WO2017077921A1 - ガスタービンの起動方法及び装置 - Google Patents

ガスタービンの起動方法及び装置 Download PDF

Info

Publication number
WO2017077921A1
WO2017077921A1 PCT/JP2016/081759 JP2016081759W WO2017077921A1 WO 2017077921 A1 WO2017077921 A1 WO 2017077921A1 JP 2016081759 W JP2016081759 W JP 2016081759W WO 2017077921 A1 WO2017077921 A1 WO 2017077921A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust valve
gas turbine
passage
bleed
exhaust
Prior art date
Application number
PCT/JP2016/081759
Other languages
English (en)
French (fr)
Inventor
英貴 奥井
鈴木 健太郎
安威 俊重
達也 岩▲崎▼
芳史 岡嶋
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to DE112016005055.0T priority Critical patent/DE112016005055T5/de
Priority to KR1020177036518A priority patent/KR102290585B1/ko
Priority to CN201680031189.8A priority patent/CN107709734B/zh
Priority to US15/576,873 priority patent/US10858996B2/en
Priority to KR1020197038217A priority patent/KR102196599B1/ko
Publication of WO2017077921A1 publication Critical patent/WO2017077921A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/268Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
    • F02C7/27Fluid drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a method and apparatus for starting a gas turbine having a compressor, a combustor and a turbine.
  • a typical gas turbine is composed of a compressor, a combustor and a turbine. Then, the air taken in from the air intake is compressed by the compressor to become high-temperature high-pressure compressed air, and the combustor supplies fuel to the compressed air to burn the high-temperature high-pressure
  • the combustion gas working fluid
  • Patent Document 1 As a device for preventing a rotating stall of a gas turbine, for example, there is one described in Patent Document 1 below.
  • the valve provided in the bleed pipe is opened, and the compressed air extracted from the bleed pipe is injected from the injection nozzle to the rotor blade or the stator blade.
  • the rotational stall at the time of start is suppressed by blowing and blowing.
  • the above-described conventional method for starting a gas turbine requires an injection nozzle for blowing compressed air to a moving blade or a stationary blade, and has a problem that the structure becomes complicated and the manufacturing cost increases.
  • the present invention solves the problems described above, and an object of the present invention is to provide a method and apparatus for starting a gas turbine that can appropriately start the gas turbine while suppressing the complication of the structure and the increase in manufacturing cost. I assume.
  • a method of starting a gas turbine according to the present invention for achieving the above object comprises a compressor, a combustor and a turbine, and the first bleed chamber of the compressor and the second of the high pressure side of the first bleed chamber.
  • a first extraction flow passage, a second extraction flow passage, and a third extraction flow passage are provided to supply the compressed air extracted from the extraction chamber and the third extraction chamber on the high pressure side of the second extraction chamber as cooling air to the turbine.
  • First compressed air flow path, second extracted air flow path and third extracted air flow path for supplying the compressed air extracted from the first bleed chamber, the second bleed chamber and the third bleed chamber of the compressor as cooling air to the turbine Are provided, and the first exhaust flow passage, the second exhaust flow passage, and the third exhaust flow which exhaust the compressed air of the first bleed flow passage, the second bleed flow passage and the third bleed flow passage to the turbine exhaust system
  • a passage is provided, and the first exhaust passage, the second exhaust passage, and the third exhaust passage are In a gas turbine provided with a first exhaust valve, a second exhaust valve, and a third exhaust valve, when the gas turbine is started, the third before the start state of the gas turbine reaches a region where rotational stall occurs. The exhaust valve is opened.
  • the gas turbine when the gas turbine starts up, for example, air is compressed by driving the compressor with the start motor, and compressed air flows to the combustor side, but at this time, the load of the moving blades in the compressor is It may become large and a rotating stall may occur. Therefore, the third exhaust valve is opened before the start state of the gas turbine reaches the region where the rotating stall is generated, and the compressed air flowing through the third bleed passage is extracted from the third bleed passage as the third exhaust passage Exhaust to the turbine exhaust system. Then, the load on the moving blades is reduced, the occurrence of rotational stall is suppressed, and the startup characteristics of the gas turbine can be improved. As a result, the gas turbine can be properly started while suppressing the complication of the structure and the increase in the manufacturing cost.
  • the first bleed chamber is provided corresponding to the number of stages in the range of 30% to 45% from the front stage of the compressor, and the second bleed chamber is 55% from the front stage
  • the third bleed chamber is provided corresponding to the number of stages in the range of ⁇ 70%, and is provided corresponding to the number of stages in the range of 75% ⁇ 95% from the previous stage.
  • each extraction chamber in the appropriate range of each stage of the compressor, it is possible to reduce the load on the moving blades, suppress the occurrence of rotational stall, and improve the starting characteristics of the gas turbine.
  • the first exhaust valve, the second exhaust valve, and the first exhaust valve may be operated before the start state of the gas turbine reaches a region where rotational stall is generated. 3) It is characterized by opening the exhaust valve.
  • the first exhaust valve and the second exhaust valve are opened as well as the third exhaust valve before the start state of the gas turbine reaches the region where the rotational stall is generated.
  • the load on the moving blades can be reduced in all areas, and the occurrence of rotational stall can be suppressed to improve the start-up characteristics of the gas turbine.
  • the method for starting a gas turbine according to the present invention is characterized in that the first exhaust valve, the second exhaust valve, and the third exhaust valve are opened when the gas turbine is started.
  • the opening degree when opening the third exhaust valve is set smaller than the opening degree when opening the first exhaust valve and the second exhaust valve.
  • the opening degree of the third exhaust valve is smaller than the opening degree of the first exhaust valve and the second exhaust valve, it is possible to suppress the loss of the compressed air pressurized to a high pressure and suppress the reduction of the gas turbine efficiency. it can.
  • the first exhaust valve, the second exhaust valve, and the third exhaust valve are closed when the start state of the gas turbine passes through a region where a rotating stall is generated. There is.
  • the exhaust valves can be closed to ensure a sufficient amount of compressed air and carry out the rated operation at an early stage.
  • the method for starting a gas turbine according to the present invention is characterized in that the third exhaust valve is closed when the number of revolutions of the gas turbine reaches a predetermined first number of revolutions.
  • the third exhaust valve is closed first to stop the extraction of the compressed air pressurized to a high pressure and carry out the rated operation at an early stage. it can.
  • the first exhaust valve is closed when the number of revolutions of the gas turbine reaches a preset second predetermined number of revolutions higher than the first number of revolutions, and the gas turbine is closed.
  • the second exhaust valve is closed when the rotational speed of the motor reaches a predetermined third rotational speed set in advance which is higher than the second rotational speed.
  • the opening degree of the third exhaust valve is reduced when the rotation speed of the gas turbine reaches a preset predetermined fourth rotation speed lower than the first rotation speed, When the rotation speed of the gas turbine reaches the first rotation speed, the third exhaust valve is closed.
  • the upper limit value of the opening degree of the third exhaust valve at the time of starting the gas turbine is set according to an inlet gas temperature or an outlet gas temperature of the turbine.
  • the starting method of the gas turbine according to the present invention is characterized in that the lower limit value of the opening degree of the third exhaust valve at the time of starting the gas turbine is set according to the pressure of the compressed air in the compressor.
  • the method for starting a gas turbine comprises a compressor, a combustor, and a turbine, and the first bleed chamber of the compressor and the second bleed chamber on the high pressure side of the first bleed chamber and the second bleed chamber.
  • a first bleed flow passage, a second bleed flow passage, and a third bleed flow passage are provided to supply the compressed air extracted as the cooling air from the third bleed chamber on the high pressure side of the bleed chamber as the cooling air.
  • a first exhaust flow passage, a second exhaust flow passage and a third exhaust flow passage are provided for exhausting compressed air in the passage, the second bleed passage and the third bleed passage to the turbine exhaust system, and the first exhaust passage is provided.
  • the start state of the gas turbine generates a rotating stall.
  • First exhaust valve, the second exhaust valve and the third exhaust valve before reaching the The opening degree of the valve is increased, and the opening degree of the first exhaust valve, the second exhaust valve, and the third exhaust valve is decreased when the start state of the gas turbine passes through the region where the turning stall is generated. It is a feature.
  • the gas turbine starts up, for example, air is compressed by driving the compressor with the start motor, and compressed air flows to the combustor side, but at this time, the load of the moving blades in the compressor is It may become large and a rotating stall may occur. Therefore, the opening degree of the exhaust valve is increased before the activated state of the gas turbine reaches the area where the rotational stall is generated, and the opening degree of the exhaust valve is decreased when the activated state of the gas turbine leaves the area where the rotational stall is generated. Do. Then, the load on the moving blades is reduced, the occurrence of rotational stall is suppressed, and the startup characteristics of the gas turbine can be improved. As a result, the gas turbine can be properly started while suppressing the complication of the structure and the increase in the manufacturing cost.
  • the compression extracted from the first bleed chamber, the second bleed chamber, and the third bleed chamber of the compressor in the gas turbine including the compressor, the combustor, and the turbine, the compression extracted from the first bleed chamber, the second bleed chamber, and the third bleed chamber of the compressor.
  • a first bleed passage, a second bleed passage, and a third bleed passage for supplying air to the turbine as cooling air are provided, and the first bleed passage, the second bleed passage, and the third bleed flow are provided.
  • the first exhaust passage, the second exhaust passage, and the third exhaust passage for exhausting the compressed air in the passage to the turbine exhaust system, and the first exhaust passage, the second exhaust passage, and the third exhaust passage
  • the first exhaust valve, the second exhaust valve, and the third exhaust valve provided in each of the first and second exhaust valves, and the third exhaust gas before the start state of the gas turbine reaches a region where a rotational stall occurs when the gas turbine starts.
  • the third exhaust valve is opened before the start state of the gas turbine reaches the region where turning stall is generated, so the load on the moving blades is reduced and the occurrence of turning stall is suppressed.
  • the start-up characteristics of the gas turbine can be improved. As a result, the gas turbine can be properly started while suppressing the complication of the structure and the increase in the manufacturing cost.
  • the exhaust valve is opened before the start state of the gas turbine reaches a region where a rotating stall occurs, so that the structure is complicated or The gas turbine can be properly started up while suppressing the increase in the manufacturing cost.
  • FIG. 1 is a schematic configuration view showing a gas turbine of the present embodiment.
  • FIG. 2 is a schematic view showing a bleed pipe of the gas turbine of the present embodiment.
  • FIG. 3 is a graph showing the opening degree of the exhaust valve at the start of the gas turbine.
  • FIG. 4 is a graph showing a modification of the opening degree of the exhaust valve at the start of the gas turbine.
  • FIG. 5 is a graph showing a modification of the opening degree of the exhaust valve at the start of the gas turbine.
  • FIG. 1 is a schematic configuration view showing a gas turbine of the present embodiment.
  • the gas turbine 10 is configured by a compressor 11, a combustor 12 and a turbine 13.
  • a generator (not shown) is coaxially connected to the gas turbine 10 and can generate electricity.
  • the compressor 11 has an air inlet 20 for taking in air, and an inlet guide vane (IGV: Inlet Guide Vane) 22 is disposed in the compressor casing 21, and a plurality of stator vanes 23 and moving blades 24 are provided. They are alternately disposed in the front-rear direction (the axial direction of the rotor 32 described later), and a bleed chamber 25 is provided on the outer side thereof.
  • the combustor 12 supplies fuel to the compressed air compressed by the compressor 11 and can be combusted by igniting the fuel.
  • a plurality of stationary blades 27 and moving blades 28 are alternately arranged in the front-rear direction (the axial direction of a rotor 32 described later) in a turbine casing 26.
  • An exhaust chamber 30 is disposed downstream of the turbine casing 26 via an exhaust casing 29, and the exhaust chamber 30 has an exhaust diffuser 31 continuous with the turbine 13.
  • a rotor (rotational shaft) 32 is positioned so as to penetrate the central portion of the compressor 11, the combustor 12, the turbine 13, and the exhaust chamber 30.
  • An end of the rotor 32 on the compressor 11 side is rotatably supported by the bearing 33, and an end on the exhaust chamber 30 is rotatably supported by the bearing 34.
  • a plurality of disks mounted with the moving blades 24 are stacked and fixed by the compressor 11 and a plurality of disks mounted with the moving blades 28 are stacked and fixed by the turbine 13.
  • a drive shaft of a generator (not shown) is connected to the end on the exhaust chamber 30 side.
  • the compressor casing 21 of the compressor 11 is supported by the legs 35
  • the turbine casing 26 of the turbine 13 is supported by the legs 36
  • the exhaust chamber 30 is supported by the legs 37. There is.
  • the air taken in from the air intake 20 of the compressor 11 passes through the inlet guide vanes 22, the plurality of stationary vanes 23 and the moving vanes 24 and is compressed to become high temperature / high pressure compressed air.
  • a predetermined fuel is supplied to the compressed air and burns.
  • the high temperature / high pressure combustion gas that is the working fluid generated by the combustor 12 drives and rotates the rotor 32 by passing through the plurality of stationary blades 27 and the moving blades 28 that constitute the turbine 13.
  • the generator connected to 32 is driven.
  • the combustion gas which has driven the turbine 13 is released to the atmosphere as exhaust gas.
  • the turbine 13 is cooled by supplying a portion of the compressed air extracted from the compressor 11 to the turbine 13 as cooling air. That is, the cooling air (compressed air) extracted from the air extraction chamber 25 (25a, 25b, 25c) of the compressor 11 is supplied to the turbine casing 26 of the turbine 13 to support the vane 27 and the components supporting the vane 27 And so on.
  • the compressor casing 21 is provided with a low pressure extraction chamber (first extraction chamber) 25a, an intermediate pressure extraction chamber (second extraction chamber) 25b, and a high pressure extraction chamber (third extraction chamber) 25c.
  • One end of the low pressure extraction flow passage (first extraction flow passage) 41 is connected to the low pressure extraction chamber 25 a, and the other end is connected to the downstream portion of the turbine casing 26.
  • One end of the medium pressure bleed passage (second bleed passage) 42 is connected to the medium pressure bleed chamber 25 b, and the other end is connected to the midstream portion of the turbine casing 26.
  • One end of the high pressure extraction channel (third extraction channel) 43 is connected to the high pressure extraction chamber 25 c, and the other end is connected to the upstream portion of the turbine casing 26.
  • the compressor 11 has 15 stages, and is configured by alternately arranging 15 stationary blades 23 and 15 moving blades 24 in the axial center direction of the rotor 32, for example,
  • a low pressure extraction chamber 25a is provided corresponding to the first to sixth stages
  • an intermediate pressure extraction chamber 25b is provided corresponding to the seventh to ninth stages, and corresponding to the tenth to twelfth stages.
  • a high pressure extraction chamber 25c is provided.
  • the present embodiment is not limited to this configuration.
  • the high pressure extraction chamber 25c is provided corresponding to any one of the 11th to 14th stages upstream of the 15th stage which is the final stage, and the high pressure extraction chamber 25c is any of the 11th to 14th stages. It may be configured to bleed compressed air from the position of.
  • the compressor 11 is not limited to the 15 stages, and may be 17 stages or more.
  • the 17 stationary blades 23 in the axial center direction of the rotor 32 Seventeen moving blades 24 are alternately arranged, and for example, a low pressure extraction chamber 25a is provided corresponding to the first to sixth stages, and corresponds to the seventh to eleventh stages.
  • the medium pressure extraction chamber 25b may be provided, and the high pressure extraction chamber 25c may be provided corresponding to the 12th to 14th stages, and the low pressure extraction chamber 25a is 30 to 45 from the front stage with respect to the total number of stages of the compressor.
  • the medium pressure extraction chamber 25b corresponds to the number of stages in the range of 55 to 70% from the previous stage
  • the high pressure extraction chamber 25c corresponds to the number of stages in the range of 75 to 95% from the previous stage. It should just be comprised.
  • one end of the low pressure exhaust flow path (first exhaust flow path) 44 is connected to the middle of the low pressure extraction flow path 41, and the other end is connected to the exhaust chamber 30 (also an exhaust duct).
  • One end of the medium pressure exhaust flow path (second exhaust flow path) 45 is connected to the middle of the medium pressure bleed flow path 42, and the other end is connected to the exhaust chamber 30 (also an exhaust duct).
  • One end of the high pressure exhaust flow path (third exhaust flow path) 46 is connected to the middle of the high pressure extraction flow path 43, and the other end is connected to the exhaust chamber 30 (also an exhaust duct).
  • a low pressure exhaust valve (first exhaust valve) 47 is provided in the low pressure exhaust passage 44, an intermediate pressure exhaust valve (second exhaust valve) 48 is provided in the medium pressure exhaust passage 45, and a high pressure is provided in the high pressure exhaust passage 46.
  • An exhaust valve (third exhaust valve) 49 is provided.
  • the low pressure exhaust valve 47 when the low pressure exhaust valve 47 is closed, the low pressure compressed air extracted into the low pressure extraction chamber 25 a is supplied to the downstream side of the turbine casing 26 through the low pressure extraction flow path 41. On the other hand, when the low pressure exhaust valve 47 is opened, the low pressure compressed air extracted to the low pressure extraction chamber 25 a is exhausted to the exhaust chamber 30 through the low pressure exhaust passage 44. Further, when the medium pressure exhaust valve 48 is closed, the medium pressure compressed air extracted into the medium pressure extraction chamber 25 b is supplied to the middle stream side of the turbine casing 26 through the medium pressure extraction passage 42. On the other hand, when the medium pressure exhaust valve 48 is opened, the medium pressure compressed air extracted to the medium pressure extraction chamber 25 b is exhausted to the exhaust chamber 30 through the medium pressure exhaust flow path 45.
  • the high pressure exhaust valve 49 when the high pressure exhaust valve 49 is closed, the high pressure compressed air extracted into the high pressure extraction chamber 25 c is supplied to the upstream side of the turbine casing 26 through the high pressure extraction channel 43. On the other hand, when the high pressure exhaust valve 49 is opened, the high pressure compressed air extracted to the high pressure extraction chamber 25 c is exhausted to the exhaust chamber 30 through the high pressure exhaust passage 46.
  • the low pressure exhaust valve 47, the medium pressure exhaust valve 48 and the high pressure exhaust valve 49 are flow control valves, and the control device 50 can control the low pressure exhaust valve 47, the medium pressure exhaust valve 48 and the high pressure exhaust valve 49 to open and close.
  • the opening can be adjusted.
  • it may be an on-off valve.
  • the high pressure exhaust valve 49 is opened before the start state of the gas turbine 10 reaches the region where the rotating stall is generated. There is. Further, according to the method for starting the gas turbine of the present embodiment, when the gas turbine 10 is started, the low pressure exhaust valve 47 and the medium pressure exhaust valve 48 before the start state of the gas turbine 10 reaches the region generating the rotational stall. And the high pressure exhaust valve 49 is opened.
  • the starting device of the gas turbine of the present embodiment has a control device 50.
  • the control device 50 is provided with a low pressure exhaust valve 47 before the start state of the gas turbine 10 reaches a region where a rotating stall is generated.
  • the pressure exhaust valve 48 and the high pressure exhaust valve 49 are opened (opening control).
  • the control device 50 opens the low pressure exhaust valve 47, the medium pressure exhaust valve 48 and the high pressure exhaust valve 49 before the gas turbine 10 is started, and drives the rotor 32 to rotate by the start motor.
  • the opening degree of the low pressure exhaust valve 47 and the medium pressure exhaust valve 48 at the time of startup of the gas turbine 10 is the full opening (100%) or an opening degree in the vicinity thereof.
  • the opening degree near half open (40% to 50%) is smaller than the opening degree of the exhaust pressure control valve 47 and the medium pressure exhaust valve 48.
  • the low pressure exhaust valve 47, the medium pressure exhaust valve 48 and the high pressure exhaust valve 49 are closed when the start state of the gas turbine 10 passes through the region generating the rotational stall. There is.
  • the high pressure exhaust valve 49 is closed.
  • the low pressure exhaust valve 47 is closed, and the number of revolutions of the gas turbine 10 is preset higher than the second number of revolutions.
  • the medium pressure exhaust valve 48 is closed.
  • the opening degree of the low pressure exhaust valve 47 and the medium pressure exhaust valve 48 at the start of the gas turbine 10 is the opening near the full open as described above.
  • the degree of opening is set in accordance with the inlet gas temperature or the outlet gas temperature of the turbine 13 and the pressure of the compressed air in the compressor 11.
  • the opening degree of the high pressure exhaust valve 49 Is limited. That is, the upper limit value of the degree of opening of the high pressure exhaust valve 49 is set in accordance with the inlet gas temperature (outlet gas temperature) of the turbine 13. That is, the upper limit value of the opening degree of the high pressure exhaust valve 49 is determined so that the inlet gas temperature of the turbine 13 does not rise above the heat resistant temperature.
  • the pressure needs to be reduced by extracting and exhausting the compressed air of the compressor 11, and the opening degree of the high pressure exhaust valve 49 is limited. That is, the lower limit value of the degree of opening of the high pressure exhaust valve 49 is set in accordance with the pressure of the compressed air in the compressor 11. That is, the lower limit value of the opening degree of the high pressure exhaust valve 49 is determined so that the compressor 11 suppresses the occurrence of rotational stall.
  • FIG. 3 is a graph showing the opening degree of the exhaust valve at the start of the gas turbine.
  • the opening degree A of the low pressure exhaust valve 47 is V1
  • the opening degree B of the medium pressure exhaust valve 48 is V2
  • the opening degree C of the high pressure exhaust valve 49 is V3.
  • the compressor 11 is driven by the start motor.
  • the opening degree of the low pressure exhaust valve 47 and the medium pressure exhaust valve 48 is near full opening (100%)
  • the opening degree of the high pressure exhaust valve 49 is near half opening (40% to 50%) .
  • the extraction flow paths (piping) 41, 42, 43 and the exhaust flow paths (piping) 44, 45 It is possible to suppress the increase in diameter of the 46 and the decrease in startability. It is possible to reduce the capacity of the thyristor. In particular, by extracting the compressed air immediately before the highest pressure choked final stage, it is possible to effectively lower the pressure ratio on the front stage side and improve the starting characteristics.
  • the high pressure exhaust valve 49 is closed.
  • the low pressure exhaust valve 47 is closed.
  • the medium pressure exhaust valve 48 is closed. That is, when the start-up state of the gas turbine 10 passes through the region generating the rotational stall, the high pressure exhaust valve 49, the low pressure exhaust valve 47, and the medium pressure exhaust valve 48 are closed in this order.
  • the present invention is not limited to this configuration. It is a graph showing the modification of the opening of an exhaust valve at the time of starting of a turbine.
  • the opening degree of the low pressure exhaust valve 47 and the medium pressure exhaust valve 48 is reduced over a predetermined period according to the rotational speed of the gas turbine 10, and then the low pressure exhaust valve 47 and the medium pressure exhaust valve 48 are closed. I have to.
  • the opening degree A of the low pressure exhaust valve 47 is V1
  • the opening degree B of the medium pressure exhaust valve 48 is V2
  • the opening degree C of the high pressure exhaust valve 49 is V3. In this state, the compressor 11 is driven by the start motor.
  • the high pressure exhaust valve 49 is closed.
  • the opening degree of the medium pressure exhaust valve 48 is decreased, and when the predetermined rotational speed N13 is reached, the opening degree of the low pressure exhaust valve 47 is decreased.
  • the low pressure exhaust valve 47 is closed, and when the third rotational speed N15 is reached, the medium pressure exhaust valve 48 is closed.
  • the high pressure exhaust valve 49 is closed and the opening degree of the low pressure exhaust valve 47 and the medium pressure exhaust valve 48 is reduced.
  • the pressure of the compressed air can be increased quickly by reducing the amount of air extracted from the air.
  • the opening degree of the high pressure exhaust valve 49 is reduced to rotate the gas turbine 10.
  • the high pressure exhaust valve 49 is closed.
  • the opening degree A of the low pressure exhaust valve 47 is V1
  • the opening degree B of the medium pressure exhaust valve 48 is V2
  • the opening degree C of the high pressure exhaust valve 49 is V3. In this state, the compressor 11 is driven by the start motor.
  • the opening degree of the high pressure exhaust valve 49 is reduced, and when the rotational speed of the gas turbine 10 increases and reaches the predetermined rotational speed N22, The opening degree of the medium pressure exhaust valve 48 is reduced, and when the predetermined rotation speed N23 is reached, the opening degree of the low pressure exhaust valve 47 is reduced. Thereafter, when the rotational speed of the gas turbine 10 rises and the rotational speed of the gas turbine 10 reaches the first rotational speed N24, the high pressure exhaust valve 49 is closed and when the second rotational speed N25 is reached, the low pressure exhaust valve 47 When closing and reaching the third rotation speed N26, the medium pressure exhaust valve 48 is closed.
  • the opening degree is reduced without closing the high pressure exhaust valve 49 to prepare for the generation of the rotating stall and the generation of the rotating stall is almost eliminated.
  • the high pressure exhaust valve 49 is closed when the first rotation speed N24 is reached.
  • the compressed air extracted from the low pressure extraction chamber 25a, the medium pressure extraction chamber 25b, and the high pressure extraction chamber 25c of the compressor 11 is supplied to the turbine 13 as cooling air.
  • a low pressure provided with the low pressure extraction flow channel 41, the medium pressure extraction flow channel 42, and the high pressure extraction flow channel 43, and the compressed air in the low pressure extraction flow channel 41, the medium pressure extraction flow channel 42, and the high pressure extraction flow channel 43 is exhausted to the turbine exhaust system.
  • An exhaust passage 44, an intermediate pressure exhaust passage 45 and a high pressure exhaust passage 46 are provided, and the low pressure exhaust passage 44, the medium pressure exhaust passage 45 and the high pressure exhaust passage 46 are respectively provided with a low pressure exhaust valve 47, an intermediate pressure exhaust valve 48 and a high pressure.
  • An exhaust valve 49 is provided so that when the gas turbine 10 starts up, the high pressure exhaust valve 49 is opened before the start state of the gas turbine 10 reaches a region where a rotational stall occurs.
  • the gas turbine 10 starts up, for example, air is compressed by driving the compressor 11 by the start-up motor, and the compressed air flows to the combustor 12 side.
  • the load on the wing 24 is increased, which may cause a rotating stall. Therefore, the high pressure exhaust valve 49 is opened before the start state of the gas turbine 10 reaches the region where the rotational stall occurs, and the compressed air flowing from the high pressure extraction chamber 25c and flowing through the high pressure extraction passage 43 is a high pressure exhaust passage Exhaust to turbine exhaust system by 46. Then, the load on the moving blades 24 is reduced, the occurrence of rotational stall is suppressed, and the startup characteristics of the gas turbine 10 can be improved. As a result, the gas turbine 10 can be properly started while suppressing the complication of the structure and the increase in the manufacturing cost.
  • the valve 49 is opened. Therefore, not only the high pressure exhaust valve 49 but also the low pressure exhaust valve 47 and the medium pressure exhaust valve 48 are opened, so that the load on the moving blades 24 can be reduced in all regions of the compressor 11, thereby suppressing the occurrence of rotational stall.
  • the starting characteristics of the gas turbine 10 can be improved.
  • the low pressure exhaust valve 47, the medium pressure exhaust valve 48 and the high pressure exhaust valve 49 are opened at the time of starting the gas turbine 10. Therefore, since the exhaust valves 47, 48, 49 are opened before the start of the gas turbine 10, the valve opening operation during the start of the gas turbine 10 becomes unnecessary, and the control can be simplified and the operability can be improved. .
  • the opening degree when opening the high pressure exhaust valve 49 is set smaller than the opening degree when opening the low pressure exhaust valve 47 and the medium pressure exhaust valve 48. Therefore, the loss of the compressed air pressurized to a high pressure can be suppressed, and the decrease in turbine efficiency can be suppressed.
  • the low pressure exhaust valve 47, the medium pressure exhaust valve 48 and the high pressure exhaust valve 49 are closed when the start state of the gas turbine 10 passes through the region where the turning stall occurs. Therefore, a sufficient amount of compressed air can be secured to carry out the rated operation at an early stage.
  • the high pressure exhaust valve 49 is closed when the number of revolutions of the gas turbine 10 reaches a predetermined first number of revolutions. Therefore, when the rotational speed is increased, the high pressure exhaust valve 49 is first closed to stop the extraction of the compressed air pressurized to a high pressure, and the rated operation can be performed at an early stage.
  • the low pressure exhaust valve 47 is closed when the number of revolutions of the gas turbine 10 reaches a preset second predetermined number of revolutions higher than the first number of revolutions.
  • the medium pressure exhaust valve 48 is closed. Therefore, it is possible to stop the extraction of the compressed air sequentially and carry out the rated operation at an early stage.
  • the opening degree of the high pressure exhaust valve 49 is reduced to When the rotational speed of the turbine 10 reaches the first rotational speed, the high pressure exhaust valve 49 is closed. Therefore, the loss of the compressed air pressurized to a high pressure can be suppressed, and the reduction of the gas turbine efficiency can be suppressed.
  • the upper limit value of the degree of opening of the high pressure exhaust valve 49 at the time of starting the gas turbine 10 is set according to the inlet gas temperature or the outlet gas temperature of the turbine 13. Therefore, the temperature rise more than the heat-resistant temperature in the compressor 11 can be prevented, and safety
  • the lower limit value of the degree of opening of the high pressure exhaust valve 49 at the time of starting the gas turbine 10 is set according to the pressure of the compressed air in the compressor 11. Therefore, it is possible to suppress wasteful compressed air loss while suppressing turning stall.
  • the low pressure supplied to the turbine 13 as the cooling air is the compressed air extracted from the low pressure extraction chamber 25a, the medium pressure extraction chamber 25b and the high pressure extraction chamber 25c of the compressor 11.
  • a valve 49 and a control device 50 that opens the high pressure exhaust valve 49 before the start of the gas turbine 10 reaches a region where a rotational stall is generated when the gas turbine 10 starts are provided.
  • the high pressure exhaust valve 49 is opened before the start state of the gas turbine 10 reaches the region where the rotating stall is generated, so the load on the moving blades 24 is reduced and the rotating stall is generated. Can be suppressed, and the start-up characteristics of the gas turbine 10 can be improved. As a result, the gas turbine 10 can be properly started while suppressing the complication of the structure and the increase in the manufacturing cost.
  • the low pressure supplied to the turbine 13 as the cooling air is the compressed air extracted from the low pressure extraction chamber 25a, the medium pressure extraction chamber 25b and the high pressure extraction chamber 25c of the compressor 11.
  • a low pressure exhaust which is provided with the extraction flow passage 41, the medium pressure extraction flow passage 42 and the high pressure extraction flow passage 43 and exhausts the compressed air of the low pressure extraction flow passage 41, the medium pressure extraction flow passage 42 and the high pressure extraction flow passage 43 to a turbine exhaust system.
  • the low pressure exhaust flow path 44, the medium pressure exhaust flow path 46 and the high pressure exhaust flow path 46 are provided in the low pressure exhaust flow path 44, the medium pressure exhaust flow path 45 and the high pressure exhaust flow path 46 respectively.
  • a valve 49 is provided to increase the opening degree of the low pressure exhaust valve 47, the medium pressure exhaust valve 48 and the high pressure exhaust valve 49 before the start state of the gas turbine 10 reaches the region where the rotating stall is generated, and the start of the gas turbine 10 The state is a rotating stall After leaving the raw areas so that to reduce the degree of opening of the medium-pressure exhaust valve 48 and the high pressure exhaust valve 49 and the low pressure exhaust valve 47.
  • the gas turbine 10 starts up, for example, air is compressed by driving the compressor 11 by the start-up motor, and the compressed air flows to the combustor 12 side.
  • the load on the wing 24 is increased, which may cause a rotating stall. Therefore, if the opening degree of the exhaust valves 47, 48, 49 is increased before the activated state of the gas turbine 10 reaches the area where the rotational stall is generated, and the activated state of the gas turbine 10 leaves the area where the rotational stall is generated The opening degree of the exhaust valves 47, 48, 49 is reduced. Then, the load on the moving blades 24 is reduced, the occurrence of rotational stall is suppressed, and the startup characteristics of the gas turbine 10 can be improved. As a result, the gas turbine 10 can be properly started while suppressing the complication of the structure and the increase in the manufacturing cost.
  • the method and apparatus for starting a gas turbine according to the present invention is such that when the gas turbine starts, the exhaust valve is opened before the start state of the gas turbine reaches a region where a rotating stall is generated.
  • the exhaust valve is configured to be opened when the gas turbine 10 starts up, that is, before the gas turbine 10 starts up, the present invention is not limited to this configuration.
  • the rotational speed at which the gas turbine generates rotational stall, the pressure of compressed air, and the like are determined by preliminary experiments, etc., and the gas turbine is started and reaches the rotational speed at which rotational stall is generated or the pressure of compressed air.
  • the exhaust valve may be opened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Turbines (AREA)

Abstract

ガスタービンの起動方法及び装置において、圧縮機(11)の低圧抽気室(25a)と中圧抽気室(25b)と高圧抽気室(25c)から抽気した圧縮空気を冷却空気としてタービン(13)に供給する低圧抽気流路(41)と中圧抽気流路(42)と高圧抽気流路(43)を設け、低圧抽気流路(41)と中圧抽気流路(42)と高圧抽気流路(43)の圧縮空気をタービン排気系に排気する低圧排気流路(44)と中圧排気流路(45)と高圧排気流路(46)を設け、低圧排気流路(44)と中圧排気流路(45)と高圧排気流路(46)にそれぞれ低圧排気弁(47)と中圧排気弁(48)と高圧排気弁(49)を設け、ガスタービン(10)が起動するとき、ガスタービン(10)の起動状態が旋回失速を発生する領域に到達する前に高圧排気弁(49)を開放する。

Description

ガスタービンの起動方法及び装置
 本発明は、圧縮機と燃焼器とタービンとを有するガスタービンの起動方法及び装置に関するものである。
 一般的なガスタービンは、圧縮機と燃焼器とタービンにより構成されている。そして、空気取入口から取り込まれた空気が圧縮機によって圧縮されることで高温・高圧の圧縮空気となり、燃焼器にて、この圧縮空気に対して燃料を供給して燃焼させることで高温・高圧の燃焼ガス(作動流体)を得て、この燃焼ガスによりタービンを駆動し、このタービンに連結された発電機を駆動する。
 ガスタービンを起動するとき、起動用モータによりロータを駆動回転し、圧縮機を駆動することで圧縮空気を確保している。この圧縮機で圧縮空気を生成するとき、動翼の負荷が大きくなり、旋回失速が発生する。旋回失速が発生すると、効率低下、翼振動、軸振動を併発することがある。
 ガスタービンの旋回失速を防止するものとして、例えば、下記特許文献1に記載されたものがある。特許文献1に記載されたガスタービンの起動方法は、ガスタービンの起動時に、抽気配管に設けられている弁を開き、抽気配管から抽気された圧縮空気をインジェクションノズルから動翼または静翼に対して吹き付けることで、起動時の旋回失速を抑制するものである。
特開2012-207623号公報
 上述した従来のガスタービンの起動方法では、動翼または静翼に対して圧縮空気を吹き付けるためのインジェクションノズルが必要となり、構造が複雑になると共に製造コストが増加してしまうという課題がある。
 本発明は、上述した課題を解決するものであり、構造の複雑化や製造コストの増加を抑制して適正にガスタービンを起動することができるガスタービンの起動方法及び装置を提供することを目的とする。
 上記の目的を達成するための本発明のガスタービンの起動方法は、圧縮機と燃焼器とタービンとから構成され、前記圧縮機の第1抽気室と前記第1抽気室より高圧側の第2抽気室と前記第2抽気室より高圧側の第3抽気室から抽気した圧縮空気を冷却空気として前記タービンに供給する第1抽気流路と第2抽気流路と第3抽気流路が設けられ、前記圧縮機の第1抽気室と第2抽気室と第3抽気室から抽気した圧縮空気を冷却空気として前記タービンに供給する第1抽気流路と第2抽気流路と第3抽気流路が設けられ、前記第1抽気流路と前記第2抽気流路と前記第3抽気流路の圧縮空気をタービン排気系に排気する第1排気流路と第2排気流路と第3排気流路が設けられ、前記第1排気流路と前記第2排気流路と前記第3排気流路にそれぞれ第1排気弁と第2排気弁と第3排気弁が設けられるガスタービンにおいて、前記ガスタービンが起動するとき、前記ガスタービンの起動状態が旋回失速を発生する領域に到達する前に前記第3排気弁を開放する、ことを特徴とするものである。
 従って、ガスタービンが起動するとき、例えば、起動用モータにより圧縮機を駆動することで空気を圧縮し、燃焼器側に圧縮空気を流しているが、このとき、圧縮機における動翼の負荷が大きくなり、旋回失速が発生するおそれがある。そのため、ガスタービンの起動状態が旋回失速を発生する領域に到達する前に第3排気弁を開放し、第3抽気室から抽気して第3抽気流路を流れる圧縮空気を第3排気流路によりタービン排気系に排気する。すると、動翼の負荷が小さくなって旋回失速の発生が抑制され、ガスタービンの起動特性を改善することができる。その結果、構造の複雑化や製造コストの増加を抑制して適正にガスタービンを起動することができる。
 本発明のガスタービンの起動方法では、前記第1抽気室は、前記圧縮機の前段から30%~45%の範囲の段数に対応して設けられ、前記第2抽気室は、前段から55%~70%の範囲の段数に対応して設けられ、前記第3抽気室は、前段から75%~95%の範囲の段数に対応して設けられることを特徴としている。
 従って、各抽気室を圧縮機の各段の適正範囲に設けることで、動翼の負荷が小さくして旋回失速の発生を抑制し、ガスタービンの起動特性を改善することができる。
 本発明のガスタービンの起動方法では、前記ガスタービンが起動するとき、前記ガスタービンの起動状態が旋回失速を発生する領域に到達する前に前記第1排気弁と前記第2排気弁と前記第3排気弁を開放することを特徴としている。
 従って、ガスタービンの起動時、ガスタービンの起動状態が旋回失速を発生する領域に到達する前に、第3排気弁だけでなく第1排気弁と第2排気弁を開放するため、圧縮機の全ての領域で動翼の負荷を小さくすることができ、旋回失速の発生を抑制してガスタービンの起動特性を改善することができる。
 本発明のガスタービンの起動方法では、前記ガスタービンの起動時に、前記第1排気弁と前記第2排気弁と前記第3排気弁を開放することを特徴としている。
 従って、ガスタービンの起動時に第1排気弁と第2排気弁と第3排気弁を開放することで、ガスタービンの起動途中での開弁操作が不要となり、制御を簡素化して操作性を向上することができる。
 本発明のガスタービンの起動方法では、前記第3排気弁を開放するときの開度を、前記第1排気弁及び前記第2排気弁を開放するときの開度より小さく設定することを特徴としている。
 従って、第3排気弁の開度が第1排気弁及び第2排気弁の開度より小さいことから、高圧まで加圧した圧縮空気の損失を抑制し、ガスタービン効率の低下を抑制することができる。
 本発明のガスタービンの起動方法では、前記ガスタービンの起動状態が旋回失速を発生する領域を抜けると前記第1排気弁と前記第2排気弁と前記第3排気弁を閉止することを特徴としている。
 従って、ガスタービンの起動状態が旋回失速を発生する領域を抜けると、各排気弁を閉止することで、十分な圧縮空気量を確保して早期に定格運転を実施することができる。
 本発明のガスタービンの起動方法では、前記ガスタービンの回転数が予め設定された所定の第1回転数に到達すると、前記第3排気弁を閉止することを特徴としている。
 従って、ガスタービンの回転数が第1回転数に到達すると、まず、第3排気弁を閉止することで、高圧まで加圧した圧縮空気の抽気を停止して早期に定格運転を実施することができる。
 本発明のガスタービンの起動方法では、前記ガスタービンの回転数が前記第1回転数より高い予め設定された所定の第2回転数に到達すると、前記第1排気弁を閉止し、前記ガスタービンの回転数が前記第2回転数より高い予め設定された所定の第3回転数に到達すると、前記第2排気弁を閉止することを特徴としている。
 従って、ガスタービンの回転数が第2回転数に到達すると、次に、第1排気弁を閉止し、ガスタービンの回転数が第3回転数に到達すると、続いて、第2排気弁を閉止することで、圧縮空気の抽気を順次停止して早期に定格運転を実施することができる。
 本発明のガスタービンの起動方法では、前記ガスタービンの回転数が前記第1回転数より低い予め設定された所定の第4回転数に到達すると、前記第3排気弁の開度を小さくし、前記ガスタービンの回転数が前記第1回転数に到達すると、前記第3排気弁を閉止することを特徴としている。
 従って、ガスタービンの回転数が第4回転数に到達すると、第3排気弁の開度を小さくし、第1回転数に到達すると第3排気弁を閉止することで、高圧まで加圧した圧縮空気の損失を抑制し、ガスタービン効率の低下を抑制することができる。
 本発明のガスタービンの起動方法では、前記ガスタービンの起動時における前記第3排気弁の開度の上限値は、前記タービンの入口ガス温度または出口ガス温度に応じて設定されることを特徴としている。
 従って、第3排気弁の開度をタービンの入口ガス温度または出口ガス温度に応じて設定することで、圧縮機における耐熱温度以上の温度上昇を防止して安全性を確保することができる。
 本発明のガスタービンの起動方法では、前記ガスタービンの起動時における前記第3排気弁の開度の下限値は、前記圧縮機における圧縮空気の圧力に応じて設定されることを特徴としている。
 従って、第3排気弁の開度を圧縮機における圧縮空気の圧力に応じて設定することで、旋回失速を抑制する一方で、無駄な圧縮空気の損失を抑制することができる。
 また、本発明のガスタービンの起動方法は、圧縮機と燃焼器とタービンとから構成され、前記圧縮機の第1抽気室と前記第1抽気室より高圧側の第2抽気室と前記第2抽気室より高圧側の第3抽気室から抽気した圧縮空気を冷却空気として前記タービンに供給する第1抽気流路と第2抽気流路と第3抽気流路が設けられ、前記第1抽気流路と前記第2抽気流路と前記第3抽気流路の圧縮空気をタービン排気系に排気する第1排気流路と第2排気流路と第3排気流路が設けられ、前記第1排気流路と前記第2排気流路と前記第3排気流路にそれぞれ第1排気弁と第2排気弁と第3排気弁が設けられるガスタービンにおいて、前記ガスタービンの起動状態が旋回失速を発生する領域に到達する前に前記第1排気弁と前記第2排気弁と前記第3排気弁の開度を大きくし、前記ガスタービンの起動状態が旋回失速を発生する領域を抜けると前記第1排気弁と前記第2排気弁と前記第3排気弁の開度を小さくする、ことを特徴とするものである。
 従って、ガスタービンが起動するとき、例えば、起動用モータにより圧縮機を駆動することで空気を圧縮し、燃焼器側に圧縮空気を流しているが、このとき、圧縮機における動翼の負荷が大きくなり、旋回失速が発生するおそれがある。そのため、ガスタービンの起動状態が旋回失速を発生する領域に到達する前に排気弁の開度を大きくし、ガスタービンの起動状態が旋回失速を発生する領域を抜けると排気弁の開度を小さくする。すると、動翼の負荷が小さくなって旋回失速の発生が抑制され、ガスタービンの起動特性を改善することができる。その結果、構造の複雑化や製造コストの増加を抑制して適正にガスタービンを起動することができる。
 また、本発明のガスタービンの起動装置は、圧縮機と燃焼器とタービンとから構成されるガスタービンにおいて、前記圧縮機の第1抽気室と第2抽気室と第3抽気室から抽気した圧縮空気を冷却空気として前記タービンに供給する第1抽気流路と第2抽気流路と第3抽気流路が設けられ、前記第1抽気流路と前記第2抽気流路と前記第3抽気流路の圧縮空気をタービン排気系に排気する第1排気流路と第2排気流路と第3排気流路と、前記第1排気流路と前記第2排気流路と前記第3排気流路にそれぞれ設けられる第1排気弁と第2排気弁と第3排気弁と、前記ガスタービンが起動するときに前記ガスタービンの起動状態が旋回失速を発生する領域に到達する前に前記第3排気弁を開放する制御装置と、を備えることを特徴とするものである。
 従って、ガスタービンが起動するとき、ガスタービンの起動状態が旋回失速を発生する領域に到達する前に第3排気弁を開放するため、動翼の負荷が小さくなって旋回失速の発生が抑制され、ガスタービンの起動特性を改善することができる。その結果、構造の複雑化や製造コストの増加を抑制して適正にガスタービンを起動することができる。
 本発明のガスタービンの起動方法及び装置によれば、ガスタービンが起動するとき、ガスタービンの起動状態が旋回失速を発生する領域に到達する前に排気弁を開放するので、構造の複雑化や製造コストの増加を抑制して適正にガスタービンを起動することができる。
図1は、本実施形態のガスタービンを表す概略構成図である。 図2は、本実施形態のガスタービンの抽気配管を表す概略図である。 図3は、ガスタービンの起動時における排気弁の開度を表すグラフである。 図4は、ガスタービンの起動時における排気弁の開度の変形例を表すグラフである。 図5は、ガスタービンの起動時における排気弁の開度の変形例を表すグラフである。
 以下に添付図面を参照して、本発明に係るガスタービンの起動方法及び装置の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
 図1は、本実施形態のガスタービンを表す概略構成図である。
 本実施形態において、図1に示すように、ガスタービン10は、圧縮機11と燃焼器12とタービン13により構成されている。このガスタービン10は、同軸上に図示しない発電機が連結されており、発電可能となっている。
 圧縮機11は、空気を取り込む空気取入口20を有し、圧縮機車室21内に入口案内翼(IGV:Inlet Guide Vane)22が配設されると共に、複数の静翼23と動翼24が前後方向(後述するロータ32の軸方向)に交互に配設されてなり、その外側に抽気室25が設けられている。燃焼器12は、圧縮機11で圧縮された圧縮空気に対して燃料を供給し、点火することで燃焼可能となっている。タービン13は、タービン車室26内に複数の静翼27と動翼28が前後方向(後述するロータ32の軸方向)に交互に配設されている。このタービン車室26の下流側には、排気車室29を介して排気室30が配設されており、排気室30は、タービン13に連続する排気ディフューザ31を有している。
 また、圧縮機11、燃焼器12、タービン13、排気室30の中心部を貫通するようにロータ(回転軸)32が位置している。ロータ32は、圧縮機11側の端部が軸受部33により回転自在に支持される一方、排気室30側の端部が軸受部34により回転自在に支持されている。そして、このロータ32は、圧縮機11にて、各動翼24が装着されたディスクが複数重ねられて固定され、タービン13にて、各動翼28が装着されたディスクが複数重ねられて固定されており、排気室30側の端部に図示しない発電機の駆動軸が連結されている。
 そして、このガスタービン10は、圧縮機11の圧縮機車室21が脚部35に支持され、タービン13のタービン車室26が脚部36により支持され、排気室30が脚部37により支持されている。
 従って、圧縮機11の空気取入口20から取り込まれた空気が、入口案内翼22、複数の静翼23と動翼24を通過して圧縮されることで高温・高圧の圧縮空気となる。燃焼器12にて、この圧縮空気に対して所定の燃料が供給され、燃焼する。そして、この燃焼器12で生成された作動流体である高温・高圧の燃焼ガスが、タービン13を構成する複数の静翼27と動翼28を通過することでロータ32を駆動回転し、このロータ32に連結された発電機を駆動する。一方、タービン13を駆動した燃焼ガスは、排気ガスとして大気に放出される。
 このように構成されたガスタービン10では、図2に示すように、圧縮機11から抽気した一部の圧縮空気を冷却空気としてタービン13に供給することで、このタービン13を冷却している。即ち、圧縮機11の抽気室25(25a,25b,25c)から抽気した冷却空気(圧縮空気)をタービン13のタービン車室26に供給し、静翼27やこの静翼27を支持する構成部品などを冷却している。
 圧縮機車室21は、低圧抽気室(第1抽気室)25aと中圧抽気室(第2抽気室)25bと高圧抽気室(第3抽気室)25cが設けられている。低圧抽気流路(第1抽気流路)41は、一端部が低圧抽気室25aに連結され、他端部がタービン車室26の下流部に連結されている。中圧抽気流路(第2抽気流路)42は、一端部が中圧抽気室25bに連結され、他端部がタービン車室26の中流部に連結されている。高圧抽気流路(第3抽気流路)43は、一端部が高圧抽気室25cに連結され、他端部がタービン車室26の上流部に連結されている。
 本実施形態にて、圧縮機11は、15段であり、ロータ32の軸心方向に15個の静翼23と15個の動翼24が交互に配設されて構成されており、例えば、第1段から第6段に対応して低圧抽気室25aが設けられ、第7段から第9段までに対応して中圧抽気室25bが設けられ、第10段から第12段に対応して高圧抽気室25cが設けられている。
 なお、本実施形態は、この構成に限定されるものではない。例えば、最終段である第15段より上流側の第11段から第14段のいずれかに対応して高圧抽気室25cを設け、この高圧抽気室25cが第11段から第14段のいずれかの位置から圧縮空気を抽気するように構成してもよい。また、圧縮機11は、15段のものに限定されるものではなく、17段以上のものであってもよく、例えば17段の場合、ロータ32の軸心方向に17個の静翼23と17個の動翼24が交互に配設されて構成されており、例えば、第1段から第6段に対応して低圧抽気室25aが設けられ、第7段から第11段までに対応して中圧抽気室25bが設けられ、第12段から第14段に対応して高圧抽気室25cが設けられればよく、圧縮機の全段数に対して前記低圧抽気室25aは前段から30~45%の範囲の段数に対応し、前記中圧抽気室25bは前段から55~70%の範囲の段数に対応し、前記高圧抽気室25cは前段から75~95%の範囲の段数に対応するよう構成されればよい。
 また、低圧排気流路(第1排気流路)44は、一端部が低圧抽気流路41の中途部に連結され、他端部が排気室30(また、排気ダクト)に連結されている。中圧排気流路(第2排気流路)45は、一端部が中圧抽気流路42の中途部に連結され、他端部が排気室30(また、排気ダクト)に連結されている。高圧排気流路(第3排気流路)46は、一端部が高圧抽気流路43の中途部に連結され、他端部が排気室30(また、排気ダクト)に連結されている。そして、低圧排気流路44に低圧排気弁(第1排気弁)47が設けられ、中圧排気流路45に中圧排気弁(第2排気弁)48が設けられ、高圧排気流路46に高圧排気弁(第3排気弁)49が設けられている。
 そのため、低圧排気弁47を閉止すると、低圧抽気室25aに抽気された低圧の圧縮空気が低圧抽気流路41を通ってタービン車室26の下流側に供給される。一方、低圧排気弁47を開放すると、低圧抽気室25aに抽気された低圧の圧縮空気が低圧排気流路44を通って排気室30に排気される。また、中圧排気弁48を閉止すると、中圧抽気室25bに抽気された中圧の圧縮空気が中圧抽気流路42を通ってタービン車室26の中流側に供給される。一方、中圧排気弁48を開放すると、中圧抽気室25bに抽気された中圧の圧縮空気が中圧排気流路45を通って排気室30に排気される。また、高圧排気弁49を閉止すると、高圧抽気室25cに抽気された高圧の圧縮空気が高圧抽気流路43を通ってタービン車室26の上流側に供給される。一方、高圧排気弁49を開放すると、高圧抽気室25cに抽気された高圧の圧縮空気が高圧排気流路46を通って排気室30に排気される。
 低圧排気弁47と中圧排気弁48と高圧排気弁49は、流量調整弁であって、制御装置50は、低圧排気弁47と中圧排気弁48と高圧排気弁49を開閉制御可能であると共に、その開度を調整可能となっている。なお、低圧排気弁47と中圧排気弁48と高圧排気弁49の開度を調整不要である場合には、開閉弁であってもよい。
 ところで、ガスタービン10を起動するとき、起動用モータ(例えば、発電機として使用する電動発電機)によりロータ32を駆動回転し、圧縮機11を駆動することで圧縮空気を確保している。この圧縮機11で圧縮空気を生成するとき、動翼24の負荷が大きくなり、旋回失速が発生するおそれがある。特に、ガスタービン10の高性能化に伴って圧力比が高くなると、旋回失速が発生しやすくなる。
 そのため、本実施形態のガスタービンの起動方法は、ガスタービン10が起動するとき、このガスタービン10の起動状態が旋回失速を発生する領域に到達する前に高圧排気弁49を開放するようにしている。また、本実施形態のガスタービンの起動方法は、ガスタービン10が起動するとき、このガスタービン10の起動状態が旋回失速を発生する領域に到達する前に低圧排気弁47と中圧排気弁48と高圧排気弁49を開放するようにしている。
 本実施形態のガスタービンの起動装置は、制御装置50を有しており、この制御装置50は、ガスタービン10の起動状態が旋回失速を発生する領域に到達する前に低圧排気弁47、中圧排気弁48、高圧排気弁49を開放(開度制御)する。この場合、制御装置50は、ガスタービン10が起動する前に、低圧排気弁47と中圧排気弁48と高圧排気弁49を開放し、起動用モータによりロータ32を駆動回転してガスタービン10を起動する。
 そして、ガスタービン10の起動時における低圧排気弁47と中圧排気弁48の開度は、全開(100%)またはその近傍の開度であり、高圧排気弁49の開度は、低圧排気弁47及び中圧排気弁48の開度より小さい、例えば、半開(40%~50%)近傍の開度である。
 また、本実施形態のガスタービンの起動方法は、ガスタービン10の起動状態が旋回失速を発生する領域を抜けると低圧排気弁47と中圧排気弁48と高圧排気弁49を閉止するようにしている。
 具体的に、ガスタービン10(圧縮機11)の回転数が予め設定された所定の第1回転数に到達すると、高圧排気弁49を閉止する。ガスタービン10の回転数が第1回転数より高い予め設定された所定の第2回転数に到達すると、低圧排気弁47を閉止し、ガスタービン10の回転数が第2回転数より高い予め設定された所定の第3回転数に到達すると、中圧排気弁48を閉止する。
 この第1回転数と第2回転数と第3回転数は、ガスタービン10の機種ごとにより変動するものであることから、予め実験などにより設定しておく。この場合、ガスタービン10の起動時における低圧排気弁47と中圧排気弁48の開度は、前述したように、全開近傍の開度であるが、ガスタービン10の起動時における高圧排気弁49の開度は、タービン13の入口ガス温度または出口ガス温度と、圧縮機11における圧縮空気の圧力に応じて設定される。
 ガスタービン10が起動し、圧縮機11の回転数が上昇すると、タービン13に流入する燃焼ガス(排気ガス)の温度が上昇し、タービン13が加熱される。そのため、圧縮機11により生成された圧縮空気の一部を抽気し、冷却空気として各抽気流路41,42,43によりタービン13に供給して冷却する必要があり、高圧排気弁49の開度が制限される。即ち、高圧排気弁49の開度の上限値は、タービン13の入口ガス温度(出口ガス温度)に応じて設定される。つまり、タービン13の入口ガス温度が耐熱温度より上昇しないように、高圧排気弁49の開度の上限値が決定される。
 一方、前述したように、圧縮機11の回転数が上昇すると、動翼24に作用する負荷が大きくなり、旋回失速が発生するおそれがある。そのため、圧縮機11の圧縮空気を抽気して排気することで、圧力を低下させる必要があり、高圧排気弁49の開度が制限される。即ち、高圧排気弁49の開度の下限値は、圧縮機11における圧縮空気の圧力に応じて設定される。つまり、圧縮機11で旋回失速の発生を抑制するように、高圧排気弁49の開度の下限値が決定される。
 ここで、ガスタービン10の起動時における制御装置50による各排気弁47,48,49の開閉制御について具体的に説明する。図3は、ガスタービンの起動時における排気弁の開度を表すグラフである。
 図3に示すように、ガスタービン10の起動時、低圧排気弁47の開度Aは、V1、中圧排気弁48の開度Bは、V2、高圧排気弁49の開度Cは、V3に設定されており、この状態で起動用モータにより圧縮機11を駆動する。このとき、低圧排気弁47と中圧排気弁48の開度は、全開(100%)の近傍であり、高圧排気弁49の開度は、半開(40%~50%)近傍となっている。
 ガスタービン10を起動すると、圧縮機11の回転数が上昇して圧縮空気を生成し、圧縮空気の圧力が増加していく。すると、動翼24の負荷が大きくなり、旋回失速が発生するおそれがある。しかし、ここで、圧縮機11の低圧側と中圧側と高圧側から抽気していることから、特に高圧側での圧力上昇が抑制され、動翼24に作用する負荷が軽減して旋回失速の発生が抑制される。
 この場合、圧縮機11の低圧側と中圧側だけから抽気した場合、密度が高い圧縮空気を抜くこととなり、径の大きな抽気流路(配管)41,42及び排気流路(配管)44,45が必要となる。また、圧縮機11の低圧側と中圧側から抜いた圧縮空気は、高圧ではないことから、タービン13側との差圧が小さく、抽気量の調整が困難となり、起動性に悪影響を与えるおそれがある。しかし、ここでは、圧縮機11の低圧側と中圧側とに加えて高圧側からも抽気しているため、抽気流路(配管)41,42,43及び排気流路(配管)44,45,46の大径化や起動性の低下を抑制できる。サイリスタの容量を小さくすることが可能となる。特に、最も圧力の高くてチョークする最終段の直前の圧縮空気を抽気することで、前方段側の圧力比を有効的に下げ、起動特性を改善できる。
 そして、ガスタービン10を起動すると、回転数が上昇して第1回転数N1に到達すると、高圧排気弁49を閉止する。続いて、ガスタービン10の回転数が上昇して第2回転数N2に到達すると、低圧排気弁47を閉止する。その後、ガスタービン10の回転数が上昇して第3回転数に到達すると、中圧排気弁48を閉止する。即ち、ガスタービン10の起動状態が旋回失速を発生する領域を抜けると、高圧排気弁49、低圧排気弁47、中圧排気弁48の順に閉止する。
 なお、ガスタービン10の回転数に応じて高圧排気弁49、低圧排気弁47、中圧排気弁48の順に閉止したが、この構成に限定されるものではない、図4及び図5は、ガスタービンの起動時における排気弁の開度の変形例を表すグラフである。
 この変形例では、ガスタービン10の回転数に応じて低圧排気弁47と中圧排気弁48の開度を所定期間にわたって小さくし、その後、低圧排気弁47と中圧排気弁48を閉止するようにしている。図4に示すように、ガスタービン10の起動時、低圧排気弁47の開度Aは、V1、中圧排気弁48の開度Bは、V2、高圧排気弁49の開度Cは、V3に設定されており、この状態で起動用モータにより圧縮機11を駆動する。
 そして、ガスタービン10の回転数が上昇し、第1回転数N11に到達すると、高圧排気弁49を閉止する。続いて、ガスタービン10の回転数が上昇して所定回転数N12に到達すると、中圧排気弁48の開度を小さくし、所定回転数N13に到達すると、低圧排気弁47の開度を小さくする。その後、ガスタービン10の回転数が上昇して第2回転数N14に到達すると、低圧排気弁47を閉止し、第3回転数N15に到達すると、中圧排気弁48を閉止する。即ち、ガスタービン10の起動状態が旋回失速を発生する領域を抜けると、高圧排気弁49を閉止すると共に、低圧排気弁47と中圧排気弁48の開度を小さくすることで、圧縮機11からの抽気量を減少して圧縮空気を迅速に圧力上昇させることができる。
 また、この変形例では、ガスタービン10の回転数が第1回転数より低い予め設定された所定の第4回転数に到達すると、高圧排気弁49の開度を小さくし、ガスタービン10の回転数が第1回転数に到達すると、高圧排気弁49を閉止するようにしている。図5に示すように、ガスタービン10の起動時、低圧排気弁47の開度Aは、V1、中圧排気弁48の開度Bは、V2、高圧排気弁49の開度Cは、V3に設定されており、この状態で起動用モータにより圧縮機11を駆動する。
 そして、ガスタービン10の回転数が上昇し、第4回転数N21に到達すると、高圧排気弁49の開度を小さくし、ガスタービン10の回転数が上昇して所定回転数N22に到達すると、中圧排気弁48の開度を小さくし、所定回転数N23に到達すると、低圧排気弁47の開度を小さくする。その後、ガスタービン10の回転数が上昇し、ガスタービン10の回転数が第1回転数N24に到達すると、高圧排気弁49を閉止し、第2回転数N25に到達すると、低圧排気弁47を閉止し、第3回転数N26に到達すると、中圧排気弁48を閉止する。即ち、ガスタービン10の起動状態が旋回失速を発生する領域を抜けると、高圧排気弁49を閉止せずに開度を小さくすることで、旋回失速の発生に備え、旋回失速の発生がほとんどなくなった第1回転数N24の到達時に高圧排気弁49を閉止する。
 このように本実施形態のガスタービンの起動方法にあっては、圧縮機11の低圧抽気室25aと中圧抽気室25bと高圧抽気室25cから抽気した圧縮空気を冷却空気としてタービン13に供給する低圧抽気流路41と中圧抽気流路42と高圧抽気流路43を設け、低圧抽気流路41と中圧抽気流路42と高圧抽気流路43の圧縮空気をタービン排気系に排気する低圧排気流路44と中圧排気流路45と高圧排気流路46を設け、低圧排気流路44と中圧排気流路45と高圧排気流路46にそれぞれ低圧排気弁47と中圧排気弁48と高圧排気弁49を設け、ガスタービン10が起動するとき、ガスタービン10の起動状態が旋回失速を発生する領域に到達する前に高圧排気弁49を開放するようにしている。
 従って、ガスタービン10が起動するとき、例えば、起動用モータにより圧縮機11を駆動することで空気を圧縮し、燃焼器12側に圧縮空気を流しているが、このとき、圧縮機11における動翼24の負荷が大きくなり、旋回失速が発生するおそれがある。そのため、ガスタービン10の起動状態が旋回失速を発生する領域に到達する前に高圧排気弁49を開放し、高圧抽気室25cから抽気して高圧抽気流路43を流れる圧縮空気を高圧排気流路46によりタービン排気系に排気する。すると、動翼24の負荷が小さくなって旋回失速の発生が抑制され、ガスタービン10の起動特性を改善することができる。その結果、構造の複雑化や製造コストの増加を抑制して適正にガスタービン10を起動することができる。
 本実施形態のガスタービンの起動方法では、ガスタービン10が起動するとき、ガスタービン10の起動状態が旋回失速を発生する領域に到達する前に低圧排気弁47と中圧排気弁48と高圧排気弁49を開放するようにしている。従って、高圧排気弁49だけでなく低圧排気弁47と中圧排気弁48を開放するため、圧縮機11の全ての領域で動翼24の負荷を小さくすることができ、旋回失速の発生を抑制してガスタービン10の起動特性を改善することができる。
 本実施形態のガスタービンの起動方法では、ガスタービン10の起動時に、低圧排気弁47と中圧排気弁48と高圧排気弁49を開放するようにしている。従って、ガスタービン10の起動前から各排気弁47,48,49を開放するため、ガスタービン10の起動途中での開弁操作が不要となり、制御を簡素化して操作性を向上することができる。
 本実施形態のガスタービンの起動方法では、高圧排気弁49を開放するときの開度を低圧排気弁47及び中圧排気弁48を開放するときの開度より小さく設定している。従って、高圧まで加圧した圧縮空気の損失を抑制し、タービン効率の低下を抑制することができる。
 本実施形態のガスタービンの起動方法では、ガスタービン10の起動状態が旋回失速を発生する領域を抜けると低圧排気弁47と中圧排気弁48と高圧排気弁49を閉止するようにしている。従って、十分な圧縮空気量を確保して早期に定格運転を実施することができる。
 本実施形態のガスタービンの起動方法では、ガスタービン10の回転数が予め設定された所定の第1回転数に到達すると、高圧排気弁49を閉止するようにしている。従って、回転数が上昇すると、まず、高圧排気弁49を閉止することで、高圧まで加圧した圧縮空気の抽気を停止して早期に定格運転を実施することができる。
 本実施形態のガスタービンの起動方法では、ガスタービン10の回転数が第1回転数より高い予め設定された所定の第2回転数に到達すると、低圧排気弁47を閉止し、ガスタービン10の回転数が第2回転数より高い予め設定された所定の第3回転数に到達すると、中圧排気弁48を閉止するようにしている。従って、圧縮空気の抽気を順次停止して早期に定格運転を実施することができる。
 本実施形態のガスタービンの起動方法では、ガスタービン10の回転数が第1回転数より低い予め設定された所定の第4回転数に到達すると、高圧排気弁49の開度を小さくし、ガスタービン10の回転数が第1回転数に到達すると、高圧排気弁49を閉止するようにしている。従って、高圧まで加圧した圧縮空気の損失を抑制し、ガスタービン効率の低下を抑制することができる。
 本実施形態のガスタービンの起動方法では、ガスタービン10の起動時における高圧排気弁49の開度の上限値を、タービン13の入口ガス温度または出口ガス温度に応じて設定している。従って、圧縮機11における耐熱温度以上の温度上昇を防止して安全性を確保することができる。
 本実施形態のガスタービンの起動方法では、ガスタービン10の起動時における高圧排気弁49の開度の下限値を、圧縮機11における圧縮空気の圧力に応じて設定している。従って、旋回失速を抑制する一方で、無駄な圧縮空気の損失を抑制することができる。
 また、本実施形態のガスタービンの起動装置にあっては、圧縮機11の低圧抽気室25aと中圧抽気室25bと高圧抽気室25cから抽気した圧縮空気を冷却空気としてタービン13に供給する低圧抽気流路41と中圧抽気流路42と高圧抽気流路43と、低圧抽気流路41と中圧抽気流路42と高圧抽気流路43の圧縮空気をタービン排気系に排気する低圧排気流路44と中圧排気流路45と高圧排気流路46と、低圧排気流路44と中圧排気流路45と高圧排気流路46にそれぞれ設けられる低圧排気弁47と中圧排気弁48と高圧排気弁49と、ガスタービン10が起動するときにガスタービン10の起動状態が旋回失速を発生する領域に到達する前に高圧排気弁49を開放する制御装置50とを設けている。
 従って、ガスタービン10が起動するとき、ガスタービン10の起動状態が旋回失速を発生する領域に到達する前に高圧排気弁49を開放するため、動翼24の負荷が小さくなって旋回失速の発生が抑制され、ガスタービン10の起動特性を改善することができる。その結果、構造の複雑化や製造コストの増加を抑制して適正にガスタービン10を起動することができる。
 また、本実施形態のガスタービンの起動方法にあっては、圧縮機11の低圧抽気室25aと中圧抽気室25bと高圧抽気室25cから抽気した圧縮空気を冷却空気としてタービン13に供給する低圧抽気流路41と中圧抽気流路42と高圧抽気流路43を設け、低圧抽気流路41と中圧抽気流路42と高圧抽気流路43の圧縮空気をタービン排気系に排気する低圧排気流路44と中圧排気流路45と高圧排気流路46を設け、低圧排気流路44と中圧排気流路45と高圧排気流路46にそれぞれ低圧排気弁47と中圧排気弁48と高圧排気弁49を設け、ガスタービン10の起動状態が旋回失速を発生する領域に到達する前に低圧排気弁47と中圧排気弁48と高圧排気弁49の開度を大きくし、ガスタービン10の起動状態が旋回失速を発生する領域を抜けると低圧排気弁47と中圧排気弁48と高圧排気弁49の開度を小さくするようにしている。
 従って、ガスタービン10が起動するとき、例えば、起動用モータにより圧縮機11を駆動することで空気を圧縮し、燃焼器12側に圧縮空気を流しているが、このとき、圧縮機11における動翼24の負荷が大きくなり、旋回失速が発生するおそれがある。そのため、ガスタービン10の起動状態が旋回失速を発生する領域に到達する前に排気弁47,48,49の開度を大きくし、ガスタービン10の起動状態が旋回失速を発生する領域を抜けると排気弁47,48,49の開度を小さくする。すると、動翼24の負荷が小さくなって旋回失速の発生が抑制され、ガスタービン10の起動特性を改善することができる。その結果、構造の複雑化や製造コストの増加を抑制して適正にガスタービン10を起動することができる。
 なお、本発明のガスタービンの起動方法及び装置は、ガスタービンが起動するとき、ガスタービンの起動状態が旋回失速を発生する領域に到達する前に排気弁を開放するものであり、実施形態では、ガスタービン10の起動時、つまり、ガスタービン10が起動する前に排気弁を開放しておくように構成したが、この構成に限定されるものではない。例えば、ガスタービンが旋回失速を発生する回転数や圧縮空気の圧力などを事前の実験などにより求めておき、ガスタービンが起動し、旋回失速を発生する回転数や圧縮空気の圧力に到達すると、排気弁を開放するようにしてもよい。
 11 圧縮機
 12 燃焼器
 13 タービン
 21 圧縮機車室
 23 静翼
 24 動翼
 25 抽気室
 25a 低圧抽気室(第1抽気室)
 25b 中圧抽気室(第2抽気室)
 25c 高圧抽気室(第3抽気室)
 26 タービン車室
 30 排気室
 32 ロータ
 41 低圧抽気流路(第1抽気流路)
 42 中圧抽気流路(第2抽気流路)
 43 高圧抽気流路(第3抽気流路)
 44 低圧排気流路(第1排気流路)
 45 中圧排気流路(第2排気流路)
 46 高圧排気流路(第3排気流路)
 47 低圧排気弁(第1排気弁)
 48 中圧排気弁(第2排気弁)
 49 高圧排気弁(第3排気弁)
 50 制御装置

Claims (13)

  1.  圧縮機と燃焼器とタービンとから構成され、
     前記圧縮機の第1抽気室と前記第1抽気室より高圧側の第2抽気室と前記第2抽気室より高圧側の第3抽気室から抽気した圧縮空気を冷却空気として前記タービンに供給する第1抽気流路と第2抽気流路と第3抽気流路が設けられ、
     前記第1抽気流路と前記第2抽気流路と前記第3抽気流路の圧縮空気をタービン排気系に排気する第1排気流路と第2排気流路と第3排気流路が設けられ、
     前記第1排気流路と前記第2排気流路と前記第3排気流路にそれぞれ第1排気弁と第2排気弁と第3排気弁が設けられるガスタービンにおいて、
     前記ガスタービンが起動するとき、前記ガスタービンの起動状態が旋回失速を発生する領域に到達する前に前記第3排気弁を開放する、
     ことを特徴とするガスタービンの起動方法。
  2.  前記第1抽気室は、前記圧縮機の前段から30%~45%の範囲の段数に対応して設けられ、前記第2抽気室は、前段から55%~70%の範囲の段数に対応して設けられ、前記第3抽気室は、前段から75%~95%の範囲の段数に対応して設けられることを特徴とする請求項1に記載のガスタービンの起動方法。
  3.  前記ガスタービンが起動するとき、前記ガスタービンの起動状態が旋回失速を発生する領域に到達する前に前記第1排気弁と前記第2排気弁と前記第3排気弁を開放することを特徴とする請求項1または請求項2に記載のガスタービンの起動方法。
  4.  前記ガスタービンの起動時に、前記第1排気弁と前記第2排気弁と前記第3排気弁を開放することを特徴とする請求項1から請求項3のいずれか一項に記載のガスタービンの起動方法。
  5.  前記第3排気弁を開放するときの開度を、前記第1排気弁及び前記第2排気弁を開放するときの開度より小さく設定することを特徴とする請求項3または請求項4に記載のガスタービンの起動方法。
  6.  前記ガスタービンの起動状態が旋回失速を発生する領域を抜けると前記第1排気弁と前記第2排気弁と前記第3排気弁を閉止することを特徴とする請求項1から請求項5のいずれか一項に記載のガスタービンの起動方法。
  7.  前記ガスタービンの回転数が予め設定された所定の第1回転数に到達すると、前記第3排気弁を閉止することを特徴とする請求項6に記載のガスタービンの起動方法。
  8.  前記ガスタービンの回転数が前記第1回転数より高い予め設定された所定の第2回転数に到達すると、前記第1排気弁を閉止し、前記ガスタービンの回転数が前記第2回転数より高い予め設定された所定の第3回転数に到達すると、前記第2排気弁を閉止することを特徴とする請求項7に記載のガスタービンの起動方法。
  9.  前記ガスタービンの回転数が前記第1回転数より低い予め設定された所定の第4回転数に到達すると、前記第3排気弁の開度を小さくし、前記ガスタービンの回転数が前記第1回転数に到達すると、前記第3排気弁を閉止することを特徴とする請求項7または請求項8に記載のガスタービンの起動方法。
  10.  前記ガスタービンの起動時における前記第3排気弁の開度の上限値は、前記タービンの入口ガス温度または出口ガス温度に応じて設定されることを特徴とする請求項1から請求項9のいずれか一項に記載のガスタービンの起動方法。
  11.  前記ガスタービンの起動時における前記第3排気弁の開度の下限値は、前記圧縮機における圧縮空気の圧力に応じて設定されることを特徴とする請求項1から請求項10のいずれか一項に記載のガスタービンの起動方法。
  12.  圧縮機と燃焼器とタービンとから構成され、
     前記圧縮機の第1抽気室と前記第1抽気室よりも高圧側の第2抽気室と前記第2抽気室よりも高圧側の第3抽気室から抽気した圧縮空気を冷却空気として前記タービンに供給する第1抽気流路と第2抽気流路と第3抽気流路が設けられ、
     前記第1抽気流路と前記第2抽気流路と前記第3抽気流路の圧縮空気をタービン排気系に排気する第1排気流路と第2排気流路と第3排気流路が設けられ、
     前記第1排気流路と前記第2排気流路と前記第3排気流路にそれぞれ第1排気弁と第2排気弁と第3排気弁が設けられるガスタービンにおいて、
     前記ガスタービンの起動状態が旋回失速を発生する領域に到達する前に前記第1排気弁と前記第2排気弁と前記第3排気弁の開度を大きくし、前記ガスタービンの起動状態が旋回失速を発生する領域を抜けると前記第1排気弁と前記第2排気弁と前記第3排気弁の開度を小さくする、
     ことを特徴とするガスタービンの起動方法。
  13.  圧縮機と燃焼器とタービンとから構成されるガスタービンにおいて、
     前記圧縮機の第1抽気室と前記第1抽気室よりも高圧側の第2抽気室と前記第2抽気室よりも高圧側の第3抽気室から抽気した圧縮空気を冷却空気として前記タービンに供給する第1抽気流路と第2抽気流路と第3抽気流路が設けられ、
     前記第1抽気流路と前記第2抽気流路と前記第3抽気流路の圧縮空気をタービン排気系に排気する第1排気流路と第2排気流路と第3排気流路と、
     前記第1排気流路と前記第2排気流路と前記第3排気流路にそれぞれ設けられる第1排気弁と第2排気弁と第3排気弁と、
     前記ガスタービンが起動するときに前記ガスタービンの起動状態が旋回失速を発生する領域に到達する前に前記第3排気弁を開放する制御装置と、
     を備えることを特徴とするガスタービンの起動装置。
PCT/JP2016/081759 2015-11-04 2016-10-26 ガスタービンの起動方法及び装置 WO2017077921A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112016005055.0T DE112016005055T5 (de) 2015-11-04 2016-10-26 Verfahren und vorrichtung zur inbetriebnahme einer gasturbine
KR1020177036518A KR102290585B1 (ko) 2015-11-04 2016-10-26 가스 터빈의 기동 방법 및 장치
CN201680031189.8A CN107709734B (zh) 2015-11-04 2016-10-26 燃气轮机的启动方法以及装置
US15/576,873 US10858996B2 (en) 2015-11-04 2016-10-26 Gas turbine startup method and device
KR1020197038217A KR102196599B1 (ko) 2015-11-04 2016-10-26 가스 터빈의 기동 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-216841 2015-11-04
JP2015216841A JP6738601B2 (ja) 2015-11-04 2015-11-04 ガスタービンの起動方法及び装置

Publications (1)

Publication Number Publication Date
WO2017077921A1 true WO2017077921A1 (ja) 2017-05-11

Family

ID=58661880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081759 WO2017077921A1 (ja) 2015-11-04 2016-10-26 ガスタービンの起動方法及び装置

Country Status (6)

Country Link
US (1) US10858996B2 (ja)
JP (1) JP6738601B2 (ja)
KR (2) KR102290585B1 (ja)
CN (1) CN107709734B (ja)
DE (1) DE112016005055T5 (ja)
WO (1) WO2017077921A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201808852D0 (en) 2018-05-31 2018-07-18 Rolls Royce Plc Gas turbine engine
JP7173897B2 (ja) 2019-02-28 2022-11-16 三菱重工業株式会社 ガスタービンの運転方法およびガスタービン
CN114233651A (zh) * 2021-12-20 2022-03-25 中国科学院工程热物理研究所 一种轴流压缩膨胀式能量转换装置及控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060979A (en) * 1975-11-19 1977-12-06 United Technologies Corporation Stall warning detector for gas turbine engine
JPS56109630U (ja) * 1980-01-24 1981-08-25
JPS61142335A (ja) * 1984-12-14 1986-06-30 Hitachi Ltd ガスタービンプラントの起動方法及びガスタービンプラント
JPS62126296A (ja) * 1985-11-27 1987-06-08 Hitachi Ltd 軸流圧縮機の抽気装置
JP2000291449A (ja) * 1999-04-02 2000-10-17 Mitsubishi Heavy Ind Ltd ガスタービン起動方法
JP2001090555A (ja) * 1999-09-22 2001-04-03 Mitsubishi Heavy Ind Ltd ガスタービン圧縮機のサージング検出方法及び装置
JP2008196399A (ja) * 2007-02-14 2008-08-28 Hitachi Ltd 高湿分利用ガスタービン
JP2010281224A (ja) * 2009-06-02 2010-12-16 Mitsubishi Heavy Ind Ltd ガスタービン及びそれを備えるプラント
JP2012102648A (ja) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd ガスタービン
US20140271113A1 (en) * 2013-03-13 2014-09-18 Rolls-Royce Corporation Modulated cooling flow scheduling for both sfc improvement and stall margin increase

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109630A (en) 1980-02-05 1981-08-31 Hitachi Ltd Wet type cleaner
US8015826B2 (en) * 2007-04-05 2011-09-13 Siemens Energy, Inc. Engine brake for part load CO reduction
US7972105B2 (en) * 2007-05-10 2011-07-05 General Electric Company Turbine anti-rotating stall schedule
US8677761B2 (en) * 2009-02-25 2014-03-25 General Electric Company Systems and methods for engine turn down by controlling extraction air flows
US20110162386A1 (en) * 2010-01-04 2011-07-07 Shinoj Vakkayil Chandrabose Ejector-OBB Scheme for a Gas Turbine
JP5730098B2 (ja) 2011-03-30 2015-06-03 三菱日立パワーシステムズ株式会社 ガスタービン、ガスタービンの起動方法
US9206744B2 (en) * 2012-09-07 2015-12-08 General Electric Company System and method for operating a gas turbine engine
US9261022B2 (en) * 2012-12-07 2016-02-16 General Electric Company System for controlling a cooling flow from a compressor section of a gas turbine
US9611752B2 (en) * 2013-03-15 2017-04-04 General Electric Company Compressor start bleed system for a turbine system and method of controlling a compressor start bleed system
US9651053B2 (en) * 2014-01-24 2017-05-16 Pratt & Whitney Canada Corp. Bleed valve

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060979A (en) * 1975-11-19 1977-12-06 United Technologies Corporation Stall warning detector for gas turbine engine
JPS56109630U (ja) * 1980-01-24 1981-08-25
JPS61142335A (ja) * 1984-12-14 1986-06-30 Hitachi Ltd ガスタービンプラントの起動方法及びガスタービンプラント
JPS62126296A (ja) * 1985-11-27 1987-06-08 Hitachi Ltd 軸流圧縮機の抽気装置
JP2000291449A (ja) * 1999-04-02 2000-10-17 Mitsubishi Heavy Ind Ltd ガスタービン起動方法
JP2001090555A (ja) * 1999-09-22 2001-04-03 Mitsubishi Heavy Ind Ltd ガスタービン圧縮機のサージング検出方法及び装置
JP2008196399A (ja) * 2007-02-14 2008-08-28 Hitachi Ltd 高湿分利用ガスタービン
JP2010281224A (ja) * 2009-06-02 2010-12-16 Mitsubishi Heavy Ind Ltd ガスタービン及びそれを備えるプラント
JP2012102648A (ja) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd ガスタービン
US20140271113A1 (en) * 2013-03-13 2014-09-18 Rolls-Royce Corporation Modulated cooling flow scheduling for both sfc improvement and stall margin increase

Also Published As

Publication number Publication date
CN107709734B (zh) 2020-11-10
US20180171875A1 (en) 2018-06-21
KR102196599B1 (ko) 2020-12-30
KR20200000486A (ko) 2020-01-02
US10858996B2 (en) 2020-12-08
KR102290585B1 (ko) 2021-08-17
JP2017089414A (ja) 2017-05-25
DE112016005055T5 (de) 2018-07-26
CN107709734A (zh) 2018-02-16
JP6738601B2 (ja) 2020-08-12
KR20180009770A (ko) 2018-01-29

Similar Documents

Publication Publication Date Title
KR102221888B1 (ko) 가스 터빈 및 가스 터빈의 운전 방법
JP5613393B2 (ja) ガスタービンの冷却装置及び方法
JP4115037B2 (ja) ガスタービン起動方法
JP5639568B2 (ja) 2軸式ガスタービン
JP2017040263A (ja) 混合流ターボコア
JP2017040265A (ja) ガスタービンエンジンのための空気流噴射ノズル
JP2017040264A (ja) 圧縮機ブリード補助タービン
JP2016537550A (ja) ガスタービンエンジン用の圧縮機抽気及び周囲空気による冷却システム
JP5629055B2 (ja) ガスタービン負荷の変動制御方法
JP2012504301A (ja) 燃料電池スタック用の空気供給装置、燃料電池システム、および空気供給装置の運転方法
WO2017077921A1 (ja) ガスタービンの起動方法及び装置
JP6749772B2 (ja) 過剰空気流を生成する圧縮機及び入口空気を冷却するためのターボ膨張器を有する発電システム
JP2016176468A (ja) タービン排気ガス質量流を増加させるため過剰空気流を生成する圧縮機及びターボエキスパンダを有する発電システム
JP2016176476A (ja) 過剰空気流を生成する圧縮機及び補助発電機のためのターボ膨張器を有する発電システム
JP2007182785A (ja) ガスタービン及びガスタービンの起動方法並びに複合発電システム
JP5185762B2 (ja) ガスタービン及びその起動時運転方法
JP2011007111A (ja) 再生サイクルガスタービンシステム、およびその運転方法
JP2019509419A (ja) 可変入口ガイドベーンを使用した圧縮機列の始動
JP4163131B2 (ja) 二軸式ガスタービン発電システム及びその停止方法
JP2017101658A (ja) ガスタービンエンジンで使用するための燃料供給システムおよびガスタービンエンジンの速度超過事象を制御する方法
JP5650674B2 (ja) ガスタービンの間隙制御装置、間隙制御方法及び間隙制御装置を備えたガスタービン
JP5730098B2 (ja) ガスタービン、ガスタービンの起動方法
JP5023107B2 (ja) 再生サイクルガスタービンシステム
JP6783043B2 (ja) 複合サイクル発電プラントの熱エネルギー節減方法
JP2024014757A (ja) 停止用ロータ冷却システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15576873

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177036518

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016005055

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861983

Country of ref document: EP

Kind code of ref document: A1