JP5185762B2 - ガスタービン及びその起動時運転方法 - Google Patents

ガスタービン及びその起動時運転方法 Download PDF

Info

Publication number
JP5185762B2
JP5185762B2 JP2008262072A JP2008262072A JP5185762B2 JP 5185762 B2 JP5185762 B2 JP 5185762B2 JP 2008262072 A JP2008262072 A JP 2008262072A JP 2008262072 A JP2008262072 A JP 2008262072A JP 5185762 B2 JP5185762 B2 JP 5185762B2
Authority
JP
Japan
Prior art keywords
flow path
heating medium
turbine
gas turbine
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008262072A
Other languages
English (en)
Other versions
JP2010090816A (ja
Inventor
聡 水上
達男 石黒
淳一郎 正田
和正 高田
祐也 福永
宗司 長谷川
将人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008262072A priority Critical patent/JP5185762B2/ja
Application filed by Tohoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tohoku Electric Power Co Inc
Priority to EP13194464.7A priority patent/EP2708720B1/en
Priority to PCT/JP2009/066485 priority patent/WO2010041552A1/ja
Priority to US13/056,064 priority patent/US9255490B2/en
Priority to KR1020117002103A priority patent/KR101346566B1/ko
Priority to KR1020137004036A priority patent/KR101366584B1/ko
Priority to EP09819087.9A priority patent/EP2333248B1/en
Priority to CN201410781689.6A priority patent/CN104564183B/zh
Priority to CN201510315561.5A priority patent/CN105089714B/zh
Priority to CN200980130681.0A priority patent/CN102112704B/zh
Priority to CN201310355200.4A priority patent/CN103557079B/zh
Priority to KR1020137004035A priority patent/KR101366586B1/ko
Priority to EP13165249.7A priority patent/EP2674579B1/en
Priority to EP13165248.9A priority patent/EP2631451B1/en
Publication of JP2010090816A publication Critical patent/JP2010090816A/ja
Application granted granted Critical
Publication of JP5185762B2 publication Critical patent/JP5185762B2/ja
Priority to US14/843,732 priority patent/US10309245B2/en
Priority to US14/843,672 priority patent/US10247030B2/en
Priority to US14/843,585 priority patent/US9951644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、ガスタービン及びその起動時運転方法に係り、特に、ガスタービン起動時におけるアクティブクリアランスコントロール(Active Clearance Control;ACC)システムに関する。
一般的なガスタービンは、圧縮機と燃焼器とタービンとにより構成されており、空気取入口から取り込まれた空気が圧縮機により圧縮されて高温・高圧の圧縮空気となる。この圧縮空気は燃焼器に供給され、燃焼器内では、圧縮空気に対して燃料を供給して燃焼させることで高温・高圧の燃焼ガスが生成される。この燃焼ガスは、圧縮機と同軸のタービンを駆動するので、たとえばガスタービンの出力軸側に発電機を連結すれば、ガスタービンにより発電機を駆動して発電を行うことができる。
このようなガスタービンにおいては、アクティブクリアランスコントロール(以下、ACCと称する)システムにより、運転状態に応じて変化する温度や遠心力の影響を受けて変動するチップクリアランスを最小に制御し、回転部/静止部間の干渉防止及び運転の高効率化を図っている。
一般に、チップクリアランスを制御しないガスタービンにおいては、チップクリアランスが最小となる位置は定格運転時ではなく起動時となる。そこで、ACCシステムでは、ガスタービンを起動する前の段階でチップクリアランスに影響を及ぼす静止系部品を暖めることによって、チップクリアランスが最小となる運転状態を定格運転時に設定する。すなわち、ACCシステムは、図12に示すように、ガスタービンを起動する前にタービン静止部を暖めてクリアランスを予め広げておき、定格運転時にはタービン静止部の温度を調整することによって、定格運転時に最小のクリアランスを実現して運転効率を確保する手法である。
ところで、上述したACCシステムによるガスタービンの運転は、下記の5つの状態に大別することができる。
(1)起動直前
ACCシステムを行うため、タービン静翼側の静止系部品に加熱媒体を流して暖め、伸びを大きくして翼環等の静止部と回転部である動翼との間にあるクリアランスを広げる。
(2)起動中(負荷を上げている途中)
起動中にクリアランスがなくならないよう(静止部と回転部とが接触しないよう)に、起動直前と同様に静止系部品を暖め続ける。
(3)定格運転時
静止系部品を流れる加熱媒体の状態(温度等)を変えることにより、静止部と回転部との間のクリアランスを最小とする。
(4)停止中(負荷を下げている途中)
停止時にクリアランスがなくならないよう(静止部と回転部とが接触しないよう)に、起動直前と同様に静止系部品を暖め続ける。
(5)停止時
キャットバックを防止するために、ガスタービン内部に残った高温のガスをガスタービン外部に排出する。また、キャットバックを防止するため、静止系部品に加熱媒体を流してガスタービン内部に残ったガスの分布をなくす。
上述したACCシステムにおいて、ガスタービンのクリアランス制御方法は下記の3つに分類される。
(1)タービン翼内部に流す冷却媒体の状態を変化させて制御する方法
タービン内部を流れる冷却媒体の温度について、冷却媒体の冷却方法を変更する(たとえば無冷却から空気冷却や蒸気冷却にする)などして変化させ、タービン翼自体の伸び量を変化させてクリアランスを調整する制御方法であり、冷却媒体の冷却方法を変える機構が必要となる。
(2)静止系部品を蒸気または空気で温度調整して制御する方法
排ガスボイラで発生した蒸気等をバルブなどで調整した後、静止系部品に流してクリアランスを制御する方式であり、一般に空気を用いる場合、回収せずにガスパス側に捨てることになるため、サイクル効率が減少する。
また、蒸気を用いる場合、シンプルサイクルでは運転できず、ボイラ暖機が必要となるため起動時間が長い。なお、蒸気を用いる場合には、起動のための補助ボイラ、排ガスボイラからの蒸気配管など付帯設備が必要となる。
(3)機械的な機構により翼またはケーシングを動かして制御する方法
アクチュエーターのような機械的な機構を設け、翼やケーシングを動かすことでクリアランスを調整する制御方法である。
上述したACCシステムに関する従来技術としては、圧縮空気を抽気し、流量調整弁を経た後に静止系部品の分割環を冷却するものがある。(たとえば、特許文献1参照)
また、蒸気タービンで用いる蒸気の一部を取り出し、バルブで調整した後に分割環を冷却して蒸気タービン系統に戻すものがある。(たとえば、特許文献2参照)
特開平6−317184号公報 特開2001−248406号公報
ところで、上述したガスタービンにおいては、設備の運転効率向上等の観点から、ガスタービン起動の高速化が求められている。このため、ガスタービン起動時におけるACCシステムについても、静止系部品を所望の温度まで速やかに暖めて伸ばし、静止部と回転部との間に形成されるクリアランスを最適値まで広げてガスタービン起動の高速化を達成することが望まれる。この場合、付帯設備の付加を最小限に抑えることが望ましい。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、ガスタービン起動時におけるACCシステムの速やかな運転制御を行い、ガスタービン起動の高速化を達成できるガスタービン及びその起動時運転方法を提供することにある。
本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係るガスタービンは、圧縮機により圧縮された圧縮空気に燃焼器で燃料を供給して燃焼させ、発生した燃焼ガスをタービンに供給することで回転動力を得るように構成されているガスタービンにおいて、前記圧縮機の吐出側から分岐した分岐流路に接続され、加熱媒体を導入して昇圧する前記圧縮機から独立した運転が可能な昇圧手段と、該昇圧手段で昇圧された昇圧加熱媒体を前記タービンの静止系部品内に設けられているタービン冷却媒体流路へ導く加熱媒体供給流路と、前記タービン冷却媒体流路を通過した前記昇圧加熱媒体を前記圧縮機の吐出側へ導いて合流させる加熱媒体戻し流路とを備え、ガスタービン起動時及びその起動直前準備として前記昇圧手段を運転し、前記タービン冷却媒体流路内に前記昇圧加熱媒体を流して昇温させることを特徴とするものである。
このようなガスタービン装置によれば、圧縮機の吐出側から分岐した分岐流路に接続され、加熱媒体を導入して昇圧する前記圧縮機から独立した運転が可能な昇圧手段と、該昇圧手段で昇圧された昇圧加熱媒体を前記タービンの静止系部品内に設けられているタービン冷却媒体流路へ導く加熱媒体供給流路と、前記タービン冷却媒体流路を通過した前記昇圧加熱媒体を前記吐出側流路へ導いて合流させる加熱媒体戻し流路とを備え、ガスタービン起動時及びその起動直前準備として前記昇圧手段を運転し、前記タービン冷却媒体流路内に前記昇圧加熱媒体を流して昇温させるようにしたので、昇圧手段により昇圧されて温度上昇した昇圧加熱媒体は、タービン冷却媒体流路を通る際に、タービンの静止系部品を加熱して暖める。このとき、昇圧手段はガスタ−ビン本体から独立して運転可能なため、ガスタービン起動時の起動直前準備として、速やかなクリアランスコントロールが可能となる。
上記の発明において、前記加熱媒体供給流路の途中から分岐して前記吐出側流路へ接続されるとともに流路開閉手段を備えているバイパス流路を設けることが好ましく、これにより、昇圧手段により昇圧されて温度上昇した昇圧加熱媒体の一部を、流路開閉手段を開操作してバイパス流路に流せば、温度上昇した昇圧加熱媒体の一部が再度昇圧及び再加熱される。従って、タービン冷却加熱媒体通路を通る昇圧後の昇圧加熱媒体は、その温度がより一層高いものとなる。
上記の発明において、前記分岐流路または前記加熱媒体供給流路に、前記加熱媒体または前記昇圧加熱媒体と熱交換して昇温させる加熱手段を設けることが好ましく、これにより、タービン冷却加熱媒体通路を通る昇圧加熱媒体を加熱し、昇圧加熱媒体の温度をより一層高めることができる。
上記の発明において、前記加熱媒体供給流路から分岐して前記圧縮機内の圧縮機冷却媒体流路に接続される加熱媒体分岐供給流路と、前記圧縮機冷却媒体流路を通過した前記昇圧加熱媒体を前記吐出側流路へ導いて合流させる加熱媒体分岐戻し流路とを設けることが好ましく、これにより、ガスタービンの静止系部品とともに圧縮機側も昇温させることができるので、タービン及び圧縮機のクリアランス制御が可能になる。
上記の発明において、前記昇圧手段の吸入側に前記加熱媒体の選択切換手段を設けることが好ましく、これにより、必要に応じてガスタービンの外部から温度の高い加熱媒体を導入して昇圧及び昇温させることができる。
上記の発明において、前記昇圧手段で昇圧された昇圧加熱媒体は、前記タービン冷却媒体流路と直列または並列に接続されて前記燃焼器内の冷却を行った後に前記吐出側流路へ導かれて合流することが好ましく、これにより、ガスタービンのクリアランスコントロールに加えて燃焼器の冷却を行うことができる。
本発明に係るガスタービンの起動時運転方法は、圧縮機により圧縮された圧縮空気に燃焼器で燃料を供給して燃焼させ、発生した燃焼ガスをタービンに供給することで回転動力を得るように構成されているガスタービンの起動時運転方法であって、ガスタービン起動時及びその起動直前準備として、前記圧縮機の吐出側から分岐した分岐流路に接続され、前記圧縮機から独立して運転可能な昇圧手段が加熱媒体を導入して昇圧する過程と、前記昇圧手段で昇圧された昇圧加熱媒体が前記タービンの静止系部品内に設けられているタービン冷却媒体流路に供給され、該タービン冷却媒体流路内を通過する前記昇圧加熱媒体により前記静止系部品を昇温させる過程と、前記昇圧加熱媒体を前記タービン冷媒流路から前記吐出側流路へ導いて合流させる過程を備えていることを特徴とするものである。
このようなガスタービンの起動時運転方法によれば、ガスタービン起動時及びその起動直前準備として、前記圧縮機の吐出側から分岐した分岐流路に接続され、前記圧縮から独立して運転可能な昇圧手段が加熱媒体を導入して昇圧する過程と、前記昇圧手段で昇圧された昇圧加熱媒体が前記タービンの静止系部品内に設けられているタービン冷却媒体流路に供給され、該タービン冷却媒体流路内を通過する前記昇圧加熱媒体により前記静止系部品を昇温させる過程と、前記昇圧加熱媒体を前記タービン冷媒流路から前記吐出側流路へ導いて合流させる過程を備えているので、昇圧手段により昇圧されて温度上昇した昇圧加熱媒体は、タービン冷却媒体流路を通る際にタービンの静止系部品を加熱して暖めることができる。このとき、昇圧手段はガスタ−ビン本体から独立して運転可能なため、ガスタービン起動時の起動直前準備として、速やかなクリアランスコントロールが可能となる。
上述した本発明によれば、ガスタービン起動時及びその起動直前準備としてACCシステムの速やかな運転制御を行い、ガスタービン起動の高速化を達成することができる。すなわち、ガスタービン起動時及びその起動直前準備においては、静止系部品を所望の温度まで速やかに暖めて伸ばし、静止部と回転部との間に形成されるクリアランスを最適値まで広げるACCコントロールが可能になるので、ガスタービンの起動準備を短時間で達成できることでガスタービン起動の高速化が可能となり、ガスタービンの設備運転効率が向上する。
この場合、昇圧手段等をクローズド冷却に用いたブーストアップ用の昇圧手段と共用して有効利用すれば、付帯設備の付加を最小限に抑えて、すなわち、新たに設備を付加することなくACCコントロールを実施してガスタービン起動の高速化を実現できる。
以下、本発明に係るガスタービン及びその起動時制御方法の一実施形態を図面に基づいて説明する。
<第1の実施形態>
図1は本実施形態に係るガスタービンを示す概略図、図2はガスタービンの概略構成を示す断面図、図3はガスタービンのタービン部を示す概略構成図である。なお、図示の実施形態では、発電機を駆動して発電するガスタービンについて説明するが、これに限定されるものではない。
図示のガスタービン10は、圧縮機11と、燃焼器12と、タービン13とにより構成され、このタービン13には発電機14が連結されている。この圧縮機11は、空気を取り込む空気取入口15を有し、圧縮機車室16内に複数の静翼17と動翼18とが交互に配設されてなり、その外側に抽気マニホールド19が設けられている。
燃焼器12は、圧縮機11で圧縮された圧縮空気に対して燃料を供給し、バーナで点火することで燃焼可能となっている。
タービン13は、タービン車室20内に複数の静翼21と動翼22とが交互に配設されている。
タービン13のタービン車室20には、排気室23が連続して設けられており、この排気室23は、タービン13に連続する排気ディフューザ24を有している。また、圧縮機11、燃焼器12、タービン13、排気室23の中心部を貫通するようにロータ(タービン軸)25が位置しており、圧縮機11側の端部が軸受部26により回転自在に支持される一方、排気室23側の端部が軸受部27により回転自在に支持されている。そして、このロータ25に複数のディスクプレートが固定され、各動翼18,22が連結されるとともに、排気室23側の端部に発電機14の駆動軸が連結されている。
従って、圧縮機11の空気取入口15から取り込まれた空気は、複数の静翼17と動翼18を通過して圧縮することで高温・高圧の圧縮空気となり、燃焼器12において、この圧縮空気に対して供給された所定量の燃料が燃焼する。そして、この燃焼器12で生成された高温・高圧の燃焼ガスは、タービン13を構成する複数の静翼21と動翼22とを通過することでロータ25を駆動回転し、このロータ25に連結された発電機14に回転動力を付与することで発電を行う一方、排気ガスは排気室23の排気ディフューザ24で静圧に変換されてから大気に放出される。
このように、タービン13と同軸の圧縮機11により圧縮された圧縮空気に燃焼器12で燃料を供給して燃焼させ、発生した燃焼ガスをタービン13に供給することで回転駆動力を得るように構成されているガスタービン10には、たとえば図1に示すように、停止中の圧縮機11を介して、あるいは、圧縮機11で圧縮した圧縮空気の一部を車室から抽気して昇圧する昇圧装置40が設けられている。
図1において、圧縮機11により圧縮された圧縮空気は、ガスタービン10の負荷を定格運転まで上げていく起動中、定格運転時及び停止するまで負荷を下げていく停止中には圧縮機11により圧縮された圧縮空気が圧縮空気供給流路28を通って燃焼器12へ供給され、燃焼器12で発生した燃焼ガスは、ケーシング内の排出流路29を通ってタービン13へ供給される。なお、図中の符号30は燃料供給流路である。
この昇圧装置40は、後述する加熱媒体として用いられる空気を昇圧するための昇圧手段であり、たとえば圧縮機やブロア等が用いられる。また、この昇圧装置40は、専用の電動機41を備えており、空気を導入して昇圧する圧縮機11から独立した運転が可能である。なお、この昇圧装置40については、たとえば定格運転時等に燃焼器冷却用の空気を圧縮して供給するもの(クローズド冷却に用いるブーストアップ用昇圧装置)と共用することが望ましい。
昇圧装置40の吸込側は、車室内に形成される圧縮空気供給流路28から分岐した分岐流路42に接続され、吐出側は加熱媒体供給流路43に接続されている。この加熱媒体供給流路43は、タービン13の静止系部品内に設けられているタービン冷却媒体流路50へ圧縮空気(昇圧加熱媒体)を導く流路である。
タービン冷却媒体流路50は、たとえば図3に示すように、タービン車室20と、静翼21と、翼環31とを連通する流路であり、特に、動翼22の先端部と対向する位置にあり、チップクリアランスに影響を及ぼす静止側部品の翼環31に圧縮空気等の温度調整媒体を流すことで、冷却や加熱による温度調整に使用される。翼環31は、動翼22の外周側を取り囲むようにしてタービン車室20に取り付けられている部材である。
すなわち、この場合のタービン冷却媒体流路50は、定格運転時等のガスタービン運転時において、昇圧加熱媒体の圧縮空気ではなく、適当な温度調整媒体を流すことにより、静翼21を冷却した上で翼環31を冷却する構造となり、このタービン冷却媒体流路50に圧縮空気を流すことで、ACCシステムの加熱に利用するものである。なお、図中の符号31aは、翼環31の全周にわたって設けられた翼環内流路である。
タービン冷却媒体流路50を通過した圧縮空気は、加熱媒体戻し流路44を通って圧縮空気供給流路28へ合流した後、この圧縮空気供給流路28を通って燃焼器12へ流入する。
従って、昇圧装置40は、ガスタービン起動時(起動中)及びその起動直前準備として運転されることにより、タービン冷却媒体流路50内に圧縮空気を流し、ACCシステムにおける静止系部品の昇温を行うことができる。
すなわち、ガスタービン10の起動前準備として昇圧装置40を運転する場合には、圧縮機11の空気取入口15から加熱媒体の空気が吸い込まれ、圧縮機11の内部、圧縮空気吸入流路28及び分岐流路42を通って昇圧装置40に吸入される。この空気は、昇圧装置40で昇圧されることにより、温度上昇した昇圧加熱媒体の圧縮空気となって加熱媒体供給流路43へ吐出される。
加熱媒体供給流路43へ吐出された圧縮空気は、タービン13内のタービン冷却媒体流路50を通過して流れる際に、翼環31等の静止系部品(静止部)を加熱して暖める。特に、チップクリアランスに大きな影響を及ぼす翼環31の翼環内流路31aを通って流れることにより、翼環31の温度が上昇して膨張するので、ほとんど加熱の影響がなく温度変化しない動翼22との間に形成されるチップクリアランスは広がった状態となる。
こうして静止系部品を加熱した圧縮空気は、加熱媒体戻し流路44を通って圧縮空気供給流路28へ戻され、以下、燃焼器12及びタービン13の燃焼ガス流路を通って大気へ放出される。
また、昇圧装置40は、ガスタービン起動時(起動中)に運転されることにより、上述した起動直前準備の時と同様に、タービン冷却媒体流路50内に圧縮空気を流して昇温させる。この場合の昇圧装置40は、圧縮機11の運転開始により空気取入口15から加熱媒体の空気が吸い込まれ、圧縮機11の内部で圧縮された圧縮空気主流の一部を導入して昇圧させる。この状態における圧縮空気主流は定格運転時等と比較して低圧であり、基本的には圧縮空気吸入流路28を通って燃焼器12へ供給されることになる。
しかし、昇圧装置40の運転により、圧縮空気主流の一部は、分岐流路42を通って昇圧装置40に吸入される。こうして昇圧装置40に吸入された圧縮空気は、昇圧装置40の昇圧を受けることにより温度上昇し、昇圧加熱媒体の圧縮空気となって加熱媒体供給流路43へ吐出される。
こうして加熱媒体供給流路43へ吐出された圧縮空気は、以下上述した起動直前準備時と同様の経路を経て流れ、翼環31等の静止系部品(静止部)を加熱して暖めた後、加熱媒体戻し流路44を通って圧縮空気供給流路28へ戻される。すなわち、圧縮空気主流から分岐した一部の圧縮空気については、静止系部品加熱の用途に用いられた後、圧縮空気供給流路28に合流して戻されるため、最終的に燃焼器12へ供給される空気量が減少するようなことはない。
このように、上述したACCシステムのチップクリアランス制御においては、圧縮機11で圧縮した空気の主流について、ガスパス側に流すことなく回収して全空気量を燃焼器12へ供給するので、サイクル効率の減少が少ないことに加えて、燃焼用の空気を多く確保できるため低NOx化が可能となる。しかも 静止系部品の加熱に用いる圧縮空気を供給する昇圧装置40は、専用の電動機41により単独運転が可能であるから、ガスタービン10を単体で独立して起動することが可能になるたけでなく、始動にかかる時間も短くなる。すなわち、ガスタービン10の起動時には、ガスタービン本体から独立して昇圧装置40を運転することで、翼環31に昇圧した圧縮空気を流すことにより、翼環31を暖めてクリアランスコントロールを行うことができる。
<第2の実施形態>
続いて、本実施形態に係るガスタービンを図4に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
この実施形態のガスタービン10には、加熱媒体供給流路43の途中から分岐し、圧縮機11の吐出側流路である圧縮空気供給流路28に接続されるバイパス流路45が設けられている。また、バイパス流路45の適所には、流路開閉手段となる開閉弁46を備えている。
このように構成されたガスタービン10では、ACCシステムのクリアランス制御時において、開閉弁46を開操作することにより、昇圧装置30により昇圧されて温度上昇した圧縮空気の一部をバイパス流路45に流すことができる。この結果、バイパス流路45に分流された圧縮空気は、昇圧装置30に吸入されて再度昇圧されることとなる。
従って、昇圧装置30により昇圧されてタービン冷却媒体流路50へ供給される圧縮空気の温度は、一部が再度昇圧されて再加熱されるためより一層高くなり、その分だけガスタービン10の始動に必要な時間を短縮することができる。
<第3の実施形態>
続いて、本実施形態に係るガスタービンを図5に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
この実施形態のガスタービン10には、加熱媒体である圧縮空気と熱交換して昇温させる熱交換器(加熱手段)60が分岐流路42に設けられている。この熱交換器60は、分岐流路42を流れる昇圧前の空気と、加熱用媒体流路61を流れる加熱媒体との間で熱交換させるものであり、たとえば排ガスボイラから導入した高温の蒸気等を加熱媒体として圧縮空気を加熱するものである。
従って、上述した熱交換器60を備えたガスタービン10は、タービン冷却加熱媒体通路50を通る圧縮空気の温度をより一層高めることができるので、その分だけガスタービン10の始動に必要な時間を短縮することができる。
また、図6に示す変形例では、熱交換器62が加熱媒体供給流路43に設けられ、加熱用媒体流路63を流れる高温の加熱用媒体により、昇圧装置40で昇圧された圧縮空気を加熱している。このようにしても、タービン冷却加熱媒体通路50を通る圧縮空気の温度をより一層高めることができるので、その分だけガスタービン10の始動に必要な時間を短縮することができる。
<第4の実施形態>
続いて、本実施形態に係るガスタービンを図7及び図8に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
この実施形態のガスタービン10には、加熱媒体供給流路43から分岐して圧縮機11内の圧縮機冷却媒体流路51に接続される加熱媒体分岐供給流路47と、圧縮機冷却媒体流路51を通過した圧縮空気を圧縮空気供給流路28へ導いて合流させる加熱媒体分岐戻し流路48とが設けられている。
図8は、圧縮機車室16内に設けられている圧縮機冷却媒体流路51の概要を示す図である。この圧縮機冷却媒体通路51は、通常の運転時には冷却媒体を流して圧縮機11の静止系部品を冷却する流路であり、圧縮機11の動翼18と静止部側となる圧縮機車室16との間に形成されるチップクリアランスを制御する。
この実施形態では、ガスタービン起動時に上述した圧縮機冷却媒体流路51を利用し、圧縮機11側のクリアランス制御を行うことができる。従って、ガスタービン10の静止系部品とともに、圧縮機11側の静止部も昇温させることができるので、タービン13及び圧縮機11のクリアランス制御が可能になる。
<第5の実施形態>
続いて、本実施形態に係るガスタービンを図9に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
この実施形態のガスタービン10には、昇圧装置40の吸入側に加熱媒体の選択切換手段が設けられている。図示の例では、昇圧装置40が直接大気から空気を吸い込む大気吸入流路70と、温度の高い加熱媒体の供給を受ける加熱媒体受入流路71とを備え、両流路に選択切換手段として開閉弁72,73の開閉操作により、いずれか一方の流路を選択できるようになっている。なお、温度の高い加熱媒体としては、たとえば排熱ボイラ等から温度の高い空気や蒸気等を導入して使用すればよい。
このような構成のガスタービン10は、起動直前準備段階等において、必要に応じてガスタービン10の外部から温度の高い加熱媒体を導入し、昇圧装置40で昇圧することによりさらに昇温させることができる。このため、温度の高い昇圧加熱媒体を用い、タービン13の静止系部品を速やかに暖めることができるようになり、ガスタービン10の始動に必要な時間の短縮が可能になる。なお、この場合、タービン13の静止系部品を加熱した昇圧加熱媒体は、タービン13及び圧縮機11の空気取入口15から排気ガスとして排出される。
<第6の実施形態>
本実施形態に係るガスタービンを図10及び図11に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
この実施形態のガスタービン10には、昇圧装置40で昇圧された圧縮空気が、タービン冷却媒体流路50と直列または並列に接続される燃焼器冷却流路80を備えている。すなわち、タービン13の静止系部品を加熱した圧縮空気は、直列または並列に接続された燃焼器冷却流路80を通過することにより、燃焼器12内の必要箇所を冷却した後、圧縮空気供給流路28へ導かれて合流するようになっている。
図10に示す構成例では、燃焼器冷却流路80が加熱媒体供給流路43から分岐した加熱媒体分岐流路81に設けられており、従って、燃焼器冷却流路80がタービン冷却媒体流路50と並列に接続されている。
また、図10の変形例として図11に示す構成例では、燃焼器冷却流路80がタービン冷却媒体流路50と直列に設けられている。
このような構成とすれば、1台の昇圧装置40を用いることにより、ガスタービン13のクリアランスコントロールに加えて、燃焼器12の冷却を行うことができる。従って、たとえば燃焼器12の冷却用に圧縮機11で圧縮された圧縮空気の一部を抽気し、この圧縮空気を昇圧した冷却媒体を燃焼器12に供給する昇圧手段を備えているガスタービン10においては、上述したACCシステム用の昇圧装置40と共用することができる。すなわち、上述したACCシステム用として、新たな昇圧装置40を設ける必要がない。
このように、上述した各実施形態のガスタービン10においては、起動直前準備及び起動時において、以下に説明する起動時運転方法が採用される。
すなわち、ガスタービン起動時及びその起動直前準備として、圧縮機11の吐出側から分岐した分岐流路42に接続され、圧縮機から独立して運転可能な昇圧装置40が加熱媒体となる空気を導入して昇圧する過程と、昇圧装置40で昇圧された圧縮空気がタービン13の静止系部品内に設けられているタービン冷却媒体流路50に供給され、タービン冷却媒体流路50内を通過する圧縮空気により静止系部品を昇温させる過程と、圧縮空気をタービン冷却媒体流路50から圧縮空気供給流路28へ導いて合流させる過程を備えている。
従って、昇圧装置40により昇圧されて温度上昇した圧縮空気は、タービン冷却媒体流路50を通る際にタービン13の静止系部品を加熱して暖めることができる。このとき、昇圧装置40はガスタ−ビン本体から独立して運転可能なため、ガスタービン起動時の起動直前準備として、ガスタービン本体が起動されていなくても速やかなクリアランスコントロールが可能となる。
すなわち、上述した本発明によれば、ガスタービン起動時及びその起動直前準備としてACCシステムの速やかな運転制御を行い、ガスタービン起動の高速化を達成することができる。換言すれば、ガスタービン起動時及びその起動直前準備においては、静止系部品を所望の温度まで速やかに暖めて伸ばし、静止部と回転部との間に形成されるクリアランスを最適値まで広げるACCコントロールが可能になるので、ガスタービン10の起動準備に要する時間を短縮してガスタービン起動の高速化が可能となる。このため、ガスタービン10を運転して発電機14を駆動する本来の運転時間が長くなり、ガスタービン10の設備運転効率が向上する。
また、昇圧装置10等をクローズド冷却に用いるブーストアップ用と共用して有効利用すれば、付帯設備の付加を最小限に抑えて、すなわち、新たに設備を付加することなくACCコントロールを実施してガスタービン起動の高速化を実現できる
なお、本発明は上述した実施形態に限定されるものではなく、たとえば圧縮機とタービンとの接続形態等について、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
本発明の第1の実施形態に係るガスタービンを示す概略図である。 ガスタービンの構成例を示す概略構成図である。 タービンの静止系部品に設けられるタービン冷却媒体流路の説明図である。 本発明の第2の実施形態に係るガスタービンを示す概略図である。 本発明の第3の実施形態に係るガスタービンを示す概略図である。 図5に示した第3の実施形態に係る変形例を示す概略図である。 本発明の第4の実施形態に係るガスタービンを示す概略図である。 圧縮機の静止系部品に設けられる圧縮機冷却媒体流路の説明図である。 本発明の第5の実施形態に係るガスタービンを示す概略図である。 本発明の第6の実施形態に係るガスタービンを示す概略図である。 図10に示した第6の実施形態に係る変形例を示す概略図である。 ACCシステムの説明図であり、(a)は時間と回転数/負荷との関係、(b)は時間と温度との関係、(c)は時間と伸びとの関係、(d)は時間とクリアランスとの関係を示している。
符号の説明
10 ガスタービン
11 圧縮機
12 燃焼器
13 タービン
20 タービン車室
21 静翼
22 動翼
28 圧縮空気供給流路
29 排出流路
31 翼環
40 昇圧装置
42 分岐流路
43 加熱媒体供給流路
44 加熱媒体戻し流路
45 バイパス流路
47 加熱媒体分岐供給流路
48 加熱媒体分岐戻し流路
50 タービン冷却媒体流路
51 圧縮機冷却媒体流路
60,62 熱交換器
70 大気吸入流路
71 加熱媒体受入流路
80 燃焼器冷却流路

Claims (7)

  1. 圧縮機で圧縮された圧縮空気に燃焼器で燃料を供給して燃焼させ、発生した燃焼ガスをタービンに供給することで回転動力を得るように構成されているガスタービンにおいて、
    前記圧縮機の吐出側流路から分岐する分岐流路に接続され、加熱媒体を導入して昇圧する前記圧縮機から独立した運転が可能な昇圧手段と、該昇圧手段で昇圧された昇圧加熱媒体を前記タービンの静止系部品内に設けられているタービン冷却媒体流路へ導く加熱媒体供給流路と、前記タービン冷却媒体流路を通過した前記昇圧加熱媒体を前記吐出側流路へ導いて合流させる加熱媒体戻し流路とを備え、
    ガスタービン起動時及びその起動直前準備として前記昇圧手段を運転し、前記タービン冷却媒体流路内に前記昇圧加熱媒体を流して昇温させることを特徴とするガスタービン。
  2. 前記加熱媒体供給流路の途中から分岐して前記吐出側流路へ接続されるとともに流路開閉手段を備えているバイパス流路を設けたことを特徴とする請求項1に記載のガスタービン。
  3. 前記分岐流路または前記加熱媒体供給流路に、前記加熱媒体または前記昇圧加熱媒体と熱交換して昇温させる加熱手段を設けたことを特徴とする請求項1または2に記載のガスタービン。
  4. 前記加熱媒体供給流路から分岐して前記圧縮機内の圧縮機冷却媒体流路に接続される加熱媒体分岐供給流路と、前記圧縮機冷却媒体流路を通過した前記昇圧加熱媒体を前記吐出側流路へ導いて合流させる加熱媒体分岐戻し流路とを設けたことを特徴とする請求項1から3のいずれかに記載のガスタービン。
  5. 前記昇圧手段の吸入側に前記加熱媒体の選択切換手段が設けられていることを特徴とする請求項1から4のいずれかに記載のガスタービン。
  6. 前記昇圧手段で昇圧された昇圧加熱媒体が、前記タービン冷却媒体流路と直列または並列に接続されて前記燃焼器内の冷却を行った後に前記吐出側流路へ導かれて合流することを特徴とする請求項1から5のいずれかに記載のガスタービン。
  7. 圧縮機で圧縮された圧縮空気に燃焼器で燃料を供給して燃焼させ、発生した燃焼ガスをタービンに供給することで回転動力を得るように構成されているガスタービンの起動時運転方法であって、
    ガスタービン起動時及びその起動直前準備として、
    前記圧縮機の吐出側流路から分岐する分岐流路に接続され、前記圧縮機から独立して運転可能な昇圧手段が加熱媒体を導入して昇圧する過程と、
    前記昇圧手段で昇圧された昇圧加熱媒体が前記タービンの静止系部品内に設けられているタービン冷却媒体流路に供給され、該タービン冷却媒体流路内を通過する前記昇圧加熱媒体により前記静止系部品を昇温させる過程と、
    前記昇圧加熱媒体を前記タービン冷媒流路から前記吐出側流路へ導いて合流させる過程と、を備えていることを特徴とするガスタービンの起動時運転方法。
JP2008262072A 2008-10-08 2008-10-08 ガスタービン及びその起動時運転方法 Active JP5185762B2 (ja)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP2008262072A JP5185762B2 (ja) 2008-10-08 2008-10-08 ガスタービン及びその起動時運転方法
EP13165249.7A EP2674579B1 (en) 2008-10-08 2009-09-24 Gas turbine and operating method thereof
US13/056,064 US9255490B2 (en) 2008-10-08 2009-09-24 Gas turbine and operating method thereof
KR1020117002103A KR101346566B1 (ko) 2008-10-08 2009-09-24 가스 터빈 및 그 운전 방법
KR1020137004036A KR101366584B1 (ko) 2008-10-08 2009-09-24 가스 터빈 및 그 운전 방법
EP09819087.9A EP2333248B1 (en) 2008-10-08 2009-09-24 Gas turbine and operating method therefor
CN201410781689.6A CN104564183B (zh) 2008-10-08 2009-09-24 燃气轮机及其运转方法
CN201510315561.5A CN105089714B (zh) 2008-10-08 2009-09-24 燃气轮机及其运转方法
EP13194464.7A EP2708720B1 (en) 2008-10-08 2009-09-24 Gas turbine and operating method thereof
CN201310355200.4A CN103557079B (zh) 2008-10-08 2009-09-24 燃气轮机及其运转方法
KR1020137004035A KR101366586B1 (ko) 2008-10-08 2009-09-24 가스 터빈 및 그 운전 방법
PCT/JP2009/066485 WO2010041552A1 (ja) 2008-10-08 2009-09-24 ガスタービン及びその運転方法
EP13165248.9A EP2631451B1 (en) 2008-10-08 2009-09-24 Gas turbine and operating method thereof
CN200980130681.0A CN102112704B (zh) 2008-10-08 2009-09-24 燃气轮机及其运转方法
US14/843,732 US10309245B2 (en) 2008-10-08 2015-09-02 Gas turbine and operating method thereof
US14/843,672 US10247030B2 (en) 2008-10-08 2015-09-02 Gas turbine and operating method thereof
US14/843,585 US9951644B2 (en) 2008-10-08 2015-09-02 Gas turbine and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262072A JP5185762B2 (ja) 2008-10-08 2008-10-08 ガスタービン及びその起動時運転方法

Publications (2)

Publication Number Publication Date
JP2010090816A JP2010090816A (ja) 2010-04-22
JP5185762B2 true JP5185762B2 (ja) 2013-04-17

Family

ID=42253779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262072A Active JP5185762B2 (ja) 2008-10-08 2008-10-08 ガスタービン及びその起動時運転方法

Country Status (1)

Country Link
JP (1) JP5185762B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352243B2 (en) 2013-09-20 2019-07-16 Mitsubishi Heavy Industries, Ltd. Gas turbine, gas-turbine control device, and gas turbine operation method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541008B2 (en) * 2012-02-06 2017-01-10 General Electric Company Method and apparatus to control part-load performance of a turbine
EP2664746A3 (en) * 2012-05-16 2014-04-23 General Electric Company Systems and methods for adjusting clearances in turbines
KR101485020B1 (ko) * 2013-12-12 2015-01-29 연세대학교 산학협력단 초임계유체 냉각 가스터빈 장치
US10400627B2 (en) 2015-03-31 2019-09-03 General Electric Company System for cooling a turbine engine
US9988928B2 (en) * 2016-05-17 2018-06-05 Siemens Energy, Inc. Systems and methods for determining turbomachine engine safe start clearances following a shutdown of the turbomachine engine
CN114962276A (zh) * 2022-07-12 2022-08-30 郑州城建集团投资有限公司 一种水利发电大坝加热阻冷系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189740A (ja) * 1993-12-27 1995-07-28 Hitachi Ltd ガスタービン冷却系統
JPH1193694A (ja) * 1997-09-18 1999-04-06 Toshiba Corp ガスタービンプラント
JP2004116485A (ja) * 2002-09-30 2004-04-15 Mitsubishi Heavy Ind Ltd ガスタービンの冷却構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352243B2 (en) 2013-09-20 2019-07-16 Mitsubishi Heavy Industries, Ltd. Gas turbine, gas-turbine control device, and gas turbine operation method

Also Published As

Publication number Publication date
JP2010090816A (ja) 2010-04-22

Similar Documents

Publication Publication Date Title
WO2010041552A1 (ja) ガスタービン及びその運転方法
JP5185762B2 (ja) ガスタービン及びその起動時運転方法
JP6189271B2 (ja) ガスタービン、ガスタービンの制御装置及びガスタービンの運転方法
WO2008038497A1 (fr) Turbine à gaz
JP5863755B2 (ja) ガスタービン及びその定格時運転方法
RU2731144C2 (ru) Компрессор с приводом от установки для утилизации тепла с органическим циклом Ренкина и способ регулирования
JP2007182785A (ja) ガスタービン及びガスタービンの起動方法並びに複合発電システム
JP5496486B2 (ja) ガスタービン及びその定格時運転方法
JP4814143B2 (ja) コンバインド発電プラント
JP5460994B2 (ja) ガスタービン及びその部分負荷時運転方法
JP5185763B2 (ja) ガスタービン及びその停止時運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130118

R150 Certificate of patent or registration of utility model

Ref document number: 5185762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250