WO2017078278A1 - 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법 - Google Patents

성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법 Download PDF

Info

Publication number
WO2017078278A1
WO2017078278A1 PCT/KR2016/011143 KR2016011143W WO2017078278A1 WO 2017078278 A1 WO2017078278 A1 WO 2017078278A1 KR 2016011143 W KR2016011143 W KR 2016011143W WO 2017078278 A1 WO2017078278 A1 WO 2017078278A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
excluding
high strength
ultra
Prior art date
Application number
PCT/KR2016/011143
Other languages
English (en)
French (fr)
Inventor
이규영
류주현
이세웅
이원휘
황변목
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2018522028A priority Critical patent/JP6654698B2/ja
Priority to EP16862296.7A priority patent/EP3372703B1/en
Priority to US15/769,924 priority patent/US11203795B2/en
Priority to CN201680063842.9A priority patent/CN108350546B/zh
Publication of WO2017078278A1 publication Critical patent/WO2017078278A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to an ultra-high strength steel sheet for automobiles, and more particularly, to an ultra-high strength steel sheet excellent in formability and hole expansion property and a method of manufacturing the same.
  • the thickness of the steel sheet In order to reduce the weight of the automotive steel sheet, the thickness of the steel sheet must be made thin, whereas in order to secure the collision stability, the thickness of the steel sheet must be thickened or the strength greatly improved.
  • Corresponding steel plates include dual phase steel (DP steel) and transformation organic plastic steel, known as AHSS (Advanced High Strength Steel). It is known that various automotive steel sheets such as Induced Plasticity Steel, TRIP Steel) and Complex Phase Steel (CP Steel) are possible.
  • DP steel dual phase steel
  • AHSS Advanced High Strength Steel
  • TRIP Steel Induced Plasticity Steel
  • CP Steel Complex Phase Steel
  • Such advanced high-strength steel can increase the strength by adding carbon content or alloying components, but considering the practical aspects such as spot weldability, the tensile strength that can be implemented is limited to about 1200MPa level.
  • martensite steel (martensite steel) that actively utilizes martensite structure in order to implement higher strength, but there is a limit that is applied only to a roll-forming part having a simple shape with low elongation.
  • Patent Document 1 utilizes a steel containing Mn of 3.5 to 9.0% to obtain very excellent physical properties of tensile strength and elongation of 30,000 MPa% or more, while yield ratio is low at 0.43 to 0.65, and the highest yield strength.
  • Mn 3.5 to 9.0%
  • yield ratio is low at 0.43 to 0.65, and the highest yield strength.
  • HPF 1.5G grade hot press forming
  • Patent Literature 2 includes 2 to 9% of Mn and improves low-temperature toughness by minimizing crystal grains by thermally deforming a two-phase tissue steel obtained through reverse transformation at a temperature range of 100 ° C to Ac1 + 50 ° C. It relates to technology, but as a result there is an advantage that the yield strength is improved, but there is a disadvantage that the warm deformation must be performed at the end of the manufacturing process.
  • Patent Documents 1 and 2 do not have evaluation results regarding hole expandability, elongation flangeability, and edge ductility, which can secure formability in the elongated flange portion during press molding, and suggest a method for improving them. I'm not doing it.
  • Patent Literature 3 proposes a method in which continuous annealing is possible by increasing the temperature of Ac1 by adding Al to steel containing 3% to 7% of Mn, which is advantageous in that the product of tensile strength and elongation is high. There is no drawback to secure press formability because there is no desire to improve.
  • Patent Documents 4 and 5 provide a method for manufacturing a high strength steel sheet having a tensile strength of 980 MPa or more and a product of tensile strength and elongation of 24,000 MPa or more by utilizing a steel containing 3.5 to 10% of Mn.
  • the coil is wound below Ac1 transformation point during heat treatment of the coil, it is disadvantageous that the cold deformation cannot be efficiently secured by suppressing austenite increase and annealing martensite formation through preferential partitioning of Mn.
  • annealing is performed only in the two-phase region, the hardness difference between ferrite and other phases in the final tissue is expected to be very large, which may lead to inferior yield strength and hole expandability of the final product.
  • the above documents do not attempt to improve yield strength and hole expandability, and simply evaluate the bendability, which may be suitable for simple part molding, but does not provide a suitable method for complex press molding. .
  • Patent Document 1 Chinese Patent Publication No. 101638749
  • Patent Document 2 Chinese Patent Publication No. 103060678
  • Patent Document 3 Korean Unexamined Patent Publication No. 2012-0070739
  • Patent Document 4 Republic of Korea Patent Publication No. 2014-0060574
  • Patent Document 5 International Application No. PCT-JP2012-005706
  • One aspect of the present invention is to provide an ultra-high strength steel sheet and a method of manufacturing the same, which are excellent in yield strength and easy to apply to a collision structural member, and at the same time, excellent in hole expandability and excellent in press formability. will be.
  • C carbon
  • Si silicon
  • Mn manganese
  • P phosphorus
  • S sulfur
  • Al aluminum
  • N nitrogen
  • C and Mn satisfy the following relation 1,
  • the microstructure provides an ultra-high strength steel sheet having excellent formability and hole expandability including a retained austenitic volume fraction of 20% or more and annealing martensite of 50% or more.
  • an ultra-high strength steel sheet excellent in mechanical properties that is, yield strength, elongation, and hole expansion properties, all for improving collision performance and formability required in automobile structural members.
  • the ultra-high strength steel sheet of the present invention has an advantage that is suitable for cold press molding, it is possible to replace the existing hot press molded parts with low cost cold press molded parts, and to suppress the generation of CO 2 caused by high temperature molding, etc. It has a beneficial effect.
  • FIG. 1 is a graph showing the mechanical properties change with temperature during the final annealing (second annealing) heat treatment of the inventive steel 4 according to an embodiment of the present invention.
  • Figure 2 shows the equilibrium diagram of the 0.14C-7Mn-1Si steel (corresponding to Inventive Steel 4) calculated using Thermo-Calc (where Thermo-Calc means Thermodynamic calculation program of Thermo-Calc Software).
  • FIG 3 is a graph showing the mechanical properties change with temperature during the final annealing (secondary annealing) heat treatment of the inventive steel 7 according to an embodiment of the present invention.
  • Figure 4 shows the TEM precipitate observation picture (4a) and EDS results (4b) after the final annealing of the inventive steel 7 according to an embodiment of the present invention (value of 4a represents the precipitate size (diameter) value).
  • Figure 5 shows the results of observing the change in the microstructure and phase fractions by the process of the invention steel 7 according to an embodiment of the present invention.
  • the inventors of the present invention have been in depth research to develop a steel material having a mechanical property equal to or higher than that of a hot press molded part while being suitable for cold press molding, which can reduce the cost compared to the existing hot press forming. And it was confirmed that it is possible to provide a steel sheet having a microstructure suitable for cold press formability from the optimization of the manufacturing conditions, and came to complete the present invention.
  • One aspect of the present invention is ultra-high strength steel sheet having excellent formability and hole expansion property in weight%, carbon (C): 0.04 to 0.17%, silicon (Si): 2% or less, manganese (Mn): 4 to 10% , Phosphorus (P): 0.05% or less (excluding 0%), sulfur (S): 0.02% or less (excluding 0%), aluminum (Al): 0.5% or less (excluding 0%), nitrogen (N): 0.02%
  • C and Mn preferably satisfy the following relational formula (1).
  • the content of each component means weight% unless otherwise specified.
  • Carbon (C) is an important element added for stabilizing residual austenite, and for this purpose, it is preferably added at 0.04% or more. However, when the content exceeds 0.17%, the relationship with Mn does not satisfy the range proposed by the present invention, and there is a problem that spot welding, which is a major joining technology of automobile structural members, is inferior.
  • Silicon (Si) is an element that suppresses the precipitation of carbides in ferrite and promotes diffusion of carbon in the ferrite into austenite and contributes to stabilization of residual austenite.
  • the content of Si exceeds 2%, the hot and cold rolling properties are inferior, and since the Si plating is inhibited by forming Si oxide on the steel surface, the content is preferably limited to 2% or less.
  • the Si may be included as 0%, because it is easy to ensure the stability of the retained austenite without the addition of Si, as it will contain a large amount of Mn as described below.
  • Manganese (Mn) is an essential element in metamorphic tissue steels for the formation and stabilization of residual austenite, as well as for suppressing ferrite transformation upon cooling.
  • Mn is added less than 4%, ferrite transformation is likely to occur, and it becomes difficult to secure austenite, and thus it is difficult to secure a value of the product of tensile strength and elongation of 25,000 MPa% or more.
  • Mn is added in excess of 10%, the relationship with C does not satisfy the range proposed by the present invention.
  • the relationship between the C and Mn preferably satisfies the following Equation 1. If the following value exceeds 0.46, the hole expansion property (HER) cannot be stably secured. It is preferable to satisfy 0.46 or less.
  • Phosphorus (P) is a solid solution hardening element, but if its content exceeds 0.05%, the weldability is lowered and the risk of brittleness of steel is increased, so the upper limit is preferably limited to 0.05%. More preferably, it is limited to 0.02%.
  • S is an impurity element in steel and is an element that inhibits the ductility and weldability of the steel sheet. If the content exceeds 0.02%, the possibility of inhibiting the ductility and weldability of the steel sheet is increased, so it is preferable to limit the upper limit to 0.02%.
  • Aluminum (Al) also contributes to the stabilization of residual austenite through the suppression of carbides in ferrite. However, when the content is increased, it is difficult to manufacture a healthy slab through reaction with the mold flux during casting, and there is a problem of inhibiting the hot-plating property by forming a surface oxide.
  • Al is an element that raises Ac1. In consideration of this, Al is preferably limited to 0.5% or less.
  • Nitrogen (N) is an effective component for stabilizing austenite, but if the content exceeds 0.02%, there is a high risk of brittleness, and the performance is reduced due to excessive precipitation of AlN in combination with Al, so the upper limit Is preferably limited to 0.02%.
  • Ultra high strength steel sheet of the present invention in addition to the above-described components, may further include the following components to improve the mechanical properties and the like.
  • At least one of Mo, Ti, Nb and V may be further included.
  • Molybdenum (Mo) is effective to suppress the formation of ferrite by increasing the hardenability of the steel, and also has the effect of suppressing the formation of ferrite during cooling after annealing.
  • the formation of fine carbides greatly contributes to the increase in strength.
  • the content of Mo exceeds 0.5%, it leads to an increase in the cost of ferroalloy due to the excessive amount of alloy input, it is preferable to limit the content to 0.5% or less.
  • Titanium (Ti) is an element that forms fine carbide and contributes to securing strength.
  • Ti is a nitride forming element, which inhibits AlN precipitation by scavenging by scavenging N in steel with TiN, thereby reducing the risk of cracking during playing.
  • Such Ti is preferably added at a chemical equivalent weight of 48/14 * [N] or more, but when the content exceeds 0.1%, strength may be reduced by coarse precipitation of carbides and reduction of carbon in steel. There is a problem that causes nozzle clogging when playing.
  • Nb 0.1% or less (except 0%)
  • Niobium is an element that segregates at the austenite grain boundary and suppresses coarsening of austenite grains during annealing and increases strength through formation of fine carbides.
  • strength may be reduced by coarse carbide precipitation and carbon reduction in steel, and there is a problem of causing an increase in ferroalloy cost due to excessive alloy input.
  • V 0.2% or less (except 0%)
  • Vanadium (V) is an element that contributes to the increase in strength by forming low temperature precipitates. When the content of V exceeds 0.2%, the strength may be reduced by coarse carbide precipitation and carbon reduction in steel, which is not preferable because it causes an increase in the cost of ferroalloy due to excessive alloy input.
  • present invention may further include one or more of Zr and W.
  • Zirconium (Zr) and tungsten (W) are effective elements for precipitation strengthening and grain refinement of steel sheets, like Ti, Nb, V, and Mo.
  • Zr and W When the content of Zr and W is less than 0.001%, respectively, it is difficult to secure the above effects.
  • the content of Zr is more than 0.1% and W, the effect is saturated, and the manufacturing cost increases. In addition, there is a fear that the precipitates are excessively formed to lower the ductility.
  • it may further include one or more of Ni, Cu and Cr.
  • Nickel (Ni), copper (Cu), and chromium (Cr) are elements that contribute to stabilization of retained austenite, and in combination with C, Si, Mn, and Al, contribute to stabilization of austenite.
  • Ni, Cu and Cr are elements that contribute to stabilization of retained austenite, and in combination with C, Si, Mn, and Al, contribute to stabilization of austenite.
  • the content of Ni, Cu and Cr is added in excess of 1%, more than 0.5% and more than 1%, respectively, there is a problem in that the increase in manufacturing cost is excessive.
  • Ni is compositely added.
  • it may further comprise one or more of Sb, Ca and B.
  • Antimony (Sb) has the effect of inhibiting the movement of surface oxide elements such as Si and Al through grain boundary segregation to improve plating surface quality, but when the content exceeds 0.04%, the effect is saturated.
  • Calcium (Ca) is an element effective for improving workability by controlling the form of sulfide, and when the content exceeds 0.01%, the effect is saturated.
  • boron (B) has the advantage of suppressing the soft ferrite transformation during cooling at high temperature by improving the hardenability by the composite effect with Mn, Cr, etc., if the content exceeds 0.01% surface when manufactured with plated steel sheet Excessive B may concentrate, resulting in deterioration of plating adhesiveness, and therefore it is preferable to limit the upper limit to 0.01%.
  • the remaining component of the present invention is iron (Fe).
  • iron Fe
  • impurities which are not intended from raw materials or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art of ordinary steel manufacturing, not all of them are specifically mentioned herein.
  • the ultra-high strength steel sheet of the present invention that satisfies the above-mentioned composition is preferably a microstructure containing at least 20% of retained austenite and at least 50% of annealed martensite. It can be composed of other phases including ⁇ -martensite.
  • the present invention includes a retained austenite and annealed martensite in combination to provide a tensile strength of 980 MPa or more and an excellent yield strength to secure a yield ratio (yield strength / tensile strength) of 0.6 or more, and furthermore, tensile strength.
  • the product of strength and elongation is 25,000 MPa% or more, and hole expandability can be secured to 15% or more.
  • the residual austenite is less than 20% or annealed martensite is less than 50%, there is a problem in that not only ultra high strength but also ductility and hole expandability can not be secured.
  • the ultra-high strength steel sheet according to the present invention is manufactured through the manufacturing process described below, wherein the microstructure after the first annealing step, that is, the microstructure before the second annealing step includes the martensite and residual austenite in two phases Preferably, it contains at least 1% of retained austenite.
  • the steel sheet of the present invention having the above-described component composition and microstructure may be not only a cold rolled steel sheet but also a hot dip galvanized steel sheet or an alloyed hot dip galvanized steel sheet.
  • Cold rolled steel sheet according to the present invention can be produced by reheating-hot rolling-winding-heat treatment-cold rolling-multi-stage annealing process to satisfy the composition and component relationship proposed in the present invention, below Each process condition is explained in full detail.
  • the reheating step is preferably performed at 1100 to 1300 ° C.
  • the reheating temperature is less than 1100 ° C., there is a problem in that the load during subsequent hot rolling increases rapidly, whereas if the reheating temperature exceeds 1300 ° C., the amount of the surface scale increases, leading to loss of material, and containing a large amount of Mn. Since there may be a liquid phase, it is preferable to limit to 1100 ⁇ 1300 °C.
  • the reheated steel slab is hot rolled to produce a hot rolled steel sheet, and at this time, it is preferable to perform finish hot rolling at a temperature of Ar 3 or more and 1000 ° C. or less.
  • the finish hot rolling temperature is lower than Ar3 (the temperature at which austenite begins to transform into ferrite during cooling), a ferrite + austenitic two-phase or ferrite reverse rolling is formed, thus forming a mixed structure, and a malfunction due to fluctuations in the hot rolling load. It is not preferable because it is concerned.
  • the finish hot rolling temperature exceeds 1000 ° C., the possibility of causing surface defects due to scale increases, which is not preferable.
  • the upper limit is preferably limited to 720 ° C.
  • the strength of the hot rolled steel sheet is increased, so that the rolling load of the cold rolling, which is a post-process, is increased.
  • a large amount of Mn is contained as in the present invention, it is cooled to room temperature after hot-rolling due to increased hardenability
  • a large amount of martensite is introduced without transformation into a soft phase such as ferrite, and thus the hot rolled strength is very high. Therefore, in the present invention, before performing cold rolling, heat treatment is performed as follows. In the case of performing the heat treatment in this way, even if the winding temperature is low, there is no problem, and therefore, the lower limit temperature is not particularly limited.
  • heat treatment Prior to cold rolling the wound hot rolled steel sheet, heat treatment is preferably performed at a predetermined temperature range. At this time, it is preferable to perform at least 30 minutes in the Ac1 ⁇ Ac1 + ((Ac3-Ac1) / 2) temperature range.
  • Ac1 is a temperature at which austenite starts to appear when heated at a low temperature
  • Ac3 is a temperature at which austenite is transformed to 100% when heated. These are not the phase equilibrium temperature but the temperature considering the phase transformation kinetic at actual temperature rise.
  • the heat-treated hot rolled steel sheet is pickled to remove the oxide layer, and then cold rolled to produce a cold rolled steel sheet in order to match the shape and thickness of the steel sheet.
  • the cold rolling is a process for securing a thickness required by the customer, and the rolling reduction is not particularly limited.
  • the lower limit of the cold reduction rate is limited in consideration of recrystallization during the subsequent annealing process, but the present invention is not limited because the austenite single phase annealing is performed at Ac 3 or more during the first annealing.
  • the present invention is for producing an ultra-high strength steel sheet excellent in yield strength, elongation and hole expansion at the same time, it is important to control the subsequent annealing process to obtain such a steel sheet.
  • the temperature range at the time of final annealing (corresponding to the second annealing heat treatment described later) is very important.
  • the cold rolled steel sheet produced according to the above is preferably subjected to annealing at least 30 seconds at a temperature of Ac3 or more, followed by cooling.
  • the first annealing heat treatment as described above is to secure the two-phase structure of the annealing martensite and the retained austenite as the main phase after the final annealing (corresponding to the second annealing heat treatment described later).
  • the modified annealing martensite which was introduced during cold rolling is to suppress the hardness variation between phases generated as recrystallized during the final annealing. Accordingly, it is preferable to perform single-phase reverse annealing during the first annealing heat treatment, and preferably to perform at least 30 seconds or more.
  • the first annealing heat treatment and the cooled cold rolled steel sheet is preferably annealing heat treatment in a two-phase temperature range, and more preferably, the second annealing heat treatment is performed for 30 minutes or more in the temperature range of 550 ⁇ 620 °C.
  • the second annealing heat treatment time is less than 30 minutes, there is a problem that the residual austenite phase is formed to less than 20%, so that not all of the intended mechanical properties can be secured, and therefore, the second annealing heat treatment time is less than 30 minutes.
  • the annealing process according to the present invention is applied, even though cold press molding is performed at a relatively low cost instead of conventional hot press molding, it is comparable to hot press molded parts due to the high yield strength level of the component due to work hardening after molding. In addition, it has a high elongation compared to hot press molded parts having an elongation of several percent, and thus has an excellent ability to absorb collision energy after manufacturing parts.
  • the cold-rolled steel sheet prepared through all the above steps can be immersed in a zinc plating bath or zinc alloy plating bath to produce a plated steel sheet having a hot dip galvanized layer or a hot dip galvanized layer.
  • a zinc-alloy plating bath a zinc-aluminum-magnesium plating bath, etc. can be used as a zinc alloy plating bath.
  • a plated steel sheet may be manufactured by using an aluminum-silicon plating bath and an aluminum-silicon-magnesium plating bath.
  • an alloyed plated steel sheet can be manufactured by carrying out alloying heat treatment of the plated steel sheet which has the above-mentioned plating layer at the temperature of 480-600 degreeC.
  • the cold rolled steel sheet thus prepared was subjected to annealing heat treatment (final annealing only or both primary and secondary (final annealing)) under the conditions shown in Table 2, and then the mechanical properties of each specimen were measured. Indicated.
  • YS Yield Strength
  • TS Tensile Strength
  • El tensile strength
  • HER Hole Expansion Ratio
  • the TS * HER regression equation was derived as follows by using the sample evaluating the hole expandability in Table 2, wherein the independent variables include the composition (wt%) and the second annealing heat treatment temperature (° C). And hour.
  • Inventive Examples 1 to 22 which satisfy both the alloy composition and the manufacturing conditions of the present invention, can secure not only a tensile strength of 1000 MPa or more, but also a yield strength of 700 MPa or more, so that a yield ratio of 0.6 or more
  • the steel plate which has a can be obtained.
  • the value of TS * El is 25,000 MPa% or more, and at the same time, the hole expandability can be secured to 15% or more, which is advantageous in press formability.
  • Comparative Examples 1 and 2 in which the steel component composition did not satisfy the present invention, even if the steel composition did not satisfy the present invention, even when the steel composition did not satisfy the present invention, the values of TS * El were insufficient. Was not able to secure more than 25,000 MPa%, and the hole expandability evaluation was unnecessary.
  • Comparative Examples 12 and 32-33 strength and ductility were assured, while hole expansion was inferior.
  • Comparative Example 34 strength, ductility, and hole expansion were inferior.
  • the sample heat-treated at 500 ° C. or lower during the second annealing showed a TS * El value of less than 25,000 MPa%, and the samples heat-treated at 600 ° C. and 630 ° C., respectively, showed very high TS * El values.
  • YR also showed more than 0.6.
  • the sample heat-treated at 630 ° C. showed a 5% HER value, but the sample heat-treated at 600 ° C. showed a very high HER value of 28%.
  • the elongation is rapidly increased by increasing the secondary heat treatment temperature above 500 °C, the tensile strength also increases again when heat treatment at 630 °C compared to 600 °C. It is believed that the hole expansion is inferior due to an increase in the amount of austenite during the second annealing heat treatment due to the high annealing temperature and an increase in the hardness difference between phases as the strength of the annealing martensite decreases.
  • Said invention steel 7 is a steel grade which further contains Mo, and it can be seen that it shows high yield strength compared with invention steel 4 which is not an Mo addition steel. This can be clearly seen from observing the microstructure of Inventive Example 16 using Inventive Steel 7 by TEM, as shown in FIG. 4A due to the formation of very fine carbide of 30 nm or less, that is, (Ti, Nb, Mo) C. It is.
  • the specimen for measuring the TEM was produced using a carbon thin film extraction method.
  • the present inventors observed the change in SEM microstructure and phase fraction from the hot rolled to the final annealing heat treatment (second annealing) for the Inventive Example 16 using the composition of the invention steel 7, the results are shown in FIG.
  • the etching was used for nital etching, and the microstructure is very fine, so that it is not easy to distinguish the phase, and the phase fraction was measured using the X-ray method.
  • represents all of martensite, annealing martensite and ferrite having a BCC structure.
  • steel 7 includes Mn of 7% or more (7.16%) and has high hardenability. It is due to.
  • the hot rolled steel sheet due to the high martensite phase fraction of 95.8%, the hot rolled steel sheet is difficult to be cold rolled with a tensile strength of 1500 MPa or more.
  • a heat treatment pre-cold heat treatment
  • the martensite phase observed in the hot rolled steel sheet is inversely transformed. It can be seen that the part is transformed into austenite, and the remainder is transformed into annealing martensite tissue.
  • ⁇ represented by a fraction of 98.4% after cold rolling is composed of about 1/2 of austenite transformed to martensite due to deformation, and annealing martensite to increase dislocation density due to cold deformation.
  • Comparative Example 12 and Comparative Example 13 in which the temperature was changed during the final annealing heat treatment using a cold rolled steel sheet having a composition of Comparative Steel 5 having a relatively high C content, showed similar results to those of the inventive steels, namely 600 Compared to the material heat-treated at 630 ° C, the material heat-treated at °C showed excellent hole expandability, but it did not reach the target of 15% in the present invention, and the high content of C had an important spot weldability in steel structural materials for automobiles. There is a disadvantage of losing.
  • Comparative Steel 1 and Comparative Steel 2 having a low Mn content of less than 4% have a low elongation even when the annealing heat treatment is carried out stepwise as in the present invention does not satisfy the TS * El value required by the present invention more than 25,000MPa% can not do it.
  • Mn is contained as 6.18%, 5.21%, respectively, as invented steels 9 and 10, it can be seen that the TS * El value satisfies 25,000 MPa% or more.

Abstract

본 발명은 자동차용 초고강도 강판에 관한 것으로서, 보다 상세하게는 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법에 관한 것이다.

Description

성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
본 발명은 자동차용 초고강도 강판에 관한 것으로서, 보다 상세하게는 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법에 관한 것이다.
자동차 강판의 경량화를 위해서는 강판의 두께를 얇게 하여야 하는 반면, 충돌 안정성의 확보를 위해서는 강판의 두께를 두껍게 하거나 강도를 크게 향상시켜야하므로, 서로 모순된 측면이 있다.
이를 해결하기 위해서는 소재의 강도를 높이면서 성형성을 향상시켜야 하는데, 이에 부합하는 강판으로는 AHSS(Advanced High Strength Steel)로 알려진 이상조직강(Dual Phase Steel, DP강), 변태유기소성강(Transformation Induced Plasticity Steel, TRIP강), 복합조직강(Complex Phase Steel, CP강) 등의 다양한 자동차용 강판이 가능하다고 알려져 있다.
이와 같은 진보된 고강도강은 탄소량 또는 합금성분을 추가함으로써 강도를 더 높일 수는 있으나, 점 용접성 등의 실용적 측면을 고려할 때 구현 가능한 인장강도는 약 1200MPa급 수준이 한계이다.
이에, 보다 높은 강도의 구현을 위해서는 마르텐사이트(Martensite) 조직을 적극 활용하는 마르텐사이트 강(martensite steel)이 있으나, 이는 연신율이 매우 낮아 단순한 형상의 롤포밍 부품에만 적용되는 한계가 있다.
한편, 충돌 안정성을 확보하기 위한 구조부재에 적용 가능한 강판으로는, 고온에서 성형 후 수냉하는 즉, 다이(Die)와의 직접 접촉을 통한 급냉에 의해 최종 강도를 확보하는 열간 프레스 성형(Hot Press Forming, HPF) 강이 각광받고 있으나, 설비 투자비의 과다, 열처리 및 공정비용의 증가로 적용확대가 용이하지 못하다.
이에 따라, 열간 프레스 성형보다 저렴한 냉간 프레스 성형이 가능한 소재에 대한 요구가 증가되고 있는 실정이다.
종래에는, 인장강도와 연신율의 곱을 25,000MPa% 이상으로 구현하기 위한 기술들이 다양하게 개발되어 왔다.
일 예로, 특허문헌 1에는 Mn을 3.5~9.0%로 포함하는 강을 활용하여 인장강도와 연신율의 곱이 30,000MPa% 이상의 매우 우수한 물성을 확보하는 한편, 항복비가 0.43~0.65 수준으로 낮고, 최고 항복강도도 720MPa 수준으로 낮아, 열처리 후 항복강도 1050MPa 수준인 통상의 1.5G급 열간 프레스 성형(HPF) 강과의 경쟁이 용이하지 못한 단점이 있다.
또한, 특허문헌 2는 Mn을 2~9%로 포함하고, 역변태를 통해 얻은 2상 조직강을 100℃~Ac1+50℃의 온도구간에서 열변형을 일으켜 결정립을 미세화함으로써 저온인성을 향상시키는 기술에 관한 것으로, 이의 결과로 항복강도가 향상되는 장점이 있으나, 온간변형을 제조공정의 마지막 단계에서 행하여야 하는 단점이 있다.
뿐만 아니라, 상기 특허문헌 1 및 2에는 프레스 성형시 신장 플랜지부에서의 성형성을 확보할 수 있는 구멍확장성 또는 신장플랜지성, edge ductility에 관한 평과 결과가 없으며, 이들을 개선하고자 하는 방안에 관해서도 시사하고 있지 않다.
하지만, 다양한 성형모드가 적용되는 실제 프레스 성형을 고려한다면, 드로잉과 연신 특성을 나타내는 연신율은 물론, 굽힘성 및 edge ductility를 모두 평가할 수 있는 구멍확장성을 개선한 제품의 개발이 필요하다.
한편, 특허문헌 3에서는 Mn을 3~7%로 함유하는 강에 Al을 추가함으로써 Ac1 온도를 높여 연속소둔이 가능한 방법을 제안하고 있는데, 이는 인장강도와 연신율의 곱이 높은 것이 장점이나 구멍확장성을 개선하고자 하는 바가 없어 프레스 성형성의 확보가 분명치 않은 단점이 있다.
또한, 특허문헌 4 및 5에서는 Mn을 3.5~10%로 함유하는 강을 활용하여 인장강도 980MPa 이상, 인장강도와 연신율의 곱이 24,000MPa% 이상인 고강도 강판을 제조하는 방법을 제공하고 있는데, 열연 후 권취된 코일의 열처리시 Ac1 변태점 이하에서 권취함에 따라 Mn의 우선 분배(partitioning)를 통한 오스테나이트 증가와 소둔 마르텐사이트의 형성을 억제함으로써 냉간변형성을 효율적으로 확보하지 못하는 단점이 있으며, 또한 최종 소둔 및 중간 소둔 등이 2상역에서만 행해짐에 따라 최종 조직에서 페라이트와 기타 상(phase) 간의 경도차가 매우 클 것으로 예상되며, 이는 최종 제품의 항복강도 및 구멍확장성의 열위로 이어질 가능성이 높다. 뿐만 아니라, 위 문헌들에는 항복강도 및 구멍확장성을 개선하고자 하는 바가 없으며, 단순히 굽힘성만 평가하고 있어, 실제 단순한 부품 성형에는 적합할 수 있겠으나, 복잡한 프레스 성형에는 적합한 방안을 제시하지 못하고 있는 것이다.
(특허문헌 1) 중국 특허공개번호 제101638749호
(특허문헌 2) 중국 특허공개번호 제103060678호
(특허문헌 3) 대한민국 공개특허공보 제2012-0070739호
(특허문헌 4) 대한민국 공개특허공보 제2014-0060574호
(특허문헌 5) 국제출원번호 PCT-JP2012-005706
본 발명의 일 측면은, 항복강도가 우수하여 충돌 구조부재에의 적용이 용이하고, 동시에 구멍확장성이 우수하여 프레스 성형성을 우수하게 확보할 수 있는 초고강도 강판 및 이의 제조방법을 제공하고자 하는 것이다.
본 발명의 일 측면은, 중량%로, 탄소(C): 0.04~0.17%, 실리콘(Si): 2% 이하, 망간(Mn): 4~10%, 인(P): 0.05% 이하(0% 제외), 황(S): 0.02% 이하(0% 제외), 알루미늄(Al): 0.5% 이하(0% 제외), 질소(N): 0.02% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 상기 C 및 Mn은 하기 관계식 1을 만족하고,
미세조직으로 부피분율 20% 이상의 잔류 오스테나이트 및 50% 이상의 소둔 마르텐사이트를 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판을 제공한다.
[관계식 1]
C + (Mn/25) ≤ 0.46
본 발명의 다른 일 측면은, 상술한 성분조성 및 관계식을 만족하는 강 슬라브를 1100~1300℃의 온도범위로 재가열하는 단계; 상기 재가열된 강 슬라브를 Ar3~1000℃의 온도범위에서 마무리 열간압연하여 열연강판을 제조하는 단계; 상기 열연강판을 720℃ 이하의 온도에서 권취하는 단계; 상기 권취된 열연강판을 Ac1~Ac1+((Ac3-Ac1)/2) 온도범위에서 30분 이상 열처리하는 단계; 상기 열처리된 열연강판을 산세 및 냉간압연하여 냉연강판을 제조하는 단계; 상기 제조된 냉연강판을 Ac3 이상의 온도에서 30초 이상 1차 소둔 열처리를 행한 후 냉각하는 단계; 및 상기 1차 소둔 열처리 및 냉각된 냉연강판을 550~620℃ 온도범위에서 30분 이상 2차 소둔 열처리를 행하는 단계를 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판의 제조방법을 제공한다.
본 발명에 의하면, 자동차 구조부재에서 요구되는 충돌성능 및 성형성을 향상시키기 위한 기계적 물성 즉, 항복강도, 연신율 및 구멍확장성이 모두 우수한 초고강도 강판을 제공하는 효과가 있다.
이러한 본 발명의 초고강도 강판은 냉간 프레스 성형에 적합한 장점이 있어, 기존 열간 프레스 성형 부품을 저원가의 냉간 프레스 성형 부품으로 대체할 수 있으며, 고온 성형시 야기되는 CO2 발생 등을 억제하여 친환경 소재로 유리한 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 발명강 4의 최종 소둔(2차 소둔) 열처리시 온도에 따른 기계적 물성 변화를 그래프화하여 나타낸 것이다.
도 2는 Thermo-Calc를 이용하여 계산한 0.14C-7Mn-1Si 강(발명강 4에 해당됨)의 평형 상태도를 나타낸 것이다 (여기서 Thermo-Calc는 Thermo-Calc Software사의 열역학 계산 프로그램을 의미함).
도 3은 본 발명의 일 실시예에 따른 발명강 7의 최종 소둔(2차 소둔) 열처리시 온도에 따른 기계적 물성 변화를 그래프화하여 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 발명강 7의 최종 소둔 후 TEM 석출물 관찰 사진(4a) 및 EDS 결과(4b)를 나타낸 것이다 (4a의 수치는 석출물 크기(직경)값을 나타낸 것이다).
도 5는 본 발명의 일 실시예에 따른 발명강 7의 공정별 미세조직 및 상 분율의 변화를 관찰한 결과를 나타낸 것이다.
본 발명자들은 기존 열간 프레스 성형(Hot Press Forming)에 비해 원가 절감이 가능한 냉간 프레스 성형에 적합하면서, 열간 프레스 성형 부품에 비해 동등 이상의 기계적 물성을 갖는 강재를 개발하기 위해 깊이 연구한 결과, 강 성분조성 및 제조조건의 최적화로부터 냉간 프레스 성형성에 적합한 미세조직을 갖는 강판을 제공할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이하, 본 발명에 대하여 상세히 설명한다.
본 발명의 일 측면인 성형성 및 구멍확장성이 우수한 초고강도 강판은 중량%로, 탄소(C): 0.04~0.17%, 실리콘(Si): 2% 이하, 망간(Mn): 4~10%, 인(P): 0.05% 이하(0% 제외), 황(S): 0.02% 이하(0% 제외), 알루미늄(Al): 0.5% 이하(0% 제외), 질소(N): 0.02% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 상기 C 및 Mn은 하기 관계식 1을 만족하는 것이 바람직하다.
[관계식 1]
C + (Mn/25) ≤ 0.46
이하에서는, 본 발명에서 제공하는 초고강도 강판의 합금 성분조성을 상기와 같이 제한하는 이유에 대하여 상세히 설명한다. 이때, 각 성분들의 함량은 특별한 언급이 없는 한 중량%를 의미한다.
C: 0.04~0.17%
탄소(C)는 잔류 오스테나이트 안정화를 위해서 첨가되는 중요한 원소로써, 이를 위해서는 0.04% 이상으로 첨가됨이 바람직하다. 하지만, 그 함량이 0.17%를 초과하면 Mn과의 관계가 본 발명에서 제안하는 범위를 만족하지 못하게 되며, 자동차 구조 부재의 주요 접합기술인 점용접성이 열위해지는 문제가 있다.
따라서, 본 발명에서 C의 함량을 0.04~0.17%로 제한함이 바람직하다.
Si: 2% 이하
실리콘(Si)은 페라이트 내에서 탄화물의 석출을 억제하고, 페라이트 내 탄소가 오스테나이트로 확산하는 것을 조장하는 원소로써 잔류 오스테나이트의 안정화에 기여한다. 이러한 Si의 함량이 2%를 초과하게 되면 열간 및 냉간 압연성이 매우 열위하며, 강 표면에 Si 산화물을 형성함으로써 용융도금성을 저해하므로, 그 함량을 2% 이하로 제한함이 바람직하다.
한편, 본 발명에서는 상기 Si을 0%로 포함하여도 무방한데, 이는 후술하는 바와 같이 Mn을 다량 함유함에 따라 Si의 첨가 없이도 잔류 오스테나이트의 안정성의 확보가 용이하기 때문이다.
Mn: 4~10%
망간(Mn)은 잔류 오스테나이트의 형성 및 안정화와 더불어 냉각시 페라이트 변태 억제를 위해서 변태 조직강에서 필수적인 원소이다. 이러한 Mn을 4% 미만으로 첨가하게 되면 페라이트 변태가 발생하기 쉽고, 오스테나이트의 확보가 부족하게 되어 인장강도와 연신율 곱의 값을 25,000MPa% 이상으로 확보하기 어려워진다. 반면, Mn을 10% 초과하여 첨가하게 되면 C와의 관계가 본 발명에서 제안하는 범위를 만족하지 못하게 되는 문제가 있다.
따라서, 본 발명에서는 Mn의 함량을 4~10%로 제한함이 바람직하다.
한편, 본 발명은 상기 C 및 Mn의 관계가 하기 관계식 1을 만족함이 바람직한데, 만일 하기 값이 0.46을 초과하게 되면 구멍확장성(HER)을 안정적으로 확보할 수 없으므로, 하기 관계식 1의 값이 0.46 이하를 만족함이 바람직하다.
[관계식 1]
C + (Mn/25) ≤ 0.46
P: 0.05% 이하(0% 제외)
인(P)은 고용강화 원소이나, 그 함량이 0.05%를 초과하면 용접성이 저하되고 강의 취성이 발생할 위험성이 커지기 때문에 그 상한을 0.05%로 한정하는 것이 바람직하다. 보다 바람직하게는 0.02%로 제한하는 것이 바람직하다.
S: 0.02% 이하(0% 제외)
황(S)은 강 중 불순물 원소로서, 강판의 연성 및 용접성을 저해하는 원소이다. 그 함량이 0.02%를 초과하면 강판의 연성 및 용접성을 저해할 가능성이 높아지므로, 그 상한을 0.02%로 한정하는 것이 바람직하다.
Al: 0.5% 이하(0% 제외)
알루미늄(Al) 역시 페라이트 내 탄화물의 생성 억제를 통해 잔류 오스테나이트의 안정화에 기여한다. 하지만, 그 함량이 많아지면 주조시 몰드 플럭스와의 반응을 통하여 건전한 슬래브의 제조가 어려우며, 표면 산화물을 형성하여 용융도금성을 저해하는 문제가 있다. 또한, Al은 Ac1을 상향시키는 원소로서, 이를 고려하여 그 함량을 0.5% 이하로 제한함이 바람직하다.
N: 0.02% 이하(0% 제외)
질소(N)는 오스테나이트를 안정화시키는데 유효한 작용을 하는 성분이지만, 그 함량이 0.02%를 초과하면 취성이 발생할 위험성이 크고, Al과 결합하여 AlN을 과다 석출 시킴으로 인해 연주품질을 저하하므로, 그 상한을 0.02%로 제한하는 것이 바람직하다.
본 발명의 초고강도 강판은 상술한 성분 이외에도, 기계적 성질 등의 향상을 위해 다음과 같은 성분들을 더 포함할 수 있다.
먼저, Mo, Ti, Nb 및 V 중 1 이상을 더 포함할 수 있다.
Mo: 0.5% 이하(0% 제외)
몰리브덴(Mo)은 강의 경화능을 높여 페라이트 형성을 억제하는데 유효할 뿐만 아니라, 소둔 후 냉각시에 페라이트의 형성을 억제하는 효과가 있다. 또한, 미세한 탄화물을 형성함으로써 강도 증가에 기여하는 바가 크다. 이러한 Mo의 함량이 0.5%를 초과하게 되면 합금 투입량 과다에 의한 합금철 원가증가로 이어지므로, 그 함량을 0.5% 이하로 제한함이 바람직하다.
Ti: 0.1% 이하(0% 제외)
티타늄(Ti)은 미세 탄화물을 형성하여 강도 확보에 기여하는 원소이다. 또한, Ti은 질화물 형성원소로써 강 중 N를 TiN으로 석출시켜 스캐빈징(scavenging)을 행함에 의해 AlN 석출을 억제함으로써, 연주시 크랙 발생의 위험성을 저하시키는 장점이 있다. 이러한 Ti은 화학당량적으로 48/14*[N] 이상 첨가하는 것이 바람직하지만, 그 함량이 0.1%를 초과하게 되면 탄화물의 조대 석출 및 강 중 탄소량 저감에 의해 강도 감소가 이루어질 수 있고, 또한 연주시 노즐 막힘을 야기하는 문제가 있다.
Nb: 0.1% 이하(0% 제외)
니오븀(Nb)은 오스테나이트 입계에 편석되어 소둔 열처리시 오스테나이트 결정립의 조대화를 억제하고 미세 탄화물 형성을 통한 강도를 증가시키는 원소이다. 이러한 Nb의 함량이 0.1%를 초과하는 경우에는 탄화물 조대 석출 및 강 중 탄소량 저감에 의하여 강도 감소가 이루어질 수 있고, 합금 투입량 과다에 의한 합금철 원가상승을 야기하는 문제가 있다.
V: 0.2% 이하(0% 제외)
바나듐(V)은 저온 석출물을 형성함에 의하여 강도 증가에 기여하는 원소이다. 이러한 V의 함량이 0.2%를 초과하면 탄화물 조대 석출 및 강 중 탄소량 저감에 의하여 강도 감소가 이루어질 수 있고, 합금 투입량 과다에 의한 합금철 원가상승을 야기하므로 바람직하지 못하다.
또한, 본 발명은 Zr 및 W 중 1종 이상을 더 포함할 수 있다.
Zr: 0.001~0.1% 및 W: 0.001~0.5% 중 1종 이상
지르코늄(Zr)과 텅스텐(W)은 상기 Ti, Nb, V, Mo과 마찬가지로 강판의 석출강화 및 결정립 미세화에 유효한 원소이다. 상기 Zr 및 W의 함량이 각각 0.001% 미만인 경우에는 상기와 같은 효과를 확보하기 어려우며, 반면 Zr의 함량이 0.1%, W의 경우에는 0.5%를 초과하게 되면 상기 효과가 포화되고, 제조비용이 상승될 뿐만 아니라, 석출물이 과다 형성되어 연성을 저하시킬 우려가 있다.
뿐만 아니라, Ni, Cu 및 Cr 중 1종 이상을 더 포함할 수 있다.
Ni: 1% 이하(0% 제외), Cu: 0.5% 이하(0% 제외) 및 Cr: 1% 이하(0% 제외) 중 1종 이상
니켈(Ni), 구리(Cu) 및 크롬(Cr)은 잔류 오스테나이트 안정화에 기여하는 원소로서, 상기 C, Si, Mn, Al 등과 함께 복합작용하여 오스테나이트의 안정화에 기여한다. 하지만, Ni, Cu 및 Cr의 함량이 각각 1% 초과, 0.5% 초과, 1% 초과하여 첨가하는 경우에는 제조비용의 상승이 과다해지는 문제가 있다.
이 중, Cu의 경우에는 열연시 취성을 야기할 우려가 있으므로, 상기 Cu가 첨가되는 경우에는 Ni이 복합 첨가되는 것이 보다 바람직하다.
더욱이, Sb, Ca 및 B 중 1종 이상을 더 포함할 수 있다.
Sb: 0.04% 이하(0% 제외), Ca: 0.01% 이하(0% 제외) 및 B: 0.01% 이하(0% 제외) 중 1종 이상
안티몬(Sb)은 입계 편석을 통한 Si, Al 등의 표면 산화원소의 이동을 저해하여 도금표면품질을 향상시키는 효과가 있으나, 그 함량이 0.04%를 초과하는 경우에는 효과가 포화된다.
칼슘(Ca)은 황화물의 형태를 제어하여 가공성 향상에 유효한 원소로서, 그 함량이 0.01%를 초과하여 첨가하면 효과가 포화된다.
또한, 보론(B)은 Mn, Cr 등과의 복합효과로 소입성을 향상시켜 고온에서 냉각시에 연질 페라이트 변태를 억제하는 장점이 있으나, 그 함량이 0.01%를 초과하게 되면 도금강판으로 제조시 표면에 과다한 B이 농화되어 도금 밀착성의 열화를 초래할 수 있으므로 그 상한을 0.01%로 한정하는 것이 바람직하다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 철강제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 철강제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
상술한 성분조성을 만족하는 본 발명의 초고강도 강판은 미세조직으로 부피분율 20% 이상의 잔류 오스테나이트 및 50% 이상의 소둔 마르텐사이트를 포함하는 것이 바람직하며, 잔부로 프레쉬 마르텐사이트(fresh martensite) 및 입실론 마르텐사이트(ε-martensite)를 포함하는 기타 상(phase)으로 구성될 수 있다.
이와 같이, 본 발명은 잔류 오스테나이트와 소둔 마르텐사이트를 복합적으로 포함함으로써 인장강도 980MPa 이상이면서, 항복강도가 우수하여 항복비(항복강도/인장강도)를 0.6 이상으로 확보할 수 있으며, 더 나아가 인장강도와 연신율의 곱이 25,000MPa% 이상이고, 구멍확장성을 15% 이상으로 확보할 수 있다.
만일, 잔류 오스테나이트가 20% 미만이거나 소둔 마르텐사이트가 50% 미만이면 초고강도는 물론이고, 연성 및 구멍확장성을 안정하게 확보할 수 없는 문제가 있다.
한편, 본 발명에 따른 초고강도 강판은 후술하는 제조공정을 통해 제조되며, 이때 1차 소둔 단계 후의 미세조직 즉, 2차 소둔 단계 이전의 미세조직이 마르텐사이트와 잔류 오스테나이트 2상으로 포함함이 바람직하며, 이때 잔류 오스테나이트를 1% 이상으로 포함하는 것이 바람직하다.
이는, 냉간압연된 강판을 소둔 처리할 때 일어나는 재결정에 기인한 상(phase)간 경도 편차를 억제하기 위한 것일 뿐만 아니라, 동시에 2차 소둔 단계에서 오스테나이트의 형성을 촉진함으로써 최종 조직 내 잔류 오스테나이트의 분율을 높이기 위함이다.
상술한 성분조성과 미세조직을 갖는 본 발명의 강판은, 냉연강판뿐만 아니라, 용융아연도금강판 또는 합금화 용융아연도금강판일 수 있다.
이하, 본 발명의 일 측면에 따른 성형성 및 구멍확장성이 우수한 초고강도 강판을 제조하는 방법에 대하여 상세히 설명한다.
먼저, 본 발명에 따른 강판 중 냉연강판을 제조하는 방법에 대하여 상세히 설명한다.
본 발명에 따른 냉연강판은, 본 발명에서 제안하는 성분조성 및 성분 관계를 만족하는 강 슬라브를 재가열 - 열간압연 - 권취 - 열처리 - 냉간압연 - 다단 소둔 공정을 거침으로써 제조될 수 있으며, 이하에서는 상기 각각의 공정 조건에 대하여 상세히 설명한다.
(강 슬라브 재가열)
본 발명에서는 열간압연을 행하기에 앞서 강 슬라브를 재가열하여 균질화 처리하는 공정을 거치는 것이 바람직하며, 이때 1100~1300℃에서 재가열 공정을 행함이 바람직하다.
만일, 재가열 온도가 1100℃ 미만이면 후속하는 열간압연시 하중이 급격히 증가하는 문제가 있으며, 반면 1300℃를 초과하게 되면 표면 스케일의 양이 증가하여 재료의 손실로 이어지며, Mn이 다량 함유된 경우에는 액상이 존재할 수 있으므로, 1100~1300℃로 제한함이 바람직하다.
(열간압연)
상기 재가열된 강 슬라브를 열간압연하여 열연강판으로 제조하는 것이 바람직하며, 이때 Ar3 이상 1000℃ 이하의 온도에서 마무리 열간압연을 실시하는 것이 바람직하다.
마무리 열간압연 온도가 Ar3(냉각시 오스테나이트가 페라이트로 변태되기 시작하는 온도) 미만이면 페라이트+오스테나이트 2상역 혹은 페라이트역 압연이 이루어지므로 혼립조직이 형성되며, 열간압연 하중의 변동으로 인한 오작이 우려되므로 바람직하지 못하다. 한편, 마무리 열간압연 온도가 1000℃를 초과하게 되면 스케일에 의한 표면 결함을 유발할 가능성이 높아지므로 바람직하지 못하다.
(권취)
상기에 따라 제조된 열연강판을 720℃ 이하의 온도에서 권취함이 바람직하다.
상기 권취시 온도가 720℃를 초과하게 되면 강판 표면의 산화막이 과다하게 형성되어 결함을 유발할 가능성이 있으므로, 그 상한을 720℃로 제한함이 바람직하다.
한편, 권취온도가 낮아질수록 열연강판의 강도가 높아져 후공정인 냉간압연의 압연하중이 높아지는 단점이 있으며, 본 발명과 같이 Mn이 다량 함유되는 경우에는 증가된 소입성으로 인해 열연권취 후 상온까지 냉각되면서 페라이트 등 연질상으로의 변태 없이 마르텐사이트가 다량 도입되어 열연강도가 매우 높아진다. 이에, 본 발명에서는 냉간압연을 행하기에 앞서 다음과 같이 열처리를 행한다. 이와 같이 열처리를 행하는 경우에는 상기 권취 온도가 낮더라도 문제가 되지 않으므로, 그 하한 온도에 대해 특별히 제한하지 아니한다.
(열처리)
상기 권취된 열연강판을 냉간압연하기에 앞서, 일정 온도범위에서 열처리를 실시함이 바람직하다. 이때, Ac1~Ac1+((Ac3-Ac1)/2) 온도범위에서 30분 이상 실시함이 바람직하다.
상기 Ac1은 저온에서 승온하는 경우 오스테나이트가 출현하기 시작하는 온도이고, Ac3는 승온시에 오스테나이트가 100%로 변태되는 온도를 의미한다. 이들은 상 평형 온도가 아닌 실제의 승온시 상 변태 kinetic을 고려한 온도이다.
본 발명의 경우에는 강 중 함유된 다량의 Mn에 기인하여 열연 권취 후 마르텐사이트가 다량 형성되고 고 합금에 기인한 오스테나이트가 일부 존재한다. 이러한 열연강판을 승온하는 경우 마르텐사이트의 템퍼링에 의해 강도가 감소하게 되는데 템퍼링만으로는 강도를 효과적으로 낮추는데 한계가 있다. 따라서, Ac1 이상으로 열처리를 행하여야 오스테나이트가 추가적으로 출현하면서 BCC 구조인 마르텐사이트로부터 탄소가 오스테나이트로 효과적으로 이동하면서 강도가 낮아지게 된다. 그러나, 열처리 온도가 높아지면 오스테나이트가 과도하게 출현하게 되며, 이는 냉간압연 시에 마르텐사이트로 다량 변태하는 것에 의해 오히려 냉간압연 하중이 높아지는 단점이 있다. 그러므로, 본 발명에서는 권취 후 냉간압연을 실시하기에 앞서 Ac1~Ac1+((Ac3-Ac1)/2) 온도범위에서 냉연전 열처리를 행하는 것이 바람직하다.
(산세 및 냉간압연)
상기 열처리된 열연강판을 산세처리하여 산화층을 제거한 다음, 강판의 형상과 두께를 맞추기 위해 냉간압연을 실시하여 냉연강판을 제조하는 것이 바람직하다.
상기 냉간압연은 고객이 요구하는 두께를 확보하기 위한 공정으로서, 이때 압하율은 특별히 제한하지 않는다. 통상, 후속 소둔 공정시 재결정을 고려하여 냉간압하율의 하한을 한정하나, 본 발명의 경우 1차 소둔시 Ac3 이상에서 오스테나이트 단상 소둔을 실시하므로 제한하지 아니한다.
(소둔)
본 발명은 항복강도, 연신율 및 구멍확장성이 동시에 우수한 초고강도 강판을 제조하기 위한 것으로서, 이와 같은 강판을 얻기 위해서는 후속하는 소둔 공정의 제어가 중요하다.
특히, 최종 미세조직으로 잔류 오스테나이트와 소둔 마르텐사이트를 복합하여 확보하고, 이로부터 의도하는 기계적 물성을 갖도록 하기 위해서는 최종 소둔(후술하는 2차 소둔 열처리에 해당됨)시 온도범위가 매우 중요하다.
1차 소둔 열처리
상기에 따라 제조된 냉연강판을 Ac3 이상의 온도에서 30초 이상 소둔 열처리를 행한 후 냉각하는 공정을 거침이 바람직하다.
본 발명에서 상기와 같이 1차 소둔 열처리를 행하는 것은 최종 소둔(후술하는 2차 소둔 열처리에 해당됨) 후에 소둔 마르텐사이트와 잔류 오스테나이트의 2상 조직을 주상으로 확보하기 위한 것이다. 또한, 냉간압연된 강판을 1차 소둔 열처리 없이 최종 소둔하는 경우에 냉간압연시 도입되었던 변형된 소둔 마르텐사이트가 최종 소둔시에 재결정됨에 따라 발생되는 상(phase) 간의 경도 편차를 억제하기 위한 것이다. 이에 따라, 1차 소둔 열처리시 단상역 소둔을 행함이 바람직하며, 적어도 30초 이상으로 실시함이 바람직하다.
2차 소둔 열처리
상기 1차 소둔 열처리 및 냉각된 냉연강판을 2상역 온도범위에서 소둔 열처리함이 바람직하며, 보다 바람직하게는 550~620℃ 온도범위에서 30분 이상 2차 소둔 열처리를 행하는 것이 바람직하다.
상기 2차 소둔 열처리시 그 온도가 550℃ 미만이면 오스테나이트가 충분히 형성되지 못하게 되어 강도 및 연성을 안정적으로 확보할 수 없게 되는 문제가 있으며, 반면 620℃를 초과하게 되면 강도 및 연성은 충분하게 확보 가능하나, 과도하게 형성된 오스테나이트로 C, Mn 등의 분배가 과도해지면서 상(phase)간 경도 편차가 커져 구멍확장성이 열위해지는 문제가 있다.
또한, 상기 2차 소둔 열처리 시간이 30분 미만이면 잔류 오스테나이트 상이 20% 미만으로 형성되어 의도하는 기계적 물성을 모두 확보할 수 없게 되는 문제가 있으므로, 30분 이상으로 실시하는 것이 바람직하다.
본 발명에 따른 소둔 공정을 적용할 경우, 기존 열간 프레스 성형 대신 상대적으로 비용이 저렴한 냉간 프레스 성형을 행하더라도, 성형 후 가공경화에 의해 부품의 항복강도 수준이 높아 열간 프레스 성형 부품에 필적이 가능하며, 연신율이 수% 수준인 열간 프레스 성형 부품에 비해 높은 연신율을 가짐으로써 부품 제조 후 충돌에너지의 흡수능이 매우 우수한 장점이 있다.
한편, 상기 공정을 모두 거쳐 제조된 냉연강판을 아연도금욕 또는 아연합금도금욕에 침지하여 용융아연도금층 또는 용융아연합금도금층을 갖는 도금강판을 제조할 수 있다.
이때, 아연합금도금욕으로는 아연-알루미늄 도금욕, 아연-알루미늄-마그네슘 도금욕 등을 이용할 수 있다.
그 외에도, 알루미늄-실리콘 도금욕, 알루미늄-실리콘-마그네슘 도금욕을 이용하여 도금강판을 제조할 수도 있다.
더 나아가, 상술한 도금층을 갖는 도금강판을 480~600℃의 온도에서 합금화 열처리함으로써 합금화 도금강판을 제조할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예)
하기 표 1의 성분조성을 갖는 강을 30kg의 잉곳으로 진공용해한 후, 이를 1200℃의 온도에서 1 시간 유지한 후, 열간압연을 실시하여 900℃에서 마무리 압연을 완료하고, 600℃로 미리 가열된 로에 장입하여 1시가 유지한 후 로냉함에 의해 열연권취를 모사하였다. 이후, 시편을 상온까지 냉각한 후 600℃에서 10시간 열처리를 행한 다음, 이를 산세 및 50% 냉간압하율로 냉간압연을 행하여 냉연강판으로 제조하였다.
상기 제조된 냉연강판을 하기 표 2에 나타낸 조건으로 소둔 열처리(최종 소둔만 또는 1차 및 2차(최종 소둔) 모두)를 행한 다음, 각 시편에 대하여 기계적 물성을 측정한 결과를 하기 표 2에 나타내었다.
강종 성분조성(중량%) C+Mn/25
C Si Mn Ti Nb V Mo Al P S N
비교강1 0.18 1.46 2.59 0.02 0 0 0 0.501 0.01 0.0056 0.0044 0.284
비교강2 0.174 1.5 3.36 0 0 0 0 0.031 0.011 0.002 0.0058 0.308
발명강1 0.14 0 7.02 0 0 0 0 0.012 0.011 0.008 0.0055 0.421
비교강3 0.195 0 7.06 0 0 0 0 0.015 0.011 0.0095 0.0046 0.477
발명강2 0.14 0.47 7.16 0 0 0 0 0.021 0.01 0.008 0.0036 0.426
발명강3 0.139 0.5 6.92 0.031 0 0.102 0 0.022 0.01 0.0045 0.0042 0.416
비교강4 0.186 0.51 7.05 0 0 0 0 0.016 0.012 0.007 0.0055 0.468
비교강5 0.188 0.5 7.2 0.032 0.042 0 0 0.024 0.012 0.0067 0.006 0.476
비교강6 0.19 0.496 7.04 0.033 0 0.103 0 0.028 0.011 0.007 0.006 0.472
발명강4 0.14 0.99 6.9 0.031 0.04 0 0 0.05 0.01 0.001 0.006 0.416
발명강5 0.141 1.01 7.25 0.058 0.042 0 0.248 0.034 0.0064 0.0055 0.0047 0.431
발명강6 0.14 1.51 6.9 0.034 0.04 0 0 0.05 0.01 0.001 0.006 0.416
발명강7 0.147 0.99 7.16 0.025 0.043 0 0.246 0.027 0.0095 0.0085 0.0055 0.433
발명강8 0.145 1.44 7.14 0.028 0.04 0 0.243 0.028 0.0093 0.0028 0.0047 0.431
발명강9 0.149 1.5 6.18 0.026 0.044 0 0.245 0.023 0.009 0.009 0.005 0.396
발명강10 0.145 1.52 5.21 0.029 0.043 0 0.24 0.018 0.0088 0.0063 0.005 0.353
비교강7 0.142 0.99 8.2 0.031 0.039 0 0 0.036 0.011 0.007 0.0055 0.470
비교강8 0.142 1.04 9.2 0.029 0.041 0 0 0.032 0.012 0.007 0.004 0.510
발명강11 0.05 1.01 8.97 0 0 0 0 0.039 0.0067 0.0052 0.0047 0.409
강종 1차 소둔 2차 소둔 기계적 물성 구분
온도(℃) 시간 온도(℃) 시간 YS(MPa) TS(MPa) El(%) TS*El(MPa%) HER(%) TS*HER(MPa%) YR
비교강1 900 60초 830 60초 497 1048 21.6 22637 미측정 - 0.47 비교예1
비교강2 900 60초 790 60초 704 1501 9.6 14410 미측정 - 0.47 비교예2
발명강1 800 60초 600 3시간 776 1101 32.6 35893 23.0 25323 0.70 발명예1
800 60초 630 3시간 780 1199 30.3 36330 5.0 5995 0.65 비교예3
- - 630 3시간 864 1131 25.9 29330 1.2 1357 0.76 비교예4
비교강3 800 60초 630 3시간 803 1263 27.2 34354 1.9 2400 0.64 비교예5
- - 630 3시간 907 1143 23.6 26975 1.6 1829 0.79 비교예6
발명강2 800 60초 600 3시간 827 1120 33.4 37408 22.1 24752 0.74 발명예2
800 60초 630 3시간 834 1199 31.9 38248 4.3 5156 0.70 비교예7
- - 630 3시간 869 1138 33.2 37782 2.3 2617 0.76 비교예8
발명강3 800 60초 600 3시간 853 1119 33.1 37039 21.0 23499 0.76 발명예3
800 60초 630 3시간 862 1194 31.8 37969 5.7 6806 0.72 비교예9
비교강4 800 60초 630 3시간 836 1223 35.4 43294 2.2 2691 0.68 비교예10
- - 630 3시간 888 1139 35.8 40776 1.5 1709 0.78 비교예11
비교강5 800 60초 600 3시간 895 1181 34.8 41099 14.7 17361 0.76 비교예12
800 60초 630 3시간 901 1260 33.7 42462 1.5 1890 0.72 비교예13
- - 630 3시간 947 1201 35.4 42515 1.0 1201 0.79 비교예14
비교강6 800 60초 630 3시간 936 1228 32.8 40278 1.4 1719 0.76 비교예15
- - 630 3시간 1005 1176 26.6 31282 0.5 588 0.85 비교예16
발명강4 800 60초 600 3시간 943 1147 32.3 37048 20.0 22940 0.82 발명예4
800 60초 600 10시간 886 1149 35.9 41249 미측정 - 0.77 발명예5
800 60초 600 20시간 915 1097 37.3 40918 미측정 - 0.83 발명예6
800 60초 630 3시간 944 1231 30.9 38038 3.6 4432 0.77 비교예17
750 3시간 300 3시간 1309 1540 4.9 7546 미측정 - 0.85 비교예18
750 3시간 400 3시간 1360 1450 12.9 18705 미측정 - 0.94 비교예19
750 3시간 500 3시간 1051 1160 12.3 14268 미측정 - 0.91 비교예20
750 3시간 600 3시간 850 1092 32.4 35381 28.0 30576 0.78 발명예7
750 3시간 600 10시간 804 1110 36.6 40626 미측정 - 0.72 발명예8
750 3시간 600 20시간 787 1057 36.1 38158 미측정 - 0.74 발명예9
750 3시간 600 10분 1037 1165 13.6 15844 미측정 - 0.89 비교예21
750 3시간 630 3시간 778 1296 29.6 38362 5.0 6480 0.60 비교예22
- - 750 3시간 944 1560 1.4 2184 미측정 - 0.60 비교예23
- - 600 3시간 1125 1076 11.4 12266 27.0 29052 1.05 비교예24
- - 630 3시간 918 1270 26.0 33020 2.2 2794 0.72 비교예25
발명강5 800 60초 600 3시간 1182 1218 31.3 38123 18.6 22655 0.97 발명예10
700 3시간 600 3시간 1032 1181 21.6 25510 20.6 24329 0.87 발명예11
700 3시간 600 10시간 960 1167 25.8 30109 19.5 22757 0.82 발명예12
750 3시간 600 3시간 1011 1147 22.5 25808 21.3 24431 0.88 발명예13
850 60초 640 60초 1160 1259 23.4 29461 13.3 16745 0.92 비교예26
발명강6 800 60초 600 3시간 993 1145 29.5 33778 17.0 19465 0.87 발명예14
800 60초 630 3시간 1014 1210 32.8 39688 4.0 4840 0.84 비교예27
- - 600 3시간 1168 1106 13.4 14820 22.0 24332 1.06 비교예28
- - 600 20시간 983 983 29.7 29195 18.0 17694 1.00 비교예29
발명강7 800 60초 570 3시간 1109 1177 26.3 30955 19.5 22952 0.94 발명예15
800 60초 600 3시간 1107 1193 25.8 30779 22.0 26246 0.93 발명예16
800 60초 630 3시간 929 1336 29.2 39011 7.2 9619 0.70 비교예30
750 3시간 600 3시간 965 1145 22.4 25648 23.0 26335 0.84 발명예17
발명강8 800 60초 600 3시간 1084 1204 25.9 31184 22.0 26488 0.90 발명예18
- - 600 3시간 1376 1434 2.0 2868 미측정 - 0.96 비교예31
발명강9 750 3시간 600 3시간 863 1088 25.1 27309 28.0 30464 0.79 발명예19
발명강10 750 3시간 600 3시간 833 1023 26.1 26700 26.0 26598 0.81 발명예20
비교강7 700 3시간 580 10시간 902 1175 30.1 35368 5.7 6700 0.77 비교예32
750 3시간 600 3시간 760 1237 25.7 31791 8.3 10267 0.61 비교예33
비교강8 750 3시간 600 3시간 656 1345 13.1 17620 1.8 2421 0.49 비교예34
발명강1 700 3시간 600 3시간 716 1116 23.8 26561 26.8 29909 0.64 발명예21
800 60초 600 3시간 847 1109 26.2 29056 25.2 27947 0.76 발명예22
(상기 표 2에서 YS(Yield Strength)는 항복강도, TS(Tensile Strength)는 인장강도, El(Elongation)은 연신율, HER(Hole Expansion Ratio)은 구멍확장성을 의미한다.
상기 표 2에서 HER을 미측정한 경우는 연신율 또는 TS*El 값이 낮아서 평가가 불필요하거나, 동일한 열처리 조건인 경우에는 평가를 행하지 아니한 것이다.)
본 발명에서는 상기 표 2에서 구멍확장성을 평가한 시료를 활용하여, TS*HER 회귀식을 다음과 같이 도출하였으며, 이때 독립변수로는 성분조성(중량%) 및 2차 소둔 열처리 온도(℃) 및 시간(hour)을 이용하였다.
[TS*HER 회귀식]
TS*HER = 365359 - (28706*C) - (1000*Si) - (5205*Mn) - (194664*Ti) + (153908*Nb) + (44019*V) - (20397*Mo) - (11305*Al) - (4410759*P) + (259652*S) + (1510558*N) - (442*온도) - (537*시간)
또한, 본 발명에서는 상기 회귀식에서 HER을 결정하는 주요 인자 중 하나인 C 및 Mn에 대해서 서로 간의 영향을 확인하고, 관계식 1을 도출하였다.
보다 구체적으로, 상기 C와 Mn의 계수를 각각 원자량인 12와 54.9로 나누면 각각 2392.2와 94.8이 얻어진다. 이는, C가 Mn에 비해 약 25배의 영향을 나타냄을 의미하는 것으로서, 이를 반영하여 C+(Mn/25)의 값을 본 발명에서 요구하는 강도 및 구멍확장성을 동시에 확보할 수 있는 인자로 활용하였다.
특히, 본 발명에서 제안하는 합금성분을 만족하지 아니하는 비교강의 경우 C+(Mn/25)의 값이 모두 0.468 이상을 나타내고 있음을 볼 때, 강도 및 구멍확장성을 동시에 달성하고자 하는 본 발명에서는 C+(Mn/25)의 값이 0.46 이하를 만족할 필요가 있는 것이다.
상기 표 1 및 2에 나타낸 바와 같이, 본 발명의 합금 성분조성 및 제조조건을 모두 만족하는 발명예 1 내지 22는 1000MPa 이상의 인장강도뿐만 아니라, 항복강도를 700MPa 이상으로 확보할 수 있어 0.6 이상의 항복비를 갖는 강판을 얻을 수 있다. 또한, 연신율을 21% 이상으로 확보함으로써 TS*El의 값이 25,000MPa% 이상이며, 동시에 구멍확장성을 15% 이상으로 확보할 수 있어, 프레스 성형성에 유리한 효과가 있다.
하지만, 본 발명의 성분조성을 만족하더라도 소둔 열처리 조건이 본 발명을 벗어난 경우(비교예 3-4, 7-9, 17-31)에는 본 발명에서 요구하는 물성을 만족하지 못하였다.
특히, 소둔 열처리시 최종 소둔만을 행한 비교예 4, 8, 23-25, 28-29, 31의 경우 강도, 연성 및 구멍확장성 중 하나 이상의 물성이 열위하였다.
또한, 1차 및 2차 소둔 열처리를 모두 행하더라도 최종 소둔시 온도가 620℃를 초과한 경우(비교예 3, 7, 9, 17, 22, 26, 27, 30)에는 모두 구멍확장성이 열위하였으며, 반면 최종 소둔시 온도가 550℃ 미만인 경우(비교예 18-20)와 최종 소둔시 시간이 30분 미만인 경우(비교예 21)에는 연성이 불충분하여 TS*El의 값이 25,000MPa% 미만이고, 구멍확장성의 평가가 불필요한 정도였다.
뿐만 아니라, 강 성분조성이 본 발명을 만족하지 아니한 강종을 이용한 경우 제조조건이 본 발명을 만족하더라도 강 성분조성이 본 발명을 만족하지 아니한 비교예 1 및 2는 강도가 불충분하여 TS*El의 값을 25,000MPa% 이상으로 확보할 수 없으며, 구멍확장성 평가가 불필요한 정도였다.
또한, 비교예 12, 32-33의 경우에는 강도 및 연성을 확보 가능한 반면 구멍확장성이 열위하였으며, 비교예 34의 경우에는 강도, 연성 및 구멍확장성 모두 열위하였다.
강 성분조성 및 제조조건을 모두 만족하지 아니한 비교예 5, 10-11, 13-16은 구멍확장성이 모두 열위하였다.
한편, 발명강 4의 성분조성을 갖는 냉연강판을 750℃에서 3시간 열처리(1차 소둔)를 행한 소재를 다시 300~630℃에서 3시간 열처리(2차 소둔)한 후에 물성을 평가한 결과를 도 1에 나타내었다.
그 결과, 2차 소둔시 500℃ 이하에서 열처리한 시료는 TS*El 값이 25,000MPa% 미만의 값을 나타내고 있으며, 각각 600℃와 630℃에서 열처리한 시료는 매우 높은 TS*El 값을 나타내고 있으며, YR도 모두 0.6 이상을 보이고 있다. 그러나, 구멍확장성 측면에서 630℃에서 열처리한 시료는 HER값이 5%의 값을 보이나, 600℃에서 열처리한 시료는 28%로 매우 높은 HER값을 나타냄을 확인할 수 있다.
특히, 도 1에서 보는 바와 같이, 2차 소둔시 열처리 온도가 증가함에 따라서 인장강도는 점점 낮아지다가 다시 높아지는 거동을 보이는데, 300~500℃에서의 열처리는 1차 열처리(1차 소둔)에서 형성된 마르텐사이트의 템퍼링에 의한 강도 저하 및 연신율 증가로 판단된다.
또한, 300~500℃의 낮은 온도에서 2차 소둔시 3시간보다 훨씬 더 긴 시간의 열처리를 행하는 경우에는 도 2의 평형 상태도에서 보이는 바와 같이 FCC 구조의 오스테나이트 형성이 다량 이루어질 수는 있으나, 오스테나이트 내로 C, Mn 등의 분배에 의한 상(phase)간 경도편차로 HER이 낮을 것으로 판단된다.
뿐만 아니라, 2차 열처리 온도를 500℃를 초과하여 높임에 의하여 연신율이 급격히 증가하는데, 600℃에 비해 630℃에서 열처리하는 경우에는 인장강도도 다시 증가하는 경향을 보인다. 이는 소둔 온도가 높아 2차 소둔 열처리시의 오스테나이트 양이 증가하고, 소둔 마르텐사이트의 강도가 낮아짐에 따른 상(phase)간 경도차가 증가함에 의해 구멍확장성이 열위해지는 것으로 판단된다.
이에 더하여, 발명강 7의 성분조성을 갖는 냉연강판을 이용하여 최종 열처리(2차 소둔)시 온도 변화에 따른 물성 변화를 도 3에 나타내었다.
그 결과, 도 3에 나타낸 바와 같이, 570℃와 600℃에서 열처리를 행한 경우에 비해, 630℃에서 열처리를 행하는 경우에 인장강도가 증가하고 있으며, TS*El 값도 향상되는 경향을 보이며, 이는 상기 발명강 4를 이용한 경우와 동일하게 나타내고 있는 것이다. 또한, 구멍확장성(HER)도 570℃, 600℃에서 열처리를 행한 경우에는 매우 우수한 값을 나타내나 630℃에서 열처리를 행하는 경우에는 급격히 저하되었다.
상기 발명강 7은 Mo을 추가로 포함하는 강종으로서, Mo 미첨가 강인 발명강 4에 비해서 높은 항복강도를 나타냄을 확인할 수 있다. 이는 발명강 7을 이용한 발명예 16의 미세조직을 TEM으로 관찰하는 것으로부터 명확히 알 수 있는데, 도 4a에 나타낸 바와 같이 30nm 이하의 매우 미세한 탄화물 즉, (Ti,Nb, Mo)C이 형성됨에 기인한 것이다.
이때, TEM 측정을 위한 시편은 탄소박막추출법을 이용하여 제작하였다.
한편, 본 발명자들은 발명강 7의 성분조성을 이용한 발명예 16에 대한 열연~최종 소둔 열처리(2차 소둔)까지의 SEM 미세조직 및 상 분율의 변화를 관찰하고, 그 결과를 도 5에 나타내었다. 이때, SEM 관찰시 에칭은 나이탈에칭을 활용하였으며, 미세조직이 매우 미세하여 상의 구별이 용이하지 못함에 따라 상 분율의 측정은 X-ray법을 활용하여 측정하였다. 상 분율을 나타냄에 있어서, α는 BCC 구조를 갖는 마르텐사이트, 소둔 마르텐사이트, 페라이트를 모두 표현한 것이다.
도 5에 나타낸 바와 같이, 열간압연 후 냉각시 마르텐사이트로의 변태가 이루어지는 것을 확인할 수 있는데, 이는 상기 발명강 7이 Mn을 7% 이상(7.16%)으로 포함하는 강종으로서 높은 경화능(hardenability)에 기인한 것이다.
특히, 열연강판의 경우 마르텐사이트상이 95.8%로 높은 마르텐사이트 상 분율로 인해 열연강판의 인장강도가 1500MPa 이상으로 냉간압연이 어렵다. 하지만, 본 발명에서는 상기 열연강판에 대해 일정 온도 범위에서 30분 이상의 열처리(냉연전 열처리)를 행함으로써 열처리 후 높은 분율의 잔류 오스테나이트상을 얻을 수 있으며, 열연강판에서 관찰된 마르텐사이트 상이 역변태되어 오스테나이트로 일부 변태되고, 잔부는 소둔 마르텐사이트 조직으로 변태된 것을 확인할 수 있다.
이후, 고객사에서 요구하는 두께로 냉간압연을 행한 경우에는 오스테나이트의 대부분이 변형에 기인하여 마르텐사이트로 변태되었으며, 소둔 마르텐사이트는 냉간변형에 의해 전위밀도가 높아지게 된다. 즉, 냉간압연 후의 98.4%의 분율로 나타나는 α는 오스테나이트가 변형에 기인하여 마르텐사이트로 변태된 것과, 소둔 마르텐사이트가 냉간변형에 의해 전위밀도가 높아진 것이 약 1/2씩으로 구성된다.
이러한 냉연강판에 대해 본 발명은 1차 소둔 열처리를 행하는데, Ac3 이상에서의 열처리를 통해 12.2%의 잔류 오스테나이트가 잔존함을 확인할 수 있으며, 이후 600℃에서 3시간 최종 소둔 열처리를 행한 경우 오스테나이트 형성이 촉진되어 35.8%의 분율을 확보함을 확인할 수 있다.
상술한 공정별 미세조직 상 분율 관찰 결과를 볼 때, 4~10%의 Mn을 함유하는 본 발명에서는 냉간압연시의 강도를 낮출 필요가 있으며, 이에 냉연전 열처리를 행함이 바람직하나, Mn의 함량에 따라 Ac1이 달라지므로 적정 온도 범위에서 열처리를 실시함이 바람직하다.
상기 도 1에서 확인한 바와 같이, 최종 소둔 열처리시 600℃와 630℃에서 열처리를 행함에 있어서 HER값이 급격히 변하는 경향은 다양한 성분계에서 동일하게 나타나는데, 발명강 1을 이용한 발명예 1과 비교예 3, 발명강 2를 이용한 발명예 2와 비교예 7, 발명강 3을 이용한 발명예 3과 비교예 9, 발명강 6을 이용한 발명예 14, 비교예 27에서 동일한 결과를 확인할 수 있다.
그러나, 600℃에서 최종 소둔 열처리를 행한 비교강 7과 비교강 8을 이용한 비교예 32-34의 경우에는 C 함량이 유사함에도 불구하고 매우 낮은 HER값을 나타냄을 확인할 수 있는데, 이는 Mn 함량이 과다하여 C+(Mn/25) 값이 각각 0.47과 0.51로 본 발명을 만족하지 아니한 것에 기인한다. 이에 반면, C 함량이 낮고 Mn 함량이 높은 발명강 11의 경우에는 C+(Mn/25) 값이 0.409로 낮아 구멍확장성이 우수한 것을 확인할 수 있다.
발명강 4와 발명강 5의 성분조성을 갖는 냉연강판을 이용하여 최종 소둔 열처리시 시간의 영향을 검토하였는데, 발명예 7-9와 비교예 21에서 확인할 수 있듯이, 최종 소둔시 열처리 시간이 10분으로 짧은 비교예 21은 연신율과 구멍확장성이 열위하나, 열처리 시간이 긴 발명예 7-9는 연신율 및 구멍확장성을 모두 우수하게 확보하고 있다. 이를 통해 볼 때, 최종 소둔 열처리시 온도뿐만 아니라, 시간도 최적으로 제어되어야 하는 것이다.
또한, C의 함량이 비교적 높은 비교강 5의 성분조성을 갖는 냉연강판을 이용하면서 최종 소둔 열처리시 온도를 변화시킨 비교예 12와 비교예 13의 경우에도 상기 발명강들과 유사한 결과를 보여주는데 즉, 600℃에서 열처리한 소재가 630℃에서 열처리한 소재에 비해 우수한 구멍확장성을 나타내나, 본 발명에서 목표로 하는 15%에는 미치지 못하며, 더불어 C의 함량이 높아 자동차 구조부재용 강재에서 중요한 점용접성이 열위해지는 단점이 있다.
본 발명에서는 항복강도 및 인장강도는 물론이고 연성 및 구멍확장성을 우수하게 확보하기 위하여, 냉간압연 후 소둔 열처리를 단계적으로 실시하는 것을 필수 조건으로 제안하는 것이 바람직하다.
그에 대해 실시예를 통해서 명확히 확인할 수 있는데, 발명강 4의 성분조성을 갖는 냉연강판을 이용한 발명예 7과 비교예 24에서 보는 바와 같이, 오스테나이트 단상 영역에서의 열처리 즉, 1차 소둔 열처리를 행하지 않는 비교예 24의 경우에는 최종 소둔 열처리시 600℃에서 실시함으로써 구멍확작성은 우수하나 0.2% offset으로 결정된 항복강도가 인장강도보다 높고 연성이 매우 낮아, 본 발명에서 요구하는 TS*El 값이 25,000MPa% 이상을 만족시키지 못함을 확인할 수 있다. 이는 냉간압연된 소재를 바로 최종 소둔함에 있어서 발생하는 변형조직의 재결정이 완전하게 이루어지지 못함에 기인한 것이다. 또한, 1차 소둔 열처리 없이 최종 소둔 열처리를 630℃에서 행하는 비교예 25의 경우에도 강도와 연성은 우수하나 구멍확장성이 매우 열위한 결과를 나타내며, 이러한 경우에는 냉간 프레스 성형성이 열위하여 자동차 구조부재에의 냉간 프레스 성형용 소재로 적합치 않다.
한편, Mn의 함량이 4% 미만으로 낮은 비교강 1과 비교강 2는 본 발명과 같이 단계적으로 소둔 열처리를 행하더라도 연신율이 낮아 본 발명에서 요구하는 TS*El값이 25,000MPa% 이상을 만족하지 못한다. 반면, 발명강 9와 10과 같이 각각 Mn을 6.18%, 5.21%로 함유하는 경우에는 TS*El 값이 25,000MPa% 이상을 만족함을 확인할 수 있다.

Claims (14)

  1. 중량%로, 탄소(C): 0.04~0.17%, 실리콘(Si): 2% 이하, 망간(Mn): 4~10%, 인(P): 0.05% 이하(0% 제외), 황(S): 0.02% 이하(0% 제외), 알루미늄(Al): 0.5% 이하(0% 제외), 질소(N): 0.02% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 상기 C 및 Mn은 하기 관계식 1을 만족하고,
    미세조직으로 부피분율 20% 이상의 잔류 오스테나이트 및 50% 이상의 소둔 마르텐사이트를 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판.
    [관계식 1]
    C + (Mn/25) ≤ 0.46
  2. 제 1항에 있어서,
    상기 강판은 티타늄(Ti): 0.1% 이하(0% 제외), 니오븀(Nb): 0.1% 이하(0% 제외), 바나듐(V): 0.2% 이하(0% 제외) 및 몰리브덴(Mo): 0.5% 이하(0% 제외) 중 선택된 1종 이상을 더 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판.
  3. 제 1항에 있어서,
    상기 강판은 지르코늄(Zr): 0.001~0.1% 및 텅스텐(W): 0.001~0.5% 중 1종 이상을 더 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판.
  4. 제 1항에 있어서,
    상기 강판은 니켈(Ni): 1% 이하(0% 제외), 구리(Cu): 0.5% 이하(0% 제외) 및 크롬(Cr): 1% 이하(0% 제외)로 중 선택된 1종 이상을 더 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판.
  5. 제 1항에 있어서,
    상기 강판은 안티몬(Sb): 0.04% 이하(0% 제외), 칼슘(Ca): 0.01% 이하(0% 제외) 및 보론(B): 0.01% 이하(0% 제외) 중 1종 이상을 더 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판.
  6. 제 1항에 있어서,
    상기 강판은 인장강도가 980MPa 이상, 항복비(항복강도/인장강도)가 0.6 이상, 인장강도와 연신율의 곱이 25,000MPa% 이상이면서, 15% 이상의 구멍확장성을 갖는 성형성 및 구멍확장성이 우수한 초고강도 강판.
  7. 제 1항에 있어서,
    상기 강판은 냉연강판, 용융아연도금강판 및 합금화 용융아연도금강판 중 하나인 성형성 및 구멍확장성이 우수한 초고강도 강판.
  8. 중량%로, 탄소(C): 0.04~0.17%, 실리콘(Si): 2% 이하, 망간(Mn): 4~10%, 인(P): 0.05% 이하(0% 제외), 황(S): 0.02% 이하(0% 제외), 알루미늄(Al): 0.5% 이하(0% 제외), 질소(N): 0.02% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 상기 C 및 Mn은 하기 관계식 1을 만족하는 강 슬라브를 1100~1300℃의 온도범위로 재가열하는 단계;
    상기 재가열된 강 슬라브를 Ar3~1000℃의 온도범위에서 마무리 열간압연하여 열연강판을 제조하는 단계;
    상기 열연강판을 720℃ 이하의 온도에서 권취하는 단계;
    상기 권취된 열연강판을 Ac1~Ac1+((Ac3-Ac1)/2) 온도범위에서 30분 이상 열처리하는 단계;
    상기 열처리된 열연강판을 산세 및 냉간압연하여 냉연강판을 제조하는 단계;
    상기 제조된 냉연강판을 Ac3 이상의 온도에서 30초 이상 1차 소둔 열처리를 행한 후 냉각하는 단계; 및
    상기 1차 소둔 열처리 및 냉각된 냉연강판을 550~620℃ 온도범위에서 30분 이상 2차 소둔 열처리를 행하는 단계
    를 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판의 제조방법.
  9. 제 8항에 있어서,
    상기 2차 소둔 열처리된 냉연강판을 아연도금욕 또는 아연합금도금욕에 침지하여 용융아연도금층 또는 용융아연합금도금층을 형성하는 단계를 더 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판의 제조방법.
  10. 제 9항에 있어서,
    상기 용융아연도금층 또는 용융아연합금도금층을 형성한 후 480~600℃의 온도범위에서 합금화 열처리하는 단계를 더 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판의 제조방법.
  11. 제 8항에 있어서,
    상기 강판은 티타늄(Ti): 0.1% 이하(0% 제외), 니오븀(Nb): 0.1% 이하(0% 제외), 바나듐(V): 0.2% 이하(0% 제외) 및 몰리브덴(Mo): 0.5% 이하(0% 제외) 중 선택된 1종 이상을 더 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판의 제조방법.
  12. 제 8항에 있어서,
    상기 강판은 지르코늄(Zr): 0.001~0.1% 및 텅스텐(W): 0.001~0.5% 중 1종 이상을 더 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판의 제조방법.
  13. 제 8항에 있어서,
    상기 강판은 니켈(Ni): 1% 이하(0% 제외), 구리(Cu): 0.5% 이하(0% 제외) 및 크롬(Cr): 1% 이하(0% 제외)로 중 선택된 1종 이상을 더 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판의 제조방법.
  14. 제 8항에 있어서,
    상기 강판은 안티몬(Sb): 0.04% 이하(0% 제외), 칼슘(Ca): 0.01% 이하(0% 제외) 및 보론(B): 0.01% 이하(0% 제외) 중 1종 이상을 더 포함하는 성형성 및 구멍확장성이 우수한 초고강도 강판의 제조방법.
PCT/KR2016/011143 2015-11-02 2016-10-05 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법 WO2017078278A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018522028A JP6654698B2 (ja) 2015-11-02 2016-10-05 成形性及び穴拡げ性に優れた超高強度鋼板及びその製造方法
EP16862296.7A EP3372703B1 (en) 2015-11-02 2016-10-05 Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
US15/769,924 US11203795B2 (en) 2015-11-02 2016-10-05 Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
CN201680063842.9A CN108350546B (zh) 2015-11-02 2016-10-05 成型性和扩孔性优异的超高强度钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150153195A KR101677396B1 (ko) 2015-11-02 2015-11-02 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
KR10-2015-0153195 2015-11-02

Publications (1)

Publication Number Publication Date
WO2017078278A1 true WO2017078278A1 (ko) 2017-05-11

Family

ID=57537684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011143 WO2017078278A1 (ko) 2015-11-02 2016-10-05 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법

Country Status (6)

Country Link
US (1) US11203795B2 (ko)
EP (1) EP3372703B1 (ko)
JP (1) JP6654698B2 (ko)
KR (1) KR101677396B1 (ko)
CN (1) CN108350546B (ko)
WO (1) WO2017078278A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111315909A (zh) * 2017-11-08 2020-06-19 Posco公司 冷成型性优异的超高强度高延展性钢板及其制造方法
EP3704282A4 (en) * 2017-11-02 2021-08-25 Easyforming Steel Technology Co., Ltd. STEEL USED FOR HOT STAMPING, HOT STAMPING PROCESS AND SHAPED COMPONENT
EP3848479A4 (en) * 2018-09-04 2021-10-20 Posco ULTRA HIGH STRENGTH AND DUCTILITY STEEL SHEET WITH EXCELLENT PERFORMANCE RATIO AND MANUFACTURING PROCESS

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3222734A1 (de) * 2016-03-23 2017-09-27 Voestalpine Stahl GmbH Verfahren zum temperaturbehandeln eines mangan-stahlzwischenprodukts und stahlzwischenprodukt, das entsprechend temperaturbehandelt wurde
KR101839235B1 (ko) * 2016-10-24 2018-03-16 주식회사 포스코 구멍확장성 및 항복비가 우수한 초고강도 강판 및 그 제조방법
JP6844627B2 (ja) * 2017-01-16 2021-03-17 日本製鉄株式会社 鋼板及びその製造方法
KR101940912B1 (ko) 2017-06-30 2019-01-22 주식회사 포스코 액상금속취화 균열 저항성이 우수한 강판 및 그 제조방법
KR101940919B1 (ko) 2017-08-08 2019-01-22 주식회사 포스코 우수한 강도와 연신율을 갖는 열연강판 및 제조방법
WO2019122964A1 (en) * 2017-12-19 2019-06-27 Arcelormittal Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
KR102020411B1 (ko) 2017-12-22 2019-09-10 주식회사 포스코 가공성이 우수한 고강도 강판 및 이의 제조방법
KR102098501B1 (ko) * 2018-10-18 2020-04-07 주식회사 포스코 방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재
KR102209552B1 (ko) * 2018-12-19 2021-01-28 주식회사 포스코 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
JP7192554B2 (ja) * 2019-02-14 2022-12-20 日本製鉄株式会社 耐摩耗厚鋼板
KR102231344B1 (ko) * 2019-05-17 2021-03-24 주식회사 포스코 구멍확장성 및 연성이 우수한 초고강도 강판 및 이의 제조방법
KR102264344B1 (ko) * 2019-09-30 2021-06-11 현대제철 주식회사 고강도 및 고성형성을 가지는 강판 및 그 제조방법
WO2021070639A1 (ja) * 2019-10-11 2021-04-15 Jfeスチール株式会社 高強度鋼板および衝撃吸収部材ならびに高強度鋼板の製造方法
EP4043594A4 (en) * 2019-10-11 2023-03-22 JFE Steel Corporation HIGH STRENGTH STEEL SHEET, SHOCK ABSORBING ELEMENT AND PROCESS OF PRODUCING HIGH STRENGTH STEEL
KR102285523B1 (ko) * 2019-11-20 2021-08-03 현대제철 주식회사 고강도 및 고성형성을 가지는 강판 및 그 제조방법
KR102275916B1 (ko) * 2019-12-09 2021-07-13 현대제철 주식회사 초고강도 및 고성형성을 갖는 합금화 용융아연도금강판 및 이의 제조방법
KR102360396B1 (ko) * 2020-04-28 2022-02-08 현대제철 주식회사 고강도 및 고성형성을 가지는 강판 및 그 제조방법
KR102404738B1 (ko) * 2020-07-15 2022-06-07 현대제철 주식회사 고강도 및 고성형성 강판 및 그 제조방법
KR102404739B1 (ko) * 2020-07-16 2022-06-08 현대제철 주식회사 초고강도 및 고성형성을 갖는 합금화 용융아연도금강판 및 이의 제조방법
CN114107794B (zh) * 2020-08-31 2023-08-11 宝山钢铁股份有限公司 一种980MPa级超低碳马氏体加残奥型超高扩孔钢及其制造方法
CN112251679B (zh) * 2020-09-18 2022-04-26 东南大学 一种双相高强钢及其制备方法
KR102478807B1 (ko) * 2020-11-12 2022-12-19 현대제철 주식회사 고강도 및 고성형성 강판 및 그 제조방법
KR102518675B1 (ko) 2020-12-16 2023-04-06 주식회사 포스코 성형성이 우수한 고강도 냉연강판 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188834A (ja) * 1993-12-27 1995-07-25 Nkk Corp 高延性を有する高強度鋼板およびその製造方法
KR20120073407A (ko) * 2010-12-27 2012-07-05 주식회사 포스코 연성이 우수한 성형 부재용 강판, 성형 부재 및 그 제조방법
KR20130002977A (ko) * 2012-12-24 2013-01-08 주식회사 포스코 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법
KR20140075789A (ko) * 2011-10-24 2014-06-19 제이에프이 스틸 가부시키가이샤 가공성이 우수한 고강도 강판의 제조 방법
JP2015151576A (ja) * 2014-02-13 2015-08-24 新日鐵住金株式会社 引張最大強度1300MPa以上を有する成形性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、及び、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000043762A (ko) 1998-12-29 2000-07-15 이구택 연성이 향상된 초고강도 냉연강판의 제조방법
EP1865085B1 (en) * 2005-03-31 2016-03-09 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet excellent in coating adhesion, workability and hydrogen embrittlement resistance, and steel component for automobile
KR101027250B1 (ko) * 2008-05-20 2011-04-06 주식회사 포스코 고연성 및 내지연파괴 특성이 우수한 고강도 냉연강판,용융아연 도금강판 및 그 제조방법
CN101638749B (zh) 2009-08-12 2011-01-26 钢铁研究总院 一种低成本高强塑积汽车用钢及其制备方法
JP5287770B2 (ja) * 2010-03-09 2013-09-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR101243002B1 (ko) 2010-12-22 2013-03-12 주식회사 포스코 연신율이 우수한 고강도 강판 및 그 제조방법
KR20130027794A (ko) 2011-09-08 2013-03-18 현대하이스코 주식회사 저항복비형 초고강도 냉연강판, 용융도금강판 및 그 제조 방법
JP5440672B2 (ja) 2011-09-16 2014-03-12 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
KR101382981B1 (ko) * 2011-11-07 2014-04-09 주식회사 포스코 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
KR20130056051A (ko) * 2011-11-21 2013-05-29 주식회사 포스코 슬라브 코너크랙이 없는 초고강도 강판 및 그 제조방법
KR101353787B1 (ko) * 2011-12-26 2014-01-22 주식회사 포스코 용접성 및 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
JP5857905B2 (ja) * 2012-07-25 2016-02-10 新日鐵住金株式会社 鋼材およびその製造方法
IN2014DN11262A (ko) 2012-07-31 2015-10-09 Jfe Steel Corp
CN102912219A (zh) * 2012-10-23 2013-02-06 鞍钢股份有限公司 一种高强塑积trip钢板及其制备方法
CN103060678B (zh) 2012-12-25 2016-04-27 钢铁研究总院 一种中温形变纳米奥氏体增强增塑钢及其制备方法
WO2015001367A1 (en) 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
WO2015102050A1 (ja) * 2014-01-06 2015-07-09 新日鐵住金株式会社 鋼材およびその製造方法
EP3170912B1 (en) 2014-07-18 2019-05-29 Nippon Steel & Sumitomo Metal Corporation Steel product and manufacturing method of the same
KR101638749B1 (ko) 2015-12-02 2016-07-11 이광섭 고압배관 연결용 엘보 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188834A (ja) * 1993-12-27 1995-07-25 Nkk Corp 高延性を有する高強度鋼板およびその製造方法
KR20120073407A (ko) * 2010-12-27 2012-07-05 주식회사 포스코 연성이 우수한 성형 부재용 강판, 성형 부재 및 그 제조방법
KR20140075789A (ko) * 2011-10-24 2014-06-19 제이에프이 스틸 가부시키가이샤 가공성이 우수한 고강도 강판의 제조 방법
KR20130002977A (ko) * 2012-12-24 2013-01-08 주식회사 포스코 열간 프레스 성형용 강판, 이를 이용한 성형부재 및 이들의 제조방법
JP2015151576A (ja) * 2014-02-13 2015-08-24 新日鐵住金株式会社 引張最大強度1300MPa以上を有する成形性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、及び、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3704282A4 (en) * 2017-11-02 2021-08-25 Easyforming Steel Technology Co., Ltd. STEEL USED FOR HOT STAMPING, HOT STAMPING PROCESS AND SHAPED COMPONENT
CN111315909A (zh) * 2017-11-08 2020-06-19 Posco公司 冷成型性优异的超高强度高延展性钢板及其制造方法
EP3708691A4 (en) * 2017-11-08 2020-09-16 Posco VERY HIGH STRENGTH AND HIGH DUCTILITY STEEL SHEET WITH EXCELLENT COLD FORMING AND MANUFACTURING PROCESS
CN111315909B (zh) * 2017-11-08 2022-04-01 Posco公司 冷成型性优异的超高强度高延展性钢板及其制造方法
US11655517B2 (en) 2017-11-08 2023-05-23 Posco Co., Ltd Ultrahigh-strength and high-ductility steel sheet having excellent cold formability
EP3848479A4 (en) * 2018-09-04 2021-10-20 Posco ULTRA HIGH STRENGTH AND DUCTILITY STEEL SHEET WITH EXCELLENT PERFORMANCE RATIO AND MANUFACTURING PROCESS

Also Published As

Publication number Publication date
CN108350546A (zh) 2018-07-31
US20200248281A1 (en) 2020-08-06
JP2018536764A (ja) 2018-12-13
JP6654698B2 (ja) 2020-02-26
EP3372703A4 (en) 2018-09-12
EP3372703A1 (en) 2018-09-12
KR101677396B9 (ko) 2021-07-26
KR101677396B1 (ko) 2016-11-18
CN108350546B (zh) 2020-02-25
US11203795B2 (en) 2021-12-21
EP3372703B1 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
WO2017078278A1 (ko) 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
WO2017111525A1 (ko) 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
WO2017222189A1 (ko) 항복강도가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2019124693A1 (ko) 가공성이 우수한 고강도 강판 및 이의 제조방법
WO2015099221A1 (ko) 고강도 저비중 강판 및 그 제조방법
WO2018117543A1 (ko) 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
WO2015174605A1 (ko) 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2017105064A1 (ko) 표면품질 및 점 용접성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2019124688A1 (ko) 충돌특성 및 성형성이 우수한 고강도 강판 및 이의 제조방법
WO2016098964A1 (ko) 재질 불균일이 작고 성형성이 우수한 고강도 냉연강판, 용융아연도금강판, 및 그 제조 방법
WO2015099382A1 (ko) 우수한 굽힘성 및 초고강도를 갖는 열간 프레스 성형품용 강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법
WO2017222342A1 (ko) 강도 및 성형성이 우수한 클래드 강판 및 그 제조방법
WO2017111456A1 (ko) 고강도 및 우수한 내구성을 가지는 자동차용 부품 및 그 제조방법
WO2018117544A1 (ko) 항복비가 낮고 균일연신율이 우수한 템퍼드 마르텐사이트 강 및 그 제조방법
WO2020050573A1 (ko) 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2018117501A1 (ko) 굽힘 가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2017105026A1 (ko) 화성처리성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법
WO2017171366A1 (ko) 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법
WO2017105025A1 (ko) 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2018056792A1 (ko) 내식성 및 점용접성이 우수한 열간성형용 냉연강판, 열간성형부재 및 그들의 제조방법
WO2017188654A1 (ko) 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2018080133A1 (ko) 구멍확장성 및 항복비가 우수한 초고강도 강판 및 그 제조방법
WO2019124776A1 (ko) 굽힘성 및 저온인성이 우수한 고강도 열연강판 및 이의 제조방법
WO2018117470A1 (ko) 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018522028

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016862296

Country of ref document: EP