(ThermoFisher scientific)를 고정상으로 하는 컬럼을 제작하여 상기 비교예 1과 동일한 방법으로 준비된 세포 상층액을 3 g 단백질/ℓ CaptureSelect 양이 되도록 컬럼에 유속 40 ℓ/h로 로딩한 뒤, E 완충액(0.1 M 구연산 나트륨, pH 3.0)을 40 ℓ/h의 유속으로 컬럼에 주입하면서 용출하였다. 그 후, 불용성 응집체 및 HCP의 제거를 위해 F 완충액(50 mM Tris, pH 9.0)을 이용하여 Pod Depth 필터를 사용하여 3.0 bar 이하의 압력에서 86 ㎖/㎡ 이하의 유속으로 여과하였다. 상기 여과물을 공극의 크기가 0.22 ㎛인 반투과막(Millipak 20, Millipore)으로 1.0 bar 이하의 압력하에서 투석을 하고, 여과액의 전도도가 30.0 μS/㎝ 이하가 되면 종료하였다. 투석 여과된 정제 중간산물을 Capto adhere 컬럼에 15 ㎖/min으로 로딩한 후, G 완충액(20 mM 초산 나트륨, pH 3.8)으로 15 ㎖/min 유속으로 용출하였다. 마지막으로, 상기 용출액을 D 완충액으로 제형화하였다. 이렇게 정제된 단백질은 SDS-PAGE 전기영동을 하고, 코마시블루 염색을 통해 확인하였다.
그 결과, 도 6A 및 도 6B에 나타난 바와 같이 Capto adhere 단계를 수행하지 않고, 정제된 rhTSH 단백질은 거의 100%에 가까운 순도를 나타내었고, 대부분의 HCP가 제거되었으나, 여전히 의약적 용도로 허용되는 범위인 100 ppm을 넘는 것으로 확인되었다. 그러나, Capto adhere 단계를 수행한 뒤 정제된 rhTSH 단백질을 확인한 결과, HCP가 20 ppm 미만인 최종 산물을 얻을 수 있었고, 이때 정제 수율 또한 45%로 매우 우수함을 확인하였다.
실시예 5. 정제된 rhTSH 단백질의 품질 분석
rhTSH 단백질의 생산 공정을 확립하기 위한 주요 목적은 유가 배양 조건에서 상기 단백질의 생산성을 높이기 위한 것이다. 본 발명에 따른 조건으로 18일 동안 rhTSH 생산을 위한 세포를 배양하는 경우 단백질의 생산성은 매우 우수하였으나, 단백질의 품질이 저하된다는 문제점이 있었다. 따라서, 12일 동안 배양하였을 때의 rhTSH 단백질을 시판되고 있는 대조군과 비교하여 IEF(isoelectric focusing) 프로필 및 펩타이트 맵핑을 수행하였다.
먼저, 정제된 rhTSH 및 대조군의 글리이코실화 프로필은 젤-IEF에서 비교하였다. 샘플을 pH가 3 내지 10인 IEF 젤(Invitrogen)에 로딩하여 200 V, 100 V 및 500 V의 조건에서 각각 1시간씩 순차적으로 전기영동을 하였다. 그 후, 상기 전기영동 한 젤은 코마시블루 염색으로 확인하였다.
한편, 정제된 rhTSH 및 대조군의 펩타이드 맵핑의 패턴은 트립신 처리를 통해 분석하였다. 구체적으로, 100 ㎍의 샘플에 20 ㎕의 8 M 우레아(Sigma) 및 2.5 ㎕의 200 mM DTT(Sigma)를 첨가하여 균질하게 평형화시킨 뒤, 70℃에서 10분간 반응시켰다. 그 후, 2.5 ㎕의 550 mM 요오도아세트아미드(Sigma)를 각각의 반응 튜브에 넣고, 실온에서 40분 동안 두었다. 상기 샘플에 50 ㎕의 트립신(Promega) 및 105 ㎕의 100 mM 탄산수소암모늄(Sigma)을 처리하고 37℃에서 15시간 반응시킨 뒤, 잘린 펩타이드는 UPLC(ultra performance liquid chromatography)로 분석하였다.
그 결과 도 7A 및 도 7B에 나타난 바와 같이, 본 발명의 방법으로 배양 및 정제된 rhTSH 단백질은 시판되고 있는 대조군과 유사한 IEF 프로필 및 펩타이드 맵핑 분석 결과를 나타내어, 본 발명의 rhTSH 단백질의 품질이 우수함을 확인하였다.
실시예 6. 정제된 rhTSH 단백질의 생리학적 활성 확인
상기 서술된 방법으로 정제된 rhTSH 단백질의 시험관 내 또는 생체 내 활성을 확인하기 위하여 다음과 같은 실험을 수행하였다.
6.1. rhTSH 단백질의 시험관 내 활성 확인
rhTSH 단백질의 시험관 내 활성을 확인하기 위하여 TSH/TSHR 신호 경로에 의해 유도되는 두 번째 메신저인 cAMP의 발현을 측정하였다.
구체적으로, TSHR(thyrotropin receptor) 및 cAMP 의존적인 루시퍼라제 유전자를 안정적으로 발현하는 cAMP Hunter™ CHO-K1 TSHR(L) Gs 세포주(DiscoverRx)는 이의 배양에 사용되는 배지(DiscoverRx)로 96-웰에 분주하기 전에 약 70 내지 80%의 세포밀도(confluency)를 유지하도록 배양하였다. 상기 배양된 세포를 2×104 개의 세포가 되도록 96-웰 플레이트에 분주하고, 37℃에서 18 내지 20시간 동안 배양한 뒤, 각 웰의 배지를 제거하고, 45 ㎕의 cAMP 항체 시약을 첨가하였으며, IBMX(3-isobutyl-1-methylxanthine)으로 희석된 용액 15 ㎕를 첨가하고, 37℃에서 30분간 반응하였다. 여기에 40 ㎕의 ED/CL 용액을 넣어 26 내지 28℃에서 1시간 동안 반응시켰는데, 상기 ED/CL 용액은 ED 시약, HitHunter cAMP XS+키트 기질 2, HitHunter cAMP XS+키트 기질 1 및 세포 용해 시약을 15:1:5:9의 비율로 혼합하여 제조하였다. 그 뒤, 40 ㎕의 EA 시약을 첨가하고, 26 내지 28℃에서 1시간 동안 반응시키고, 이를 루미노미터(luminometer, [BioTek, synergy2])로 RLU(relative light unit)를 측정하였다. 결과 값으로 rhTSH 단백질 및 대조군의 EC50를 계산 및 비교하였다.
그 결과 도 8A에 나타난 바와 같이, 본 발명의 rhTSH 단백질의 EC50 값은 대조군과 약 99% 유사한 것을 확인하였다.
6.2. rhTSH 단백질의 생체 내 활성 확인
rhTSH 단백질의 생체 내 활성을 확인하기 위하여, 동물 모델에 rhTSH를 투여하였을 때 혈액 내 T4의 양을 측정하였다.
먼저, 일반적인 C57BL/6 마우스를 준비하여 각 그룹별로 4마리씩 나누어 본 발명의 rhTSH 및 대조군을 각각 0.1, 0.5 및 2 ㎎/㎏의 농도로 복강 주사하였다. 투여 전, 투여 후 6시간 및 12시간에 각각의 마우스로부터 채혈하여 혈액 샘플을 수득하였다. 수득된 샘플은 분석전까지 초저온 냉동고에서 보관되었고, 분석은 상기 실시예 2에 기재된 바와 같이 TSH 특이적 ELISA 키트(Genway)를 사용하여 혈액 내 T4 수준을 확인한 뒤, 이를 비교하였다.
그 결과 도 8B에 나타난 바와 같이, 본 발명의 rhTSH 단백질은 농도의존적으로 대조군과 유사한 수준으로 T4의 발현을 유도하였다.
따라서, 본 발명의 방법으로 생산 및 정제된 rhTSH 단백질은 시판되고 있는 제품과 유사한 활성을 나타내고 있어, 품질이 우수함을 알 수 있었다.

Claims (23)

  1. 하기의 단계를 포함하는 유가 배양을 통하여 수득한 재조합 인간 갑상선 자극 호르몬(recombinant human thyroid stimulating hormone; rhTSH)을 유효성분으로 포함하는 재발된 갑상선암의 진단 또는 치료용 조성물:
    1) rhTSH를 생산하는 세포주를 35℃ 내지 40℃에서 배양하는 단계;
    2) 배양된 세포 수가 3×106 내지 2×107 cell/㎖가 되었을 때, 배양 온도를 29℃ 내지 34℃로 낮추어 배양하는 단계; 및
    3) 배양액으로부터 rhTSH를 수득하는 단계.
  2. 제1항에 있어서, 상기 인간 갑상선 자극 호르몬은 서열번호 1로 기재되는 아미노산 서열을 갖는 폴리펩티드 및 서열번호 2로 기재되는 아미노산 서열을 갖는 폴리펩티드를 포함하는 것인, 조성물.
  3. 제1항에 있어서, 상기 단계 1)의 rhTSH를 생산하는 세포주는 rhTSH의 α 서브유닛을 코딩하는 유전자 및 β 서브유닛을 코딩하는 유전자를 발현시키는 발현 벡터를 포함하는 것인, 조성물.
  4. 제3항에 있어서, 상기 세포주는 불사의 하이브리도마 세포, NS/O 골수종 세포, 293 세포, 중국 햄스터 난소 세포, HeLa 세포, CapT 세포 및 COS 세포로 구성된 군으로부터 선택된 어느 하나인, 조성물.
  5. 제1항에 있어서, 상기 단계 1)의 배양 온도가 36℃ 내지 38℃인, 조성물.
  6. 제5항에 있어서, 상기 배양 온도가 37℃인, 조성물.
  7. 제1항에 있어서, 상기 단계 2)에서 배양온도를 낮출 때의 세포 수가 5×106 내지 1×107 cell/㎖인, 조성물.
  8. 제7항에 있어서, 상기 세포 수가 6×106 내지 8×106 cell/㎖인, 조성물.
  9. 제8항에 있어서, 상기 세포 수가 6×106 cell/㎖인, 조성물.
  10. 제1항에 있어서, 상기 단계 2)의 배양 온도가 31℃ 내지 33℃인, 조성물.
  11. 제10항에 있어서, 상기 배양 온도가 33℃인, 조성물.
  12. 제1항에 있어서, 상기 치료는 방사성 요오드 치료 시 항암 치료 보조제로 사용되는 것인, 조성물.
  13. 하기의 단계를 포함하는 유가 배양으로 재조합 인간 갑상선 자극 호르몬을 생산하는 방법:
    1) rhTSH를 생산하는 세포주를 35℃ 내지 40℃에서 배양하는 단계;
    2) 배양된 세포 수가 3×106 내지 2×107 cell/㎖가 되었을 때, 배양 온도를 29℃ 내지 34℃로 낮추어 배양하는 단계; 및
    3) 배양액으로부터 rhTSH를 수득하는 단계.
  14. 제13항에 있어서, 상기 인간 갑상선 자극 호르몬은 서열번호 1로 기재되는 아미노산 서열을 갖는 폴리펩티드 및 서열번호 2로 기재되는 아미노산 서열을 갖는 폴리펩티드를 포함하는 것인, 방법.
  15. 제13항에 있어서, 상기 단계 1)의 rhTSH를 생산하는 세포주는 rhTSH의 α 서브유닛을 코딩하는 유전자 및 β 서브유닛을 코딩하는 유전자를 발현시키는 발현 벡터를 포함하는 것인, 방법.
  16. 제13항에 있어서, 상기 세포주는 불사의 하이브리도마 세포, NS/O 골수종 세포, 293 세포, 중국 햄스터 난소 세포, HeLa 세포, CapT 세포 및 COS 세포로 구성된 군으로부터 선택된 어느 하나인, 방법.
  17. 제13항에 있어서, 상기 단계 1)의 배양 온도가 36℃ 내지 38℃인, 방법.
  18. 제17항에 있어서, 상기 배양 온도가 37℃인, 방법.
  19. 제13항에 있어서, 상기 단계 2)에서 배양온도를 낮출 때의 세포 수가 5×106 내지 1×107 cell/㎖인, 방법.
  20. 제19항에 있어서, 상기 세포 수가 6×106 내지 8×106 cell/㎖인, 방법.
  21. 제20항에 있어서, 상기 세포 수가 6×106 cell/㎖인, 방법.
  22. 제13항에 있어서, 상기 단계 2)의 배양 온도가 31 내지 33℃인, 방법.
  23. 제22항에 있어서, 상기 배양 온도가 33℃인, 방법.
PCT/KR2016/012633 2015-11-05 2016-11-04 재조합 인간 갑상선 자극 호르몬을 포함하는 조성물 및 상기 재조합 인간 갑상선 자극 호르몬의 생산 방법 WO2017078451A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680078071.0A CN108463730A (zh) 2015-11-05 2016-11-04 包含重组人促甲状腺激素的组合物以及生产重组人促甲状腺激素的方法
US15/773,855 US11001620B2 (en) 2015-11-05 2016-11-04 Composition comprising recombinant human thyroid stimulating hormone and method for producing recombinant human thyroid stimulating hormone
JP2018542093A JP2018532791A (ja) 2015-11-05 2016-11-04 遺伝子組み換えヒト甲状腺刺激ホルモンを含む組成物および遺伝子組み換えヒト甲状腺刺激ホルモンを生産する方法
HK19100413.8A HK1258040A1 (zh) 2015-11-05 2019-01-10 包含重組人促甲狀腺激素的組合物以及生產重組人促甲狀腺激素的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150154882A KR101789509B1 (ko) 2015-11-05 2015-11-05 재조합 인간 갑상선 자극 호르몬을 포함하는 조성물 및 상기 재조합 인간 갑상선 자극 호르몬의 생산 방법
KR10-2015-0154882 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017078451A1 true WO2017078451A1 (ko) 2017-05-11

Family

ID=58662340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012633 WO2017078451A1 (ko) 2015-11-05 2016-11-04 재조합 인간 갑상선 자극 호르몬을 포함하는 조성물 및 상기 재조합 인간 갑상선 자극 호르몬의 생산 방법

Country Status (6)

Country Link
US (1) US11001620B2 (ko)
JP (2) JP2018532791A (ko)
KR (1) KR101789509B1 (ko)
CN (1) CN108463730A (ko)
HK (1) HK1258040A1 (ko)
WO (1) WO2017078451A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114404575A (zh) * 2020-12-07 2022-04-29 苏州智核生物医药科技有限公司 一种重组人促甲状腺素注射液
CN116981778A (zh) * 2021-03-10 2023-10-31 住友制药株式会社 半胱氨酸结蛋白的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830007087A (ko) * 1980-12-30 1983-10-14 하야시바라 겡 인체 갑상샘 자극호르몬의 제조방법
US20030198596A1 (en) * 1985-12-11 2003-10-23 Sloan-Kettering Institute For Cancer Research Isolation of a gene encoding human thyrotropin beta subunit
CN105002242A (zh) * 2015-07-23 2015-10-28 苏州康聚生物科技有限公司 用于cho细胞中高效表达重组人促甲状腺激素的无血清培养基及其应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU648014B2 (en) 1989-01-11 1994-04-14 United States of America, as represented by the Secretary, U.S. Department of Commerce, The Biologically active synthetic thyrotropin and cloned gene for producing same
JP4306813B2 (ja) * 1995-09-19 2009-08-05 アスビオファーマ株式会社 動物細胞の新規培養方法
MXPA05006523A (es) * 2002-12-23 2005-08-26 Squibb Bristol Myers Co Procesos de cultivo de celulas de mamiferos para la produccion de proteinas.
CN1869214A (zh) * 2005-05-24 2006-11-29 中国人民解放军军事医学科学院基础医学研究所 一种高效表达目的蛋白的方法
ATE557038T1 (de) * 2005-06-03 2012-05-15 Ares Trading Sa Herstellung von rekombinantem il-18 bindendem protein
AU2006331619B2 (en) * 2005-12-23 2012-12-20 James D. Kelly Improved thyroid-stimulating hormone receptor polypeptide agonist glycoforms to treat metabolic syndrome
BRPI0915156A2 (pt) * 2008-06-13 2018-12-11 Centocor Ortho Biotech Inc métodos para otimizar a viabilidade e a produtividade da cultura de células
JP5965387B2 (ja) * 2010-04-08 2016-08-03 アメリカ合衆国 Tsh受容体用のインバースアゴニストおよびニュートラルアンタゴニスト
SG191371A1 (en) * 2010-12-28 2013-08-30 Chugai Pharmaceutical Co Ltd Animal cell culturing method
CN104004814A (zh) * 2013-02-21 2014-08-27 江苏先声药物研究有限公司 采用动物细胞流加培养方式精确控制单克隆抗体产品质量的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR830007087A (ko) * 1980-12-30 1983-10-14 하야시바라 겡 인체 갑상샘 자극호르몬의 제조방법
US20030198596A1 (en) * 1985-12-11 2003-10-23 Sloan-Kettering Institute For Cancer Research Isolation of a gene encoding human thyrotropin beta subunit
CN105002242A (zh) * 2015-07-23 2015-10-28 苏州康聚生物科技有限公司 用于cho细胞中高效表达重组人促甲状腺激素的无血清培养基及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BLAMEY ET AL.: "Using Recombinant Human Thyroid-stimulating Hormone for the Diagnosis of Recurrent Thyroid Cancer", AUSTRALIAN AND NEW ZEALAND JOURNAL OF SURGERY, vol. 75, 2005, pages 10 - 20 *
VENTINI ET AL.: "Improved Bioprocess with CHO-hTSH Cells on Higher Microcarrier Concentration Provides Higher Overall Biomass and Productivity for rhTSH", APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 164, 2011, pages 401 - 409, XP019898378 *

Also Published As

Publication number Publication date
HK1258040A1 (zh) 2019-11-01
KR101789509B1 (ko) 2017-10-26
JP2020182471A (ja) 2020-11-12
KR20170052853A (ko) 2017-05-15
JP2018532791A (ja) 2018-11-08
JP7093087B2 (ja) 2022-06-29
CN108463730A (zh) 2018-08-28
US20190062396A1 (en) 2019-02-28
US11001620B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2017078451A1 (ko) 재조합 인간 갑상선 자극 호르몬을 포함하는 조성물 및 상기 재조합 인간 갑상선 자극 호르몬의 생산 방법
EP1981908B1 (en) Novel fsh glycosylation variant d3n
JP5249044B2 (ja) Fsh突然変異体
WO2017078453A1 (ko) 재조합 인간 갑상선 자극 호르몬을 포함하는 조성물 및 상기 재조합 인간 갑상선 자극 호르몬의 정제 방법
US7317095B2 (en) Mutant glycoproteins
WO2018004294A2 (ko) 인간 성장호르몬 변이 단백질 또는 이의 트랜스페린 융합 단백질을 유효성분으로 포함하는 약학적 조성물
KR20070029620A (ko) Fsh 당화 돌연변이체
WO2017065559A1 (ko) Igg fc 도메인을 가지는 융합 단백질의 생산방법
KR20170124506A (ko) 재조합 인간 갑상선 자극 호르몬을 포함하는 조성물 및 상기 재조합 인간 갑상선 자극 호르몬의 정제 방법
KR20170120063A (ko) 재조합 인간 갑상선 자극 호르몬을 포함하는 조성물 및 상기 재조합 인간 갑상선 자극 호르몬의 생산 방법
MX2008009199A (en) Novel fsh glycosylation variant d3n

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018542093

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862467

Country of ref document: EP

Kind code of ref document: A1